AMERICAN UNIVERSITY OF BEIRUT

NEWTON TYPE METHODS FOR SOLVING
FINITE-ELEMENT SPACE,
EULER-IMPLICIT TIME DISCRETIZATION
OF THE HASEGAWA-MIMA EQUATION

by
MAYA ADEL ASSIDI

A thesis
submitted in partial fulfillment of the requirements
for the degree of Master of Science
to the Department of Mathematics
of the Faculty of Arts and Sciences
at the American University of Beirut

Beirut, Lebanon
September 2021



AMERICAN UNIVERSITY OF BEIRUT

NEWTON TYPE METHODS FOR SOLVING
FINITE-ELEMENT SPACE,

EULER-IMPLICIT TIME DISCRETIZATION OF
THE HASEGAWA-MIMA EQUATION

by

MAYA ADEL ASSIDI

Approved by:

[Signature] QL4Q ., -.-&

Dr. Nabil Nassif, Professor Advisor

Department of Mathematics
[Si gnaturej %}

[

Dr. Sophie Moufawad, Assistant Professor Co-Advisor A
Department of Mathematics

[Signature] GAMtﬂf

Dr. Ghassan Antar, Professor Member of
Department of Physics Committee
[Signature
A Sabra
Dr. Ahmad Sabra, Assistant Professor Member of
Department of Mathematics Committee

Date of thesis/dissertation defense: September 3, 2021



AMERICAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT
RELEASE FORM

Assidi Maya Adel
Student Name:
Last First Middle
M Master’s Thesis O Master’s Project O Doctoral Dissertation

IZI I authorize the American University of Beirut to: (a) reproduce hard or electronic copies
of my thesis, dissertation, or project; (b) include such copies in the archives and digital repos-
itories of the University; and (c¢) make freely available such copies to third parties for research
or educational purposes.

M I authorize the American University of Beirut, to: (a) reproduce hard or electronic
copies of it; (b) include such copies in the archives and digital repositories of the University;
and (c) make freely available such copies to third parties for research or educational purposes
after: One \/ year from the date of submission of my thesis, dissertation or project.
Two ___ years from the date of submission of my thesis , dissertation or project.
Three ___ years from the date of submission of my thesis , dissertation or project.

jj ; ' September 10, 2021

Signature Date

This form is signed when submitting the thesis, dissertation, or project to the University Libraries



Acknowledgments

I would like to express my gratitude to my advisor Prof. Nabil Nassif for
encouraging and helping me. Thanks for his motivation and patience.

My deep appreciation goes equally to my co-advisor, Prof. Sophie Moufawad
for being there every time I needed your help and for guiding me through
the testing part of this thesis and for being a member of my committee.

I also thank my committee members: Professor Ghassan Antar and Professor
Ahmad Sabra for their encouragement.

Finally, I thank my family and friend for supporting me, throughout my life
and being part of my success.



An Abstract of the Thesis of

Maya Adel Assidi ~ for =~ Master of Science
Major: Mathematics

Title: Newton Type Methods for Solving Finite-ELement Space, Euler-Implicit Time
Discretization of the Hasegawa-Mima Equation

Hasegawa-Mima was derived by Akira Hasegawa and Kunioki Mima during
late 70s. When normalized, it can be put as the following PDE that is third
order in space and first order in time:

—Auy +uy = {u, Au} + {p, u}

In a recent work [9], this equation was reformulated as a coupled system and
put in variational form. Also, a continuous Time Integral Formulation was
derived over any time interval. Consequently, a finite element space semi-
discretization followed by Euler-Implicit time disretization was obtained and
extensively studied in [9].

In this thesis, we focus on solving this fully discrete system using Newton's
type methods: Full Newton, Quasi Newton (Chord Variant), and a newly in-
troduced Modified Newton. The tests are based on several initial data and the
implementation uses Free-FEM ++ software [6] to obtain a conformal mesh-
ing and solve the linearized system.

Test results indicate alternative efficient and robust algorithms to the one used

in [9].
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Chapter 1

Introduction

1.1 Hasegawa-Mima (HM) Model for magnetized
Plasma Physics

1.1.1 Introduction on Energy and Plasma Physics

Despite the growing interest and policies in saving energy, global energy de-
mand is rising due to population growth, economic development, technol-
ogy developments, and industrial activity in both developing and developed
country. Such condition has come to a cost especially to irreplaceable fossil
fuel energy resources that will be insufficient for humanity energy production
for more than 150 years. Consequently, finding alternative energies became
a necessity. Thermonuclear fusion becomes an interesting field of study as
its primary fuel sources are deuterium and tritium which are isotopes of hy-
drogen, the most abundant element in the universe. This is why it has the
potential to provide almost limitless energy for mankind. In addition, nu-
clear power releases into environment less radiation than other major energy
resources. Moreover, nuclear power plants operate at much higher capacity
factors than renewable resources or fossil fuels due to its potentials which
made thermonuclear energy better source than intermittent energy sources:
the sun doesn’t shine always, nor the wind blows always, nor the water fall
permanently. Fusion energy research is widespread in the US and Europe
and currently more popular in Asia (e.g. China, India and Korea) and South
America (e.g. Mexico and Brazil). Such field is very significant and has a high
strategic position as Thousands of engineers and scientists have contributed
to the design of ITER, the world biggest toroidal fusion device, since the idea
for an international joint experiment in fusion was first launched in 1985. The
ITER Members—China, the European Union, India, Japan, Korea, Russia and
the United States—are now engaged in a 35-year collaboration to build and
operate the ITER experimental device, and together bring technology where
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fusion reactor can be designed and tested.

Nuclear fusion is a process in which two light atomic nuclei are combined
to form a heavier one while releasing massive amount of energy. Large scale
fusion processes must occur in a plasma state matter.

Plasma is the fourth state of matter state and it is the most common one in
universe as a whole. Like gas, it has no fixed shape or volume state of matter.
In solids, the atoms are strongly related, so if we heat it up we get a liquid,
and if we heat liquids we get gases, and if we heat gases we get what is called
a Plasma. It is an ionized gas in which a certain proportion of electrons are
free rather than being bounded to an atom or molecule. It is a region where
charges of ions and electrons are balanced and free. Most plasmas are quasi
neutral i.e.: negatively charged electrons are almost completely neutralized by
positively charged ions. That is n, = n;, where n, is the plasma density usu-
ally refers to the electron or ion density (1. or n;), that is, the number of free
particles per unit volume. It is electrically conductive due to the presence of
free charged particles. A plasma in which the magnetic field is strong enough
to influence the motion of the charged particles is said to be a magnetized
plasma.

Ionization is necessary for existence of plasma. For this purpose, the input
energy is greater than the bonding energy. Plasma ionization is the propor-
tion of atoms which have lost electrons and is determined by the electron
temperature T, relative to the ionization energy.

We define the current density fto be
j = ne(il; — it),

where n is the density, e is the charge and u;, u, respectively the ion and
electron velocities.
Note that if the velocity of the electrons is equal to that of the ions, there is
no current.
Moreover we have Ohm’s law:

= of,
where E is electric field and ¢ is the conductivity.
Therefore, in a plasma, charge separation between ions and electrons gives
rise to electric fields, and different charged-particle gives rise to currents and
magnetic fields.

1.1.2 Hasegawa Mima Simplified Mathematical Model

In this section, following Hariri [2], we present the derivation of a reduced
model for plasma turbulence called the Hasegawa-Mima equation which is
governed by:



1. The particle balance equation, known also as the continuity equation:
om ~+ V.(nii) =0, (1.1.1)

where 7 is the density, t is time and i is the fluid velocity. In case of in-
compressible flow, where the density n is constant, such equation can be
simplified to V.ii = 0, which means that the divergence of velocity field is
zero everywhere.

The continuity equation (1.1.1) is equivalent to

om~+nV.ii+i.Vn =20 (1.1.2)

Dividing Eq. (1.1.2) by n yields

6;—11 + V.ii + wvn 0 (1.1.3)
Using
on
t7 = d¢In(n)
Vn
. v |
” Vin(n),
Eq. (1.1.3) implies
otln(n) + V.ii+i.Vin(n) =0 (1.1.4)
According to the definition of convective derivative
di = 0+ .V, (1.1.5)
we get
din(n) + V.ii = 0. (1.1.6)
Using the adiabatic relation:
e
— wa
where ny = ng(x,y) is the particle density depending on the x-direction

and/or on the y-direction, T is the temperature and e is the electron charge.
We assume also that both ions and electrons are characterized by the same
temperature T. Finally, ¢ = ¢(x,y,t) represents the electrostatic potential
fluctuations. Hence, one has:

In(n) = In(ng) + = (1.1.8)



Using (1.1.8), Eq. (1.1.6) is equivalent to

diln(ng) + dt(%) +V.ii=0 (1.1.9)
< 0Odn(ng) + .V In(ng) + dt(%) + V.ii = 0. (1.1.10)
But din(np) = 0 since np is independent of time ¢, therefore:
- e ~
.V 1In(ng) + dt(T) + V.ii = 0. (1.1.11)

We write i = uf + u, where ug is the electric field velocity and uy is the
potential velocity. Since |u,| « |ug| , therefore #.VIn(ng) ~ ur.VIn(ny).
Moreover, since V.iir = 0 (i.e., ur is divergence-free), then V.ii = V.up.
Thus, the continuity equation reduces to:

e

V.IIP + M_)E.VIH(TI()) + dt( T

)=20 (1.1.12)
2. The second governing principle is the Momentum balanced equation:
mnd;il = —Vp +nq(E +ii x B),

where m is the mass, n is the particle density, t is time, i is the velocity, p
is the pressure, g is the charge of the particle, E is the electric field, B is the
magnetic field. By projecting it on the direction parallel to the magnetic field
B, we obtain the adiabatic relationship (1.1.7).

