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An Abstract of the Thesis of

Georges Emile Younes for Master of Science
Major: Computer Science

Title: Efficient Suturing in Deformable Models

Surgical procedures are among the most complex medical interventions
routinely performed. The suturing task, ubiquitous to most surgical interventions,
has a steep learning curve. With the increased focus on minimally invasive
interventions, the suturing task has become more complex than ever and compulsory
training on virtual simulators has become the norm. However, simulating the
suturing task is not trivial, as it involves the simulation of needle-tissue and
thread-tissue interaction, as well as contact between sutured boundaries.

In this work, robust methods are proposed for efficiently simulating
suturing using a linear elastic finite element-based approach. Important aspects of
our proposed method include modeling contact conditions using complementarity
relations and simulating needle driving in real-time, without introducing any new
mesh elements, through the use of adjacency relationships inherent to manifold
meshes and decomposing rigid body motion into two disjoint sliding and sticking
components. In addition, a computationally efficient formulation of thread pulling is
presented which relies on distance linearization and achieves plausible results.

These techniques are implemented and tested in a cross-platform prototype
system, that allows for interactive simulation of suturing with high-resolution
models through a simplified anastomosis scenario while making use of multiple
human-computer interaction devices and immersive rendering techniques.
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Chapter 1

Introduction

“The good news is that virtual reality is
here. The bad news is that something is
still missing.”

—Mychilo Cline

Suturing is a fundamental operation in surgery and is an ever-present task

in procedures ranging from closing lacerations and stitching wounds in open surgery,

to anastomosis and closing incisions after tissue removal in laparoscopic and

robot-assisted procedures. The techniques for planning suturing tasks and the

manual dexterity and hand-eye coordination involved in executing them are

essential skills that student surgeons and practitioners develop through hours upon

hours of training and practice.

1.1 Motivation

In the context of laparoscopic and robot-assisted surgery, with their

constrained workspace due to instrument kinematics, this practice often has a steep

learning curve, and it takes a substantial amount of training to perfect the necessary

skills. The practice generally takes place on suturing boards, phantom models, or on

live animals, but there has been significant interest in the use of simulation-based

training tools due to the flexibility in the training scenarios that the simulators can

provide, their convenience, and their ultimate cost-effectiveness. A number of

initiatives have been formulated by official bodies, such as the American College of

Surgeons, to promote simulation-based training, including virtual reality-based

simulation [35].

A major advantage of virtual simulation when compared to classical

techniques is that it provides data and parameters which can be used to design new
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metrics, allowing for objective assessment of surgical skills. The literature on the

objective assessment of surgical skills is rich in attempting to find the optimal

approach for training surgeons on particular tasks. In addition, virtual simulators

are flexible, accessible, and cost-effective when it comes to creating new scenarios

and procedures with increasing degrees of difficulties and have proven to transfer

the skills required for laparoscopic and robot-assisted surgery as demonstrated in

[51, 54, 55, 56, 57, 63, 64] and can even outperform traditional box trainers in some

instances [46, 60]. The current pandemic is another major reason for investing in

surgical simulators as they are one of the few available training tools in socially

distanced societies.

Despite major efforts, there is not yet a satisfactory and openly available

suturing simulation model, that has the sufficient realism and interactive response

rate, suitable for training medical students and related professionals and that can

run on commodity hardware such as integrated head-mounted virtual reality (VR)

headsets or limited environments such as web browsers. The difficulties of modeling

suturing operations come from a number of factors. An inextensible thread,

essentially massless, with almost negligible bending stiffness is driven by a rigid tool

in a highly deformable anatomically complex, heterogeneous, anisotropic soft tissue

environment. The geometry of the environment is continuously changing because of

the needle movement and the general contact conditions between the deforming

tissue being sutured as well as between tools, threads, and tissue. These simulations

have to be performed on a limited computational budget to allow for interactive use

operations that support real-time visual feedback and haptic interaction.

While the incorporation of mass, bending stiffness, and axial flexibility in

the needle and thread make them more amenable to more general and standard

mechanics-based finite element simulations, the additional computational efforts

needed in the solution are prohibitive for real-time simulation and the added realism

is not central to this work. In addition, cutting, fracture, and tearing effects are

2



ignored to avoid the computationally intense task of mesh subdivision (re-meshing).

The scope is limited to a quasi-static linear elastic tissue model, a rigid needle

model, and a linear geometric thread model, to be able to highlight and test the

proposed motion decomposition technique and incremental tracking procedures.

1.2 Contribution

The main goal of this work is to develop tools and techniques that augment

the ever expanding body of work on extended reality (XR)—a term that covers VR,

augmented reality (AR), and mixed reality (MR)—simulators for surgical procedure

training and virtual suturing, in particular by providing effective and integrated

models and methods for needle driving and suture simulation. The models and

methods strike a good balance between high-fidelity and real-time simulations and

can run at interactive rates with a low computational budget to be used in

applications targeting VR headsets and web browsers.

The main contribution of this work is a computationally-effective model for

realistic suture simulation. More specifically, given neighboring soft tissue volumes

with a gap between them, a thread can be inserted into the volumes to bring them

together at two points, thus closing the opening in real-time while the soft tissue

follows a mechanically plausible behavior. The proposed approach introduces

efficient geometric operations to allow a needle and a thread to traverse multiple

boundaries and builds the appropriate constraints to use in a quasi-static linear

finite element model.

The rigid nature of the needle is used to decompose driving motion into

sliding and deforming (sticking) components, and handle them separately. A new

thread pulling constraint model using distance linearization is introduced and

demonstrated on a realistic example of an anastomosis procedure involving a fine

mesh with multiple puncture points. The aforementioned techniques are
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implemented and tested in a cross-platform prototype system that allows for

interactive simulation of suturing with high-resolution models through a simplified

anastomosis scenario while making use of multiple human-computer interaction

devices and immersive rendering techniques.

1.3 Outline

The rest of this thesis is organized as follows: In §2, the background details

of the various components required for modeling needle-tissue, tissue-tissue, and

thread-tissue interactions and an overview of the literature for surgical simulation

are presented. §2.1 outlines the compact face data structure used for representing

soft models using tetrahedral meshes, its indexing schemes and implementation

levels, and the adjacency queries essential to the incremental needle tracking

technique. §2.2 uses a continuum mechanics formulation to simulate soft models

using a quasi-static linear finite element method and a direct sparse solver to solve

the underlying system of equations and satisfy the constraints at every step.

Three-dimensional inter-boundary contacts are detected using continuous collision

detection and modeled using linear complementarity constraints. §2.3 gives an

overview of suture simulation and related work.

In §3, we present a motion decomposition technique and treatment of

needle-tissue interaction through two separate sliding and sticking phases and

presents a thread pulling model that relies on distance linearization. §3.1, explains

our strategy for motion decomposition and handling each component separately for

a straight and a semi-circular needle. §3.2 outlines the techniques used for tracking

a parametric needle representation through a tetrahedral mesh, as it deforms soft

tissue while puncturing through multiple tissue boundaries. §3.3 presents a thread

pulling model, suitable for single stitches as well as running sutures, to close

openings between two boundaries.
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§4 gives an overview of the implementation and shows results from a

prototype of the system with update rates that allow real-time performance to be

achieved. Discussion of current and future work conclude the thesis in §5.

5



Chapter 2

Background

2.1 Mesh Representation

Efficient and compact data structures are indispensable when it comes to

encoding surface and volume meshes. These data structures are usually equipped

with various operators and containers to facilitate common operations such as

rendering, texturing, smoothening, etc., and to attach various attributes to nodes

such as color, mass, material property, etc. Unstructured oriented 2-manifold

surface and 3-manifold volume meshes are used throughout this work as they

provide a unified representation for surface rendering, collision detection, and

physically-based simulation, and their unstructured nature can easily adapt to

geometric irregularities when meshing the simulation domain. They are a realization

of a special class of simplicial complexes.

2.1.1 Simplices and Complexes

A k-simplex σ is the closed convex hull of k + 1 linearly independent

vertices, v0,v1, . . . ,vk (including the interior). A 0-simplex is a point (vertex), a

1-simplex is a line segment (edge), a 2-simplex is a triangle (facet), and a 3-simplex

is a tetrahedron (cell) in Euclidean space. A face τ of σ is an r-simplex generated

by a subset of its vertices with r ≤ k; τ is a proper face when r < k, e.g. the proper

faces of a tetrahedron are its vertices, edges, and facets. A simplex is incident to its

faces and the faces bound the simplex; the incidence relation is denoted by τ � σ.

Each vertex vi has a face opposite generated by {vj | i 6= j} and this fact is

used to parametrize the space bound by σ such that every point p bound by σ is
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represented through a linear combination of the k + 1 vertices as

p =
k∑
i=0

ξivi, (2.1)

with ξi ≥ 0 and
∑k

i=0 ξi = 1. This can be expressed concisely as

p
1

 =

v0 v1 · · · vk

1 1 · · · 1




ξ0

ξ1

...

ξk


. (2.2)

The conditions on the values of the coordinates ensure that the generated

points are contained within the simplex (convex conditions) when a proper ordering

(orientation) of the vertices is used. The coordinates can be computed by solving

the linear system of equations in (2.2) and are expressed explicitly using Cramer’s

rule where each barycentric coordinate ξi is a ratio between the volume of the

k-simplex formed with p ∪ {vj | i 6= j} and the volume of σ itself

ξi =

∣∣∣∣∣∣∣
v0 · · · vi−1 p vi+1 · · · vk

1 · · · 1 1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
v0 v1 · · · vk

1 1 · · · 1

∣∣∣∣∣∣∣
(2.3)

This natural representation is essential to collision detection routines, finite

element approximation techniques, and geometric coupling methods that are

employed throughout this work. It mainly serves as a mean of interpolating the

values assigned at the nodes such as the geometric position, texture coordinate,

mass, stress, and force. The values of the coordinates can also be used to distinguish

between a facet (one coordinate is zero), an edge (two coordinates are zero), and a

vertex (three coordinates are zero) that are part of the boundary; interior points

have four non-zero coordinates.
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A k-simplicial complex Σ is a collection of r-simplices (r ≤ k), together

with all their faces, where any two simplices in Σ either intersect at a face common

to both of them or do no intersect at all:

∀ σ ∈ Σ : τ � σ ⇒ τ ∈ Σ (2.4)

∀ σ, τ ∈ Σ : σ ∩ τ = ∅ ∨ σ ∩ τ � σ ∧ σ ∩ τ � τ (2.5)

This ensures that the simplices are connected only at their boundaries (through a

vertex, edge, or facet), and that their interiors do not intersect, i.e. the complex is a

proper partitioning of the space that it is bounding. The star (co-boundary) of a

face τ in Σ is the sub-complex consisting of all faces containing τ along with all

their faces (referred to as co-faces), and the link of a face is the faces in its star that

are not intersecting with it

stJτK = {s ∈ Σ | ∃ σ ∈ Σ : τ � σ ∧ s � σ}, (2.6)

lkJτK = {σ ∈ Σ | σ ∈ stJτK ∧ τ ∩ σ = ∅}. (2.7)

A complex is pure (homogenous) if every face in Σ is a face of a k-simplex

in Σ, i.e. Σ is a collection of k-simplices that are glued together at common faces. A

face of a pure complex is a boundary face when it belongs to a single simplex and

the boundary of a complex is a sub-complex consisting of all such boundary faces; a

pure simplex has a well defined boundary and as such provides a good

approximation to surfaces and solids. However, pure complexes can still exhibit

vertex and edge singularities which can be problematic for certain applications.

These singularities can be eliminated by enforcing that every facet ((k − 1)-simplex)

bounds either one or two k-simplicies and the local neighborhood of a face can be

morphed (homeomorphic) into a topological sphere or ball.

