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An Abstract of the Thesis of

Mhd Jawad Nizar Kaisania for Master of Science

Major: Computer Science

Title: A Machine Learning Approach for Keratoconus Detection

Keratoconus is a disorder of the eye that results in progressive thinning of

the cornea. It usually occurs in the second decade of life and affects both gen-

ders and all ethnicities. The estimated prevalence in the general population is 54

per 100,000. Detecting Keratoconus is typically done using corneal tomography

with different imaging systems, such as the Pentacam HR. More recently, corneal

biomechanics (the corneal response to stress, and the ability of the cornea to

resist deformation/distortion), has become more and more used to diagnose pa-

tients with ecstatic corneal disorders such as keratoconus. However, all of these

techniques rely on medical experts to manually detect keratoconus based on an

inspection of the cornea tomographic images and biomechanical signals.

In this thesis, we propose to utilize machine learning to automatically detect

Keratoconus based on markers extracted from tomographic and biomechanical

inspections of the eye. To be able to do this, we rely on various (anonymized)

vi



datasets that are manually labelled by medical experts from the American Univer-

sity of Beirut Medical Center (AUBMC). Given that our datasets are limited in

size, we perform 5-fold cross-validation and train various state-of-the-art machine

learning techniques to automatically detect keratoconus. Our models achieved

cross-validation accuracies ranging from 85% to 100% depending on the dataset

and the classification task.
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Chapter 1

Introduction

1.1 Motivation

Keratoconus is the most common primary ectasia. Ocular signs and symptoms

vary depending on disease severity. Early forms normally go unnoticed unless

corneal topography is performed. Disease progression is manifested with a loss

of visual acuity, which cannot be compensated for with spectacles. Corneal thin-

ning frequently precedes ectasia [1], The process for detecting keratoconus is an

ongoing one, and is an integral part of the preoperative evaluation of any patient

considering corneal refractive surgery (LASIK, PRK, SMILE), as well as certain

patients for intraocular surgery who wish for optimal refractive outcomes (such

as premium intraocular lenses for cataract surgery, secondary phakic intraocu-

lar lenses, etc.). Figure 1.1 shows the difference in the cornea shape between a

normal eye and a keratoconus eye.

Traditionally, detecting Keratoconus was done using corneal topography, which

is a measure of the anterior curvature of the eye only. Then corneal tomogra-
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Figure 1.1: Healthy Cornea VS Keratoconus

phy was introduced, with different imaging systems such as the Pentacam HR,

which provide insight into the anterior corneal surface, the posterior corneal sur-

face, and what happens in between as well (such as the thickness of the cornea).

More recently, corneal biomechanics (the corneal response to stress, and the abil-

ity of the cornea to resist deformation/distortion), has become more and more

used to diagnose patients with corneal ecstatic disorders (such as keratoconus),

because these present inherent weaknesses in the corneal biomechanical proper-

ties. Biomechanical and tomographic imaging results are used to determine and

separate normal (no Keratoconus) from abnormal (Keratoconus) and borderline

(cases where imaging is inconclusive) upon performing a refractive surgery.

Detecting Keratoconus has thus mostly relied on manual inspection of corneal

tomography and biomechanics results. This can be very demanding and tedious

work. On the other hand, the use of Artificial Intelligence (AI) in ophthalmology
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has drastically increased over the past decade with advances in machine learn-

ing and the proliferation of datasets that can be used to build such AI-based

systems. In this thesis, we aim to use machine learning to build an automatic

classifier to automatically detect Keratoconus based on corneal tomography and

biomechanics signals.

1.2 Objectives and Contributions

In this thesis, we aim to train multiple classifiers to detect Keratoconus using

two different datasets obtained from the American University of Beirut Medical

Center (AUBMC) and that were manually labelled by medical experts. The first

dataset consists of records of 202 patients that were collected using two different

devices, namely Pentacam and Corvis. The second dataset consists of 277 patient

records using the same two aforementioned devices.

We use each dataset to train a number of different classifiers. The first one is

a 3-way classifier to distinguish between normal, subclinical keratoconus, and full

keratoconus cases. The second classifier we train is a 2-way classifier where we

consider the sub-clinical keratoconus and Keratoconus as one class and then train

a binary classifier to distinguish between them and the normal class. Similarly,

we train another 2-way classifier, where we consider the normal and subclinical

cases as one class and the keratoconus cases as the second class. Finally, we

also build two-stage classifiers that first use the 2-way classifiers to distinguish

between the combined class and the other, and then use another binary 2-way

classifier to distinguish between the combined classes.

Given the limited size of the datasets, we propose to use 5-fold cross-validation
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to train different machine learning models and choose the best-performing ones

when training the various classifiers outlined above. Moreover, we also conduct

various feature-selection experiments to identify the most influential features out

of the set of available features in each dataset. To avoid over-fitting, we rely on

medical intuition and expertise to guide the feature-selection process to avoid

examining the space of all possible features. Finally, we also perform careful

error analysis to bring humans back in the loop and provide interpretation of our

trained machine learning models and their outputs.

1.3 Thesis Plan

This thesis is organized as follows. Chapter 2 gives an overview of related work

that has employed machine learning techniques to detect subclinical keratoconus

and keratoconus cases using corneal tomography and biomechanics signals. Chap-

ter 3 describes the datasets we will use to train the various classifiers and their

features. In Chapter 4, we describe how to train the various classifiers using the

two datasets and report on their performances using 5-fold cross-validation. In

the same chapter, we will also provide the results of our feature selection analyses,

as well as error analyses for the various trained classifiers. Finally, we conclude

and present future directions in Chapter 5.
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Chapter 2

Literature Review

In this chapter, we review related work that utilizes Machine Learning for Kerato-

conus and Sub-Clinical Keratoconus cases detection based on corneal tomography

and biomechanics signals.

In [2], the authors used four refractive maps (Sagittal map, Pachymetric map,

Elevation map front and Elevation map back) taken by the Pentacam device to

extract features. They first took each map and converted it from RGB to grey

and then based on some specific diameters with the help of image processing, they

extracted 12 features from all the maps. The next step was feeding the features to

support vector machine classifier and building a 2-Way classifier (keratoconus vs

normal). To train such a classifier, they built a dataset consisting of 40 patients

in total and used 30 patients for training and 10 for testing and obtained a 90%

test accuracy.

In [3], the authors also used support vector machine classifier in their study.

22 features were extracted from Pentacam and their dataset consisted of 860

patients. After processing the data, they built three classifiers; the first one to
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classify keratoconus vs normal, the second for subclinical keratoconus vs normal

and the final one is a 5-way classifier (keratoconus, subclinical keratoconus, Astig-

matic, After Refractive Surgery, and normal). They used 10-fold cross validation

to train and validate their models and obtained cross-validation accuracies of

98.9%, 93.1% and 88.8% for the three classifiers, respectively.

In [4], the authors focused on detecting subclinical keratoconus. They ex-

tracted 11 parameters from a Pentacam Oculus topography device and their

dataset consisted of 88 patients. They then applied 10-fold cross validation for

8 different models and chose the best ones (random forest, support vector ma-

chine and k-nearest neighbors). Next, they applied feature selection and reported

the most important set of features for each of the selected models.Finally they

reported that the highest AUC (Area under the Curve) was 0.97 for detecting

subclinical keratoconus and it was achieved using five parameters by the random

forest method. On the other hand, The highest sensitivity (0.94) and specificity

(0.90) were obtained by support vector machine and the k-nearest neighbors

model, respectively.

In [5], the authors proposed building a 2-way classifier to distinguish between

Early Stage Keratoconus and Normal eyes and to do that they compared 25

machine learning models on different sets of features (443 in total) extracted

from OCT-based topography instruments. Their best model was support vector

machine classifier, which achieved a test accuracy of 94% using 8 features and a

dataset of 3151 patients.