Given the adiabatic assumption, the electrons follow immediately the ions in
the perpendicular direction to B. Thus, we obtain the HM equation for the
potential

dt[(%) — wCliBViqb] + u*E.Vln(ZZ—Z) =0 (1.1.13)

where, V| is the projection of V on the direction perpendicular to the mag-
- B
netic field B, w,; = em_9 is the ion cyclotron frequency that depends only on

the initial magnetic field By.

Taking into consideration the adiabatic assumption, and since we are consid-
ering the flow in the perpendicular direction to the magnetic field, we replace
V1 by V. Then, eq. (1.1.13) is normalized to obtain the Hasegawa-Mima
equation which can be written as follows:

5 —

5 (V20 =)~ (Vg < 2) V|[V2p - 1“%” —0 (1.1.14)



0 no o
= E(A¢—¢)—[(V<P><Z) V][ag - (wCZ)]—O (1.1.15)
0
whereZ = | 0
1

The Hasegawa-Mima equation can be expressed in a different form using the
Poisson brackets. Poisson brackets are defined as follows:

{r,s} = Oxrdys — Oyroys.

We have:
3 i j Ok Oy
Voxz=|op dy¢p 0|=|—0x¢
0 0 1 0
oy Oy
(Vo x2).V] = | ~ap | | 0 | = age— oo,
0 0

(V9 x 2).V][a¢ ~In(0)] = (390 — 0xp3y][Ap —In(, %)

Cl

— 0y pOxAP — 0 py AP — 6y4>6x1n( )+ax4>ay1n(

= (8p, 9} + {9, In(22))

Cl

Then, (1.1.15) can be expressed using Poisson bracket as follows:

(AP —¢) — {Ad, ¢} — {,In ( )} =0 (1.1.16)
= —a(bp—9) = —{Ap, P} — {9, m%)} (1.1.17)
= APt + ¢ = {p, AP} + {ln( ) ¢} (1.1.18)
(since {r,s} = —{s,1}).

From hereon and for the rest of the thesis, we will be replacing ¢ by u, thus
considering the PDE:

— Auy +uy = {u, Au} + {p,u} (1.1.19)

where:

Wi

=)



{u, v} = uyvy —uyvy.

u(x,y,t) describes electrostatic potential.

A is the Laplacian operator i.e: Au = uyy + uyy

* p= ln(%) is a function depending on the background particle density
np and the ion cyclotron frequency w,; that depends only on the initial

magnetic field

In this context, p = 0 refers to homogeneous plasma, and p # 0 refers to
non-homogeneous plasma.

In this thesis, we deal with the numerical solution to Hasegawa-Mima equa-
tion on a rectangular domain with the solution u, satisfying periodic bound-
ary conditions (PBCs). For that purpose, we consider Q = (0,L) x (0,L) € R?
and use the frame of periodic Sobolev spaces which are closed subspace of
H™(Q)) , and therefore itself a Hilbert space.

Let QO = (0,L) x (0,L) , note that Q) is boundary of ()
Given an initial data up: QO > R, we seek u: QO x [0,T] - R

(A= Dus + {u, Au} + pxuy —pyury =0 on Qx (0,T]
u(x,y,0) = up(x,y) on (1.1.20)
u, Vu satisfies PBCs on 0O x (0,T]

without loss of generality, it is assumed that the background particle density
np is a function of x only, such that py = k is a constant and p, = 0, i.e.
ng = eA*tB for A,Be R.

e Periodic boundary conditions for u and Au:

u(0,y) = u(L,y) vy e (0,L)
u(x,0) = u(x, L) Vxe (0,L)
ux(0,y) = ux(L,y) vy e (0,L)
uy(x,0) = uy(x,L) Vxe (0,L)

1.2 Literature Review

Solving the full Navier-Stokes equations is extremely complicated, instead
simplified models to describe turbulence were first developed by Hasegawa-
Mima (HM) and Hasegawa Wakatani [5].The physics basics of the Hasegawa-
Mima equation were studied in [12]. It is a simplified two-dimensional non-
linear equation with one variable which is the electrostatic potential. It was

6



found that the HM equation has an exact solution of the form of a station-
ary dipole vortex traveling in the direction perpendicular to the density gra-
dient [10,11]. Several authors (Hasegawa and Mima [3, 4], Terry and Hor-
ton [7,8,13,14] and Waltz [15]) have studied two-dimensional drift wave tur-
bulence. Harriri in [2] represented in detail the physics basics behind the
simulate plasma turbulence using the latter model equation. A computer
model was designed for solving the two-dimensional Hasegawa-Mima equa-
tion based on a finite difference (FD) approach with the integration in time
being carried out with a Euler explicit scheme that constraints the time-step
size which limit the size of the time interval. Hence, such method is not well
suited for periodic boundary conditions, has a major difficulty in discretiz-
ing the Poisson-bracket term. Thus, it is not applicable for computations on
long time intervals. Maalouf [1] transformed the HM equation to a coupled
system and then performed a new numerical simulation with the adequate
boundary conditions and initial conditions. In addition, the modon steadiness
solution for the nonlinear Hasegawa- Mima equation was studied in order to
test the Periodic Boundary Conditions using finite element method. Then, N-
Nassif, S- Moufawad and H-Karakazian in their recent work [9] used a finite
element space-domain approach to semi-discretize the coupled variational
Hasegawa-Mima model. Thus they obtained global existence of solutions in
H? on any time interval [0; T]; ¥T. They carried tests on semi-linear version of
the implicit nonlinear full-discrete system for several initial data. Moreover,
they derived an implicit full-discretized system and proved the existence and
uniqueness of solution using fixed point approach. However, there is no re-
sults for solving such full discretized system.

1.3 Outline of the Thesis

In addition to the introduction, the thesis consists of 4 chapters including
the concluding remarks. In Chapter 2, we use a finite element space-domain
approach to full-discrete the coupled variational Hasegawa- Mima model and
summarize the theoretical results recently obtained by N-Nassif, S-Moufawad,
H- Karakazian in their recent work [9]. In Chapter 3, we discuss Newton type
methods (Full Newton, Quasi Newton, Modified Newton) to solve the fully
discretize system of Hasegawa-Mima model and present for each variant of
Newton’s Method the corresponding algorithm using Free-FEM++ software.
Consequently, in Chapter 4 , we give the results of our consequent numer-
ical simulations. Then, we analyze and compare the numerical solutions of
3 Newton Type methods with that of the solution obtained in [9] using the
semi-linearized discretization. Tests were conducted on various initial condi-
tions. Finally, concluding remarks are given at the end of the thesis.



Chapter 2

Discretizing the Hasegawa-Mima
model as a coupled system of
Partial Differential Equations

In this chapter, we summarize the theoretical results recently obtained by N-
Nassif , S-Moufawad, H- Karakazian in their recent work [9]

2.1 Definition of Spaces

In this section, we are going to review the definition of some useful spaces
reaching the construction of Periodic Sobolev Spaces

e The C°(Q)) Space={f € C*(Q)|f is compactly supported in (3}.