A (k − 1)-simplex s in Σ is manifold if and only if there are at most two

k-simplices incident at s. A simplicial complex is a combinatorial k-manifold if and

only if every (k − 1)-simplex is manifold and the link of every vertex is
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combinatorially equivalent to a (k − 1)-sphere or (k − 1)-ball [2]. The boundary of a

k-manifold is a (k − 1)-manifold without boundary (watertight). A combinatorial

k-manifold is orientable when a coherent orientation for all of its simplices can be

assigned such that an opposite orientation is induced on the common (k − 1)-face of

any two adjacent k-faces.

A simplicial complex is usually equipped with adjacency queries for

associating its faces to each other. The adjacency queries for a p-simplex s are the

retrieval functions rpqJsK that associate a p-simplex σ with the q-simplices τ that

bound common simplices [9] and are essential for any routine that has to deal with

the local neighborhood of a simplex or global properties defined across the complex.

rpqJsK consists of the set of q-simplices in stJsK when p < q; the set of

q-simplices that are faces of s, when p > q; and the set of q-simplices that are faces

of a common simplex of which s is a face, when p = q. For example, r10JsK, r20JsK,

and r30JsK are the vertices of an edge, facet, and cell, s, respectively, and r33JsK are

the cells adjacent to s through a facet. The realization of these queries dictates that

the vertices and cells are indexed using a scheme that is coherent with the

orientation of the faces across the complex.

We exclusively use oriented 2- and 3-manifold meshes throughout this work

as they can be realized in three dimensions without self-intersections and as such

are a good representation for most physical objects.

2.1.2 Indexing of Simplices

Pure complexes, as they consist of a homogenous set of simplicies having

the same dimension, can be represented using two containers: a geometry container,

G, that encodes the positions of the vertices and a topology container, T, that

encodes the simplicies using the indices of their vertices in G. Let nk denote the

number of unique k-simplicies in a simplical complex. For a tetrahedral mesh with

n3 cells and n0 vertices, G and T have 3n0 and 4n3 entries, respectively; each vertex
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is assigned a unique integer between 0 and n0− 1 and each tetrahedron is assigned a

unique integer between 0 and n3 − 1.

Compact half face (CHF) [23], an extension of the corner table data

structure for triangular meshes [6], is a compact mesh representation that builds on

top of these two basic containers and provides an efficient and multi-level

implementation of the adjacency queries for an oriented 3-manifold as defined in

§2.1.1, through the use of half-faces. A half-face is a specific orientation of a face in

another face that is incident to it. A face can be indexed by multiple half-faces, e.g.

an internal facet in an oriented 3-manifold tetrahedral mesh has two half-facets and

a boundary edge has two half-edges with opposite orientation.

v4t+0

v4t+2v4t+1

v4t+3

v4t+0

v4t+2 v4t+1

v4t+3v4t+0 v4t+0

f4t+0

f4t+3

f4t+1 f4t+2

Figure 2.1 Compact representation of a 3-simplex (tetrahedron) in CHF. The
orientations of the four faces are shown and the sub-indices are used to match a
triangular facet with its apex (opposite vertex) (v4t+i with f4t+i).

CHF provides a consistent way to index all the faces and half-faces in an

oriented 3-manifold mesh. Each cell is indexed using its position t in T and each

vertex is indexed using its position v in G. An edge is indexed using its vertices

(v0, v1) such that v0 < v1 and a facet is indexed using its vertices (v0, v1, v2) such

that v0 < v1 < v2. A 3-simplex cell has 4 vertices and half-vertices, 6 edges and 12

half-edges, and 4 facets and half-facets, which results in a total of 4n3 half-vertices,

12n3 half-edges, and 4n3 half-facets. The half-vertices of tetrahedron t are indexed

using 4t+ i with 0 ≤ i ≤ 3.
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The vertices and facets of a cell t can be associated using the face opposite

simplex relationship: each vertex 4t+ i in t is associated with its opposite face and

the same index is used to reference them, resulting in a compact half-face

representation. With this vertex-face association, each facet can be assigned a

unique index using the location of its opposite vertex in T. This association is

depicted in 〈2.1〉 where a cell t is incident to the vertices v4t+0, v4t+1, v4t+2, and

v4t+3, and facets f4t+0, f4t+1, f4t+2, and f4t+3. The vertices of the half-facets in a cell

t can be enumerated using the ordering in 〈2.1〉 with a counter-clockwise orientation

of the vertices, i.e. the facets normal vectors point away from the interior of the cell.

Table 2.1 Indexing and orientation of the half-faces in a cell t.

f v0 v1 v2

4t+ 0 4t+ 1 4t+ 2 4t+ 3
4t+ 1 4t+ 2 4t+ 0 4t+ 3
4t+ 2 4t+ 3 4t+ 0 4t+ 1
4t+ 3 4t+ 0 4t+ 2 4t+ 1

A half-edge e = (vi, vj) in a cell t is indexed using a pair of half-facet

indices, (fi, fj), where fi is the half-facet index incident to e and fj is the index of

the half-facet opposite to vi in t. The vertices of the half-edges in a cell t can be

enumerated using the ordering in 〈2.2〉 using an orientation that is consistent with

the half-facet orientation of 〈2.1〉.

Table 2.2 Indexing and orientation of the half-edges in a cell t.

f e0 e1 e2

4t+ 0 (4t+ 0, 4t+ 1) (4t+ 0, 4t+ 2) (4t+ 0, 4t+ 3)
4t+ 1 (4t+ 1, 4t+ 2) (4t+ 1, 4t+ 0) (4t+ 1, 4t+ 3)
4t+ 2 (4t+ 2, 4t+ 3) (4t+ 2, 4t+ 0) (4t+ 2, 4t+ 1)
4t+ 3 (4t+ 3, 4t+ 0) (4t+ 3, 4t+ 2) (4t+ 3, 4t+ 1)

Every half-vertex, half-edge, and half-facet in a mesh can be uniquely

referenced using the aforementioned indexing schemes and these schemes will be
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used to implement the various queries and containers required to visualize, process,

tag, and assign attributes to specific simplicies in a tetrahedral mesh. The geometric

coordinates of a half-simplex s with vertices v0, v1, . . ., vk can be retrieved using

gJsK =

[
GJv0K ,GJv1K , . . . ,GJvkK

]
. (2.8)

2.1.3 Multi-Level Queries

CHF uses four levels to implement its functionality, consuming more

memory from one level to another but reducing the overall query processing time.

Level 0 represents the tetrahedral soup using two containers: G and T. Level 1

encodes the facet-opposite relationship and augments Level 0 by an adjacency

container, O with 4n3 entries, that links opposite half-facets together; a boundary

facet is linked to itself or to the bottom facet ⊥ depending on the application. Level

2 represents the simplicies explicitly and augments Level 1 with three additional

containers: a facet container, F with n2 entries, that maps a facet to one of its

half-facets; an edge container, E with n1 entries, that maps an edge to one of its

half-edges (a boundary edge is mapped to a boundary half-edge); and a

vertex–half-facet container, I with n0 entries, that maps a vertex to one of its

incident half-facets (a boundary vertex is mapped to a boundary half-facet). Level 3

represents the boundary using a compact half edge (CHE) representation [24] which

follows similar principals for representing a 2-manifold mesh, i.e. a 2-simplex

(triangle) is compactly represented as three vertices and every edge is associated

with its opposite vertex.

The half-facet opposite relation encoded using O at Level 1 is used in

accelerating the different queries that CHF provides, namely r33JtK, which returns

for a cell t its adjacent cells, can be realized in constant time without having to

iterate over all the cells to find the adjacent ones; O can be used to directly pick-up

these cells. O is also used to extract the boundary facets. The explicit

representation of simplicies facilitated by Level 2 allow us to assign mesh-level
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v oppJvK

Figure 2.2 Opposite facet adjacency relation. This relation associates the two
apexes of a internal facet together. Each apex corresponds to an opposite half-facet.

properties shared by all half-simplicies, such as the normal at a facet, the texture

coordinates at a vertex, and the material property at a cell. The explicit

representation of the boundary at Level 3 is used to extract the boundary facets and

vertices for surface rendering and collision detection routines.

Each half-facet f in a cell has a next, previous, and middle half-facet in

that cell, and for an interior half-facets an opposite half-facet in a an adjacent cell:

nxtJfK = 4(f div 4) + (f + 1) mod 4 (2.9)

midJfK = 4(f div 4) + (f + 2) mod 4 (2.10)

prvJfK = 4(f div 4) + (f + 3) mod 4 (2.11)

oppJfK = OJfK (2.12)

The next, previous, and middle half-facets all share one of their edges with the

original half-facet.

Each half-edge e in a half-facet f and cell t has a next and previous

half-edge in that half-facet, a mate half-edge in that cell, and for an interior

half-edge a radial half-edge in an adjacent cell:

nxtJeK = (e0, 4(e0 div 4) + P[e1 mod 4, e0 mod 4]), (2.13)

prvJeK = (e0, 4(e0 div 4) + P[e0 mod 4, e1 mod 4]), (2.14)

mteJeK = (prvJeK1 ,nxtJeK1) (2.15)

radJeK = (oppJe0K ,nextJ(oppJe0K , e1)K1), (2.16)
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where P represents the relative orientations of the half-edges inside a cell:

P =



− 3 1 2

2 − 3 0

3 0 − 1

1 2 0 −


. (2.17)

The repeated application of the mate and radial relationships will iterate

over all the half-edges of a given edge. Note that a boundary half-edge does not

have a radial half-edge and the result of the radial query is the sentinel value (⊥,⊥).

Figure 2.3 Link (left) and open star (right) of faces for a vertex (blue) and an edge
(green), respectively, in a tetrahedral mesh.

CHF is a lazy data structure: the entire memory required can be initially

reserved, then incrementally populated with every query and every level. The

queries can be precomputed or cached using memoization to reduce their runtime

and the whole memory representation can be serialized and loaded with the initial

scene. Further space savings are possible by compressing the binary representation

of vertex indices using an sorted opposite table (SOT) format as described in [42].

We extend CHF with two additional queries that were not addressed in the

original proposal: link of facets for a vertex, r̄02 outlined in {2.3} and link of facets

for an edge, r̄12 outlined in {2.5}. In 〈2.3〉, the link and open star of facets are

visualized for a vertex and an edge.
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Algorithm 2.1 r02 query (star of faces for a vertex).

1: function r02(v)
2: S← {}
3: for t in r03JvK do
4: for i = 0 to 3 do
5: S← S ∪ 4t+ i

6: return S

Algorithm 2.2 r02 query (open star of facets for a vertex).

1: function r02(v)
2: S← {}
3: for t in r03JvK do
4: for i = 0 to 3 do
5: if r30Jt, iK 6= v then
6: S← S ∪ 4t+ i

7: return S

Algorithm 2.3 r̄02 query (link of faces for a vertex).

1: function r̄02(v)
2: S← {}
3: for t in r03JvK do
4: for i = 0 to 3 do
5: if r30Jt, iK = v then Vv is opposite to facet 4t+ iU
6: S← S ∪ 4t+ i

7: return S

Algorithm 2.4 r12 query (open star of facets for an edge).

1: function r12(e)
2: S← {}
3: a← e
4: EdgeSweep(S, a, e)
5: if a0 = ⊥ then Ve is boundary; reverse directionU
6: a← radJeK
7: EdgeSweep(S, a, e)

8: return S

1: procedure EdgeSweep(S, a, e)
2: repeat
3: S← S ∪ a0

4: a← mteJaK
5: S← S ∪ a0

6: a← radJaK
7: until a0 = ⊥ or a0 = e0 do
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Algorithm 2.5 r̄12 query (link of facets for an edge).