In [6], the authors experimented with various models such as support vec-

tor machine (SVM), Radial Basis Function (RBF) and a Multi-Layer Percep-

tron(MLP). They used a dataset consisting of 318 patients and used 11 features
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that were extracted from an Orbscan ii topography. They then performed data

pre-processing and hyperparameter tuning using 10-fold cross validation and re-

ported that the performances of the three classifiers were close and they relied

on accuracy, sensitivity, specificity and Receiver Operating Characteristic(ROC)

to evaluate them.

In [7], the authors proposed to use a Deep Learning approach to classify be-

tween Keratoconus and normal eyes. The dataset consisted of 304 Keratoconus

eyes and 239 normal eyes and the extracted features were from six color-coded

maps that have been taken from swept-source AS-OCT device. They reported

an accuracy of 0.991 in classifying between Keratoconus and normal eyes.
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Chapter 3

Datasets

This chapter describes the datasets we use to train the various machine learning

models used in this thesis.

3.1 Data Acquisition

Our data was obtained through a retrospective case-control study of patients with

keratoconus, subclinical keratoconus, and normal corneas that was conducted at

the American University of Beirut Medical Center (AUBMC), Beirut, Lebanon.

It was approved by the university’s Institutional Review Board (Protocol: BIO-

2018-0080), and adhered to the tenets of the Declaration of Helsinki.

3.1.1 PCBI Dataset

Our first dataset consists of data for a total of 202 patients who were examined

and monitored by expert ophthalmologists at AUBMC. The patients were man-

ually classified into three classes: patients with normal eyes (98), patients with
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subclinical keratoconus(49), i.e., those whose eyes have no symptoms or pain but

if they did a refractive surgery then their eyes might develop the Keratoconus

disease in other words these cases are borderline and the medical experts can not

tell if there will be a disease or not later, and finally patients with Keratoconus

disease (55). In total, each patient in this dataset is represented using 13 different

features, which were collected from two different devices as follows.

Pentacam® HR tomography system (OCULUS Optikgeräte GmbH,

Wetzlar, Germany): This is a tomography high-resolution camera system that

measures the shape of the cornea, and the following seven features were obtained

from it:

• Pentacam Kappa Chord Length: the chord length of the angle kappa, which

is the angle between the patient’s visual axis and the pupillary axis

• Pachymetric Progression Index Min: corneal thickness progression in the

meridian with the smallest thickness progression from the thinnest point

• Pachymetric Progression Index Max: corneal thickness progression in the

meridian with the greatest thickness progression from the thinnest point

• Ambrósio’s Relational Thickness Min: the ratio of the thinnest point to

PPI Min. (Pachy Prog Index Min.)

• Ambrósio’s Relational Thickness Max: the ratio of the thinnest point to

PPI Max. (Pachy Prog Index Max.)

• Pentacam Post. IS2mm: this parameter was derived from the instantaneous

posterior curvature map of the cornea. It is the largest difference between

9



diametrically opposite points at a radius of 2mm from the center of the

map, between the angles of 60 and 120 degrees.

• Pentacam Post. IS1mm: this parameter was derived using the same process

of the previous one but the selected points were at a radius of 1mm from

the center of the map.

Corvis® ST (OCULUS Optikgeräte GmbH, Wetzlar, Germany):

This is a device that measures corneal biomechanics, and the following six features

were derived using it:

• A1 Velocity: Velocity of the corneal deformation during applanation 1.

When cornea is deformed, it goes through two positions called applanation

1, which occurs during the initial deformation, and applanation 2, which

occurs when the corneas is returning to its original form.

• Deflection Amp. Max: The maximum deflection amplitude (the difference

between the deflection and deformation is that deformation takes into ac-

count the whole eye movement as well based on the AUBMC experts)

• DA Ratio Max (2mm): Deformation at the apex over the deformation 2mm

from the center (the deformation here is the maximum displacement of the

cornea from its original position)

• DA Ratio Max (1mm): Deformation at the apex over the deformation 1mm

from the center

• SPA1: Stiffness parameter at applanation 1 (derived from a couple of other

Corvis parameters)
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• ARTh: Ambrósio’s Relational Thickness in the horizontal profile: the ratio

of the thinnest point of the horizontal meridian to the PPI of the horizontal

meridian.

3.1.2 STPI Dataset

The second dataset has a total of 277 patients and they are all different from the

previous 202 patients in the first dataset. The patients in our second dataset were

examined using a tomography machine called Galilei that has dual scheimpflug

and placido imaging system instead of just scheimpflug (Pentacam HR). The

patients were manually classified into three classes. 133 patients were classified as

normal, 97 patients were classified as Keratoconus and 47 patients were classified

as subclinical keratoconus. For each patient, seven features were obtained through

some manipulation of the output of Galilei. For each point on the corneal, there is

a value starting with “0” for the thinnest point and the rest of the points around

that thinnest point have values that represent the speed of the thickness increase

from the thinnest point to their respective locations. Using the image/map from

Galilei, the medical experts averaged these points of speed for every 15-degree

arc for radii 0.5, 1.0 and 2mm, and by measuring the greatest “15-degree arc

averaged speed”, they obtained the below three features:

• Max value for 0.5mm radius: The 15 degree arc with the maximum average

speed of thickness progression at a radius of 0.5mm.

• Max value for 1.0mm radius: The 15 degree arc with the maximum average

speed of thickness progression at a radius of 1.0mm.
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• Max value for 2.0mm radius: The 15 degree arc with the maximum average

speed of thickness progression at a radius of 2.0mm.

After that, they calculated the absolute difference between the averaged speed

of diametrically opposite 15-degree arcs for every pair of diametrically opposite

arcs, and the influence behind extracting these values is that keratoconus creates

asymmetries in the cornea in a way that they would expect to have a high speed

of thickness increase in one direction, and a low speed of thickness increase in

the opposite direction, and again they reported the maximum value for these

differences, obtaining the following three additional features:

• Abs.Diff max value for 0.5mm radius: Maximum difference of speed of

thickness progression between diametrically opposite 15 degree arcs at a

radius 0.5mm.

• Abs.Diff max value for 1.0mm radius: Maximum difference of speed of

thickness progression between diametrically opposite 15 degree arcs at a

radius 1.0mm.

• Abs.Diff max value for 2.0mm radius: Maximum difference of speed of

thickness progression between diametrically opposite 15 degree arcs at a

radius 2.0mm.

Finally, the last feature was the greatest acceleration from 0.5 to 1.0 mm, i.e.,

• Max value acc from 0.5-1.0: Maximum acceleration of thickness progression

between 15 degree arcs at 0.5mm and 15 degree arcs at 1.0mm.
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Chapter 4

Machine Learning Models

4.1 Setup

4.1.1 Base Models

We train four different machine learning models using each of the two datasets

described in the previous chapter for various classification tasks as we explain

later in this chapter. These four models are random forest, logistic regression,

support vector machines and adaboost. Briefly,

(1) Support vector machine[8] translates data into another space where a plane

(“hyperplane”) maximally separates disparate data groups from itself.

(2) Logistic regression is a simple regression method that learns a mapping

from input variables (X) to an output variable (Y) with Y = f(X).

(3) Ensemble method such as random forest that consists of many decision

trees which were generated randomly using the features in our dataset, the

output of random forest is the selected class by most trees.
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(4) Adaboost algorithm, short for Adaptive Boosting, is a boosting technique

that begins by fitting a classifier on the original dataset and then fits addi-

tional copies of the classifier on the same dataset but where the weights of

incorrectly classified instances are adjusted such that subsequent classifiers

focus more on difficult cases.

We only use these four models because they are the most common ones used in

the context of in diagnosing diseases and biomedical studies. Moreover, since our

datasets are limited in size, more complex models such as deep neural-network-

based ones would overfit as they typically require relatively large training sets.

