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An Abstract of the Thesis of

Ali Moussa Kassab for Master of Engineering
Major: Industrial Engineering and Management

Title: A Sequential Multi-Stage One-Class Classification Model
in Network Intrusion Detection Systems

One-class classification has been a promising direction in capturing the prop-
erties of a target class. Under multiclass classification problems with severe im-
balance in target labels, research proposes the decomposition of a given problem
into multiple sub-problems trained as separate one-class classifiers. We propose
a sequential multi-stage one-class classification model to detect anomalies found
in a multiclass classification context - a network intrusion detection system. We
experiment with the model and test its performance using the NSL-KDD dataset,
a modified version of the KDD’99 dataset. The model consists of several stages;
we start with an initial classifier to detect the presence of an anomaly, followed by
a sequence of per class one-class classifiers that will classify the intrusion based
on the current class or otherwise pass to the next classifier trained on a less com-
mon attack type. Finally, we provide the analysis of our contribution compared
to multiclass models trained over the dataset observations, and treated with an
imbalanced learning approach.
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Chapter 1

Introduction

1.1 Motivation

Cyber attacks are growing in sophistication and offensive nature, leading to ex-
panding challenges in accurately detecting intrusions and keeping organizations
safe. There are a large number of cybercriminals around the world motivated to
steal information and receive revenues illegitimately. IBM has recently estimated
the average financial impact of a data breach to be about �3.8 million, and for
companies at the enterprise level with at least a thousand employees, this number
can grow ten to a hundred times larger [1]. The number of incidents reported
with over �1M losses has also increased (Figure 1.1)[2].

Every year we witness the worst year ever for the number of cyber attacks
around the world. Due to the Covid-19 pandemic, most organizations had to
switch to working online, using weakly secure connections and leveraging the
opportunity for hackers to attack vulnerable networks, damaging businesses and
scamming citizens; by September 2020, 9.7 million healthcare records were com-
promised [3]. A cogent assumption stands out: the increase in the number of
organizations relying on online networks for work will result in an expansion of
cybercrime acts. In addition, failure to prevent the intrusions will degrade the
credibility of security services and data integrity and availability, limiting the
choices of organizations to flow under high risk or operate in a closed box. Thus,
building a strong network intrusion detection system is crucial for the safety of
businesses, governments, and the military.

In trying to detect network intrusions, two categories of data mining tech-
niques were applied, misuse detection and anomaly detection: In misuse detec-
tion, each instance in the data is labeled as normal or intrusive, and the learning
algorithm used was one of the popular classification models. Misuse detection
techniques performed well against known attacks presented with slight variations,
however, they failed in detecting attacks not previously observed.

On the other hand, an anomaly detection system was structured by building
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Figure 1.1: Cyber Attack Incidents with over �1M in Reported Losses .

a model over normal data, then focusing on detecting deviations from it. The
new model preserves the need for learning from intrusions. The main approach
then was building systems that focus on determining which instances stand out
as being dissimilar to all others [4].

Anomaly detection systems have attracted the machine learning community.
Systems of this kind generate a high class imbalance, between daily normal net-
work connections, along with other classes, composed of different types of network
attacks, some of which are barely represented. Numerous methods have been ap-
plied in the literature to tackle these threats, and one-class classifiers have proven
their potential with high prediction accuracies.

However, researchers have been treating all network intrusions as an anomaly,
while networks are being attacked in over 39 attack types (at least that we know
of). These attack types can be classified into DoS, Probe, R2L, and U2R, and
they have different properties and intentions when damaging a network [5]:

� Denial of Service (DoS): The denial of service attack makes some computing
or memory resources too busy, by overloading the server with a surge of
requests often from a botnet of compromised computers (zombies), whose
unwary users may be distributed all over the globe. Thus the legitimate and
widely varying range of IP addresses make such attacks difficult to block by
traditional means such as configuring iptables of gateway routers or reverse
proxies. The network appears full and unable to handle legitimate requests.
You can no longer be granted a server connection.
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� Probe: Probing is a class of attacks, where an attacker scans network data
being transferred to collect information. In addition, the attacker can be
using probing to find known vulnerabilities or weaknesses in the network
machines and exploit attacks at the weak points.

� Remote to Local Attacks (R2L): A remote to local attack sends packets
to the machine trying to exploit the machine’s vulnerability and illegally
gaining local access as a user.