1: function r̄12(e)
2: S← {}
3: a← e
4: EdgeSweep(S, a, e)
5: if a0 = ⊥ then Ve is boundary; reverse directionU
6: a← radJeK
7: EdgeSweep(S, a, e)

8: return S

1: procedure EdgeSweep(S, a, e)
2: repeat
3: S← S ∪ a1

4: a← mteJaK
5: S← S ∪ a1

6: a← radJaK
7: until a0 = ⊥ or a0 = e0 do

2.2 Deformable Models

A soft body can undergo deformations and is contrasted with a rigid body

that has a fixed geometry. Soft bodies are associated with deformable models that

are represented by a finite set of geometric nodes and associated rules that governs

their deformations. Physically-based deformable models are used to model tissue

behavior through the laws of continuum mechanics for elastic solids.

The displacements, u[k], encoding the deformations for a soft body with

nodes x are computed at each step with respect to the initial configuration (rest

state), x[0] such that:

x[k] = x[0] + u[k]. (2.18)

Elastic models are a specific category of physically-based models that, after

being deformed, return to their original position in the absence of any external load

[1]. The strain measures displacements through kinematic laws. An external force

applied to an elastic model induces stress while satisfying equilibrium conditions.

The stress is related to the strain related through constitutive laws based on the
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material’s mechanical properties. The stiffness governs the relationship between the

external forces and the resulting displacements at equilibrium, and is used to

compute the displacements and drive the simulation of an elastic soft body.

2.2.1 Linear Elasticity

The strain is a measure of the amount of deformation in a body. In the

simplest one-dimensional case, it is a measure of elongation, e.g., the ratio by which

a spring elongates when subject to a certain force. It is a rate of the displacements

in body relative to its reference position across normal and shearing directions. In

three dimensions, the strain is a second-order tensor that measures deformations

across three principal planes in three directions associated with an infinitesimal

cubic element:

ε =


ε00 ε01 ε02

ε10 ε11 ε12

ε20 ε21 ε22

 . (2.19)

The stress is a measure of the intensity of forces in a body. It has normal

and shearing components. In three dimensions, the stress is a second-order tensor

that measures forces across three principal planes in three directions associated with

an infinitesimal cubic element:

σ =


σ00 σ01 σ02

σ10 σ11 σ12

σ20 σ21 σ22

 . (2.20)

The stress and strain tensors are symmetric and can be represented as

6-dimensional vectors for convenience:

ε = [ε00 ε11 ε22 2ε01 2ε12 2ε20], (2.21)

σ = [σ00 σ11 σ22 σ01 σ12 σ20]. (2.22)
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The strain can be evaluated using the Green tensor as:

εij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

+
2∑

k=0

∂2uk
∂xi∂xj

)
, (2.23)

and for small deformations (linear elasticity), using the Cauchy tensor (a first order

approximation of the Green tensor):

εij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.24)

Using the Cauchy tensor, the strain-displacement equation (kinematics)

relating the strain to displacement is expressed as:

ε =



ε00

ε11

ε22

2ε01

2ε12

2ε20


=



∂u0
∂x0

∂u1
∂x1

∂u2
∂x2

∂u0
∂x1

+ ∂u1
∂x0

∂u1
∂x2

+ ∂u2
∂x1

∂u2
∂x0

+ ∂u0
∂x2





∂
∂x0

0 0

0 ∂
∂x1

0

0 0 ∂
∂x2

∂
∂x1

∂
∂x0

0

0 ∂
∂x2

∂
∂x1

∂
∂x2

0 ∂
∂x0




u0

u1

u2

 = Bu, (2.25)

and since the internal forces in a hyperelastic solid are fully characterized by the

stress, the (static) equilibrium equation relating the stress to external forces is

expressed as:

B>σ − f = 0. (2.26)

The deformation is characterized by the constitutive equation that relates

the stress to the strain through a (fourth-order) elasticity tensor:

σ = Eε. (2.27)

For isotropic elastic materials, where the material properties do not vary with

direction, the elasticity tensor can be expressed using two independent parameters

due to the symmetries involved: the Young’s elasticity modulus, E, and Poisson’s
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transverse ratio, ν, as σ = λ tr(ε)I + 2µε:

σ00

σ11

σ22

σ01

σ12

σ20


=



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ





ε00

ε11

ε22

2ε01

2ε12

2ε20


, (2.28)

where λ and µ are the Lamé parameters given by:

λ = Eν
(1+ν)(1−2ν)

, µ = E
2(1+ν)

. (2.29)

Young’s elasticity modulus relates normal stress and strain while Poisson’s

transverse ratio relates lateral contraction to longitudinal strain. E and ν can be

measured and used to accurately simulate the material’s behavior.

Substituting the strain-displacement equation (2.25) into the constitutive

equation (2.27) then into the static equilibrium equation (2.26) results in a set of

partial differential equations in terms of u:

B>EB
K

u− f = 0. (2.30)

The deformable model is simulated by (numerically) solving this system of

equations using the finite element method (FEM) at every discrete step of the

simulation.

2.2.2 Finite Element Method

FEM is a numerical approximation technique for computing solutions to

boundary value problems defined on a domain Ω. The domain is subdivided into a

mesh of simpler finite subdomains (finite elements) with simple geometric shapes,

Ω[e], that properly partition the domain with disjoint interiors. These conditions are
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Ω

∂Ω

Ω

∂Ω

Ω[e]

Figure 2.4 Discretization of a continuous domain Ω into a partitioning set of finite
elements Ω[e] .

satisfied by the manifold discretization presented in §2.1.1:

Ω =
⊎
e

Ω[e], (2.31)

Each element is represented by a set of nodes where each node with index i

has an associated basis function, ϕi, bound to it, i.e. ϕi(xj) = δij, and with local

support inside the element, i.e. ϕi is non-zero only inside the element and zero

elsewhere. The barycentric coordinates ξi (§2.1.1) defined inside an element satisfy

these conditions and are used as basis functions with the linear FEM:

∑
e,i

ϕ
[e]
i u

[e]
i =

∑
e

ϕ[e]>u[e] =
∑
e

ξ[e]>u[e]. (2.32)

The stiffness matrix and force vector can then be evaluated inside each element

using (2.30) as:

K[e] =

∫
Ω[e]

B>EB dx[e] = v[e]B[e]>E[e]B[e], (2.33)

f [e] =

∫
Ω[e]

N>f dx[e] = v[e]N[e]>f , (2.34)

where E[e] is constant throughout the domain, B[e] can be directly evaluated in a

tetrahedral element with barycentric (linear) basis functions [40] and has the
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following configuration:

B[e] =
1

6v[e]



a0 0 0 a1 0 0 a2 0 0 a3 0 0

0 b0 0 0 b1 0 0 b2 0 0 b3 0

0 0 c0 0 0 c1 0 0 c2 0 0 c3

b0 a0 0 b1 a1 0 b2 a2 0 b3 a3 0

0 c0 b0 0 c1 b1 0 c2 b2 0 c3 b3

c0 0 a0 c1 0 a1 c2 0 a2 c3 0 a3


, (2.35)

and the volume, v[e], of an element with nodes x0, x1, x2, and x3, is given by:

v[e] = 1
6

∣∣∣∣∣∣∣
x0 x1 x2 x3

1 1 1 1

∣∣∣∣∣∣∣ (2.36)

= 1
6
(x0 − x3) · (x1 − x3)× (x2 − x3). (2.37)

The order of nodes affects the sign of the triple product and a coherent orientation

of the vertices is used across the mesh ensures that the volume is positive.

For a domain discretized with n0 nodes, u and f have 3n0 entries and K

has 3(n0 × n0) entries, and are assembled using the direct stiffness method where

the individual K[e] and f [e] from each element Ω[e] are accumulated into K and f

using their global node indices:

K =
⊎
e

K[e], (2.38)

f =
⊎
e

f [e]. (2.39)

Every entry associated with an element at a node with global index i is mapped to

the global entries with indices 3i, 3i+ 1, and 3i+ 2, for rows in f and rows/columns

in K. The assembly process along with the use of a global displacement and force

vectors ensure that the conditions of displacement compatibility and force

equilibrium are satisfied, i.e. the displacement at a node is the same in all elements

and the sum of forces from all elements at a node balances out the external force at

that node [31].
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2.2.3 Corotational Method

The linear elastic model yields fast and stable simulations but might not be

suitable for handling large deformations. This is mainly due to the inability of the

first order strain measures to capture geometric non-linearities. Using the Green

strain can alleviate this problem as it is invariant under rotation. However, this

comes at an increased computational cost as the system has to be linearized in

multiple steps where the stiffness matrix and force vector are no longer constant and

must be reevaluated. This would severely impact the speed of the simulation and

risk introducing numerical instabilities away from the equilibrium state [8].

The corotational method is a less computationally demanding approach

that can used with the Cauchy strain and linear FEM to capture the rotational part

of the deformation gradient and mitigate the effect of geometric non-linearities. The

elements are rotated back to their reference orientation along with the forces then

the displacements are computed in that reference orientation and finally rotated

back to the current orientation. The positions of the nodes of an element x[e] can be

computed from the positions at rest x[e,0] usingx[e]

1

 = T[e]

x[e,0]

1

 , (2.40)

Q[e] = T[e]P[e], (2.41)

where T[e] is not necessarily a rigid body transformation (there are usually

stretching components) and can be computed using T[e] = Q[e](P[e])−1. The

rotation part of T[e] can be extracted using a singular value decomposition (SVD)
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[8] or a polar decomposition (PD) [17]. When using SVD, R[e] is computed using:

T[e] = UΣV>, (2.42)

R = VU>, (2.43)

R[e] =



R 0 0 0

0 R 0 0

0 0 R 0

0 0 0 R


. (2.44)

The element stiffness matrix, K[e], and element force vector, f [e], are updated using:

K[e] = R[e]K[e]R[e]>, (2.45)

f [e] = R[e]f [e]. (2.46)

The main stiffness matrix has to be updated at every iteration with this

method. However, the computational cost can be reduced by updating R[e] every few

steps and limiting the use of the corotatinoal method to large enough displacements.

The corotational method can be extended to handle element inversions as well [37].

2.2.4 Algebraic Constraints

The different interactions of the tissue with itself and the needle/thread are

modeled by constraining the displacement vector u with the aid of algebraic

constraints of the form:

Cu = b. (2.47)

These constraints linearly couple a subset of the nodes together, and any point in

the continuum can be captured using its barycentric coordinates. Satisfying these

equations is a constrained optimization problem of the form:

minimize 1
2
u>Ku− f>u (2.48)

with Cu = b, (2.49)
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and can be reduced to an equivalent unconstrained problem by introducing new

variables, λ (Lagrange multipliers), to eliminate the equality constraints. The

optimal (saddle point) solution, {u∗,λ∗}, for this equality constrained convex

quadratic minimization problem satisfies the following conditions [14]:

Cu∗ − b = 0, (2.50)

Ku∗ − f + C>λ∗ = 0, (2.51)

which can be written as a system of linear equations:K C>

C 0


u

∗

λ∗

 =

f
b

 , (2.52)

and is the Karush–Kuhn–Tucker system for the equality constrained problem. The

values of λ∗ are complementary to the constraints: an equality constraint either is

satisfied with a corresponding non-zero multiplier or is not satisfied with a

corresponding zero multiplier. The magnitude of the corresponding multiplier is an

indication of how strongly a constraint affects the system and the multiplier itself

represents a force in this mechanical context.

