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An Abstract of the Dissertation
of

SALAM ADNAN DOUMIATI for Doctor of Philosophy
Major: Electrical and Computer Engineering

Title: Interference Management for Device-to-Device Communications in 5G Networks

While offloading has great potentials to relieve increasingly congested cellular
networks, its benefits come at a cost, namely uncoordinated interference result-
ing from other Device-to-Device (D2D) pairs, which reduces wireless network
capacity. In this dissertation, we propose to align the interference occurring from
nearby D2D pairs using Topological Interference Management (TIM) instead of
depending on the instantaneous channel state information (CSI), which is a task
that hinders the practicality of D2D technology. We recast the TIM problem as
a low-rank matrix completion problem (LRMC), which is usually NP hard due to
the rank’s non-convex and discontinuous nature. For this, we have progressively
developed three efficient and novel approximation solutions to overcome the TIM
matrix special structure with hard constraints (having all ones on the diagonal
entries). While dealing with large networks in practice, we proposed to divide the
whole network into clusters, and apply TIM on each of the resulting sub-groups
in a parallel way, so that the scalability issue gets resolved. To this end, we care-
fully designed a clustering framework that works in favor of the LRMC-based
TIM scheme, by relying on graph theory. Moreover, to make TIM more realistic,
we also considered practical scenarios through accounting for path losses and mo-
bility. Simulations have shown that the proposed methods minimize the matrix
rank better than the existing works, while maintaining a polynomial complexity.
By successfully approximating the rank completion problem, the system degrees-
of-freedom (DoF) of a partially connected network of D2D-enabled devices (even
of large dimensions) with no CSI increases, the occurred interference is managed,
and hence the network throughput increases. To improve the DoF values even
further, we also have utilized the successive interference cancellation (SIC) built-
in capability in the 5G handsets for decoding, while maintaining in the overall
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an LRMC-based TIM approach.
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Chapter 1

Introduction

Measurements in cellular networks predict a fast increase in the amount of mo-
bile data wirelessly transferred [1]. The current Cisco Visual Networking Index
(VNI) forecast projects global IP traffic to nearly triple from 2017 to 2022 and
an overall IP traffic is expected to grow to 396EB per month by 2022, as shown
in Fig. 1.1. Hence, solutions are needed in order to cope with this problem and
offload data from the core network.

Figure 1.1: Cisco traffic forecast [1]

In this vein, Device-to-Device (D2D) communication is considered as a promis-
ing technique, where devices in proximity can communicate in a direct link and
bypass the base station [3], as illustrated in Fig. 1.2. In the literature, D2D has
received extensive attention and many works have shown the benefits brought
by D2D communication since 1) it increases the system capacity and spectrum
efficiency, thanks to the reuse and hop gains; 2) it improves the peak rate due to
the proximity gain [4] [5]; 3) it reduces latency, and 4) it serves as a technology
enabler for proximity-based social networking [6]. The benefit from D2D can be
further improved to boost the data rate by enabling D2D multicasting for group
communication using clustering to share data among users. The effectiveness of
the system in properly clustering the devices, which are in proximity and share
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Figure 1.2: Device-to-Device (D2D) concept

similar interests, was proved in a preliminary work we accomplished in [7], where
we developed a clustering algorithm for group D2D communication that selects
clusterheads based on UEs’ interest, neighborhood, channel condition informa-
tion and battery energy. However, this algorithm works under the assumption
of abundant channel state information (CSI) which is too optimistic, since it is
difficult to translate it into practice, where CSI is rarely available.

Therefore, taking the interference factor into account is essential, knowing
that it represents a serious limitation that faces the development of D2D technol-
ogy and reduces the network throughput. To deal with this interference, several
management schemes have been proposed, such as mode selection [8], resource
allocation [9], power control [10], and a combination of these methods [11]. How-
ever, the 5G networks with Internet of Things (IoT) applications, are expected
to become highly dense, which makes the interference more complex, and hence
the applicability of the aforementioned approaches no more sufficient [12].

Recently, interference alignment (IA) technique has evolved in D2D commu-
nication, while requiring the knowledge of CSI among D2D devices in order to
align and then cancel the interference [13–16]. However, exploiting CSI instanta-
neously is a burdensome task in a D2D network, knowing that the UE has limited
capabilities in terms of battery energy and memory availability. Exchanging CSI
also loads the network with signaling overhead, hindering by this CSI practicality.
Because of this, the channel measurement on the sidelink between D2D enabled
devices is still in the standardization process [17], and has turned the atten-
tion of network researchers to managing interference based on criteria other than
the instantaneous CSI. Several alternative schemes to IA have been proposed
to minimize the dependance on CSI and reduce signaling, including the well-
know time-division multiple access (TDMA), frequency-division multiple access
(FDMA), and code-division multiple access (CDMA) techniques. These actually
can be regarded as special cases of a more general scheme, namely the topological
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interference management (TIM) method [18], which works based on knowledge
of the network topology, and not the instantaneous CSI [19–21]. TIM was also
considered as a promising solution for peer-to-peer networks [19], like D2D com-
munication.

In the TIM technique, the connectivity pattern is represented by an adjacency
matrix known by all the nodes in the network and is based on a 1-bit interference
data (weaker or stronger than the noise floor), depending on the propagation
physical phenomena in the network [19]. Hence, the matrix entries illustrate
the interference relation among the transmitters (columns) and receivers (rows).
It has been established that the TIM problem, in terms of degrees-of-freedom
(DoF), is equivalent to the index coding problem with linear schemes, where the
received signals are linear combinations of transmitted ones [19, 20, 22]. As for
DoF, it is considered as the pre-log factor of the information-theoratic capacity
at high signal-to-noise ratio (SNR) [23]. This is using the fact that the optimal
linear index code length is equal to the minimum rank of a matrix that fits the
side information graph. This graph is a directed graph which is defined on the
vertex set that represents the users and on the edge set where an edge (i, j)
exists if and only if user i has packet j as side information. Therefore, it is
possible to solve the TIM problem by equivalently solving a matrix completion
problem over a finite or real field based on a few known entries of this matrix [24].

Inspired by the recent works in [24–26], in this thesis, we recast the original
TIM problem as a low-rank matrix completion (LRMC) problem to find linear
solutions that maximize the achievable symmetric DoF (and hence maximize the
number of parallel transmissions) for any given network topology, as the SNR ap-
proaches infinity. This approach has been recently applied to linear index coding
over the finite field [25], and to TIM with symmetric DoFs [26], [27]. In particular,
the achievable symmetric DoF and the reciprocal of the optimal value of the rank
of the resulted LRMC model are equivalent. We restrict here the class of inter-
ference management strategies to linear schemes, knowing their low-complexity
and their achievable DoF optimality [27]. The aim is then to minimize the ma-
trix rank, and hence deduce the independent columns (transmitters) that can
transmit simultaneously (without interfering), increasing the system DoF which
is inversely proportional to the rank. The factorization of this matrix solution
leads to the appropriate precoding and decoding matrices that cancel the inter-
ference.

On a hand, we realize that a list of challenges is associated with LRMC-based
TIM: 1) the sparsity of the data (0s denoting interference) and the unique data set
associated with the D2D network (the matrix diagonal entries are all ones, i.e.,
each D2D-transmitter transmits to its intended D2D-receiver), which restricts
the rank flexibility, and 2) its applicability to large scale networks.
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To overcome the first challenge, i.e., the TIM matrix special structure with
hard constraints, we propose three novel approximation solutions (knowing the
NP-hardness of the rank function in the LRMC problem) that can handle any
general matrix. These heuristics are numerically efficient and do not require a
user-specified initial point. In the first method that we call RM-TIM, we approx-
imate the TIM matrix rank by a continuous generic approximation function that
uses Tikhonov regularization and we formulate the problem as SDP. Although
the proposed method has a polynomial complexity, however, its complexity re-
mains high. To this end, we develop (also using SDP) an improved TIM rank
minimization method that we name eRM-TIM, which is a “tweaked” nuclear
norm heuristic, with much lower complexity, while achieving similar rank mini-
mization performance. In the third method that we call cRM-TIM, we rely on
the coefficients of the characteristic polynomial function of a matrix and their
relation with the rank matrix. Our developed rank minimization methods out-
perform other existing methods in terms of the minimum rank attained (while
maintaining accuracy and low complexity), and thus corresponds to a lessening
in signal interference (without knowing the instantaneous CSI): a key need in
D2D networks. This hence leads to an increase in the system DoF.

To deal with the second challenge, i.e., the limitation of the LRMC-based
TIM approach to medium networks, we propose a hierarchical approach, where
the network is first clustered into groups, then the efficient LRMC optimal solu-
tion is applied within each group. Hence, we propose to combine clustering with
LRMC-based TIM and we formulate the clustering scheme (using graph theory)
as a relaxed SDP problem. We develop a heuristic algorithm with polynomial
complexity, that can successfully group D2D devices with mutual interference
in separate clusters. Simulations show that the joint clustering-TIM framework
renders the LRMC-based TIM more scalable, significantly improves the system
DoF as compared to only using TIM, especially in large D2D networks, and also
reduces the computation time.

On the other hand, other challenges arise while applying TIM to D2D, specif-
ically: conventional TIM 1) cannot manage the very strong interference that can
be even stronger than the desired signal and cache it: this scenario may frequently
occur in D2D communications which usually happen in close proximity (e.g., in
crowded D2D networks, such as malls, concerts or stadiums), and 2) ignores the
differences of differences of signal strengths due to propagation path loss, which
represents an important physical phenomenon in D2D scenario.

To handle the first point, we propose to combine TIM with a technique usually
used in non-orthogonal multiple access (NOMA), i.e., the successive interference
cancellation (SIC). In this framework, a finer classification of interference takes
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place, where a strong interference can be managed by TIM and the very strong
one by SIC. We also model this problem using LRMC approach and we apply the
third rank approximation method to solve it. Results show that the employment
of this smooth and successful combination of TIM with SIC can offer promising
improvement in terms of network performance.

To manage the second point, we reflect from the information theoretic perspec-
tive (DoF metric) towards practical wireless interference networks, while taking
the physical phenomena, like path loss and mobility, into consideration. Nu-
merical results show the implication of these scenarios in constraining the DoF
achieved.

1.1 Dissertation Objectives

Our work gives rise to some essential questions, which can be translated into
objectives:

1. To offer advantages over recent interference alignment works that depend
on the availability of channel state information (CSI), since the topological
interference management (TIM) problem is expected to cancel the inter-
ference by only making use of the network topology information. Indeed,
having to acquire CSI in a Device-to-Device (D2D) network poses a burden
on a device having limited capabilities, and increases its power consump-
tion.
This objective was attained in all our journal [28–30] and conference pa-
pers [31, 32].

2. To develop a novel formulation of the TIM problem in a network where
D2D-enabled devices are not aware of the surrounding user equipment’s CSI
but only of the network topology. To recast the problem as a low-rank ma-
trix completion (LRMC) problem, and to consider the degrees-of-freedom
(DoF), as our main figure of merit. To formulate the mathematical mod-
els for three novel approaches using the semi-definite programming (SDP)
by addressing the NP-hardness of the non-convex rank objective functions,
while respecting the special structure of the underlying TIM matrix that
limits the applicability of well-known rank minimization methods.
These objectives were realized in our two published journal papers [28, 29]
and our submitted journal paper [30].

3. To incorporate D2D in 5G networks with regards to the interference man-
agement by using built-in device capabilities, like successive interference
cancellation (SIC) technique.
This objective was achieved in the submitted journal paper [30].
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4. To propose a clustering algorithm in a multiuser D2D interference network,
without exploiting the CSI statistics, but only relying on the connectivity
pattern, i.e., on the TIM adjacency matrix. TIM clusters should be formed
such that strong interference are cut and captured among inter-cluster inter-
ference. To this end, we base our method on the maximum-k-cut algorithm,
but with a ”tweak”, in order to count for the maximum number of devices
allowed inside a cluster. The ”tweaked” maximum-k-cut problem is also
formulated as a semi-definite problem (SDP).
This objective was accomplished in the published journal paper [29] and con-
ference paper [32].

5. To analyze how the DoF results can be translated into practical signal-to-
noise ratios (SNR), turning the scenarios into much more realistic ones,
while integrating path loss and mobility effect.
This objective was fulfilled in the accepted conference paper [31].

1.2 Organization of the Dissertation

In Chapter 1 of this thesis, we list the several benefits of device-to-device (D2D)
technology that are limited by interference. Then, we discuss the motivation
behind using the topological interference management (TIM) technique in man-
aging the interference in a D2D network, without relying on the instantaneous
CSI.

In Chapter 2, we present some background information that are related to
TIM and its relation with the index coding problem, as well as the low-rank ma-
trix completion (LRMC) approach that we adopt to solve TIM. In this chapter,
we also detail some mathematical background information that help the reader in
understanding the mathematical notions used throughout the thesis, along with
some explanations about some problems in graph theory, like maximum-k-cut
problem, over which we rely in our clustering approach. We also describe the
successive interference cancellation (SIC) technique and its different steps.

In Chapter 3, we cover the existing works that are related to TIM and to the
different rank minimization methods that are typically used to solve the low-rank
matrix completion (LRMC) problems. We also discuss the different clustering al-
gorithms and physical layer interference management techniques that exist in the
literature and are applied in the context of D2D.

In Chapter 4, we apply TIM in a partially connected network, where D2D-
enabled devices are not aware of the surrounding devices’ CSI, but only of the
network connectivity which helps in canceling the interference occured.
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In the first part of this chapter, we model TIM as an LRMC problem and
solve it using three novel schemes based on semi-definite programming (SDP)
while overcoming TIM matrix special structure with hard constraints: 1) having
all ones of the diagonal entries, 2) having some predefined zeros in predefined po-
sitions, 3) being a square matrix knowing that the rows and the columns of this
matrix correspond to the transmitters and receivers pairs, and 4) being a general
matrix, not necessarily symmetric nor positive semi-definite (PSD). We also com-
pare the performance of these schemes, the so-called RM-TIM, eRM-TIM and
cRM-TIM, against the existing works in the literature, in terms of the minimum
rank achieved as well as the problem complexity. At the end of this part, we also
combine the TIM framework with the successive interference cancellation (SIC)
technique and apply it in D2D networks. While the TIM problem was originally
studied in a partially connected network, the novelty appears here in classifying
the occurred interference into two categories: strong and very strong interference
(that may overwhelm the desired signal). Moreover, we propose to manage the
first type of interference using TIM, while the second one we hand over to SIC.

In the second part of Chapter 4, we also explore the performance of TIM in
practical scenarios, where path losses exist, especially that the TIM problem was
originally studied in a partially connected network. In addition to this, we define
the conditions under which TIM should re-run in order to save processing time
when mobility is taken into account.

In Chapter 5, we build a joint clustering and TIM framework for a D2D net-
work. We develop a clustering algorithm that is suited for the LRMC approach
to solve TIM, while building on the SDP relaxation of the maximum-k-cut al-
gorithm, and extending it to account for each cluster’s capacity. This clustering
problem turns out to be a capacitated maximum-k-cut problem, for which we
derive relatively tight upper bound, that helps in determining the performance
guarantee of many clustering algorithms.

In Chapter 6, we conclude the thesis and we open new research directions for
future works. In Appendices A and B, we include some proofs that are related to
Chapter 4 and Chapter 5. Note that we defer these proofs till the end to maintain
the thesis flow.
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1.3 Publications and Awards

The following publications were produced during the Ph.D. journey.

1.3.1 Journal Papers

1. S. Doumiati, H. A. Artail, and M. Assaad, “Toward optimal DoF max-
imization with interference categorization using TIM and SIC,” in IEEE
Transactions on Communications, submitted

2. S. Doumiati, M. Assaad, and H. A. Artail,“A framework of topological
interference management and clustering for D2D networks,” in IEEE Trans-
actions on Communications, July 2019 DOI:10.1109/TCOMM.2019.2931319

3. S. Doumiati, M. Assaad, and H. A. Artail, “Topological interference man-
agement framework for device-to-device communication”, in IEEE Wireless
Communication Letters, vol. PP, no. 99, pp. 1-4, 2018 (invited paper at
IEEE International Conference on Communications, ICC 2018).

1.3.2 International Conference Papers

1. S. Doumiati, H. A. Artail, and M. Assaad, “Application of the Topologi-
cal Interference Management Method in Practical Scenarios,” in 2019 IEEE
15th International Conference on Wireless and Mobile Computing, Net-
working and Communications (WiMOb 2019), accepted, Barcelona, Spain,
Oct. 2019

2. S. Doumiati, H. A. Artail and M. Assaad, “Managing interference in
D2D networks via clustering and topological awareness”, in 23rd IEEE
International Workshop on Computer-Aided Modeling Analysis and Design
of Communication Links and Networks (CAMAD), Barcelona, Spain, Sept.
2018.

3. S. Doumiati, H. Artail and K. Kabalan, “A framework for clustering LTE
devices for implementing group D2D communication and multicast capabil-
ity”, in 8th International Conference on Information and Communication
System (ICICS), Irbid, April 2017.

1.3.3 Awards

In recognition of my resesearch efforts during my Ph.D. journey, I received many
prestigious awards:

• Nominated by the U.S. Embassy to represent Lebanon in the ‘Advanc-
ing Women in STEAM Fields’ International Visitor Leadership Program
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(IVLP) that took place over 4 different states of the U.S. (Washington DC,
Huntsville Alabama, Chicago, and Los Angeles), Oct. 29 - Nov.16, 2018.

• Received the CNRS-L/AUB doctoral scholarship award from the Lebanese
National Council for Scientific Research (CNRS), Sept. 2018

• Endorsed as the only Lebanese recipient of the Grace Hopper Celebration
of Women in Computing (GHC) Student Scholarship, Orlando, U.S., Oct.
2017
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Chapter 2

Background

The objective of this chapter is to give a general overview of some important
concepts related to the thesis work.

2.1 Topological Interference Management

Several methods have been proposed in the literature to manage interference in
wireless methods. One of the well-known methods is interference alignment (IA).
The main concept of this technique is to minimize the interference every trans-
mitter causes to unintended receivers instead of maximizing each receiver’s own
signal-to-interference-plus-noise ratio (SINR) independently. Hence, this leads to
a better network performance, in terms of sum-capacity. With this, multiple in-
terference signals are consolidated into a small subspace at each receiver, allowing
the desired signal to be transmitted in the interference-free subspace [15]. In this
case, every user in the network is able to achieve nearly one half of the capacity
that s/he could achieve in the absence of all interference. However, the main
problem of IA is that the closed form expression for interference alignment re-
quires the global channel knowledge, which adds an overhead on the network [33].
This problem becomes even more critical when it is applied on D2D networks,
especially that it will drain the device’s battery, which is limited.

All of this motivated the researchers to explore another interference manage-
ment technique that manages interference in D2D networks, without relying on
the instantaneous exchange of channel state information (CSI). A promising so-
lution in this context is the Topological Interference Management (TIM) method.
In this technique, the interference can be suppressed among the devices in prox-
imity, without being aware of the surrounding devices’ CSI, but only based on
the network topology. This topology is also known by all the nodes in the net-
work, facilitating by this the decoding of the intended signal with less consumed
energy. The connectivity pattern among these D2D devices is represented by an
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adjacency matrix and is based on one-bit knowledge of the interference strength.
This value is deduced after comparing the received nominal power from other
devices than the intended one (weaker or stronger) against a prechosen threshold
value. This threshold is usually considered as the acceptable noise floor: if the
power value is less than this threshold, then the link between this transmitter
and the receiver is considered as a weak one, and hence can be neglected (and so
ignored in the connectivity pattern at little cost). However, if it is greater than
the acceptable noise floor, then this link is a significant one and should be taken
into account [19]. Therefore, an interesting issue here is the optimal choice of the
effective noise floor threshold by the receiver. This is because if the threshold is
too low, then the number of interferes increases and hence most of the links will
be considered as significant ones. By this, the matrix becomes so sparse and thus
applying TIM turns to be useless. On the other hand, if this threshold is chosen
to be high, then the topology pattern will be highly disconnected, and hence the
matrix will be full of missing entries. Although this may help the TIM perfor-
mance, but it negatively affects the SNR itself. In all, the threshold choice is out
of the scope of this thesis, but it can be considered as an interesting direction for
future work.

Figure 2.1: (a) TIM of a network of 5 D2D pairs [2], and (b) its associated
incomplete matrix

As an illustration for the TIM method, we present in Fig. 2.1 an instance of
a 5×5 network, where TIM is applied. We consider here an interference network
consisting of the same number p of single-antenna wireless transmitters T and
receivers R working in pairs in a D2D scenario with a multiple unicast setting,
i.e., the number of users p is equal to the number of s messages sent by T , p = s.
This example of 5×5 network is chosen not because it is particularly challenging
(indeed we will deal with more challenging instances, and with larger dimensions,
of TIM problems later in this thesis) but rather for its historical significance: this
is the first known interference alignment example, originally considered by Birk
and Kol in [2]. In Fig. 2.1(a), the solid and dotted lines represent here the
desired channel links and interfering links, respectively. For instance, transmitter
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T1 is communicating with its intended receiver R1. While this link is active, T1

is interfering to R3 and R4 but does not represent a source of interference for R2

and R5. Hence, there are no lines (not solid nor dotted) between T1 and these
devices. On the right of this figure, we show the associated incomplete matrix
that corresponds to the 5×5 D2D network of (a), with “*” representing arbitrary
values. The columns and rows of this matrixX (called as TIM adjacency matrix)
refer to the transmitters’ and receivers’ indices, respectively. As for the entries
of X, they illustrate the interference relation among these devices. This matrix
has all ones in its diagonal entries to indicate that each receiver desires a message
from its intended transmitter. Now for the same example of (T1 − R1) link and
considering the 1st column which corresponds to T1, the 0 values in the third
and fourth rows designate the occurring interference at R3 and R4. As for the
don’t care values (“*”), they indicate that T1−R1 link does not affect on R2 and
R5. The indication of the TIM adjacency matrix entries can be summarized as
follows:

X = [Xi,j] =


1 each Ri wants a message from Ti

0 interference should be aligned
∗ no interference occured

(2.1)

More details about the meaning of these entries and how they are obtained can
be found in Chapter 4. It is good to mention here that the missing entries in the
adjacency matrix remind us of the low-rank matrix completion (LRMC) problem
that will be detailed in the following sub-section.

2.1.1 Low-rank Matrix Completion Problem Approach

Real-world datasets are usually incomplete and hence represented in a matrix
with missing entries. The most well-know example is the Netflix problem [34],
where each column represents a movie and each row corresponds to a user. Based
on some ratings of the movies, the users’ preferences on other movies can be
predicted while applying the low-rank matrix completion (LRMC) problem. The
assumption here that the rating matrix should be low rank goes back to the fact
that a subgroup of users are likely to share similar preferences and their ratings
will be highly correlated. The direct approach to recovering a low-rank matrix is
then to minimize the rank of the matrix with certain constraints that make the
estimated matrix consistent with the original data [35]. Mathematically speaking,
one would recover the data matrix by solving the following optimization problem:

minX∈Rn×n rank(X)

s.t. Xi,j = Mi,j, (i, j) ∈ Ω (2.2)

where X is the decision variable, Ω represents the set of locations corresponding
to the observed entries ((i, j ∈ Ω) if Mi,j is observed), and M = [Mi,j] is a matrix
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of same dimensions of X, with some unknown entries.

Comparing this problem definition to the TIM problem of Section 2.1, one
can observe that TIM can also be formulated as an LRMC problem. The reason
is that the TIM adjacency matrix includes also some missing entries. As for the
set Ω, it contains the indices that correspond to the positions of the predefined
0s and ones (all ones on the diagonal entries). The objective of TIM is then to
minimize the rank of the TIM adjacency matrix knowing the relation between
the rank of this matrix and the degrees-of-freedom (DoF) of the system (as will
be shown in Section 2.1.2). The aim is then to fill the missing entries in such a
way to minimize the matrix rank. In order words, minimizing the rank leads to
an increase in the system DoF, and hence to know the transmitters that can send
simultaneously.

Unfortunately, the rank minimization problem is NP-hard [24]. However,
many relaxation methods have been proposed in the literature (as will be shown
in Chapter 3). Although these methods proved their efficiency in minimizing the
rank in different LRMC problems, but they cannot be directly applied here. The
reason for this is the presence of all ones on the diagonal entries. To this end, we
develop, in Chapter 4, three rank minimization methods that overcome the TIM
matrix special structure.

2.1.2 Degrees-of-Freedom

The main metric considered in this thesis is the symmetric degrees-of-freedom
(DoF), in line with existing works on TIM [26]. The reason behind using this
metric (which is widely used in different contexts and not only TIM) in specific
is that it considerably simplifies the analysis and gives useful insights on the net-
work performance [26]. In the following, we state the definition for DoF as it
appears in the literature.

DoF is defined as the pre-log factor of the information-theoratic capacity at
high signal-to-noise ratio (SNR) [23]: it actually represents the capacity of the
underlying linear communication network, where the received signals are simply
linear combinations of transmitted signals, and weak channels are set to zero,
making the DoF a first-order capacity approximation. DoF evaluates the achiev-
able rates normalized by log(SNR), and hence, it indicates the system through-
put in the high SNR regime, where every source’s transmit power is increased
proportionately, while the noise floor is fixed. If there exists a sequence of achiev-
able rate allocations R(W ), such that the limit R(W )/log(SNR) exists for all
W ∈ W as SNR → ∞, then these limiting values are said to be an achievable
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DoF allocation [19]:

DoF(W ) = lim
SNR→∞

R(W )

log(SNR)
,∀ W ∈ W (2.3)

The closure of the set of achievable DoF allocations is called the DoF region
and denoted as DOF . The symmetric DoF value, DoFsym of the network is the
largest value DoFo, such that the DoF allocation DoF(W )=DoFo, ∀ W ∈ W , is
inside the DoF region. It also represents the DoF value that can be achieved by
all users simultaneously:

DoFsym = lim
P→∞

sup sup
(Rsym,...,Rsym)∈C

Rsym

logP
(2.4)

where P denotes the average transmit power, C stands for the set of all achievable
rate tuples, and sup is the supremum, the maximum value.

In TIM, where the network is partially connected, there exists a relation be-
tween the rank r of the adjacency matrix and the symmetric DoF achieved. If we
use M1, . . . ,Mn to denote the number of streams in a network of n D2D pairs,
the achievable DoFs will be given by M1

rank(X∗)
, . . . , Mn

rank(X∗)
where X∗ is the ma-

trix with the lowest rank. In this work, we assume for convenience a single data
stream transmission per D2D pair (i.e., Mi = 1,∀i). This implies that the DoF for
each user is DoF = 1

rank(X∗)
= 1

r
. By this, changing r affects the number of non-

interfering Gaussian channels that the network can support simultaneously [19],
i.e., minimizing r increases the system degrees-of-freedom (DoF). Therefore, the
DoF of an interference channel can be interpreted as the multiplexing gain, i.e.,
the number of interference free signaling dimensions, including time, frequency,
or space.

One of the main objectives of this thesis is thus to propose rank minimization
methods that allow to minimize the rank of the adjacency matrix, while respecting
the special structure of the TIM matrix (having all ones on its main diagonal).

2.1.3 Relation between TIM and Index Coding

It has been established in the literature that the topological interference manage-
ment (TIM) problem, in terms of degrees-of-freedom (DoF), is equivalent to the
index coding problem with linear schemes [19,22]. More specifically, the optimal
solution to the latter is the outer bound of the former, and the linear solution
to the former is automatically transferrable to the latter. As for the considered
matrices in both problems, the index coding matrix N is the complement of the
TIM adjacency matrix X: the rows of the TIM adjacency matrix are equal to
the column of the index coding problem. However, both matrices will be reduced
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to the same rank since the row rank is equal to the column rank.

The importance of the aforementioned relation between the TIM problem and
the index coding problem appears in Chapter 4, where we adopt the low-rank
matrix completion (LRMC) approach to solve TIM. In Chapter 4, we compare
the performance of our proposed rank minimization algorithms against other
methods that are usually used for the index coding problem, such as directional
alternating projection (dirAP) , alternating projection via singular value decom-
position (SVDAP) and directional alternating projection via SVD (dirSVDAP).
The adjacency matrix X and its complement N will be used as inputs to our
algorithm and to the different index coding methods, respectively. Then, the
rank of the output matrices are compared.

Recall that an index coding problem arises when a single source intends to
communicate to a number of receivers over a rate-limited noiseless broadcast
channel. The sender has a number of messages and each receiver desires a specific
subset of messages, while having another subset as side information. A single
encoding of these messages can be transmitted in each channel use [36]. The
incomplete matrix N = [Ni,j] of the index coding problem has as dimensions the
number of rows equal to number of messages and the number of columns equal
to number of receivers, as for its elements Ni,j :

Ni,j =


1 if the receiver j desires the message i

0 if receiver j neither desires message i nor has it as side information
∗ if the receiver j has the message i as side information (caches it)

(2.5)

Note here that if Ni,j = ”∗”, the message may be removed from the received
signal if it arrives. Identifying unknown elements of the incomplete matrix in
a way that the completed matrix has the minimum possible rank is equivalent
to designing a binary scalar linear index code with minimum number of channel
uses. The objective is to design an encoding scheme at the transmitter, called
index code, with minimum number of channel uses that satisfies all clients [2].
The index code has as a goal to reduce the number of bits broadcasted by a
transmitter with different demands and side infos. This can be seen as finding
Lmin, the minimum number of broadcasted messages achieved by scalar linear
index codes, which is equivalent to minimizing the rank of the matrix N . In
the ith transmission, a combination of messages specified by the ith independent
column is transmitted. Each receiver decodes its desired message knowing how
its corresponding column is constructed based on the independent columns. As
a result, the number of independent columns is the length of the index code,
and the minimum rank matrix completion is an approach to design a code with
minimum possible length over a finite field. Each user can decode its requested
packet by using the broadcast packets and its side information. An index coding
scheme is said to be achievable if each destination is able to decode its intended
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message successfully [21].

Figure 2.2: (a) Corresponding index coding problem to the 5×5 topology of Fig.
2.1, and (b) its associated incomplete matrix

As an illustration, we show in Fig. 2.2(a) a directed graph having exactly one
link with finite capacity (also known as the bottleneck link) and multiple unicast
wireline communication networks, and in (b) its associated incomplete matrix.
For instance, in the TIM context, receiver R1 (1st row in the TIM adjacency ma-
trix X in Fig. 2.1(b)) does not suffer from interference coming from transmitters
T2 and T5 (second and fifth column of X). From index coding perspective, this
can be explained as R1 (first column of N ) possesses the messages of T2 and T5

as side information, so that it can cancel them out.

2.2 Mathematical Background

In this section, we give a brief review of some basic concepts from linear algebra.
The treatment is by no means complete, and is meant mostly to set out our
notation throughout the thesis.

2.2.1 Basic Notions

Dealing with matrices in our optimization problems, several norms and functions
are borrowed from linear algebra such as nuclear norm, frobenius norm, `2 norm
and trace function that can be defined as follows:

2.2.1.1 Norms

For an n× n matrix A, the matrix norms can be defined as follows:

• Nuclear norm: ||A||∗ :=
∑n

i σi, where σi is the ith singular value of A
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• Frobenius norm: ||A||F :=
√

(
∑n

i

∑n
j |Ai,j|2) =

√∑n
i σ

2
i

• `2 norm: ||A||2 :=
√∑n

k=1 |Ak|2

2.2.1.2 Trace

Definition 1. (Trace) The trace of an n×n matrix A is defined as Trace(A) =∑n
i=1 Ai,i. It is a linear form on Rn×n and fulfills the following properties [37]:

• Trace(A) = Trace(AT )

• Trace(AB) = Trace(BA)

• If A is symmetric, then the trace of A is equal to the sum of the eigenvalues
of A .