� User to Root Attacks (U2R): In a user to root attack, the attacker starts
with access to a normal user account on the system and takes advantage
of regular programming mistakes and environment assumptions to exploit
a vulnerability and gain root access to the system.

Since most companies take nearly 6 months to detect a data breach, even ma-
jor ones, researchers find it essential to implement models that detect intrusions
for organizations to react promptly. However, having analyzed the different types
of attacks, security specialists need to take advantage of the attack class, to gain
additional information on the attacker’s intentions and the damage done, to make
the right decisions immediately (i.e. ignoring, handling with patience, reporting
to the government, or even shutting down the whole system). Therefore, our
main goal is constructing a network intrusion detection model that is capable of
detecting network intrusions providing their class types to stand against attackers
and keep the online world safe.

1.2 Challenges

The structure of our model needs to stay limited to operation and budget con-
straints which we could encounter:

1. Real-Time Capability:
Most organizations have their networks running full-time, connecting users
to services and collecting and uploading data. Thus, a model must be
capable of operating in real-time and handling a huge number of connections
simultaneously.

2. False Alarm Rate:
Companies have limited budgets to spend on security, they aim for tech-
nologies that can reduce the number of cybersecurity staff employed. Thus,
even though detecting network intrusions is necessary for the company, they
cannot handle a high number of false alarm rates.

3. Mislabeled Prediction:
A model mislabeling a serious breach as normal traffic can be fatal for a
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business; attacks like Ransomware encrypt the data inside the computer
system and threaten businesses to publish or remove it. Encrypted data
is not to be recovered in a matter of time, owners must pay a ransom or
otherwise important data will be lost forever.

1.3 Contribution

While one-class classifiers have been the promising direction in anomaly detection,
these models on their own are limited to binary classification (normal vs intrusive)
and lack the benefit of extra information available about the intrusion class. The
principal contributions of this thesis are:

1. We introduce a new multi-stage decomposition approach that encounters
highly imbalanced multiclass problems via one-class classifiers trained over
each class. To do so, we present a fusion strategy that takes full advantage
of the strong preliminary one-class classifier predictions for detecting an
intrusion, then move beyond to classify intrusions by their corresponding
class type.

2. To increase real-time capability, we provide a slightly modified version of
the model structure that is capable of operating more efficiently than the
standard model at the cost of losing records that specialists might consider
as redundant.

3. We use the NSL-KDD dataset to evaluate our classifier branches based on
the area under the ROC curve, then provide a comparison between the final
model and other multiclass models based on the confusion matrix outcomes.

4. We finally experiment and provide our analysis on the effect of applying
an imbalanced learning strategy - SMOTE oversampling, to our model and
the multiclass models implemented previously.

1.4 Outline

The rest of the thesis is organized as follows: In Chapter 2, we give a compre-
hensive summary of highly imbalanced multiclass problems, and a review on the
related works of models described for network intrusion detection. In Chapter 3,
we explore our dataset features and statistics and share a brief description of the
preprocessing applied over the NSL-KKD dataset prior to training. In Chapter
4, we apply preliminary experimentation to gain insight on the model stages, we
later discuss in detail our model structure and explain its advantages with re-
spect to other models in performance and facing the challenges we listed earlier.
Next, in Chapter 5 we experiment with our final model and compare it to other
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multiclass models with and without oversampling. And finally, we conclude and
present future directions in Chapter 6.
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Chapter 2

Literature Review

In machine learning, a multiclass classification is a problem that extends beyond
the classical binary case and requires identifying the belongingness of an instance
over a set of three or more classes. For constructing a classifier, a common
objective relies upon improving its evaluation measures, which represent error
computations resulting from false predictions.

To solve a multiclass problem, two commonly used approaches are present.
The first approach deals with all classes present as one problem, by solving the
given context without further modification in structure. Training classifiers of this
type often perform well in problems where the data is well balanced. However,
it was found that overtraining the model seems to favor classes that are more
represented in the dataset [6].

Some researches were based on keeping this approach and manipulating the
data to abate the class imbalance; SMOTE stands for Synthetic Minority Over-
sampling Technique, is a method in which the minority class is over-sampled by
taking each minority class sample and introducing new synthetic observations
along the line segments joining the k nearest neighbors of existing observations
[7]. Other methods include undersampling the majority class [8] or increasing
the misclassification cost of the minority class [9].