This constraint framework can be used to model simple to complex

interactions between the different objects that are being simulated. It is mainly

used to couple geometric positions together, namely, a vertex v can be fixed at

position v[k] by adding a constraint of the form

gJvK = v[k], (2.53)

which, when expressed in terms of displacements, is equivalent to

gJvK− v[0] = v[k] − v[0]. (2.54)

The number of rows in a single constraint yields a force along a line (1 row),

a plane (2 rows), or the whole space (3 rows).
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2.2.5 Sparse Solvers

The stiffness matrix K is symmetric by construction and is positive definite

when six degrees of freedom are fixed in three dimensions:

∀ x 6= 0 : x>Kx > 0. (2.55)

A vertex vi can be fixed to its initial position by setting, for 3i ≤ k < 3(i+ 1) and

0 ≤ j < 3n0:

K[k, j] = 0, (2.56)

K[j, k] = 0, (2.57)

K[k, k] = 1, (2.58)

f [k] = 0. (2.59)

Given that K is non-singular, the system in (2.52) is solved directly using

block elimination with the Schur complement of K to eliminate λ:K C>

0 −CK−1C>


uλ
 =

 f

b−CK−1f

 . (2.60)

Positive definite matrices are characterized by having real positive

eigenvalues and admit a unique Cholesky factorization:

K = LL>, (2.61)

where L is a lower triangular matrix with positive diagonal entries. With this

factorization, Ku = f can be efficiently solved using a forward substitution followed

by a backward substitution:

LL>u = f , (2.62)

Ly = f , (2.63)

L>u = y. (2.64)
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This factorization is used for solving the reduced version of the constrained linear

system in (2.60). Solving this system of equations requires a matrix product

involving K−1, but the inverse is not computed in practice, and instead, whenever

the value of a matrix product of the form K−1x is required, it is computed by

solving a linear system of equations:

b = K−1x, (2.65)

Kb = x. (2.66)

The columns of K−1C> can then be computed using a sequence of

substitutions, column-by-column for C>. With M = CK−1C> and q = CK−1f − b,

we end up with a dense linear system of equations:

Mλ = q, (2.67)

that is solved using optimized numerical routines for dense systems [4]. The values

of λ are then substituted in Ku = f −C>λ to solve for u using one last

forward/backward substitution.

The stiffness and constraints matrices, K and C, are usually quite sparse as

they are reflections of the underlying mesh connectivity. Their non-zero pattern

depends on the connectivity of the mesh and the polynomial order of the

interpolation functions that are used. A sparse matrix with m non-zero entries is

more efficiently represented using a 3×m array where each triplet contains the row

and column indices of an entry and its numerical value.

The factorization of K into its Cholesky form is computed and stored using

specifically tailored numerical routines and data structures from [28]. These routines

and structures exploit the sparsity pattern of K through a symbolic phase that

determines the non-zero pattern of K using an elimination tree, followed by a

fill-reducing ordering of the matrix entries based on its reachability graph, and

finally a recursive numerical factorization of K to compute its Cholesky factors. The
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rows and columns of K are shuffled to reduce fill-in and a permutation matrix P, a

square matrix with exactly one entry of 1 in each row and column and 0 elsewhere,

is used:

K = P>KP. (2.68)

Since the topology of the mesh is constant, K is factorized only once in the

beginning of the simulation, after fixing the necessary number of degrees of freedom,

and its factorization is reused throughout the simulation with forward/backward

substitutions.

2.2.6 Collision Response

At every step of the simulation, all the soft models are checked for inter-

and intra-intersections, in order to prevent or allow penetrations. The checks are

performed continuously where the motion of the nodes are interpolated in space and

time using techniques involving fast penetration filters coupled with a bounding

volume hierarchy (BVH) [45]. Only the boundary triangular surfaces of the models,

encoded on Level 3 of our mesh representation, are used when performing these

collision tests, and an indirection container is used to map the two different sets of

triangle indices together; the ones used in the mesh representation and the ones

used in the continuous collision detection routines.

Two types of intersections are handled: intersections between a vertex and

a face (vertex–face (VF)) and intersections between two edges (edge–edge (EE)),

along with their corresponding timestamps. These contacts are modeled with the

aid of properly imposed algebraic constraints that prevent inter- and

intra-penetration by holding the collision points together. This formulation allows

the underlying soft model to dictate the deformations as the constraints can either

be active or inactive based on the value of their Lagrange multipliers. A constraint

is active when it has a non-zero multiplier and can be further checked for whether it

is pulling the two contact points closer together or away from each other.
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Figure 2.5 Vertex–Face and Edge–Edge intersections.

With reference to 〈2.5〉, a VF contact between a point with barycentric

coordinates γ in face f and a vertex v is represented as

gJfKγ − gJvK = 0, (2.69)

and expands to 
f0,x f1,x f2,x

f0,y f1,y f2,y

f0,z f1,z f2,z



γ0

γ1

γ2

−

vx

vy

vz




1

1

1

 =


0

0

0

 , (2.70)

and an EE contact between two points in two edges a and b with barycentric

coordinates α and β, respectively, is represented as

gJaKα− gJbKβ = 0, (2.71)

and expands to
a0,x a1,x 0

a0,y a1,y 0

a0,z a1,z 0



α0

α1

0

−

b0,x b1,x 0

b0,y b1,y 0

b0,z b1,z 0



β0

β1

0

 =


0

0

0

 . (2.72)

These expanded forms are useful in picturing how the coefficient and node indices

are extracted and stored as a list of triplets in C.

〈2.6〉 shows an example of what can be achieved with this formulation in

terms of handling of contact using a practical scenario. There are two VF and four

EE collisions resulting in six constraints in total that will be encoded as 6× 3 rows
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Figure 2.6 Deformation of two soft slabs, with contact handling constraints in
place to prevent interpenetration. The contact complex is zoomed in the right figure
(VF in orange and purple, and EE in red and blue).

in C. The constraints are checked as they are added to the system as not to

over-constrain it; CK−1C> could become singular or ill-conditioned if incompatible

or redundant constraints (rows) are added and the over-constrained tetrahedrons

would collapse into a face, edge, or vertex, depending on the number of degrees of

freedom affected when all the associated constraints have to be satisfied.

The active constraints are kept or removed dynamically based on the value

of their respective Lagrange multipliers, e.g. for a VF constraint, the associated

Lagrange multiplier represents the mutual force between the vertex and the face,

and the constraint is removed whenever the normal component of its associated

force along the supporting face becomes negative: n̂>λ < 0; as that implies that the

face and vertex are pulling away from each other.

More interesting effects can be achieved using this simple yet powerful

model. As these constraints dictate that two given points be equal in position,

sticking effects will be noticeable at the boundaries. In order to prevent this, the

tangential components of the constraints are released to allow free tangential

movement of the two boundaries with respect to each other using:

n̂>gJfKγ = n̂>gJvK , (2.73)

where n̂ is the face normal vector. This allows the two coupled points to slide along
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the plane supporting the face f . A similar equation is used for EE constraints by

averaging the normal vectors of the two (boundary) faces incident to each edge. The

coefficients of these equations have to be updated every time the normal vectors are

updated, i.e. every time the geometry of the mesh is modified.

Note that different representations can be used for the different behaviors

(visual, physical, and positional) of soft tissue and these different representations are

usually coupled at the surface nodes or embedded within the interior cells. For

example, a highly detailed surface can be used for rendering and a coarser grid for

collision detection. We opt to use a single adaptive manifold mesh in this work, for

all representations and behaviors, that is fine on the surface and coarser on the

interior, and generated using the routines from [58, 62] and [61] for 3-manifold and

2-manifold meshes, respectively, with a spatially varying sizing field.

2.3 Related Work

The development of surgical training simulators and procedure-rehearsal

systems requires reliable models for suture simulation that can pass the tests of face,

construct, and content validity. The importance of this problem has led to a number

of efforts for modeling various aspects of the suturing task.

An early work by Berkley et al. [13] used constraints to model suture

closing in a FEM model. It presents a real-time methodology based on linear FEM

analysis that is characterized by high model resolution, low processing time,

unrestricted multipoint surface contact, and adjustable boundary conditions.

DiMaio and Salcudean [7, 20, 21] also uses FEM models for needle insertion and

steering inside soft tissue where a novel interactive virtual needle insertion

simulation is presented. The insertion model simulates three-degree-of-freedom

needle motion, physically-based needle forces, linear elasto-static tissue deformation

and needle flexibility for the planning and training of percutaneous therapies and
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procedures. A real-time simulation algorithm allows users to manipulate the virtual

needle as it penetrates a tissue model, while experiencing steering torques and

lateral needle forces through a planar haptic interface. An experimental system is

used to validate the approach. They also present a method in [10] for estimating the

force distribution that along a needle shaft during insertion is described. A

two-dimensional linear elasto-static material model, discretized using FEM, is used

to derive contact force information that is not directly measurable. A condensation

technique is used for the simulation.

Duriez et al. [39] describe a flexible needle insertion model that does not

re-mesh locally but instead uses complementarity constraints to tie points on the

needle to the elements of the tissue mesh. This strategy has obvious computational

savings and allows realistic biopsy and brachytherapy simulations to be performed.

Laycock and Day [33] survey some early models that have been proposed for

generating contact forces. More recent works have successfully used models

involving linear complementarity relations between gaps and reaction forces [43] to

handle contact.

A method for collision detection in used by Lee and Lee [52] where

collisions between a discretized needle model and a voxel-based human tissue model

with multiple layers and material properties are detected. In these works, node

repositioning, additions, and local re-meshing are performed in a two-dimensional or

three-dimensional volumetric FEM mesh to support the compatible sliding and

sticking movements of a needle inside the mesh. Another set of research efforts by

O’Leary et al. in [12] has focused on experiments intended to produce realistic

in-vivo and in-vitro values for friction forces, puncture thresholds, and other

parameters needed in validated simulations. Contact involving rigid tools and

deformable models have been studied in physically-based surgical simulations and

related haptic environments. Methods for collision detection for deformable models

have been described in [26, 29, 45].
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Guébert et al. [41] propose a promising simulation based on

complementarity constraint modeling of all interactions between surgical threads

and the embedding soft tissue. An implicit integration powered method, based on

complementarity constraints, is introduced for simulating virtual sutures in soft

tissue. It focuses on modeling the physical nature of the interactions between a soft

anatomical structure and a needle or surgical thread during a suturing task.

Puncturing through soft tissue is modeled along with friction. While in [34]

asymmetric bevel-tip steerable needles are simulated using an FEM nonlinear elastic

material model where the parameters are based on lab measurements. The study

focuses on the sensitivity of the up forces to tissue rupture toughness and

re-meshing is used. Nageotte et al. [25] present a planning method for simulating

the path of circular needles using kinematic and geometric analysis to help surgeons

perform a stitching task in laparoscopic surgeries.

Choi et al. [49] describes a suturing system using the physics available in a

commodity physics engine including line springs and chained linear segments.

Mass-spring chains have also been proposed for thread modeling. A model that uses

a spline endowed with a continuum dynamic model and sliding constraints was

proposed in [16]. It models the thread as a spline animated by continuous

mechanics. Sliding point constraints guide the position of the thread. The direction

of the thread can be constrained too. An adapted model of friction is proposed.

Linear mass-spring models are used to simulate pulling sutures in [11] through a

deformable model. Two separate deformable surfaces can be connected using a

suture. A multi-modal environment to teach basic suturing and knotting techniques

is presented in [44]. Tissue is modeled as a modified mass-spring system and the

suturing material as a mechanics-based deformable linear object.

Chentanez et al. [38] presents algorithms for simulating and visualizing the

insertion and steering of needles through deformable tissues for surgical training and

planning. A novel algorithm for local re-meshing that quickly enforces the
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conformity of the tetrahedral meshes to the curvilinear needle path coupled with an

efficient method for coupling the three-dimensional finite element simulation with a

one-dimensional inextensible rod with stick-slip friction. Optimizations that reduce

the computation time for physically-based simulations are used too.

In [19], Crouch et al. demonstrate through collected experimental data

that time- and velocity-dependent nature of the deformation resulting from needle

insertion into soft tissue. The deformation during insertion is well represented using

a velocity-dependent force function with a linear elastic finite element model.

Goksel et al. in [22] present a three-dimensional needle-tissue interaction model

that is adapted to accommodate arbitrary meshes so that the anatomy can be

effectively meshed. The model is used to design a prostate brachytherapy simulator

and needle-tissue coupling is achieved with node repositioning and addition.