2.2.1.3 Rank

One of the main objectives of this thesis is to develop rank minimization meth-
ods, as presented in Chapter 4. The reason is that when the low-rank matrix
completion approach (LRMC) is adopted to solve TIM, the system degrees-of-
freedom (DoF) metric (which we consider as our main figure of merit) is inversely
proportional to the rank (as discussed in Section 2.1.2). To this end, we provide
here multiple equivalent definitions for the rank.

Definition 2. (Rank) The rank of a matrix A ∈ Rm×n (where m ≥ n) is equal
to:

• the number of non-zero and independent columns or rows of this matrix:
these columns or rows are lineraly independent if and only if det(A) 6= 0
(the column rank and the row rank are always equal).

• the number of non-zero rows in a row-reduced echelon form.

• the number of pivots in a row-reduced echelon form.

• the number of non-zero singular values.

• the upper bound of the number of the non-zero eigenvalues, i.e., the number
of non-zero eigenvalues of a matrix A is at most rank(A).

The rank of a matrix is equal to 0 only if the matrix has no elements. If a matrix
has even one element, its minimum rank is equal to 1. A matrix is said to be a
full rank matrix, when its rank is equal to n. The nuclear norm of a matrix is re-
lated to its rank because while the rank measures the number of non-zero singular
values, the nuclear norm is their sum.
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2.2.1.4 M-matrix

In Chapter 5, we use the concept of M-matrices [38] while applying the diago-
nal perturbation method in order to improve the eigenvalue-based bound that
corresponds to the clustering problem.

Definition 3. (M-matrix) A matrix A is an M-matrix if A = αI −B with
B ≥ 0 and α ≥ ρ(B), where I is the all ones matrix and ρ(B) stands for the spec-
tral radius of B, and so ρ represents the largest absolute value of B’s eigenvalues.

2.2.1.5 Singular Value Decomposition

The singular value decomposition (SVD) problem is used in Eckart and Young
theorem (explained in Section 2.2.3) that helps in assessing the rank of the output
matrices of Chapter 4.

Definition 4. (Singular Value Decomposition, SVD) The singular value
decomposition (SVD) is a decomposition of a general m×n matrix A with m ≥ n
of the form [39]

A =
n∑
i=1

uiσiv
T
i (2.6)

where ui and vi are orthonormal, i.e., uTi uj = vTi vj = δi,j, and the singular
values σi are nonnegative quantities which appear in non-decreasing order,

σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 (2.7)

2.2.1.6 Pseudo-inverse or Moore-Penrose inverse

The use of the pseudo-inverse appears in the Tikhonov regularization (detailed
in Section 2.2.2), as well as in the conditions of the Schur complement for the
positive semi-definiteness (detailed in Section 2.2.5).

Definition 5. (Pseudo-inverse) Let A = UΣV T be the SVD of A ∈ Rm×n

with rank(A) = r. The pseudo-inverse or Moore-Penrose inverse of A is defined
as:

A† = V Σ−1UT ∈ Rn×m (2.8)

Alternative expressions for the pseudo-inverse are also:

A† = lim
ε→0

(ATA+ εI)−1AT = lim
ε→0

AT (AAT + εI)−1 (2.9)

where the limits are taken with ε > 0, which ensures that the inverses in the
expressions exist. If rank(A) = n, then A† = (ATA)−1AT . If rank(A) = m,
then A† = AT (AAT )−1. If A is square and nonsingular, then A† = A−1 [40].
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2.2.2 Tikhonov Regularization

Several semi-definite rank minimization algorithms have been studied in the
literature. One of which is the pseudo-inverse reformulation [41], based on
which we develop our first rank minimization method in Chapter 4, named
as RM-TIM. In this method, the rank function is equivalently formulated as:
rank(A) = Trace(A†A). However, the pseudo-inverse function is not continu-
ous (similar to the rank function), and one can use a Tikhonov regularization
technique to approximate the pseudo-inverse as follows:

A† = lim
ε→0

(ATA+ εI)−1AT = lim
ε→0

AT (AAT + εI)−1 (2.10)

By this, the rank minimization method can be approximated to any level of ac-
curacy via a continuous optimization. In the following, we define Tikhonov reg-
ularization, as a method that permits to inverse a matrix not well-conditionned.
Recall that the matrix is well conditioned when its inverse can be computed with
good accuracy. If the condition number is very large, then the matrix is said to
be ill-conditioned.

Definition 6. (Tiknonov Regularization) Suppose that for a known matrix
A and vector y, we wish to find a vector x such that [42]:

Ax = b (2.11)

The standard approach is ordinary least squares linear regression. However, if
no solutions exist or multiple solutions exist, the problem is said to be ill-posed.
Therefore, in order to give preference to a particular solution with desirable prop-
erties, a regularization term can be included in this minimization:

xΓ = arg min||Ax− b||22 + ||Γx||22 (2.12)

or some suitably chosen Tikhonov matrix Γ. In many cases, this matrix is chosen
as a multiple of the identity matrix (Γ = εI), giving preference to solutions with
smaller norms, and penalizing solutions of large norms; this is known as L2

regularization. The problem in (2.12) then becomes:

xε = (ATA+ εI)AT︸ ︷︷ ︸
Rε

y (2.13)

Definition 7. (Tikhonov Filtering) In case of Tikhonov regularization, using
the SVD of an n× n matrix A, as A = USV T (with σi > 0), then Rε in (2.13)
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can be written as:

Rε = (ATA+ εI)AT

= (V STUTUSV T + εV IV T )−1V STUT

= V (STS + εI)−1STUT

= V diag(
σ2
i

σ2
i + ε︸ ︷︷ ︸wε(σ2

i )

1

σi
)UT (2.14)

if ε → 0, then wε(σ
2
i ) → 1, so Rε → V diag( 1

σi
)UT def

= A†, as ε → 0. The plot of

the Tikhonov filter function wTikh
ε (σ2

i ) =
σ2
i

σ2
i+ε

shows that Tikhonov regularization

operates like a smooth filter: it filters out the singular components that are small
(relative to ε), while retaining the large components [43]. This approach is ad-
justed thanks to a regularization parameter ε. The optimal value of this parameter
ε is specific to each problem and is usually unknown. In practical problems, it is
determined by an ad hoc method [44].

In the first proposed rank minimization method in Chapter 4, we take benefit
from Tikhonov filtering to filter out the small singular values. This hence leads
to decreasing the rank up to a certain precision.

2.2.3 Eckart and Young Theorem

According to the rank definition in Section 2.2.1, the rank of a matrix is equal to
number of non-zero singular values. In this thesis, we rely on Eckart and Young
theorem to determine which singular values can be neglected, and hence to in-
duce the rank of the matrix resulting from the approximation method that we
developed.

Eckart and Young theorem states that approximating a matrixA with another
matrix Âk (said as truncated) of a specific rank k, is based on minimizing the
Frobenius norm of the difference between A and Âk under the constraint that
rank(Âk) = k, such that Âk = UkΣkV

T
k . This is achieved by taking the sum

of the biggest k elements of the Singular Value Decomposition (SVD) of A =
UΣV T , i.e., Σk is the same matrix as Σ but it contains only the k largest
singular values (the remaining σi values are replaced by zero) [45].

Definition 8. (Eckart and Young Theorem) Let A = UΣV T ∈ Rm×n,
m ≥ n be the singular value decomposition (SVD) of A. Then, for any rank-k
matrix Âk:

||A− Âk||F ≥ ||A−UkΣkV
T
k ||F =

√√√√ n∑
i=k+1

σ2
i (2.15)
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The proof for this theorem can be found in [45].

2.2.4 QR Decomposition

In this thesis, we rely on the QR decomposition in order to get the precoding
and decoding matrices, V and U , respectively. The reason for this is that the
adjacency matrix X is equal to X = UV .

Definition 9. (QR decomposition) Given an m×n matrix A, its QR decom-
position is a matrix decomposition of the form

A = QR (2.16)

where R is an upper triangular matrix and Q is an orthogonal matrix, i.e., one
statisfying

QTQ = I (2.17)

where QT is the transpose of Q and I is the identity matrix [46].

If A has z linearly independent columns, then the first z columns of Q form
an orthonormal basis for the column space of A [47]. More generally, the first k
columns of Q form an orthonormal basis for the span of the first k columns of A
for any 1 ≤ k ≤ z. The fact that any column k of A only depends on the first k
columns of Q is responsible for the triangular form of R.

There are several methods for actually computing the QR decomposition,
such as by means of the Gram–Schmidt process, Householder transformations,
or Givens rotations. Each has a number of advantages and disadvantages. As an
example, we present here the Matlab code of the Gram–Schmidt process [48]:

[m,n] = size(A);

Q = zeros(m,n);

R = zeros(n, n);

for j = 1 : n

v = A(:, j);

for i = 1 : j − 1

R(i, j) = Q(:, i)′ ∗ A(:, j);

v = v −R(i, j) ∗Q(:, i);

end

R(j, j) = norm(v);

Q(:, j) = v/R(j, j);

end
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2.2.5 Semi-definite Programming

Our main analysis tool throughout the thesis is the semi-definite programming
(SDP), based on which we formulate our different proposed rank minimization
methods in Chapter 4, and we develop our clustering problem in Chapter 5.

2.2.5.1 Basic Facts

SDP is an example of a special kind of convex program, that is efficiently solvable
in both theoretical and practical senses. It is the broadest class of convex opti-
mization problems. In particular, SDP is the optimization problem of a linear
function of a symmetric matrix subject to linear equality constraints and the con-
straint that the matrix be positive semi-definite [49]. More importantly, SDP can
compute an optimal solution, within given additive error ε, in time polynomial
in the input size n and log ε−1 [49]. For this reason, we choose to use SDP as
a backbone for solving our optimization problems all over this thesis. This PSD
cone has properties that aid us in finding a low-rank matrix which will always lie
on the boundary of the cone.

As defined in [50], the objective of an SDP problem is to minimize a linear
objective over linear equalities and linear matrix inequalities (LMI) on variables
x ∈ Rn (more details about LMI can be found in the following subsection):

min cTx

s.t. x1F1 + . . .+ xnFn + F0 � 0

Ax = b (2.18)

where the problem data are the scalars x1, . . . , xn and the (n+1) symmetric ma-
trices F0, . . . ,Fn.

In the standard form, the SDP aim corresponds to minimizing a matrix inner
product over equality constraints on inner products on variables X ∈ Sn as:

minX∈Sn Trace(CX)

s.t. Trace(AiX) = bi, i = 1, . . . ,m

X � 0 (2.19)

where the input data is C ∈ Sn, Ai ∈ Sn, i = 1, · · · ,m, bi ∈ R, i = 1, · · · ,m. As
for � 0, it denotes that the matrix is positive semi-definite (PSD) (more details
about what a PSD matrix means can be found in this section)

In the following, we discuss the most important characteristics and theorems
that are related to SDP and used in this work.
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Definition 10. (Positive Semi-definite Matrix) A matrix X ∈ Sn is said
to be positive semi-definite (PSD) if for every vector a ∈ Rn, aTXa ≥ 0. The
following statements are equivalent for a symmetric matrix X [37]:

1. X is positive semi-definite, written as X � 0, and defined as aTXa ≥ 0
for all x ∈ Rn.

2. all eigenvalues of X are non-negative, i.e., the spectral decomposition of X
is of the form X =

∑n
i=1 λiuiu

T
i with all λi ≥ 0

3. there exists a matrix B such that X = BTB where B can either be a
(possibly singular) n×n matrix, or an m×n matrix for some m ≤ n. This
matrix B can be obtained in polynomial time using Cholesky decomposition,
as will be explained later.

4. there exist vectors v1, . . . ,vn ∈ Rk (for some k ≥ 1) such that Xi,j = vTi vj
for all i, j ∈ [n]; the vectors vi’s are called a Gram representation of X.

5. all principal minors of X are non-negative, where the kth principal minor
of X is the determinant of its upper-left k × k sub-matrix.

Definition 11. (Spectral Decomposition Theorem) Any real symmetric ma-
trix X ∈ Sn can be decomposed as [37]:

X =
n∑
i=1

λiuiu
T
i (2.20)

where λ1, . . . , λn ∈ R are the eigenvalues of X and u1, . . . ,un ∈ Rn denote the
corresponding eigenvectors which form an orthonormal basis of Rn. From matrix
perspective, X = PDP T , where D is the diagonal matrix with the eigenvalues
λi’s on the diagonal entries and P is the orthogonal matrix with the ui’s as its
columns.

2.2.5.2 Cholesky Decomposition

In Chapter 5, we use Cholesky Decomposition to decompose the PSD matrix YFJ

present in the clustering optimization problem into another matrix B, where the
former matrix represents the Gram matrix of the vectors of B. More specifically,
the columns and rows of YFJ correspond to the nodes’ indices present in the
network. As for its entries, they give an approximate indication of which devices
belong to the same cluster, but not an exact one, since the solved SDP problem
is relaxed. Here appears the importance of extracting B in order to give better
insights about the partitions: each column of B corresponds to a node, and
these columns are then compared against k independent vectors. The nodes
with vectors that are similar to the same independent vector are then grouped
together.
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Definition 12. (Cholesky Decomposition) Given a symmetric positive semi-
definite matrix X, the Cholesky decomposition is an upper triangular matrix B
with strictly positive diagonal entries such that:

X = BTB (2.21)

where the diagonal entries Bj,j and the off-diagonal values Bi,j of B are as follows:

Bj,j =

√√√√Xj,j −
j−1∑
k=1

B2
j,k

Bi,j =
1

Bj,j

(Xi,j −
j−1∑
k=1

Bi,kBj,k) for i > j (2.22)

2.2.5.3 Schur Complements

The notion of Schur complement is very useful for showing positive semi-definiteness
[51] in our work throughout the proposed rank minimization methods.

Definition 13. (Schur complement) Consider a symmetric matrix X in block
form as:

X =

(
A B
BT C

)
� 0 (2.23)

with A ∈ Rn×n, B ∈ Rn×l and C ∈ Rl×l. Assume that A is non-singular. Then
the matrix C −BTA−1B is called the Schur complement of A in X [51–53].

Lemma 1. Let X ∈ Sn be in the block form of (2.23), where A is non-singular
[51–53]. Then,

X � 0⇐⇒ A � 0 and C −BTA−1B � 0 (2.24)

2.2.5.4 Linear Matrix Inequalities

Many optimization problems present in this thesis are formulated using linear
matrix inequalities (LMI).

Definition 14. (Linear Matrix Inequality, LMI) In convex optimization, a
linear matrix inequality (LMI) is an affine (linear) matrix-valued function, such
as:

F (x) = F0 +
n∑
i=1

xiFi � 0 (2.25)

where x ∈ Rn are called the decision variables and Fi = F T
i ∈ Rn×n are symmet-

ric matrices. The LMI in (2.25) is equivalent to a set of n polynomial inequalities
in x. It is a convex constraint on x, i.e., the set {x|F (x) � 0} is convex [54].
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When the matrices Fi are diagonal, the LMI F (x) � 0 is just a set of linear
inequalities.

Nonlinear (convex) inequalities can also be converted to LMI form using Schur
complements. For instance, the LMI(

A B
BT C

)
� 0 (2.26)

where A = AT , C = CT , and B depend affinely on x, is equivalent to

C � 0, A−BC−1BT � 0 (2.27)

In other words, the set of nonlinear inequalities (2.27) can be represented as the
LMI of (2.25). These LMIs are usually solved using interior-point algorithms.
For more details, the reader can refer to [54].

2.2.6 Second-order Cone Programming

One of the constraints of the optimization problem that appears in Section 4.4 of
Chapter 4 is quadratic, which makes the problem a second-order cone program
(SOCP) convex optimization one. To this end, we give in this section some de-
tails about SOCP, based on [53,55].

Definition 15. (Second-order cone programming, SOCP) SOCPs are
nonlinear convex problems that include linear and (convex) quadratic programs
as special cases, but are less general than semi-definite programs (SDPs) [55].
In an SOCP program, a linear function is minimized over the intersection of an
affine set and the product of second-order (quadratic) cones.

The standard form for SOCP can be written as:

minx fTx

s.t. ||Aix+ bi||2 ≤ cTi x+ di, i = 1, · · · ,m
Fx = g (2.28)

where the problem parameters are f ∈ Rn, x ∈ Rn is the optimization variable,
Ai ∈ Rki×n, bi ∈ Rki, ci ∈ Rn, di ∈ R, F ∈ Rp×n and g ∈ Rp.

Therefore, a constraint of the form ||Ax+ b||2 ≤ cTx+ d is called a second-
order constraint. The terminology of ”SOCP” comes from its connection to the
second order cone (also called the Lorentz cone or the ice-cream cone). This cone
is represented as:

Qn :=

{
x =

(
x0

x̄

)
� 0 ∈ Rn : x0 ≥ ||x̄||

}
(2.29)
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Or it can be written in Schur complement as:

x =

(
x0

x̄

)
∈ Qn if and only if

(
x0 x̄T

x̄ x0I

)
� 0 (2.30)

based on the proof present in [53]. Accordingly, the constraint ||Aix + bi||2 ≤

cTi x+ di can be written as

(
cTi x+ di (Aix+ bi)

T

Aix+ bi (cTi x+ di)I

)
� 0

2.2.7 Characteristic Polynomial Function

In Section 4.1.5 of Chapter 4, we rely on the coefficients of the characteristic poly-
nomial function in order to deduce the optimal rank that a matrix can achieve.
In Section 4.3 of the same chapter, we also make use of this polynomial function
to reduce the rank of a matrix. The reason for this is that there exists a relation
between the coefficients of this polynomial function and the eigenvalues of the
corresponding matrix (as will be shown below). On the other hand, as previously
defined in Section 2.2.1, the number of non-zero eigenvalues of a matrix is at most
equal to the rank of this matrix. By this, reducing the value of the characteristic
polynomial coefficients decreases the eigenvalues, and hence the matrix rank.

Definition 16. (Characteristic Polynomial Function) The characteristic
polynomial function of a square n× n matrix X is given by [56]:

p(λ) = det(X − λI) = (−1)n(λ− λ1)(λ− λ2) . . . (λ− λn)

= (−1)n[λn + c1λ
n−1 + c2λ

n−2 + . . .+ cn−1λ+ cn]

= (−1)n[λn − λn−1Trace(X) + c2λ
n−2

+ . . .+ (−1)n−1cn−1λ+ (−1)ndet(X)] (2.31)

where the eigenvalues λi represent the roots of this polynomial, and I stands for
the identity matrix. As for the coefficients c2, . . . , cn−1, they can be expressed in
terms of traces of powers of X as:

cm = − tm
m

+ 1
2!

m−1∑
i=1

m−1∑
j=1︸ ︷︷ ︸

i+j=m

titj
ij
− 1

3!

m−2∑
i=1

m−2∑
j=1

m−2∑
k=1︸ ︷︷ ︸

i+j+k=m

titjtk
ijk

+ . . .+
(−1)mtm1

m!
,

where m = 1, 2, . . . , n, and tk = Trace(Xk) (2.32)

or in terms of its eigenvalues as:

ck = (−1)k
∑n

i1=1
i1<i2<...<ik

∑n
i2=1 . . .

∑n
ik=1 λi1λi2 . . . λik︸ ︷︷ ︸

k factors

, for k = 1, 2, . . . , n

(2.33)
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2.3 Maximum-k-cut

In Chapter 5, we formulate a clustering scheme, that is specific for the low-rank
matrix completion (LRMC) approach for solving TIM, using graph theory. This
is achieved by building on the maximum-k-cut formulation, but with adding a
new constraint on the cluster’s size. In this section, we give a brief overview
about max-k-cut, before detailing our proposed formulation in Chapter 5.

The maximum-k-cut problem is a combinatorial optimization problem which
requires finding a set of edges whose removal would partition a graph into k
connected components. These edges are referred to as k-cut and the goal is to
find the cut with maximum weight [57]. This approach started with Goemans and
Williamson [58], who considered the problem when k = 2, named as max-cut, and
solved it using semi-definite programming (SDP) relaxation. Later, many papers
in the literature based their work on [58] in order to extend the range of k to be
any value. Other authors named this problem as minimum-k-partition problem,
since minimizing the total weight of the edges between vertices in the same part
of the partition (the induced subgraphs) is equivalent to maximizing the k-cut
[59]. Eisenblatter in [59] proposed a SDP relaxation for the minimum k-partition
problem using the approach similar to the one used in [57]. Existing works prove
that the most attractive solution problem remains in the SDP formulation, since
it leads to tighter relaxations than the classical linear programming relaxations.
With this in mind, we formulate our clustering problem building on the SDP
formulation of the max-k-cut problem, specifically (as will be shown in Chapter
5), while using Laplacian matrices.

2.3.1 Laplacian Matrix

To help the reader understand the formulation of the SDP formulation of the
max-k-cut problem in Chapter 5, we provide here a brief overview of Laplacian
matrices.

Definition 17. (Laplacian Matrix) We consider a weighted undirected graph
G = (V , E , w), where V = {1, . . . , n} represents the vertex set, E denotes the set
of edges and wi,j = wj,i indicates the weight for each pair of vertices i and j,
1 ≤ i, j ≤ n and wi,i = 0. We define the adjacency matrix of this graph G as AG,
where AG is a symmetric matrix of n × n dimensions, and its entries are such
as:

AG =

{
wi,j if (i, j) ∈ E and

0 otherwise
(2.34)

Additionally, we characterize the degree matrix of the weighted undirected graph
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G as DG, where DG is a diagonal matrix such that:

DG(i, i) =
∑
j

AG(i, j) (2.35)

Consequently, we can write the Laplacian matrix of the weighted undirected graph
G, as LG, and define it as:

LG = DG −AG (2.36)

Note that, for simplicity, we will omit the subscript G from LG, and we will write
it as L in the rest of the thesis. Therefore, if the Laplacian matrix L = [Li,j],
then Li,j = −wi,j for i 6= j and Li,i =

∑n
k=1 wi,k. This definition of L implies

also that Lun = 0, where un is the all ones n vector and that the symmetric
matrix L belongs to the set of positive semi-definite matrices, i.e., L � 0 in case
that AG ≥ 0 elementwise. This is because aTLa ≥ 0 ∀a ∈ Rn leads to L � 0.

2.3.2 Laplacian Algebra

In Chapter 5, we determine some interesting bounds that serve in the compu-
tation of the performance guarantee of our proposed clustering algorithm and
other algorithms as well (relatively to the optimal method). More specifically,
we firstly develop an eigenvalue bound, while relying on the Laplacian algebra L.
To allow an easy understanding of these derivations, we provide in this section
some foundations of this kind of algebra.

The Laplacian algebra L is a set of matrices that is closed under addition,
scalar and matrix multiplication, and conjugate transposes [60], [61]. It has a
basis of matrices that are obtained from an orthonormal basis of eigenvectors
corresponding to the eigenvalues of the Laplacian matrix L. In particular, we let
0 = λ0 ≤ λ1 < . . . λd =: λmax(L) be the distinct eigenvalues of L (note here that
d < n since some eigenvalues may be repeated and the objective is to search only
for the span of L ), and Ai be a matrix whose columns form an orthonormal basis
of the eigenspace corresponding to the ith eigenvalue λi, constituting Fi = AiA

T
i

for i = 0, . . . , d. We define fi = rank(Fi) as the corresponding multiplicities.
Thus, L is now defined as the span of {F0, . . . ,Fd}, which is called the basis of
idempotents of L, and satisfy the following properties [60], [61]:

• Fi = AiA
T
i

• fi = rank(Fi)

• L = span {F0, . . . ,Fd}

• I =
∑d

i=0 Fi

• L =
∑d

i=0 λiFi
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• FiFj = δi,jFi

• Fi = F ∗i

• Trace(Fi) = fi = rank(Fi)

• F0 = 1
n
Jn

2.4 Successive Interference Cancellation

In Section 4.3 of Chapter 4, we adopt the successive interference cancellation tech-
nique (SIC) to cancel the interference coming from devices in very close proximity.
The effect of these devices can be really harmful, especially that their transmitted
signals can be stronger than the desired one, and hence can overwhelm it.

SIC is a very well-know physical layer technique that applies nonlinear de-
tection algorithms to cancel the interference [62]. Briefly, it is a key method for
multi-user interference cancellation, that allows a user equipment (UE) to retrieve
its signal and decode its own data [63]. As a matter of fact, the transmitted sig-
nals are superposed in the medium channel. Hence, the receiver receives a single
waveform of superimposed information signals that are ordered by their signal
strengths [64]. The receiver decodes the signals one by one until it finds the
desired signal [65]. The first signal that SIC decodes is the strongest one while
others are considered as interference [66]. The process continues until all the
signals are detected.

In Fig. 2.3, we illustrate the multi-user signal separation procedure applied
by SIC, while decoding the received signals in different stages. For instance, if the
receiver receives three signals as in Fig. 2.3 (blue, green and pink waveforms),
then the first stage is to decode the strongest signal (the green one) and the
other two signals are considered as noise (or interference). In the second stage,
the decoded signal (the green waveform) is subtracted from the combined received
signal, and then the second strongest signal (the pink waveform) can be detected.
This signal (the pink one) will also be subtracted in its turn from the composite
signal (pink and blue waveforms) and the blue waveform (the weakest signal) is
then detected. In this way, all the signals are revealed.
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combined signal Decode

Figure 2.3: Successive interference cancellation technique (SIC)
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Chapter 3

Literature Review

The aim of this chapter is to review the state-of-the-art which covers the inter-
ference management techniques that can be applied in Device-to-Device (D2D)
enabled cellular networks. Then, we highlight the limitations of the existing
methods for rank minimization of the TIM adjacency matrix, when modeled as a
low-rank matrix completion problem (LRMC). After that, we discuss the cluster-
ing algorithms usually used in the interference alignment context and their cons.
Finally, we present some existing applications for the successive interference can-
cellation technique (SIC).

Due to the detrimental effects of interference in D2D networks, extensive
research has been conducted on the topic of interference management to offer
reliable communications. Most proposed schemes can be classified into three cat-
egories: interference avoidance, interference cancellation and interference coordi-
nation [67]. First, the interference avoidance builds on orthogonal time-frequency
resource allocation schemes, such as time-division multiple access (TDMA), fre-
quency division multiple access (FDMA), and code division multiple access tech-
niques (CDMA). These techniques are regarded as special cases of a more general
scheme, namely the topological interference management (TIM) method [18].
Under the first category also fall the spectrum splitting [68], the power con-
trol [69], [70], the mode selection [71], [72], the radio resource allocation (using
fractional frequency reuse [73], time-frequency hoping [74], graph theory [75],
cognitive radio networks [76], clustering [77] or game theory [78]), the joint
mode selection power control and the radio resource allocation [79]. The sec-
ond scheme is interference cancellation which applies advanced signal process-
ing techniques on the D2D links, including spatial diversity techniques, such as
multiple-input multiple output (MIMO) (using precoding [80] and relay [81]),
interference cancellation and regeneration [67], beamforming [82], coding (su-
perposition coding [83] and rate splitting [84]), cooperative multipoint [85] and
interference alignment [86], [87]. For example, a receive mode selection strategy
for middle interference is proposed in [88] to mitigate the interference among the

31



users, and hence to improve the reliability of the users. Thirdly, the interference
coordination method that employs intelligent power control and link schedul-
ing schemes. For instance, a distributed dynamic spectrum protocol is proposed
in [89] for multi-hop D2D users’ opportunistic access in which the interference
caused by the D2D users is reduced and kept within the allowed threshold. This
requires significant intelligence to coordinate simultaneously active user and deal
with harmful interference between them. In [90], a spectrum sharing protocol is
designed for a scenario of D2D communications overlaying a cellular network. In
this protocol, the D2D users can communicate in bidirectional communication
mode, while assisting the two-way communications between the cellular base sta-
tion and the cellular user. This hence optimises the resource allocation for an
overlay cellular system and maximise sum rate of D2D system.

However, all these methods require either a feedback from the device or an ex-
change of channel state information (CSI). This rises the flag to find new schemes
that do not depend on this heavy signaling, like the topological interference man-
agement (TIM) solution. In this thesis, we start by focusing on the interference
avoidance technique, namely TIM. Then, we propose to combine it with an in-
terference cancellation technique, like SIC. To the best of our knowledge, this is
the first work that considers TIM as an interference management technique for
D2D application, along with SIC.

3.1 Topological Interference Management

Interference avoidance, and TIM in specific, attracted a lot of follow-up research
with various assumptions, such as transmit cooperation [21] and message pass-
ing [91], that have proved their efficiency in enhancing the achieved degrees-
of-freedom (DoF). TIM has also been extended in various directions, e.g., with
multiple and reconfigurable antennas [92, 93], and has been studied in cellular
networks [94], where multiple layers of interference are included and its effect on
DoF is analyzed. Additionally, TIM has been explored for multilevel connectiv-
ity scenarios [18], where the network is decomposed into two components, one
that includes the interfering links and another that consists of the weak links
which could be handled via power control. Besides, TIM has been studied in
partial connectivity situations, e.g., with alternating connectivity [95], and fast
fading scenarios [20], where a matrix rank-loss approach is proposed to find the
network topology conditions, leading to a certain DoF. As for slow fading condi-
tions, a direct relation between TIM and index coding has been established [19]
to help solve TIM (as discussed in Section 2.1.3 of Chapter 2). However, index
coding, by itself, remains an open problem, and only some special cases have
been resolved [19] [22]. In this respect, the work in [26] proposes a low-rank ma-
trix completion-based (LRMC) scheme to solve TIM in single-input single-output
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(SISO) networks, with only some known matrix entries [24], and the missing val-
ues are filled so that the rank is minimized.

Comparing our work against TIM existing works, we also adopt the LRMC-
based TIM approach, and we apply it in a D2D network. However, we formulate
the problem differently, i.e., using semi-definite programming (SDP). The results
were encouraging in that they led to an increase in the system DoF and allowed
to manage the interference in D2D networks. Moreover, all the aforementioned
works ignore the most critical aspect of interference management in practice,
namely the variations in the signal strengths due to path loss. Most importantly,
it is good to note that the wireless networks are typically not partially connected
as considered in TIM. In Section 4.4 of Chapter 4, we study how TIM can be-
have in practical regimes of interest, where path loss exists. To the best of our
knowledge, this is the first work that studies TIM in practical scenarios.

3.2 Low-Rank Matrix Completion Methods

In this thesis, we mathematically model the topological interference management
problem (TIM) as a low-rank matrix completion problem (LRMC). The objective
is to minimize the rank of the TIM adjacency matrix, knowing that the rank is
inversely proportional to system DoF.

The rank minimization problem, in general, has been extensively studied in
system theory. Recently, there has been a considerable body of work devoted to
address the NP-hardness of the non-convex rank objective function by finding
relaxation methods to replace the rank function, like the nuclear norm [24], the
alternating projections [96], the directional alternating projections [97], the al-
ternating minimization [98], and the least greedy algorithm [99]. These different
rank minimization methods were initially used for constructing linear index codes.
However, they can also be applied for TIM knowing the equivalence between the
index coding problem and TIM in the linear case, as previously discussed in Sec-
tion 2.1.3 of Chapter 2. This equivalence holds over any field, in particular the
field of real numbers R, on which we focus in this thesis.

More specifically, authors in [24] approximate the rank function using the
nuclear norm method. This method represents the sum of singular values, and
assumes the location of the fixed entries in the matrix is chosen uniformly at ran-
dom. To benefit from algebraic approaches that need less computations, other
authors view the rank minimization as a trace minimization [100], [101]. However,
the adjacency matrix considered in the TIM problem is characterized by a special
structure (having all ones on the diagonal) that prohibits the application of the
aforementioned methods. For example, the nuclear [24] and the trace [100] norms
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(which behaves same as the nuclear norm) fill the missing entries of the TIM ma-
trix with 0 values, and thus always return the full rank diagonal matrix as the
optimal solution. Other authors define the rank function using log-determinant
function [102]. However, for a matrix which has ones in its diagonal, this function
will always give a 0 value since the determinant of an identity matrix is equal to
1 and hence its log will be equal to 1.

