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ABSTRACT 

OF THE THESIS OF 

 

 

 

Lara Nabil El Hajjar  for  Master of Engineering Management 

      Major: Engineering Management  

 

 

Title: Continuous Review Inventory Model with Buffer Stock and Rush Orders 

 

 

The continuous review model is a widely used inventory management system in supply 

chains. It helps retailers and managers decide on the optimal quantity to order from the 

supplier(s), and the timing of the order. However, sometimes stock-outs occur and lead 

to loss of customer demand, which causes considerable financial losses. Ways to reduce 

shortages is to have a reserve stock or to utilize rush orders. 

In our research, we extend the traditional continuous review system to account for an 

additional buffer stock, at an external location, that aims to reduce shortages. This first 

model works on obtaining the optimal buffer stock level, in addition to the reordering 

point and the order size, in order to minimize losses and reduce the total cost. We also 

develop another model that relies mainly on the use of rush orders to reduce shortages 

whenever the regular inventory is depleted. The extended models are effective in 

determining the optimal policy for inventory management, and they both present a 

promising decrease in total cost compared to the classical model. 

 

Keywords: Inventory management; Continuous review model; Shortages; Buffer stock; 

Rush orders   
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CHAPTER I 

INTRODUCTION AND MOTIVATION 
  

In this chapter, we introduce our problem statement and present some 

motivations. In Section 1.1, we discuss the importance of inventory management and 

reserve stocks, and present the main characteristics of the continuous review inventory 

model. In Section 1.2, we explain the main purpose of our research, and the study of the 

new extended models.  

 

1.1 Introduction 

Inventory management is the process of ordering, receiving and storing the 

physical products a company uses, and it applies to all types of industries. An effective 

management for the inventory allows the firm to maintain a satisfactory service for its 

customers and meet their demands, while a poor management can lead to loss of 

demand due to shortages, or to inventory damage and piling-up, which incurs 

significant costs. 

 

1.1.1. Importance of Inventory Management  

The importance of inventory management is usually most noticeable in 

manufacturing companies In 2007, 29% of the total investment in inventories in the 

United States was dedicated to manufacturing, with a value of $454.9 billion (Nahmias 

& Olsen, 2015, p.200).  However, inventory management is not restricted to 

manufacturing companies only, but it also extends to services companies that usually 

have a faster production process and smaller order quantities. Dadic, Ribaric & Vlahov 
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(2020) conducted a study on bars and restaurants to understand how their employees 

and managers perceive the importance of inventory management. They found that most 

employees in these organizations are aware that the continuous and timely inventory 

monitoring has a great effect on the efficiency of the production and service processes, 

especially that these companies have a quick turnover for stock and lots of their 

products need careful management to avoid perishability.  

 

1.1.2. Role of Reserve Stocks   

Reserve stocks are one of the most adapted strategies used to mitigate the risk of 

supply stock-outs, which can occur due to internal (demand fluctuation, production 

interruption) or external (civil unrest, wars, natural catastrophes) reasons, and can 

sometimes lead to huge financial losses for the company. Reserve stocks are being used 

in many fields other than manufacturing and retail, including the oil industry, in 

response to the frequent oil price fluctuations (Xie, Yan, Zhou & Huang, 2017) and 

national security areas, such as the management of pharmaceuticals used for emergency 

preparedness to set up the Strategic National Stockpile (SNS) (Lee, Mu, Shen & 

Dessouky, 2014). 

Some of the examples we can look at to show how reserve stocks could have 

helped in avoiding large stock-outs and supply chain crises include: 

 The infamous toilet paper crisis that happened in the US with the beginning of 

the Covid19 pandemic in 2020, when a huge demand surge occurred due to 

people panicking and rushing to buy toilet papers prior to the lockdown. Reserve 

stocks and inventories were all depleted, and toilet paper was missing in more of 
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70% of all supermarkets across the US in few days only. The pandemic was 

believed to expose US supply chain flaws, especially the low inventory levels.  

 With the pandemic lockdowns, people tended to rely more on home electronics 

which created an unusual demand that chip maker producing companies could 

not meet, and caused severe slowing down for the production of cars, 

smartphones and other sectors.  

 With the launch of its twin-engined 787 in 2007, Boeing intended to set 

unprecedented production times, but the mission failed dramatically within few 

months only. Many factors caused this failure, but the main issue was in their 

supply chain and inventories, especially when they ran out of fasteners.  

 Due to the pandemic and the lockdowns, Amazon was hit by a surge of online 

orders, and shopping from home hit an unusual record. However, the 

international and local lockdowns made it hard for Amazon to source products 

for its warehouses, causing large inventory stock-outs and delivery delays for 

customers. 

 

1.1.3. Continuous Review Inventory Model 

The continuous review inventory is a system where the inventory level is 

checked continuously, i.e. each time a product moves in or out of the system. Whenever 

the inventory level drops below a specified value called the reordering point, an order of 

a constant size (same number of units) is triggered for more stock. The order frequency 

is variable in this system, unlike the periodic review system where orders of different 

sizes are initiated at the same time in each cycle or period.    
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1.2 Motivation  

In our research, we work on examining whether adding an additional buffer 

stock to an inventory management system helps in reducing the total cost. We seek to 

determine the optimal buffer stock level that balances the holding and shortage costs. 

We also investigate the inclusion of the concept of rush orders for limitation of 

shortages and how this affects the total cost. We base our work on the continuous 

review inventory system that is characterized by a continuous check for the inventory 

level in an uncertain demand environment. We extend it first to include an external 

buffer stock held at a different location that gets tapped into when the “regular” stock at 

the primary location is depleted, and then to include a policy of rush orders that are 

assumed to be zero lead-time orders also initiated when the regular inventory is 

completely used up. 

The remainder of this thesis is organized as follows. In Chapter 2, we present a 

brief review of the related literature. In Chapter 3, we present the assumptions and the 

models including the classical model and the two extended ones. In Chapter 4, we 

present the numerical analysis for the models including finding the optimal solutions, 

performing a sensitivity analysis on the cost parameters, and comparing the costs of the 

models for different parameter values. In Chapter 5, we analytically approximate a way 

to find the optimal solution. Finally, in Chapter 6, we present a brief conclusion and 

some recommendations for future work. 
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CHAPTER II 

LITERATURE REVIEW 
 

Our literature review is divided into three related sections, reserve stocks in 

Section 2.1, rush orders in Section 2.2, and continuous review model extensions in 

Section 2.3. 

 

2.1 Reserve Stocks  

Having a reserve or safety stock means having an additional amount of product 

in inventory, and it aims to reduce the risk of shortage of this specific item. It is 

considered as a buffer stock that is used up when actual demand is greater than the 

planned or forecasted, or when there is a given disruption at the supplier.   