Geometric techniques and deformable models for simulating knots are presented in

[5, 15, 18, 27, 30, 32].

As can be seen, suture simulation is an active field of research and has

being tackled by various academic and industrial groups. The different models strive

to reach a compromise that provides a balance between high-fidelity and real-time

simulation. However, none of the techniques that we have reviewed explicitly

decompose the motion of the needle into disjoint components or expand on the

specifics of incrementally tracking a rigid needle through the underlying soft tissue

tetrahedral mesh using simpilicial adjacency operations. Our contribution aims to

fill this gap and provide robust and efficient techniques for achieving that task.

33



Chapter 3

Methods

3.1 Motion Decomposition

The motion of a rigid needle can be modeled as rigid body transformations

applied to the frame supporting its orientation and position. These transformations

are processed at every inter-frame and can be decomposed into two components: A

sliding component for motion that is tangential to the needle’s axis, and a sticking

component for motion that is transversal to the needle’s axis.

Let the positions and orientations of the needle at two successive time steps

be denoted by R[k] and R[k+1], respectively and T[k] be the rigid body

transformation between them, consisting of a rotation Q and a translation t:

R[k+1] = T[k]R[k], (3.1)

T[k] =

 Q t

0 1

 . (3.2)

T[k] is the result of an end-user interacting with the system at step k, and

it is convenient to decompose T[k] into two components: an axial sliding component

where the needle moves along its natural axis with every point moving tangentially

along the axis, and a transverse sticking component where the needle translates and

rotates to reach its final position. These two components are used in updating the

displacements and forces in the system in two fractional steps.

R[k+1] = T[k]R[k] = D[k]

sticking

S[k]

sliding

R[k]. (3.3)

S[k] is a transform that acts along the axis of the needle by moving it by a
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certain signed amount, whereas D[k] is a transform that moves the needle along the

directions transversal to the needle’s axis. As the needle is assumed to be rigid, S[k]

must be uniform, i.e., all the needle points slide by the same amount and along the

same direction; the needle slides as a whole. On the other hand, D[k] is not

necessarily constant for all needle points. It actually maps a point from parametric

space to 3-space, which corresponds to the amount by which a needle point sticks to

soft tissue at every step.

The decomposition of the needle motion and corresponding displacements

into these two fractional steps is primarily motivated by the different types of

needle-tissue mechanical behavior that take place when the needle displaces the

embedding tissue. It is worth noting that this decomposition is different from the

rotation–translation rigid body decomposition. When the needle is sliding in the

tissue, it is essentially gliding unimpeded except by the (typically small) dynamic

friction forces along its path. The tissue deformation induced is small since it only

caused by the frictional forces tangential to the needle’s path. On the other hand,

when the needle is sticking to the tissue, its motion causes significant bulk

deformation of the embedding tissue. Larger forces are induced because of the strain

energy build up in the tissue and these forces are needed to maintain the deformed

shape.

The needle would rarely slide or stick in a perfect fashion in practice but let

us consider these two extreme cases: When the needle perfectly slides along its axis,

the sticking component vanishes and the needle does not deform the model when

cutting and friction effects are ignored; it would just drive through the mesh

without deforming it. When the needle moves transversally to its sliding direction,

the sliding component vanishes and the needle deforms the model without changing

its location with respect to the underlying tissue mesh. As an example, consider a

straight needle moving perpendicular to its axis: all of its inter-frame motion will

translate into sticking motion and the needle just deforms the model without
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changing its topological whereabouts.

However, in practice, both types of motion take place simultaneously during

interaction, and it is convenient computationally to divide an update step into a

sliding step with minimal (or no) friction and tissue deformation, and a step where

the needle sticks to the tissue and deforms it in its motion. While the motion takes

place, the haptic forces felt by the user are the resultants of the stresses on the

needle due to both the sliding and non-sliding steps. If at any point the needle’s

motion is halted, the forces felt by the user will be only the resultants of the needle

contact stresses due to the non-sliding component. This is essentially a viscous

model of the frictional phenomenon.

Since this decomposition is not unique, our strategy is to define the sliding

component to be the transformation that cause the needle to move the closest to its

final position, followed by the transformation that causes bulk deformations. Note

that both factors in the decomposition include rotational and translational

components. The new position of the needle’s handle (where it is being grasped at

the current step) is projected onto the plane containing the previous position of the

needle, and the nearest point is used as anchor point for computing S[k]. The sliding

component is the portion of the needle’s axis that connects the projection of the

current position of the handle to its previous position and is used for all needle

points. This strategy is justified by an energetic consideration where the distance

between successive positions of the handle is minimized; more refined versions of

this decomposition strategy are possible.

The sliding component is represented as a scalar—a distance, σ, along the

natural (whether linear or circular) sliding direction. It is computed using the

inter-frame motion, the natural sliding direction of the tool, and the current support

point (handle). As described previously, the current position of the handle is

projected along the previous sliding direction and the amount by which the handle

slides to reach its projected position defines the uniform sliding amount, i.e., the
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needle is treated as a whole when sliding.
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Figure 3.1 Linear and semi-circular motion decomposition.

3.1.1 Needle Parametrization

Two common types of needle geometry are handled: straight and

semi-circular needles, and they are encoded using a unified parametric arc-length

representation. A needle has an end, where it is usually grasped with a thread

attached to it, and a tip, through which it is driven through soft tissue. The end is

at parametric coordinate 0 and the tip is at ` (the needle’s axial length). A needle

then can be represented with 0 ≤ α ≤ ` as

s(α) = p+w(α). (3.4)

Let τ [k](α) denote the motion of a needle point between two consecutive

frames k and k + 1 (inter-frame motion) with parametric coordinate α:

τ [k](α) = s[k+1](α)− s[k](α). (3.5)

The sliding component σ[k](α) is constant for all points s(α) spanning the needle’s

length and it is represented as a signed distance (scalar) along the direction of the

needle’s axis:

σ[k](α) ≡ σ[k], (3.6)

which translates to a simple parametric coordinate shift using an arc-length needle

parametrization where the shifted sliding position is denoted with s(α). For a point
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with parametric coordinate α, δ[k](α) represents the sticking amount of the

parametric point α at step k.

s[k+1](α) = τ [k](α) + s[k](α)

= δ[k](α)

sticking

+σ[k](α)

sliding

+s[k](α)

= δ[k](α) + s[k]
(
α + σ[k]

)
= δ[k](α) + s[k](α)

(3.7)

For a straight needle, p is the end point and w(α) = αŵ where ŵ is a

unitary vector supporting the needle’s axis:

s(α) = p+ αŵ. (3.8)

The sliding amount, σ[k], is extracted by projecting the current position of the

handle, s[k+1](α), along the previous supporting direction:

σ[k] = τ [k](α)ŵ[k], (3.9)

and the transverse component, δ[k](α), is computed using:

δ[k](α) = τ [k](α)− σ[k]ŵ[k], (3.10)

for every needle point as shown in 〈3.1〉.

The linear motion decomposition approach can be generalized for arbitrary

continuous needles shapes by approximating their outline with a sequence of line

segments. The motion of these line segments can then decomposed by applying the

linear motion decomposition technique to each line segment and aggregating the

sliding components together into a single uniform component, which is in turn

applied to the whole needle. When this technique is applied to a circular arc, we get

a formulation for circular motion decomposition.

For a semi-circular needle, p is the center of the needle’s supporting circle

with radius r:

s(α) = p+ r cos
(

1
r
α
)
û+ r sin

(
1
r
α
)
v̂, (3.11)
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with û and v̂ two unitary vectors orthogonal to each other and ŵ a unitary vector

supporting the direction that joins the needle’s center to its end.

Circular decomposition follows directly from the limit case when

approximating a circular needle by a sequence of line segments. Two orthonormal

frames are built and the amount of rotation between them is approximated along

the closest point to the handle. The handle, s[k+1](α) is projected along the

previous (circular) direction using:

c = s[k+1](α)− p[k], (3.12)

q̂ = normalize(c− (c>n̂)n̂), (3.13)

z = p[k] + rq̂, (3.14)

where ~n = û× v̂. z is the projection of s[k+1](α) along the previous direction and is

computed as the closet point to the needle handle’s previous position. With

â = normalize(s[k](α)− p[k]), (3.15)

b̂ = normalize(z − p[k]), (3.16)

the sliding amount is extracted using:

σ[k] = sgn
[
n̂>(â× b̂)

]
r arccos(â>b̂), (3.17)

an amount by which the needle’s handle rotated around its center in the same

supporting plane between the two steps. An example using this decomposition

strategy is shown in 〈3.1〉.

This parametric representation can be used to seamlessly switch between

the two geometries and decouple the needle’s resolution from the soft tissue mesh’s

resolution. It also allows the coupling of needle points to mesh points through

matching parametric and barycentric coordinates. With this representation, the

needle can be easily moved around based on the end-user interactions with the

system. The rigid body motions resulting from the end-user interactions are directly
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applied to the points and vectors supporting the needle’s representation at the

handle and represented as an affine transformation matrix T[k]. The two frames,

end-user devices and needle, are interlocked, and the motion is relayed between

them:

s[k+1](α) = Tks[k](α) = T[k]p[k] + T[k]w[k](α). (3.18)

This representation is also used to generate the visual model of the needle.

The parametric space is sampled at regular intervals and a sequence of cylinders is

built around the supporting curve (skeleton) to generate a visual representation of

the needle. This discrete polygonal representation can be used as a collision model if

more realistic interactions between the needle and soft tissue are desired.

3.2 Needle Driving

A needle’s main purpose is to introduce a thread into soft tissue to tighten

a suture. It first punctures the boundary (from the outside to the inside) then

drives through the tissue, paving the way for the thread to follow, and finally

punctures the boundary (from the inside to the outside) and exits through. As a

first step in modeling this task is to decompose the motion of the needle into two

disjoint components and handle each separately.

Decomposing needle displacement into two disjoint components (sliding and

sticking) allows a needle-tissue interaction simulation step to be divided into two

disjoint phases: a bookkeeping (sliding) phase for tracking the needle inside the

mesh, and a deformation (sticking) phase. Tracking the needle as it moves inside

the soft tissue is an integral component of the suture simulation. It consists of

keeping track of the intersection points between the needle and the discretized tissue

model, and coupling these points through the use of linear constraints. The end goal

is to efficiently and robustly simulate the driving of a needle into soft tissue. The

different steps of our approach are depicted in 〈3.2〉.
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The most computationally expensive part of the simulation is solving the

underlying system of linear equations, nonetheless, other tasks have a considerable

computational cost as well. Therefore, computational savings across any level are as

equally important. Our strategy relies on using a list of history cells and

incrementally updating it using the sliding component and the simplicial adjacency

operators provided by the supporting data structure in order to generate the

constraints representing transverse motion.

The uniform non-deforming component is used in updating the history list

of visited cells which is represented using a list. This list of cells is used for

incrementally computing the intersection of the needle with the deformable model

and for generating the constraints that model the interaction between the needle

and soft tissue. The search for the new location of the tip is initiated with the cell

that contains it at the current step and a local search, guided by the sliding

component, through the adjacent cells is performed to track the movement of the

tip and update its position inside the mesh.

Figure 3.2 An example of tracking a straight needle inside a soft tissue mesh that
depicts the general idea behind our proposed approach. Inter-frame needle motion is
decomposed into two separate components: sliding (non-deforming) and sticking
(deforming), then the needle is slid and its position in the mesh is updated. The
new needle position is coupled to the previous cell intersections and the system is
solved and updated.

3.2.1 Incremental Tracking

A straightforward way of tracking the needle inside tissue is to compute, at

every inter-frame, its intersection with every cell in the discretized model. This is
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clearly not suitable for real-time simulation as it comes with a heavy computational

cost: one has to go over all the cells and check whether the path of the needle

intersects with one of their faces. A simple and efficient method that makes use of

the rigid and continuous nature of the needle to reduce the overall computational

cost is needed.