As for the alternating projection (AP) method [96], it seeks a completion for
a fixed rank r, instead of searching for the optimal r, by projecting the matrix
in inquiry onto two sets (S1) and (S2) individually, where (S1) is the set of rank
r matrices and (S2) is the set of matrices with the entry pattern having the di-
agonal matrix all ones. However, the convergence of this method is not always
guaranteed, but it can assure that the completed matrix achieves a certain rank
r, which is not always the optimal rank, constructing by that a near-optimal
scalar linear index code.

As an improvement, a method called as directional alternating projection (di-
rAP), proposed in [97], can converge faster than AP and can give a low rank close
to that of AP. dirAP represents directional Alternating Projections via eigenvalue
decomposition which is used to construct near-optimal scalar linear index codes.
Given two convex regions C ′ and D, a sequence of alternating projections between
these two regions converges to a point in their intersection. The projection on C ′

(the set of positive semi-definite (PSD) matrices of rank less or equal to a given
rank r which is equal to the coloring number returned by the greedy algorithm) is
obtained by eigenvalue decomposition and taking the eigenvectors corresponding
to the r largest eigenvalues. The projection on region D is obtained by setting
the diagonal entries of the matrix to 1 and the abth entry to 0 if edge (a; b) does
not exist in the input connectivity graph. While the rank of the matrix is below
r, this may take many iterations until the two regions converges to a point in
their intersection. This is computed by the `2 norm (the largest singular value of
the matrix) between the two obtained matrices in the two sets which should be
less than a stopping criteria.

As for the alternating minimization algorithm [98], it factorizes an unknown
rank-r matrix X as X = UV T , where U and V have r columns, and then
alternately optimizes over U and V holding the other fixed. But this fixed-rank
based method needs to know the rank as a prior information, which is not always
available. Moreover, it does not perform as good as the alternating projection
method and its directional variant (which always outperform graph coloring al-
gorithms) and converge much slower than AP and dirAP.

As for the least greedy algorithm, the idea is to minimize the rank of the index
coding matrix N by greedily searching for rows that could be made equal and
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“merging” them. However, this method suffers from a slow convergence rate. It
is good to mention here that the methods listed above need the optimal rank of
the matrix as input, in contrast to our work, which does not require it, boosting
by this its practicality. These methods also suffer from convergence issues,that
were solved by using the Riemannian optimization [27].

To address these convergence issues in the aforementioned fixed rank optimiza-
tion methods, other authors exploit the manifold structures and more specifically
the Riemannian optimization algorithm [27], [103], [104], [105], [106]. A Rieman-
nian manifold is equipped with an inner product defined on the tangent spaces,
called the Riemannian metric, which allows one to measure distances and an-
gles on manifolds. In particular, it is possible to use calculus on a Riemannian
manifold with the Riemannian metric [104]. The main idea is to encode the con-
straints on the manifold into the search space and then perform descent on this
manifold rather than in the ambient Euclidean space. This descent could be using
the first order algorithm (steepest descent and conjugate gradients (CGs) [106]
or the second order method (trust regions) [27]. The Riemannian pursuit (RP)
framework detects also the rank of the matrix to be recovered by iteratively in-
creasing the rank (a rank one update algorithm) without requiring the rank as
a prior information. However, there is a tradeoff between the achievable rank
and the computational complexity of these methods due to the computation ex-
pensive calculation of the Hessian [27]. Note here that this technique has a very
high computational complexity, opposite to the polynomial one of our proposed
algorithms.

Table 3.1: Rank minimization methods

Method Cons

Nuclear Norm / Trace norm
Always returns the diagonal matrix as the optimal
solution

Alternating Projection / Direc-
tional Alternating Projection

• Seeks a completion for a fixed rank, instead
of searching for the optimal one

• Its convergence is not always guaranteed

Alternating Minimization
• Needs to know the rank as a prior information

• Slow convergence
Least Greedy Algorithm Slow convergence
Riemmanian Algorithm High computational complexity

As a conclusion, the adjacency matrix considered in the LRMC-based TIM
problem has a special structure that limits the utilization of all the aforemen-
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tioned methods (summarized in Table 3.1). For this, we improve the existing
solutions, while respecting the matrix structure (all ones on the diagonal), by de-
veloping three approximation methods to solve TIM in D2D environments. This
is in contrast to the previously detailed rank minimization algorithms that were
not directly applied on D2D networks. Our proposed methods are character-
ized by 1) using generic rank approximations with some twists to overcome all
the hard constraints, 2) developing a ”tweaked” nuclear norm approach, and 3)
exploiting the characteristic polynomial function of the adjacency matrix. The
importance of the third method resides is that it does not suffer from the rela-
tively high complexity of the semi-definite programming applied in the first two
methods. Nevertheless, all our proposed approximation methods show a matrix
rank reduction with a polynomial complexity and without requiring the optimal
rank as an input, increasing by this its practicality.

3.3 Clustering Algorithms

Our results in Chapter 4 have proved that the LRMC approach to solve TIM is
very useful. However, its main limitation is that its application appears better
on mid-size D2D networks. Hence, this drives the need to make it more scalable
by combining it with other techniques, i.e., clustering.

In the literature, the used clustering schemes in D2D scenarios are based
on social interactions characteristics [107], and do not consider the interference
among devices sharing similar interests in the same group, so that the D2D links
remain maintained. For this, works like [108] apply the interference alignment
(IA) technique inside each group to cancel the intra-cluster interference and use
orthogonal resources to cancel the inter-cluster interference. One can argue that
the same algorithms can be applied in the TIM context. However, the clustering
formulation is different between IA and TIM, since in the former, the interfer-
ence weights depend on the channel knowledge, which is not available in TIM.
For instance, the grouping scheme in [109] depends on the value of the received
signal-to-interference plus noise ratio (SINR). Moreover, the three low-complexity
partitioning algorithms proposed in [110] also require full channel state informa-
tion, to maximize the sum network throughput: the first algorithm is a balanced
time allocation algorithm that creates an imbalance in the sum rate of each group,
the second one is an equal rate grouping scheme that allocates different amount
of time for transmission, which may lead to the probability that the group with
the highest sum rate transmits for the entire frame (note that the rate here also is
based on the SNR among the same user pairs), and the third one is a geographic
partitioning method.

Another reason for not being able to use the clustering algorithm designed
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in [108] for TIM is that this algorithm keeps the strong interfering edges within
the clusters, and links them with weak interfering edges. This is the complete
opposite to our objective, which is about designing a clustering algorithm that 1)
maximizes the aggregated inter-cluster interference and uses frequency orthogo-
nality among the clusters to eliminate these interference links, and 2) minimizes
the intra-cluster interference by virtue of TIM. As for the clustering algorithm
in [111], it cannot be also applied here since the constraint on the cluster size is
soft, i.e., the algorithm could induce grouping more strong interferers within a
cluster, which could lead to larger ranks for such clusters after applying TIM than
what they would have been if strong interferers are distributed across different
clusters. Other clustering schemes like [87, 111, 112] that are based on fuzzy C-
Means clustering algorithm and ratio clustering, respectively, form clusters that
are relatively balanced in size, and this is not a required constraint in our frame-
work since it does not necessarily impact the goal of maximizing the network’s
DoF. Moreover, the pipage-rounding technique used in [113] to solve the capac-
itated clustering problem cannot be also applied here since in our problem, all
the cluster sizes are bounded by the same value, while in [113] the clusters are
of equal sizes.

Therefore, there is a need to develop a clustering algorithm that is more tuned
to TIM to satisfy the need of separating the D2D pairs with mutual interference
into different clusters. This is because this mutuality is translated into an abun-
dant presence of 0s in the TIM matrix, which prohibits the rank minimization.
By following this grouping technique, the resulting sub-matrices will hence in-
clude less 0s and more ”*” values, which will increase the rank flexibility. Once
the partitions are obtained, different frequencies are allocated to the clusters to
eliminate inter-cluster interference and TIM is applied to each cluster to minimize
the intra-cluster interference.

3.4 Successive Interference Cancellation Tech-

nique

Despite of the promising benefits offered by TIM, the attainable performance
gains (in terms of DoF) in a D2D network may still be eroded by the pres-
ence of very strong interferences at the D2D receivers, caused by geographically
close D2D transmitters. This severe interference, which may even overpower the
desired signal, cannot be managed by conventional TIM, which does not differen-
tiate among the different levels of interference. We therefore propose to use TIM
along with successive interference cancellation (SIC) .

SIC is one of several interference cancellation techniques that include par-
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allel interference cancellation and iterative interference cancellation. However,
SIC remains the mostly used technique, since its architecture (in terms of hard-
ware complexity and cost) is similar to the traditional non-SIC receivers, and
its decoder is the same for the different decoding stages of the composite signal,
without the need for complicated decoders or multiple antennas [67]. Recently,
there have been increasing interests in SIC’s physical layer communications as-
pect [114], and in its application to cellular networks, particularly the full duplex
technology and the non-orthogonal multiple access (NOMA) scheme [115]. In
this regard, NOMA has gained attention due to the network level performance
gains that SIC brought. It helps also to note that NOMA is applied in networks
that schedule the same frequency resources to multiple users.

Several approaches also investigate the coexistence of NOMA and D2D com-
munications with SIC-enabled receivers [62,67,116]. The authors in [116] mainly
addressed the optimization issues associated with power control and data rate.
As for [67], the authors use stochastic geometry tools to analyze the interference
management and resource allocation problems in D2D-enabled multi-cell cellular
networks, and to study the effect of the SIC technique. These tools allow for de-
riving the successful transmission probabilities for both the cellular uplinks and
D2D links with SIC, which reveals the gain of SIC in large-scale wireless networks.
In [62], the authors introduce the concept of group D2D communications, where
D2D transmitter can simultaneously communicate with multiple D2D receivers
with the aid of the NOMA protocol. They model the optimal resource allocation
strategy of the NOMA-based D2D groups as a many-to-one matching problem,
which leads to managing the interference from the underlying uplink cellular
communication, and hence yield a better D2D sum-rate performance. Results
have shown that the proposed NOMA-based D2D scheme is capable of delivering
higher throughput than conventional D2D communication. In [117], the authors
propose a new mechanism that jointly coordinates beamforming based multiuser
multiple-input multiple-output, NOMA, and D2D communications in a downlink
cellular network, to maximize the total system throughput. In [118], the authors
specify two types of D2D-NOMA integrations: forward-D2D NOMA in which
one D2D transmitter sends signals to a group of D2D receivers, and reverse-D2D
NOMA, where a cluster of D2D transmitters transmits to a single D2D receivers.

While both SIC and D2D continue to mature in terms of their theoratical and
practical aspects, TIM is also maturing. However, the TIM framework for NOMA
users (with SIC capabilities) has not been well investigated in D2D network. Re-
cently, few papers have appeared on the subject of combining TIM with NOMA.
So far, Kalokidou et al. propose to combine TIM principles with power-domain
NOMA in SISO [119] and MIMO [120] systems. They introduce a two-stage
process. In the first stage, users with different channel gains are clustered into
groups, and TIM manages the “inter-cluster” interference among the clusters. As
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for the second stage, i.e., within each cluster, the SIC technique is applied to can-
cel the “intra-cluster” interference. The employment of this scheme significantly
improves the sum-rate performance of the system. However, the combination of
these two techniques is hierarchical and is not seen as one entity, in contrast to
our work presented in Section 4.3 of Chapter 4, where SIC and TIM, are both
represented by the same LRMC model. In this chapter, we got inspired by the
potential benefits of the aforementioned interference management techniques: it
became desirable to invoke intelligent joint interference management approaches
that amalgamate TIM with the existing SIC technique, and to apply it in a D2D
environment.
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Chapter 4

Recasting TIM as a Low-rank
Matrix Completion Problem

In the first part of this chapter, we develop two efficient and novel approximation
solutions for the low-rank matrix completion (LRMC)-based topological interfer-
ence management (TIM) problem, while relying on semi-definite programming
(SDP). As an application for this, we consider the Device-to-Device (D2D) envi-
ronment, where the D2D-enabled devices are partially connected in the network,
and hence TIM can manage interference without exchanging the instantaneous
channel information (which represents a serious problem in such scenario) but by
only relying on the network connectivity. To the best of our knowledge, this is
the first work that develops SDP solutions for this kind of problem, while over-
coming also the matrix special structure with hard constraints: having all ones in
the main diagonal, with some predefined 0 entries. Consequently, by successfully
minimizing the rank of the TIM adjacency matrix, the system degrees-of-freedom
(DoF) increases.

In the second part of this chapter, we explore the use of a physical layer tech-
nique, i.e., successive interference cancellation (SIC) technique, along with TIM
to boost the system D2D network’s DoF. From a different angle, it couples two in-
terference management techniques. The first technique is interference avoidance
through TIM to design the appropriate precoding and decoding matrices, U and
V for the transmitters and receivers, respectively, in a way that their product
avoids the interference. The second technique is interference cancellation which
uses SIC to cancel the interfering signals at the receiver side only. To the best
of our knowledge, there is no existing work that investigates the joint TIM-SIC
approach and applies it in D2D communications scenarios.

In the third part of this chapter, we study how TIM can behave in practical
regimes of interest, where path losses exist. To the best of our knowledge, this is
the first work that studies TIM in practical scenarios.
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Starting with the first part of this chapter, the main contributions can be
summarized as follows:

• Proposing two topology information exchange frameworks among communi-
cating D2D devices; one among the D2D devices themselves, and the other
one involving the base station.

• Deriving a formulation of the optimal rank in the LRMC-based TIM systems.

• Recasting the TIM problem as an LRMC problem which is usually NP hard
(due to its non-convex and discontinuous nature), and developing two efficient
and novel approximation solutions (RM-TIM, eRM-TIM ) based on SDP to
overcome the TIM matrix special structure. In addition to their efficiency in
rank minimization, these methods are also characterized by their polynomial
complexity.

• Approximating the TIM matrix rank in RM-TIM by a continuous and smooth
generic approximation function, while converting the problem into an SDP
form, by introducing slack variables and using several transformations. The
key step of our method lies in the development of a novel mathematical re-
sult that forces the SDP approximation to return a non-diagonal matrix, and
hence allowing to decrease the TIM matrix rank despite the matrix special
structure.

• Developing an improved TIM rank minimization, eRM-TIM, after modifying
the nuclear norm heuristic, in order to overcome the hard constraint of all
ones on the main diagonal of the adjacency matrix. This method is simpler
than RM-TIM, with much less matrix inequalities in the constraints, while
achieving similar rank minimization performance.

4.1 Modeling the LRMC-based TIM Approach

In this chapter, we start by describing the system model that is used as a foun-
dation for all the remaining chapters in this thesis. We consider here a multi-user
interference D2D network with n transmitters and intended receivers, working in
pairs and operating in a single-hop transmission mode.

4.1.1 Choice of D2D Transmission Mode

There are different transmission modes in D2D: 1) direct communication (single
hop) between two D2D users, and b) multihop communication through one or
more relays. Although some D2D-related papers consider the multihop scenario,
many existing works in the literature [9, 74, 78, 79, 121–130, 130–132] rely on the
single-hop mode due to its practicality and simplicity. This motivated us then to
adopt in our work this type of transmission, i.e., the single-hop mode, specially
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that it is also compliant with the 3GPP standards [133].

Although the multihop scheme is out of the scope of this work, it seems to
be an interesting topic that is worth tackling. To get an initial feel of what is
involved, we take the two-hop (single relay) case as a scenario. In this case, a
two-time-slot physical layer will be required, where the D2D device changes roles:
in the first timeslot, the intermediate D2D device plays the role of a receiver, and,
in the second timeslot, it acts as a transmitter (the relay’s role). By this, the
connectivity pattern, as well as its associated matrix, will change from time to
time, depending on the role played by the D2D device (transmitter/receiver),
and on the sources of interference that are present at that timeslot. For instance,
while D2D transmitter T1 is sending a message to its corresponding receiver R1

at time t1, T1 interferes with a D2D device D2 playing the role of a receiver, i.e.,
R2. In this case, the entry X2,1 of the adjacency matrix (where the row index
refers to the receiver, and the column index denotes the transmitter) becomes
equal to 0. At time t2, D2 changes its role to be a transmitter, i.e., T2 and it can
happen that the communication between T1 and R1 is finished at that time, and
hence the entry X2,1 that was equal to 0 at t1 is no more valid at t2 = t1 + ε.
This example illustrates how the matrix entries change between two instances.
Consequently, TIM should be applied at each instance separately, and thus on
its corresponding matrix.

4.1.2 Learning about the Topology Information

As an illustration, we show in Fig. 4.1 an example of 12 D2D-enabled devices.
On the left of this figure, we represent the connectivity pattern of these devices,
where solid lines denote intended signals, whereas dashed lines represent inter-
ference links. For instance, receiver R2 is suffering from interference resulting
from two transmitters T4 and T5, while receiving its desired signal from T2. The
attenuation interference network is considered here an asymmetric one in order
to keep the problem more general, and hence the received signals could have
differences in strengths, due to the network topology (i.e., presence/absence of
obstacles). For example, T2 is interfering to R3, however T3 does not hurt R2

while transmitting its signal. On the right of Fig. 4.1, we show the adjacency
matrix that corresponds to the 12×12 D2D network, where we later describe the
meaning of its content and structure.

In the TIM context, the interference is managed based on the topology (with-
out the need of the instantaneous CSI) which may be learned in different ways.
We describe here two possible schemes for learning about the global D2D net-
work connectivity: one that only involves the D2D devices themselves, whereas
the other is based on the network-assisted mode, where the base station (BS)
collects information about the topology and builds the adjacency matrix.
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Figure 4.1: (a) TIM for a 12× 12 D2D network and its (b) TIM matrix

Scenario 1 - Stand-alone Mode: The first scheme builds on the works
in [134–137], according to which devices can learn about the topology informa-
tion of neighboring devices through the device discovery process. This discovery
is made possible by each UE broadcasting its own proximity beacon signals at
given times, thus enabling nearby UEs to capture such beacons [138] that can
contain the identity of each potential D2D user and also serve as reference sig-
nals for measuring the interference level. Moreover, we propose for each device
to propagate the list of interfering and communicating neighbors that it learns
about in its beacons, which is doable, as inferred from [139] and [140]. This
information that each device sends is a list of tuples, where each one includes
the id of the device and one of two associated values: interference (v0) or an
ongoing or pending D2D session (v1). For example, when device R2 transmits a
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beacon that contains (T4, v0) and (T2, v1), it says that the strength of the beacon
it heard from T4 constitutes interference (v0), while v1 indicates that it (i.e., R2)
has an ongoing or pending D2D communication session with T2. In this respect,
we note that a v1 value is only sent by D2D receivers, not transmitters. Hence,
a device T5 which hears the beacon from R2, adds a row in its neighborhood list
that associates the values v0 and v1 with T1 and T2, respectively. With this, if T3

now wishes to establish a D2D session with another device using our scheme, it
has to first construct the adjacency matrix, which it can do from the information
it has collected in its neighborhood list, in particular by only considering devices
that have sent v1 values (i.e., D2D receivers).

The above proposed scheme ensures that all neighboring (i.e., connected di-
rectly, or indirectly) transmitters (and receivers) have identical neighborhood
lists, and thus can construct the same adjacency matrix (X). Any of those
transmitters, e.g., transmitter j (Tj) can then perform rank minimization on the
adjacency matrix it has built, and extract the relevant precoding and decoding
vectors vj and uj to cancel the interference (i.e., using TIM). Related to vj and
uj, two options are available: Tj can produce both vectors, and send uj to Rj

(i.e., its corresponding receiver), or rely on Rj to extract uj itself (since it has
the same X).

Since broadcasting beacons, if uncontrolled, can lead to flooding the wireless
network, we propose the following four measures to make the process of sending
beacons more energy efficient and less loading on the network:

• The values v0 and v1 can be specified using one bit in the beacons (0 for v0,
and 1 for v1).

• The discovery process of transmitting beacons between the devices, using
Orthogonal Frequency Division Multiple Access (OFDMA) as in [141] and
[142], allows for the possibility of the devices to transmit beacon signals
in parallel slots. As for the beacon structure, it can use the one proposed
in [141] (which is built on the existing beacon design of the 3GPP Long Term
Evolution (LTE)), to fit the list of neighbors in their ”future use” field.

• The problem of synchronization when beacons are multiplexed together in the
same OFDMA symbols can be resolved by dividing the devices into groups
that use different patterns to transmit in different beaconing opportunities,
as was also proposed in [141].

• The frequency of transmitting beacons can be tied to mobility: a device
sends the next beacon only when its location significantly changes (using its
GPS sensor), or when it receives beacons from devices it did not hear from
recently.

We note that according to [139], the minimum unit of beacon is a Resource Block
(RB) which carries 72 OFDM symbols [143], whereas the maximum can be two
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RBs [144]. This limits the amount of information carried in a beacon, but with
the application of the measures above, we enable a device to send more tuples
in each beacon. Nevertheless, in case a device was not able to include all the
information in one beacon, it can distribute them among consecutive ones.

Scenario 2 - Network-assisted Mode: The second scheme for learning
about the D2D network topology, and consequently building the adjacency ma-
trix is based on the D2D network-assisted mode. Here, each receiver can send a
sequence of bits to a base station (BS), where every bit corresponds to a trans-
mitter (that is heard by this receiver) based on the pilot signals. This 1-bit
feedback, which is in line with [19], refers to the average interference channel
strength after comparing the average power of the received links against a pre-
chosen threshold value (i.e., the acceptable noise floor): it is equal to ”0” for
weak interference links, and ”1” for significant ones. Having this information,
the BS can then deduce the interfering pairs and build the connectivity pattern
(i.e., construct the adjacency matrix), apply the rank minimization method on
it, and then build the precoding and decoding vectors (by applying QR factor-
ization). These vectors will be sent to the transmitters and receivers, respectively.

It is good to note here that although the first scenario is less efficient than
the second one in terms of computations, but it is useful in some cases when the
network is not equipped with a central entity.

4.1.3 System Model for the LRMC-based TIM Frame-
work

In the TIM framework, each transmitter Ti is assumed not to be aware of CSI,
but only of the network topology. Ti sends a signal visi to its intended receiver
Ri (si is the information symbol, and vi is the ith column of a precoding matrix
V that combines all the precoding vectors) via the sidelink channel of the PC5
interface (as defined in the 3GPP standards [145]), and Ri multiplies the received
signal yi (corrupted by interference) by ui (ith row of the decoding matrix U that
also combines all the decoding vectors). Over r channel uses, the input-output
relationship becomes:

uiyi = uivihi,isi + ui
∑

(i,j)∈S,i 6=j

vjhi,jsj + uizi, ∀i (4.1)

where hi,i and hi,j are the channel coefficients between Ti − Ri and Tj − Ri

respectively, zi ∼ N (0, 1) is the noise, and S is the index set of connected
transceiver pairs such that the channel coefficient from transmitter j to receiver
i with (i, j) ∈ S is non-zero, and zero when (i, j) 6∈ S, and hence Tj can be
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either the intended transmitter or the interfering one. For instance, S includes
(2,2), (2,4), and (2,5) since R2 desires a signal from T2, but it is suffering from
the interference resulting from T4 and T5. At high SNR, to decode the intended
signal si and to guarantee parallel interference-free channels [19], we impose the
constraints that all the interference terms (ui

∑
(i,j)∈S,i 6=j vjhi,j) are aligned and

then cancelled, while the desired signals (uivihi,i) are preserved over r channels.
The TIM strategies should be thus designed such that the following conditions
on U = [ui] and V = [vj] are simultaneously satisfied [26]:

uivj = 0, for ∀i 6= j, (i, j) ∈ S, and

uivi = 1, otherwise (4.2)

By this, the first condition enforces all interference subspaces to have zero di-
mensions and the second one enforces the useful signal to span all dimensions.
More details about the derivation of these equations can be found in [26]. The
input-output relationship can be then written as:

uiyi = ui

vihi,isi +
∑

j,(i,j)∈S

vjhi,jsj + zi


= uivihi,isi +

∑
j,(i,j)∈S

uivj︸︷︷︸
0

hi,jsj + uizi

= uivihi,isi + uizi (4.3)

In the same vein of the example previously mentioned about the content of S
for receiver R2, the conditions in (4.2) make the product between the precoding
vector v1 and the decoding vector u2 equal to 0 (same for v5 and u2) so that the
interference gets cancelled and the desired signal is preserved. Thus, the recovery
succeeds without knowing the exact values of the channel coefficients, making
the TIM problem a channel independent one. By applying TIM strategies on u
and v, R2 will be able then to only decode its desired signal s2 and get rid of the
interfering signals as follows:

u2y2 = u2h2,2v2s2 + u2h2,4v4s4 + u2h2,5v5s5 + u2z2

= u2v2h2,2s2 + u2z2 (4.4)

In what follows, we present our approach for a unified low-rank matrix com-
pletion (LRMC) approach. We start by observing that the above conditions can
be rewritten in a matrix form such as X = [Xi,j] is an n × n real matrix, and
only a subset of its entries Xi,j,∀(i, j) ∈ S are known:

X = [Xi,j] = uivj =

{
1 if (i, j) ∈ S & i = j

0 if (i, j) ∈ S & i 6= j
(4.5)
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The rank of this TIM adjacency matrix X is related to the degrees-of-freedom
(DoF) of the system, knowing the equivalence between TIM and index coding
with linear schemes, as previously mentioned in Section 2.1.3 of Chapter 2. Re-
call that DoF represents the pre-log factor in the sum capacity term linked to
the total number of spatial streams that the network can support simultaneously
without interference [19]. In this work, we consider the symmetric DoF (DoFsym)
of the network (the largest DoF that can be achieved by all users simultaneously)
as our main figure of merit. This is in line with existing works on TIM, knowing
that this metric considerably simplifies the analysis and gives useful insights on
the network performance [26].

If we use M1, . . . ,Mn to denote the number of streams for the n D2D pairs,
the achievable DoFs will be given by M1

rank(X∗)
, . . . , Mn

rank(X∗)
where X∗ is the ma-

trix with the lowest rank (optima of problem (4.6)). In this work, we assume for
convenience a single data stream transmission per D2D pair (i.e., Mi = 1,∀i),
then the symmetric DoF that is attainable at high signal-to-noise ration (SNR)
(when the interference dominates the noise) will be DoFsym = 1

rank(X∗)
= 1

r
per

user. The objective is thus to fill the missing values ”*” of X from R in a way
that minimizes the rank of X that corresponds to the D2D network, so that the
achievable symmetric DoF gets maximized.

Then, we mainly treat TIM as a low-rank matrix completion problem (LRMC):

minX∈Rn×n rank(X)

s.t. Xi,j = Mi,j, (i, j) ∈ S (4.6)

where the missing entries of X ∈ Rn×n constitute the optimization variables, and
the inverse of the optimal rank of X∗ of LRMC equals the maximum achievable
DoF. We let M = [Mi,j] be an n × n matrix in R, but only a subset S of its
entries are known, such that (i, j) ∈ S denotes that the ith receiver is connected
to the jth transmitter: Mi,i = 1 for i = j, and Mi,j = 0 for i 6= j, (i, j) ∈ S,
(i.e., when Ri is receiving interference from Tj as defined in (4.5)). The LRMC
problem is thus turned into finding X having lowest rank that agrees with M
on S. However, the special structure of X (detailed below) makes the problem
more challenging to be solved:

1. X has all ones in its main diagonal.

2. X has some predefined entries as 0s.

3. X is a square matrix due to pairwise links in D2D.

4. X is not necessarily symmetric, i.e., links may have different path loss, in
contrast to previous works adopting a symmetric interference alignment (IA)
network.

5. X is not essentially a positive semi-definite matrix (PSD).
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Once the optimal X∗ is known, the decoding and precoding matrices U and
V respectively, can be derived using QR decomposition (described in Section
2.2.4 of Chapter 2), since X∗ = UV . In the network-assisted mode, the linear
TIM strategies corresponding to ui and vi vectors ( U = [ui] and V = [vi])
can be then determined and sent by the BS to the transmitters and receivers,
respectively. As for the stand-alone mode, these strategies can be deduced by the
devices themselves.

However, solving the LRMC problem in (4.6) is NP hard in general [41] [26],
which implies that the exact complexity is not polynomial (at least exponential).
More generally, the optimization problems, containing the non-convex matrix
rank function either in the objective function or in the constraints, are usually
hard to solve, and this explains why many rank approximation techniques have
been developed in the literature (e.g., [41] and the references therein). Therefore,
obtaining the optimal solution for X by exhaustive search is not possible in
this case, as the variable entries of the matrix that should be found (i.e., the ”*”
entries) belong to R, making the exhaustive search method not easy to implement.
For this, we develop, in the following subsections, several sub-optimal solutions.

4.1.4 Rank Approximation Algorithm Assessment

Before introducing our proposed rank minimization methods, we detail in this
section the procedure that one should undertake to compute the rank of the ad-
jacency matrix X resulting from solving the LRMC problem.

We build here on the fact that the matrix rank is equal to the number of
non-zero singular values (as explained in Section 2.2.1 of Chapter 2). To decide
which singular values can be neglected while doing the rank approximation of the
matrix X by another matrix X̂k, we rely on Eckart and Young Theorem [45].
This theorem states that the Frobenius norm ||.||F of the matrix that derives
from the difference between the two matrices X and X̂k, i.e., ||X − X̂k||F , is

equal to
√
σ2
k+1 + · · ·+ σ2

n, where σn stands for the nth singular value that arises

from the singular value decomposition (SVD) of X (more details can be found
in Sections 2.2.1.5 and 2.2.3 of Chapter 2). Hence, the smaller the value of this
difference, the better the approximation.

To quantify the error resulting from this approximation in a percentage for-
mat, we define the following metric:

error(%) =
||X − X̂k||F
||X||F

× 100 =

√
σ2
k+1 + · · ·+ σ2

n

||X||F
× 100 (4.7)

Therefore, once the output X of problem (4.6) is obtained, we approximate it
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by another matrix X̂k after zeroing the smallest singular value, iteratively (one
singular value at a time). At each iteration, we compute the error in (4.7). We
repeat this as long as the error remains less than 10%. The steps of this algorithm
are summarized in Algorithm 1.

Algorithm 1: Rank approximation decision

Input : X
Output: X̂k, rank(X), U , V

1 Solve the problem (4.6) to get X ;
2 Calculate ||X||F ;
3 Find the SVD decomposition X = Y SZT with S = diag(σ1, . . . , σn),

σ1 ≥ . . . ≥ σn;

4 Define error = ||X−X̂k||F
||X||F

× 100;

5 while error ≤ 10% do
6 Initialize i = n+ 1;
7 repeat

/* zeroing the smallest singular values */

8 i = i− 1;
9 Set [σi, . . . , σn] = 0 in diag(S) ;

10 Get new Ŝ ;

11 Compute X̂ = Y ŜZT ;
12 Calculate error;

13 until error > 10%;

1515 return i+ 1, X̂i+1 ;

16 end
17 rank(X) = n− (i+ 1) ;

18 X̂k = X̂;
/* Get the decoding and precoding matrices, U and V

respectively */

19 Apply QR factorization on X̂k to get U and V , since X̂k = UV

4.1.5 Deducing the Optimal Rank

Now to decide whether the developed rank minimization method was successful
in reducing the rank, the value of the achieved rank should be compared against
an optimal value. In the TIM problem, this optimal value (i.e., the minimum
rank that can be achieved) cannot be equal to 1. This can be explained by the
fact that a rank-one matrix is a non-zero matrix, where all rows are multiples
of each other; however, the underlying matrix in a TIM problem has a special
structure by having all 1s in its diagonal entries (due to D2D application), and
so, the remaining elements of the matrix should be multiple of 1s if it is to be
made a rank-one matrix, i.e., all the elements should be equal to 1. Nevertheless,
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the matrix has predefined values as 0s, indicating which transmitter is the source
of interference for a specific receiver. By this, the optimal value of the rank can
be at least 2 (knowing that the rank should be an integer value).