Bhonsle, Rossetti & Robinson (2005) argue that setting the same level of safety 

stock for all items in inventory is cost inefficient, and that these levels should be 

determined by the degree of uncertainty or risk related to each item in terms of demand 

and sourcing, which reduces inventory holding costs. By experimental analysis, they 

found a 28.9% reduction in cost for a 95% service level, and an 8.8% reduction for a 

service level of 90%.  This shows how the appropriate management of reserve stocks 

reduces costs considerably.    

 A good customer service and efficient operations in a company require a well-

structured and coordinated supply chain. Graves & Willems (2000) develop an 

optimization algorithm to find the optimal position of “strategic” safety stock for a 

supply chain that is subject to demand uncertainty. The developed model aims to reduce 
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inventory and increase the service performance, and finds the service times that are 

optimal for minimizing the holding costs for the safety stock. 

Mekel, Anantadjaya & Lahindah (2014) conduct an empirical study to forecast 

the demand and determine the reordering point and the needed safety stock level for a 

pharmaceutical company in Indonesia by forecasting demand using double exponential 

smoothing. They check the error in forecasting demand to deduce if the company will 

face stock-outs or excessive settled inventory.  

An important factor to consider while stocking for reserve is deterioration of 

inventory. Maddah, Yassine, Salameh & Chatila (2013) develop optimal stocking 

policies for exponentially deteriorating reserve stocks. The presented policies aim to 

balance the traditional costs with the additional costs of deterioration.  They also 

propose a preventive replenishment policy with periodical orders, to keep the stock at a 

specified base level. The numerical analysis conducted shows an improvement of about 

40% in offsetting additional costs.  

Managing perishable items is also of great importance for humanitarian work. 

Logistic managers face a great challenge in the donations of perishable goods, including 

medicine and food, since distributing deteriorated items imposes a health danger to the 

population, and their disposal policies imply huge costs for the organizations (Ferreira, 

Arruda & Marujo, 2018). Ferreira et. al (2018) attempt to minimize the expected 

inventory cost, while avoiding shortage and deterioration of supplies as much as 

possible. They use a Markov Decision Process, considering both the demand and the 

supply as stochastic variables, with deterministic deterioration rates. They find that 

keeping rapidly perishable items in stock increases the need for disposal that is difficult 

and costly.  
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The above papers link the reserve stock to the regular safety stock, which differs 

from the buffer stock we are considering in our study. Safety stocks are usually 

maintained to mitigate the risk of disruptions or delays in delivery of raw materials from 

the supplier and can also hold finished goods, while buffer stocks act as a buffer 

between the actual and the forecasted demands, and is used up in lead-times between 

the placement and the receipt of the replenishment order.    

 

2.2 Rush Orders 

The mechanism of our secondary reserve stock system resembles that of rush 

orders which are placed when stock level is not enough to meet demand. As such, we 

review works on rush orders next.  Rush orders are orders requested by customers to be 

supplied and delivered very quickly. These orders can be thought of as exceptional 

cases or some type of disturbance that affects the performance of a structured supply 

chain. However, rush orders including special demands for customers, replacement 

orders or prototypes, have become nowadays a regular component in the daily business 

of most companies.  

Engelseth & White (2020) study the perception of rush orders from both the 

suppliers and customers’ sides. The suppliers consider rush orders as a service provided 

to customers, having only a conception about the supply timing. Customers or dealers 

usually understand the complexity of rush orders but believe that it is impossible to plan 

or predict them.  

Mahfouz & Arisha (2010) develop models to assess the influence of rush orders 

on cycle time and cost. They observe a negative impact results from the high priority 

given for rush orders which cause longer waiting times, frequent process interruptions 
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and resources unavailability for regular orders. In order to mitigate this risk, they 

suggest applying a separate route at design, planning, engineering, production, 

purchasing and distribution centers.  

Trzyna, Kuyumcy & Lodding (2012) present three main factors that affect rush 

orders’ throughput times. First, having a high system utilization causes a deceleration in 

rush orders. Second, having a higher number of parallel machines shortens the waiting 

time for a rush order. The last and most influential factor is the work content of the 

standard orders; higher work contents and standard deviations of standard orders lead to 

longer interoperation times for the rush orders. 

For a periodic review assemble-to-order system, with multiple components and 

multiple finished goods, Benbitour, Sahin & Dallery (2018) develop approximate 

expressions for determining the optimal safety stock for components, while minimizing 

the sum of holding and rush order costs. Orders for components are delivered in 

multiple shipments, and rush orders are offered at a higher cost when there is a 

possibility of shortage. Benbitour et al. (2018) study single shipments, and then 

generalize to multiple shipments. They assume that during the review time, there is only 

one possible rush order. For the multiple shipments case, they add a second assumption 

that a rush order will be more probably requested after receiving the last shipment in the 

order. The performance of the developed expressions is tested by a discrete event 

simulation. The developed model leads to a cost reduction of up to 66% due to the 

trade-off between holding and rush order costs. 

Axsäter (2005) studies a continuous review inventory system with rush orders. 

He develops a heuristic decision assuming a single opportunity for a rush order He also 

assumes that a rush and normal order cannot be triggered at the same time. An 
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emergency order is initiated when there are expected savings, i.e. when the difference 

between the expected cost of normal (Q, R) policy and with emergency ordering is 

significant.  

 

2.3 Continuous Review Model: Applications and Extensions  

The continuous review model is a well-known inventory management model, 

and it is applicable in many fields and industries.   It has been subject to many 

extensions in the literature. 

One of these aspects that are commonly considered in inventory management is 

perishability. Many researchers have applied this concept to the continuous review 

system. Chiu (1994) worked on determining the optimal (Q, r) policy while having a 

positive lead-time and perishable inventory. Furthermore, Lian & Liu (2000) proposed 

heuristics to derive optimal cost functions with positive lead times, derived from a 

generated Markovian process applicable in case of zero lead time. Similarly, Baron, 

Berman & Perry (2010) focus on perishable items that face spoilage due to disasters or 

to expirations. They develop heuristics to find the optimal solution and its cost, and are 

applicable in case of short lead times.    

Another important factor to consider nowadays in warehousing management is 

the space restriction in warehouses, due to the high cost of acquiring lands in most 

countries. Receiving an order with no sufficient space to hold it might cause additional 

costs as supplier penalty or material handling. Hariga (2010) notes that since the lead-

time demand is random, the amount of available space upon placing an order is usually 

unknown. He uses the continuous review model and adjusts it to develop a model that 

accounts for the space restriction. Other works on the continuous review model with 
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limited space include the optimization model formulated by Zhao, Fan & Liu (2006) for 

a multi-item (Q, R) system, and Gholami-Qadikolaei, Mirzazadeh & Kajizad (2011).    

Nevertheless, Moinzadeh & Nahmias (1988) extend the continuous review 

model to account for two supply options, with different reordering points (R1 > R2), 

order sizes (Q1 and Q2) and different lead times (T1 > T2). An order of size Q1 is placed 

when the inventory level reaches R1, and the same applies for Q2 and R2. However, the 

main assumption is that an order of Type 2 (emergency order) would not be triggered 

unless if it will arrive before the first order of Type 1. The procedure consists of first 

solving the simple probabilitized EOQ model to get a reordering value considered as R1 

and use it to find the value of R2, and finally get Q2 and Q1. They find that their 

proposed model is most beneficial in cost saving when there are large stock-outs. This 

suggests that considering emergency ordering is most economical when the cost of 

stock-out is considerably high compared to other cost parameters.  