* The L? Spaces ={f is measurable | {, |f|Pdx < oo} where p € [1,0) }.
In partiular, L?(Q))={f is measurable | { |f|*dx < o}

* A function f € L2(Q) is said to have a weak derivative D, f € L*(Q) if
and only if Vip € CP(Q), < f, Dy >= — < Dy f, 9P >.

e D"y in space QO = R?> where & = (a1, &) is defined as follows:

o

oM on
= —F U
63(1“1 5XZ(X2

For example:

_ o%u
= — 2,0
a = (2,0), || =2, so D@y = a2
_ c 0
= (1,1 =2 DALl = 2
x= (11 |a] e " 0x1 0x2



e Sobolev spaces WP (Q)) ={u € LP(Q)|D*u € LP(Q)V|x| < k }, p €
[1,00],k e N
The natural number k is called the order of Sobolev space W*?(Q)
Wk?(Q) is Banach space with respect norm - lwer )

==

a,|P
HuHWk,P(Q) { (Z|l’i|$k”D u”LP(Q)) pEe [1,00)

maX|q|<k|[|Dul| e i) P =0

In special case of p = 2, we write W52(Q) := H*(Q) in which - lwk2qy =
|-l ¢ () is Hilbertian norm associated to the inner product

(£ ®)m) = 2, f D*f D%g dx.

|af<k

2.1.1 Periodic Sobolev spaces for p = 2

Starting with the Sobolev spaces of order 0,1,2 and 3:

H*(O)

HY(Q) = {f € L2(Q)|D*f € L>(Q), |a| = 1}
H2(Q) = {f e L2(Q)|D*f e L2(Q), |a] € {1,2}}
H(Q) = {f € L*(Q)|D*f € L*(Q), |a| € {1,2,3}}

We introduce Periodic Boundary Conditions.
A function v satisfies the periodic boundary conditions PBCF of order k if and
only if for k > 0

(PBCK) : 050(0,y) = dko(L,y) Vye (0,L)
<PBCk){ (PBCE) : dko(x,0) = dko(x, L) vxe (0,L)

k k ; : Foad
where 0y and ¢y denote the differential operators 7% and 2 o respectlvely

Consequently, we define the Periodic Sobolev space of order 0,1,2 and 3 as:

-

Hp(Q) = L*(Q)) and  HP(Q) := =1 {HE},

()
u(x,0) =u(x,L), xe(0,L)a.e.
Hll’(Q): ue H/(Q) uEO,y;:uEL,y)), ye((O,L))a.E.}
(Q)
()

H3(Q) = {u e H*(Q)|u, ux, uy € Hy(Q)}
H13? Q) = {ue H3(Q)|u, uy, Uy, Uxy, Uyy, Uxy, Uyx € H}J(Q)}

9



2.2 Variational formulation of the Hasegawa-Mima
Equation as a Coupled System of Partial Differ-
ential Equations

In this section, we formulate from (1.1.20) a coupled system of linear Elliptic-
Hyperbolic coupled system problem in order to overcome the theoretical and
computational issues of them non-linearity of the Poisson bracket {u, Au} =
Uy (Auy) — 1y (Auy)

The Formulation of Elliptic-Hyperbolic coupled system problem:
Given a time T > 0, we consider the Hasegawa-Mima problem on a square
domain Q) = (0,L) x (0, L) with boundary Q.

Given an initial data up: Q — R, we seek u: Q x [0, T] — R

(A= TDus + {u, Auy +kuy, =0 on Qx(0,T]
u(x,y,0) = uo(x,y) on Q) (2.2.1)
u, Vu satisfies PBCs on 00 x (0,T]

where {u, v} = UxVy — UyDy 18 the Poisson bracket which is bilinear.

Since handling the non-linearity of Poisson bracket {1, Vu} is both theoreti-
cally and computationally expensive, we formulate (HM) as a coupled system
of linear equations as follows introduce the variable w such that

w=—-Au-+u (2.2.2)

Then, a&\—zf = —Auy +up = —(A = Duy = {u, Au} +kuy = {u,u —w} +kuy, =
{u, u} +{u, —w} + kuy, = {w, u} + kuy = wyny, — wyuy + kuy
(since {u, u} = uyuy —uyuy = 0 and {u, —w} = —uywy + u,wy = {w, u})

ow
So, e Wxlly + Wylly = kuy.

Now define the divergence free vector field Vu) = (;uy ) , the following
X

equation is obtained :

ow
Fra V(u)-Vw = ku, (2.2.3)

Now, we formulate using (2.2.2) and (2.2.3) the (HM) problem as the fol-
lowing Elliptic-Hyperbolic coupled system problem, where one seeks

10



(u,w) : Q x [0, T] — R? such that:

u—~Au=w on Qx(0,T]

0 7 _

o + V() Vo = kuy on Qx(0,T] (22.4)
u,Vu and w satisfies PBCs on dQ x (0,T]

u(x,y,0) = up(x,y) and w(x,y,0) = wy on QO

2.3 Variational Formulation of (HM) equation as a
coupled system

In this section, we intend to formulate a strong semi-variational form from
Elliptic-Hyperbolic coupled system problem (2.2.4).

2.3.1 Variational formulation of Hyperbolic Part of the cou-
pled system problem

We start with Variational formulation of the two dimensional Hyperbolic part
satisfying periodic boundary conditions

{ wi + V(u). Vo = ku, (2.3.1)

w(x,y,0) = wo(x,y) = —Augy + up

where the initial conditions ug € H*(Q) n Hp(Q) and wy € H5(Q).

Given u € C([0,T]; H*(Q) n HH(Q))) n C1((0, T); L*(Q2)), where u, and u,
satisfy PBCs, one seeks of w e C([0, T], H5(Q)))} n {C1((0,T), L*(Q2))

Choose the test function v € H) (), then multiply the first equation of (2.3.1)
by a test function v and integrate with respect to ()

J wtvdxdy—kf (V(u).Vw)vdxdy = J kuyvdxdy (2.3.2)
0 0 0

< WV >pg) + < V(u).Vw,v >p2(0)=< kity, 0 >12(q) (2.3.3)

According to Green’s theorem

J (V(u).Vw)vdxdy = J wi.(vV (1)) ds —J wV(u).Vods (2.3.4)
0 r 0

where V(u) = (;uy> and vV is the outer normal on I = 0Q).
X
We prove then {7V (u).wods = 0 where I' = dQ is the boundary of the

domain () represented by the the square ABCD (2.1) where [AB] and [CD]
opposite horizontal sides , [AD] and [CB] opposite vertical sides.

11



D C

Figure 2.1: The boundary of the domain ()

Define the four maps I'y, I'2 , I'3, I'4 such that :

I'1:[0,L] — [AB]
s+ (s,0)
[,:[0,L] — [BC]
s+— (L,s)

I';3:[0,L] - [CD]
s— (L—s,L)

I'y: [0,L] - [DA]
s— (0,L—s)

frﬁ.ﬁ(u)wvds = fl} wo(0 —1) (21?) ds + Lz wo(l 0) (_uiy) ds
—|—J wo(0 1) (;uy> ds+J wo(—1 0)- (;uy) ds
T3 x Ty x

= —f WUy ds — f wouy ds + J woy ds + J wouy ds
I, T, T3 T,

Note that: L

J wWoly ds :J w(s,0)v(s,0)uy(s,0)ds (2.3.5)
I 0

L

J wWoly ds = J w(L—s,L)o(L—s,L)ux(L—s,L)ds (2.3.6)
Iy 0

12



apply change of variable r = L —s on (2.3.6), and since uy, w and v statisfy
PBCs,

L 0
J wWoly ds = J w(L—s,L)o(L—s,L)uy(L—s,L)ds = — J w(r, L)o(r, L)uy(r, L) dr
r 0 L
’ L L
= J w(r, L)o(r, L)uy(r,L)dr = J w(s,L)v(s, L)uy(s,L)ds = J wouy ds
0 0 I
SO,
J WUy ds — J wouy, ds =0 (2.3.7)
I I
In the same manner,
L
J wouy ds :J w(L,s)v(L,s)uy(L,s)ds (2.3.8)
r, 0
L
f wouy, ds = f w(0,L—s)v(0,L —s)uy(0,L—s)ds (2.3.9)
I, 0

apply change of variable r = L —s on (2.3.9), and since u,, w and v satisfy
PBCs,

L 0
L wouy, ds = fo w(0,L —s)v(0,L —s,L)uy(0,L —s)ds = — JL w(0,7)v(0,7)uy,(0,r) dr
4

L

_ JL w(0,7)v(0,7)uy(0,7) dr = J

w(0,5)v(0,s)uy(0,s)ds = J wouy ds
0 0

I
SO,

J woly ds — J wou,yds =0 (2.3.10)
Iy I,

By (2.3.7) and (2.3.10) ,

J 7.V (u)wods = —J WoUy ds — J wouy, ds + J wWoy ds +J wouy, ds = 0
T 1“1 1“2 F3 r4

so, (2.3.4) becomes

f (V(u).Vw)vdxdy = —J (V(u).Vo)wdx dy
0 o)

Therefore, (2.3.2) implies

f W —f (V(u).Vo)wdxdy = J vku, dx dy
Q Q Q

Thus the following variational formulation is obtained:

< Wt, 0 >L2(Q) — < V(u)Vv,w >L2(Q) =< kuy,v >L2(Q) (2.3.11)
B(Z,v) GTU)
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2.3.2 Variational Formulation of the Poisson Elliptic equation

The Variational formulations of the Poisson Elliptic equation with periodic
boundary conditions is carried out in the same way as for the hyperbolic
equation. Consider the elliptic part of the coupled system problem (2.2.4)

—Au+tu=w
u(0) = uy (2.3.12)
u, uy and u, satisfy PBCs

Multiply the first equation of (2.3.12) by the test function v € H},(Q) and inte-
grate both sides with respect to ().