We also observed that this optimal value of 2 can be deduced from the char-
acteristic polynomial function p(λ) of the TIM adjacency matrix, represented in
(2.31). Knowing that the TIM matrix includes variables in its entries (corre-
sponding to the missing ”∗” values), then the coefficients of this polynomial in
(2.31) will also consist of variables. The reason for this is that these coefficients
can be expressed in terms of trace powers of X as in Eqt. (4.32) or in function of
its eigenvalues, as in Eqt. (4.33). The minimum rank can thus be achieved when
the coefficients that are variables (and hence flexible in their values) are imposed
to be equal to 0. In other words, the optimal rank value can be computed as:

Optimal rank = (n+ 1)− (number of coefficients that include variables) (4.8)

where n is the matrix dimensions. However, not all the n coefficients of p(λ) are
variables in the TIM case to be able to force them to be equal to 0 and hence to
turn the optimal rank value to 1. This is because the c1 factor of this polynomial
is equal to Tr(X), and in TIM, X has all ones on its diagonal, which makes c1

to always be equal to n (constant value). Therefore, the number of coefficients
that can include variables can be (n − 1) at maximum. Plugging this value in
(4.8) gives the optimal rank value of 2.

Consequently, to assess the performance of any rank minimization method,
the resulting matrix rank can be compared to the optimal rank value of 2.
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4.1.6 Parameters and Variables

The list of parameters and variables used in this chapter are captured in the
following tables:

Table 4.1: Parameters and variables used in Chapter 4

Parameter Description Values
n Matrix dimensions
Ti ith Transmitter
Ri ith Receiver
U Decoding matrix
V Precoding matrix
ui Decoding vector for Ti
vi Precoding vector for Ri

si Information symbol sent by Ti
yi Signal received by Ri

hi,i Channel coefficient between Ti −Ri

hi,j Channel coefficient between Tj −Ri

Ti −Ri ith D2D pair
zi Additive isotropic white gaussian noise
r Rank(X)
Mn Number of streams for the n D2D pairs
X TIM adjacency matrix
Xi,j Entry in matrix X at ith row and jth column
X∗ Solution of X

X̂k Approximated X
M Matrix with some known entries
S Set of known entries with indices (i, j)
Y Unitary matrix
Z Unitary matrix
S Diagonal matrix with singular values of X on the diagonal

Ŝ Approximated S
Φε Smooth version of the rank function

σi(X) ith Singular value of matrix X
p(λ) Characteritic polynomial function of a matrix
ε Controlling parameter 10−4

γ Penalty term [4,20]
S ′ Set of known entries with indices (i, k)
γi,i Path loss component between Ti and Ri

γi,j Path loss component between Ti and Rj

A Path loss coefficient 28.03 dB
α Path loss exponent 4
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Table 4.2: Continuation of Table 4.1

Parameter Description Values
di,i Distance between Ti and Ri

di,j Distance between Tj and Ri

θi Threshold for the summation of missing entries at each ith receiver
SIRthreshold Threshold for Signal-to-Interference Ratio 2 dB

cj Speed of the jth transmitter
β Direction of the movement relative to the old distance vector
t Elapsed time
η Solution precision

4.2 Developing Solutions for LRMC-based TIM

Approach

Throughout this chapter, we develop three progressively effective rank minimiza-
tion methods: RM-TIM, eRM-TIM and cRM-TIM. Our approaches are based
on several modifications of the original TIM matrix to be able to solve it using
convex optimization, specifically, semi-definite programming, with a polynomial
complexity. The first two methods build on Fazel’s Lemma in [101], while the
third one (treated in Section 4.3) uses the characteristic polynomial function
properties.

4.2.1 Fazel’s Lemma

This lemma states that a general matrix X can be associated with a positive
semi-definite (PSD) matrix (� 0) whose rank is twice the rank of X: given X,
rank(X) ≤ r if and only if there exist symmetric and PSD matrices K and E
(K = KT , E = ET ) such that:

rank(K) + rank(E) ≤ 2r

W =

(
E X
XT K

)
� 0, where

(
E X
XT K

)
� 0⇔


(i) E � 0,

(ii) XT (I −EE†) = 0,

(iii) K −XTE†X � 0

(4.9)

where E† denotes the Moore-Penrose pseudoinverse of E (the corresponding def-
inition can be found in Chapter 2), and I is the identity matrix of dimension n.
By this Lemma, minimizing the rank of X in (4.6) is equivalent to minimizing
the rank of the semidefinite, block diagonal matrix Diag(E,K) (i.e., the ob-
jective function in (4.9) can be replaced by (1

2
rank Diag(E,K)) with the same

constraints) [101]. Having E and K as PSD matrices, then the direct application
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is to relax the rank function by the trace heuristic, yielding to:

min 1
2
(Trace(K) + Trace(E))

W =

(
E X
XT K

)
� 0, Xi,j = Mi,j, (i, j ∈ S) (4.10)

which remains a convex optimization problem (in variables X,K,E) that can
be solved to give a sub-optimal solution. It has been also shown in [101] that
(4.10) is equivalent to:

minX∈Rn×n ||X||∗
s.t. Xi,j = Mi,j (4.11)

where ||X||∗ is the nuclear norm such that ||X||∗ =
∑n

i=1 σi(X) (σi(X) denotes
its singular value). Note that the constraint Xi,j = Mi,j, (i, j ∈ S) in the TIM
problem has special characteristics, i.e., 1s in the main diagonal, that makes the
problem a challenging one. Under this constraint, the trivial solution of the nu-
clear minimization problem of (4.11) is X = I, where I is the identity matrix
(a full rank diagonal matrix) [26]. On the other hand, knowing the following
relations rank(K) ≥ rank(X) and rank(E) ≥ rank(X) (for more details about
the proof, the reader can refer to [101] or to Appendices A.1 and A.2), and the
equivalence between (4.11) and (4.10), then solving (4.10), under the same con-
straint of Xi,j = Mi,j, will also lead to the trivial solution K = I and E = I (full
rank diagonal matrices), which simultaneously satisfies the Schur complement
conditions for positive semi-definiteness of W in (4.9). The method in (4.10) is
thus not applicable here, and it is more likely that by avoiding K and E to be
diagonal (we also observed this fact numerically), the rank of X gets reduced
further.

Hence, other approximation methods are required to conserve the 1s in the
X’s diagonal and still minimize X’s rank. This objective is achieved in Sections
4.2.2 and 4.2.3 of this Chapter.

4.2.2 RM-TIM : Generic-Rank Approximation Method

To coincide with the original problem definition, we replace the rank function in
(4.9) for each of the symmetric matrices K and E by a continuous generic ap-
proximation function controlled by a parameter ε based on [41]. We explain the
approximation below for K only and the same procedure should be performed
for E as well. The approximation follows in several steps.

Step 1. To approximate rank(K), we rely on the approach in [41] for a
smooth version Φε of the rank function, which can be written in terms of the

53



singular values σi(K) of K, as follows:

Φε(K) =

rank(K)∑
i=1

σ2
i (K)

σ2
i (K) + ε

, ε > 0 (4.12)

or as a trace formulation (proof in Appendix A.3), validated in [41] to be uniform
and continuous w.r.t (K, ε) over Rn×n × [0, ∞[ for ε > 0:

Φε(K) = Tr(K(KTK + εI)−1KT ) (4.13)

This expression resembles to the Tikhonov regularization technique (validated
in [43] and explained in Section 2.2.2 of Chapter 2) which can approximate the
discontinuous pseudo-inverse reformulation of the rank function. This technique
filters out the small singular components of K and E, while preserving their
large components in order to make the matrix approximation more precise. As
for the error difference between the rank and its approximation, it is validated
in [41] to be upper bounded by:

rank(K)− Φε(K) =

rank(K)∑
i=1

ε

σ2
i (K) + ε

≤ ε

rank(K)∑
i=1

1

σ2
i (K)

(4.14)

By this, a small value for ε should be considered to reduce the error: Φε(K) →
rank(K) for all K when ε→ 0.

Step 2. Introduce a new variable YK ∈ Sn, where Sn is the set of real
symmetric matrices. Therefore, (4.13) can be approximated by a nonlinear opti-
mization problem as follows:

min{Tr(YK) : YK ≥K(KTK + εI)−1KT} (4.15)

Applying the Schur complement theorem on (4.15) provides a result that remains
a non-linear non-convex problem, where the minimization is taken over YK and
K, as follows:

min

{
Tr(YK) :

(
YK K
KT KTK + εI

)
� 0

}

⇔


(i) YK � 0,

(ii) KT (I − YKY †K) = 0,

(iii) (KTK + εI)−KTY †KK � 0

(4.16)

where Y † denotes the Moore-Penrose pseudoinverse of Y .

Step 3. Enter, therefore, a new variable ZK = KTK. However, this hard
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equality adds further difficulty in solving the problem. Hence, we relax the equal-
ity to ZK � KTK and apply the Schur complement on it in order to convert
problem (4.16) to an SDP one:

min

{
Tr(YK) :

(
YK K
KT ZK + εI

)
� 0,

(
I K
KT ZK

)
� 0

}
(4.17)

Step 4. Impose a penalty on ZK by appending the term 1
γ
Tr(ZK) (γ > 0) to

Tr(YK), so that ZK is restored to be near to KTK. This is because, due to the
relaxation ZK � KTK, ZK could deviate too much from KTK, which affects
on Tr(YK) by deviating it from Φε(K) (≈ rank(K)). For completeness, we apply
the same above steps to E to get the following mathematical model:

min

(
Tr(YE) +

1

γ
Tr(ZE)

)
+

(
Tr(YK) +

1

γ
Tr(ZK)

)
s.t.

(
E X
XT K

)
� 0,

(
YE E
ET ZE + εI

)
� 0,

(
I E
ET ZE

)
� 0,(

YK K
KT ZK + εI

)
� 0,

(
I K
KT ZK

)
� 0,

Xi,j = Mi,j, (i, j) ∈ S (4.18)

The problem above can be solved using SDP solvers. The variables are X and
the PSD matrices YK , YE, K, E, ZK , ZE. X does not have necessarily to be
symmetric due to the presence of X and XT in the constraint. It is good to
mention here that this rank approximation may still return a full rank diagonal
matrix after replacing ”∗” inX by zeros, since the resultingK and E may also be
diagonal (the proof can be found in the Appendices A.1 and A.2). Consequently,
additional constraints are needed to prevent these matrices from being diagonal.
The following Lemma solves this issue.

4.2.2.1 Step 5. Solution for the Diagonal Issue

Lemma 2. Let K and E ∈ Rn×n with Ki,i < 2 and Ei,i < 2 where i = 1, . . . , n.
Let J be a matrix of all ones . If (K − J) and (E − J) are PSD matrices then
K and E are not diagonal.

Proof. We validate the above lemma for K, and the same holds for E. We prove
that, if K is a diagonal matrix, then (K − J) is not PSD. If K is diagonal,
then (K − J) becomes a matrix with diagonal entries equal to K ′i,i where K ′i,i =
Ki,i − 1 < 1 since Ki,i < 2, and the remaining entries equal to 1. To prove
that K − J is not PSD, it is sufficient to show that ∃u ∈ Rn×1 such that
uT (K − J)u ≤ 0. For this, we consider a special case and let u1 = · · · = un
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(where ui ∈ R).

(u1, . . . , un)


K ′1,1 −1 . . . −1

−1
. . .

. . .
...

...
. . .

. . . −1
−1 . . . −1 K ′n,n


u1

...
un

 (4.19)

Recall that K ′i,i < 1 ∀ i, then uT (K − J)u is equal to

∑
i

K ′i,iu
2
i −

∑
i

∑
j 6=i

uiuj =

(∑
i

K ′i,i

)
u2 −

∑
i

∑
j 6=i

u2

=

(∑
i

K ′i,i

)
u2 − n(n− 1)u2 < 0 (4.20)

since
∑

iK
′
i,i < n. Hence, uT (K − J)u < 0 and (K − J) are not PSD. This

concludes the proof.

Final Step. After proving this lemma, additional constraints should be added
to (4.18) by forcing (K − J) and (E − J) to be PSD. Based on the above, this
will oblige K and E not to be diagonal, and hence will solve the issue of the
”∗” fields in X. By this, the final objective function for the problem of the
rank minimization of the TIM matrix (that we call RM-TIM ) along with the
constraints, can be written as follows:

RM-TIM min

(
Tr(YE) +

1

γ
Tr(ZE)

)
+

(
Tr(YK) +

1

γ
Tr(ZK)

)
s.t.

(
E X
XT K

)
� 0,

(
YE E
ET ZE + εI

)
� 0,

(
I E
ET ZE

)
� 0,(

YK K
KT ZK + εI

)
� 0,

(
I K
KT ZK

)
� 0,

(
K − J

)
� 0,(

E − J
)
� 0, Ki,i < 2, Ei,i < 2, ∀i = 1, . . . , n,

Xi,j = Mi,j, (i, j) ∈ S (4.21)

The flow of the RM-TIM algorithm can be summarized in the figure below:
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Figure 4.2: Flow of RM-TIM method

Therefore, comparing our work to Fazel’s work [101], the main difference
resides in the rank relaxation of K and E, where we replaced the nuclear norm
by a pseudo-inverse reformulation of the rank and added additional constraints,
as shown in Eqt. (4.21). Having all 1s in the diagonal entries of X, which is the
case of the TIM problem (multiple unicast setting), prohibited the direct use of
the nuclear norm heuristic proposed by Fazel, knowing that it will always give
an identity matrix (full rank matrix). It is good to recall here that in Fazel’s
problem, X was a general matrix (no hard constraint on the diagonal entries),
which did not require a specific treatment to overcome this special structure.

4.2.2.2 Simulation Setup and Parameters

We implement problem (4.21) using the convex optimization toolbox CVX [146]
in MATLAB R2016b on a desktop of 64 GB RAM with Intel Xeon CPU E5−2620
v4 working at 2.10 GHz. As for the constant factors, the γ value is chosen in a
way to enforce the penalty terms Tr(ZK) and Tr(ZE) not to be negligible w.r.t
Tr(YK) and Tr(YE), while still taking small values, so that YK and YE do not
deviate from their exact rank: γ is found heuristically to be in the range [4, 20],
(so we take γ = 10), while ε is set to 10−4, for which the error in (4.14) is reduced.

4.2.2.3 Parameters Assumptions Justification

• γ parameter: γ = 10.
Justification: γ is chosen heuristically, and it is found to be in the range
4 ≤ γ ≤ 20 after trying different topologies (and hence different matrices)
and different dimensions. The value for γ should be chosen in such a way
to enforce Tr(ZK) and Tr(ZE) not to be negligible with respect to Tr(YK)
and Tr(YE) respectively in Eqt. (4.21), and at the same time, γ should not
take a very high value so that YK and YE do not deviate from their exact
rank. If Tr(ZK) and Tr(ZE) dominate, this will impact the rank of X by
increasing it. Recall that 1

γ
Tr(ZK) and 1

γ
Tr(ZE) play the role of penalty

functions that are necessary because Tr(YK) = Tr(K(KTK + εI)−1KT ) =
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Tr(K(ZK + εI)−1KT ) may significantly deviate from Φ(K)(≈ rank(K)).
This can be justified by the fact that ZK gains too much freedom while
ZK = KTK is relaxed to ZK �KTK, and thus ZK can deviate away from
KTK. The same analysis aforementioned holds for ZE.
It is worth mentioning that although some parameters should be fixed heuris-
tically, we believe that this does not impact the interest of the proposed so-
lution as the number of parameters is small and can be adjusted easily. Also
fixing parameters heuristically is encountered in several existing / known
optimization methods.

• ε parameter: ε = 10−4.
Justification: The error difference between the rank of K and its approxi-
mation Φε(K) is upper bounded by ε

∑rank(K)
i=1

1
σ2
i (K)

, as shown in (4.14) The

interpretation of this bound derives from Zhao’s paper [41], but to be pre-
cise, this is derived without taking into account the constraints in (4.21),
i.e., (K − J) � 0, (E − J) � 0, Ki,i ≤ 2, Ei,i ≤ 2, etc. This upper bound
helps in choosing the suitable value for the parameter ε. It turns out that
one can check easily (two to three times) by starting with a small value for
ε until Φε becomes very close to the rank, i.e., the error tends to 0. For a
given ε, one can solve the problem (e.g., using our method), and then easily
compute the error by rank(K)−Φε(K). If for a given ε, the error computed
turns out to be large, ε should be reduced further and the process repeats.
We have noticed from our simulations that the number of values for ε that
should be tested is small (note that beyond a certain value, the decrease in
the error becomes negligible and hence the improvement in the rank does not
change, therefore the value of ε should be small, tending to 0 but not exactly
0 to not fall into convergence issues). A similar conclusion has been drawn
in [41] (although the problem is different in our case with more constraints),
where it was shown that by using the function Φε, the rank can be minimized
by testing only a small number of values for ε. For instance, for ε = 10−4,
the singular values of K are 2.4759, 1.9025, 0.8573, 0.0007, 0.0000 making the
error between the exact rank and its approximation equal to the following:
(for rank = 3, taking only the first 3 singular values)

rank(K)∑
i=1

ε

σ2
i (K) + ε

= 1.7998× 10−4

As for ε = 10−1, the singular values σi of K become equal to
σ = [2.4570, 1.4754, 1.0372, 0.0136, 0.0168] and the value of the upper bound
of the error reaches:

rank(K)∑
i=1

ε

σ2
i (K) + ε

= 0.1453

Moreover, one can look at it from another perspective: according to [147],
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Zhao’s formulation of the rank function is considered as a pseudo-inverse
reformulation. The equivalent formulation can be stated as follows :

rank(K) = rank(K†K) = Tr(K†K)

and these pseudoinverses are limits where

K† = lim
ε→0

(KTK + εI)−1KT = lim
ε→0

KT (KKT + εI)−1, ε > 0

However, similar to matrix rank, the pseudo-inverse function is not continu-
ous but it can be approximated by using a Tikhonov regularization technique.
Inspired by this fact, the work of Zhao proves that rank minimization can
be approximated to any level of accuracy via continuous optimization con-
trolled by ε. The optimal value of this parameter ε is specific to each problem
and is usually unknown. In practical problems, it is determined by an ad
hoc method [44]. For instance, in our problem, ε is found through heuristic
methods to be equal to 10−4.

4.2.2.4 Results and Analysis

Toward showing the relevance of our technique RM-TIM, we test it on a moderate
D2D network (which is translated into a square TIM matrix of size n) and com-
pare the result to the known Directional Alternating Projection via eigenvalue
decomposition (dirAP) algorithm [36] in terms of rank reduction, and matrix per-
turbation and decoding error. The dirAP method, which converges the fastest,
is usually used for index coding problems where all the diagonal entries of the
matrix are equal to 1, the (i, j)th entry of the matrix is equal to 0 if user i does
not have packet j and the remaining entries should be set to NaN or represented
by stars ”*” in the literature. More details about index coding can be found
in Section 2.1.3 of Chapter 2. In order to accomplish this comparison, we give
the TIM adjacency matrix as input to our algorithm and its complement (the
index coding matrix) to the dirAP algorithm. For evaluation, we particularly
choose the n = 5 example shown in Fig. 2.1 (also studied in other papers [26]
and [19]), knowing its historical significance, as it turns out that it is an index
coding problem that was considered originally by Birk and Kol in [2], and was
the first known example of interference alignment. We also evaluate our proposed
method on another example with larger dimension (n = 12), illustrated in Fig.
4.1.

Rank achieved: In this subsection, we compare the performance of our pro-
posed algorithm, RM-TIM to the dirAP method, in terms of the minimum rank
achieved. In Table 4.3, we show the resulting matrices after applying both meth-
ods on Birk and Kol example, illustrated in Fig. 2.1. Note that we choose here
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Table 4.3: Resulting X

(a) from RM-TIM

1 0.6962 0 0 0.8689
0.8689 1 0 0 0.5191

0 0.4284 1 1 0
0 0.4284 1 1 0

0.6962 0 0.4284 0.4284 1

(b) from dirAP

1.0004 9.3993e−7 +
7.4649e−16i

−3.2122e−4 +
1.6199e−14i

−3.2122e−4 −
1.6231e−14i

1.0004

9.3993e−7 +
7.4649e−16i

1 −8.7635e−4 +
5.2482e−15i

−8.7635e−4 −
5.2517e−15

9.3993e−7 −
1.1367e−17i

−3.2122e−4 +
1.6199e−14i

−8.7635e−4 +
5.2536e−15i

1 −2.3545 −3.2122−4 +
1.6200e−14i

−3.2122e−4 −
1.6231e−14i

−8.7635e−4 −
5.2462e−15i

−2.3545 1 −3.2122−4 +
1.6229e−14i

1.0004 9.3993e−7 −
1.1364e−17i

−3.2122e−4 −
1.6200e−14i

−3.2122e−4 +
1.6229e−14i

1.0004

to show the output of the n = 5 topology as an example, due to space constraint.

In order to assess the minimum rank achieved in both methods, we apply the
rank approximation decision algorithm (Algorithm 1) discussed in Section 4.1.4.
In the following, we consider RM-TIM ’s output of Table 4.3a as an example to
explain the procedure of applying Algorithm 1. However, the same strategy can
be applied on any other matrix, e.g., Table 4.3b. We start here by applying the
singular value decomposition (SVD) on Table 4.3a, which delivers three matrices:
Y , S and Z, as shown in Table 4.4.

As we can see in Table 4.4b, the two last singular values (in bold) are so
small and can be neglected. Therefore, we approximate S by another matrix
Ŝ after zeroing these two singular values as in Table 4.5 and we compute the
approximated X̂k as X̂k = Y ŜZT , represented in Table 4.6. According to (4.7),
the approximation error is equal to 0.0228% (much less than 10%). Thus, RM-
TIM reduced the rank of the TIM matrix of Fig. 2.1 from 5 to 3.

On the other hand, after applying the same procedure on Table 4.3b, we de-
duce that dirAP reduces the rank of the TIM matrix of Fig. 2.1 from 5 to 4
only. By this, RM-TIM achieves a minimum rank lower than the one attained
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Table 4.4: Applying SVD on the resulting X

(a) Resulting Y

-0.4842 0.4706 0.0402 -0.7365 -7.182e-13
-0.4516 0.3872 0.5617 0.5750 5.590e-13
-0.4168 -0.5534 0.1212 -0.0730 -0.7071
-0.4168 -0.5534 0.1212 -0.0730 0.7071
-0.4628 0.1265 -0.8084 0.3410 3.338e-13

(b) Resulting S

2.4756 0 0 0 0
0 1.9020 0 0 0
0 0 0.8579 0 0
0 0 0 0.0007 0
0 0 0 0 1.681e-05

(c) Resulting Z

-0.4842 0.4706 -0.0402 0.7365 6.5003e-13
-0.4628 0.1265 0.8084 -0.3410 -3.0223e-13
-0.4168 -0.5534 -0.1212 0.0730 -0.7071
-0.4168 -0.5534 -0.1212 0.0730 0.7071
-0.4516 0.3872 -0.5617 -0.5750 -5.059e-13

Table 4.5: Approximate S by Ŝ after zeroing the two smallest singular values

2.4756 0 0 0 0
0 1.9020 0 0 0
0 0 0.8579 0 0
0 0 0 0 0
0 0 0 0 0

Table 4.6: X̂: Approximated X

1.0004 0.6960 3.964e-05 3.964e-05 0.8686
0.8686 1.0001 -3.095e-05 -3.095e-05 0.5193

3.964e-05 0.4283 1.0000 1.0000 -3.095e-05
3.964e-05 0.4283 1.0000 1.0000 -3.095e-05

0.6960 8.573e-05 0.4283 0.4283 1.0001
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by dirAP. Moreover, Birk and Kol have shown that the symmetric capacity of the
index coding problem is 0.5 per message [2], meaning the minimum rank achieved
was 2 (as previously discussed, the minimum rank cannot be 1, since the matrix
has predefined 1s (diagonal) and 0s). Therefore, RM-TIM outperforms dirAP by
delivering a solution that is closer to the optimal one. In all, this shows the effec-
tiveness of RM-TIM in increasing the DoF of a network containing 5 D2D pairs
from 1/5 to 1/3, and hence boosting its throughput. With this, the interference
can be roughly concentrated into one half of the signal space at each receiver,
leaving the other half available for the desired signal and free of interference.

Decoding error: As for the decoding error at the receiver side, RM-TIM
performs better than dirAP, since it stays consistent with the given 0s and 1s
as inputs in the adjacency matrix, while dirAP changes these initial values (0s
replaced by relatively small numbers in the resulting matrix, as shown in Ta-
ble 4.3), leading to a matrix perturbation [36]. This perturbation may probably
cause a small decoding error at the user’s side. In this regard, an additional
point concerns the practicality of the decoding and precoding matrices (U = [ui]
and V = [vj] respectively) resulting from the QR decomposition of the resulting
matrix from the dirAP method. To apply the solution, each transmitter j needs
to know the precoding vector vj by which it should multiply its information sym-
bol, and each receiver i should be aware of the decoding vector ui, so that it
only decodes its intended signal. However, if we apply QR decomposition on the
output matrix of the dirAP algorithm, we find that the factors Q and R (i.e, U
and V respectively) contain very small entries, in the range of 10−7 or even 10−16,
which cannot be implemented in practice, knowing that it requires a very high
precision at the UEs’ side. Therefore, these very small entries in these matrices
will be replaced in practice by 0s, and hence the resulting matrix multiplication
Xnew = UnewVnew (where Unew and Vnew are the matrices after the substitution
by 0s) will have a higher rank than the one previously found.

Moreover, it is applicable here to stress the fact that the resulting matrix from
our method respects the special structure required (being not symmetric), in con-
trast to the output matrix resulting from dirAP that deviated from the specified
model by being symmetric. Note that having a symmetric matrix should have in-
creased the possibility of having higher dependency between the rows (and hence
decreasing the rank), which did not happen in the dirAP output.

In Table 4.7, we summarize the results that correspond to both topologies
n = 5 and n = 12 in terms of the minimum rank achieved and the matrix per-
turbation.

Getting U and V: In this subsection, we also consider the TIM matrix
that corresponds to Birk and Kol example illustrated in Table 4.3a as an applied
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Table 4.7: Comparison of RM-TIM against dirAP

Matrix Min Rank Matrix Perturbation

dirAP RM-TIM dirAP RM-TIM
n = 5 (Fig. 2.1) 4 3 Yes No
n = 12 (Fig. 4.1) 9 7 Yes No

example. To get the corresponding precoding and decoding matrices, V and U ,
respectively, (as in Table 4.8) we apply the QR algorithm on X, which delivers
two matrices Q and R.

Table 4.8: Applying QR decomposition on X resulting from RM-TIM

(a) Original Q

0.6682 -0.0030 -0.1038 -9.7945e-07 0.7367

0.5806 0.4512 -0.3583 -3.3801e-06 -0.5753

0 0.4920 0.5026 -0.7071 0.0729

0 0.4920 0.5026 0.7071 0.0729

0.4652 -0.5588 0.5963 5.6257e-06 -0.3402

(b) Original R

1.4965 1.0458 0.1993 0.1993 1.3472

0 0.8706 0.7447 0.7447 -0.3272

0 0 1.2606 1.2606 0.3201

0 0 0 2.3785e-05 3.020e-06

0 0 0 0 0.0013

As proved above, the rank of X is minimized to 3, then the originals Q and
R should be truncated by removing the last two columns of Q and the last two
rows of R, as represented in Table 4.9. To show that this truncation is valid, we
multiply the truncated Q and R. This multiplication gives an approximation of
X in Table 4.10, which is almost equal to the original X in Table 4.3a.

4.2.2.5 RM-TIM ’s Complexity

Concerning time comparison, RM-TIM requires a higher CPU time than dirAP
to solve the optimization problem. For instance, RM-TIM spends around 0.8s
(seconds) to fill the matrix example of Fig. 4.1 (n = 12), while dirAP takes 0.4s.
This difference arises partially from our use of the general-purpose CVX toolbox
(with its built-in SDPT3 solver), where it is hard to exploit the semantics of
the program to direct the search inside the solver and to control the encoding
of process interleavings. CVX solves the problem based on the interior point
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Table 4.9: Truncating Q and R

(a) U := Truncated Q

0.6682 -0.0030 -0.1038

0.5806 0.4512 -0.3583

0 0.4920 0.5026

0 0.4920 0.5026

0.4652 -0.5588 0.5963

(b) V := Truncated R

1.4965 1.0458 0.1993 0.1993 1.3472

0 0.8706 0.7447 0.7447 -0.3272

0 0 1.2606 1.2606 0.3201

Table 4.10: Approximated X with r=3

1 0.6962 -6.025e-18 2.329e-11 0.8679
0.8689 1 8.0913e-17 8.0396e-11 0.5198

0 0.4284 1 1 -9.128e-05
0 0.4284 1 1 -9.555e-05

0.6962 -4.088e-17 0.4284 0.4284 1.0004

algorithm in at most O(
√
nlog(1/η)) iterations (n is the matrix dimension and η

is related to the solution precision), while maintaining a polynomial complexity
per iteration [148] (roughly O(n6), without considering the special structure of
the constraints in (13) which can reduce the complexity further).

As for dirAP, although it requires more iterations, it has less complexity per
iteration, leading to a lower CPU time. Indeed, there is a tradeoff between com-
plexity and performance, but the former becomes critical when the update of
the adjacency matrix configuration (the run of the algorithm) should be done
in each timeslot. However, this is not the case of TIM, knowing that it is not
based on the instantaneous CSI, but only on the network topology (i.e., connec-
tivity). This topology changes very slowly over time (once each few seconds),
especially in a D2D scenario, since the D2D communication is well-known to be
more suitable for static and low speed environment (i.e., coffee shop, campus uni-
versity), where the D2D pairs have interest in staying connected after completing
the relatively long discovery process [3]. This is because, if the D2D pairs move
rapidly, the connection between them will be broken, and hence they should re-
peat the discovery step before being able to exchange files and photos or play
games. Therefore, with the above in mind, 0.8s can be considered an acceptable
time duration to run our algorithm (with polynomial complexity) and minimize
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the rank. It is worth reminding here that, although our algorithm may require
higher CPU time, but it outperforms the dirAP method in terms of rank reduc-
tion, consistency with given 0s and 1s as inputs, while still respecting the TIM
special structure, as previously discussed.

4.2.2.6 Summary

In the first part of this chapter, we model the Topological Interference Manage-
ment (TIM) problem, in the context of D2D, as a low-rank matrix completion
problem. We show that the lack of vector space structure of the adjacency ma-
trix resulting from TIM when optimizing its rank can be mitigated through a
novel scheme that we propose, based on semi-definite programming (SDP). The
complexity of the problem resides in the special structure of the TIM matrix in
which all the diagonal entries must be equal to 1 and some other entries must be
equal to 0. This special structure is due to the interference topology of the D2D
network. To the best of our knowledge, this is the first work that develops an
SDP solution for TIM to fill the matrix missing entries. The proposed approxi-
mation method follows in several steps: it starts by dividing the general matrix
for which its rank should be minimized into two symmetric and positive semi-
definite (PSD) matrices related to it via its Schur complement, and then replace
the rank function for each of these matrices by a continuous generic approxima-
tion function controlled by a parameter ε. A key step is the development of a
novel mathematical result to force each of these matrices not to be diagonal, and
hence avoiding obtaining full rank matrices. This result combined with the other
rank approximation steps derived in this subsection allows us to reduce the rank
of the TIM matrix using an SDP solver. Our simulations show a matrix rank
reduction ability that outperforms other existing methods. This is translated as
reducing interference in the network.