Our method relies on incrementally updating the position of the needle

with respect to the mesh it intersects. As the needle is represented as a continuous

model, the body of the needle will follow the same topological path travelled by its

tip (follow-the-leader approach) and the path of the needle tip can be used to track

the entire needle and update the current intersection points. As described in §3.1,

the sliding and sticking displacements are updated at every inter-frame; however, for

the purpose of tracking, only the sliding component affects the intersection points

(topological elements). Therefore, only the sliding information is used to update the

position of the needle with respect to the models it intersects.

3.2.1.1 Tip Tracking

As the tip is moving across the simulation domain, its location with respect

to the tissue’s mesh is updated by tracking the index of the cell t it resides in. This

index is guaranteed to be unique because the interiors of the cells do not intersect in

our representation. The exterior of the mesh is represented as a single cell, referred

to as the outside cell, indexed using ⊥ (the outside of the mesh), and is incident to

all boundary faces. This representation simplifies the process of locating the tip: it

is always located in a cell, whether inside or outside the mesh, and tracking it

simplifies to detecting whether it moves through a face or not, resulting in two

outcomes at every step: the tip crosses a face (jumps to a different cell) or it does

not (remains in the same cell). This process is repeated until the tip reach its

current position.

When the tip is inside the mesh, the cell into which it moves, if any, can be
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Algorithm 3.1 Tip tracking through a tetrahedral mesh.

1: procedure LookAround(s[k], s[k+1], t)
2: if t 6= ⊥ then
3: for f in r32JtK do
4: if (s[k], s[k+1]) u gJfK then
5: StepPoint(s[k], s[k+1], t, f)

6: else
7: f ← (s[k], s[k+1]) u ∂Ω
8: if f 6= ⊥ then
9: StepPoint(s[k], s[k+1], t, f)

10: procedure StepPoint(s[k], s[k+1], t, f)
11: if t 6= ⊥ then
12: t← b1

4
oppJfKc

13: else
14: t← b1

4
fc

15: s[k] ← (s[k], s[k+1]) u gJfK
16: LookAround(s[k], s[k+1], t)

identified by jumping into the opposite of the intersected half-face and then

querying the data structure for the parent cell incident to that face. Now that the

cell into which the tip has moved is identified, the portion of the displacement

contained within the previous cell is disregarded; this will incrementally consume

the displacement vector as the tip moves along and eventually the lookup process

terminates.

The lookup process is summarized in {3.1} with the tip at position s[k]

located in cell t and moving to position s[k+1]. The process can be further simplified

by overloading r32J⊥K to return all boundary faces, resulting in {3.2}. These

routines are capable of handling multiple boundary crossings and forward/backward

motion along a sliding direction during the same inter-frame. A sample application

of this routine is shown in 〈3.3〉 where a point is being tracking through a

tetrahedral slab.

If the needle is purely sliding, then s[k+1](α) = s[k](α), and that fact can be

used to abstract away the underlying geometry of the needle from the tracking
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Algorithm 3.2 Simplified tip tracking through a tetrahedral mesh.

1: procedure LookAround(s[k], s[k+1], t)
2: for f in r32JtK do
3: if (s[k], s[k+1]) u gJfK then
4: StepPoint(s[k], s[k+1], t, f)

5: procedure StepPoint(s[k], s[k+1], t, f)
6: s[k] ← (s[k], s[k+1]) u gJfK
7: if t 6= ⊥ then
8: LookAround(s[k], s[k+1], b1

4
oppJfKc)

9: else
10: LookAround(s[k], s[k+1], b1

4
fc)

Figure 3.3 Tip tracking through a tetrahedral slab.

process. Both straight and semi-circular needles are treated as a single generic

parametrized model, and the intersection routine is modified to correctly capture

the intersections for each case.

Every valid intersection results in a pair of parametric/barycentric

coordinates for the intersection point, α and ξ = (ξ0, ξ1, ξ2), such that

s(α) = gJfK ξ, (3.19)

and this pair of coordinates, [α, ξ], is used to couple the needle and soft tissue

through specific complementarity constraints. It should be noted that this approach
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is not tightly coupled to the underlying data structure and supporting element and

can be adapted to other mesh elements as long as the required adjacency operators

are supported.

3.2.1.2 Intersection Tests

The intersection test for the tip path with a given face boils down to

whether valid values can be assigned to barycentric face coordinates and needle

parametric coordinates such that they coincide at a single point. It is performed in

two stages: The first stage consists of sliding along the needle axis while checking

whether it intersects with the plane in which the triangle (face) in question resides

and the second step consists of trying to assign valid barycentric coordinates to the

intersection point, if any, such that it lies inside triangle.

For a straight needle, the Möller-Trumbore’s algorithm [3] is an efficient

way to detect intersections between a line segment and a triangle. The intersection

point satisfies s(α) = gJfK ξ which expands to p+ αŵ = [f0,f1,f3]ξ and by

rearranging the terms we obtain the following system:

[−ŵ,f1 − f0,f2 − f0]


α

ξ1

ξ2

 = p− f0, (3.20)

which is then solved using a sequence of triple products for α, ξ1, and ξ2, with

ξ0 = 1− (ξ1 + ξ2). An intersection is valid when ` ≤ α ≤ `+ σ and 0 ≤ ξi ≤ 1.

The intersection test is a bit more involved for the semi-circular case. Let n̂

denote the unit normal of the face f . The plane supporting f can be implicitly

represented as (s− f0)>n̂ = 0 and s(α) has to satisfy the plane’s equation if the

semi-circular arc were to intersect with the triangle, i.e.

(
p+ r cos

(
1
r
α
)
û+ r sin

(
1
r
α
)
v̂ − f0

)>
n̂ = 0. (3.21)
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By rearranging the terms of (3.21), we obtain the following identity:

r cos
(

1
r
α
)
û>n̂+ r sin

(
1
r
α
)
v̂>n̂ = −(p− f0)>n̂, (3.22)

which by a change of variables is equivalent to a cos θ + b sin θ = c. With

q =
√
a2 + b2, the previous equation can be expressed as

(a/q) cos θ + (b/q) sin θ = c/q; 0 ≤ |(a/q)| , |(b/q)| ≤ 1. (3.23)

Since (|a| , |b| , q) is a Pythagorean triplet, we can substitute (a/q) with sinφ and

(b/q) with cosφ and the result is

sinφ cos θ + cosφ sin θ = sin(φ+ θ) = c/q. (3.24)

If |c/q| > 1, the equation has no solutions and the triangle and arc do not intersect,

otherwise, φ can be extracted using arctan (a/q, b/q) and θ is computed using

θ = [arcsin (c/q) , π − arcsin (c/q)]− φ, (3.25)

then the face barycentric coordinates ξ are computed for these two candidate points

and with α = rθ checked for validity when ` ≤ α ≤ `+ σ, and 0 ≤ ξi ≤ 1.

3.2.2 History Tracking

The successive tissue intersections points that are crossed by the tip can be

tracked through the use of a history list container, H, where Hi is a combination of

a cell index, ti, a needle parametric coordinate, αi, and a tissue barycentric

coordinate, ξi. As the tip can only switch between cells by crossing a face in a

3-manifold, the sequence of crossing events (valid intersection tests) is logged and

used to populate the history list for tracking the whole body of the needle inside the

tissue. A cell is added and kept in the list as long as the needle is intersecting it

since operations that would change the topology of the mesh are ignored.

The history list will contain at ever step only the current intersection points

of the needle with the soft tissue mesh and these points are used to impose
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constraints for coupling the needle and tissue together and modeling their

interaction. This list of intersection points encodes a sequence of tissue cells that

are adjacent through opposite faces; this is an invariant property of the history list

and all operations that modify the list should maintain this property. The cells of

the history list are a 2-connected subset of the underlying simplical complex [9].

(a) Boundary (b) Parametric (c) Growth (d) Shrinkage

Figure 3.4 Four cases for addition, removal, and update of history cells.

The history list is treated as a stack where the top element always references

the cell that contains the tip at the current step k and is used as a starting point in

the search routine for the new location of the tip; H is never empty and is initialized

with the outside cell (⊥) at the beginning of the simulation. This search will result

in four different possibilities pictured in 〈3.4〉 for updating the history list.

We distinguish between three sliding situations across the needle’s axis:

(a) forward: σ[k] > 0, (b) backward: σ[k] < 0, and (c) none: σ[k] = 0. The sliding

phase has no effect on the coupling when the needle does not slide, and the history

list remains unchanged. If the needle slides forward, the path of the sliding tip is

tested for intersections with the mesh and cells are added for valid intersections

{3.3}. No intersections tests are performed when the needle is sliding backward, and

the cells are removed when their parametric coordinates go beyond the range of the

needle’s support. The barycentric coordinates are fixed throughout their lifetime in

the history list as the topology of the tissue mesh does not change.

After locating the tip inside the mesh using its new position, H is traversed

to update the parametric coordinates of the needle points and to mark cells that are
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Algorithm 3.3 History tracking with forward sliding through a tetrahedral mesh.

1: procedure LookAround(H, s[k], σ[k])
2: for f in r32JH.topK do
3: {α, ξ} ← (s[k](`), s[k](`+ σ[k])) u gJfK
4: if ξ 6= 0 then
5: StepPoint(H, s[k], σ[k], {f, α, ξ})

6: procedure StepPoint(H, s[k], σ[k], {f, α, ξ})
7: σ[k] ← σ[k] − (α− `)
8: if H.top 6= ⊥ then
9: t← b1

4
oppJfKc

10: else
11: t← b1

4
fc

12: H.push({t, α, ξ})
13: LookAround(H, s[k], σ[k])

no longer being intersected by the needle, namely those that are outside the

parametric range [0, `]. The parametric coordinates are updated at this step by

subtracting the sliding component σ[k] using

α
[k+1]
i = α

[k]
i − σ[k]. (3.26)

If α
[k+1]
i > `, the point lies beyond the tip and is no longer part of the needle; the

corresponding entry is removed from the history list. We keep the entries with

α
[k+1]
i < 0 as they are used the track the thread through the tissue, however, they

do not contribute to coupling the needle and tissue together. The thread is attached

at α = 0 and has a parametric range of [0,−η] where η is the total length of the

thread. The entries with α
[k+1]
i < −η are removed.

Boundary faces require a special treatment as they induce a deformation.

Whenever the tip goes through a boundary face, the tracking process is halted as

long as the tip is in contact with the boundary face to allow for surface

deformations to occur; the deformation is enforced through transverse deformations

and is handled in §3.2.3. The tracking resumes only after the tip punctures through

the boundary or loses contact with it.

One last modification is required to properly handle inside-out punctures.
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Algorithm 3.4 History tracking with forward/backward sliding through a
tetrahedral mesh.

1: procedure TrackNeedle(H, s[k], σ[k])
2: if σ[k] > 0 then
3: LookAround(H, s[k], σ[k])

4: if σ[k] 6= 0 then
5: UpdateParametric(H, σ[k])

6: procedure LookAround(H, s[k], σ[k])
7: for f in r32JH.topK do
8: {α, ξ} ← (s[k](`), s[k](`+ σ[k])) u gJfK
9: if ξ 6= 0 then

10: StepPoint(H, s[k], σ[k], {f, α, ξ})

11: procedure StepPoint(H, s[k], σ[k], {f, α, ξ})
12: σ[k] ← σ[k] − (α− `)
13: if H.top 6= ⊥ then
14: t← b1

4
oppJfKc

15: else
16: t← b1

4
fc

17: H.push({t, α, ξ})
18: LookAround(H, s[k], σ[k])

19: procedure UpdateParametric(H, σ[k])
20: for i = H.length− 1 to 1 do
21: H[i].α← H[i].α− σ[k]

22: if H[i].α > ` then
23: H.pop()
24: else if H[i].α < 0 then
25: H[i].deactivate()
26: else
27: H[i].activate()
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Following an inside-out puncture, the tip is located outside the mesh and the last

puncture point is lost in the process as the barycentric coordinates are not valid for

the outside cell (⊥). This boundary face index can be recovered by keeping track of

the intersected face indices instead of the cell indices; the cell indices can always be

recovered using t = b1
4
fc to be used in the tracking routines.