The second approach is to decompose the problem by applying the divide and
conquer strategy and is well-suited for classifiers that cannot naturally handle
the multiclass situation. This approach transforms the multiclass problem into
several binary sub-problems, and tries to classify an observation between each
pair of classes separately, and will then integrate all binary results into a final
decision. Significant attention was given to this decomposition method and has
proven to perform well in most multiclass problems [10].

This second approach however is not without its own limitations. The de-
pendence of the model on the selected fusion strategy that combines the binary
classifiers led to high variation in the outcomes, which made the model less reli-
able. Besides, having a relatively high imbalance in the data remains a problem,
since binary classifiers try to find a decision boundary that will minimize the
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error on objects from both classes, where one class is severely undersampled and
is difficult to define [11].

While binary classifiers may in such situations fail, another approach had the
potential to surpass such problems, and despite not using all the knowledge avail-
able, the nature of its training phase was able to capture the unique properties
of a target class, without overfitting the data. It became known in the literature
as one-class classifier. These classifiers were viewed as promising algorithms that
can handle data with the overabundance of a common class, or even in the full
absence of all other classes.

Keeping in mind that the decomposition approach is a well-established point
of reference, a decomposition of one-class classifiers in the multiclass classifica-
tion context appeared promising. But, to construct a model with the following
properties, it is important to compare the different properties of the binary and
one-class classifiers and the different ideas of decomposition and fusion strategies
applied [12].

In general, given two classes ω1 and ω2, a binary classifier labels observations
as ω1 if: p(x | ω1)(ω1) > p(x | ω2)(ω2) and is classified as ω2 otherwise. However,
one-class classifiers ignore class priors by focusing on a single class and construct-
ing a density function upon it. We can later classify instances by introducing a
well-tuned threshold τ on the function. Thus, an observation will be classified as
ω1 if p(x | ω1) ≥ τ [13].

In a more descriptive context, a kernel-based machine learning technique that
is widely used is the Support Vector Machines and can be put into example. In
binary classification, an SVM model tries to find the best possible space between
the two classes ω1 and ω2. But in the one-class classification, one-class SVMs will
create a boundary around a target class ω1. Another interesting property about
SVMs is that despite the often high classification performance, computational
time, and stability to parameter settings, this technique is not designed to handle
multiclass problems without applying a decomposition strategy [14].

The most popular decomposition schemes discussed in the literature are the
one-versus-one (OVO) and one-versus-all (OVA). OVO strategy considers all pos-
sible pairwise combinations; as the number of classes increases, the number of
binary classifiers will significantly increase as N = M(M−1)

2
, where M is the num-

ber of classes. The OVA strategy on the other hand specifies one class as the
target class or positive class and labels all the remaining classes as the negative
class. OVA returns a lower number of binary classifiers when M > 3, yet they
are more complex. Besides, the OVA approach usually has a relatively low quan-
tity of positively labeled data compared to the total number of all remaining
classes defined as negative labels, therefore most classifiers are constructed with
an imbalance between the two classes.

While the decomposition part in the strategy is relatively easy, the recon-
struction of a final decision is critical. For OVO and OVA, several aggregation
strategies rely on voting such as the Decision Directed Acyclic Graph, which
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was not only used in binary problems but also modified to deal with one-class
problems [10]. The DDAG is an OVO aggregation scheme, it constructs a rooted
binary acyclic graph for each node corresponding to assigned class decisions. An
observation is evaluated at the decision node to select a decision corresponding
to one of the classes and eliminate the others. The DDAG was easily applied
for one-class classifiers, by defining one of the classes as a target class, and the
second class as the outlier [15].

Another OVO aggregation scheme studied in the literature is pairwise cou-
pling, which is based on the estimation of the joint probabilities of all possible
combinations, then selecting the class with the highest posterior probability [16].
Similar aggregation methods can be applied in one-class decomposition problems
by using belongingness measures instead of the posterior probabilities.

Adjacent to the OVO schemes, the maximum confidence strategy is an OVA
aggregation scheme developed to handle tie situations by selecting the class with
the most positive answer and can be applied directly on both binary and one-class
problems.