— J (div(Vu))vdx dy + J uvdx = f wodx dy (2.3.13)
Q Q Q
According to Green’s theorem
J Vu.Vodxdy — J vVoVudxdy = J —div(Vu)vdxdy. (2.3.14)
Q r Q

Similarly, we prove that { 7oVu dx dy = 0 where I' = dQ) as shown in 2.1
Define the four maps I'y, I'> , I's, I'4 such that:

Ty:[0,L] — [AB]
s+ (s,0)

I>:[0,L] — [BC]
s+— (L,s)

I';: [0,L] — [CD]
s— (L—s,L)

I'y: [0,L] — [DA]
s— (0,L—s)

f 7.V (u)vds = J (0 —1) ") ds —I—J o(1 0) ") ds
r r Uy I, Uy
—|—f 00 1) %) ds —|—f o(=1 0)- ") ds
T, Uy Iy Uy
= —J vuyds—kf vuxderJ vuyds—f VUy ds
1"1 r2 rS l—'4
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Note that, .
J vuy ds = f v(s,0)uy(s,0)ds (2.3.15)
I 0

L
J vuy, ds = J v(L—s,L)uy(L—s,L)ds (2.3.16)
Iy 0

apply change of variable 7 = L —s on (2.3.16), and since v and u, satisfy
PBCs,

L 0
L vuy, ds = L v(L—s,L)uy(L—s,L)ds = — L o(r, L)uy(r, L) dr
3

L L
= J o(r, L)uy(r, L) dr = J v(s,L)uy(s,L)ds = J wouy ds
0

0 r
S0,
f vUy ds — j vuyds =0 (2.3.17)
I3 r
In the same manner,
L
J vy ds = J v(L,s)ux(L,s)ds (2.3.18)
I, 0
L
J vy ds = J v(0,L —s)uy(0,L —s)ds (2.3.19)
I, 0

apply the change of variable r = L —s on (2.3.19), and since u, and v satisfy
PBCs,

0

L
f Vlly ds = J v(0,L —s)ux(0,L —s)ds = —f v(0,7)ux(0,7)dr
I, 0 L

L L
= J v(0,7)ux(0,7)dr = J v(0,5)ux(0,s)ds = f Uiy ds
0 0 T>
S0,
— J VU, ds + f vuyds =0 (2.3.20)
Ty Ty

By (2.3.17) and (2.3.20),

J 7.V (u)vds = —J vuy ds +J vuxderJ vuy, ds —f Viyds =0
T Iy Iy I's Iy

s0, (2.3.14) implies,

J VuVuvdxdy =J —div(Vu)vdxdy
0 0

15



Therefore, (2.3.12) implies:

J VqudxdijJ uvdxdyzj wvdxdy
Q Q Q

Thus the following variational formulation is obtained:

<V, Vo >0y + <U,0 >pq) = < W,0 >p2q) (2.3.21)
A(I,v) FE’)

Equivalent to:

<U,0V >y = < W,V >12(0) (2.3.22)
Au0) F(o)

2.3.3 Semi-Variational Formulation

1. Strong Semi-Variational Formulation
System (2.2.4) can be put now in the following strong semi-variational
form (on the space variables) whereby one seeks for u € C([0, T]; H>(Q) n
HL(0)) nCL((0, T); L3(€2)) and w e C([0, T, HH(Q)) n CL((0, T), LX(02))
such that Vo e Hy(Q), Vte (0,T] :

< WV >pg) + < V(u).Vw,v > 120y =< kity, v > 12y,
<Uu,o >H1(Q):< w,o >L2(Q)/

u(0) = up € H3(QY)

w(0) = ug — Aug € H5(Q)

(2.3.23)

2. Weak Semi-Variational Formulation
System (2.3.23) can be put now in the following weak semi-variational
form (on the space variables) [9] whereby one seeks for u € C(0, T, H*(Q) n
H3(Q)) and w e C([0,T],L*(Q)) n CL((0,T),L?(Q2)) such that Vv €
H,(Q), Vte(0,T]:

< WL >p2) — < V(u).Vo,w >12(0)=< kity, 0 >12((y),
<Uu,o >H1(Q):< w, 0 >L2(Q)/

u(0) = up € H3(QY)

w(0) = ug — Aug € L2(Q)

(2.3.24)

2.3.4 Time Integral Formulation

Newton’s method requires a formulation which is time-derivative w; free.
That’s why we derive Time Integral Fomulation.
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By integrating the first equation in (2.3.24) over the temporal interval [t,t + 7],
with 0 < t < T — 7, one reaches the following L? integral formulation .

We are seeking (u,w) € L2(0, T; H*(Q) n Hp(Q)) x L?(0, T; L2(Q)))
such that Yo € Wy r HI},(Q), Vi, Tst0<t<t+T<T,and Vs € [t,t + T]:

<w(t+71)—w(t),v>p0)= SHT < V(u(s))Vo,w >12(0) T < kuy(s),0 >12(q ds
<u(s), v > q)y=<w(s), 0 >p21q),
u(0) = up € H*(Q) n H3(Q)
w(0) = ug — Aug € LZ(Q)
(2.3.25)

2.4 Discretization

In this section, we start first using a finite-element space discretization to ob-
tain semi-discrete systems for the coupled variational Hasegawa-Mima model

(2.3.24).

2.4.1 Finite Element Space Semi-Discretization

We begin by constructing IP; Finite-element spaces on the square Q2 = (0, L) x
(0,L).

Let X = {x;]i = 1,...n} be a partition of [0, L] in the x- direction:
O=x1<x<..<x,=1L

and Y = {y;|j = 1,...n} be a similar partition of [0, L] in y- direction:
O=m<yr2<..<yyn=0L

Consequently, let N be set of nodes associated with the conformal triangula-
tion ():

={P1<k<N=n*}={(x,y)1 <i,j<n}=XxY.

Thus ) is “meshed” using the resulting triangulation, based on set of nodes

N.

Practically, we generate such conformal finite-element using Free-Fem++ [6]
on a rectangle, obtaining;:
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Figure 2.2: A conformal finite element meshing of the rectangle (n x n)

This meshing generates a set of triangles E , E = {T;|1 < i < M}, such that:

triangle itself when i=j

o« T.AT — vertex
! 7] one side
¢
O Uz]'\il T;

This allows us defining IP; finite-element spaces.

Definition of S},(Q)

IP; is the set of all polynomials of degree 1, in x and y. The space of IP;-finite
elements on () is defined as follows:

SN(Q) = {®@ e C(Q)|P|r. e Py, Vi=1,..M},

18



with the approximation property:
HY(Q) = | sy(Q),
Nz1
ie., Vo e H(Q), its interpolant 7ty (v) € Sk (Q) is such that:
1\1}1_1)20“0 —nin(v)|| = 0.

To obtain a Lagrangian basis for 5,(Q), let ® € S} (Q). For(x,y) € T € E,
®(x,y) € IP1. Then on every triangle T = P P,Ps:

P,

P P;

Figure 2.3: Right Triangle in ()

®(x,y) = br +apx + afy
Given the continuity of ® on (), the dependence of ® on 3 parameters allows
writing:
(x,y) = ¢(P)¥p,1(x,y) + ¢(P2)¥p, 7 (x,y) + ¢(P3)¥p,1(%,y),
where: ¥p, 7(x,y) = ajx + Biy + v, for i = {1,2,3}.

The basis {¢p, T, ¥p, 1, ¥p, T} Verifies
1 i=j .
or i,j=11,2,3}
0 iwj T {1,2,3}
So, for triangle T € E, with vertices {P;}, {p,r can be written as:
Yp1r(x,y) =1-ci(x—xp)—di(y—yp,) fori={1,2,3}.

Let E, = {T € E|Pisa vertex of T} be the set of triangles from E having
P e N as a vertex. Then for (x,y) € Q, ¥p(x,y) =0, if VT € Ep, (x,y) ¢ T and
Yp(x,y) = ¢pr(x,y) if (x,y) € T where T € Ep. Therefore:

Yp,1(P;) =i =

S} (Q) = span{yp(x,y)|P € N and N is the total number of nodes}
— span{p,(x,y)[1 <7 < N},
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where p(x,y) is the basis function associated with node P. Note that the
support of p:

supp(yp) = | J T,

TeEp
ie.
vp(x,y) =0 (x,y) ¢ Ureg, T
{ vp(x,y) =1 (x,y) € Ureg, T

Hence ®(x,y) = Ypen P(P)yp(x,y) = g @(P)pp,(x, ).

Therefore to any ® € S} (Q), one associate uniquely:

o(P)

2

V= . eR",

CI)(P n2)

where N = n? is the total number of nodes.This implies that finding a func-
tion ® € S§/(E) reduces to finding its values at the nodes A. Thus given
a triangulation E = {T;|]1 < i < M} that covers () in a conformal way,
implementing the finite element-method requires two basic data structures:
Nodes and Elements. As mentioned | Jys; Sy (Q) is an approximation basis
in H'(Q)). Let By = {¢p|1 <i < N} be such finite-element basis of functions
with compact support in Q).

For v € H'(Q)), we can define 7ty (v) := vy € SV (Q) to be the interpolant of v
in S§,(Q):

N
on(x,y) = Y Veop (x,y), Vb =on(xp,yp)
i=1

These auxiliary structures allow to generate discrete systems used to obtain
the pair {uy,wn} of finite element approximations to the coupled Elliptic-
Hyperbolic system (2.3.24).