4.1.2 Data Normalization

Before training the different classifiers using the four machine learning models

outlined above, we performed data normalization using two different techniques:

MinMax and standardization. Our experimental results demonstrated that both

techniques provide roughly the same results in most cases, with standardization

performing slightly better in the remaining cases. Thus, in the rest of this chapter,

we will only present results using standardization as a normalization technique.

4.1.3 Model Validation and Testing

Given that our datasets are limited in size, we perform 5-fold cross validation to

validate and test the different machine learning models we train and to tune their

hyperparameters. Briefly, 5-fold cross validation works by splitting a dataset

into five folds, using four folds for training and the fifth for validation. This

process is repeated five times, using a different fold for validation each time.

14



Figure 4.1: 5-Fold Cross Validation

Finally, evaluation metrics are then averaged over the five runs and are used to

validate and test the trained models. Figure 4.1 shows an example of 5-fold cross

validation.

4.1.4 Grid Search parameters Tuning

Grid Search was used during the training time to tune the hyperparameter for

each classifier, we reported the optimal parameters for the best performance

model in Appendix A.

4.2 PCBI Dataset Models

We trained various classifiers using the PCBI dataset. As mentioned in Chapter 3,

this dataset consists of records belonging to three different classes, namely: nor-

mal which is denoted by class 0 and represents the healthy patients, keratoconus
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which is class 3 and represents the patients will full Keratoconus, and subclinical

keratoconus which represents the patients with no clear determination, meaning

the experts are not sure if the eye would develop Keratoconus after doing the

LASIK/LAZIR surgery or not and this class is denoted by class 1.

4.2.1 Data Cleaning and Analysis

Before we set out to train the different classifiers using the PCBI dataset, we first

performed some data cleaning and analysis. First, we augmented the dataset with

an additional feature TBI, which is derived from both the Pentacam and Corvis

devices based on the medical team recommendation. Second, we had two missing

values for two features, which are ARTH and TBI (we refer the reader to Chapter

3 for a description of the first feature. We alerted the medical team about the

missing values, and they decided to exclude one record from the dataset and to

use the mean of values for the other one. Moreover, the medical team excluded

7 more patients from the dataset for technical reasons, and thus we ended up

with a total of 202 records (98 normal cases, 49 subclinical keratoconus and 55

keratoconus) in the dataset.

Figure 4.2 shows the distribution of the records in the dataset over the three

different classes and as can be seen from the figure, the dataset is relatively

imbalanced with the majority of the records belonging to the “Normal” class.

4.2.2 Classifiers

We used the PCBI to build two different classifiers. The first was a 3-way classifier

that classifies a patient record into one of the three classes we have, i.e., normal
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Figure 4.2: PCBI Classes Distribution

vs subclinical keratoconus vs keratoconus. The second was a 2-way classifier

where we combined subclinical keratoconus cases with keratoconus cases and

considered them as one class and the classifier was trained was to classify a patient

record as either normal or (keratoconus/subclinical keratoconus). We trained

different versions of each of the two classifiers using a different subset of features,

guided by the expertise and insight of the medical team. For each version of each

classifier, we used four different machine learning models as explained earlier. In

the following, we present the results for each version of each classifier using the

different subsets of features separately.
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Original Features

The first version of our two classifiers (i.e., the 3-way and the 2-way) were trained

using all 12 original features in the PCBI dataset (i.e., Pentacam Post IS2mm,

Corvis SP A1, Pentacam Kappa Chord Length, Pachy Prog Index Min, Pachy

Prog Index Max, ART Min, ART Max, Corvis A1 Velocity [mm], Corvis De-

flection Amp. Max [mm], Corvis DA Ratio Max (2mm), Corvis DA Ratio Max

(1mm) and Corvis ARTh).

As mentioned earlier, for each classifier, we trained four machine learning

models using 5-fold cross validation. Table 4.1 shows the performance of each

model using various metrics for the 3-way classifier whereas Table 4.2 shows the

performance of each models for the 2-way classifier.

Model Precision Recall F1-Score Accuracy

SVM 0.89 0.89 0.89 0.886

Random Forest 0.88 0.88 0.88 0.876

Logistic Regression 0.87 0.87 0.87 0.866

AdaBoost 0.81 0.69 0.71 0.693

Table 4.1: Performance of 3-way Classifier using Original Features
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Model Precision Recall F1-Score Accuracy

Random Forest 0.93 0.93 0.93 0.930

SVM 0.92 0.92 0.92 0.920

Logistic Regression 0.92 0.92 0.92 0.915

AdaBoost 0.81 0.81 0.81 0.811

Table 4.2: Performance of the 2-Way Classifier using Original Features

Support vector machine performed the best in classifying between our 3

classes, the weighted average accuracy is 0.886% and when looking at normal

vs (subclinical keratoconus/keratoconus) random forest achieved an accuracy of

0.93% among the other 2-way classifiers.

Original Features Augmneted with TBI Feature

The second version of our two classifiers were trained using all 12 original features

in the PCBI dataset in addition to the TBI feature, which was derived from both

the Pentacam and Corvis devices together. Again, for each classifier, we trained

four machine learning models using 5-fold cross validation. Table 4.3 shows the

performance of each model using various metrics for the 3-way classifier whereas

Table 4.4 shows the performance of each models for the 2-way classifier.
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Model Precision Recall F1-Score Accuracy

Logistic Regression 0.89 0.89 0.89 0.891

Random Forest 0.89 0.89 0.89 0.886

SVM 0.88 0.88 0.88 0.876

AdaBoost 0.80 0.73 0.75 0.727

Table 4.3: Performance of the 3-way Classifier using Original Features

Augmented with TBI

Model Precision Recall F1-Score Accuracy

SVM 0.92 0.92 0.92 0.920

Random Forest 0.92 0.92 0.92 0.915

Logistic Regression 0.92 0.92 0.92 0.915

AdaBoost 0.86 0.86 0.86 0.856

Table 4.4: Performance of the 2-way Classifier using Original Features

Augmented with TBI

For this subset of our dataset, logistic regression performed the best as a 3-way

classifier with an accuracy of 0.891%, which means adding TBI to our original

features gave us a better performance. As for the 2-way classifier, support vector

machine performed the best with 0.92% accuracy.
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Original Features Without Pentacam Post 2mm Feature

The third version of our two classifiers were trained using 11 original features in

the PCBI dataset after excluding Pentacam Post 2mm feature. Again, for each

classifier, we trained four machine learning models using 5-fold cross validation.

Table 4.5 shows the performance of each model using various metrics for the 3-

way classifier whereas Table 4.6 shows the performance of each models for the

2-way classifier.

Model Precision Recall F1-Score Accuracy

Logistic Regression 0.84 0.84 0.84 0.836

SVM 0.83 0.83 0.83 0.826

Random Forest 0.82 0.82 0.82 0.821

AdaBoost 0.54 0.71 0.61 0.707

Table 4.5: Performance of the 3-way Classifier using Original Features without

Pentacam Post 2mm

Model Precision Recall F1-Score Accuracy

SVM 0.92 0.91 0.91 0.910

Random Forest 0.90 0.90 0.90 0.896

Logistic Regression 0.91 0.90 0.90 0.900

AdaBoost 0.84 0.84 0.84 0.836

Table 4.6: Performance of the 2-way Classifier using Original Features without

Pentacam Post 2mm

21



Logistic regression performed the best in classifying between the 3 different

classes among the rest of the models, it achieved an accuracy of 0.836%, while

support vector machine performed the best as a 2-way classifier with 0.91% accu-

racy. We can notice that both the 3-way and the 2-way classifiers performances

dropped from the previous experiment which assures that having Pentacam Post

2mm as a feature made our classifiers learn more on how to classify between the

classes.