While network intrusion detection is a specific field of anomaly detection,
we can still rely on models described for the latter in all of its corresponding
applications. Most approaches in the literature try to build a model over the
normal data and then evaluate how new data fits into the model. Some of these
methods are density-based, which can be simple yet effective; among the OCC
density methods are the Gaussian Mixture Models [17] and Parzen Density [18].
Other methods are boundary-based like the Support Vector Classification [19] or
reconstructive like the K-means [20].

Several approaches used artificial neural networks to detect anomalies [21],
some of these models generalize from previously observed intrusions to recognize
unseen attacks with variations to the attacks trained on, applying a classical feed-
forward multi-layer neural network [22]. Other approaches apply non-stationary
models [23] or decision trees [24] to obtain their model.

On the contrary, another approach applied an isolation forest model that
isolates anomalies instead of learning normal data, and results were promising
and able to outperform random forest models and local outlier-based models in
terms of AUC and computational cost [25].

Out of the multiclass-focused approaches, one approach proposes a Multiple
Classifier System that combines several one-class classifiers that are different
along with a dynamic weighted average rule over the classifiers calculated at
each test sample [26]. Another approach trains one-class classifiers for each class
and then a decision function is based on distance measures, thus specific models
that are distance-based had to be used, namely the Support Vector Domain
Description and the Kernel Weighting by Kernel Principle Component Analysis
[27].

From the approaches experimented on using the NSL-KDD dataset we also
note the convolution neural networks model [28], and the sparse auto-encoder
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with logistic regression for classification [29].
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Chapter 3

Experimentation Dataset

The dataset that will be experimented upon is the NSL-KDD dataset, a modified
version of the KDD’99. Although the KDD’99 dataset was widely used as one
of the few publicly available, a large number of redundant records in the train-
ing set was found whereas NSL-KDD is deemed more challenging and able to
emphasize differences in performance across various classifiers. It is also clean of
redundancies and other errors that had been observed in the original dataset in
the past. [30].

3.1 Exploration

The NSL-KDD dataset is composed of 43 features per observation: 41 of the fea-
tures referring to the traffic input itself, a feature that includes the label (normal
and attack including the attack type), and a final score (not to be used in the
classification task). The attack types included in the dataset are of four general
types: Denial of Service (DoS), Probe, User to Root (U2R), and Remote to Local
(R2L), and they represent the main classes of the attacks. These attacks are of
different sub-classes (Table 3.1).

Our model will not be concerned about the sub-class types of attacks and the
decomposition problem will include the 4 main attack types; obtaining a specific
attack type could be very useful, however, training 40 different classes requires
an enormous amount of data which is currently not available. In addition, several
attack types found in the testing set are not present while training, and others
are present with under 10 samples. After aggregating the data, we recognized
that the distribution of the attacks is heavily skewed (Table 3.2).
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Table 3.1: List of sub-classes present in the data per attack type.

DoS Probe U2R R2L
apache2 ipsweep buffer overflow ftp write
back mscan loadmodule guess passwd
land nmap perl httptunnel

neptune portsweep ps imap
mailbomb saint rootkit multihop

pod satan sqlattack named
processtable xterm phf

smurf sendmail
teardrop Snmpgetattack
udpstorm spy
worm snmpguess

warzclient
warezmaster

xlock
xsnoop

Table 3.2: The relative percentage of attack types found in the listed datasets.

Dataset Normal DoS Probe U2R R2L

Training
67343 45927 11656 52 995

(53.46%) (36.46%) (9.25%) (0.04%) (0.79%)

Testing
9711 7458 2421 67 2887

(43.08%) (33.08%) (10.74%) (0.3%) (12.81%)

3.2 Preprocessing

The data is free of missing variables and is originally well split for training and
testing. The features include 3 Categorical, 6 Binary, 23 Discrete, and 10 Contin-
uous columns. The categorical features are to be encoded into numeric variables
using one-hot encoding. We later obtain 122 features.

After normalizing the data, we apply Linear Discriminant Analysis (Fisher
Mapping), a supervised feature extraction method to reduce the dimensionality
of our dataset while losing the chances of feature interpretation without ignoring
any. This method is highly dependent on the number of classes present for
classification; the maximum number of features we can obtain is less than the
minimum of the number of classes and the number of features by one, and in
our case, we find 5 classes suitable. Also, keeping in mind that the one-class
classification models are unsupervised, we favor supervised feature extraction
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Figure 3.1: Feautres 1 and 2 of the preprocessed NSL-KDD dataset .

methods that take advantage of the class labels. Figure 3.1 shows the first two
features of the preprocessed dataset.
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Chapter 4

Sequential Multi-Stage One-Class
Classifier (SMOCC)

4.1 Intuition

The idea was to construct a classifier capable of detecting the attack class in our
multiclass context without trivializing the main objective of detecting an intru-
sion. Motivated by the performance of one-class classifiers in anomaly detection
and the novel decomposition methods in the multiclass systems, some of our
elements are predetermined - a structure of one-class classifiers.