It is worth mentioning that this whole process automatically adapts to the

soft tissue mesh resolution. Finer meshes result in more intersection tests, more

needle-tissue coupling points, and a more accurate needle-tissue interaction overall.

3.2.2.1 Special Cases

As the inter-frame path of the tip is being tested for collision with the

boundary, one has to take into account that multiple boundary intersections can

occur. When that is the case, the intersections have to be sorted (in time) based on

their parametric coordinates and only the first such intersection is taken into

account; the rest are discarded and will be retrieved at a later stage when the tip

reaches its final position.

Figure 3.5 Three possible inter-cell crossings: through a face (left), through an
edge (middle), and through a vertex (right).

As the tip exits the current cell it currently resides in, it necessarily goes

through its boundary. We have assumed in our treatment throughout that the tip

always exits through a face, which is not technically incorrect as the cell bound by

faces, however, when that exit is through a vertex or an edge (that are part of that
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face) the opposite relationship between the face that the tip exists through and the

face that the tip enters through is no longer valid and the tracking process will fail;

two adjacent faces can share one, two, or three vertices as shown in 〈3.5〉.

A remedy to this problem is to use the star of faces (r02 for a vertex and r12

for an edge; depicted in 〈2.3〉) as intersection candidates as the tip is guaranteed to

be contained within that star; the star of faces completely wraps around the vertex

or edge. In practice, the link of faces is used instead of the star to prevent a cell

from being added twice to the list. Using the face link query also preserves the

invariant adjacency property of the history list such that two consecutive cells

always intersect, either through a vertex, an edge, or a face. An (extreme) example

where the tip only intersects with edges is shown in 〈3.6〉.

Figure 3.6 Tip tracking through a tetrahedral slab with edge intersections. The
face link query is used at every single step to get list of faces to be tested for
intersection.

3.2.3 Boundary Puncture

The puncturing dynamics can be simplified to a VF intersection test where

the corresponding constraint is applied as described in §2.2.6. A strain-based test is

used to decide whether the constraint should be released or not. The tip will deform

the model until it is either pulled back and loses contact with the surface, or pushed

in until it penetrates the surface. The mutual force between the tip and the

boundary is extracted from the VF constraint’s Lagrange multiplier, then projected

onto the needle’s axis.
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The resulting scalar value is compared against a tissue-dependent (stress)

threshold to decide whether the constraint should be released or kept active. This

holds the tip and boundary point together while the tip pushes on the soft tissue.

The constraint is kept active and updated until the induced force exceeds the

specified threshold or the needle is pulled back and the tip is no longer engaging

with the boundary. When the force exceeds the specified threshold, the constraint is

released and the tip punctures the surface, driving through the mesh, crossing one

or more cells before reaching its final position. When the force induced becomes

negative, the constraint is released and the tip loses contact with the boundary.

3.2.3.1 Motion Playback

After releasing the constraint that holds the tip and boundary together, the

boundary is going to snap back to its position on first contact with the tip, but the

needle remains in the same position. The tip could have crossed multiple cells after

puncturing the boundary. To detect these cells, the motion of the needle is logged

from the first point of contact with the boundary to the last point of contact, up

until the constraint is released.

After the playback, the needle is back to its pre-playback position and the

cells crossed by the needle are part of the history list. From there on, the regular

tracking procedure is applied. This motion playback process is applied whenever the

tip enters or exits soft tissue, and the underlying algebraic system is solved at every

step of the playback phase to handle the resulting sticking motion.

The motion of needle is logged as rigid body transformations, Ti, that were

applied to the frame supporting its orientation and position while its tip was

interacting with the boundary. These transformations are used to replay the motion

of the needle, starting with the position of initial contact with the surface, and

ending with the current position; the displacements are discarded when the needle is

no longer in contact with the surface. The needle is tracked inside the mesh using
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the same techniques described earlier, except that there is no puncturing threshold

during this phase, i.e., the needle crosses boundary cells without any resistance.

After the tip punctures the boundary and the transformations are applied

in reverse order (3.27), the needle moves back to its original position when it first

came into contact with the boundary by applying the following transformation:

T−1
0 T−1

1 T−1
2 · · ·T−1

m−1. (3.27)

In practice, we store the position and orientation of the needle every time it comes

in contact with the boundary and use them to restore it to its initial position at

contact instead of inverting these matrices. After the needle is back to its position

on first contact, the Ti are decomposed into DiSi successively, and the history list is

updated accordingly.

〈3.7〉 shows an example where the tip intersects multiple cells after crossing

the boundary. The mesh also deforms due to sticking, and the resultant force are

rendered to the user. Now that the needle is back to its pre-playback position and

the cells crossed by the needle are part of the history list, the invariant property of

the history list is restored and normal tracking resumes. The motion playback

routine is applied whenever the tip enters or exits soft tissue, and the underlying

algebraic system is solved at every step of the playback phase to handle the resulting

sticking motion. Although the playback phase requires solving the algebraic system

multiple times in a row, it is only activated when interacting with the boundary.

3.2.4 Transverse Deformation

The transverse (sticking) phase affects the geometry of the mesh where the

intersection points are driven into their final position (on the needle) by imposing

proper algebraic constraints. D[k] from (3.3) is basically applied to the parametric

coordinates of the history list to compute the amount of sticking deformation for

every coupling point. The sticking amounts are incorporated into VF constraints
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Figure 3.7 Driving a needle through two disjoint slabs. The needle punctures
through four boundary faces to reach its final position. The red cells are actively
tracking the needle and the blue/green cells are tracking the thread..
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that guide the deformation. For every entry indexed by i in the history list, a

constraint of the following form is imposed with reference to (3.19):

gJfiK ξi = s[k](αi) + δ[k](αi), (3.28)

after which the internal forces, for each cell, can be computed using the associated

Lagrange multipliers.

One trick to accelerate the simulation is to aggregate the sticking

components between steps and apply the deforming constraints with the aggregate

values every few steps. This strategy reduces the number of solutions required and

considerably accelerates the computation time. One can even aggregate all the

transformations applied to the needle between a given number of steps if increased

speedup is desired, on the expense of reduced accuracy.

3.2.4.1 Slipping and Friction

The sliding phase also modifies the underlying geometry when the needle is

in contact with the mesh’s boundary. This happens when the tip is entering the

mesh (outside-in puncture) or exiting the mesh (inside-out puncture) and is

apparent in particular for inside-out punctures: the interior points coupling the

needle to the mesh will stick to the needle’s axis, preventing it from sliding through,

and resulting in an abnormal bulge at the puncture point.

This situation requires a special treatment to allow the needle to freely slide

through the (internal) contact points while it is pushing the boundary and is

achieved by projecting the constraints with these points along the needle’s axis,

freeing one of their degrees of freedom and allow the needle to move freely along its

axis through these tissue points. The resulting projected constraints are expressed

for an entry at index i as:

PigJfiK ξi = Pis
[k+1] (αi) , (3.29)
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where Pi = [û>i ; v̂
>
i ] is a 2× 3 transformation matrix that projects along the plane

orthogonal to the needle’s axis at position αi; it is the same for all points for a

straight needle. The constraint coupling the needle tip to the boundary remains the

same. P’s supporting vectors, û and v̂, along a needle axis ŵ are computed using:

û = â× ŵ (3.30)

v̂ = ŵ × û (3.31)

with â ∈ {±ŵ × êx,±ŵ × êy,±ŵ × êz} with êx = (1, 0, 0), êy = (0, 1, 0), and

êz = (0, 0, 1). These vectors are tested in sequence until a proper orthonormal frame

is built.

After solving the system with the projected 2-row constraints, the

parametric coordinates of the cells, αi, have to updated to match the new position

of the needle with respect to the mesh since there has been some sliding. The

barycentric coordinates remain the same because the needle only slides through the

cells. The intersection of each history cell with the needle representation is

computed with the same routines from §3.2.1.2 using the whole parametric range of

the needle of the needle and the parametric coordinates are set accordingly. This is

an intermediary step performed only when the needle tip is interacting with the

boundary and the whole process is succinctly summarized in {3.5}.

3.3 Thread Pulling

The needle path inside the body serves to define the topological path of the

thread in the mesh. The mesh elements crossed by the needle, and the puncture

points introduced while entering and exiting the mesh, define an ordered data

structure that is used to model the thread-tissue interaction while the thread is

pulled to close an opening.

The history list with its needle parametric/tissue barycentric is used to

guide the thread through the soft tissue using a follow-the-leader approach. As the
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Algorithm 3.5 Different steps of needle driving.

1: procedure NeedleDriving(Ω, H, σ)
2: DecomposeMotion()
3: UpdateHistoryList()
4: UpdateParametricCoordinates()
5: if BoundaryConstraint() then
6: ProjectConstraints()
7: SolveSystem()
8: UpdateParametricCoordinates()
9: if BoundaryPuncture() then

10: ReplaceTipConstraint()
11: SolveSystem()
12: UpdateHistoryListBoundary()
13: UpdateParametricCoordinates()

14: UpdateTransverseConstraints()
15: SolveSystem()

thread is attached to the needle at its end, it will follow the needle’s handle path as

it drives through soft tissue. The needle and thread have the same topological

representation but differ in their geometrical and mechanical representation. The

needle is treated as a rigid body while a thread is treated as a soft body.

The intersection points, that are saved in the history list, serve as anchor

points that bind the thread to the tissue and are used to relay displacement and

forces, back and forth, between the thread and the embedding soft tissue, thus

creating a coupling between the two representations that serves as a model for

thread-tissue interaction.

Whenever the needle end passes an intersection point, the history cell is

flagged and a different parametric update procedure is activated. This is due to that

fact that needle sliding does not necessarily translate to an equal amount of thread

sliding; the thread is non-rigid and has a different behavior. However, the

parametric coordinate space is common to both needle and thread as they form a

single topological model. As the thread moves through the soft tissue, the

parametric coordinates of the intersection points are updated accordingly; the

barycentric coordinates remain unchanged and are used to couple the thread to soft
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tissue through algebraic constraints.

3.3.1 Pull Modeling

r1

r2

r3
rm−1

rm

Figure 3.8 Sequence of puncture points in a running suture.

An example of a running suture is shown in 〈3.8〉 with entry and exit points

numbered sequentially from r1 to rm. Under displacement control, the user is

pulling on the pieces of the thread going through points r1 and rm. For simplicity of

the presentation, we consider here the case of a frictionless interaction between the

thread and tissue. The induced tissue deformation and internal stresses are due to

the tensile forces in the thread and the contact forces from the closing boundaries.

The pull of the thread, when engaged, is modeled by an equality that

constrains the length of the thread portion that lies outside the tissue:

m
2
−1∑

i=1

∥∥∥r[k+1]
2i+1 − r

[k+1]
2i

∥∥∥ =

n
2
−1∑
i=1

`
[k]
i −∆`[k+1], (3.32)

where r
[k]
i denotes the positions of tissue points at puncture locations at the kth

time step. The sum on the left-hand side in (3.32) is over the segments that join

successive exit and entry points along the thread. Every term in the sum represents

the length of such a segment as described below. `
[k]
i is the length of the

corresponding portion of the engaged straight thread at time step k and ∆`[k+1] is

the incremental pull enacted by the user at the k + 1 time step through the

puncture points r1 and rm. This constraint presumes, and is active only when, the
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thread is fully engaged and has no slack. As long as the right-hand side is smaller

than the actual length of the thread between the two end points, pulling causes pure

sliding until the thread is fully engaged.