Original Features Without Corvis SPA1 Feature

The fourth version of our two classifiers were trained using 11 original features in

the PCBI dataset after excluding Corvis SPA1 feature. Again, for each classifier,

we trained four machine learning models using 5-fold cross validation. Table 4.7

shows the performance of each model using various metrics for the 3-way classifier

whereas Table 4.8 shows the performance of each models for the 2-way classifier.

Model Precision Recall F1-Score Accuracy

Random Forest 0.87 0.87 0.87 0.871

Logistic Regression 0.87 0.87 0.87 0.871

SVM 0.87 0.87 0.87 0.866

AdaBoost 0.75 0.77 0.74 0.767

Table 4.7: Performance of the 3-way Classifier using Original Features without

Corvis SPA1
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Model Precision Recall F1-Score Accuracy

Random Forest 0.92 0.92 0.92 0.920

SVM 0.92 0.92 0.92 0.920

Logistic Regression 0.92 0.92 0.92 0.915

AdaBoost 0.81 0.81 0.81 0.806

Table 4.8: Performance of the 2-way Classifier using Original Features without

Corvis SPA1

Random forest performed the best as a 3-way classifier with 0.871% accuracy

and as a 2-way classifier with 0.92% accuracy. Again eliminating Corvis SPA1

made our 3-way and 2-way classifier performed poorly than when we included in

which gave us an insight of the importance of it as the medical team proposed.

Original Features Without Pentacam Post 2mm and Corvis SPA1 Fea-

tures

The fifth version of our two classifiers were trained using 10 original features in

the PCBI dataset after excluding Pentacam Post 2mm and Corvis SPA1 features.

Again, for each classifier, we trained four machine learning models using 5-fold

cross validation. Table 4.9 shows the performance of each model using various

metrics for the 3-way classifier whereas Table 4.10 shows the performance of each

models for the 2-way classifier.
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Model Precision Recall F1-Score Accuracy

Logistic Regression 0.84 0.84 0.84 0.836

SVM 0.84 0.84 0.84 0.836

Random Forest 0.83 0.83 0.83 0.826

AdaBoost 0.81 0.82 0.81 0.816

Table 4.9: Performance of the 3-way Classifier using Original Features without

Pentacam Post 2mm and Corvis SPA1

Model Precision Recall F1-Score Accuracy

SVM 0.89 0.89 0.89 0.891

Random Forest 0.88 0.88 0.88 0.881

Logistic Regression 0.90 0.89 0.89 0.891

AdaBoost 0.84 0.84 0.84 0.836

Table 4.10: Performance of the 2-way Classifier using Original Features without

Pentacam Post 2mm and Corvis SPA1

Logistic regression performed the best in classifying between the 3 classes with

0.836% accuracy, while support vector machine achieved an accuracy of 0.891%

as a 2-way classifier. Again the performance of both the 3-way and the 2-way

classifier dropped after eliminating Pentacam Post 2mm and Corvis SPA1 from

the original features.
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Only Pentacam Post 2mm and Corvis SPA1 Features

The sixth version of our two classifiers were trained using only two of the original

features summarized as Pentacam Post 2mm and Corvis SPA1 features. Again,

for each classifier, we trained four machine learning models using 5-fold cross

validation. Table 4.11 shows the performance of each model using various metrics

for the 3-way classifier whereas Table 4.12 shows the performance of each models

for the 2-way classifier.

Model Precision Recall F1-Score Accuracy

Logistic Regression 0.86 0.86 0.86 0.861

Random Forest 0.85 0.85 0.85 0.846

Random Forest 0.86 0.85 0.85 0.846

AdaBoost 0.56 0.72 0.62 0.717

Table 4.11: Performance of the 3-way Classifier using only Pentacam Post 2mm

and Corvis SPA1

Model Precision Recall F1-Score Accuracy

Logistic Regression 0.90 0.90 0.90 0.896

Random Forest 0.90 0.90 0.90 0.896

SVM 0.90 0.89 0.89 0.891

AdaBoost 0.85 0.85 0.85 0.851

Table 4.12: Performance of the 2-way Classifier using only Pentacam Post 2mm

and Corvis SPA1
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Logistic regression performed the best as a 3-way classifier using only two

features (Pentacam Post 2mm and Corvis SPA1) with an accuracy of 0.861%,

while when looking at normal vs (subclinical keratoconus/keratoconus) logistic

regresson also performed the best with 0.896% accuracy. We noticed having these

two features alone gave us a result at somehow close to the one when using all

12 original features, but still having all the features performed better.

Only TBI Feature

The seventh version of our two classifiers were trained using only TBI feature

which was constructed from features from both Pentacam and Corvis devices.

Again, for each classifier, we trained four machine learning models using 5-fold

cross validation. Table 4.13 shows the performance of each model using various

metrics for the 3-way classifier whereas Table 4.14 shows the performance of each

models for the 2-way classifier.

Model Precision Recall F1-Score Accuracy

SVM 0.83 0.84 0.83 0.836

Logistic Regression 0.82 0.83 0.82 0.831

Random Forest 0.82 0.82 0.82 0.821

AdaBoost 0.56 0.74 0.64 0.737

Table 4.13: Performance of the 3-way Classifier using Only TBI
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Model Precision Recall F1-Score Accuracy

Logistic Regression 0.91 0.91 0.91 0.910

SVM 0.92 0.91 0.91 0.910

Random Forest 0.90 0.89 0.89 0.891

AdaBoost 0.90 0.89 0.89 0.891

Table 4.14: Performance of the 2-way Classifier using Only TBI

We found that support vector machine achieved an accuracy of 0.836% and

be the best machine learning model when looking at normal vs subclinical kerato-

conus vs keratoconus, while logistic regression performed the best when looking

at normal vs (subclinical keratoconus/keratoconus) with 0.91% accuracy. TBI

alone gave us a decent accuracy, yet using the 12 original features performed

better in both 3-way and 2-way classifier.

Tow Stages Classification

Given that the 2-way classifier consistently performed better than the 3-way clas-

sifier in all previous experiments, we also experiment with a two-stage classifier.

To train the first classifier, we combine the normal and subclinical keratoconus

records and train a binary classifier to distinguish between them and keratoconus

records. We also train another binary classifier to distinguish between normal

and subclinical keratoconus cases. We then use a pipelined approach to perform

3-way classification using those two binary classifiers. Similarly, we also train

another two-stage classifier and use it exactly the same as just described, but

combining the subclinical keratoconus and keratoconus cases into one class. We
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describe each such classifier separately next.

First two-stage classifier: Normal/Subclinical keratoconus vs Kerato-

conus

Our first binary classifier in the first two-stage classifier was trained using the

whole dataset (merging normal and subclinical keratoconus cases into one class)

and the second was trained on the subset of the dataset that contains only normal

and subclinical keratoconus cases.