Few authors study the effect of reducing the lead time in the continuous review 

inventory model.  Moon & Cha (2004) extend the basic continuous review model by 

setting a relation connecting the lead-time, the production rate and the lot size. An 

additional cost is added to the general total cost, and is induced by the difference in 

values of the regular production and the new desired production rate. In addition, 

Gerchak & Parlar (1990) apply a mean-preserving transformation to the traditional 

continuous review model, in order to reduce the lead-time variability and turn it into a 

decision variable. This reduction results also in a decrease in the variability of lead-time 

demand, which might help in reducing the safety stock levels. 

Finally, in their paper, Salameh, Abboud, El-Kassar & Ghattas (2003) examine a 

continuous review model under allowances for delays in payments. It means that either 
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the retailer can pay immediately for the order upon receiving it, or he/she can delay the 

payment until the receipt of the next order with an additional interest charge. They 

study the effect of credit facilities on the inventory policy.  Other works on the 

continuous review models with delay in payment include the model are developed by 

Mahata, Gupta & Mahata (2014) that also accounts for items perishability, and Wu 

(2001) who considers different demand distributions.  

In our research, we focus mainly in our first model on inspecting the effect of 

adding an external buffer stock on the continuous review model.  Such an extension 

does not seem to have been considered in the literature to our knowledge. 
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CHAPTER III 

MODELS AND ASSUMPTIONS 
 

In our study, we are considering the continuous review model. This model is 

characterized  by, as the name states, a continuous check (review) for the inventory 

level. A constant reordering point, R, is specified, and whenever the inventory level is 

found to drop below this value, an order of size y is placed. Since it is not expected for 

the order to be received instantly, it is important to study the inventory level and 

shortages (if they exist) during the lead-time T. Depending on the lead-time demand X, 

inventory can be totally or partially consumed. In order to avoid (as much as possible) 

the occurrence of a shortage during this time, a buffer stock B or a rush order policy will 

be available to meet the demand. 

In this chapter, we present first the basic classical continuous review model 

(without buffer stock nor rush orders) in Section 3.1, then we introduce the model with 

buffer stock first in Section 3.2, followed by the second model with rush orders, in 

Section 3.3. 

 

3.1 Classical Model 

In the classical model, we do not have an external buffer available, and we rely 

on the regular on-hand inventory only; therefore, the occurrence of a shortage depends 

on the size of the lead-time demand X. We assume that shortages are lost sales and 

cannot be backordered. When X is less than or equal to the available stock, i.e. the 

reordering point R, the inventory will be partially or fully depleted with no shortages. 

On the other hand, if X is greater than R, then the inventory will be completely 



 

 21 

consumed and shortages will occur before the arrival of the outstanding order. Note that 

we assume that shortages are lost sales and cannot be backordered.  

The following graph in Figure 1 shows the inventory profile of the classical 

model for the two mentioned cases:  

no shortages

shortages occur

X R

X R

 


 
 

 

 

 

 

 

 

 

 

 

 

 

 The total cost of the classical model is composed of the fixed ordering cost, the 

holding cost and the shortage cost, each of which will be separately explained in the 

following sub-sections. 

For every order we place in every cycle, there is a fixed ordering cost that we 

have to pay. The average fixed ordering cost per year is then the fixed cost per order K 

times the overall yearly number of orders, which is equal to the average demand per 

year D divided by the order size y. Hence, the annual fixed ordering cost is given by 

Figure 1: Inventory Profile for the Classical Model 
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In order to get the holding cost, we should first calculate the average inventory, 

which is the average of the end and beginning of cycle inventories.  

The end of cycle in-process inventory EIPI is what we have left at the end of 

each cycle before receiving a new order. EIPI is given by 

  XEIPI R E X R    
 

This means that what we have left in inventory at the end of each cycle is the 

stock quantity we had i.e. R from which we remove what we consumed during the lead-

time i.e. X, before receiving the outstanding order of size y.  

The beginning of cycle in-process inventory is what we have after receiving the 

order. It is obtained by adding the order size y to the end of cycle inventory and is given 

by 

  XBIPI y R E X y R      
 

The average on-hand inventory per cycle is then  

2 2

X X
X

R y R y
AI R

 


   
   

 

To calculate the annual inventory holding cost, we should multiply the average 

inventory by the unit holding cost h0 to get 

0 [ ]
2

y
h R E X
 

  
   

To calculate the shortage cost, we should first calculate the average number of 

units short per cycle S , which is related to the probability of having a lead-time demand 
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X greater than the reordering level R, which is why we should use f(x), the pdf of X. 

Hence S  is given by 

( ) ( )
R

S x R f x dx


   , 

The shortage cost per year is then S times the unit shortage cost p for the given 

number of cycles per year as follows 

( ) ( )
R

pD
x R f x dx

y



  

 

By adding the three costs above, we get the total expected cost per year. The 

total cost formula for the classical model is then 

0 0( , ) [ ] ( ) ( )
2 R

D y D
TCU y R K h R E X p x R f x dx

y y

 
      

 
  

If X is normally distributed with mean E[X] = X and standard deviation X, then 

it can be shown that 

 

 ( ) ( ) 1X X
X X

X XR

R R
x R f x dx R

 
   

 

      
        

    


          

where  (.) and  (.) are the pdf and cdf of the standard Normal distribution. 

This is useful in analyzing the total expected cost when the lead-time demand is 

normally distributed. 

 

3.2 Model with Buffer Stock 

It is true that by adding the buffer stock to the model, the holding cost of the on-

hand and the buffer inventory will be greater than that of the on-hand inventory alone, 

but on the other hand, the shortage cost (which is usually high) will be considerably less. 
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It is our aim to determine the optimal buffer stock level, in a way that balances the holding 

and shortage costs, and to integrate it into the optimal inventory policy.   

Depending on the size of the lead-time demand X, three scenarios exist: 

1. X < R 

2. R < X < R+B 

3. X > R+B 

The following graph in Figure 2 shows the inventory profile of the buffer model 

for the three cases mentioned above. 

 

 

 

 

 

 

 

 

 

 

 

As shown in the previous graph of Figure 2, in the first case, the on-hand 

inventory is not completely used, so the buffer stock remains intact. In the second and 

third cases, the lead-time demand X is greater than the reordering point R, so the buffer 

stock is used, partially in case 2 where R < X < R+B and fully in case 3 where X > R+B 

and that is the case where shortages occur.  

R 

B 

y 

T 

X 

X 

T 

y y 

T 

1
st
 case  2nd case  3rd case  

Figure 2: Buffer Model Cases 

Inventory 

Level 
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The graph in Figure 3 shows the buffer stock profile and how it acts in the three 

scenarios.  