This part of this chapter, which is related to RM-TIM rank minimization
method, has been published in IEEE Wireless Communication Letters [28].

4.2.3 eRM-TIM : ”Tweaked” Nuclear Norm-Rank Approx-
imation Method

Although the TIM rank minimization method that we developed (also using
SDP), RM-TIM, gave good results in terms of the minimum rank achieved, how-
ever, it suffers from a relatively high complexity due to the five linear matrix
inequalities (LMI) present in the constraints. This motivates us to propose, in
the following, a less complex rank approximation method, while still achieving
the same performance, but with much lower complexity. In this subsection, we
provide details of this an enhanced TIM rank minimization method, that we call
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eRM-TIM.

In this method, we also build on (4.9), and we replace the non-convex rank
function by the trace function as in (4.10). However, knowing that this will also
lead to a full rank diagonal matrix (as previously discussed in Section 4.2.1),
then we develop another Lemma that forces K and E not to be diagonal, while
keeping the trace function in the objective function.

4.2.3.1 Solution for the Diagonal Issue

Lemma 3. Let K and E ∈ Rn×n with Ki,i ≤ a and Ei,i ≤ a where i = 1, . . . , n,
and let F be a matrix with diagonal entries Fi,i ≤ b and the remaining values
equal to c, where a, b, c > 0. If (K − F ) and (E − F ) are PSD matrices, such
that a, b, and c satisfy the condition (a − b) ≤ (n − 1)c, then K and E are not
diagonal.

Proof. For space constraint, we validate the above lemma for K, and the same
holds for E. We prove that, if K is a diagonal matrix, then (K−F ) is not PSD,
i.e., if K is diagonal, then (K − F ) becomes a matrix with K ′i,i on the diagonal
entries, where K ′i,i = Ki,i − Fi,i ≤ a − b. To prove that K − F is not PSD, it

is sufficient to show that ∃ u ∈ Rn×1 such that uT (K − F )u ≤ 0. To this end,
we consider a special case and let u1 = · · · = un (where ui ∈ R). Recall that
K ′i,i ≤ a − b, ∀i, which leads to

∑
iK
′
i,i ≤ n(a − b) since the maximum value of

K is a (diag(K) ≤ a). By this, uT (K − F )u becomes equal to:∑
i

K ′i,iu
2
i −

∑
i

∑
j 6=i

c uiuj =

(∑
i

K ′i,i

)
u2 −

∑
i

∑
j 6=i
u2 ≤ u2 (n(a− b)− n(n− 1)c)

Hence, uT (K −F )u ≤ 0 relates the variables as (a− b) ≤ (n− 1)c, which forces
(K − F ) to not be PSD . This concludes the proof.

After proving this lemma, additional constraints should be added to (4.10) by
forcing (K −F ) and (E −F ) to be PSD. Based on the above, this will force K
and E not to be diagonal, and hence will solve the issue of the ”∗” fields in X.
By this, the final objective function for the problem of the rank minimization of
the TIM matrix (that we name enhanced RM-TIM, eRM-TIM ) along with the
constraints, can be written as follows:

eRM-TIM min 1
2
(Trace(K) + Trace(E))

W =

(
E X
XT K

)
� 0,Xi,j = Mi,j, (i, j ∈ S, (K − F ) � 0,

(E − F ) � 0, Ki,i ≤ a,Ei,i ≤ a,∀i = 1, . . . , n (4.22)

One can notice that the resulting optimization problem is much simpler than the
one for RM-TIM in (4.21) due to the reduction of the number of linear matrix
inequality (LMIs) from five to only one.
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4.2.3.2 Simulation Setup

To show the performance of eRM-TIM, we test it on a D2D network (which is
translated into a square TIM matrix of size n), with different topologies, i.e.,
different interference patterns, while keeping the same number n of D2D pairs.
We compare the symmetric DoF achieved per user (and hence the minimum
rank attained) using our proposed method to the classical time-division multiple
access (TDMA) scheme (when no TIM is applied) and to our previous rank min-
imization method RM-TIM in Section 4.2.2, as well as to other existing methods
in the literature (i.e., Alternating Projections via singular value decomposition
(SVDAP), and directional Alternating Projections via SVD (dirSVDAP) [36]),
nine different topologies: 1) n = 5 in Fig. 2.1, 2) n = 6, illustrated as T17 to T22

in Fig. 4.3 (chosen to conserve space), 3) n = 12 in Fig. 4.1, 4) n = 15, topology
showed in [32] and in Fig. 5.1, and 5) n = 30, the whole topology in Fig. 4.3(a),
which is one sketch of different topologies (with different interfering links) that
we tried. The remaining four topologies represent sparse uniformly-distributed
random matrices, where 50% of the entries are 0s. We implemented eRM-TIM
using the convex optimization toolbox CVX [146] in MATLAB R2016b also on
a desktop of 16 GB RAM with Intel(R) Core(TM) i7-7700 HQ CPU, working at
2.8 GHz.

(a) (b)

Figure 4.3: (a) Topology pattern of an example network of 30 D2D pairs, (b)
interference representation matrix of the first 15 D2D pairs
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Figure 4.4: The achieved symmetric DoF by different rank minimization methods

4.2.3.3 Results and Analysis

Fig. 4.4 shows that applying TIM using any method, whether from our pro-
posed ones ((RM-TIM /eRM-TIM ) or the existing ones in the literature (SV-
DAP/dirSVDAP), performs always better than TDMA (without TIM) which
can only achieve a DoF of 1/n per user. Comparing among the TIM rank min-
imization methods, although SVDAP and dirSVDAP achieved lower rank than
our methods after applying them on the n = 5 example [2], eRM-TIM behaved
much better for larger n values. For instance, for the 15 × 15 network, eRM-
TIM was able to minimize the rank to 9, while SVDAP and dirSVDAP, were
only able to reduce it to 13 and 14, respectively. Although the large number of
pairs highlights the scalability issue of the LRMC approach in formulating TIM,
but still, our proposed methods are able to decrease the rank even further than
other existing works. Its efficiency appears better while applying it on moderate
networks than on large ones. That is, using eRM-TIM, the rank reduces to 57
for a 100 × 100 matrix, but it goes down to half for a 30 × 30 matrix. This is
due to the interference that worsens when the number of devices increases, which
also makes the adjacency matrix sparser, prohibiting the rank flexibility. Such
results motivate our work in developing a clustering technique that cuts the big
matrix into several less sparse sub-matrices, as will be shown in Chapter 5.

4.2.3.4 eRM-TIM’s Complexity

As previously discussed in Section 4.2.2.5, solving one Linear Matrix Inequality
(LMI) using the general-purpose CVX toolbox has a complexity of around O(n6),
where n is the matrix dimension. Then, the complexity of executing eRM-TIM
method is in the same range of O(n6). This can be explained by the fact that
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Figure 4.5: CPU time comparison between RM-TIM and eRM-TIM

the SDP problem in (4.22), that corresponds to eRM-TIM, has only one LMI in
the constraint. This is in contrast to RM-TIM, which includes five LMIs in its
SDP optimization problem represented in (4.21). This difference in complexity is
then translated to the processing time spent while solving each of these methods.
As an illustration, we show in Fig. 4.4 the CPU time spent in function of the
topology dimensions. It is clear that the gap between both methods becomes
larger as the network’s dimension increases. For instance, for a 60 × 60 D2D
network, RM-TIM requires around 203.75 s to be solved, while eRM-TIM needs
71.86 s only.

4.2.3.5 Summary

In the second part of this chapter, we propose an enhanced LRMC-based TIM
rank minimization method, as its name (enhanced RM-TIM, eRM-TIM ) implies.
This method is different in its formulation from the previous one, i.e., RM-TIM
on many levels: 1) in the objective function, where the continuous generic ap-
proximation function used in [28] is replaced by a tweaked nuclear norm heuristic,
and 2) in the constraints, where the five LMIs in [28] are reduced to only one LMI
here, while still achieving the same performance, but with much lower complexity
(and hence less processing time).

This part of this chapter, which is related to eRM-TIM rank minimization
method, has been published in IEEE Transactions on Communications [29].

4.2.4 Summary

All the proposed rank minimization methods in this chapter, i.e., RM-TIM and
eRM-TIM have proved their efficiency in reducing the rank of the TIM adjacency
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matrix, while respecting its special structure. These rank minimization methods
can then guarantee that the interference subspaces collapse to the minimum di-
mensions possible.

4.3 Extending TIM using SIC

We recognize that applying TIM in D2D networks makes it more challenging,
since D2D communications occur in close proximity, along with heterogeneous
path losses among the users, and the use of different levels of transmit pow-
ers [149]. Hence, there may be scenarios in which the interference may be stronger
than the desired signal, and therefore cannot be managed by TIM, which does not
differentiate among the different levels of interference. To this end, we propose
to combine TIM with a technique that separates the superimposed information,
so that each receiver can retrieve its signal and decode its own data. This can
be achieved by non-linear receivers that employ maximum likelihood detection
(ML) or Successive Interference Cancellation (SIC). In this work, we choose to
rely on SIC whose complexity is much less than that of ML detection [66]. Firstly
introduced in [150], SIC is employed to decode the stronger signal, subtract it
from the combined signal, and then extract the weaker one from the residue. Here
appears the importance of our proposed approach that involves interference level
classification while building the adjacency matrix, so that SIC can process the
desired signals. Although one might question the practicality of SIC in cellular
networks due to its demanding computational requirements, it is expected that
the capacity of the wireless channel can be improved significantly with the aid of
SIC [151]. Moreover, by the time 5G is widespread, the computational capacity
of both handsets and access points is expected to be high enough to run such
algorithms [152].

The main contributions of the second part of this chapter are:

• Formulating a novel rank minimization method, cRM-TIM, while building
on the characteristic polynomial function of the TIM adjacency matrix, and
combining this with a physical layer interference management technique, i.e.,
the successive interference cancellation (SIC) technique, in the same frame-
work of LRMC in order to reduce the matrix rank even further.

• Integrating the notion of interference classification into Topological Interfer-
ence Management (TIM), by differentiating between two levels: strong and
very strong interference, which are likely to occur in D2D networks.

• Handling the very strong interference component using successive interfer-
ence cancellation (SIC), while depending on TIM to manage the strong one.
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Figure 4.6: A network of 18× 18 D2D-enabled devices with SIC capabilities

4.3.1 System Model for Joint TIM-SIC

We consider the architecture shown in Fig. 4.6, and composed of d = 18 D2D
pairs (with SIC capability), communicating in a multiple unicast setting. We
assume that these pairs (which are only aware of the network topology, and not
of the instantaneous CSI) are divided into three groups G1, G2 and G3, (after
applying the clustering algorithm which we describe in Chapter 5) where each
cluster operates at a different frequency (illustrated by a circle with a different
color). As will be shown later, our objective in Chapter 5 (in brief) is to cluster
the D2D pairs with mutual interference into different groups (assigned orthogo-
nal frequencies), and to apply the LRMC-based TIM to manage the remaining
interferences (which are one-sided and hence asymmetric in the resulting sub-
matrices) within the different groups. The rank minimization solution developed
in this section builds on the clustering work we are presenting in Chapter 5, by
classifying the remaining interference within each cluster into two levels: strong
and very strong (after comparing it to a certain threshold): the first type is man-
aged using the traditional TIM, while the second type is handled using the new
capability provided to each D2D device in 5G networks, namely SIC.

Back to Figure 4.6, it illustrates a scenario of D2D communications in which
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some of the communicating devices are in very close proximity, leading to very
strong interferences that can be even stronger than the desired signal. Conse-
quently, as shown in the figure, a D2D-receiver could receive the sum of the
desired signal (yellow arrow), a very strong interference component (red arrow),
a strong interference component (green arrow), and some weak interferences from
far transmitters that could be neglected (and hence deleted from the figure for
simplicity). Without loss of generality, we assume one very strong interference
component in the received signal, but the method we integrate in our approach,
can manage (i.e., cancel) multiple very strong interference components, as long
as there are significant differences in their strengths. Managing all these kinds of
interferences (specially the very strong one that overwhelms the desired signal)
through TIM is not doable, since TIM cares only about the presence or absence
of interference, not its strength. We consequently propose to combine TIM with
the Successive Interference Cancellation (SIC) method. We should note that our
work is inline with the one in [151] in that our clustering part of our frame-
work keeps the number of D2D devices within the cluster relatively small, given
that they will be assigned the same subchannel (frequency range). This in turn
keeps the receiver complexity low as was decribed in [62, 63, 65, 153]. This is at-
tributed to the fact that the hardware complexity and processing delay increase
with the number of receivers that are multiplexed on the same subchannel [65].
Our framework, a finer classification of interference takes place, where a strong
interference can be managed by TIM while the very strong one is handled by
SIC. In pure SIC, the signal separation is typically performed sequentially: each
receiver decodes the strongest signal first, and then subtracts the decoded signal
from the received signal to find its own signal. In this work, we assume that all
receivers are equipped with SIC which operates ideally, in that it makes perfect
cancellation of the signals in the iteration steps. We remind here that the previ-
ously mentioned assumptions related to the absence of the instantaneous channel
state information at the transmitter and at the receiver remain valid in the SIC
scheme [154]. This results in a very smooth and successful combination of TIM
and SIC.

Practically, each transmitter Ti in a cluster sends a signal visi to its corre-
sponding receiver Ri (vi is the ith column of the precoding matrix V extracted
via QR decomposition from the adjacency matrixX). To recover its desired mes-
sage, Ri decodes si by multiplying the received signal yi (combined with other
undesired signals like sj and sk) by ui (ui is the ith row of the decoding matrix
U , similarly extracted from X). Recall that the clusters are using orthogonal
frequencies and hence the inter-cluster interference is absent. The input-output
relationship within each cluster can be then written as:

uiyi = ui(vihi,isi +
∑

k,(i,k)∈S′
vkhi,ksk +

∑
j,(i,j)∈S

vjhi,jsj + zi) (4.23)
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where hi,i and hi,j are the channel coefficients between Ti − Ri and Tj − Ri

respectively, zi ∼ N (0, 1) is the noise, and S is the set of all pairs (i, j) such that
Ri has strong interference from Tj, e.g., in group G2 in Fig. 4.6, S includes (1,2)
since R1 desires a signal from T1, but it is suffering from the interference resulting
from T2. We define here a new set S ′ containing the indices of the nodes (Tk, Ri)
with a very strong interference element (even stronger than the desired signal)
that should be cancelled using SIC, e.g., S ′ includes (1,3) in group G2 in Fig. 4.6
since R1 is also suffering from a very strong interference coming from T3. Thus,
to preserve the wanted signal, we start by following the original TIM framework
conditions on the precoding and decoding matrices, V = [vi] and U = [uj],
respectively, as in [26]:

uivj = 0, for ∀i 6= j, (i, j) ∈ S, and

uivi = 1, otherwise (4.24)

These TIM strategies allow a part of the undesired signals, i.e., the strong inter-
ference to be removed (ui

∑
(i,j)∈S,i 6=j vjhi,j), as in (4.25). We therefore employ

SIC to remove the other very strong interference, and recover the intended signal.

uiyi = uivihi,isi +
∑

k,(i,k)∈S′
uivkhi,ksk +

∑
j,(i,j)∈S

uivj︸︷︷︸
0

hi,jsj + uizi

= uivihi,isi +
∑

k,(i,k)∈S′
uivkhi,ksk + uizi (4.25)

According to [26], the conditions in (4.24) can be rewritten in a matrix form such
as XG` = [Xi,j/k] = uivj/k is an n × n real matrix (n < d since it corresponds
to the sub-matrix that results after clustering) and ` refers to the `th cluster. As
for its entries in (4.26), we add a new symbol † denoting that the interference
coming from Tk should be cancelled using SIC. This † value is well-defined, and
computed in the following subsections.

XG` = [Xi,j/k] = uivj/k =



1 if i = j = k

the desired signal

0 if (i, j) ∈ S & i 6= j

interference cancelled by TIM

† if (i, k) ∈ S ′ & i 6= k

interference cancelled by SIC

∗ otherwise

not affecting interference

(4.26)

Note that the † value is kept general here since it can vary from one topology
to another, but in all cases, † is greater than 2, to show that it is stronger
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than the desired signal (Xi,i = uivi = 1). This can be hence considered as
an LRMC approach for the joint TIM-SIC problem. The rank of the resulting
matrix X is related to DoF, knowing the equivalence between TIM and index
coding with linear schemes (as previously discussed in Section 2.1.3 of Chapter
2). More specifically, we consider, in this work, the symmetric DoF (DoFsym) of
the network (the largest DoF that can be achieved by all users simultaneously)
as our main figure of merit [26]. We assume for convenience a single data stream
transmission per D2D pair, and so, DoFsym that is attainable at high signal-to-
noise ratio (SNR) will be DoFsym = 1

rank(X∗)
= 1

r
per user. Thus, our objective

is to minimize the matrix rank, and hence maximize the DoF. Back to (4.25),
replacing the values of Xi,j in this equation gives:

ỹi = uivihi,isi + †hi,ksk + uizi (4.27)

Thus, to cancel the very strong interference, Ri can use SIC. However, prior to
SIC, users should be ordered according to their signal strengths, so that the SIC-
enabled receivers can work properly [155]. Reordering (4.27) accordingly leads
to:

ỹi = †hi,ksk + uivihi,isi + uizi (4.28)

By this, SIC can decode first signal xk by extracting sk (where sk was defined
in (4.25) to belong to S ′), considering its own signal as noise, and substracting
the estimate x̂k from the output of the TIM block (which cancels the strong
interference signal component), ỹi , so that it can decode its own signal x̂i:

First stage: x̂k = †hi,ksk
Second stage: x̂i = ỹi − †hi,ksk = uivihi,isi (4.29)

The block diagram in Fig. 4.7 illustrates the process of cancelling the interference
using the joint TIM-SIC approach. The top block shown in the figure is detailed
in the next section, but as shown, its purpose is to produce the decoding vector
ui.

4.3.2 Two-Stage Rank Minimization

To solve the joint TIM-SIC problem, we rely on the low-rank matrix completion
(LRMC) approach. Based on (4.26), we can write the adjacency matrices XG1,
XG2 and XG3 that correspond to each of the groups present in Fig.4.6, as follows:

XG1 =


1 a1 0 †1,1 b1
c1 1 †2,1 d1 0
0 e1 1 †3,1 f1

g1 0 h1 1 0
i1 j1 0 k1 1

 ,XG2 =



1 0 †1,2 a2 b2 c2

d2 1 0 e2 f2 g2

h2 i2 1 j2 0 k2

l2 †2,2 m2 1 n2 o2

p2 q2 r2 s2 1 †3,2
t2 u2 v2 0 w2 1

 ,XG3 =



1 a3 b3 c3 0 d3 e3

f3 1 g3 †1,3 0 h i
j3 0 1 k3 l3 †2,3 m3

n3 o †3,3 1 p3 q3 0
0 †4,3 r3 s3 1 t3 u3

†5,3 v3 0 w3 x3 1 y3

0 z3 aa3 †6,3 bb3 cc3 1


(4.30)
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Figure 4.7: Interference cancellation at the receiver using TIM and SIC

whereXG1,XG2 andXG3 have all ones on their diagonals to represent the desired
communication between the D2D pairs, and predefined values as 0s to denote the
strong interferences within each cluster. As for {a`, . . . , w`} where ` = {1, 2, 3}
and {aa3, bb3, cc3} ∈ T , they represent the missing values ”*” (don’t care values)
of (4.26). As for †•,`, its place in the matrix indicates the source of the very strong
interference. In this framework, we start in Stage 1 by computing the adequate
value of †•,` for each of the groups, so that it can be used in Stage 2, where we
apply eRM-TIM (the rank minimization method that we developed in Section
4.2.3).

4.3.2.1 Stage 1: cRM-TIM

To determine the appropriate value of †` (recognizing that the interference should
be cancelled using SIC), we rely on the characteristic polynomial of a square n×n
matrix XG` (having the eigenvalues λi as roots of this polynomial) [56], given by:

p(λ) = det(XG` − λI) = (−1)n(λ− λ1)(λ− λ2) . . . (λ− λn)

= (−1)n[λn + c1λ
n−1 + c2λ

n−2 + . . .+ cn−1λ+ cn]

= (−1)n[λn − λn−1Trace(XG`) + c2λ
n−2 + . . .

+ (−1)n−1cn−1λ+ (−1)ndet(XG`)] (4.31)

where I is the identity matrix, and the coefficients c2, . . . , cn−1 can be expressed
in terms of traces of powers of XG` (as cm in (4.32)):

cm = − tm
m

+ 1
2!

m−1∑
i=1

m−1∑
j=1︸ ︷︷ ︸

i+j=m

titj
ij
− 1

3!

m−2∑
i=1

m−2∑
j=1

m−2∑
k=1︸ ︷︷ ︸

i+j+k=m

titjtk
ijk

+ . . .+
(−1)mtm1

m!
,

where m = 1, 2, . . . , n, and tk = Trace((XG`)
k) (4.32)
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or in terms of its eigenvalues (as ck in (4.33)):

ck = (−1)k
∑n

i1=1
i1<i2<...<ik

∑n
i2=1 . . .

∑n
ik=1 λi1λi2 . . . λik︸ ︷︷ ︸

k factors

, for k = 1, 2, . . . , n

(4.33)
Recall that our objective is to minimize the rank of each sub-matrix that corre-
sponds to a cluster, or, equivalently, to minimize the number of non-zero eigenval-
ues of XG`, knowing that the number of non-zero eigenvalues of XG` is at most
the rank of XG`. Building on the relation between the ck coefficients and the
eigenvalues of XG` in (4.33), we recognize that the matrix rank (rank(XG`) = n
when it is full rank) gets reduced by z, if and only if:

cn = 0, cn−1 = 0, . . . , and cn−(z−1) = 0 → c2
n + c2

n−1 . . .+ c2
n−(z−1) = 0 (4.34)

To this end, for each sub-matrix, we define a vector f` that contains all the
ck coefficients, such that f` = [cn, . . . , c2] (where k = (n − 1), . . . , 2). Note
here that the ck coefficients, which are included in f`, are the ones that contain
variables, excluding by this the ck factors that represent constant values (e.g.,
c1 = −Trace(XG`) = cst, since the TIM adjacency matrix always has 1 on its
diagonal entries). We have also chosen to work with the square of these values
since the ck factors belong to R, i.e., ck can take positive or negative values.
The objective then becomes to minimize the square of the `2-norm of f` that
corresponds to each sub-matrix, i.e., ||f`||22 = c2

n + c2
n−1 + . . .+ c2

2 (the dimension
of f` is then 1 × (n − 1)). As for the constraints, on one hand, † should be
greater than 2, so that Xi,k = uivk = †, representing a very strong interference,
should be greater than the desired one Xi,i = uivi = 1 (as previously mentioned)
to be placed first in (4.28). On the other hand, the variables {a`, . . . , w`} and
{aa3, bb3, cc3} ∈ T that are assigned ”*” (don’t care values) in (4.26) are not
subjected to any constraint, since their effect do not appear in the received signal
in (4.23). The optimization problem (that refers to the method that we call
cRM-TIM ) can hence be written as:

cRM-TIM min ||f`||22
s.t. †•,` ≥ 2 (4.35)

This problem is a strictly convex one, since the vector 2-norm squared is a strictly
convex function. Note also that (4.35) can be linearized and written in trace
format, as follows:

cRM-TIM min Tr
(
f`f

T
`

)
s.t. †•,` ≥ 2 (4.36)

since Tr
(
f`f

T
`

)
= ||f`||22. Knowing this equivalence, we solve the optimization

problem in (4.35) using the Matlab optimization toolbox (and more specifically
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Locally at each transmitter Ti , 
if stand-alone mode

Figure 4.8: Two-stage rank minimization of X

the ’fmincon’ function, i.e., minimum of constrained nonlinear multi-variable
function) in order to compute the appropriate value of † that should be adopted.
This is because †•,` is dependent on the topology (i.e., each topology is represented
by a different matrix, with different entries). Therefore, each of the adjacency
sub-matrices XG1, XG2 and XG1 will have its own †•,` value.

4.3.2.2 Stage 2: eRM-TIM

Once the value of †•,` is known, the rank optimization method eRM-TIM that
we proposed in Section 4.2.3 can be applied to get the appropriate ∗ entries (or
represented as variables in (4.30)) that minimize the rank of matrix XG`. The
solution X∗ can be then factorized using QR decomposition to get the precoding
and decoding matrices, V and U , respectively.

Based on our experimental results (as will be shown later) and for the scenarios
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that we have tested, we made some observations: 1) solving (4.30) by using eRM-
TIM only (without feedback) gives a higher rank than when we combine both
methods ((4.30) and eRM-TIM ), and 2) when † is replaced by a 0 value, it
reverts back to the previous minimization problem, while giving a higher rank.
This implies that there is a benefit behind doing a classification (by using a
threshold) of the experienced interferences and distinguishing between two levels
of interference: strong and very strong.

4.3.3 Joint TIM-SIC Framework’s Complexity

The overall complexity of our proposed framework results from solving TIM,
and from implementing SIC, after computing the coefficients of the characteristic
polynomial function.

To calculate the polynomial function in Stage 1, many algorithms were pro-
posed. One of those is Berkowitz’s algorithm [156], which is widely used in sim-
ulation software like Matlab. It computes the coefficients by calculating iterated
matrix products and performing O(n4) multiplications in R [157], where n is the
dimension of the matrix which in our case corresponds to the average cluster size.
Both rank minimization methods used in Stage 1 and Stage 2 use the interior
point method: on one hand, our eRM-TIM method (proposed in Section 4.2.3
and [29]) which is used in Stage 2 requires O(n6), while on the other hand, the
built-in function ”fmincon”, used in Stage 1, is part of the optimization tool for
nonlinear optimization programming of Matlab, and is based on the interior point
method [158]. In this regard, Newton’s method is often used to approximate the
central path for non-linear programming, as it requires at most O(

√
n logε−1)

iterations, where ε is the desired accuracy [159]. The most computationally ex-
pensive step in each iteration here is the LDL factorization of the p × p system
matrix, where p is the number of constraints [160] present in the optimization
problem (4.35), which we had called the cRM-TIM method. In the worst case,
this LDL factorization could take O(p3) time [161–163]. The total complexity of

this step will become O(n
1
2p3). As for the implementation complexity of SIC at

the receiver, it increases with the number of interfering users, m, i.e., O(m3) [63].

Thus, the overall complexity resulting from the combination of TIM and SIC
becomes equal to O(n6) + O(n4)+ O(m3) + O(n

1
2p3) = O(n6), where, again, n

is the total number of D2D pairs within a cluster, m represents the number of
interfering D2D users (m < n) and p denotes the number of constraints present
in cRM-TIM. It is worth mentioning here that the joint TIM-SIC framework is
executed in parallel across all sub-matrices that correspond to the different clus-
ters, and hence this complexity is computed per cluster. This certainly leads to
a gain in the computation because if the network was not divided into ` clusters,
then the value of n above would have been substituted by d, where d is the total
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number of D2D pairs in the whole network, i.e., d = n× `.

Finally, it is worth commenting on the overall complexity of the proposed two-
stage interference mitigation framework of this part of this chapter. First, it is not
worse than the complexity of eRM-TIM proposed in Section 4.2.3 and [29], and
second, by being a function of the number of D2D pairs (n) within each cluster,
the runtime is kept under check. For example, a cluster with 20 D2D pairs
(moderately large), the number of iterations is upper-bounded by 64 Millions.
Moreover, we note that even if we factor in our clustering method which we
proposed in Chapter 5 and [29], the overall complexity will not increase. In other
words, no matter how the network size increases, the complexity will always
depend on the number of D2D pairs within the cluster and not on the whole
network.

4.3.4 Experimental Results

We implement the combination of TIM and SIC using the built-in Optimization
Toolbox [164], as well as the convex optimization toolbox CVX [146] in Matlab
R2016b on a desktop of 64GB RAM with Intel Xeon CPU E5-2620 v4 working
at 2.10 GHz. To demonstrate the relative performance gains of the proposed
algorithm, we consider, as an example, the three different clusters G1, G2 and
G3 (with 5 × 5, 6 × 6, and 7 × 7 topologies, respectively) of the 18 × 18 D2D
network represented in Fig. 4.6 in the following three various scenarios. It is
good to mention here that, regardless of how large the network is, the cluster size
can be made not to surpass 14 devices (i.e., 7× 7 topology), and hence, there is
no need to consider larger cluster sizes.

4.3.4.1 Scenario 1: No differentiation among the interferences

In this scenario, we consider that all interferences within the same cluster are
recognized in the same fashion, i.e., no difference between strong and very strong
interferences, and hence †•,` = 0. Consequently, the SIC role vanishes. We
consider this scenario as a performance baseline. In this context, if the built-in
function ”fmincon” of Matlab is used to solve (4.35), with the matricesXG1, XG2

and XG3 in (4.30) as inputs (each one at a time), then the ranks of the 5 × 5,
6 × 6, and 7 × 7 topologies get minimized only to 3, 5, and 4, respectively, as
shown in Table 4.11. On the other hand, if the same matrices are provided as
inputs for our previous rank minimization eRM-TIM in [29], then the ranks get
reduced to 4, 4, and 4, respectively. However, for these specific topologies, the
obtained values have not reached the optimal values yet (which is equal to 2 for
all). Recall that this optimal rank can be deduced from (4.8), with n = 5, 6, 7 and
the numbers of ck factors which are variables in the corresponding characteristic
polynomial functions are equal to 4, 5 and 6 respectively. These results show
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that an additional step can be added to decrease the rank further, namely by
distinguishing between two levels of interference: strong and very strong, where
the former is managed by TIM, while the latter is resolved using SIC. This is
covered by the following two scenarios.

4.3.4.2 Scenario 2: Rank minimization without feedback

In this scenario, we adopt the interference classification approach, which we de-
note mathematically by putting †•,` back in the adjacency matrix, and setting
it to a value that is strictly greater than 2 (to differentiate it from the desired
signal, as previously discussed). In this step, we test the importance of having a
feedback between the two rank minimization methods, by showing the effect of its
non-existence. Hence, we measure the achieved rank while using each method in-
dependently. Results have shown that applying cRM-TIM reduces the ranks only
to 2, 3 and 5, respectively, for the considered topologies of Fig. 4.6. When eRM-
TIM in [29] is applied, however, (without feedback) and after defining the input
†•,` ≥ 2, the ranks are minimized to 3, 3 and 4, respectively. This demonstrates
the effectiveness of working with interference classification. From an LRMC per-
spective, differentiating between the levels of interference gives more flexibility
to the matrix by removing the 0s, and hence reduces the rank further (in both
rank minimization methods). From a communication perspective, it allows for
making use of the SIC function, which, by the way, is a capability implemented in
hardware in 5G devices [152]. As with the previous scenario, the optimal rank is
still not reached while using each method separately. For this, we try to combine
both rank minimization methods, while implementing a feedback from cRM-TIM
to eRM-TIM to pass the value of †•,`, which leads us to the third scenario.