1. C1: (Normal/Subclinical Keratoconus) VS Keratoconus

To train this classifier, we merged the normal cases (98) and the subclinical

keratoconus cases (49) and ended up with 147 cases as normal/subclinical

keratoconus. On the other hand, we had 55 keratoconus cases. The classifier

was trained using 5-fold cross validation with Standard-Deviation normal-

ization, and four different models were explored. Grid search was used to

train the hyperparameters of all models. Table 4.15 shows the 5-fold cross-

validation results for the four different models we explored. As can be seen

from the table, Logistic Regression did the best performance with 0.975%

accuracy for that we reported its confusion matrix in table 4.16, in the con-

fusion matrix we denoted keratoconus as KC and subclinical keratoconus

as SUSKC.
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Model Precision Recall F1-Score Accuracy

Logistic Regression 0.98 0.98 0.98 0.975

Random Forest 0.97 0.97 0.97 0.970

AdaBoost 0.96 0.96 0.96 0.960

SVM 0.96 0.96 0.96 0.960

Table 4.15: PCBI- First two-stage classifier cross validation result for C1

Predicted

Normal+SUSKC KC

A
ct

u
a
l

Normal+SUSKC 143 4

KC 1 54

Table 4.16: PCBI- First two-stage classifier confusion matrix for C1

2. C2: Normal VS Subclinical Keratoconus

We used the 147 cases that are labeled as either normal or subclinical kera-

toconus to train this classifier. Again, the classifier was trained using 5-fold

cross validation with Standard-Deviation normalization and four different

models were explored. Grid search was used to train the hyperparameters

of all models. Table 4.17 shows the 5-fold cross-validation results for the

four different models we explored. Logistic regression and support vector

machine had the same accuracy, but we selected logistic regression as the

best model because it misclassified 5 normal cases as subclinical keratoconus

while support vector machine misclassified 10. Again, table 4.18 shows the
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confusion matrix of logistic regression.

Model Precision Recall F1-Score Accuracy

Logistic Regression 0.90 0.90 0.90 0.897

SVM 0.90 0.90 0.90 0.897

Random Forest 0.86 0.86 0.86 0.857

AdaBoost 0.86 0.85 0.85 0.857

Table 4.17: PCBI- First two-stage classifier cross validation result for C2

Predicted

Normal SUSKC

A
ct

u
a
l

Normal 93 5

SUSKC 10 39

Table 4.18: PCBI- First two-stage classifier confusion matrix for C2

3. Overall Approach

To evaluate the whole approach (i.e., two-stage classifier), another round

of cross-validation was done as follows. The dataset was split into 5 folds

(p1, p2, p3, p4 and p5). Next:

(a) We used 4 folds, say “p1 + p2 + p3 + p4” to train C1 (normal/subclinical

keratoconus VS keratoconus) using the best model with the best hy-

perparameters identified from training on the whole dataset.

(b) We used the same 4 folds, again say “p1 + p2 + p3 + p4”, to train

C2 (normal VS subclinical keratoconus).
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Figure 4.3: Two Stages Classification SUSKC+Normal VS KC

(c) We used the remaining fold, i.e., p5, to evaluate the two-stage classi-

fier by passing each example in p5 through first C1 and if it predicts

normal/subclinical keratoconus, we pass it to C2.

(d) We repeated the previous 4 steps 5 times using different folds for train-

ing and testing. Figure 4.3 is an overview of the whole process

The 5-fold cross-validation results and the confusion matrix of the overall

approach are shown in table 4.19as and table 4.20respectively.
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Logistic Regression Precision Recall F1-Score Accuracy

Weighted Average 0.87 0.86 0.86 0.861

Table 4.19: PCBI- First two-stage classifier cross validation result

Predicted

Normal SUSKC KC

A
ct

u
a
l Normal 85 13 0

SUSKC 8 37 4

KC 0 3 52

Table 4.20: PCBI- First two-stage classifier confusion matrix

We can notice that using this approach, our two-stage classification did cor-

rectly classify 85 normal and misclassified 13 as subclinical keratoconus, when

looking at subclinical cases we had 37 correctly classified cases, 8 cases were mis-

classified as normal and 4 cases were misclassified as keratoconus. Finally we

had 52 keratoconus cases classified as keratoconus and 3 misclassified cases as

subclinical cases.

Second two-stage classifier: Keratoconus/Subclinical keratoconus

vs Normal

Our first binary classifier in the second two-stage classifier was trained using the

whole dataset (merging keratoconus and subclinical keratoconus cases into one

class) and the second was trained on the subset of the dataset that contains only
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keratoconus and subclinical keratoconus cases.

1. C1: (Keratoconus/Subclinical Keratoconus) VS Normal

To train this classifier, we merged the keratoconus cases (55) and the

subclinical keratoconus cases (49) and ended up with 104 cases as ker-

atoconus/subclinical keratoconus. On the other hand, we had 98 normal

cases. The classifier was trained using 5-fold cross validation with Standard-

Deviation normalization, and four different models were explored. Grid

search was used to train the hyperparameters of all models. Table 4.21

shows the 5-fold cross-validation results for the four different models we

explored. As can be seen from the table, Random Forest had the best

performance with 0.935% accuracy and its confusion matrix is reported in

table 4.22.

Model Precision Recall F1-Score Accuracy

Random Forest 0.94 0.94 0.94 0.935

Logistic Regression 0.92 0.92 0.92 0.915

SVM 0.91 0.91 0.91 0.910

AdaBoost 0.91 0.91 0.91 0.910

Table 4.21: PCBI- Second two-stage classifier cross validation result for C1
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Predicted

Normal SUSKC+KC

A
ct

u
a
l

Normal 93 5

SUSKC+KC 8 96

Table 4.22: PCBI- Second two-stage classifier confusion matrix for C1

2. C2: Keratoconus vs Subclinical Keratoconus

We used the 104 cases that are labeled as either keratoconus or subclinical

keratoconus to train this classifier. Again, the classifier was trained us-

ing 5-fold cross validation with Standard-Deviation normalization and four

different models were explored. Grid search was used to train the hyperpa-

rameters of all models. Table 4.23 shows the 5-fold cross-validation results

for the four different models we explored. Adaboost had the best perfor-

mance with 0.961% accuracy and its confusion matrix is reported in table

4.24.

Model Precision Recall F1-Score Accuracy

Adaboost 0.96 0.96 0.96 0.961

Logistic Regression 0.95 0.95 0.95 0.951

SVM 0.93 0.93 0.93 0.932

Random Forest 0.92 0.92 0.92 0.921

Table 4.23: PCBI- Second two-stage classifier cross validation result for C2
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Predicted

KC SUSKC

A
ct

u
a
l

KC 53 2

SUSKC 2 47

Table 4.24: PCBI- Second two-stage classifier confusion matrix for C2

3. Overall Approach

To evaluate the whole approach (i.e., two-stage classifier), another round

of cross-validation was done as follows. The dataset was split into 5 folds

(p1, p2, p3, p4 and p5). Next:

(a) We used 4 folds, say “p1 + p2 + p3 + p4” to train C1 (normal/subclinical

keratoconus VS keratoconus) using the best model with the best hy-

perparameters identified from training on the whole dataset.

(b) We used the same 4 folds, again say “p1 + p2 + p3 + p4”, to train

C2 (normal VS subclinical keratoconus).

(c) We used the remaining fold, i.e., p5, to evaluate the two-stage classi-

fier by passing each example in p5 through first C1 and if it predicts

normal/subclinical keratoconus, we pass it to C2.

(d) We repeated the previous 4 steps 5 times using different folds for train-

ing and testing. Figure 4.4 is an overview of the whole process

The 5-fold cross-validation results and the confusion matrix of the overall

approach are shown in table 4.25as and table 4.26respectively.
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Figure 4.4: Two Stages Classification SUSKC+KC VS Normal
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AdaBoost Precision Recall F1-Score Accuracy

Weighted Average 0.92 0.91 0.91 0.910

Table 4.25: PCBI- Second two-stage classifier cross validation result

Predicted

Normal SUSKC KC

A
ct

u
a
l Normal 90 8 0

SUSKC 3 44 2

KC 0 5 50

Table 4.26: PCBI- Second two-stage classifier confusion matrix

We found that combining keratoconus with subclinical keratoconus in one

class then classify them vs normal cases in C1 to finally make C2 classify

keratoconus vs subclinical keratoconus preformed better than combining

normal with subclinical keratoconus vs keratoconus in C1, also the confu-

sion matrix shows less misclassified normal cases as subclinical keratoconus,

more correctly classified subclinical keratoconus cases and when looking at

keratoconus cases this approach misclassified more keratoconus cases as

subclinical keratoconus.