The selection of the one-class classifier was based on speed, scalability, and
performance. One-class SVM, Isolation Forest, Gaussian OCC, and Local Outlier
Factor Classifier were on the list:

� Gaussian OCC:
Although the Gaussian one-class classifier required few parameters and was
able to train a relatively significant number of observations in seconds,
assuming a gaussian distribution is too restrictive and did not lead to good
results.

� Local Outlier Factor:
The local outlier factor parameters were also few and not too sensitive. It
performed well when tested over a small sample of the data within a limited
time for training. The LOF cannot handle but small sampled datasets; for
the LOF to detect an intrusion, the model needs to be reimplemented for
every new observation.

� One-class SVM:
The One-Class Support Vector Machines classifier is a classifier that per-
forms well if well-tuned. However, choosing the parameters is critical to the
performance. Thus, taking longer time to train compared to other classi-
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fiers; a hyperparameter tuning stage that falls under a huge grid makes the
whole training phase the longest.

� Isolation Forest:
The Isolation Forest is extremely efficient and fast compared to others, it
almost always performs better or is never much behind the best classifier;
its parameters have a clear interpretation; moreover, ensemble aggregation
makes the classifier stable and robust.

Recall that one-class classifiers performed well in binary classification, con-
structing a multi-stage fusion structure with a normal-intrusive classifier at the
first stage maintains the same accuracy of detecting intrusions with a low false
alarm rate, while the following stage/stages are to be concerned with the mul-
ticlass attacks. Based on the probabilities of our outcomes, one possible option
could be to rely on the maximum confidence strategy [10] to predict an observa-
tion attack type (if classified as intrusion).

For the NSL-KDD dataset, the number of samples for every one-class in our
training set varies significantly; although one-class classifiers can capture well
certain properties of a target class, relying on maximum confidence for a barely
represented class is unlikely to succeed.

For the purpose of preliminary experimentation, we apply the isolation forest
one-class classifier. Analyzing the results, as the number of samples per class we
trained on was less, the resulting AUC score and accuracy (hard labels were based
on maximizing the balanced accuracy criterion of the testing set) was worse. The
class AUC score decreases from 94% for the normal data to 64% in the R2L
intrusion class (Figure 4.1). Designing our fusion, we need to construct a model
that relies more on classes highly represented in the dataset.

4.2 Final Model

We introduce a sequential multi-stage one-class classification model composed of
a sequence of one-class classifiers arranged according to the empirical class fre-
quencies in the data. We apply novel algorithms used in the literature and assure
that anomalies are well-determined. The current stage will result in two differ-
ent directions, selected according to the classifier predictions. All observations
classified as normal shall proceed to label, whereas intrusions will pass through
another stage or a sequence of stages to classify its type. The next stage will be
a one-class classifier that learns the attack type most commonly represented in
the data. According to these last predictions, the anomaly will be classified as
the current classification stage label or pass to the next classifier that represents
a less common attack type. Figure 4.2 represents a general scheme of the model
stages.
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Figure 4.1: Isolation Forest performance on the NSL-KDD classes of varried training
sample sizes .

Observation

Predict if Normal

Normal Predict if DoS

DoS Predict if Probe

Probe Predict if R2L

R2L Predict if U2R

U2R Label by Nearest Class Mean

Figure 4.2: Model Scheme
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4.3 Performance Against Standard Multiclass

Classifiers

We test the performance of the SMOCC against standard multiclass classifiers on
the NSL-KDD dataset. We implemented Logistic Regression, K-Nearest Neigh-
bors, Linear Discriminant Analysis, Random Forest, Support Vector Machines,
and Artificial Neural Networks. We obtain the results of this application in two
different scenarios; (i) given the original dataset and (ii) oversampling the data
with SMOTE.