4.3.4.3 Scenario 3: Running the rank minimization method with feed-
back

Finally, we test here the whole framework represented in Fig. 4.7. For ease
of discussion, we refer to cRM-TIM as Stage 1 or S1, and to our eRM-TIM
method as Stage 2 or S2. We start by solving the problem in (4.35) in order to
get the appropriate value of †•,` for each sub-matrix of (4.30). Once obtained,
the value is inserted in the corresponding entries of XG`. Next, the matrix XG`

is fed to eRM-TIM. As a result, the rank XG` attained the optimal value of 2
in the tested networks of sizes n = 5 and n = 6. This proves that establishing
a feedback step between the two rank minimization methods is beneficial. We
remind here that both scenarios 1 and 2, apply either S1 or S2 alone. In this
regard, applying S1 alone does not always achieve the minimum rank as in the
case of the 5× 5 and 6× 6 topologies, and the same goes for S2. Moreover, it is
not only about the rank achieved, but also about the value of † it is achieving.
More specifically, S1 forces †•,` to be much greater than 2, whereas the eRM-TIM
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Table 4.11: Rank minimization performance with different values for †

Scenario
Rank Achieved for the network of size

5 × 5 6 × 6 7 × 7
No interference classification

(† = 0)
Stage 1-only 3 5 4
Stage 2-only 4 4 4

Rank minimization without feedback
Stage 1-only 2 3 5
Stage 2-only 3 3 4

Rank minimization with feedback Stage 1 + Stage 2 2(optimal) 2(optimal) 3

formulation has a tendency to make †•,` close to 2. In this regard, having a †•,`
value much greater than 2 makes more sense since while sorting the factors in
the input-output relation, some gap needs to exist between the desired signal and
the very strong interference, so that the latter can be detected and managed by
SIC.

As for the order of the rank minimization methods, one can ask if the order
of the stages can be swapped, i.e., Stage 1 can become the one corresponding
to eRM-TIM followed by cRM-TIM. In this case, the initial guess for †•,` will
always be very close to 2, which makes this step unnecessary. On the other
hand, if we start by cRM-TIM, then it can give the value of †•,` that helps in the
rank minimization while applying eRM-TIM. In this case, eRM-TIM will have
the value of †•,` adequately computed, and not assigned a value very close to
2. Table 4.11 summarizes all the aforementioned results, showing a remarkable
improvement in terms of the minimum rank achieved (and hence in terms of
DoF), as compared to the conventional TIM.

4.3.5 Summary

In this part of this chapter, the application of topological interference manage-
ment (TIM) along with successive interference cancellation (SIC) to device-to-
device (D2D) communications has been studied. A novel algorithm involving the
combination of these two techniques has been proposed for tackling the interfer-
ence management problem in a D2D framework, after classifying the interference
intensity into two classes: strong and very strong. The first type is managed by
TIM, while the latter is cancelled using the SIC technique. Numerical results
showed that introducing SIC in the TIM scheme provides a good performance in
terms of DoF as compared to the one obtained by the TIM method alone.

This part of this chapter has been submitted to IEEE Transactions on Com-
munications [30].
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(a) (b)

Figure 4.9: (a) Topology pattern of an example network of 6 D2D pairs, and its
(b) interference representation matrix

4.4 Adapting TIM to Work for Practical Sce-

narios with Pathloss and Mobility

All the existing works in the literature (even our proposed methods in the previ-
ous sections of this chapter) that study the topological interference management
(TIM) problem ignored the most critical aspect of interference management in
practice, namely the variations in the signal strengths due to path loss. It is also
important to note that the wireless networks are typically not partially connected
as considered in TIM.

The main contributions of third part of this chapter can be summarized as
follows:

• We extend the application of TIM from partially connected networks to ones
operating in real scenarios, concerning accounting for path loss and device
mobility.

• We identify the conditions when to re-run the rank minimization method in
order to save processing time.

4.4.1 System Model for Pathloss and Mobility

While a variety of topologies are possible, we show in Fig. 4.9(a) the setting of
an example of a 6 × 6 network with its corresponding adjacency matrix in (b)
that reflects the connectivity among these devices. These D2D pairs operate in
a network-assisted mode, and are communicating via a single-hop transmission.
The devices are only aware of the network topology, and not of the instanteous
CSI [19].
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4.4.2 TIM with Path Loss

In this part of this chapter, we render TIM more practical by accounting for phys-
ical phenomena, most importantly, the propagation path loss. This will help us
in presenting how DoF results translate to practical signal-to-noise ratio (SNR),
and how it is affected when geometrically-placed transmitters and receivers are
studied.

We start by studying the D2D network of Fig. 4.9(a). Over r time slots, each
transmitter Ti is communicating with its corresponding receiver Ri by sending its
intended signal si (via the sidelink channel of the PC5 interface, as defined in the
3GPP standards [145]) after multiplying it by vi, the corresponding precoding
vector. As for Ri, it decodes symbol si (corrupted by interfering signals) by
projecting the received vector yi into the space ui, which represents its decoding
vector. The input-output relationship can be written as:

uiyi = uivi
√
γi,ihi,isi + ui

∑
(i,j)∈S

vj
√
γi,jhi,jsj + uizi (4.37)

where hi,i and hi,j are the channel coefficients between Ti − Ri and Tj − Ri

respectively, zi ∼ N (0, 1) is the noise, and S is the set of indices (i, j), where i
and j correspond to the ith receiver Ri and the jth transmitter Tj, respectively.
For instance, in Fig. 4.9(a), S includes (1,1), (1,3), and (1,4) since R1 desires
a signal from T1, but it is suffering from the interference resulting from T3 and
T4. As for γi,i and γi,j, they represent the path loss components between Ti −Ri

and Tj − Ri, respectively. For simplicity, we adopt the distance-based path loss
model [165]:

γi,i = Ad−αi,i ; γi,j = Ad−αi,j (4.38)

where A and α are the path loss coefficient and exponent, respectively, and di,i and
di,j are the distances between Ti−Ri and Tj−Ri, respectively. Now to succeed in
decoding the intended signal in the regime of asymptotically high SNR, without
knowing the exact values of the channel coefficients, the TIM strategies should
be designed such as [26]:

uivj = 0, for ∀i 6= j, (i, j) ∈ S, and

uivi = 1, for ∀i = j, (i, j) ∈ S (4.39)

These conditions can be then written as X = [Xi,j] = uivj, which is an n × n
matrix in R, with entries:

Xi,j =


1 if i = j

0 if (i, j) ∈ S and i 6= j
∗ ×√γi,j =∗ (cst) otherwise

(4.40)
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Note that the appearing ”don’t care” values (”∗”) represent missing entries in
the matrix and implicitly include the path loss component γi,j to highlight its
impact. As an illustration, we show in Fig. 4.9(b) the TIM adjacency matrix
that corresponds to the 6 × 6 network in (a). Now to learn about the D2D
network topology in practice, and consequently build the adjacency matrix, any
scheme of Section 4.1.2 (whether the network-assisted or the stand-alone mode)
can be used. The above allows us to formulate the LRMC-based TIM approach
as follows:

minX∈Rn×n rank(X)

s.t. Xi,j = Mi,j, (i, j) ∈ S∑
j,j 6=i

γi,jX
2
i,j ≤ θi,∀i = 1, . . . n (4.41)

where the missing entries of X constitute the optimization variable and M =
[Mi,j] is the n × n matrix in R that includes 1s in the diagonal and 0s in the
positions designated in (4.40). The last constraint limits the summation of the
”don’t care” values in each row (corresponding to a certain receiver) to be below
a threshold θi (θi definition will be discussed later). Related to this, some links
in the original TIM problem were identified as weak (and hence neglected) when
the received signal power fell below a certain threshold. However, although each
channel by itself may be negligible, the collective effect of such channels may be
significant, and thus corrupt the desired signal.

The objective is then to fill X with values for ”∗” from R such that its rank is
minimized so that the system DoF, at high SNR, increases [19]. Knowing that we
also assume here for convenience a single data stream transmission per D2D pair,
then DoF = 1

rank(X)
. Many challenges arise when solving (4.41): X has a special

structure in terms of 1) its dimensionality as a square matrix (due to pairwise
links in D2D), 2) its entries have all ones in the diagonal and 0s in some posi-
tions, and 3) its characteristic as a general matrix, i.e., not necessarily symmetric
nor positive semi-definite (PSD). In this chapter, we were able to solve the first
challenge by developing several rank minimization methods. On the other hand,
the modified LRMC-based TIM problem in (4.41) has a new constraint on the
summation of the missing values to be less than θi, which limits the flexibility
while choosing the values from R. This will affect the dependency among the
rows, and hence the matrix rank.

Now to define θi mathematically, we start from the fact that the ratio between
the desired signal and the interfering ones should be greater than a certain thresh-
old for signal-to-interference ratio (SIR), SIRthreshold (usually SIRthreshold > 0 dB)
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in order to be able to decode the intended message successfully:

γi,i|uivi|2∑
i 6=j γi,j|uivj|2

≥ SIRthreshold (4.42)

However, since |uivi|2 = 1 according to (4.39), then∑
j,j 6=i

γi,j|uivj|2 ≤
γi,i

SIRthreshold

and
∑
j,j 6=i

γi,j|uivj|2 ≤ θi,

→ θi =
γi,i

SIRthreshold

(4.43)

Thus, θi depends on the value of the pathloss γi,i of the desired link and on
SIRthreshold. Now to simplify (4.41), we can write it in `2 norm as follows:

minX∈Rn×n rank(X)

s.t. Xi,j = Mi,j, (i, j) ∈ S
||Xi||22 ≤ 1 + θi (4.44)

Proof. The last constraint in (4.41) which includes the summation of squares can
be written in `2 norm as follows:

||Xi||2 =
√
γi,1X2

i,1 + · · ·+ γi,nX2
i,n

in our TIM problem, for i = j,Xi,i = 1, then

||X1||22 = 1 + γi,1X
2
i,1 + · · ·+ γi,nX

2
i,n ≤ 1 + θi (∀i 6= j)

||Xi||22 = 1 +
∑
j,j 6=i

γi,jX
2
i,j ≤ 1 + θi (4.45)

Then, we can replace the sum of squares by the `2 norm squared, which is a
convex function. This concludes the proof.

Now once (4.41) is solved and X∗ is obtained, the maximum achievable DoF
can be calculated as the inverse of the rank of the resulting X∗. Moreover, the
decoding and precoding matrices U and V , respectively can be also designed
by factorizing the solution as X∗ = UV using QR decomposition based on the
Gram-Schmidt process [27].

4.4.3 TIM with Mobility

Knowing that any TIM rank minimization method (including our proposed meth-
ods in Chapter 4) requires processing time and battery resources, we propose to
re-run the algorithm only under certain conditions:

• when a 0 in X is replaced by a ”don’t care” (”∗”), i.e., this transmitter is no
more an interfering source,
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Figure 4.10: Effect of speed on re-running TIM algorithm

• when a ”∗” value in X is replaced by a 0, i.e., this receiver is suffering from
a new strong interfering link,

• when the ”∗” values change in such a way that:∑
j ratiochange > θi + 1(∀i = 1, . . . , n), where

ratiochange =
γi,j(new)

γi,j(old)
× |Xi,j|old (4.46)

These changes occur more frequently when the devices’ speeds increase. This
affects the distances between the D2D pairs and their interferers, by approaching
them or moving away. Hence, this will be translated in the matrix entries by
turning ”∗” values into 0s, and vice versa. This will also appear in the γi,j(new),
such that (di,j)new = (di,j)old ± (cj × cos(β) × t) where cj is the speed of the
jth transmitter in the surrounding, β represents the direction of the movement
relative to the old distance vector and t stands for the elapsed time. As an
example, we consider the 6 × 6 topology in the system model, and we change
the devices’ speeds between 5 and 60 km/h. Hence, the distances between a
specific D2D pair and the remaining devices (that were not initially interfering)
also change. We consider here the worst case scenario when the devices are
approaching which increases the probability of having interference. Then, we
compute

∑
i ratiochange in (4.46) and plot it in function of the speed in Fig. 4.10.

As we can see, for a speed less than 20km/h, the sum of ratio is below the
threshold (θi + 1), then re-running the rank minimization method is not useful
here.

4.4.4 Mathematical Model of TIM in Such Real Scenario

The constraint in (4.44) can be seen as a second-order cone program (SOCP)
convex optimization problem, due to the presence of the last constraint which is
quadratic. Therefore, this SOCP constraint should be linearized and written as a
linear matrix inequality (LMI) in order to formulate the problem as an instance
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of semi-definite program as follows:

minX∈Rn×n rank(X)

s.t. Xi,j = Mi,j, (i, j) ∈ S (4.47)(√
θi + 1 Xi•
X ′i• (

√
θi + 1)I

)
� 0,∀i = 1, . . . n

For the relaxation form, we can replace the rank function in the objective function
by any method we developed earlier in this chapter and add the constraints in
(4.47). Since the complexity of our rank minimization method eRM-TIM in [29]
is lower than RM-TIM, the one proposed in [28], (having only one LMI), then we
chose to adopt eRM-TIM. Therefore, we can write:

min 1
2
(Trace(K) + Trace(E))

W =

(
E X
XT K

)
� 0,Xi,j = Mi,j, (i, j ∈ S)

(K − F ) � 0, (E − F ) � 0, Ki,i < a,Ei,i < a,(√
θi + 1 Xi•
X ′i• (

√
θi + 1)I

)
� 0,∀i = 1, . . . n (4.48)

4.4.5 Complexity

The complexity of solving the SDP problem in (4.48) is in the order of O(n6) due
to the two LMIs in the constraints. As previously discussed, this results from
our use of the general-purpose CVX toolbox which solves the problem based
on the interior point algorithm in at most O(

√
nlog(1/η)) iterations (n is the

matrix dimension and η is related to the solution precision), while maintaining a
polynomial complexity per iteration [148]. Note that this complexity is computed
without considering the special structure of the constraints in (4.48) which can
reduce the complexity further. Although this complexity can be seen as relatively
high, but it remains a polynomial one. Moreover, if the mobility conditions in
Section 4.4.3 are considered, then solving the SDP problem is not frequently
performed since the topology does not change very often in D2D scenarios.

4.4.6 Experimental Results

Numerical results are provided to demonstrate the performance of TIM in man-
aging interference in D2D networks in real scenarios. The n D2D pairs are com-
municating at 2GHz in a cell of radius 500m. For the simulation, we consider
the nine different topologies (with different number of D2D pairs) that exist in
Section 4.2.3. The distances between the D2D-Txs and their corresponding D2D-
Rxs are considered uniformly distributed between 5 and 50 m, in line with the
work in [166]. As for the path loss model in (4.38), we select A = 28.03 dBs and
α = 4, in agreement with [167].
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4.4.6.1 DoF Achieved

We now study how the rank r (and hence DoF = 1
r
) of the considered matrices

corresponding to the different topologies behave when the path loss component
is considered. For each receiver Ri, we compute θi according to (4.43), where
SIRthreshold is fixed at 2dB [167] and the path loss γi,i in (4.38) changes relative
to the distance di,i between Ti and Ri. Then, we solve the LRMC problem in
(4.48) to get X, and thus calculate its rank r. For comparison, we adopt the
scheme where the original eRM-TIM of [29] is applied, without considering the
path loss component. The results are captured in Table 4.12, where we see that
the achieved DoF when the path loss factor is accounted for, is lower than the one
achieved by eRM-TIM. For instance, in the 45× 45 topology, the DoF resulting
from eRM-TIM attains 1

28
, while it only reaches 1

32
when the path loss factor

intervenes. This can be explained by the fact that in the second case, a new
constraint is added, which limits the flexibility of the choice of the ”∗” values,
while filling the missing entries of X.

Table 4.12: Path loss effect on the achieved DoF

n
DoF achieved using

original eRM-TIM eRM-TIM (with pathloss)
5× 5 (Fig. 2.1) 1

3
1
5

6× 6 (Fig. 4.9(a)) 1
3

1
5

12× 12 (Fig. 4.1) 1
7

1
10

15× 15 (Fig. 5.1) 1
9

1
13

30× 30 (Fig. 4.3(a)) 1
15

1
28

45× 45 1
28

1
32

60× 60 1
37

1
42

75× 75 1
45

1
52

100× 100 1
57

1
70

4.4.6.2 CPU Time

Here, we report the required CPU time to resolve the rank minimization as a
function of the topology dimension in Fig. 4.11. We see that triggering this
method only when the conditions discussed in Section 4.4.3 are satisfied saves
significant processing time. For instance, for a 30× 30 network, it takes around
5.43s to run the rank minimization method. Hence, if the topology does not
change, i.e., no variations in the sources of interference, and no disturbances in
the path losses occur, then there is no need to spend another 5.43s to run the
algorithm.
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Figure 4.11: CPU time function of the topology dimensions

4.4.7 Summary

In this chapter, we study the effect of path loss and mobility on the topological
interference management (TIM) method for D2D networks. We also define the
conditions under which TIM should be launched, leading to significant savings in
the used resources. The results show that the TIM scheme is suitable for small
to medium networks, when realistic conditions are considered.

The work of this chapter has been accepted at the 15th International Con-
ference on Wireless and Mobile Computing, Networking and Communications
(WiMob 2019) [31].
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Chapter 5

Providing Scalability through
TIM-tailored Clustering Method

We recognize that adopting the low-rank matrix completion (LRMC) approach
to solve TIM has some limitations: 1) the scalability (growing network size) [19],
which hinders its application to large D2D networks, and 2) the predefined 0
entries in the adjacency matrix (denoting interference), which prevents matrix
rank reduction. This can be explained by the fact that a larger number of de-
vices in the network gives rise to a bigger interference, and makes the adjacency
matrix larger and sparser, which in turn decreases its flexibility in terms of row
dependency. For instance, the rank flexibility of the TIM adjacency matrix of
Fig. 4.3(b) is constrained by the presence of the predefined 0s in different entry
positions, where each 0 indicates the transmitter (the column index) from which
the interference should be aligned at a specific receiver (the row index). More
specifically, we observe that a 0 value appears in two symmetric positions when
it denotes a mutual interference (e.g., the 0 entries in X1,4 and X4,1 correspond
to (T -R)1 and (T -R)4 pairs that are interfering with each other). Thus, there
is a need to break the original matrix into several sub-matrices to exclude the
undesired 0s in these double positions.

For this, we propose to combine TIM with a corresponding clustering tech-
nique to 1) manage the interference among multiple D2D pairs communicating
in a network with multiple available frequencies, and 2) group the D2D devices
in a way that increases the system DoF by applying the LRMC approach of TIM
on clustered devices (whereby each cluster operates with a different frequency).
This can be achieved by clustering the D2D devices that are mutually interfer-
ing into different clusters, so that their corresponding sub-matrices include less
0 entries and more ”*” values, and hence improve the TIM rank minimization
method performance. By minimizing the rank of the sub-matrix associated with
each cluster (operating at a different frequency), the total system DoF increases,
multiple interference-free D2D simultaneous transmissions can now occur, and
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hence the throughput gets boosted. Simulations results show that combining the
LRMC approach of TIM with clustering is advantageous in terms of increasing
the total system DoF and reducing the complexity of LRMC-based TIM. Our re-
sults suggest that even if the network has only one frequency band, dividing this
frequency band into multiple sub-bands, such that each sub-band is assigned to a
cluster and LRMC is applied inside each cluster, may provide DoF and processing
time gains especially for high number of devices. To the best of our knowledge,
this is the first work that studies how to apply clustering so that LRMC-based
TIM can be used for larger D2D networks.

The contributions of this chapter can be summarized as follows:

• Developing a clustering algorithm specific to the LRMC approach of TIM
that cuts the original adjacency matrix into sub-matrices in a way that in-
creases the system DoF: this algorithm eliminates the ”double” 0s in the
matrix and replaces them by ”*” (don’t care values) to enhance the rank flex-
ibility, based on the observation that two 0s in symmetric positions designate
a mutual interference. This formulation is different from classical clustering
techniques, in that from a communication perspective, users with mutual in-
terference are placed in different groups. For this, we formulate the clustering
scheme (using graph theory) as a relaxed SDP problem, while building on
the max-k-cut formulation, but with adding a constraint on the cluster’s size.
To solve it, a heuristic algorithm with polynomial complexity was developed.
Hence, combining the LRMC-based TIM with the proposed clustering tech-
nique overcomes the scalability issue of LRMC (which is only suitable for a
limited number of users [111]), and reduces its computation time, since the
resource allocation problem is divided into smaller sub-problems, on which
LRMC-based TIM is applied, in a parallel way.

• Providing extensive analysis of the clustering model in [32], by deriving a
novel relatively tight upper bound for its SDP relaxation using Laplacian
Algebra and matrix diagonal perturbation method. This allows to determine
the performance guarantee of our proposed heuristic algorithm relative to the
optimal method. We have also analyzed the randomized clustering method
and derived mathematically its performance w.r.t. the optimal method.

• Adding numerical results that evaluate the effectiveness of the proposed ap-
proach further.

In the below, we start by detailing the formulation of our proposed clustering
model, using graph theory.

5.1 System Model for Joint TIM-Clustering

In this chapter, we build on the system model described in Section 4.1 of Chapter
4, and we consider a multiuser interference D2D network with n transmitters and
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intended receivers (where n could be a moderately large number) operating in
a single-hop transmission and in a multiple unicast setting. As an illustration,
we show in Fig. 5.1(a), the connectivity pattern of 15 D2D enabled devices
working in pairs, where solid lines denote intended signals, whereas dashed lines
represent interference links. For instance, receiverR1 is suffering from interference
resulting from two transmitters T4 and T6, while receiving its desired signal from
T1. Note that we consider here an asymmetric attenuation interference network to
keep the problem more general, where the received signals could have differences
in strengths, due to the network topology (i.e., presence/absence of obstacles)
and physical phenomena (i.e., path loss). For example, T1 is interfering to R2,
however T2 does not hurt R1 while transmitting its signal. In 5.1(b), we show
the corresponding TIM adjacency matrix of the 15 × 15 network of 5.1(a). For
instance, in Fig. 5.1(b), X1,2 must be 0 as it represents the equivalent interference
channel from T1 to R2, while X1,2 can take any value (indicated by a star ”*”),
as there is no interference from T2 to R1.

Moreover, we assume that a set of frequencies (in the licensed or unlicensed
band) K = {Fr1, . . . , F rk} is available (Fr not necessarily adjacent), and that
a base station (BS) clusters the D2D pairs into multiple groups, each of which
with a different frequency. By clustering the devices, and assigning k orthogonal
resources for the k clusters (i.e., one orthogonal resource to each cluster), the
major interference among devices is eliminated. For illustration, we show in Fig.
5.2 the clustering (resulting from our proposed clustering algorithm that will be
detailed later) of the 15 × 15 network of Fig. 5.1(a) into three different clusters
(k = 3), and each color defines an orthogonal frequency resource. As we can
see, the strong interference is eliminated here, e.g., the two pairs (T1 − R1) and
(T4−R4) interfering the one on the other are separated into two different clusters:
(T1−R1) in the cluster filled in yellow, whereas (T4−R4) is in the blue one. Hence,
(T1 −R1) and (T4 −R4) can send now simultaneously without interference.

Mapping this to the TIM model, the interference elimination will be trans-
lated in the TIM sub-matrices of Fig. 5.1(c) that relate the transmitters and
receivers inside the same cluster. These sub-matrices are filled according to
the connectivity pattern: the rows in XP2 in Fig. 5.1(c) refer to the receivers
R2, R3, R4, R6, R10 and the columns indicate T2, T3, T4, T6, T10. We observe that
each interference cut corresponds to an eliminated 0, which will be replaced by a
”*” (don’t care value), making the matrix rank subject to further minimization
(further row dependency). The LRMC-based TIM scheme can hence be applied
on each sub-matrix corresponding to a cluster, in a parallel way, to manage the
intra-cluster interference. For instance, applying rank minimization (using any
method of Chapter 4) to each sub-matrix in Fig. 5.1(c) can minimize its rank
by replacing the ”*” by 1s for XP2 and XP3, and transforming them into rank-1
matrices. As for XP1 , which has 0 entry at X5,6, we expect that its rank can be
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(a)

(b)

(c)

Figure 5.1: (a) TIM pattern of a 15 × 15 D2D network, (b) its corresponding
matrix, and c) sub-matrices (after clustering)
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Figure 5.2: TIM clustering of the 15× 15 D2D network

reduced to 2.

Comparing this system model to the one we formulated in Section 4.1 of
Chapter 4, the difference resides in the clustering model, which was not present
in that chapter. That is, in Section 4.1, the TIM rank minimization method was
applied to the whole network (e.g., matrix of Fig. 5.1(b)), while here, it is ap-
plied to each resulting cluster (e.g., each of the three sub-matrices in Fig. 5.1(c)).

By this, the complete model of this chapter is to group D2D pairs that are
mutually interfering into k clusters, to which we assign the k frequencies available
in K, and thus enable the devices in different clusters to send simultaneously. As
for the intra-cluster interference that may reside despite the cut, translated into 0s
in the sub-matrices as in XP1 of Fig. 5.1(c), it is eliminated using any proposed
rank minimization method of Chapter 4 applied on each cluster’s sub-matrix.
We thus expect to increase the total sum of symmetric DoF over the whole D2D
network. For consistency, we define (DoFsym)cluster = 1

k×r to be the symmetric

DoF achieved per user per cluster, since each cluster is using 1
k

of all the frequency
resources. Note that when there is no clustering (k = 1), this metric reverts back
to the symmetric DoF per user: (DoFsym)cluster|k=1 = DoFsym = 1

r
. Then, the

total sum of symmetric DoF (with clustering) is:

(DoFsym)wctotal =
k∑
i=1

ni × (DoFsym)cluster

=
n1

k × r1

+ . . .+
nk

k × rk
=

1

k

(
n1

r1

+ . . .+
nk
rk

)
(5.1)

where nk is the number of D2D pairs inside each cluster. Note here that the
number of clusters increases by the network size, and so the orthogonal resources,
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which could affect the achievable proposed scheme, since (DoFsym)wctotal in (5.1) is
inversely proportional to k: this could lead to a smaller value of DoFsystem than
the TIM case without clustering (where (DoFsym)cluster|k=1 = DoFsym is simply
equal to 1

r
). To avoid this, a frequency reuse pattern can be applied among non-

adjacent clusters. This will improve the cellular network efficiency by serving a
large number of D2D subscribers using a limited radio spectrum, and hence, will
enhance the system capacity.

5.1.1 Interpreting the Interference Network as a Graph

We consider clustering as a partitioning problem for a conflict graph G = (V , E , w),
where V = {1, ..., n} is the set of vertices, each of which represents a (T -R)i pair,
and E designates the set of edges. We define this conflict graph to be with as-
signed weights wi,j, such as wi,j = wj,i for 1 ≤ i, j ≤ n, and wi,i = 0 for all
i = j (i.e., no self-looping, meaning no self-interference). Knowing that there is
no knowledge about CSI in TIM, we associate the edges’ weights in (5.2) to the
number of 0s that appear in the TIM matrix, indicating by this the interference
relationship among the D2D pairs. For instance, on a hand, wi,j = 2 is seen as
two 0s in the matrix, and hence signifies a mutual interference (e.g., pairs (T -R)2

and (T -R)5) of Fig. 5.1’s network, and on the other hand, wi,j = 1 is translated
as one 0 in the matrix, and thus denotes a one-directional interference (e.g., pairs
(T -R)1 and (T -R)6 of Fig. 5.1’s network). For completeness, we assume wi,j = 0
to denote a missing edge, i.e., when the two D2D pairs are not interfering with
each other, making then the graph G a complete one.

wi,j =



0 if no edge between pair i and j

(no interference)

1 if ∃ edge between pair i and j | i→ j ∨ j→ i

(one-directional interference)

2 if ∃ edge between pair i and j | i→ j ∧ j→ i

(mutual interference)

(5.2)

As an illustration, we show, in Fig. 5.3, the conflict graph of the D2D network
example of Fig. 5.1(a). We introduce here the notion of a conflict graph ”with
assigned weights”, where a bold link replaces the incoming and outgoing links of
two particular nodes present in any traditional conflict graph (such as in [19]) to
denote mutual interference (wi,j = 2). On the other hand, a light link replaces
the one link between them to designate a one-directional (wi,j = 1) interference.
Recall that this work’s objective is to group the D2D devices into k groups in
such a way that maximizes the inter-cluster interference by keeping the edges
with large weights (wi,j = 2) as inter-cluster edges (this interference is managed
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Figure 5.3: TIM conflict graph with assigned weights for the 15× 15 network

by assigning k orthogonal frequencies among the k groups), and minimizes the
intra-cluster interference, by including the edges with smaller weights (wi,j = 1)
within the cluster (this interference is managed by TIM). This is because when
mutual interference is cut, more 0s in the TIM matrix are eliminated and replaced
by ”*” values, allowing more dependency among the rows, and hence improving
the rank. Thus, to achieve this partitioning objective, we build on the max-k-cut
problem (as will be shown in Section 5.2), which attempts to divide the vertex
set V into at most k subsets, such that the sum of edge weights that join nodes
in the different subsets is maximized [57].

5.1.2 Clustered TIM

To model the clustering problem, we name P = {P1, ..., Pk} as the set of disjoint
partitions, where Pk denotes the kth cluster, and k refers to the number of clus-
ters. We consider that (T -R)i pair should belong to only one cluster at a time
and that the dimension of each cluster should not exceed the maximum number
Lmax ≥ n

k
(where n

k
is the smallest value for which this problem is solvable). This

capacity constraint reduces hence the complexity (as well as the computation
time) of solving TIM using LRMC, since it will be applied (in a parallel way) on
sub-matrices with reduced sizes.

With this in mind, the clustering problem can be modeled as:

Pk ⊆ V , ∀k, (5.3)

k⋃
i=1

Pk = V , (5.4)

Pq ∩ Ps = ∅, q 6= s (5.5)
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|Pq| ≤ Lmax, ∀q ∈ {1, . . . , k} (5.6)

where the first constraint in Eqt. (5.3) denotes that each resulting partition be-
longs to the whole set of partitions, Eqt. (5.4) means that the union of all vertices
constitute the whole set of vertices, Eqt. (5.5) indicates that each pair of devices
belongs to only one cluster at a time and Eqt. (5.6) refers to the maximum num-
ber of pairs allowed in each cluster.

The objective is thus to maximize the aggregated inter-cluster interference by
capturing as many edges with large weights as inter-cluster edges, and minimize
the intra-cluster interference by keeping the edges with small weight as intra-
cluster edges. This is because when strong interference is cut, more 0s in the
TIM matrix are eliminated and replaced by ”*” values, allowing more flexibility
in terms of row dependency, i.e., the matrix rank. Using our clustering approach,
more D2D pairs will be allowed to transmit simultaneously across clusters which
are assigned orthogonal frequency resources. We rely here on the maximum-k-cut
problem, since it satisfies our objective by partitioning the vertex set V into at
most k subsets, such that the sum of the weighted edges (defined in (5.2)) that
join the nodes in the different k subsets is maximized [57]. By this, the max-k-
cut algorithm will choose the edges with larger weights (wi,j = 2) as inter-cluster
edges to maximize the inter-cluster interference.