4.2.3 Summary of Results and Error Analysis

Model performance using the 12-parameter set

Figure 4.5 and figure 4.6 shows the performance of each of the four machine learn-
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ing methods for the set of 12 variables for each of the two and three-way classifiers

respectively. Random forest performed best for when looking at normal compared

to keratoconus with very good sensitivity (0.952), specificity (0.908), and over-

all accuracy (0.931%). While the other models’ performances were inferior to

random forest, they were still good, with overall accuracies between 0.812% for

adaboost to 0.921% for support vector machine. However, when looking at nor-

mal vs subclinical keratoconus vs keratoconus, support vector machine performs

best with overall accuracy of 0.886%, sensitivity of 0.926, and specificity of 0.929.

While random forest and logistic regression perform well (accuracies of 0.876%

and 0.866%, respectively), Adaboost performs poorly (accuracy = 0.693%).

Selecting the parameter combinations with the best performance

We confirmed that adaboost performs poorly compared to the other models when

using all 12 variables, and thus focused on the three others. When running

the same analysis on all biomechanical parameters but without including the

(Pentacam Post 2mm), the highest accuracies of random forest in the two-way

classifier and SVM in the three-way classifier both drop (0.931 to 0.896, and

0.886 to 0.827, respectively). In fact, when removing one feature at a time from

the 12-variable model for each machine learning method, the biggest drop in

accuracy happens when the (Pentacam Post 2mm) is excluded. We therefore

tested all possible parameter combinations using the three methods, while keeping

(Pentacam Post 2mm) present in all permutations.

1. Three-way classifier:

For the three-way classifier, the following models had the best performances

(a) The highest accuracy was obtained with logistic regression (0.896),
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followed by support vector machine (0.891), both using the same min-

imal parameter set of Pentacam Post 2mm, Corvis SPA1, DA Ratio

Max (1mm), ART Min, ART Max, and ARTH.

(b) The highest sensitivity was obtained with both support vector ma-

chine and logistic regression (0.929) using the same combination of

parameters as 1.a.

(c) The highest specificity was obtained with support vector machine

(0.939) using the same minimal combination of parameters as 1.a.

2. Two-way Classifier: For the two-way classifier, the following models had

the best performances

(a) The highest accuracy was obtained with random forest (0.931) using

the minimal parameter set of Pentacam Post 2mm, Corvis SPA1, DA

Ratio Max (1mm), ART Min, ART Max, and ARTH, as well as with

the 12-variable parameter set.

(b) The highest sensitivity was obtained with random forest (0.952) using

all 12 variables, as well as a minimal parameter set of Pentacam Post

2mm, Corvis SPA1, DA Ratio Max (1mm), ART Min, and ART Max.

(c) The highest specificity was obtained with SVM (0.959) using the same

minimal combination of parameters as 2.a.

Confusion Matrices

From the previous steps, we decided that for the three-way classifier, support vec-

tor machine with the minimal parameter set (Pentacam Post 2mm, Corvis SPA1,

DA Ratio Max (1mm), ART Min, ART Max, and ARTH) provides the best bal-
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Figure 4.5: PCBI: All Two-Way Classifiers

ance of accuracy (0.891), sensitivity (0.917), and particularly specificity (0.936),

in discriminating between normal, subclinical keratoconus and keratoconus eyes.

Similarly, for the two-way classifier where the main purpose is discriminating be-

tween normal and abnormal corneas – and so ruling out an ecstatic process —

random forest with all 12 parameters provides the highest sensitivity and accu-

racy (0.952 and 0.931, respectively), and acceptable specificity (0.908).

Looking at the confusion matrix of the two-way random forest model in table 4.27,

14/202 cases (6.93%) were misclassified. 9 of these cases were normal corneas

misclassified as keratoconus or subclinical keratoconus, and 5 were (subclinical

keratoconus/keratoconus) corneas misclassified as normal. Looking closer at the

latter group, we notice that all cases were subclinical keratoconus eyes, and no

eye with overt keratoconus was misclassified as normal.
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Figure 4.6: PCBI: All Three-Way Classifiers

Predicted

Normal SUSKC+KC

A
ct

u
a
l

Norma 89 9

SUSKC+KC 5 99

Table 4.27: PCBI- 2-Way Random Forest using 12 variables Confusion Matrix

For the three-way classifier using the minimal parameter set and SVM method,

22/202 cases (10.89%) were misclassified (Table 4.28). Most of the incorrect

classifications were in misclassifying the SUSKC eyes as either normal (8) or

keratoconus (3). No normal eyes were misclassified as keratoconus, and conversely

no eye with keratoconus was classified as normal.
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Predicted

Normal SUSKC KC

A
ct

u
a
l Normal 92 6 0

SUSKC 8 38 3

KC 0 5 50

Table 4.28: PCBI- 3-Way SVM using 6 variables Confusion Matrix

4.3 STPI Dataset Models

In this section, we trained various classifiers using the STPI dataset. As men-

tioned in chapter 3, this dataset consists of records belong sign to three different

classes, namely: normal which is denoted by 0 and represent the healthy patients,

keratoconus which is class 3 and represents the patients will full keratoconus and

subclinical keratoconus which represents the patients with no clear determination

if the eye would develop keratoconus after doing refractive eyes surgeries or not

and this class will be denoted by class 2.

4.3.1 Data Cleaning and Analysis

Before we set out to train the different classifiers using the STPI dataset, we

first performed data exploration and analysis, there were no missing values in the

columns we did not have to perform any data augmentation processes

Figure 4.7 shows us the distribution of the records in the dataset over the

three different classes and as can be seen from the figure, the dataset is relatively

imbalanced with the majority of the records belonging to the normal class.
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Figure 4.7: STPI Classes Distribution

4.3.2 Classifiers

We used the STPI to build various classifiers, the first was a 2-way classifier

that classifies a patient record into either normal class or keratoconus class, The

second was a 3-way classifier to classify between our 3 different classes. The

third was another 2-way classifier but this was to classify if a patient is normal

or (subclinical keratoconus/keratoconus) after combining the last two classes in

one. Our fourth classifier was a 2-way classifier to classify between normal and

subclinical keratoconus cases. We also performed a two-stage classification as we

did in PCBI dataset.

2-Way Classifier: Normal VS Keratoconus

The first classifier was trained to classify between normal and keratoconus cases,

we had a total of 230 patients divided into 133 labeled normal and 97 labeled ker-

atoconus . After shuffling the data and normalizing the columns using standard
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scaler we trained our four machine learning models using 5-fold cross validation

and Grid Search was used to tune the different hyperparameters for each single

model.

For each model we reported the weighted average precision, weighted average

recall, weighted average F1-score and the accuracy. Table 4.29 shows the cross-

validation result using the four models:

Model Precision Recall F1-Score Accuracy

Logistic Regression 1.0 1.0 1.0 1.0

SVM 1.0 1.0 1.0 1.0

Random Forest 0.99 0.99 0.99 0.991

AdaBoost 0.99 0.99 0.99 0.991

Table 4.29: Performance of 2-way classifier: Normal VS Keratoconus

Logistic regression and support vector machine predicted both classes cor-

rectly and misclassified none, table 4.30 shows the confusion matrix of them.

Predicted

Normal KC

A
ct

u
a
l

Norma 133 0

KC 0 97

Table 4.30: SVM/Logistic Regression Confusion Matrix

Despite the fact that random forest and adaboost performed 0.991% accuracy,

but they both misclassified 2 KC cases as normal which is what the medical team
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is trying to minimize. Table 4.31 shows their confusion matrix.