4.3.1 Application - Original Dataset

We start by evaluating the one-class classifier’s performance per class, we im-
plement an Isolation Forest classifier with stable parameters. For each trained
classifier, a receiver-operating characteristic curve (ROC) is constructed over the
test set, and the area under the curve is computed (Figure 4.3). An operating
point based on maximizing balanced accuracy is selected to showcase the optimal
performance possible. Whereas in the final multiclass model evaluation, thresh-
olds are computed using the same strategy on a validation set; these classifiers do
not represent the exact predictions used in the model structure elements/events,
they are however useful to study their behavior and compare their characteristics
when trained on oversampled data. We expect the testing set computed thresh-
olds to be shifted more to the right, favoring anomalies (known as all), the class
more represented in each event testing set.

In the normal vs all case, the classifier was capable of capturing most anoma-
lies yet was not perfectly precise; several normal observations were classified as
anomalies. Similarly in the DoS class, the Isolation Forest was again well cap-
turing anomalies, while the precision was getting even lower. Moving to a less
represented class in the dataset, this time recalling an anomaly from a Probe
attack has also decreased compared to the prior, and likewise for the less repre-
sented classes, R2L and U2R.

Normal vs All

precision recall f1-score support
Outlier Class 0.88 0.95 0.91 12833
Inlier Class 0.93 0.83 0.88 9711

accuracy 0.9 22544
macro avg 0.9 0.89 0.9 22544

weighted avg 0.9 0.9 0.9 22544
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DoS vs All

precision recall f1-score support
Outlier Class 0.9 0.97 0.94 15086
Inlier Class 0.94 0.79 0.85 7458

accuracy 0.97 22544
macro avg 0.92 0.88 0.9 22544

weighted avg 0.91 0.91 0.91 22544

Probe vs All

precision recall f1-score support
Outlier Class 0.96 0.89 0.93 20123
Inlier Class 0.44 0.711 0.54 2421

accuracy 0.87 22544
macro avg 0.7 0.8 0.71 22544

weighted avg 0.91 0.87 0.88 22544

R2L vs All

precision recall f1-score support
Outlier Class 0.97 0.46 0.63 19657
Inlier Class 0.2 0.9 0.32 2887

accuracy 0.52 22544
macro avg 0.58 0.68 0.47 22544

weighted avg 0.87 0.52 0.59 22544

U2R vs All

precision recall f1-score support
Outlier Class 1 0.76 0.86 22477
Inlier Class 0.01 0.61 0.01 67

accuracy 0.76 22544
macro avg 0.5 0.68 0.44 22544

weighted avg 1 0.76 0.86 22544
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Figure 4.3: AUROC for the Isolation Forest Classifier over the test set.

The area under ROC has also decreased. (Figure 4.3) shows the ROC curves
for all classifiers.

Next, we implement the sequential multistage one-class classifier along with
other standard multiclass classifiers that are hyper-tuned. Table 4.1 includes
all confusion matrices. Results were close amongst predictions of classes highly
represented. While the Logistic Regression classifier and SMOCC came at the
top of predictions for normal observations, thus the lowest false alarm rate, the
KNN, and SVM performed best in predicting DoS observations. Probe attacks
had also close predictions across classifiers, with SMOCC and Random Forest in
the lead. For the two remaining barely represents classes, Logistic Regression,
Random Forest, SVM, and Neural Networks failed significantly. Whereas the
KNN has predicted few observations of each class, SMOCC, and LDA were the
best in capturing these classes; LDA performed better in R2L while SMOCC
performed better in U2R.

Comparing mislabeled normal class predictions, a group of classifiers: KNN,
Random Forest, SVM, and Neural Networks had the highest number of misla-
beled predictions. Other classifiers performed better, while Logistic Regression
performed best.
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SMOCC

normal DoS Probe R2L U2R
normal 9286 85 307 17 16
DoS 1332 5605 521 0 0
Probe 532 239 1650 0 0
R2L 2480 1 18 378 10
U2R 26 0 0 7 34

Logistic Regression

normal DoS Probe R2L U2R
normal 9354 86 263 6 2
DoS 1352 5603 503 0 0
Probe 538 279 1604 0 0
R2L 2881 2 2 2 0
U2R 42 0 0 1 24

KNN

normal DoS Probe R2L U2R
normal 9018 61 629 2 1
DoS 1236 5689 510 23 0
Probe 494 295 1626 0 6
R2L 2557 5 22 300 3
U2R 41 0 0 6 20