   

 

 

 

 

 

 

 

To estimate the end of cycle buffer inventory, we have to estimate the drop in 

buffer in each case as follows: 

 If X < R, then there is no drop in buffer level.  

 If R < X < R+B, then the drop in buffer does not start at the beginning of the 

cycle, but it starts approximately 
R

D
 units of time after beginning of cycle.  

The average drop during remaining of cycle is 
2

X R
 over a period of 

R
T

D

 
 

 
 

units of time.  

Hence, the average drop in buffer per cycle in this case is 

  2

2

R X R
T

TD R X RD

y y
D

  
         

 

 

Figure 3: Buffer Inventory Profile 
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Since TD is approximately equal to X, the average drop in buffer per cycle is 

 
2

2

X R

y


 

 If X > R+B, the drop in buffer starts after 
R

D
 units of time from beginning of the 

cycle and lasts for 
R

T
D

 
 

 
 units of time.  

The average drop in buffer over the period 
R

T
D

 
 

 
 is  

-

2 2

R R B
B T T

B RD D
B T

D D

 
  

  
   

   

Therefore, the average drop in buffer level in this cycle is 

 2 22

2

B R
B T

B X B RD D

y y

D

 
        

  

The graph in Figure 4 shows the consumption of the buffer stock in the three 

cases. 

 

 

 

 

 

 

 

 

 Figure 4: Buffer Stock Consumption 
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The buffer level ABL, depending on the three cases, is 

 

 

2

                                       if 

                    if 
2

2 2
        if 

2

B X R

X R
ABL B R X R B

y

B X B R
B X R B

y


 

 

    

  
   


 

The average buffer inventory ABI is then  

 
 

2

0

(2 2 )
( ) ( ) ( )

2 2

R R B

R
R B

x R B x B R
ABI E ABL Bf x dx B f x dx B f x dx

y y






    
        

   
    

For simplification reasons, the average buffer inventory can be written as  

 

 

 

2

0

2

0

2

(2 2 )
( ) ( ) ( )

2 2

(2 2 )
( ) ( ) ( )

2 2

1
( ) (2 2 ) ( )

2 2

R R B

R
R B

R B

R
R B

R B

R
R B

x R B x B R
ABI Bf x dx B f x dx B f x dx

y y

x R B x B R
ABI Bf x dx f x dx f x dx

y y

B
ABI B x R f x dx x B R f x dx

y y







 








    
       

   

  
  

     

  

  

 

 

The average on-hand inventory is the same as in the classical model and the on-

hand inventory holding cost is  

 0
2

y
h R E X
 

  
 

 

The holding cost for the buffer inventory is equal to the average buffer inventory 

multiplied by the buffer inventory unit holding cost h1. Here, we should note that h1 is 

less than h0, the regular inventory unit holding cost, and this is because in our model, 

we consider that the buffer stock is held at an external location, that is most probably 

distant from the main warehouse, and has a cheaper rent than the latter.  
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The buffer inventory holding cost is then  

 
2

1

1
( ) (2 2 ) ( )

2 2

R B

R
R B

B
h B x R f x dx x B R f x dx

y y






 
     

 
   

The total holding cost for both the regular and stock inventories is now 

   
2

0 1

1
( ) (2 2 ) ( )

2 2 2

R B

R
R B

y B
h R E X h B x R f x dx x B R f x dx

y y






  
         

   
   

To order from the retailer, the fixed cost we have to pay for each order is the 

same as in the classical model. However, since the buffer stock is held at an external 

location, each time we want to use it, we have to transport or ship the stock to the main 

warehouse, and that incurs an additional cost, the fixed ordering cost from the buffer, 

which is equal to the fixed ordering cost per order times the probability of ordering 

from the buffer. Ordering from the buffer happens whenever the lead-time demand X is 

greater than the reordering point R, but not after we deplete the whole buffer (X > 

R+B). Therefore, the annual fixed ordering cost, from both the retailer and the buffer 

stock is 

1 ( )

R B

R

D
K K f x dx

y

 
 

 
  

Following a similar logic to the base model the shortage cost per cycle is 

[ ( )] ( )
R B

D
p x R B f x dx

y




   

 This means that shortages occur whenever the lead-time demand X is greater 

than the regular and buffer stocks combined.  

 



 

 29 

The buffer inventory is replenished at the beginning of each cycle to the optimal 

level B. Hence, when the buffer inventory is partially or completely used-up during a 

given cycle, a replenishment cost is incurred to reset the buffer level to B.   

The replenishment cost is equal to the unit replenishment cost c multiplied by 

the number of units used from the buffer and that have to be replenished. In the case 

where R < X < R+B, we replenish the units we used equal to (X – R), but in the case 

where X > R+B, we replenish the entire buffer with size B. 

The buffer replenishment cost is then equal to 

( ) ( ) ( )

R B

R R B

c x R f x dx Bf x dx

 



 
  

 
   

By adding the above cost components, we get the formula for the total cost of 

the buffer model to be 

   

 

1 0

2

1

, , ( )
2

1
( ) (2 2 ) ( )

2 2

[ ( )] ( ) ( ) ( ) ( )

R B

B

R

R B

R
R B

R B

R B
R R B

D y
TCU y R B K K f x dx h R E X

y

B
h B x R f x dx x B R f x dx

y y

D
p x R B f x dx c x R f x dx Bf x dx

y








 





   
       

  

 
      

 

 
      

 



 

  

 

 If B = 0, the buffer model should converge to the classical model, i.e. the total 

cost of the buffer model TCUB should be equal to the total cost of the classical model 

TCU0.  

In order to verify this statement, we will assign a null value for B in the 

expression of TCUB as follows  
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 

 

   

1 0

2

1

0 1

0 ( )
2

1 0
0 ( ) (2 2 ) ( )

2 2

[ ] ( ) ( ) ( ) 0 ( )

1
(0) 0 (0) 0 ( )

2 2

R

B

R

R

R
R B

R

B
R

R R

B

D y
TCU K K f x dx h R E X

y

h x R f x dx x R f x dx
y y

D
p x R f x dx c x R f x dx f x dx

y

D y D
TCU K h R E X h p x R

y y y








   
       

  

 
     

 

 
     

 

  
           

   



 

  

 

 0 0

( ) 0 0

( ) ( )
2

B
R

B
R

f x dx c

D y D
TCU K h R E X p x R f x dx TCU

y y





 

 
       

 





 

The total cost formula for the buffer model is the same as that of the classical 

model when we set B to zero, which validates the accuracy of the buffer model.  

 

3.3 Model with Rush Orders 

As discussed in the literature review section, rush orders are requested to be 

delivered very quickly, so they are usually considered as zero lead-time orders (as 

assumed in our case). Since these orders are quickly received, they normally have higher 

cost than usual orders with lead times.  