Note here that we assume that the number of clusters is determined from the
set of frequencies K = {Fr1, . . . , F rk} that is available (not necessarily adjacent,
in the licensed or unlicensed band) in the network, constituting the network’s
design parameters, and that these two numbers are equal. On the other hand,
even if the system has only one frequency, our results (as will be shown later)
imply that it would be better to divide the frequency band into multiple sub-
bands, such that each sub-band is assigned to one cluster, and LRMC is applied
separately (and in parallel) within each cluster. In this context, finding the
optimal number of sub-bands is an interesting question for future work. As a
first tentative to address this issue is to solve the problem for several values of k,
and then select the k value that gives the best performance, in terms of DoF and
processing time.
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5.1.3 Parameters and Variables

Throughout this chapter, here is the list of parameters and variables used:

Table 5.1: Parameters and variables used in Chapter 5

Parameter Description
(T −R)i ith D2D pair

n Number of D2D pairs
K Set of available frequencies
Frk kth frequency
k Number of clusters

(DoFsym) Symmetric DoF achieved per user
(DoFsym)cluster Symmetric DoF achieved per user per cluster
(DoFsym)wctotal Total sum of symmetric DoF (with clustering)

nk Number of D2D pairs inside each cluster
wi,j Assigned weight between nodes i and j
G Conflict graph with assigned weights
V Set of vertices
E Set of edges
P Set of disjoint partitions
Pk kth cluster
Lmax Maximum number of D2D pairs allowed within each cluster
w(P) Weight of the edges among the different clusters

L = [Li,j] Laplacian matrix
H = [Hi,j] k-partition matrix

m` `th cluster’s size
YRS Matrix used in the matrix lifting method, as defined in (5.11)
YFJ Matrix such that its entries are defined in (5.14)
M Convex combinations of the feasible set
bi ith column of B resulting from the Cholesky decomposition of YFJ

Sgt Set of the clusters having a size exactly greater than the bound Lmax

Slt Set of the clusters having a size exactly less than the bound Lmax

Seq Set of the clusters having a size exactly equal to the bound Lmax

Q(Cg)
The entries of this matrix represent the summation of the dot product of bi’s

between each node of a cluster in Sgt and each node in each cluster in Slt

C Cluster’s capacity
m Number of subsets m = b n

Lmax
c

λ Eigenvalue of L
λd(L) Largest eigenvalue of L
Ai Matrix whose columns form an orthonormal basis of the eigenspace corresponding to the ith eigenvalue λi
Fi Matrix defined as Fi = AiA

T
i

fi Rank of Fi
d Correcting vector for the diagonal perturbation method
Z M-matrix
B Non-negative matrix such that B = L+ diag(d) ≥ 0
ρ(B) Spectral radius of B
σ(B) Spectrum of B (the set of its eigenvalues)

w(Ecut)clust. alg. Total weight of edges that are cut
T Number of timeslots
q Number of constraints

5.2 Mathematical Model

5.2.1 Original Problem

Recall that the objective of this work is to partition the D2D devices into clusters
such that the devices having mutual interference are separated into different
groups. From our aforementioned formulation based on graph theory, our aim
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is to cut the edges with large weights. This can be considered as a max-k-
cut problem, which targets to partition the vertices of a weighted graph into k
blocks, so as to maximize the weight of crossing edges [57]. Given the weighted
graph G = (V , E , w), then the original problem can be formulated in (5.7), where
w(P) represents the weight of the edges among the different clusters. As for
the constraints, the first one binds the number of clusters, and the second one
restricts each cluster’s capacity to Lmax.

maxP w(P) =
∑

1≤r 6=s≤k

∑
i∈Pr,j∈Ps

wi,j

s.t. |P| = k,

|Pi| ≤ Lmax (5.7)

This problem turns out to be the NP-hard capacitated max-k-cut problem (since
it is not efficient to solve the problem directly by evaluating all possible partitions)
[57], for which we develop, in the following subsection, a new SDP relaxation
method, with a heuristic algorithm to solve it. Note here that one can also
reformulate the original problem as a partial clique covering, used in index coding
[2]. However, the capacity constraint in (5.7) makes it different, since, to the best
of our knowledge, this constraint is not considered in the existing index coding
works, where the optimality of the partial clique covering in terms of coding
rate is studied, and some bounds on the achievable rate are found. Our work
differs also from [2], since we derive here a polynomial sub-optimal solution of the
formulated capacitated max-k-cut problem and we find a performance guarantee
to the proposed solution.

5.2.2 SDP Relaxation

This chapter’s objective is to group the D2D devices that are mutually interfer-
ing with each other into different clusters while satisfying each group’s capacity,
and thus to cut the edges with large weights in the conflict graph with assigned
weights. Knowing that the problem in (5.7) is NP-hard, we derive its SDP relax-
ation, and then we develop a heuristic algorithm to solve it.

We base our work on the Laplacian method [57], where the quadratic opti-
mization problem is a function of the Laplacian matrix L = [Li,j] (more details
about the Laplacian method and the Laplacian matrix can be found in Section
2.3 of Chapter 2). We construct L (with PSD characteristics) in terms of the
edges’ weights in (5.7), such that Li,j = −wi,j for i 6= j and Li,i =

∑n
k=1wi,k.

We introduce an n× k matrix H = [Hi,j] as the k-partition matrix, denoting the
decision variable:

Hi,` =

{
1 i ∈ P`, ` ∈ {1, 2, . . . , k} and

0 i 6∈ P`
(5.8)
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By this, the feasible set P can be defined as follows:

P = {H ∈ Rn×k : H = [h1, . . . ,hk],Huk = un,

HTun = m, Hi,` ∈ {0, 1},∀i = 1, . . . , n, ` = 1, . . . , k} (5.9)

where uk (un) is the all-ones vector of length k (and n, respectively), and m` ∈
m = [m`, . . . ,mk]

T is the `th cluster’s size. The quadratic form in H is related
to the objective function in (5.7), since for each H ∈ P , hT` Lh` gives the weight
of edges joining P` to the other partitions in P , and 1

2
Tr(HTLH) gives the total

weight of the edges cut by H (those joining different partitions):

1

2
Tr(HTLH) =

1

2

k∑
i=1

hT` Lh` =
1

2

k∑
l=1

∑
v∈P`,w 6∈P`

wv,w (5.10)

Note that the reward in (5.10) is equal to half of the one in (5.7) because the
outer summation in (5.7) is only over i < j. To construct the SDP relaxation of
(5.7), we start by introducing a new matrix YRS, which is linked to H , following
the convex combinations of the feasible set M:

M := conv{YRS : ∃H ∈ P s.t. YRS = HHT} (5.11)

Hence, 1
2
Tr(HTLH) can be linearized to Tr(LYRS) (using the matrix lifting

method), which will constitute the objective function of the SDP relaxation of
(5.7). As for the constraints, it is clear that diag(YRS) = un, (where ”diag”
maps an n × n matrix to the n vector given by its diagonal), YRS ≥ 0 , and
YRS � 0. However, this last constraint will be replaced by a stronger PSD one
kYRS−J � 0, where J is the all ones n×n matrix (as proven in [168]), improving
by this the relaxation performance. As for the cluster size constraint, it can be
written as:

Tr(JYRS) = Tr(HHTunu
T
n ) = Tr(mTm) =

k∑
`=1

m2
` (5.12)

The optimization problem can be formulated then in (5.13.a) by compiling the
objective function in (5.10) and the aforementioned constraints. It is proven
in [168] that this problem is equivalent to a trace formulation [57] as in (5.13.b)

by doing simple changing of variables
(
YRS = (k−1)YFJ+J

k

)
.
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Original Matrix Lifting

maxYRS

1
2
Tr(LYRS)

s.t. diag(YRS) = un

kYRS − J � 0

YRS ≥ 0

Tr(JYRS) =
∑k

`=1 m
2
` (5.13a)

Original Trace Formulation

maxYFJ

k−1
2k

Tr(LYFJ)

s.t. diag(YFJ) = un

YFJ � 0

(Yi,j)FJ ≥ −1
k−1

, i 6= j

Tr(JYFJ) = 1
k−1

(k
∑k

`=1m
2
` − n2) (5.13b)

where YRS is defined in (5.11) and YFJ = [(Yi,j)FJ] is a matrix variable, (i, j ∈ V)
such that:

(Yi,j)FJ =

{
−1
k−1

if i and j are in different partitions of the k-cut of G
1 otherwise

(5.14)

However, the problem in (5.13) which was developed in [168] cannot be directly
applied here, because the cluster size m` in this work is bounded by Lmax, while
in [168] the size of each cluster was a priori known. Based on this, we adapt the
last contraint in (5.13) to be compliant with Lmax such that each group size m`

should be less than or equal to Lmax, i.e., m`mq ≤ L2
max:

We know that

(
k∑
`=1

m`

)2

= n2 =
k∑
`=1

m2
` +

∑
`6=q

m`mq, and (5.15)

∑
` 6=q

m`mq ≤ k(k − 1)L2
max, then (5.16)

k∑
`=1

m2
` = n2 −

∑
6̀=q

m`mq ≥ n2 − k(k − 1)L2
max (5.17)

Replacing (5.17) in (5.13) leads to the final form of the SDP relaxation of our
clustering problem:
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Adapted Matrix Lifting

maxYRS

1
2
Tr(LYRS)

s.t. diag(YRS) = un

kYRS − J � 0,

YRS ≥ 0

−Tr(JYRS) ≤ k(k − 1)L2
max − n2 (5.18a)

Adapted Trace Formulation

maxYFJ

k−1
2k

Tr(LYFJ)

s.t. diag(YFJ) = un

YFJ � 0

(Yi,j)FJ ≥ −1
k−1

, i 6= j

−Tr(JYFJ) ≤ k2L2
max − n2 (5.18b)

Since the entries of YFJ and YRS (i.e., the optimization variables of the SDP re-
laxation problem in (5.18)) are relaxed and do not give clear insights regarding
which vertices belong to the same partition, a rounding heuristic algorithm is
proposed. For this, we present next Algorithm 2, which divides the nodes into
groups, while considering the cluster’s capacity.

5.3 Heuristic Clustering Algorithm

To cluster the D2D pairs into k groups, each with a capacity of Lmax, and op-
erating at a different frequency from K, we propose Algorithm 2, a rounding
algorithm, since the entries of the matrix YFJ resulting from (5.18.b) are relaxed.
Technically, we extend the SDP relaxation of the max-k-cut problem [57] (Steps
1-7) to account for the cluster’s size constraint. To solve the problem, we decom-
pose the matrix YFJ in (5.18.b) into BTB using Cholesky decomposition, where
YFJ represents the Gram matrix of {bl, . . . bn}, and each bi (the ith column of
B) corresponds to a node. To partition these vertices into different subsets with
a bounded size Lmax, we compare each bi against k independent vectors from a
normal distribution with 0 mean and variance 1, and we group together the nodes
having bi’s similar to the same vector in N (0, 1). This result is collected in Step
7. At this level, Lmax is not yet taken into account, and hence more steps are re-
quired to check the satisfaction of this constraint. Thus, our contribution appears
starting at Step 8. If the sizes of the partitions collected in Step 7 are less than
or equal to Lmax, then it becomes the final output (Step 11). Else, we develop
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an algorithm (Steps 13-30) to designate the appropriate nodes to be re-clustered
and the adequate clusters to be joined. For this, we divide the clusters into two
sets Sgt and Slt, where they are collected based on their sizes (greater and lower
than Lmax, respectively). As for the clusters having a size exactly equal to the
bound, they are captured in a set Seq, since they are not candidates for admit-
ting new nodes (Step 13), and hence this set is excluded from the re-assignment
algorithm. Now, to determine the potential cluster that each node in each cluster
in Sgt can join (if re-assigned), we compute the summation of the dot product of
bi’s between each node of a cluster in Sgt and each node in each cluster in Slt,
and collect these values in a matrix Q(Cg) defined as:

Q(Cg) =


q(g1,Cl1) q(g1,Cl2) . . . q(g1,Cl‖Slt‖)

q(g2,Cl1) q(g2,Cl2) . . . q(g2,Cl‖Slt‖)

...
... . . .

...
q(g‖Sgt‖,Cl1) q(g‖Sgt‖,Cl2) . . . q(g‖Sgt‖,Cl‖Slt‖)

 (5.19)

where its minimum entry q(g·,Cl·) identifies which node(s) should be moved to
which cluster (while satisfying the cluster’s size constraint), so that it has the
least effect on

∑
j(Yi,j)FJ, which should be less than or equal to (Lmax− n−Lmax

k−1
).

This is because the summation over all j within a cluster should give a value less
than or equal to Lmax from which the (n− Lmax) nodes that belong to the other
clusters should be subtracted (in (Yi,j)FJ = − 1

k−1
if i and j belong to different

clusters, and (Yi,j)FJ = 1 if i and j are within the same cluster Eqt. (5.14)). Once
the appropriate reassignment is achieved, the final partition will be the union of
the updated clusters in Sgt and Slt, and the existing ones in Seq.

5.4 Bounds Analysis

In this section, we derive the performance guarantee of our proposed heuristic
algorithm (relatively to the optimal method), after determining some interesting
bounds which served in the computation. We also analyze the performance of
the randomized clustering algorithm.

5.4.1 Randomized Policy

One of the obvious methods for our clustering problem is the randomized clus-
tering algorithm, which starts by arbitrarily partitioning the n vertices into m
subsets with a capacity C = Lmax each, where m = b n

Lmax
c. As for the resid-

ual nodes, they are randomly assigned to the remaining (k −m) clusters, where
the cluster’s size can vary from one subset to another, but the capacity is equal
to Lmax, i.e., C < Lmax. Note that the nodes here are randomly chosen, i.e.,
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Algorithm 2: Clustering devices into k partitions with bounded subset
sizes
Input : G = (V, E), k, n,L, Lmax

Output: P = P1, P2, . . . , Pk

1 Solve Problem (5.18.b) to get YFJ = [Yi,j ]

2 Find unit vectors b1, . . . , bn ∈ Rn×1 satisfying bTi · bj = Yi,j (1 ≤ i, j ≤ n) by computing

the Cholesky factorization BTB of YFJ where B = [b1, . . . , bn]
3 Choose k independent random vectors z1, . . . ,zk ∈ Rn×1 where its elements ∼ N (0, 1)
4 Partition V into P1, . . . , Pk where Ph consists of the nodes i ∈ V for which

bTi zh = maxm=1,...,k b
T
i zm

5 // now that we know to which cluster each node belongs
6 // validate against Lmax, and reassign if necessary
7 Capture Pinitial = P1, . . . , Pk

8 foreach Ph ∈ Pinitial do
9 if ‖Ph‖ ≤ Lmax then

10 P = Pinitial = P1, . . . , Pk

11 else
12 Form three sets Sgt = {Cg| ‖Cg‖ > Lmax}, Slt = {Cl| ‖Cl‖ < Lmax},

Seq = {Ce| ‖Ce‖ = Lmax}
13 foreach Cg ∈ Sgt do
14 // Compute for cluster Cg and each cluster Cl a set of product vectors
15 foreach Cl ∈ Slt do
16 foreach g ∈ Cg do
17 q(g,Cl) = 0
18 foreach l ∈ Cl do
19 // q(g,Cl) is a product vector corresponding to node g and

cluster Cl

20 q(g,Cl) where q(g,Cl) =
∑
bT(g) · b(l)

21 // where b(p) is the vector b ∈ B that corresponds to node p

22 end

23 end
24 // we now have a matrix Q(Cg) = [q(g,Cl)] for all clusters in Slt whose

dimension is ‖Cg‖ × ‖Slt‖
25 end
26 Identify according to Q(Cg) nodes {go ∈ Cg} and clusters {Cp

l ∈ Slt} such
that q(go,Cp

l )
is minimum and moving {go} to {Cp

l }, ‖Cg‖ = Lmax and

‖Cp
l ‖ remains ≤ Lmax

27 end

28 // P is the union of updated clusters
29 P = Sgt ∪ Slt ∪ Seq
30 end
31 // Reuse frequency among clusters if they are not adjacent
32 ∀i ∈ Cl, ∀ j|j is adjacent to i ∧ j ∈ Cm,
33 if ∃ k ∈ Cn adjacent to j and not adjacent to i,
34 then Cl and Cn can reuse the same frequency bands
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the selected nodes to be grouped in the same group do not necessarily have the
lowest edges’ weights. Hence, this method constitutes the lower bound of the
capacitated max-k-cut problem, which can be written in (5.20), while its detailed
derivations are in Appendix B.1.

MCk,cap ≥


[
m(m−1)L2

max

n2 +
(

1− mLmax

n

)
× if k > m(

2mLmax

n
+ (1− mLmax

n
)(k−m−1

k−m )
)]
×
(∑

i 6=j wi,j

)
total

m(m−1)L2
max

n2 ×
(∑

i 6=j wi,j

)
total

if k = m

(5.20)

where
(∑

i 6=j wi,j

)
total

is the total sum of weights of all the edges connecting

all vertices.

5.4.2 Upper Bound (SDP Relaxation)

We derive three eigenvalue-based bounds for our clustering problem: the first
one is the solution of an SDP relaxation that is weaker than the original problem
(5.7), the second one is a strengthened version, and the third one is an improve-
ment of all the previous versions, where the diagonal of the Laplacian matrix is
perturbed, leading to a stronger bound. We mention here that although the first
bound may be a loose upper bound, we use it here for clarity purpose to help the
reader understand the derivations corresponding to the upper bounds that follow.

5.4.2.1 Eigenvalue Bound

To derive the first eigenvalue bound, we rely on the the Laplacian algebra L, as
in [60] and [61] but with some modifications: the eigenvalue bound 1) in [60] is
found for the max-k-cut problem with no restriction on the sizes of the subsets
(in contrast to our work, which corresponds to its capacitated version), and 2)
in [61] is determined for the graph partition problem, where the size of each sub-
set is already given and fixed (while in this work, the size is not apriori known,
but is upper bounded by Lmax).

Recall that L is a set of matrices that is closed under addition, scalar and
matrix multiplication, and conjugate transposes [60], [61]. The orthonormal basis
of eigenvectors corresponding to the eigenvalues of the Laplacian matrix L con-
stitute the basis of L matrices. In particular, we consider 0 = λ0 ≤ λ1 < . . . λd =:
λmax(L) to be the distinct eigenvalues of L, and Ai be a matrix whose columns
form an orthonormal basis of the eigenspace corresponding to the ith eigenvalue
λi, constituting Fi = AiA

T
i for i = 0, . . . , d. We define fi = rank(Fi) as the cor-

responding multiplicities. Hence, L is now described by the span of {F0, . . . ,Fd}.
This span is called the basis of idempotents of L, and L =

∑d
i=0 λiFi [60], [61].
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For more details about Laplacian Algebra L, the reader can refer back to Section
2.3.2 of Chapter 2.

To find these derivations, we rely on the matrix lifting formulation in (5.18.a)
and not on the trace formulation in (5.18.b) 1) to avoid the problem of the neg-
ative values that may appear in the relaxed version of YFJ in (5.18.b), and 2) to
stay conformant with the idempotent property of L basis, which is satisfied in the
matrix lifting formulation, where the entries of H in (5.8) are 0 or 1, in contrast
to the trace formulation, where the square of YFJ’s entries in (5.14) do not give
the same values due to (Yi,j)FJ ≥ −1

k−1
. Since the SDP relaxation of the original

problem cannot be restricted to feasible points in L, we adapt it accordingly by
the following relaxation:

Adapted Matrix Lifting

maxYRS

1
2
Tr(LYRS)

s.t. diag(YRS) = un

kYRS − J � 0

−Tr(JYRS) ≤ k(k − 1)L2
max − n2

YRS ≥ 0 (5.21a)

Adapted & Relaxed Matrix Lifting

maxYRS

1
2
Tr(LYRS)

s.t. Tr(YRS) = n

kYRS − J � 0

−Tr(JYRS) ≤ k(k − 1)L2
max − n2

(5.21b)

By restricting the optimization problem of (5.21) to feasible points in L, we obtain
the following.

Proposition 1. We let G be a graph on n vertices, and k an integer such that
2 ≤ k ≤ n. Then, the upper bound of the SDP relaxation (5.21.b) becomes equal
to:

MCk,cap ≤
k(k − 1)L2

max

2n
× λd (5.22)

where λd(L) is the largest eigenvalue of the Laplacian matrix L of G.

Proof. The conversion of (5.21.b) into the Laplacian algebra L domain and the
derivation of the upper bound expressed in (5.22) can be found in Appendix
B.2.
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5.4.2.2 Strengthened Eigenvalue Bound

The bound in (5.22) is considered a loose one, especially in the case when some
clusters are of full capacity. For this scenario, we determine a strengthened bound,
after deriving an interesting Lemma related to the summation of the product of
the clusters’ sizes. To the best of our knowledge, this is the first time that this
bound is established.

Theorem 4. In the case of at least one cluster is of full capacity (i.e., equal to
Lmax) is derived, the upper bound of our clustering problem can be improved to
be equal to :

MCk,cap ≤
k(n2 − L2

max) + 2n(Lmax − n)

2n(k − 1)
× λd (5.23)

Proof. The derivation of the strengthened upper bound can be found in Appen-
dices B.3 and B.4.

Although (5.23) is a better bound than (5.22), we can enhance it further by
perturbing the diagonal.

5.4.2.3 Perturbed Bound

We improve the eigenvalue bound that we derived above in (5.23) by applying
on it the diagonal perturbation method [60]. We note that perturbing the cost
matrix by a diagonal matrix with zero trace does not change the optimal value
of our optimization problem, but has an effect on the maximal eigenvalue of the
Laplacian matrix. Thus, we can express the perturbation of the diagonal entries
of (5.23) by the following optimization problem:

mindTun=0

k(n2 − L2
max) + 2n(Lmax − n)

2n(k − 1)
λd(L+ diag(d)) (5.24)

where the vector d is known as the correcting vector and d is chosen such that∑
1≤i≤n di = 0. However, problem (5.24) does not have a closed form expres-

sion, so we can formulate it as SDP using the concept of M-matrices [38] (de-
tailed in Section 2.2.1.4 of Chapter 2): we let Z be an M-matrix such that
Z = µI −B, where B is a non-negative matrix such that B = L+ diag(d) ≥ 0,
and µ ∈ R such that µ ≥ ρ(B), where ρ(B) is the spectral radius of B (the
largest absolute value of its eigenvalues), i.e., ρ(B) := max{|λ| | λ ∈ σ(B)}
and σ(B) denotes the spectrum of B (the set of its eigenvalues) [38]. Thus,
minimizing µ reduces the eigenvalues of B (particularly, its maximum value λd):
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Primary Problem of the Perturbed Bound

min k(n2−L2
max)+2n(Lmax−n)

2n(k−1)
µ

s.t. µIn − (L+ diag(d)) = Z, Z � 0,

dTun = 0 (5.25a)

Dual Problem of the Perturbed Bound

maxYRS

1
2
Tr(LY )

s.t. diag(Y ) = k(n2−L2
max)+2n(Lmax−n)
n2(k−1)

un

YRS � 0 (5.25b)

By solving the SDP relaxation in (5.25.b), we get the optimal value of the eigen-
value problem in (5.24), knowing its equivalence. Finally, we summarize the
relations among the presented SDP relaxations for the clustering problem and
their corresponding bounds as follows:

SDP in (5.21) m SDP in (B.16) m Original Problem

λmaxbound (5.22) ≥ Strengthened bound (5.23) ≥ Perturbed bound (5.25.b)

≥ Optimal solution of the original problem (5.26)

where (X)m (Y ) means that Problem (X) is more relaxed than Problem (Y ) and
(a) ≥ (b) refers to the fact that the solution’s value in (a) is greater than or equal
to the one in (b).

5.4.3 Performance Guarantee

To assess a clustering algorithm’s performance, we define the ”ratio” metric which
relates the average cost (in terms of the resulting total weight of edges that are
cut w(Ecut)clust. alg.) to the upper bound of the optimal solution. This indicates
the accuracy level of the considered policy’s solution against the optimal one in
(5.7). Numerically, the tightest upper bound of the SDP relaxation of the original
problem can be directly calculated by only plugging the values of n, k, Lmax, and
λd in (5.25.b), which is not a complex SDP problem to be solved. As for the total
weight of the edges that are cut after partitioning (w(Ecut)clust. alg. in (5.27)), it is
related to the clustering algorithm considered. For instance, for the randomized
policy, the ratio’s numerator in (5.27) is replaced by w(Ecut)rand. alg. = MCk,cap in
(5.20). Note here that the output of the randomized policy constitutes the lower
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bound of the optimal solution of our clustering problem.

ratio =
w(Ecut)clust. alg.

upper bound of the SDP relaxation of the original problem
,

where w(Ecut)clust. alg. = 1
2

∑
1≤r 6=s≤k

∑
i∈Pr,j∈Ps wi,j (5.27)

However, if this ratio is high enough, then there is no need to solve the SDP
problem in (5.18), and the randomized policy can be directly applied, saving by
this the CPU resources. On the other hand, if the performance of our proposed
heuristic algorithm (Algorithm 2) is to be analyzed, then w(Ecut)clust. alg. is re-
placed by w(Ecut)Alg.2, which is equal to the total sum of weighted edges that
are cut (i.e., those joining different partitions). Thus, this ratio affirms that the
considered clustering algorithm can be used to partition the network into differ-
ent groups with a performance guarantee of at least (ratio×100%) w.r.t to the
optimal solution. Note that we expect that the value of the ratio (i.e., the per-
formance guarantee) of our algorithm is more likely to be higher than the one
for the randomized policy, and the experimental results in Section 5.5.2 (last two
columns of Table 5.2) confirm this expectation. The reason is that our algorithm
groups the nodes in a more intelligent way: the resultant YFJ maximizes the
objective function in (5.18.b), and the nodes that are grouped together are the
ones with the vectors that have the highest dot product with the same random
vector, which leads to a higher summation of edges’ weights across the different
partitions. In contrast, in the randomized policy, the nodes are randomly chosen
to fill the clusters, without accounting for the edges’ weights.

5.5 Experimental Results

To show the scalability of our approach, we consider the large network of 30 D2D
pairs represented in Fig. 4.3 in Section 4.2.3 of Chapter 4, which also includes
the associated matrix to this network representing the relationship among the
first 15 D2D pairs. In Fig. 5.4, we show the conflict graph with assigned weights,
that corresponds to the 30 × 30 topology, such that the blue edge stands for a
link with a weight of 1, and the red one has a weight of 2.

Figure 5.4: TIM conflict graph with assigned weights for the 30× 30 network
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Figure 5.5: The effect of the number of D2D pairs on the interference intensity

5.5.1 Clustering Algorithm Evaluation

We apply Algorithm 2 on the D2D network of Fig. 4.3(a) to cluster the 30 pairs
into k = 6 groups with Lmax = 6. Although the number of users is typically higher
in reality, this scenario is intended as a simple example meant to shed light on the
potentials of the proposed scheme. An example of the algorithm’s output clus-
ters is: P1 = {5, 7, 25, 26, 27, 30}, P2 = {1, 2, 3, 4, 6, 9}, P3 = {8, 16, 19, 20, 22, 24},
P4 = {12, 15, 17, 18, 21, 23}, P5 = {10, 11, 14}, and P6 = {13, 28, 29}. The cumu-
lative weight of the edges connecting these partitions is 45 (with the sum of edges
in the graph of Fig. (5.4) being 50), i.e., our algorithm was able to maximize the
total sum of the cut edges, where only 5 zeros remained and appeared in some
of the cluster sub-matrices. Fig. 5.5 shows the interference reduction for Fig.
4.3(a)’s topology, before and after clustering, where interference intensity refers
to the sum of edge weights that signify the interference levels. We mention here
that the presented algorithms are not tied to the example topologies, and can be
applied to any topology. TIM is next applied in Section 5.6 to each cluster to
cancel the intra-cluster interference that may remain after the cut.

5.5.1.1 Comparison against the Exhaustive Search Method

To study our algorithm’s performance, we consider partitioning the network of 6
vertices (T17 to T22 in Fig. 4.3) into k = 3 clusters with Lmax = 3. We assume
here a small network size to make the exhaustive search method tractable, which
produces the partitions P1 = {T19, T20, T22}, P2 = {T17, T18}, and P3 = {T21}
with w(Ecut)exhaustive search = 12. This method leads to the optimal solution since
the total sum of edges’ weights is equal to the value of the largest cut found,
i.e., when all edges are cut. As for our algorithm, it gives P1 = {T17, T18, T21},
P2 = {T19, T20, T22}, and P3 = ∅ as output, with w(Ecut)Alg.2 = 11. On the
other hand, the randomized policy divides the network into P1 = {T17, T19, T20},
P2 = {T18, T21}, and P3 = {T22}, where w(Ecut)rand. alg. = 5. Hence, the naive
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randomized algorithm is not the best possible method for this problem, and our
algorithm performs better by being closer to the optimal solution in terms of
total sum of edges’ weights.

5.5.2 Clustering Bounds Evaluation

To give a flavor of the behavior of the various bounds, we consider two different
topologies for n = 15 network, such that the interfering links per receiver were
chosen randomly and their numbers are on average 5 in topology #1 and 6 in
topology #2. This makes the total sum of weights of all edges, corresponding to

each topology, equal to
(∑

i 6=j wi,j

)
total

= n×# of interfering links/receiver (i.e.,

equal to 75 and 90, respectively). Note here that, in all topologies, we consider
the D2D network to be divided into k = 3 groups with Lmax = 6. In topology
#1, there exist no edges with a weight of 2, e.g., while T1 is communicating with
R1, it interferes with R2, R3, R4 and R5, but T2 is not interfering with R1, and
hence the connecting edge between nodes 1 and 2 has a weight of 1. Taking the
mutual interference into account, we consider another scenario (topology #2) but
with different number of interferes, e.g., in topology #2, T3 is interfering with
T1, T2, T4 → T7, and T4 is interfering with T2, T3, T5 → T8. By this, T3 and T4

are mutually interfering, and the edge connecting nodes 3 and 4 has a weight of 2.

To numerically show the upper bound improvement, we illustrate in Table
5.2 the upper bound values for the two different topologies we discussed earlier.
The results showed that the proposed methods in Section 5.4.2 were successful in
tightening the upper bound. For instance, the tightest upper bound correspond-
ing to topology #1 (equal to 66.55) is much less than the total sum of weights
of all edges equal to 75. We can see that in practice these bounds can provide
good approximations to the actual optimal solution in terms of the value of the
sum of the edges that are cut. We mention here also that these results meet our
expectations while comparing the upper bounds of the max-k-cut problem to the
existing ones in the literature: when the clusters are bounded in size, the upper
bound should get smaller. Numerically, we evaluate the tightest upper bound
in (5.25.b) that corresponds to topology #1 with λd = 13.445 (recall that λd is
the maximum eigenvalue of the Laplacian matrix), and we find it equal to 66.55.
This value is less than the upper bound of the original max-k-cut problem in [60]

that is equal to
(
n(k−1)

2k
λd

)
= 67.225.

As for the total weight of the cut edges, we compute w(Ecut)rand. alg. and
w(Ecut)Alg.2 after applying the randomized algorithm and our proposed heuristic
algorithm (Algorithm 2), respectively on the two different topologies. We also
calculate the ratio metric of these two clustering algorithms (based on (5.27)) to
assess their performance, and we summarize the results in the last two columns
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Table 5.2: Lower and upper bounds for different topologies for the 15× 15 D2D
pairs network

Topology #1 Topology #2
# of interferers 5 6(∑

i 6=j wi,j

)
total

75 90

Upper bound (5.22) 96.8047 108
Upper bound (5.23) 66.55 74.25

Upper bound (5.25.b) 66.55 74.25
w(Ecut)rand. alg. 48 57.6
w(Ecut)Algorithm 2 58 67

(ratio)rand. alg. 72.13 % 77.58 %

(ratio)Alg.2 87.15 % 90.23 %

of Table 5.2. As we can see, using our proposed heuristic algorithm improves the
ratio achieved, as compared to the randomized policy (e.g., for topology #2, the
ratio resulting from applying Algorithm 2 is equal to 90.23%, while it is only equal
to 77.58% in the randomized policy case). One can argue that the attained ratio
value is still high (above 70%) while using the randomized policy, and hence it
can be directly applied in these two different topologies, without solving the SDP
relaxation in (5.18). However, this decision is not valid in all cases. For instance,
in the example mentioned in Section 5.5.1.1, the exhaustive search method cuts
the network, with w(Ecut)exhaustive search = 12 (optimal solution, i.e., all edges are
cut). Computing the upper bound of the SDP relaxation of the original problem,
the solution (relaxed value of the total sum of the edges that were cut) is 12.5.
As for our algorithm, the total of the edges that were cut is w(Ecut)Alg.2 = 11,
and for the randomized policy, w(Ecut)rand. alg. = 5. Consequently, calculating the
performance guarantee based on (5.27), such that (ratio×100), then (ratio)Alg.2 =
11

12.5
× 100 = 88% and (ratio)rand. alg. = 5

12.5
× 100 = 40%. Hence, the naive

randomized algorithm is not the best possible method for this problem, and our
algorithm performs better by being closer to the optimal solution in terms of
total sum of edges’ weights.