LDA

normal DoS Probe R2L U2R
normal 9258 85 334 18 16
DoS 1328 5605 525 0 0
Probe 562 228 1631 0 0
R2L 2335 1 16 525 10
U2R 26 0 0 8 33

Random Forest

normal DoS Probe R2L U2R
normal 9011 58 638 2 2
DoS 1311 5633 514 0 0
Probe 460 291 1670 0 0
R2L 2831 4 4 47 1
U2R 41 0 0 1 25

SVM

normal DoS Probe R2L U2R
normal 9025 61 622 2 1
DoS 1194 5687 577 0 0
Probe 485 330 1606 0 0
R2L 2813 4 23 47 0
U2R 65 0 0 1 1

ANN

normal DoS Probe R2L U2R
normal 9006 56 649 0 0
DoS 1463 5479 516 0 0
Probe 628 132 1661 0 0
R2L 2878 1 8 0 0
U2R 63 0 4 0 0

Table 4.1: Confusion Matrices
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Figure 4.4: Features 1 and 2 of the oversampled dataset.

4.3.2 Application - SMOTE Oversampling

Standing on the side of standard multiclass classifiers, we apply SMOTE over-
sampling to manipulate the class distributions by sampling classes to half the
size of the majority class (Figure 4.4). Since imbalanced learning strategies are
designed for these classifiers, we expect them to improve. We also experiment
with the SMOCC to see if it can be considered as a competitor and a choice for
the machine learning community under oversampled preprocessing or balanced
class distributions.

Evaluating the one-class classifier’s performance per class. The Isolation For-
est would still perform well in the normal and DoS classes, while the classification
precision has slightly decreased for the Probe class, a slightly oversampled class.
For the attacks least represented and most oversampled in the current data, clas-
sification precision for each class was almost zero. Figure 4.5 also shows the ROC
curves for all classifiers. Comparing figures 4.5 and 4.3, the ROC curves of all
classes have shifted slightly downwards after oversampling.
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Normal vs All

precision recall f1-score support
Anomaly 0.88 0.94 0.91 12833
Class 0.92 0.83 0.87 9711

accuracy 0.89 22544
macro avg 0.9 0.89 0.89 22544

weighted avg 0.9 0.89 0.89 22544

DoS vs All

precision recall f1-score support
Anomaly 0.9 0.98 0.94 15086
Class 0.94 0.78 0.86 7458

accuracy 0.91 22544
macro avg 0.92 0.88 0.9 22544

weighted avg 0.91 0.91 0.91 22544

Probe vs All

precision recall f1-score support
Anomaly 0.96 0.88 0.92 20123
Class 0.42 0.71 0.53 2421

accuracy 0.86 22544
macro avg 0.69 0.8 0.72 22544

weighted avg 0.9 0.86 0.88 22544

R2L vs All

precision recall f1-score support
Anomaly 0.97 0.47 0.64 19657
Class 0.2 0.9 0.33 2887

accuracy 0.53 22544
macro avg 0.59 0.68 0.48 22544

weighted avg 0.87 0.53 0.6 22544
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Figure 4.5: AUROC for the Isolation Forest Classifier over the oversampled test set.

U2R vs All

precision recall f1-score support
Anomaly 1 0.72 0.84 22477
Class 0.01 0.72 0.01 67

accuracy 0.72 22544
macro avg 0.5 0.72 0.43 22544

weighted avg 1 0.72 0.83 22544

We again implement the sequential multistage one-class classifier along with
other standard multiclass classifiers. Table 4.2 includes all confusion matrices.

The SMOCC classifier has surprisingly improved in capturing attacks that
were oversampled, while the false alarm rate has slightly improved; predicting
less normal observations. Similar results were obtained by the Logistic Regression
classifier representing an improvement over the model previously trained. The
KNN and LDA classifiers results were very close to the original dataset results;
Probe and R2L predictions have slightly increased while the U2R predictions
slightly deteriorated. And for the remaining classifiers: Random forest, SVM,
and ANN, we again did not record promising results.
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SMOCC

normal DoS Probe R2L U2R
normal 8967 86 619 20 19
DoS 1308 5605 545 0 0
Probe 442 227 1752 0 0
R2L 2214 1 20 635 17
U2R 21 0 0 8 38