In the rush order alternative model, no buffer inventory will be held, and a rush 

order is used to limit shortages whenever the lead-time demand X exceeds the reordering 

point R. However, one main assumption that holds in our model, is that in each cycle, 

only one rush order can be initiated, even if its quantity is depleted before the arrival of 

the outstanding regular order.  

A new decision variable is introduced, W, which is the quantity of units to be 

included in the rush order if initiated. A variable cost, cR is incurred per unit of rush order, 

noting that this is only an additional cost for the rush order, given that the ordering cost 

for these units are included in the variable ordering cost for all demand cycles. 
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As in the buffer model, three scenarios exist depending on the size of the lead-

time demand X. 

1. X < R 

2. R < X < R+W 

3. X > R+W 

The graph in Figure 5 aims to explain the mechanism of the model with rush 

orders, in the three cases mentioned above. 

 

 

 

 

 

 

 

 

 

 

  

In the first case where X < R, no rush orders are initiated. In the second case, the 

regular inventory is depleted, so we initiate a rush order with W units but we do not 

entirely consume them so we have few left in inventory for the next cycle, and this is 

the case where R < X < R+W. In the last case, we initiate a rush order and we use all of 

the units included, and since we are assuming that only one rush order can be initiated 

Figure 5: Rush Orders Model Cases 
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per cycle, shortages occur before the receipt of the outstanding order, and this is the 

case where X > R+W.  

Depending on the lead-time demand X, three cases exist for the end and beginning of 

cycle inventories presented below. 

The end of cycle in-process inventory “EIPI” is 

           if 

    if 

0                   otherwise

R X X R

EIPI R W X R X R W

 


     



 

The beginning of cycle in-process inventory is  

             if 

      if 

                          otherwise

y R X X R

BIPI y R W X R X R W

y

  


      



 

In order to account for the three different scenarios, based on the lead-time 

demand X, we will calculate the inventory level AI given by 

             if 
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The expected value of AI is  
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Therefore the annual holding cost is 
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The fixed ordering cost in the model with rush orders is the same as in the 

classical model, with no additional costs as in the case of the buffer model. 

D
K
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Following a similar logic to the base model the shortage cost per cycle is 
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 This means that shortages occur whenever the lead-time demand X is greater 

than the regular stock in addition to the units we order as rush. 

The ordering cost for the rush order units is included in the total ordering cost in 

the model; however, since these units arrive quickly, they have a higher cost than 

normal orders, so we have an additional cost for the rush order units. This cost is equal 

to the unit rush order cost cR times the number of units ordered as rush. Rush orders are 

initiated only when the regular inventory is depleted, so we multiply these terms also by 

the pdf of X for X being greater than R.  
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After adding the four cost components, we get the total cost formula for the 

model with rush orders to be 
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If W is zero, the rush order model should converge to the classical model. i.e. the 

total cost of the rush order model TCUR should be equal to the total cost of the classical 

model TCU0.  

In order to verify this statement, we will assign a null value for W in the 

expression of TCUR as follows 
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The fixed ordering cost and the shortage cost are the same as in the classical 

model; however, the expression of the holding cost is different, and this is most 

probably due to the application of an approximation to the holding cost in the classical 

continuous review model, that ignores the case where R – E[X] may be negative. In 

order to validate our hypothesis that the rush order model converges to the classical 

model in the case of W is zero, we proved it numerically using Excel, by setting W is 

zero and solving for the optimal y, R and TCU. We got the exact same values as in the 

classical model, which validates the accuracy of our developed rush order model.  
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CHAPTER IV 

NUMERICAL ANALYSIS 
 

 

 This chapter is divided into three sections. In Section 5.1, we present a base 

example for the three models, after determining values for the cost parameters to solve 

for the optimal solution in each model. Then in Section 5.2, we perform a sensitivity 

analysis on the cost parameters for both the buffer and rush orders models, Finally, in 

Section 5.3, we present graphical and analytical comparisons for the costs of the models 

when varying cost parameters.  

 

4.1. Base Example 

In order to numerically test the effectiveness of our model in cost saving, we 

used Excel and Excel solver for the three models presented above. The three decision 

variables were the order size y, the reordering point R and the buffer stock B, and the 

objective was to minimize the cost function. We assumed a Normal distribution for the 

demand since it simplifies the calculations and it is widely used and observed in 

industry (Bhonsle, Rossetti, & Robinson, 2005).  

 The probability density function of the random normal variable X is given by    

2

2

( )

2
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( )
2

x

f x e





 
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  

  For simplification reasons, we expressed the integrals as function of z, where z is 

a standard normal random variable and is given by
x

z





 . 

We assigned the following values for the variable parameters: 
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 Average yearly demand D = 10000 units/year 

This is the average demand expected over a period of a year. It could vary 

depending on the supply and demand of each company. 

 Fixed order cost K = $100/order 

This is the cost to order from the retailer, and it is fixed for all orders. It 

could vary depending on the pricing of the supplier, the fragility and process 

of the shipment, or the distance between the retailer and the warehouse. 

 Fixed order cost from buffer stock K1 = $20/order 

This is the cost to transport the stock from the buffer inventory to the main 

warehouse. It is less than K since there is no external party to pay for, and it 

represents only the transportation or shipment cost. 

 On-hand inventory holding cost h0 = $10/unit 

This is the price we pay for each unit stored in inventory in the main 

warehouse. 

 Buffer inventory holding cost h1 = $6/unit 

This is the price we pay for each unit stored in the buffer inventory. We can 

notice how its value is less than the value of the on-hand unit holding cost h0 

as we already stated. 

 Shortage cost p = $80/unit 

This is the cost we pay for each unit short during the lead-time. Shortage 

costs are usually high and this is why we always search for ways to reduce 

or avoid them. 

 Buffer replenishment cost c = $30/unit 

This is the fee we pay for replenishing each unit we use from the buffer at 



 

 37 

the beginning of each cycle. It is related to the buffer unit holding cost, 

where h0 = 0.2c, since the storage cost accounts for only about 20% of the 

total inventory holding cost.  

 Rush order unit cost cR = $50/unit 

This is the additional fee we pay for every unit we order as rush.  Similarly, 

it is related to the on-hand inventory holding cost where h0 = 0.2cR. 

 Mean of lead-time demand X = 400 units 

This is the expected number of units to be ordered during the order lead-time 

and it is related to the average demand. 

 Standard deviation of lead-time demand X = 30 units 

The objective was to minimize the cost function, and the decision variables were 

y and R in the classical model, y, R and B in the buffer model and y, R and W in the 

model with rush orders.  

The following table shows the optimal values for the total cost and the decision 

variables for the models. 

Table 1 

 

Optimal Values for the Decision Variables and Total Costs for the Three Models 

 

 y R B W TCU 
% Improvement in 

TCU w.r.t TCU0 

Classical 

Model 
456.92 475.9 - - 5328.05 - 

Buffer Model 455.91 444.5 36.21 - 5247.8 1.5% 

Rush Order 

Model 
456.95 474.97 - 4.83 5319.86 0.15% 
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The results in Table 1 can be analyzed as follows: 

 For the order size y, the values are almost the same in the three models, and are 

slightly close the order size in the EOQ model which is 
0

2KD

h
= 447.21. 