Another way of expressing this pull constraint that makes its

complementarity clearer is:

m
2
−1∑

i=1

∥∥∥r[k+1]
2i+1 − r

[k+1]
2i

∥∥∥ +
∥∥∥r[k+1]

1 − r0

∥∥∥ +
∥∥rm+1 − r[k+1]

m

∥∥ ≤ `[k], (3.33)

where r0 and rm+1 are thread points at locations before first entry (r1) and after

last exit (rm) of the suture. These points are under direct end-user positional

control. `[k] is the actual thread length outside the tissue between points r0 and

rm+1 and can be approximated by using the thread-parametric coordinates at the

puncture points to compute the length of the thread between the end points. When

the left hand side of (3.33) is satisfied with strict inequality, the thread has slack

and the corresponding Lagrange multiplier is zero. Only when it is satisfied with

equality, does the thread get engaged and applies forces to deform the tissue and

bring the sutured boundaries together.

As the suture closes additional contact constraints are introduced, as

described in §2.2.6, to prevent the two boundaries from interpenetrating and hold

them together as the suture tightens, and this could result in multiple collisions

occurring during a single inter-frame. A straightforward way to handle these

collisions is to include their associated constraints all at once in the system,

however, this does not realistically model how the boundaries would interact as

these collisions do not necessarily occur at the exact same time (only during the

same inter-frame). A better way of handling multiple collisions is to order them

using their associated timestamps, process the first collision in time, and disregard

the rest. This technique results in less collisions being logged and more accurately

models the interaction of the boundaries as they are brought together to close.
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3.3.2 Distance Linearization

For efficient computations with the pull constraint of (3.33), the distance

equations are linearized at step k + 1 by approximating the length of every thread

line segment as the projection on its supporting direction from the previous step k.

The justification for this linearization may be explained with reference to 〈3.9〉. Let

r2i and r2i+1 be two sequential puncture points in the volumetric mesh joining an

outer portion of the thread. Pulling r2i and r2i+1 close together should in principle

decrease the length of the line segment, `i, joining the two punctures points together.

`i = ‖r2i+1 − r2i‖ =

√
(r2i+1 − r2i)

> (r2i+1 − r2i). (3.34)

Let d̂i = (r2i+1 − r2i)/ ‖r2i+1 − r2i‖ be the direction of the line segment

joining r2i and r2i+1 as illustrated in 〈3.9〉. At every step, `i can be computed using:

‖r2i+1 − r2i‖ = 1
‖r2i+1−r2i‖ (r2i+1 − r2i)

> (r2i+1 − r2i)

= (r2i+1 − r2i)
> (r2i+1−r2i)
‖r2i+1−r2i‖

= (r2i+1 − r2i)
> d̂i,

(3.35)

and is linearized by approximating the value of d̂
[k+1]
i with d̂

[k]
i when calculating the

distance of a segment, resulting in:

`
[k]
i =

∥∥∥r[k+1]
2i+1 − r

[k+1]
2i

∥∥∥ ≈ (r[k+1]
2i+1 − r

[k+1]
2i

)>
d̂

[k]
i . (3.36)

As the user pulls on the engaged thread, each pair of sequential suture

points, r2i and r2i+1, is incrementally brought together by decreasing the distance

that separates them using a constraint of the following form:(
r

[k+1]
2i+1 − r

[k+1]
2i

)>
d̂

[k]
i = κ

∥∥∥r[k]
2i+1 − r

[k]
2i

∥∥∥ ; 0 < κ < 1. (3.37)

As long as the end-user keeps pulling the thread, κ is decreased to bring the

puncture points together. The amount by which κ is decreased can be approximated

from the amount of pull exerted by the end-user at suture points r0 and rm+1. The
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Figure 3.9 Distance approximation using linear projection for a single thread
segment.

computation of d̂i is also suitably stabilized as the distance between r2i and r2i+1

becomes small to avoid the near-zero denominator.

The visual and mechanical model of the thread can be rendered and

animated using a deformable chain formulation as presented in [16, 32], for a more

realistic thread-tissue visual interaction, where both boundary and internal points

are used to impose the required constraints that guide the chain through the mesh.

The scalar Lagrange multiplier associated with the pull constraint corresponds to the

tensile force in the thread as it is being pulled which can be extrapolated, smoothed,

and rendered to the end-user using the techniques described in [36] and [59].

61



Figure 3.10 Tightening a suture using a sequence of thread pulls. The constraints
holding the boundaries are dynamically being updated. The bottom left figure
shows the list of faces that are used for modeling this interaction. The bottom right
figure shows the resulting deformation after the suture is fully taut.
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Chapter 4

Results

The presented techniques and methods have been integrated into a

prototype suturing simulator through custom-designed modules for mesh processing

and representation, visualization and rendering, finite element based simulation, and

other techniques and utilities. Multiple off-the-shelf libraries are used namely for

computational geometry routines, continuous deformable collision detection, and

direct solution of sparse linear systems. In addition, multiple end-user interface

devices were integrated to provide a rich end-user experience.

Graphics
Model Renderer
Tool Renderer
UI Manager

Haptics
Collision Detector
Position Tracker
Force Renderer

Physics
Simulation Engine

Contraints Manager
Sparse Solver

Position

Image

Position

ForceUser

Collision

Position, Force

Figure 4.1 Overall system architecture.

The cross-platform implementation was developed using C++20 and

OpenGL/GLSL 4.6, compiled using LLVM, GCC, and MSVC, and tested under

macOS 11.5, Windows 11, and Fedora 34. The different components of the system

are structured using a model–view–controller (MVC) architecture and separated

into three major modules as depicted in the software architecture diagram in 〈4.1〉.

The suturing simulator prototype was deployed and tested on a bi-manual
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Figure 4.2 Needle motion relay. The end-user is controlling two 7-degrees of
freedom (DOF) input devices and using them to grasp a needle by a handle and
move along the domain. The supporting frames of the grasper and needle are
interlocked and the motion is relayed directly from the input devices.

(a) Left view (b) Right view (c) Combined anaglyph

Figure 4.3 Stereo pair and red-cyan anaglyph using off-axis projection.
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Figure 4.4 The bi-manual frame by Mimic Technologies used in their dV-Trainer
simulator [66].

haptic console from Mimic Technologies 〈4.4〉. The console provides an immersive

environment through an attached stereoscope, two spider masters that can recorder

seven degrees of freedom (positions: [x, y, z], angles: [α, β, γ], and grip opening: δ,

that are used to control a virtual tool to grasp the needle as shown in 〈4.2〉, and five

foot pedals for control various interface functions. The motors attached to the

masters can render forces up to 15 N with a working space of 80× 40× 40 cm. The

console is designed to replicate the look and feel of the Da Vinci Xi console [65].

The simulator was tested on an HP Z8 workstation that connects to the

bi-manual frame over a local network for input/output (I/O). The stereoscope is

controlled separately through a direct connection to the graphics processing unit

(GPU) and a technique involving off-axis frustums with parallel stereo pairs is used

to render the stereoscopic scene as shown in 〈4.3〉.

Snapshots of an anastomosis procedure using our prototype simulator are
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shown in 〈4.5〉, 〈4.6〉, and 〈4.7〉. 〈4.5〉 shows the initiation of the procedure with the

needle puncturing (and deforming) the two vessels at four puncture points. In 〈4.6〉

and 〈4.7〉, running sutures are simulated using a varying number of punctures.

Contact constraints prevent the two vessels from interpenetrating and allow the

closure of the separating gap. Notice the high principal stress in the regions near

the suture and its more uniform distribution when additional puncture points are

used. Each step in these simulations takes an average of 30 ms to compute and

render using a single 3.3 GHz core, resulting in an interactive refresh rate of

33 frames per second (FPS) on average during the course of the session.
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Figure 4.5 Needle driving using a 1/2-circle round body needle. The tubes have
different diameters and are discretized with 1,650 nodes and 5,853 elements. The
nodes of the top boundary of the upper tube and the bottom boundary of the lower
tube are fixed.
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Figure 4.6 Closing of two boundaries using 20 puncture points. The tubes have
different diameters and are discretized with 1,650 nodes and 5,853 elements. The
principal stresses are visualized in the bottom-right figure.
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Figure 4.7 Closing of two boundaries using 50 puncture points. The tubes have
different diameters and are discretized with 1,650 nodes and 5,853 elements. The
principal stresses are visualized in the bottom-right figure.
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Chapter 5

Conclusion

“It does not matter how slowly you go as
long as you do not stop.”

—Confucius

5.1 Summary

This thesis presented effective techniques for needle driving and thread

pulling that complement the large body of work on simulating sutures and can be

used as building blocks for realizing virtual simulators.

Needles are represented as parametrized rigid bodies and their motion is

decomposed into two disjoints components at every step through an energetic

justification. This allows needle-tissue interaction to be treated in two disjoint and

consecutive phases: a sliding phase that serves to track the position of the needle

inside the tissue and neatly couples parametric needle points to barycentric tissue

points, and a deforming (sticking) phase that uses this coupling to deform the tissue.

Two most commonly used geometries are modeled under a single unifying

representation: straight and semi-circular needles, and robust routines are used for

detecting intersections between the needle and tissue as it slides through. Multiple

edge cases are highlighted and dealt with for a robust tracking process.

Tissue is modeled as a soft body, discretized using 3-manifold meshes, and

represented using a compact data structure that provides the necessary adjacency

queries required for navigating and effectively tracking points through the

tetrahedral mesh. This work complements the adjacency queries available through

this representation by implementing two new queries: link of faces for a vertex and

an edge, which are essential for tracking a point as it moves through the underlying
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mesh. Soft models are simulated using a quasi-static co-rotational elastic finite

element model and the underlying system of equations is solved using direct

methods for sparse systems of linear equations.

Tissue-tissue interactions are modeled through the use of fast continuous

deformable collision detection routines and enforced using complementarity

constraints. This model of interaction generates forces that can be rendered to an

end-user driving the system but does not handle fracture, tearing, or cutting effects

and thus avoids the costly tasks of re-meshing the underlying domain and

factorizing the underlying stiffness matrix at every iteration, all while providing

plausible results for the various interactions. The complementarity constraints are

also used to handle needle boundary punctures which serve to drive a thread

through soft tissue. The thread is modeled as a linear chain and pulling effects are

simulated through an approach that linearizes the distance between multiple

boundary puncture points.

The presented techniques are integrated and tested in cross-platform

prototype system, which allows for interactive simulation of suturing with

high-resolution models through a simplified anastomosis scenario while making use

of multiple human-computer interaction devices and immersive rendering techniques.

These techniques form a robust basis for simple and efficient suturing simulation

and are currently using as building blocks for a more realistic surgical simulator that

can pass the test of face, content, and construct validity.

5.2 Future Work

Our work can be enhanced on multiple fronts. The needle-tissue

interactions can be expanded to account for all kinds of interactions across the

needle body and not just only those involving its tip. This kind of interaction,

mostly involving the body of the needle deforming the soft tissue, can be expressed
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using our complementarity constraints approach similarly to the way tissue-tissue

interactions are modeled. The needle and thread can be modeled as deformable

bodies and the tissue model can be extended to support discontinuous deformations

with topological mesh changes. This extension allows the modeling of bending,

friction, cutting, fracture, twisting, stretching, and other complex effects that occur

when a needle and thread are being driven through soft tissue. It would also require

a new approach for decomposing needle motion with minimal changes to the

tracking and sticking phases. The physically-based model can also be upgraded to

handle geometric and material non-linearities with dynamic relaxation to model

velocity-dependent effects that affect the needle-tissue friction model. Knots can be

simulated as well and integrated with the thread pulling model. This all has to be

achieved while staying within the limits of the available computational budget and

maintaining a good balance between the high-fidelity and real-time requirements as

“there is no such thing as a free lunch.”

Parts of this thesis have been published in [47, 48, 50, 53] and were supported in part by
Qatar Science & Technology Park and Qatar Foundation.
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