L] L] L] 1
Definition of Sy ,(Q2)
Define S}, ,(€2) as follows:
Sy p(Q) = {v e Sy(Q)|v satisfies PBC on T}.

Knowing that S}, (Q) = {yp,1 < i < N}, to find a basis for S}V,P(Q), we
proceed as follows. Given the square Q) = (0,L) x (0, L):

20



D

Figure 2.4: Domain ()

we let Ni; be the set of interior nodes of (), and Nk be the set of nodes on
0Q) =T. Divide N the set of nodes on boundary I to 2 parts Nk, and Nky,
where:

Nku, ={1el':| Ie[AB]or [BC|} ={Iel:|x(I)=Lory(l) =L}

Nxu, ={J€T:| Je[AD]or [DC]} ={IeT:|x(I) =0ory(I) =0}
Note that uy € S}\[,P(Q), then uy satisfies PBC, i.e.,

un(0,v) =un(L,y),Vy € [0,L]; un(x,0) = un(x,L),Vx € [0, L].

Therefore, if we let I € Ny, then there exists | € Nk, such that: uy(I) =
un(J). Conversely, let I € Nk, then there exists | € Nky, such that un(I) =
un(J)-

Therefore our set of unknowns will be reduced to Ny = n?> — (2n —1) =
(n —1)? equations instead of N = n? equations, where N is the total number
of nodes. Thus:

uy = Y. Uy

IeN

= > Ui+ >, Upr+ Y Uy
IENU IENKul JENKLIZ

= Z Uy + Z Up(yr + py)(where] € Ny, such that un(I) = un(J))
IeNy; IENKlll

= > Ui+ Y, Uiy
IENU IENKlll

Define now:
{111 € Nu v Nw, } = {91l € Nut{_J{@ill € Newy } = {¢n]1 < I < Ni}
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Therefore, S}\]’p(Q) = span{¢;, where 1 <i < N;} and:

on € Sy p(Q) = on(x,y) Z Vi (x,y),
i=1
where ?)N(Il') = Vli ,1<i<Nj.
For v € H5(Q), iy(v) := ZN Vi1 € Sk p(Q) to be the interpolant of v in
Szl\l,P(Q) where Vi = v(;). Then the approx1mat1on property of S}, p(Q) in
H}(Q) can be stated as follows:

Yo e Hp(Q) I\l{im |0 —7in(0)]| = 0.
—m0

2.4.2 Full Discretization

For the time Discretization, we define a set nodes of [0, T :
T ={tli=0,..,m}

such that :

(@) t; #tifori #j

(b)to=0and t,, =T

(c)t;i—tiq =7 ,wherei=1,..m

To discretize (2.3.24), we start with uxn(0) = 7ty (1) and wn(0) = 7ty (wo),
then given

MN( Z UI gb] and ZUN( Z W[ (PI € SP(Q) € S}\I,p(Q),

where uN(in,yli,t) = Uli(t) , 1 < i < N; and wN(in,yli,t) = W[l.(t) ,
1 < i < Ny, we seek un(t+ 1) € Sy p(Q) and wn(t+ 1) € S} p(Q) such
that:

(< wn(t+7T) —wn(t), v >p20)=
T < V(w)Vo,w >12(0) + < kuN,y,v >12(0) 48

{ <un(s), 0 >ma)=<wn(s), 0 >1210), (2.4.1)
Yo e Sy ,(Q)
Vi,0<t<t+7<T, andVsel[tt+ 1]

\

To fully discretize of Hasegawa Mima equation,

t+T1
J < V(u(s))Vo,w(s) >12(q) + < kuny(s), v >12(q) ds
t
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@

is first discretized using an implicit right rectangular rule Ss f(s)ds ~ (b—
0 )

If we let f(s) =< V(u(s))Vo,w(s) >12q) + < kuny(s),v >12q), a = 7
,b =t + 7, then:

t+7T
] — f < V(u(s))Vo,w(s) >12q) + < kuny(s), v >12q) ds
t

~ T(< V(u(t+1))Vo,w(t+ 1) >12(0) T < kuny(t+7),0 >12(0)

Therefore, starting form (ug, wp), then given (un(t), wn(t)) € S}\,,P X SZIV,P(Q),
we seek (un(t+7),wn(t+ 7)) € Sy p x S) p(Q) such that:

(< wN(t + T) — wN(t),v >L2(Q):
T < V(u(t+1))Vo,w >12(0) T < kuny(t+7),0 >

1 <un(s),v >may=<wn(s), 0 >121q), (2.4.2)
Vo e Sy, p(Q)

| Vse [t t+T]

Using the expressions:

un(t) = S U ()¢, € Sk p(Q), Uy, (1) = un(xp, y1,, ) and w (t) = 305, Wi, (8¢, €
Sy p(Q), Wi (t) = wn(xg, y1,t), define the vectors: W(t) = {Wr, (1)}t €

RN and U(t) = {Up(t) h1<icnt € RN' so that (3.1.1) can be written as follows:

Given vectors {U(t), W(t)} € RN' x RN', one seeks {U(t+ ), W(t+ 1)} €

RN' x RN' such that

(M+1S(U+1))W(t+ 1) —TRU(t + T) = MW(t)
KU(s) = MW(s) Vse {tt+ T} (2.4-3)

where M, S(U), R, K are Nj x N7 matrices defined as follows:
M = {< ¢1, ¢, >12(q) 11 <1,j < Ni}

K={< ¢, ¢5, >mq) |l <i,j < Ni}

R = {<kr,y, ¢1, >12(00) |1 <1,j < Ni}

S(U) = {— < V(un).Vr, 1, >12(0) 1 <i,j < Nij

with: uN(t) = Z}i\lzl U[k(t)§b1k
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and

0
— < V(uy). Vor, ¢, >12(a f 4)11 ax Uy, () (;Pylk +¢ 2 U, (t) <P1kd xdy
0
f Piay 6x U, (¢ ) (Plk _(Pl 6y Z Uy, (t) (Plk dx dy

=< V(MN).Vq?[l., 4)1]. >L2(Q)

Here M, K and R constant matrices over time, and S(U) changing with time.
The coupled system obtained in (3.1.2) (highly implicit and non linear) is used
to advance the pair (U(s), W(s)), starting from (U(0), W(0)) and computing
successively:

(U(t), W(1)), (U(2T), W(2T))......(U(mT), W(mT)).
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Chapter 3

Solving Fully Discrete
Hasegawa-Mima System

In this section, we discuss Newton type methods (Full Newton, Quasi New-
ton, Modified Newton) to solve the full discrete system of Hasegawa-Mima
model and present for each variant of Newton’s Method the corresponding
algorithm which is implemented using Free-FEM++. For simplicity, in the
rest of the thesis we replace N1 by N.

3.1 Formulation of Newton’s method

From (3.1.2), one has the following non-linear problem. Given vectors (U(t), W(t)) €
RN x RN ,we seek (U(t+ ), W(t+ 1)) € RN x RN such that:

(M +TS(U +7))W(t+ ) — TRU(t +T) = MW(#)
KU(s) = MW(s) Vse{tt+ 1} (3.1.1)

This is equivalent to find (U, W) e RN x RN such that:

{ g{z\fltﬁv(vui)gv_ﬂ{u-zzo (312)

where U = U(t+ 1), W = W(t+ 1), and Z = MW(t) (given).
Define F; and F;:

I;: RN x RN RN

(U,W) - F(U,W) = (M+1S(U))W —TRU - Z
E: RN xRN - RN

(U, W) - K (U,W) = KU - MW.
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Solving (3.1.2) equivalent to find (U, W) € RN x R such that:

Fi(U,W) =0
{ B(UW) =0 31.3)

Define

F: RN xRN — RN x RV
(U,W) - [R(U,W) EU W)
Thus we look for solving F(U, W) = 0 using Newton’s Method.
Assuming that (U(t), W(t)) was already computed/approximated, then

(U(t+T), W(t+ 1)) is approximated using Newton’s method by solving the
following iteratively with (U©), W) = (U(t), W(t))

(3.1.4)

= —F(U(O), W(O)) (3.1.5)

The process is repeated as follows until convergence is reached up to a suffi-
cient precise value.

Lk+1) _ ) ]
Jru®, W) W) Wk | = ~FUu®, wh) (3.1.6)
L) U®
— Jp(u®, w) wikeD) | = Jru®, wk)y Wi |~ F(u®, w)
_ (3.1.7)

where Jp(U, W) is the Jacobian of F(U, W)
Let’s compute the Jacobian:

T(S(UYW)y — TR M + 7S(U)

]F(u, W) = [FLU Fl,W] = K -M

hu Bbw

It remains to find the derivative of S(U)W with respect to U , denoted by
(SUYW)u.