 The reordering point R didn’t change much in the rush order model compared to 

the classical one, but we notice that in the buffer model it is lower, and this is 

because of the role the buffer plays in acting as a safety stock that can help in 

reducing shortages considerably during lead-time. Therefore, it is safe to lower 

the reordering point without causing more shortages. 

 What is most important is the decrease in the total cost in both extended models 

compared to the classical model. The decrease in the cost in the buffer model is 

greater than in the rush order model, but the latter can be a good choice when 

there is no possibility of holding a buffer at an external location with a 

convenient location and a cheaper rent.   

 

5.2 Sensitivity Analysis 

 

In order to study the effect of the variation of some parameters on the total cost 

of the models, and how the decision variables react to this change, we present a 

sensitivity analysis performed using Excel on the different cost parameters for both the 

buffer and the rush order models. 

 

5.2.1. Sensitivity for the Buffer Model 

Following is the sensitivity analysis for the buffer model performed on the 

following variables: fixed ordering cost from the retailer K, fixed ordering cost from the 
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buffer K1, on-hand inventory holding cost h0, buffer holding cost h1, unit replenishment 

cost c and shortage cost p. 

 

5.2.1.1. Sensitivity on the Fixed Ordering Cost from the Retailer K 

 

 

 

 

 

 

 

 

 

 

When the ordering cost increases, it obviously becomes more expensive to place 

an order; this is why it is more cost-effective to decrease the number of orders, and this 

can be achieved by increasing the fixed order size y each time, as we can see in the 

graph in Figure 6. 

 

 

 

 

 

 

 

Figure 6: Variation of y with K 
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Since the order size increases with the increase of K, the reordering point R 

decreases as shown in the graph in Figure 7, and this is because we will have more on-

hand inventory due to bigger order size, which allows us to have a lower reordering 

point without risking having more shortages.     

 

 

 

 

 

 

 

 

 

 

Figure 7: Variation of R with K 

Figure 8: Variation of B with K 
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The buffer size B is almost insensitive to the variation of K, but it slightly 

decreases since we are having more on-hand inventory with the increase of y. 

 

 

 

 

 

 

 

 

 

 

The total cost normally increases with the increase of any cost parameter, and in 

this case, the placement of an order becomes more expensive which results in a higher 

cost for the model as shown in Figure 9. 

  

5.2.1.2. Sensitivity on the Fixed Ordering Cost from the Buffer K1 

 

 

 

 

 

 

 

 

Figure 9: Variation of TCUB with K 

Figure 10: Variation of B with K1 



 

 42 

As we can observe in the graph in Figure 10, the buffer size decreases as K1 

increases, because for high values of K1, it becomes expensive to rely and order from 

the buffer stock, until we reach a null buffer value starting K1 = $350. In this case, it 

would be more cost effective to rely on the on-hand inventory instead of holding a 

buffer stock, and the model converges to the classical model. 

 

 

 

 

 

 

 

 

 

 

 

Since there will be less reliance on the buffer stock with the increase of K1, the 

reordering point R increases to have more on-hand inventory and try to reduce shortages 

as much as possible with the partial or complete absence of the buffer stock.  

 

 

 

 

 

Figure 11: Variation of R with K1 



 

 43 

 

 

 

 

 

 

 

 

 

 

The graph in Figure 12 shows that the order size y is almost insensitive to the 

variation of K1, since the increase of the reordering point ensures a sufficient on-hand 

inventory level to make up for the decrease of the buffer stock.  
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Figure 12: Variation of y with K1 

Figure 13: Variation of TCUB with K1 
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The total cost increases with the increase of K1 until reaching a constant value 

equal to that of the classical model (5328) when the buffer reaches zero and the model 

converges to the classical one.  

 

5.2.1.3. Sensitivity on the On-hand Inventory Holding Cost h0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Variation of y with h0 

Figure 15: Variation of R with h0 
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As long as h0 increases, holding bigger amounts of inventory becomes more 

expensive, hence, it would be better to decrease the amount of on-hand inventory and 

rely more on the buffer stock. This is why in the graphs in Figures 14 and 15 

respectively, we can notice that y and R are decreasing with the increase of h0. 

 

 

 

 

 

 

 

 

 

 

 

The decrease in the on-hand inventory signaled by the decrease of y and R is 

normally accompanied by an increase in the buffer size as shown in the graph in Figure 

16, in order to increase the buffer inventory and limit the amount of shortage.  

 

 

 

 

 

 

Figure 16: Variation of B with h0 
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The total cost increases with the increase of h0 since it the cost of holding the 

regular inventory is increasing. 

 

5.2.1.4. Sensitivity on the Buffer Holding Cost h1 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 17: Variation of TCUB with h0 

Figure 18: Variation of B with h1 
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As we can see in Figure 18, the buffer size decreases linearly with the increase 

of h1 until it reaches zero at h1 = 10 (which is equal to the inventory holding cost in our 

model), and this is why it would be of no interest to hold a buffer stock at the same unit 

holding cost. 

 

 

 

 

 

 

 

 

 

 

When the buffer stock decreases, the reordering point increases to hold more on-

hold inventory and avoid shortages. When the buffer reaches zero at h1 = 10, R reaches 

a constant value equal to its value in the classical model.  

 

 

 

 

 

 

 

Figure 19: Variation of R with h1 

Figure 20: Variation of y with h1 
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The order size is almost insensitive to the variation of h1 as we can see in the 

graph of Figure 20. It also reaches a constant value starting h1 = 10. 

 

 

 

 

 

 

 

 

 

As in the case of K1, the total cost increases linearly with the increase of h1 until 

reaching a constant value of 5328 when the buffer stock hits zero, because this is when 

the model converges to the classical model with the same values of y, R, and TCU.  

 

5.2.1.5. Sensitivity on the Buffer Replenishment Cost c 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Variation of TCUB with h1 

Figure 22: Variation of B with c 
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The buffer size decreases linearly with the increase of c as shown in Figure 22, 

and this is normal since the increasing cost of replenishing the buffer would outweigh 

the lower cost of holding inventory in it, so the buffer size will keep increasing until 

eventually reaching zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

When the buffer stock decreases, the reordering point increases to hold more on-

hold inventory and avoid shortages, and this is why we notice in Figure 23 a linear 

increase of R with the increase of c. 

 

 

 

 

 

 

 

 

Figure 23: Variation of R with c 

Figure 24: Variation of y with c 
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The increase of R results in having more on-hand inventory, so the order size y 

decreases slightly as seen in Figure 24. 

 

 

  

 

 

 

 

 

 

 

It is normal that an increase in any cost parameter in the model will cause an 

increase in the total cost, and this is shown in the graph of Figure 24 that signals a linear 

increase in TCUB with the increase of c, until eventually reaching the value of the total 

cost in the classical model when B reaches zero. 