Predicted

Normal KC

A
ct

u
a
l

Norma 133 0

KC 2 95

Table 4.31: AdaBoost/Random Forest Confusion Matrix

3-Way Classifier: Normal VS Keratoconus VS Subclinical Keratoconus

Our 3-way classifier was to distinguish between the 3 classes we have, and in

total we had 277 patients to run our experiment on. Again we trained our four

machine learning models using 5-fold cross validation and Grid Search was used

to tune the different hyper parameters for each single model.

Table 4.32 shows the cross validation result for our different models.

Model Precision Recall F1-Score Accuracy

Random Forest 0.86 0.87 0.86 0.866

SVM 0.85 0.85 0.85 0.862

AdaBoost 0.83 0.85 0.83 0.851

Logistic Regression 0.83 0.85 0.83 0.848

Table 4.32: Performance of 3-way classifier: Normal VS Keratoconus VS

Subclinical Keratoconus

Random forest performed the best with 0.866% accuracy, more details on its

classification process can be found in the confusion matrix in table 4.33
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Predicted

Normal SUSKC KC

A
ct

u
a
l Normal 128 5 0

SUSKC 22 23 2

KC 0 8 89

Table 4.33: STPI- Random Forest Confusion Matrix

2-Way Classifier: Normal VS (Keratoconus/Subclinical Keratoconus)

In this section we combined subclinical keratoconus cases (47) with keratoconus

cases (97) in one class and train our four models on a 2-way classifier to classify

between the combined class and normal class. Table 4.34 shows that random

forest performed the best based on the cross validation results for the four models,

thus its confusion matrix can be found in table 4.35.

Model Precision Recall F1-Score Accuracy

Random Forest 0.92 0.91 0.91 0.906

Logistic Regression 0.92 0.91 0.92 0.906

SVM 0.92 0.90 0.90 0.898

AdaBoost 0.89 0.89 0.89 0.888

Table 4.34: Performance of 2-way classifier: Normal VS

Keratoconus/Subclinical Keratoconus
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Predicted

Normal SUSKC+KC

A
ct

u
a
l

Norma 131 2

SUSKC+KC 24 120

Table 4.35: STPI- Random Forest Confusion Matrix

2-Way Classifier: Normal VS Subclinical Keratoconus

In this section we excluded keratoconus cases from our study and kept normal

(133) and subclinical (47) cases, then we train our models using cross validation

to classify between the two classes we have. Table 4.36 shows that random forest

and support vector machine performed the best based on the cross validation

results for the four models, thus their confusion matrices can be found in table

4.37 and table 4.38 respectively.

Model Precision Recall F1-Score Accuracy

Random Forest 0.87 0.87 0.85 0.866

SVM 0.87 0.87 0.85 0.866

Logistic Regression 0.85 0.84 0.82 0.844

AdaBoost 0.85 0.84 0.82 0.844

Table 4.36: Performance of 2-way classifier: Normal VS Subclinical Keratoconus
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Predicted

Normal SUSKC

A
ct

u
a
l

Norma 131 2

SUSKC 22 25

Table 4.37: STPI- Random Forest Confusion Matrix

Predicted

Normal SUSKC

A
ct

u
a
l

Norma 132 1

SUSKC 23 24

Table 4.38: STPI- SVM Confusion Matrix

Tow Stages Classification

Since the 2-way classifier performed better than the 3-way classifier we decided

to map our three classes into two 2-way classifiers and for that we tested two

classifiers:

First two-stage classifier: Normal/Subclinical keratoconus vs Kerato-

conus

Our first binary classifier in the first two-stage classifier was trained using the

whole dataset (merging normal and subclinical keratoconus cases into one class)and

the second was trained on the subset of the dataset that contains only normal

and subclinical keratoconus cases.

1. C1: (Normal/Subclinical Keratoconus) VS Keratoconus
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To train this classifier, we merged the normal cases (133) and the subclinical

keratoconus cases (47) and ended up with 180 cases as (normal/subclinical

keratoconus). On the other hand, we had 97 keratoconus cases. The clas-

sifier was trained using 5-fold cross validation with StandardScaler normal-

ization, and four different models were explored. Grid search was used to

train the hyperparameters of all models. Table 4.40 shows the 5fold cross-

validation results for the four different models we explored. As can be seen

from the table, support vector machine, logistic regression and random for-

est results were the best, but random forest misclassified 4 keratoconus

cases as (normal/subclinical keratoconus) while the others misclassified 6.

Table 4.40 shows the confusion matrix of random forest.

Model Precision Recall F1-Score Accuracy

Random Forest 0.96 0.96 0.96 0.963

SVM 0.96 0.96 0.96 0.963

Logistic Regression 0.96 0.96 0.96 0.963

AdaBoost 0.95 0.95 0.95 0.945

Table 4.39: STPI- First two-stage classifier cross validation result for C1

Predicted

Normal+SUSKC SUSKC

A
ct

u
a
l

Normal+SUSKC 174 6

SUSKC 4 93

Table 4.40: STPI- First two-stage classifier confusion matrix for C1
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2. C2: Normal vs Subclinical Keratoconus

We used the 180 cases that are labeled as either normal or subclinical

keratoconus to train this classifier. Again, the classifier was trained using

5-fold cross validation with StandardScaler normalization and four different

models were explored. Grid search was used to train the hyperparameters

of all models. Table 4.41 shows the 5-fold cross-validation results for the

four different models we explored. Support vector machine had the best

performance and table 4.42 shows its confusion matrix.

Model Precision Recall F1-Score Accuracy

SVM 0.88 0.87 0.85 0.866

Random Forest 0.85 0.85 0.83 0.850

Logistic Regression 0.85 0.84 0.82 0.844

AdaBoost 0.84 0.84 0.82 0.838

Table 4.41: STPI- First two-stage classifier cross validation result for C2

Predicted

Normal SUSKC

A
ct

u
a
l

Normal 132 1

SUSKC 23 24

Table 4.42: STPI- First two-stage classifier confusion matrix for C1

3. Overall Approach

To evaluate the whole approach (i.e., two-stage classifier), another round of
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cross-validation was done manually as discussed and shown in figure 4.3,

the 5-fold cross-validation results and the confusion matrix of the overall

approach are shown in table 4.43as and table 4.44 respectively.

RF/SVM Precision Recall F1-Score Accuracy

Weighted Average 0.84 0.85 0.84 0.851

Table 4.43: STPI- First two-stage classifier cross validation result

Predicted

Normal SUSKC KC

A
ct

u
a
l Normal 125 8 0

SUSKC 23 18 6

KC 1 3 93

Table 4.44: STPI- First two-stage classifier confusion matrix

Second two-stage classifier: Keratoconus/Subclinical Keratoconus

vs Normal

Our first binary classifier in the second two-stage classifier was trained using the

whole dataset (merging keratoconus and subclinical keratoconus cases into one

class) and the second was trained on the subset of the dataset that contains only

keratoconus and subclinical keratoconus cases.

1. C1: (Keratoconus/Subclinical Keratoconus) VS Normal

To train this classifier, we merged the keratoconus cases (97) and the sub-
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clinical keratoconus cases (47) and ended up with 144 cases as (kerato-

conus/subclinical keratoconus). On the other hand, we had 133 normal

cases. The classifier was trained using 5-fold cross validation with Stan-

dardScaler normalization, and four different models were explored. Grid

search was used to train the hyperparameters of all models. Table 4.45

shows the 5-fold cross-validation results for the four different models we

explored. As can be seen from the table, random forest had the best per-

formance and its confusion matrix is reported in table 4.46.

Model Precision Recall F1-Score Accuracy

Random Forest 0.92 0.91 0.91 0.909

Logistic Regression 0.92 0.90 0.90 0.898

SVM 0.91 0.89 0.89 0.891

AdaBoost 0.90 0.88 0.88 0.880

Table 4.45: STPI- Second two-stage classifier cross validation result for C1

Predicted

Normal SUSKC+KC

A
ct

u
a
l

Normal 132 1

SUSKC+KC 23 121

Table 4.46: STPI- Second two-stage classifier confusion matrix for C1

2. C2: Keratoconus vs Subclinical Keratoconus

We used the 144 cases that are labeled as either KC or Suspect to train
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this classifier. Again, the classifier was trained using 5-fold cross validation

with StandardScaler normalization and four different models were explored.