Given that the matrix S(U) is linear in U where

uy,
up,
U= " | =Xk U
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then, S(U) = S(Z]‘]\Ll uljej) = ijil uI]’S(ej)

then, S(U)W = 3.1, U; S(e))W = Uy S(e1)W + UpS(e2) W + oo 4 Upy S(en) W

so,

B(W) = (S(U)W)y = [S(el)W S(e)W . . . S(eN)w] .
_ |TB(W)—1tR M+ tS(U)
Hence, Jr(U, W) = [ K M .
(k)y — (k)
Replace Jr(u®, wk)y = TB(W K) ™R M+i%1u ) in (3.1.7),
hence one will have to solve the following :
B(WH) — R M +7s(u®)] [ukV]  [tBW®) — R M+ s(Uu®)]
K -M Wikt | K -M
_ o P, wh)
BW®) — R M+ su)| [u®D ] [eBw®) —tR M+ s(u®)]
= K —M Wk | K —M
(M +s(UO)YWE —rrUK — 7z
a Ku® — mw®
Using the following identity:
R
uy, N
B(W)U = [S(el)w S(er)W S(eN)W} =Y U S(e)W = S(U)w
j=1
_UIN_.
(3.1.8)
Thus,
tB(WH®)) — 7R M+tsU®)| |u*| |rsubwk + 7z
K M Wk | = 0 (3-1.9)

Computation B = B(WK)
Note that B(W(k)) = [S(el)w(k) S(ez)W(k)

. S(eN)W(k)] should be

computed at every Newton iteration,where ¢; ’s are the canonical basis of RV,
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Jacobian matrix | = J(U¥, WK)
Jacobian matrix is 2N x 2N block matrix

J1
J3

]2
J4

where

J1 = TB(WK) — 1R

J» = M+ tS(U¥)

J3=K

Ja=-M

Note that J; and |, should be computed at every Newton iteration.

Algorithm 1 Solving HM using Newton’s Method

1:

10:
11
12
13:
14:

15:
16:

Input: A: stiffness matrix ; M: Mass matrix; K = M + A; S(U); R: As
defined in [9]; B(W): Matrix defined above; | :block matrix defined above
; Up; Wo: the discrete initial condition vectors; T: end time; T: time step;
kimax: maximum Newton iterations; N:total number of nodes
Output: U: matrix containing the computed vectors U; for t =0,1,...T

fort=0:7:Tdo
Uio=Uy Wig=Wgerror=1, k=0

LetZ=M:+Wy;

while (error > tol and k < kyay ) do
Let g = tS(Usx) * Wik + Z;
Letr(0: N—1)=gandr(n:2+N—-1) =0;
Let J; = TB(Wix) — TR, J2 = tS(Usx) + M;
Construct J : ] =[[J1,]2], [K,—M]];
Solve for V: [«V =r;
let Upp1 =V(0:N—1)and Wiy =V(n:2+N—1);
error — | |Ut,ﬁﬁt;|l|1t,k| | .
k=k+1;

end while

Uppr = U

Wit = Wi

end for
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3.2 Variants of Newton’s Method

1. Chord’s Method
Given vectors {U(t), W(t)} e RN x RN
one seeks {U(t + 1), W(t+ 1)} € RN x RN such that

(M+tS(U+1))W(t+71)—TRU(t+ T) = MW(t)
KU(s) = MW(s) Vse{tt+ 1} (3.2.1)

This equivalent to find (U, W) e RN " x RN such that

{ }(AL/IIJ: va(vu):)%v —TRU-Z =0 (322)

where U = U(t+ 1), W= W(t+ 1), and Z = MW(t) (given)

Define F; and F;:

I: RN xRN - RN

(U, W) — F(U,W) = (M+1S(U))W —TRU - Z
F: RN xRN & RN

(U, W) — F2(U,W) = KU — MW

Solving (3.1.2) is equivalent to find {U, V} € RN x RY such that:

Fi(U,W) =0
{ B (U W) =0 323)

Define
F: RY x RN - RN xRN
(U,W) = [R(UW)  B(U,W)
We will solve F(U, W) = 0 using chord’s method.

k1) _ k) |
Jr(u©, W) Wkt k| = ~F(Uu®, wh)
Lk i
— ]p(U(O),W(O)) Wik | = ]F(U(O),W(O)) Wi —F(U(k),W(k))
(3.2.4)
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where U = U(t), WO = W(t), and Jp(U, W) is the Jacobian of
F(U, W) :

TB(W)—-1tR M+ 75(U)

Je(U,W) = [ K M (proved)

TB(W®) —tR M+ tS(U®)
K -M

Denote B(W(®) = B(0), hence one has to solve the following:

Replace Jr (U, W) = [ in (3.2.4),

B0 — 1R M+ S(UO)| UV |  [tBO® —7R M+ tS(UO)| [U®
K -M wk+D | — K M w
U, w) R
B0 — R M+7s(UO)] [utD]  [¢B® — R M+ 7sU©)] [u®]
- K -M Wkt | K -M W)
(M +ts(u®))wh —rru® — z
a KUu® — mw®
B® — 7R M+ SO | [u*+D | |tBOU® — zRU® + (M + ts(U))w®
— K -M wkt) | — Ku® — pw k)
(M4 7S(UE)YWE —tRUK — Z
B Kku® — mw®
Thus,
B0 —tR M+1S(U®)| | uk+D)

0

B [TB(O)U(k) +TS(UOYWHE — zS(UE)YWE) + 7

K -M W(k+1)

(3-2.5)
Computation of matrix B = B(W?)

BWO) = {5(61)1/\/(0) S(e)WO® . . . S(en, )W is computed once
per time iteration before Chord’s iterations, where e; ’s are the canonical
basis of RN

Jacobian matrix | = J(UY, W?)
Jacobian matrix is 2N x 2N block matrix is computed once per time it-

eration before Chord’s iterations. i 2
3 Ja

where
J1 = tB(W%) — 1R
Jo = M+ 1S(U°%
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Js =K
Ja=-M

Algorithm 2 Solving HM using Chord’s Method

Input: A: stiffness matrix ; M: Mass matrix; K = M + A; S(U); R: As
defined in [9]; B(W) :Matrix defined above; | :block matrix defined above
; Up; Wo: the discrete initial condition vectors; T: end time; T: time step;
kimax: maximum Newton iterations; N:total number of nodes
Output: U: matrix containing the computed vectors U; for t =0,1,...T

1: fort=0:7:T do
2: Uio = Uy Weg =Wy, error=1; k=0

3 LetZ =M=+ W,

4 Let]; = TB(Wio) — TR, J2 = TS(Us) + M;

5. Construct J: ] =1[[J1,]2],[K,—M]];

6: while (error > tol and k < kyay ) do

7: Let ¢ = TB(Wio)Usx + TS(Uto) * Wrg — TS(Upg) = Wii + Z;
8: Letr(0:N—1)=gandr(n:2«N—-1) =0;

o: Solve for V: [+V =r;

1o let Uppoy = V(0: N—1)and Wy g = V(n:2sN—1);
11: error = —”ut'ﬁ&;ﬁlt'k” ;

12: k=k+1;

13: end while

14 U = Uy
15: Wit1 = Wi
16: end for
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. Modified Newton’s Method
Using the newton’s equation

U (k+1)
Wk+1)

S(UOWE + Z
0

tB(WHK)) — 7R M+ tS(UW)
K -M

(3.2.6)
tB(WIOH Uk — zRUED 4 MWD - z5(U )Wkt = z5(u YWk + 7z
Ku(k+1) _ Mw(k+l) =0

(3-2.7)
we need to get rid of the computation of the B(W®*)) matrix and speed

up the procedure.
From identity (3.1.8):

BW Y u+) = g(u*ywk ~ s(u®yw k)

rS(URYWK — rRUHD) MWD 4 z5(UE)yWEHD) = z5(UR )W) 7
Ku(k—H) _ Mw(k—H) -0

(3.2.8)
—RUKD + MWD 4 r5(u@)ywktl) = 7z
KU®+D — M+ — (3-2.9)
—tR M+ 7s(U®)| [ utk+l) Z
K —Z\EI ) wkD | = |o (3.2.10)

Computation of jacobian matrix |

—TR M +TtS(UWw)

I'=1 k M

Jacobian matrix is 2N x 2N block matrix

IR
5 Ja

where

]1 = —TR

Jo = M +tS(UF)
Js =K

Ja=-M

J2 will be computed at every Modified Newton iteration.
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Algorithm 3 Solving HM using Modified Newton Method

1:

10:

11
12:
13:
14:
15:

Input:  A: stiffness matrix ; M:Mass matrix; K = M+ A; S(U);R: As
defined in [9]; | :block matrix defined above ; Uy; Wy: the discrete initial
condition vectors; T: end time; T: time step;

kiax: maximum Newton iterations; n:total number of nodes
Output: U: matrix containing the computed vectors U; for t =0,1,...T

fort=0:7:Tdo
Uio=Uy Wig=Wy; error=1, k=0
Let Z =M« Wy,
Letr(0: N—1)=Zandr(n:2+«N—-1) =0;
while ( error > tol and k < k4, ) do
let [, = M+ tS(Uyx);
Construct J : ] = [[-7R,]J2], [K,—M]];
Solve for V: [+V =r;
let Ujpy1 =V(0:N—1)and Wiy =V(n:2+N—-1);

MU =Uiill
error = "
k=k+1;

end while

U1 = U

Wig1 = Wi
end for
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Chapter 4

Testing

In this chapter, we present the results of our numerical simulations im-
plemented using Free-Fem++ software [6]. In section 4.1, we analyze
and compare the solutions of the three methods for several initial data.
Then, in section 4.2 we assess the efficiency of our Newton-type ap-
proach as compared to the semi-linear approach presented in [9].