 

 

 

 

 

 

 

 

Figure 25: Variation of TCUB  with c 
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5.2.1.6. Sensitivity on the Shortage Cost p 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When the unit shortage cost increases, the model should work as much as 

possible on reducing shortages to reduce losses, and this can be achieved by holding a 

greater buffer inventory, hence B increases with the increase of p as shown in the graph 

of Figure 26. 

 

 

 

 

 

 

 

 

 

Figure 26: Variation of B with p 

Figure 27: Variation of R with p 
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R and y (Figures 27 and 28 respectively) are almost constant with the increase of 

p, which means that R and y are nearly insensitive to the increase of the shortage cost. 

This is because the main increase in inventory is achieved in the buffer stock for its 

lower holding cost, which ensures a sufficient and safe inventory level without 

increasing much the cost.   

 

 

 

 

 

 

 

 

 

 

Figure 28: Variation of y with p 

Figure 29: Variation of TCUB with p 
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The increase in the unit shortage cost p will normally lead to an increase in the 

total cost as shown in Figure 29, since every unit short will cost more. 

 

5.2.2. Sensitivity for the Rush Orders Model 

Following is the sensitivity analysis for the model with rush orders performed on 

the following variables: fixed ordering cost from the retailer K, , on-hand inventory 

holding cost h0, unit rush order cost c and shortage cost p. 

 

5.2.2.1. Sensitivity on the Fixed Ordering Cost from the Retailer K 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: Variation of y with K 
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As seen in the buffer model, when the fixed ordering cost increases, the order 

size also increases (Figure 30) in order to reduce the number of outstanding orders 

needed, and hence cut the total ordering cost. This increase in the order size leads to a 

decrease in the reordering point as shown in the graph of Figure 31, since there will be 

more available inventory, so we can have a lower reordering point without causing 

more shortages.  

 

 

 

 

 

 

 

Figure 31: Variation of R with K 
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The rush order size is almost insensitive to the fixed ordering cost, with only a 

slight increase to account for the decrease of the reordering point, as shown in the graph 

of Figure 32. 

 

 

 

 

 

 

 

 

 

 

Figure 32: Variation of W with K 

Figure 33: Variation of TCUR with K 
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The total cost normally increases with the increase of the order cost as seen in 

Figure 33, since every order placed will be more expensive. 

 

5.2.2.2. Sensitivity on the On-hand Inventory Holding Cost h0 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34: Variation of y with h0 

Figure 35: Variation of R with h0 
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As shown in the buffer model previously, when the inventory holding cost 

increases, the order size and the reordering point decrease (Figures 34 and 35 

respectively) in order to hold less on-hand inventory and decrease the overall holding 

cost.  

 

 

 

 

 

 

 

 

 

 

In order to make up for the smaller inventory available on-hand, the model relies 

more on the rush order alternative in order to limit shortages, and that’s why the rush 

order size increases continuously as the holding cost increases as shown in Figure 36. 

 

 

 

 

 

 

 

Figure 36: Variation of W with h0 

Figure 37: Variation of TCUR with h0 
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The total cost increases with the increases of h0 since the cost of holding 

inventory is higher.  

 

5.2.2.3. Sensitivity on Rush Order Unit Cost cR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The main cost component related to the rush order model is the rush order unit 

cost cR, so when this parameter increases, the high cost of the rush order will not be 

justified and therefore there will be less reliance on this option. This can be seen by the 

continuous decline of the graph of the rush order size W in Figure 38, until reaching a 

zero value for cR = 80 when the rush order model is no longer used, and the model 

converges to the classical one. 

 

 

 

 

 

Figure 38: Variation of W with cR 
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The reordering level increases with the increase of cR (Figure 39) since we will 

need more on-hand inventory to account for the decrease of the rush order size W and 

reduce shortages, whereas the order size y is almost insensible to this variation as shown 

in Figure 40. Both R and y reach a constant value starting cR = 80 where the rush order 

size W reaches zero and the model converges to the classical one. 

 

Figure 39: Variation of R with cR 

Figure 40: Variation of y with cR 
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As shown in the graph of Figure 41, the total cost slightly increases with the 

increase of cR until reaching a constant value of 5328 at cR = 80 and hereafter, which is 

equal to the cost of the classical model in our case.  

 

5.2.2.4. Sensitivity on Shortage Cost p 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41: Variation of TCUR with cR 

Figure 42: Variation of W with p 
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The main role of the rush order is to act fast to bring inventory and reduce 

shortages, and this is why when the shortage cost increases, the rush order size increases 

considerably to avoid any shortage occurrence as much as possible, as shown in Figure 

42.  

 

 

 

 

 

 

 

 

 

 

The increase of the shortage cost leads to a slight increase in the reordering point 

as seen in Figure 43, in order to reduce the amounts of units short.  

 

 

 

 

 

 

 

 

Figure 43: Variation of R with p 

Figure 44: Variation of y with p 
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The graph in Figure 44 shows that the order size y is almost insensitive to the 

variation of p, it just slightly decreases since the reordering point is increasing. 

 

 

 

 

 

 

 

 

 

 

As in the case of any cost parameter, the total cost increases with the increase of 

the shortage cost, since any lost order will cost more money. 

 

5.3 Cost Comparison 

 

The main goal of extending the continuous review model was to try to reduce 

the total cost, that’s why we present next a cost comparison between the models upon 

varying the cost parameter, to determine which model hold more cost savings in each 

case. We start by comparing the classical with the buffer model, and then the classical 

with the rush orders model, both graphically and analytically.   

 

 

 

Figure 45: Variation of TCUR with p 
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5.3.1. Graphical Analysis 

 

5.3.1.1. Classical vs. Buffer Models 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 46: Classical/Buffer vs. K 

Figure 47: Classical/Buffer vs. h0 
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Figures 46, 47 and 48 show the comparison of the buffer and classical models’ 

costs when changing the parameters that are not directly related to the buffer stock, i.e. 

K, h0 and p. What we can notice from these graphs is that the buffer model behaves 

better than the classical model in terms of cost for all increasing values of the designed 

parameters.   

 

 

 

 

 

 

 

 

 

 

Figure 48: Classical/Buffer vs. p 

Figure 49: Classical/Buffer vs. h1 
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In Figures 49, 50 and 51, we compare the costs of the classical and buffer 

models with respect to the cost parameters that are related to the buffer only, i.e. h1, K1 

and c. As we can notice, when changing the buffer parameters, the total cost of the 

buffer model is always less than that of the classical, until they reach the same value 

Figure 50: Classical/Buffer vs. K1 

Figure 51: Classical/Buffer vs. c 
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when the buffer size reaches zero as we saw in the sensitivity analysis. For the case of 

the buffer replenishment cost c in Figure 51, the buffer model cost is continuously 

increasing and will also eventually reach the same value of the classical model’s cost 

for a large c approximately equal to $630/unit (value obtained from experimenting with 

the optimal solution using Excel solver). 