Logistic Regression

normal DoS Probe R2L U2R
normal 8937 88 613 20 53
DoS 1326 5592 538 0 2
Probe 360 209 1844 0 8
R2L 2138 2 9 705 33
U2R 20 0 0 7 40

KNN

normal DoS Probe R2L U2R
normal 9006 61 632 6 6
DoS 1181 5681 525 18 53
Probe 466 288 1640 0 27
R2L 2293 4 15 375 200
U2R 36 0 0 14 17

LDA

normal DoS Probe R2L U2R
normal 9012 85 577 21 16
DoS 1326 5605 527 0 0
Probe 474 228 1719 0 0
R2L 2208 0 14 657 8
U2R 30 0 0 8 29

Random Forest

normal DoS Probe R2L U2R
normal 9021 58 628 2 2
DoS 1278 5644 536 0 0
Probe 465 302 1654 0 0
R2L 2810 3 4 69 1
U2R 44 0 0 1 22

SVM

normal DoS Probe R2L U2R
normal 9025 61 622 2 1
DoS 1194 5687 577 0 0
Probe 485 330 1606 0 0
R2L 2813 4 23 47 0
U2R 65 0 0 1 1

ANN

normal DoS Probe R2L U2R
normal 8985 56 670 0 0
DoS 1119 5739 600 0 0
Probe 447 200 1774 0 0
R2L 2874 2 11 0 0
U2R 67 0 0 0 0

Table 4.2: Confusion Matrices - SMOTE Oversampled
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Figure 4.6: A flow chart of the classifier structure with probabilities predetermined.

4.4 Improving Real-Time Capability

In contrast to all aggregation schemes discussed in the literature review, we can
leverage the sequential model to increase real-time capability; while the DDAG,
pairwise coupling, and maximum confidence strategy require all posterior prob-
abilities to function, the sequential structure can skip all remaining events after
obtaining a final decision at the stage we are currently on.

The training phase with SMOCC requires less time than an OVO approach
with the type of classifier (although in practice regular re-training would be done
offline) while the NIDS remains active. The procedure for labeling a new obser-
vation in SMOCC is also generally shorter because once a decision is made at
any stage, the remaining stages are not pursued.

To design the model described, rather than obtaining all posterior probabili-
ties at an early stage (Figure 4.6), they are calculated within their corresponding
event (Figure 4.7). This modification is capable of reducing computational cost
significantly, assuming that the distribution of classes is close to the data we
studied. The model will however lose data outcomes which for some could be
useful for future purposes, while others consider redundant.
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Figure 4.7: A flow chart of the classifier structure with probabilities calculated per
event.
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Chapter 5

Conclusion and Future Work

In this thesis, we propose a sequential multiclass one-class classifier that is capable
of transforming one-class classifiers into the world of multiclass classification. The
structure of the classifier itself does not require any parameters, as they are purely
left to the one-class classifier chosen during implementation. The sequential fusion
strategy has also proven to be well suited for skewed class distributions and able
to capture classes barely represented in the dataset.

We trained our model on the NSL-KDD dataset and confusion matrices were
calculated to compare all the models and approaches. We observed that the
SMOCC model was called several times when mentioning the best classifiers of
a certain class. It also stood in the group of low false alarms rate and low false
predictions of the normal class.

SMOTE oversampling has been an improvement for the standard multiclass
classifiers as well as SMOCC, meaning that classes of least observations in the
data are still not represented enough for classifiers to capture all their properties.

Finally, the sequential structure can be simply modified to improve real-time
capability.

For future work, the sequential multistage classifier is capable of crossing all
one-class classification stages without obtaining a final decision. In our model we
used a Nearest Class Mean classifier to give direct classification if the sequential
model did not predict a class, this classifier is however too restrictive. For the
NSL-KDD dataset, only 6.12% of the testing set observations reached this level.
For the final stage, multiple classifiers can be utilized within SMOCC: possibly a
different one at each stage depending on performance.

We also have few challenges that could be observed: at first, we believe that
the classifier is sensitive to the classification threshold obtained by a validation
set. Thus, searching for the best strategies of computing thresholds in data
with heavily skewed distribution could improve the multiclass model and better
leverage the promising one-class classification AUC scores. Second, while SMOTE
oversampling has improved the classification scores, further studies could be done
to test out several oversampling distributions and find which methods could stand
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