4.1 Newton-Type Methods

We test three algorithms [1] (Newton’s method), [2] (Chord’s method)
and [3] (Modified Newton’s method) for % =eM*B jep = Ax+B

where py = A and p, = 0. We consider different initial conditions for
same exponential density profile ny. We analyze the following cases:

4.1.1 Test 1

We set the domain Q) = [0, 7r] x [0, 7r] with A = 12. The initial condition
up(x,y) = 107°sin(3x), T = 0.05, and T = 50. We test the algorithm for
the case where 1y = 10% %, and w,; = 107.

In Figures 4.1, 4.2, and 4.3, we plot the solutions of Algorithms 1, 2 and
3 respectively at different times, where we consider number of intervals
in the x and y directions to be n = 16. In Figures 4.4, and 4.5, we plot
the solutions of Algorithm 3 at different times whereby we consider the
number of intervals in x and y directions to be n = 32 and 64 respec-
tively.

The same behavior is observed for the three methods where the solution
is stationary and unchanging till T = 50, as shown in figures 4.1, 4.2,
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4.3 for n = 16. Moreover, this behavior is not affected by the increase
in the number of intervals n as shown in figures 4.3, 4.4 and 4.5 for the
Modified Newton’s method.

(e) t=40

Figure 4.1: Time evolution of solution u using full newton method for T = 50, ug =
10~°sin(3x), T = 0.05, and a 17 x 17 grid on Q = [0, 7t] x [0, 7]

(d) t=30 (e) t=40 (f) t=50

Figure 4.2: Time evolution of solution u using chord method for T = 50, ug =
10 °sin(3x), T = 0.05, and a 17 x 17 grid on Q = [0, 7] x [0, 7]
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(d) t=30 (e) t=40 (f) t=50

Figure 4.3: Time evolution of solution u using Modified Newton method for T = 50,
ug = 107°sin(3x), T = 0.05, and a 17 x 17 grid on Q = [0, 7t] x [0, 7]

(c) t=20

(d) t=30 (e) t=40 (f) t=50

Figure 4.4: Time evolution of solution u using Modified Newton method for T = 50,
up = 10°sin(3x), T = 0.05, and a 33 x 33 grid on Q) = [0, 71] x [0, 7]
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(b) t=10 © t=20

(e) t=4"0

Figure 4.5: Time evolution of solution u using Modified Newton method for T = 50,
up = 107°sin(3x), T = 0.05, and a 65 x 65 grid on Q) = [0, 71| x [0, 7]

4.1.2 Test 2

We set domain Q) = [0, 7] x [0, 7] with A = 12. The initial condition
up(x,y) = 107°sin(107ty) and T = 0.05, and T = 50. We consider the
number of iterations in the x and y directions n = 16. We test the algo-
rithm for the case where 1y = 10'%~*, and w,; = 10”.

In Figures 4.6, 4.7, and 4.8, we plot the solutions of Algorithms 1, 2 and
3 respectively at different times, where we consider number of intervals
in the x and y directions to be n = 16. In Figures 4.9, and 4.10, we plot
the solutions of Algorithm 3 at different times whereby we consider the
number of intervals in x and y directions to be n = 32 and 64 respec-
tively.

The same behavior is observed for the three methods where the solu-
tion is moving in the y-direction, as shown in figures 4.6, 4.7, 4.8 for

n = 16. Moreover, increasing n from 16, 32 to 64, i.e. decreasing h from

11 ~ 0.19 to 312 ~ 0.098 to 6£4 ~ 0.049 improves the accuracy of the
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solution, while not affecting the motion in the y-direction as shown in
tigures 4.8, 4.9 and 4.10.

(d) t=30 (e) t=40 (f) t=50

Figure 4.6: Time evolution of solution u using full newton method for T = 50, ug =
10~°sin(107ty), T = 0.05, and a 17 x 17 grid on Q = [0, 7] x [0, 7]

| VA VAV 4 VY Y Y YA YA YA YAl

(d) t=30 (e) t=40 (f) t=50

Figure 4.7: Time evolution of solution u using chord method for T = 50, ug =
10 °sin(107ty), T = 0.05, and a 17 x 17 grid on Q = [0, 7t] x [0, 71]
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(a) t=0 (b) t=10

(d) t=30 (e) t=40 (f) t=50

Figure 4.8: Time evolution of solution u using Modified Newton method for T = 50,
up = 107°sin(107ty), T = 0.05, and a 17 x 17 grid on Q) = [0, 7] x [0, 7]

(a) t=0 (b) t=10 (c) t=20

e

(d) t3o - () t=40 (f) t=50

Figure 4.9: Time evolution of solution u using Modified Newton method for T = 50,
up = 10°sin(107ty), T = 0.05, and a 33 x 33 grid on Q) = [0, 7] x [0, 7]
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(a) t=0

(d) t=30 (e) t=40 (f) t=50

Figure 4.10: Time evolution of solution u using Modified Newton method for T = 50,
up = 107°sin(107ty), T = 0.05, and a 65 x 65 grid on Q) = [0, 7] x [0, 7]

4.1.3 Test 3

We set domain ) = [0,20] x [0,20] with A = 12. The initial condition
1o (x,y) = —1073(x — 10)¢=05(x=10)*~05(y=10)* 4nd 7 = 0.05, and T = 50.
We test the algorithm for the case where 1y = 1020~ (x—10)*/8—(y~10)2/8
and w,; = 107.

In Figures 4.11, 4.12, and 4.13, we plot the solutions of Algorithms 1,
2 and 3 respectively at different times, where we consider number of
intervals in the x and y directions to be n = 16. In Figures 4.14, and
4.15, we plot the solutions of Algorithm 3 at different times whereby we
consider the number of intervals in x and y directions to be n = 32 and
64 respectively.

The same behavior is observed for the three methods where the solution
is moving in circular motion around the center of the domain (10, 10),

as shown in figures 4.11, 4.12, 4.13 for n = 16. Moreover, increasing n

from 16, 32 to 64, i.e. decreasing h from % ~ 1.25 to ;—g ~ 0.625 to
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20
64
the circular motion as shown in figures 4.13, 4.14 and 4.15.

~ 0.3125 improves the accuracy of the solution, while not affecting

(d) t=30 (e) t=40 (f) = 50

Figure 4.11: Time evolution of solution u using full newton method for T = 50,
uo(x,y) = —1075(x — 10)e05(x~10°~05(y=10)* '+ — 0,05, and a 17 x 17 grid on () =
[0,20] x [0, 20]

(a) t=0

(d) t=30 (e) t=40 (f) t=50

Figure 4.12: Time evolution of solution u using chord method for T = 50, uy(x,y) =
—1075(x —10)e 03(x~10>~05(y~10)* '+ — (005, and a 17 x 17 grid on Q) = [0,20] x [0, 20]
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(d) t=30 (e) t=40 (f) t=50

Figure 4.13: Time evolution of solution u using Modified Newton method for T = 50,
uo(x,y) = —1075(x — 10)e~03(=10°-05(y=10)* "and a 17 x 17 grid on Q = [0,20] x
[0,20]

(d) t=30 (e) t=40

Figure 4.14: Time evolution of solution u using Modified Newton method for T = 50,
uo(x,y) = —1075(x — 10)e 05(x~10*-05(y~10)* '+ — 0,05, and a 33 x 33 grid on () =
[0,20] x [0, 20]
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(a) t=0

(c) t=20

(d) t=30 (e) t=4 | () t=50

Figure 4.15: Time evolution of solution u using Modified Newton method for T = 50,
up(x,y) = —1075(x — 10)e05(x—101~05(y=10)* '+ — (.05, and a 65 x 65 grid on
Q = [0,20] x [0,20]

4.1.4 Comparison and Analysis of results

We show the runtimes (in seconds) of the three methods for the tests
with number of intervals in x and y directions, n = 16 in Table 4.1.
Moreover, the number of iterations k per time step of the three methods
for the three tests is shown in Table 4.2. Also, runtimes (in seconds)
of Modified Newton’s method for the three tests with different number
of intervals in the x and y directions 7 is shown in Table 4.3. Note we
consider end time to be T = 50.
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Methods test 1 test 2 test 3
Newton’s Method 1785.1s | 3966.42 s | 3691.87 s
Chord Method 201592 s | 1591.3 sec | 2158.94 s
Modified Newton Method | 8.491s | 15.739sec | 17.728 s

Table 4.1: Runtimes of the three methods for three the tests number of intervals in
the x and y directions, n = 16 and T = 50

Methods test1 | test 2 | test 3
Newton’s Method 1 2 2
Chord Method 1 2 2
Modified Newton Method 1 2 2

Table 4.2: Number of iterations k per time step

n test 1 test 2 test 3

16 | 8491s | 15.739s | 17.728 s
32| 34.706s | 67.722s | 95.765 s
64 | 209.37 s | 542.09s | 876.72 s

Table 4.3: Runtimes of Modified Newton’s methods for the three tests with different
number of intervals in the x and y directions n for T = 50

Based on the runtimes shown in Table 4.1 for tests 2 and 3, it is clear that
Modified Newton’s method is the fastest, followed by Chord’s method
and then Newton’s method.