 

5.3.1.2. Classical vs. Rush Models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 52: Classical/Rush vs. K 

Figure 53: Classical/Rush vs. h0 
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 As in the buffer model, the cost of the rush orders model is less than that of the 

classical model in all cases presented above when varying the cost parameters h0, K and 

p in Figures 52, 53 and 54.  

 

 

 

 

 

 

 

 

 

 

Figure 54: Classical/Rush vs. p 

Figure 55: Classical/Rush vs. cR 
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Figure 55 shows that the rush orders model has always a lower cost than the 

classical model, until they both reach the same cost value when the model converges to 

the classical one at cR = 80. 

In conclusion, the graphical analysis showed that the rush and buffer models 

always have a cost lower than or equal to that of the classical model, and never higher, 

since whenever the cost of these models becomes high, they converge to the classical 

model.  

 

5.3.2. Analytical Analysis 

 

5.3.2.1. Classical vs. Buffer Models 

 

We recall the total cost formula of the classical model to be 
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The total cost formula for the buffer model is 
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For simplification reasons, we will ignore the drop in buffer (which does not 

affect the result much as tested numerically in Excel). The total cost formula becomes 
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To compare the costs analytically, we will subtract the formulas from each other 

as follows. 
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The above expression signals that whenever the shortage cost is greater than the 

costs of the buffer model combined (ordering + holding + replenishment), the 

expression TCU0 – TCUB will be positive, meaning that the total cost of the classical 

model will be greater than that of the buffer.  

This result is logical, since the role of the buffer stock is to reduce shortages 

while minimizing the total cost, so whenever the cost of adding a buffer will exceed the 

cost of shortages, the use of the buffer stock would not be justified anymore and we will 

simply abide by the classical model. This is the analytical results conform with the 

graphical results that the cost of the buffer model is always less than or equal to that of 

the classical model.    

 

5.3.2.2. Classical vs. Rush Models 

 

We recall the total cost formula of the model with rush orders to be 
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For simplification reasons, we will replace the expression of the holding cost in 

the rush order model by the expression in the classical model, that gives the same result 

numerically as discussed previously, but the expression differs due to the approximation 

applied in the classical model.  

The formula for the rush order model will now be  
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By subtracting the total cost of the rush orders model from the total cost of the 

classical model we get 
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The same analysis applies here as in the case of the buffer model. Whenever the 

shortage cost is greater than the cost of the rush orders, the expression TCU0 – TCUR 

will be positive, meaning that the total cost of the classical model will be greater than 

that of the rush orders model. When the cost of placing a rush order will be greater than 

the cost of experiencing shortages, the rush order alternative will not be used anymore 
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and the model and its cost will converge to the classical model. Therefore, we can also 

say that the cost of the rush orders model is also always less than or equal to that of the 

classical model.   
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CHAPTER VI 

ANALYTICAL APPROXIMATION FOR DERIVING THE 

OPTIMAL SOLUTION  
 

One way to solve for the decision variables is by using certain approximations 

and solving for the optimal values. One approximation we can base our work on is the 

“probabilitized” EOQ model developed by Taha, H. (2006) in his book “Operations 

Research: An Introduction”. The developed expressions for the order size y and the 

reordering point R based on the standard EOQ model are presented below. 
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The main assumption in the model is that the lead-time demand is normally 

distributed.  

In our case, we can approximate the y and R values from the above expressions, 

and by setting the first-order derivatives of the total cost formula for the buffer and rush 

models to zero, we get values for B and W. 

The first-order derivatives for the buffer model with respect to the three decision 

variables are  
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The first-order derivatives for the rush orders model with respect to the three 

decision variables are  
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It is worth mentioning that in our models, we would get a more accurate value 

for the rush order size W than the buffer size B, since the reordering point value in the 

rush orders model is closer to the approximated value than in the buffer model.   

To solve for W analytically, using the probabilitized expressions, we first set y 

and R to their approximated values, which are respectively 447.21 and 476.11. Then we 

consider one of the derivatives for the total cost formula of the rush orders model, let’s 

say the derivative with respect to W, and we use the “Goal Seek” function in Excel to 

get the W value that sets that derivative to zero. By solving it, we get W = 4.82 which is 

almost equal to the value we got from the solver and which is 4.83. The total cost of the 

rush orders model using these values is 5321.28, which is very close to the value 

obtained using Solver equal to 5319.86.  

To solve for B¸ we follow the same procedure as above. Table 2 below 

compares the results obtained for the two models using the Solver and using the 

analytical approximation.  
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Table 2 

Comparison between Solver and Analytical Values for Both Models 

 

 

B/W TCU 

% change in TCU 

Solver Analytical Solver Analytical 

Buffer 

Model 
36.214 4.794 5247.79 5321.07 1.39% 

Rush Orders 

Model 
4.83 4.82 5319.86 5321.28 0.027% 

  

As we can see, the approximated analytical solution can be beneficial especially 

in the rush orders model, where it presented very accurate results with only a slight 

0.027% difference in total cost. However, for the buffer model, there was a larger 

difference of 1.39% in the total cost values, due to the difference in the reordering point 

values as already stated. If we want to use it for the buffer model, it is recommended to 

decrease the value of the reordering point by about 10% to get a more accurate value for 

B. 

We can also notice how the total cost values for the buffer and rush orders 

models are almost the same in the analytical solution, probably resulting from having 

the same ordering policy in terms of y and R.   
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CHAPTER VIII 

CONCLUSION AND RECOMMENDATIONS 
 

In this study, we presented two extended models, one with a buffer stock and 

another with a rush orders option, for the continuous review inventory system that is 

widely used in inventory management. Our main goal was to present models that are 

effective in reducing shortages and losses, while also minimizing the total cost of the 

system. Our approach was robust and provided us with interesting and promising 

results, where both models were proven to be effective in finding the optimal policy for 

inventory management, while presenting cost reductions compared to the classical 

model.  

While both models are effective and cost-saving, the choice of one or another 

depends on the preference of the decision makers, especially concerning the availability 

of an external warehouse for buffer storage or not. The percent reduction in cost would 

vary depending on the values of the cost parameters, which we logically estimated in 

our model based on industry standards and previous references.  

The developed models could be further extended as future work to account for 

several aspects, from which we can mention the following: 

 In some cases, the classical continuous review model does not have a feasible 

solution, depending on the parameter values; it is worth studying whether this 

applies also for the extended models and if there is cases where they do not give 

optimal solutions.  
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 Though the normal distribution is the most frequently used for the lead-time 

demand, it is worth applying other types of distributions to get the optimal 

solution and cost. 

 The model with rush orders can be modified to account for a short lead-time 

instead of zero lead-time for the rush orders. Moreover, it can be stated that 

more than one rush order can be initiated per cycle, as opposed to our 

assumptions.  

 The analytical approach for finding the optimal solution can be further 

developed to come up with accurate results especially for the buffer model.    
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