Grid search was used to train the hyperparameters of all models. Table 4.47

shows the 5-fold cross-validation results for the four different models we

explored. Random Forest had the best performance and made less number

of misclassifying KC cases as suspect cases, its confusion matrix is reported

in table 4.48.

Model Precision Recall F1-Score Accuracy

Random Forest 0.94 0.93 0.93 0.930

SVM 0.94 0.94 0.94 0.937

Logistic Regression 0.94 0.93 0.93 0.930

AdaBoost 0.92 0.92 0.91 0.916

Table 4.47: STPI- Second two-stage classifier cross validation result for C2

Predicted

KC SUSKC

A
ct

u
a
l

KC 90 7

SUSKC 2 45

Table 4.48: STPI- Second two-stage classifier confusion matrix for C1

3. Overall Approach

To evaluate the whole approach (i.e., two-stage classifier), another round of

cross-validation was done manually as discussed and shown in figure 4.4,
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the 5-fold cross-validation results and the confusion matrix of the overall

approach are shown in table 4.49as and table 4.50 respectively.

RF Precision Recall F1-Score Accuracy

Weighted Average 0.82 0.81 0.81 0.812

Table 4.49: STPI- Second two-stage classifier cross validation result

Predicted

Normal SUSKC KC

A
ct

u
a
l Normal 129 4 0

SUSKC 24 20 3

KC 1 20 76

Table 4.50: STPI- Second two-stage classifier confusion matrix

By comparing the overall confusion matrices for both experiments, we found out

that combining normal and subclinical keratoconus cases together and classify

them vs keratoconus gave us better results than combining subclinical kerato-

conus with fully keratoconus eyes.

4.3.3 Results

Model performance as 2-Way Classifier

Table 4.29 shows the performance of each model of the four machine learning

methods in classifying between normal and keratoconus cases. Logistic regres-

sion and support vector machine performed the best and got an accuracy of 1.0
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followed by random forest and adaboost with 0.991 accuracy. However, when

looking at normal vs subclinical keratoconus, random forest and support vector

machine performed the best with overall accuracy of 0.87 while logistic regression

and adaboost got an accuracy of 0.85. See table 4.36

Also, after we combined subclinical keratoconus and keratoconus together in one

class and classified them vs normal cases. Table 4.34 shows that random forest

and logistic regression performed the best with 0.906 as overall accuracy, followed

by support vector machine and adaboost with 0.898 and 0.888 respectively.

Model performance as 3-Way Classifier

As for the 3-way classifier and classifying normal vs KC vs SUSKC. Using the

two-stages classification process where the first classifier is (subclinical kerato-

conus/keratoconus) vs normal and the second one is subclinical keratoconus vs

keratoconus performed poorly with 0.812 accuracy, on the other hand having

(normal/subclinical keratoconus) vs keratoconus as a first classifier then normal

vs subclinical keratoconus as the second one did better performance with an over-

all accuracy of 0.851. While the best performance was done by classifying the

3 classes at one stage using random forest with overall accuracy of 0.866, 0.86

precision, 0.87 recall and 0.86 f1-score. See table 4.32.
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Chapter 5

Conclusion

In this thesis, we have explored the feasibility of different machine learning al-

gorithms in detecting two-phases keratoconus (subclinical and full keratoconus)

from control eyes based on combined features from tomographic and biomechani-

cal eyes imaging systems, the dataset was collected from the American University

of Beirut Medical Center (AUBMC) and labeled by medical experts. Due to our

limited data size and to avoid overfitting we applied 5-fold cross validation to

train various machine learning models named(random forest, logistic regression,

support vector machine and adaboost), we also performed feature-selection ex-

periments to identify the most influential features in detecting keratoconus.

Since we had 3 different classes (normal, keratoconus and subclnical keratoconus),

using the machine learning models above we trained different classifiers summa-

rized as; 3-way classifier to distinguish between the 3 classes, 2-way classifiers that

looked at the different combination of our classes (normal vs keratoconus, nor-

mal vs subclinical keratoconus, keratoconus/subclinical keratoconus vs normal,

normal/subclinical keratoconus vs keratoconus), and finally two-stage classifiers
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that first use the 2-way classifiers to distinguish between the combined class and

the other, and then use another binary 2-way classifier to distinguish between the

combined classes. As a result using the trained classifiers with different features

combination, the confusion matrix of logistic regression when looking at nor-

mal vs keratoconus using STPI dataset shows that this classifier has predicted

the keratoconus cornea with an excellent accuracy of 100%. As for the PCBI

dataset, support vector machine was able to classify 89% of normal, subclinical

keratoconus and keratoconus cases correctly giving the fact that our 3 classes are

imbalanced and all the confusion happened when looking at subclinical kerato-

conus which mimics clinical reality.

In comparison with other machine learning algorithms and approaches that

exist in specialized literature, the novelty factor of the tested algorithm is con-

sisted by combining eyes features from different devices which is huge due to its

possible contribution in detection an early keratoconus, thus saving lives. This

work can be extended to include different advanced machine learning techniques

such as boosting, as well as combining the two dataset from (Pentacam, Corvis

and Galilli) together, increasing the dataset size specially the abnormal eyes

would increase the performance. It also can be compared with other benchmark

algorithms to reflect the performance gains achieved for each algorithm.
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Appendix A

PCBI: Winning Models Tuned Parameters

The final results in PCBI section showed us that support vector machine using

6 variables performed the best as a 3-way classifier, table 5.1 shows the optimal

parameters of this model using GridSearch. As for the 2-way classifier, random

forest won using 12 variables and again table 5.2 shows its tuned parameters.

Model SVM

C 10

Class-Weight balanced

Gamma 0.1

Kernel rbf

Table 5.1: PCBI- SVM Hyper Parameters Normal VS SUSKC VS KC
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Model Random Forest

Bootstrap True

Class-Weight balanced

criterion gini

max depth 5

max features log2

n estimators 100

Table 5.2: PCBI- Random Forest Hyper Parameters Normal VS (KC+SUSKC)

STPI: Winning Models Tuned Parameters

The final results in STPI section showed us that logistic regression performed the

best as a 2-way classifier (keratoconus vs normal) and table 5.3 shows the optimal

parameters of this model using GridSearch. And when looking at (subclinical

keratoconus vs normal) we found out that support vector machine won, table 5.4

shows its optimal parameters. While the best 3-way classifier was random forest

and its parameters reported in table 5.5
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Model Logistic Regression

C 0.001

Class-Weight balanced

Penalty None

Solver Newton-cg

Table 5.3: STPI- Logistic Regression Hyper Parameters Normal VS

Keratoconus

Model SVM

C 10

Class-Weight balanced

Gamma 1

Kernel poly

Table 5.4: STPI- Support Vector Machine Hyper Parameters Normal VS

Subclinical Keratoconus
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Model Random Forest

Bootstrap False

Class-Weight balanced

criterion entropy

max depth 2

max features sqrt

n estimators 100

Table 5.5: STPI- Random Forest Hyper Parameters Normal VS Subclinical

Keratoconus VS Keratoconus

61



Abbreviations

KC Keratoconus

SUSKC Subclinical Keratoconus

AUBMC American Universirt of Beirut Medical Center

RF Random Forest

SVM Support Vector Machine

PCBI Posterior Curvature Biomechanical Index

LASIK Laser-Assisted In Situ Keratomileusis

PRK Photo-Refractive Keratectomy

SMILE Small Incision Lenticule Extraction
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