This result is justified as matrix B(W) is computed at every Newton it-
eration (2 times per time step). However, in chord’s method B(W) is
computed once per time step, and in Modified Newton B(W) is absent.
We are unable to deduce the speed from test 1 since there is a single
Newton’s iteration per time step as shown in Table ??. However, ac-
cording to Table 4.2, the number of iterations per time step in chord and
Modified Newton is 2.

For t = 0, one additional iteration per time step is obtained in all tests
and all methods( 2 for test 1 and 3 for test 2 and test 3).

Note that as number of intervals in x and y directions increase the run-
time increases as shown in Table 4.3 for Modified Newton with n = 16,
32 and 64.
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All the tests indicate that changing the initial conditions and grid size
don’t affect the growth of the solution for all Newton-type methods
which is not the case in semi-linear as it is shown in the next section.

4.2 Semi-linear versus Modified Newton’s Method

In this section we are going to show the plots for tests 1, 2 and 3 com-
paring the solutions of semi-linear obtained in algorithm 1 by N-Nassif,
S-Moufawad, H- Karakazian in their recent work [9] and the solutions
of Modified Newton.

We set a cap of 0.3 such that for electrostatic potential values exceeding
0.3, the numerical solution will no longer be admissible and the algo-
rithm stopped. Such cap on time was added to avoid computing non
admissible physical solutions. Note that there is a 1,y = 0.3 and there-
fore a t;;0x and if the cap not reached t,,, by default becomes equal to
end time.

We consider number of intervals in x and y directions n = 64

4.2.1 Test 1

In Figures 4.16, and 4.17, we plot the solutions of Algorithms 3, and
semi-linear algorithm 1 in [9] respectively at different times, where we
consider number of intervals in the x and y directions to be n = 64, and
the end time T = 200.

In the semi-linear case, the solution remains unchanged up till = 31.65,
after the transition time where the solution shifts from sine function in
the x-direction to a sine function in the y-direction, and the numerical
solution is no longer admissible (i, exceeds 0.3) before the end time
T = 200 reached. However, in Modified Newton’s method the solu-
tion remains in x-direction, unchanged and didn’t exceed the admissible
maximum value up till end time T = 200.
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(d) t=30

HEE
(j) t=63 (k) t=70 () t=75.15

Figure 4.16: Time evolution of solution u for test 1 using Modified Newton method
for T = 200, up = 10~°sin(3x), T = 0.05, and a 65 x 65 grid on Q) = [0, 7] x [0, 7]



(j) t=63 (k) t=70 () t=75.15

Figure 4.17: Time evolution of solution u for test 1 using semi-linear for T = 200,
uy = 107%sin(3x), T = 0.05, and a 65 x 65 grid on Q) = [0, 77| x [0, 7]

4.2.2 Test2

In Figures 4.18, and 4.19, we plot the solutions of Algorithms 3, and

semi-linear algorithm 1 in [9] respectively at different times, where we
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consider number of intervals in the x and y directions to be n = 64,
and the end time T = 200. The solution moves in y-direction in both
methods.

In the semi-linear method, u,,y is reached very fast as the solution ex-
ceeds the admissible maximum value way before the end time T = 200,
which is not the case for the Modified Newton’s method.

(a) t=0 (b) t=2 (c) t=4

(d) t=6 () t=8 (f) t=10

() t=12 (h) t=14

(j) t=18 (k) t=18.3 (1) t=18.35

Figure 4.18: Time evolution of solution u for test 2 using Modified Newton method
for T = 200, up = 10> sin(107ty), T = 0.05, and a 65 x 65 grid on Q) = [0, 77] x [0, 77]
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(a) t=0 (b) t=2 (c) t=4

(d) t=6

(g) t=12 (i) t=16

(j) t=18 (k) t=18.2 (1) t=18.35

Figure 4.19: Time evolution of solution u for test 2 using semi-linear for T = 200,
up = 107%sin(107ty), T = 0.05, and a 65 x 65 grid on Q) = [0,20] x [0, 20]

49



4.2.3 Test3

In Figures 4.20, and 4.21, we plot the solutions of Algorithms 3, and
semi-linear algorithm 1 in [9] respectively at different times, where we
consider number of intervals in the x and y directions to be n = 64,
and the end time T = 200. In both methods, we have a wave moving
in circular fashion around the center of the domain (10,10) where the
values of the solution vary slightly with respect to the initial condition.

(j) t=160 (k) t=180

Figure 4.20: Time evolution of solution u for test 3 using Modified Newton method
for T = 200, uo(x,y) = —1073(x — 10)e 05(x—10-05(y=10)* '+ — 0,05, and a 65 x 65
grid on Q) = [0,20] x [0,20]
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(a) t=0

7 (f) t=80

(h) t=120

(j =1o (k) t180 | 7‘ (1) =2o

Figure 4.21: Time evolution of solution u for test 3 using semi-linear for T = 200,
uo(x,y) = —1075(x — 10)e05(x~10~05(y=10)* '+ — 0,05, and a 65 x 65 grid on () =
[0,20] x [0, 20]
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4.2.4 Comparison and Analysis of results

We show the t,,;; of the three methods for three the tests with num-
ber of intervals in x and y directions, n = 64 in Table 4.4. Such t,y
corresponds to t where u,,,, exceeds 0.3 and if this cap is not reached
tmax by default becomes equal to the end time (T = 200). Moreover, we
show the runtimes (in seconds) of Semi-linear and Modified Newton’s
method for three the tests with number of intervals in x and y direc-
tions, n = 64 in Table 4.5. Note we consider end time to be T = 200.

Method test1 | test2 | test 3
Semi-linear 75.15 | 18.35 | 200
Modified Newton | 200 200 200

Table 4.4: Variation of t,,,, for semi-linear and Modified Newton’s method in three
tests, for n = 64 and T = 200

Method test 3
Semi-linear 408.954 s
Modified Newton | 1262.74 s

Table 4.5: Runtimes of the semi-linear and Modified Newton’s method for test 3 with
number of intervals in x and y directions, n = 64 and T = 200.

We put a cap of 0.3 on 1,4y to avoid computing non admissible physical
solutions as for value exceeding 0.3 the numerical solution is no longer
admissible. However, it should be noted that this cap is not reached in
Newton’s type methods for the tested cases.

According to table 4.5 and using test 3 only since T = 200 is reached in
both methods, semi-linear is faster than Modified Newton’s Method.

However, according to table 4.4, Modified Newton is numerically more
stable than semi-linear version, since in all cases the solution doesn’t
exceeds 0.3 (unlike the semi-linear for tests 1 and 2).

Note that, In semi-linear there is a growth of the solution (test 1 and 2)
unlike Newton-type methods where changing in conditions don’t affect
the growth of solution.
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Chapter 5

Concluding Remarks

In this thesis, we have handled the Euler implicit nonlinear fully discrete
system (3.1.2) using Newton’s type methods: Full Newton’s method
(Algorithm 1), Chord’s method (Algorithm 2) and Modified Newton'’s
method (Algorithm: 3).

Full Newton’s Method is slower than Chord’s Method due to the com-
putation of the matrix B(W) several times per time step as opposed to
once per time step. Moreover, it should be noted that the newly intro-
duced Modified Newton’s method (Algorithm 3) avoids the computa-
tion of the matrix B(W), thus outperforms all the other Newton's type
methods in terms of runtime. In addition, the replacement of B(W) by
an approximation did not affect the robustness of the algorithm, since
very similar (if not the same) solutions as the Full Newton and Chord’s
methods were obtained.

Newton’s type methods, including Modified Newton’s method, are more
costly than explicit and semi-linear schemes. This is due to the necessity
of one or more iterations per time step which requires updating the cor-
responding Jacobians, thus leading to an increase in the processing time.

However, this cost is worth investing in, given that the resulting simula-
tions are more representative of the non-linear phenomenon due to the
Poisson’s bracket {u, Au}.

As a matter of fact, Newton-type simulations were carried out without
putting a cap on the electrostatic potential u. This was not the case for
semi-linear discretization used in [9]. Such point is extremely meaning-
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ful in building up a robust algorithm for the Hasegawa-Mima system.

Theoretical aspects regarding the tested algorithms are not tackled in
this thesis. For completion, future work may consider treating those
aspects of the problem.
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