5.6 Clustering Combined with TIM Evaluation

To preserve the wanted signal and cancel the interfering ones, we can apply TIM
inside each cluster using any existing method in the literature, or any of our
proposed rank minmization methods in Chatper 4. However, we prefer to adopt
eRM-TIM method since previous results have shown that eRM-TIM outperforms
the remaining ones in terms of rank reduction and complexity.
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Table 5.3: Improvement of the total sum of symmetric DoF due to clustering

Topology TDMA TIM only (SVDAP) TIM only (dirSVDAP) TIM only (eRM-TIM) Clustering with TIM (eRM-TIM)
5× 5 (Fig. 2.1) 1 5

2
= 2.5 5

2
= 2.5 5

3
= 5.333 (DoFsym)total = 1

3
(2

1
+ 3

1
+ 0) = 1.667

6× 6 (Fig. 4.9(a)) 1 6
3

= 2 6
3

= 2 6
3

= 2 (DoFsym)total = 1
3
(2

1
+ 1

1
+ 3

2
) = 1.5

12× 12 (Fig. 4.1) 1 12
11

= 1.09 12
11

= 1.09 12
7

= 1.7143 (DoFsym)total = 1
3
(2

1
+ 5

2
+ 5

2
) = 2.33

15× 15 (Fig. 5.1) 1 15
13

= 1.1538 15
14

= 1.0714 15
9

= 1.6667 (DoFsym)total = 1
3
(5

1
+ 6

2
+ 4

1
) = 4

30× 30 (Fig. 4.3(a)) 1 30
29

= 1.0345 30
29

= 1.0345 30
15

= 2 (DoFsym)total = 1
6
(6

2
+ 6

3
+ 6

1
+ 3

1
+ 6

2
+ 3

1
) = 3.33

5.6.1 DoF Achieved

In Table 5.3, we show the improvement of the total sum of symmetric DoF
due to clustering compared to TDMA and TIM only scenarios for different
topologies. On a hand, in the TDMA case, where the whole frequency band
is utilized, each user should wait T slots to be capable to re-transmit. For
instance, for the 30 × 30 topology, the symmetric DoFsym per user becomes
equal to DoFsym = 1

T
= 1

30
= 0.03, i.e., each user can use 1/30 of the re-

sources, and so, the total sum of symmetric DoF becomes equal to 1. On the
other hand, although applying TIM on this network improves the total sum
of symmetric DoF, especially while using our proposed TIM rank minimization
method (eRM-TIM ) which performs much better than the other existing meth-
ods, i.e., SVDAP and dirSVDAP (as discussed in Section 4.2.3.2 of Chapter
4), however, combining it with the clustering technique stays more beneficial,
especially at higher network dimensions (as will be shown later). For exam-
ple, for the 30 × 30 network, applying TIM without clustering using either SV-
DAP and dirSVDAP, increases the total sum of symmetric DoF per user to
(DoFsym)woctotal|SVDAP = (DoFsym)woctotal|dirSVDAP = 30

29
only, which is less than the

one achieved using eRM-TIM only, (DoFsym)woctotal|eRM-TIM = 30
15

. Nevertheless,
combining eRM-TIM with clustering increases the total sum of symmetric DoF
(DoFsym)wctotal (as shown in the last column of Table 5.3), especially for large net-
works, such as the 30× 30 network.

Numerically, the total sum of symmetric DoF attains (DoFsym)wctotal = 3.33,
while dividing the original TIM matrix of Fig. 4.3(a) into k = 6 sub-matrices,
as shown in Fig. 5.6 (where their rows refer to the receivers, and the columns
indicate the transmitters), and then applying rank minimization on each of these
sub-matrices. Note that XP3, XP5, and XP6 are reduced to rank-1 matrices.
However, XP1 and XP4, which have one zero entry each, are reduced to rank-2
matrices only, while XP2 which has 3 zero entries, its rank is reduced to 3. Note
that the clustering technique does not offer any gain when the number of devices
is small, e.g., 5× 5 topology of Table 5.3, and hence having multiple frequencies
in this scenario is not necessary.
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Figure 5.6: Resulting sub-matrices for the 30× 30 network

Figure 5.7: Effect of the number of clusters on DoF

5.6.2 Effect of the Number of Clusters on the DoF

In Fig. 5.7, we show the impact of varying the number of clusters (with Lmax = 6
each) on the DoF achieved in the n = 30 network of Fig. 4.3(a). We observe that
when k increases from 6 to 10, DoF continues to grow. This is because when the
number of clusters increases, the matrix is divided into more sub-matrices, and
thus the probability that the zeros are eliminated increases, reducing their ranks
to 1.

5.6.3 Complexity and Computation Time

Our proposed algorithm for TIM clustering requires Θ(qn3 + q2n2 + q3 + n3) +
Θ(k2)+Θ(L6

max) operations, where q is the number of constraints, while n, k and
Lmax were already defined. The first two terms refer to the clustering algorithm
and the third one corresponds to the TIM rank minimization method, namely
eRM-TIM. In Algorithm 2, Step 1 necessitates Θ(qn3 +q2n2 +q3 +n3) operations
to be solved, since it is based on the primal dual barrier method (a built-in solver
in CVX [159]). As for Θ(k2), it derives from the inner and outer loops in (Steps
14-28), and Θ(L6

max) follows from solving the TIM algorithm. Note that com-
plexity of our previous TIM method in [28] (also based on SDP) was in the order
of O(n6), and it becomes equal to Θ(L6

max) in this work. This outcome shows the
importance of the clustering algorithm for reducing the complexity since TIM is
now applied on Lmax instead of n, and Lmax << n.
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From CPU time perspective, the efficiency of combining TIM with clustering
appears better in larger networks, as shown in Fig. 5.8: the gain is negligible
for a small network (i.e., below n = 15), but becomes significant, around 88%
for n = 45 (noting that the processing time increases with n). This gain in the
computation time is because the LRMC-based TIM approach is executed, in a
parallel way, at each sub-matrix (corresponding to a cluster) of reduced size.

Figure 5.8: The gain in CPU time, after combining LRMC-based TIM with
clustering

5.7 Summary

In this chapter, we propose a new joint clustering-topological interference man-
agement (TIM) framework, in a network with multiple available frequencies,
where the objective is to cluster the D2D pairs into different groups (each with
a different frequency) and to apply the low-rank matrix completion (LRMC) ap-
proach of TIM to manage the interference within each group. The challenge here
is to choose the appropriate groups that work in the LRMC’s favor, in order to
enhance the network performance. To this end, we propose a clustering algo-
rithm, based on max-k-cut, that can successfully group D2D devices with mutual
interference in separate clusters, with bounded capacity. As for intra-cluster in-
terference, which may still be present after the cut, it is suppressed by TIM
(using any of the proposed methods in Chapter 4). It is good to mention here
that by means of clustering, not only the interference gets reduced, but also the
network will be characterized by a high SINR. This implicitly indicates that the
DoF metric is useful in this case. Simulation results show that the combination
of clustering with the LRMC approach for solving TIM reduces the computation
time, by allowing parallel processing of LRMC on the resultant clusters, and also
significantly improves the system DoF as compared to only using TIM.
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As a summary, combining the LRMC approach of TIM with clustering:

• helps in overcoming the LRMC scalability problem (which is only suitable
for up to a certain number of users [111]) and in reducing its complexity and
computation time, since the whole resource allocation problem is now divided
into several sub-problems with smaller dimensions, on which LRMC-based
TIM is applied, in a parallel way.

• leads to an increase in the total symmetric degrees-of-freedom (DoF) of a
system, with multiple set of frequencies. This is because we have developed
a proper clustering algorithm for the LRMC approach of TIM that cuts the
original adjacency matrix into several sub-matrices in a way that increases
this metric (the symmetric DoF): our technique eliminates the ”double” 0s
in the matrix and replaces them by ”*” (don’t care values) to enhance the
rank flexibility, based on the observation that two 0s in symmetric positions
designate a mutual interference. It is clear that this formulation is different
from the classical clustering techniques. From communication perspective,
users with mutual interference will be divided into different groups.

• provides DoF and processing time gains especially for high number of de-
vices, even if the network has only one frequency band. This is because this
frequency band can be divided into multiple sub-bands, such that each sub-
band is assigned to a cluster and LRMC is applied inside each cluster.

This work about the clustering approach has been published in IEEE Transac-
tions on Communications [29].
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Chapter 6

Conclusion

In this thesis, we applied the so-called Topological Interference Management prob-
lem (TIM) to manage interference in a Device-to-Device (D2D) network, where
the instantaneous channel state information (CSI) is not known to the devices,
but only the topology information. We found then solutions to the challenges that
may arise in such application, such as developing ways to learn about the network
topology. After recasting the problem as a low-rank matrix completion (LRMC)
one, the objective was to minimize the TIM adjacency matrix rank in order to
increase the system degrees-of-freedom (DoF). To accomplish this, we proposed
three different rank minimization methods. In the first one, we approximated the
matrix rank by a continuous generic approximation function that forces the SDP
approximation to return a non-diagonal matrix, and hence allowing to decrease
the TIM matrix rank. Although this method had a polynomial complexity, but
it remained high due to the presence of five linear matrix inequalities (LMIs)
in the constraints. To this end, we developed (also using SDP) an improved
TIM rank minimization method, which represented a simpler optimization prob-
lem than the previous one, with much lower complexity, while achieving similar
rank minimization performance. More specifically, this method was modeled as a
“tweaked” nuclear norm heuristic that also was successful in overcoming the hard
constraint of all ones on the main diagonal of the adjacency matrix. As for the
third method, we exploited the characteristic polynomial function of the matrix
and formulated an optimization problem, while relying on the existing relation
between the coefficients of this function and the matrix rank. Within the same
framework of LRMC, we also integrated the successive interference cancellation
(SIC) capability of 5G handsets and combined it with TIM in such a way to de-
crease the rank even further. Simulations results related to the different methods
proved their efficiency in minimizing the rank better than the existing works,
with a polynomial complexity, while abiding by the special structure of the TIM
matrix. When this matrix is carefully filled, the precoding and decoding matrices
that the transmitters and the receivers should use to cancel the interference can
be designed accordingly. Hence, the transmitters that can transmit simultane-
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ously without interference can be deduced, and hence the system DoF increases.

To make TIM more realistic, we also studied its performance on more practical
scenarios, like taking the path loss and mobility effects into account or consider-
ing its application on large D2D networks. To tackle the first point, we studied
the path loss and mobility’s effect on the achieved DoF and the conditions that
should trigger the re-launching of TIM. Simulation results showed that taking the
path losses into account reduced the achieved DoF values. However, defining the
conditions under which TIM should re-run saved a lot of processing time. Now,
concerning the second practical scenario (talking about TIM scalability), we pro-
posed to combine TIM with a clustering framework, knowing that the adopted
LRMC approach has some limitations in terms of the scalability and the structure
itself, which prevents matrix rank reduction. In a network with multiple available
frequencies, the objective was then to cluster the D2D pairs into different groups
(each with a different frequency) and to apply the LRMC-based TIM approach
(in a parallel way) to each of these sub-groups to manage the intra-cluster inter-
ference that may still be present after the cut. Mathematically speaking, this was
translated as developing a clustering algorithm specific to the LRMC-based TIM
approach that cuts the original adjacency matrix into sub-matrices in a way that
increases the system DoF. Then, any of the developed rank minimization methods
can be applied to each of these sub-matrices to reduce their ranks. To formulate
the clustering problem, we used the semi-definite programming, while building on
graph theory concepts. To solve the problem, we developed a heuristic algorithm
based on max-k-cut algorithm, that can successfully group D2D devices with mu-
tual interference in separate clusters, with bounded capacity. We also conducted
an extensive analysis of the clustering model, by deriving a novel relatively tight
upper bound for its SDP relaxation using Laplacian Algebra and matrix diagonal
perturbation method. This allowed to determine the performance guarantee of
our proposed heuristic algorithm as well as the randomized clustering method rel-
ative to the optimal method. Simulation results showed that the combination of
clustering with the LRMC-based TIM approach reduced the computation time,
by allowing parallel processing of LRMC on reduced number of devices per clus-
ter, and also significantly improved the system DoF as compared to only using
TIM, especially in large D2D networks.

6.1 Open Research Directions and Future Work

There are several open research problems that can be addressed after building on
our framework, as follows:

• In this work, we recast the TIM problem as a matrix completion one. How-
ever, once can formulate it differently and solve it using another method,
(other than semi-definite programming (SDP)) in order to reduce the com-
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plexity.

• To solve the SDP optimization problems, we utilized CVX, a general-purpose
toolbox. However, to reduce the complexity which was in the order of O(n6),
one can develop his/her own toolbox.

• In the TIM framework, we considered the acceptable noise floor as a thresh-
old that the interference’s strength is compared against in order to decide
whether this interference is a weak or strong one. However, the optimal
choice of the effective noise floor threshold by the receiver is an interesting
issue to be tackled. This is because it affects on the TIM adjacency matrix
content by making it sparser or more filled with ”*” values. Perhaps, this
threshold can be function of the fading and the average mobility.

• In the joint TIM-SIC framework, two interference categories were considered.
However, the classification can include more categories (very weak, weak,
medium, strong, very strong interference) and their effect on TIM can be
explored.

• In the joint TIM-SIC framework, we considered an ideal SIC that makes
perfect decision, and hence leads to a perfect decoding. However, SIC is not
always ideal in practical scenarios, which may generate an error propaga-
tion and thus a degradation in users’ performance. This necessitates then a
successive error correction to suppress this error propagation.

• In the joint clustering-TIM approach, we assumed that the number of clusters
is a-priori known (while relating it to the number of available frequencies).
However, this metric can be learnt using machine learning techniques (instead
of providing it as input) by considering different D2D network topologies, and
more specifically by changing the density of these D2D pairs in the considered
area.

• To study an asymmetric multiple-input multiple-output (MIMO) formula-
tion of the topological interference management problem in a D2D scenario,
knowing that this setting is more involved than the index coding problem be-
cause of the varieties of antenna configurations a device can have. This will
definitely lead to a different DoF over the different D2D links, making the
problem more challenging and complicated. Moreover, another interesting
topic to be tackled is to check how this setting will affect the proposed clus-
tering algorithm in this report, while dividing the D2D pairs into different
clusters.
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Appendix A

Proofs for Chapter 5

A.1 Proof of the Nuclear Norm Providing a Di-

agonal Matrix

For completion, we reproduce here the proof of [36] to show that the nuclear
norm minimization of a matrix X under the TIM constraint of Xi,j = Mi,j (with
predefined 1s in the main diagonal) leads to the trivial diagonal matrix solution
(which is full rank), as an optimal one.

||X||∗= max{Tr(XTB); B ∈ Rn×n, ||B|| ≤ 1}

If we pick B to be the identity matrix, then ||X||∗ ≥ Tr(X) = n, where n is the
matrix dimension, i.e., its maximum rank, where Tr(X) = n is due to the fact
that all diagonal elements of X are equal to 1.

A.2 Proof of Getting K and E Matrices as Di-

agonal Ones

We start by building on the Lemma of [101] and represented in (4.9). This
Lemma means that, if one wants to minimize the rank of X, then he/she has to
find two PSD matrices such that the summation of their ranks is below or equal
to 2r, and that these matrices satisfy the constraints. Additionally, we know
from [101] that rank(K) ≥ rank(X) and rank(E) ≥ rank(X) (for more details,
the reader can refer to the end of this subsection). Based on the above, if X is
full rank, then K and E are also full rank, i.e., rank(K) ≥ rank(X) = n and
rank(E) ≥ rank(X) = n

In fact, when the original rank minimization problem in (4.9) is relaxed, it has
been also proven [101] that there is an equivalence between the trace formulation
of (4.10) in function of K and E and the nuclear norm of X in (4.11), which
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leads to the same output. On the other hand, we know that minimizing the nu-
clear norm of X gives the trivial solution of X = I (a full rank diagonal matrix),
which will make also then K and E as full rank diagonal matrices. Note that the
output of (4.11) is an identity matrix, because the nuclear norm minimization of
a matrix X under the TIM constraint of Xi,j = Mi,j (with predefined 1s in the
main diagonal) leads to the trivial diagonal matrix solution (which is full rank),
as an optimal one (proof in Appendix A.1).
Additionally, the three Schur complement conditions for positive semidefiniteness
in (4.9) are simultaneously satisfied for a trivial solution when X = I, K = I,
and E = I.
From all the above, minimizing (Trace(K) + Trace(E)) will give a trivial solution
such that E and K are full rank diagonal matrices. This has been also observed
in numerical solutions.

Note: Proof of rank(K) ≥ rank(X) and rank(E) ≥ rank(X) detailed in
[101]:
The rank-nullity theorem [169] states that for any m× n matrix X:

rank(X) + nullity(X) = n

where the nullity of X is the dimension of its nullspace, such that:

N (X) = nullspace(X) = {b ∈ Rn : Xb = 0}

By this, the relation between the rank and the nullity of X can be written as:

rank(X) = n− dim N (X) = m− dim N (XT )

In our case, having a square matrix X ∈ Rn×n makes the previous equation equal
to:

rank(X) = n− dim N (X) = n− dim N (XT ) (A.1)

Back to the Lemma in (4.9), authors in [101] showed that the conditions (i),
(ii) and (iii) imply that rank(K) ≥ rank(X) and rank(E) ≥ rank(X): from
condition (ii), since I −EE+ is a projector operator for N (E), it follows that

N (XT ) ⊇ N (E)→ dim N (XT ) ≥ dim N (E) (A.2)

Using (A.1) and (A.2), we can write:

n− rank(X) = dim N (XT ) ≥ dim N (E), and

dim N (E) = n− rank(E), then

rank(E) ≥ rank(XT )

We can conclude that rank(E) ≥ rank(XT ) = rank(X). Since it is assumed
here, without loss of generality, that rank(K) ≥ rank(E), then also rank(K) ≥
rank(X).
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A.3 Proof of the Smooth Rank Function in terms

of Trace

Let K = Y SZT be the full singular value decomposition, where Y , Z are
orthogonal matrices with n dimensions for each, and the matrix S is such that:

S =

(
Diag(σ(K)) 0r×(n−r)

0(n−r)×r 0(n−r)×(n−r)

)
(A.3)

where r is the target rank and 0p×q denotes the p× q zero matrix. For instance,
if n = 5 and r = 3, then:

S =

(
Diag(σ(K) 03×2

02×3 02×2

)
=


σ1(K) 0 0 0 0

0 σ2(K) 0 0 0
0 0 σ3(K) 0 0
0 0 0 0 0
0 0 0 0 0


where ”Diag” operator here stands for diagonal matrix having σi(K) in its main
diagonal entries and 0s on the off diagonal. Let σ2(K) = [σ2

1(K), . . . , σ2
r(K)].

Note that:

KTK + εI = Z(STS)ZT + εI = Z

(
Diag(σ2(K)) + εIr 0

0 εI(n−r)

)
ZT

where I is partitioned into two small identity matrices Ir and In−r. Hence,

Φε(K) = Tr (K(KTK + εI)−1KT

=

(
Tr

(
Y S

(
Diag(σ2(K)) + εIr 0

0 εI(n−r)

)−1

STY T

))
= Tr

((
Diag(σ2(K)) + εIr 0

0 εI(n−r)

)−1

STS

)
= Tr

((
Diag(σ2(K)) + εIr 0

0 εI(n−r)

)−1(
Diag(σ2(K)) 0

0 0

))
=

r∑
i=1

(σi(K))2

(σi(K))2 + ε
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Appendix B

Proofs for Chapter 6

B.1 Proof of the Randomized Policy Bound

Based on the concept of the randomized policy explained in Section 5.4.1 of
Chapter 5, we can express the expected value E(.) of the summation of the
weights of the edges connecting the different partitions in function of the total
sum of weights

∑
1≤r 6=s≤k

∑
i∈Pr,j∈Ps wi,j, as follows:

E(w) = average

(
1

2

∑
1≤r 6=s≤k

∑
i∈Pr,j∈Ps

wi,j

)

=
1

2

∑
1≤r 6=s≤k

∑
i∈Pr,j∈Ps

wi,jP (i, j in # clusters) (B.1)

where P (i, j in # clusters) denotes the probability that two nodes i and j are in
different clusters:

P (i, j in # clusters) =

m× P (i ∈ (1st full cluster), j ∈ ∀ of the remaining full clusters))

+2× P (i ∈ (one of the full clusters), j 6∈ (one of the full clusters)) + (k −m)×
P (i ∈ (1st partially full cluster), j ∈ (∀ remaining partially full clusters)) (B.2)

P (i ∈ a full cluster) =
Lmax

n
(B.3)

P (i ∈ one of the full clusters) = m× Lmax

n
(B.4)

P (j 6∈ one of the full clusters) = 1−m× Lmax

n
(B.5)

P (j ∈ one of the partially full clusters) =
( 1

k −m

)(
1−m× Lmax

n

)
(B.6)
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The probabilities in (B.3)-(B.6) are independent of any i and j since the users are
randomly assigned in each cluster, regardless of their edges’ weights. Hence, any
two users can join a group with the same probability. Thus, replacing (B.3)-(B.6)
in (B.2) leads to the bound in (5.20).

B.2 Proof of the Eigenvalue Bound

The proof of the conversion of the objective function and the first two constraints
in (5.21) into L domain can be found in [60] and [61], where 1

2
Tr(LYRS) becomes

equivalent to 1
2

∑d
i=0 λiyifi, and kYRS − J is transformed into yi ≥ 0 (knowing

that L contains L, I, and J , then there exists an optimal solution YRS to (5.21)
in L, and we may assume YRS =

∑d
i=0 yiFi where yi ∈ R (i = 0, · · · , d)). Our

contribution appears in the proof of the conversion of the last constraint (related
to each cluster’s capacity) into the L domain.

Following L characteristics, we can write:

Tr(YRS) = n⇔ Tr(
d∑
i=0

yiFi) = n⇔
d∑
i=0

yifi = n (B.7)

Tr(JYRS) = nTr(
d∑
i=0

yiFiF0) = nTr(
d∑
i=0

yiδi0Fi)

= nTr(y0F0) = ny0f0 = ny0 (B.8)

since f0 = 1 is the multiplicity of the eigenvalues of the all-ones matrix J , while
the dirac delta function δi0 = 0 if i 6= 0 and δi0 = 1 if i = j = 0. On the other
hand,

Tr(JYRS) ≥ n2 − k(k − 1)L2
max, then

substituting Tr(JYRS) in (B.8) gives y0 ≥ n2−k(k−1)L2
max

n
(B.9)

We can prove that:

d∑
i=0

yifi = f0y0 +
d∑
i=1

yifi = n

→
d∑
i=1

yifi = n− f0y0 = n− y0 (B.10)

Replacing y0 in (B.9) in Eqt. (B.10) leads to

d∑
i=1

yifi ≤
k(k − 1)L2

max

n
(B.11)
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Combining the equivalent terms of the objective function and the first two con-
straints of (5.21) in the L domain (as previously mentioned) along with (B.11)
leads to the following linear program:

max
1

2

d∑
i=1

λiyifi

s.t.
d∑
i=1

yifi ≤
k(k − 1)L2

max

n

yi ≥ 0 (B.12)

It is not difficult to conclude that the upper bound of the optimal value of (B.12)

is k(k−1)L2
max

2n
× λd.

B.3 Proof of the Strengthened Bound

To get a strengthened upper bound for our clustering problem, we use the Lapla-
cian algebra L specifications, as in the proof of Proposition 1. However, the
analysis here is more involved and requires proving a new Lemma and adding
extra derivations, as will be shown later.

The scenario of having some clusters that are of full capacity and others that
are partially filled motivated us to derive an interesting Lemma in (B.13) related
to the summation of the product of the clusters’ sizes. To maintain the flow, we
defer its detailed derivation to Appendix B.4.

Lemma 5. When at least one of the clusters is of full capacity,
∑

`6=qm`mq can

be refined from k(k − 1)L2
max to the following bound:

∑
6̀=q

m`mq ≤ (n− Lmax)(n+ Lmax −
n− Lmax

k − 1
) (B.13)

By plugging (B.13) into (5.15), we can get a new relation for Tr(JYRS), as follows:

Tr(JYRS) =
k∑
`=1

m2
` ≥

kL2
max − 2nLmax + n2

k − 1
(B.14)

Replacing (B.14) in the original formulation of (5.13.a) leads to a new tightened
version, for which we show its trace formulation in (B.15.b) using a simple change
of variables:
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Tightened Matrix Lifting

maxYRS

1
2
Tr(LYRS)

s.t. diag(YRS) = un

kYRS − J � 0,

YRS ≥ 0

Tr(JYRS) ≥ kL2
max−2nLmax+n2

k−1
(B.15a)

Tightened Trace Formulation

maxYFJ

k−1
2k

Tr(LYFJ)

s.t. diag(YFJ) = un

YFJ � 0

(Yi,j)FJ ≥ −1
k−1

, i 6= j

Tr(JYFJ) ≥ k2L2
max−2knLmax+n2

(k−1)2
(B.15b)

To apply the L domain characteristics, we use the matrix lifting formulation in
(B.15.a) for the same reason we mentioned in Section 5.4.2 of Chapter 5. Then,
we relax (B.15.a) into (B.16.b) by adjusting the constraints similar to the method
we followed in (5.21):

Tightened Matrix Lifting

maxYRS

1
2
Tr(LYRS)

s.t. diag(YRS) = un

kYRS − J � 0

Tr(JYRS) ≥ kL2
max−2nLmax+n2

k−1

YRS ≥ 0 (B.16a)

Tightened & Relaxed Matrix Lifting

maxYRS

1
2
Tr(LYRS)

s.t. Tr(YRS) = n

kYRS − J � 0

Tr(JYRS) ≥ kL2
max−2nLmax+n2

k−1

(B.16b)
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Abiding by L rules, we transform the objective function and the first two con-
straints of (B.16.b) in a similar way as we did in Proposition 1. As for the
conversion of the last constraint, we follow the same methodology as in Ap-
pendix B.2, but we substitute Tr(JYRS) by its new bound (B.14) in Eqt. (B.8)

which generates y0 ≥ kL2
max−2nLmax+n2

n(k−1)
(i.e., a positive value and hence yi > 0

constraint is satisfied). Replacing the value of y0 in (B.10) leads to
∑d

i=1 yifi ≤
k(n2−L2

max)+2n(Lmax−n)
n(k−1)

. All of this allows us to write the corresponding linear pro-

gram of (B.16.b) in the L domain:

max
1

2

d∑
i=1

λiyifi

s.t.
d∑
i=1

yifi ≤
k(n2 − L2

max) + 2n(Lmax − n)

n(k − 1)

yi ≥ 0 (B.17)

By this, we can derive the upper bound which is equal to

MCk,cap ≤ k(n2−L2
max)+2n(Lmax−n)

2n(k−1)
× λd.

B.4 Tightening the Clusters’ Sizes Constraint

We prove that the summation of the product of the sizes m` of two different
clusters

∑
6̀=qm`mq can be tightened from k(k−1)L2

max to (n−Lmax)(n+Lmax−
n−Lmax

k−1
), when some clusters are of full capacity (k, and n are the total number of

clusters and nodes respectively, and Lmax is the cluster’s capacity). Recall that
the objective is to find an upper bound for the following problem:

maxm

k∑
`=1

∑
` 6=q

m`mq

s.t.
k∑
`=1

m` = n,

m` ≤ Lmax (B.18)

Now, let us consider the case when there exist one m` = Lmax. When more
than one cluster is full, the achieved objective function will be less than (B.18),
since the number of constraints is higher, i.e., ∃q 6= ` | mq = Lmax. Back to
the problem, the objective function F can be written as F =

∑
`

∑
q 6=`m`mq =
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∑k
`=2

∑
q 6=`,q 6=1m`mq + 2Lmax

∑
q 6=1 mq. Then, (B.18) becomes:

maxm

k∑
`=2

∑
q 6=`,1

m`mq + 2Lmax

∑
q 6=1

mq

s.t.
k∑
`=2

m` = n− Lmax,

m` ≤ Lmax, ` 6= q (B.19)

By removing the constraint mq ≤ Lmax, we get an upper bound for the optimiza-
tion problem. Formally, we write the Karush–Kuhn–Tucker (KKT) conditions
that are necessary for the optimality as follows:

L =
k∑
`=2

∑
` 6=q,1

m`mq + 2Lmax

∑
q 6=1

mq − λ(
k∑
`=2

m` − n+ Lmax)

∂L

∂m`

= 2
∑
q 6=`,1

mq + 2Lmax − λ

= 2(n− Lmax −m`) + 2Lmax − λ = 0

⇒ 2(n−m`)− λ = 0, ∀` (B.20)

k∑
`=2

2(n−m`)− (k − 1)λ = 0

→ 2(k − 1)n− 2(n− Lmax) = (k − 1)λ

⇒ λ = 2n− 2(n− Lmax)

k − 1
(B.21)

Then, the objective function (optimal) becomes:

F ′ =
k∑
`=2

∑
q 6=`,1

m∗`m
∗
q + 2Lmax

∑
q 6=1

m∗q

=
k∑
i=2

m∗`(n− Lmax −m∗`) + 2Lmax(n− Lmax)

(a)
=

k∑
`=2

m∗`(
λ

2
− Lmax) + 2Lmax(n− Lmax) (due to (B.20))

= (
λ

2
− Lmax)(n− Lmax) + 2Lmax(n− Lmax)

= (n− Lmax)(
λ

2
+ Lmax)

(b)
= (n− Lmax)(n+ Lmax −

(n− Lmax)

k − 1
) (due to (B.21))

(B.22)
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This implies that F ≤ (n− Lmax)(n+ Lmax − (n−Lmax)
k−1

).
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Nomenclature

≈ Approximation

Abbreviations

DoFsym Symmetric DoF

AP Alternating Projection

BS Base Station

CDMA Code-Division Multiple Access

CG Conjugate Gradient

CSI Channel State Information

D2D Device-to-Device Communication

dirAP Directional Alternating Projection

dirSVDAP Directional Alternating Projection via Singular Value Decomposition

DoF Degrees-of-Freedom

FDMA Frequency-Division Multiple Access

IA Interference Alignment

IoT Internet of Things

KKT Karush–Kuhn–Tucker (KKT) conditions

LMI Linear Matrix Inequality

LRMC Low-rank matrix completion problem

LTE Long Term Evolution

MIMO Multiple-input Multiple output

NOMA Non-Orthogonal Multiple Access

OFDMA Orthogonal Frequency Division Multiple Access

RB Resource Block

RP Riemannian Pursuit

SDP Semi-definite Programming
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SIC Successive Interference Cancellation

SINR Signal-to-Interference-plus-Noise Ratio

SIR Signal-to-Interference Ratio

SNR Signal-to-noise ratio

SOCP Second-Order Cone Program

SVD Singular Value Decomposition

SVDAP Alternating Projection via Singular Value Decomposition

TDMA Time-division Multiple Access

UE User Equipment

Notations

(T -R)i i
th D2D Transmitter-Receiver pair

E† Moore-Penrose pseudo-inverse of matrix E

I Identity matrix

J All ones matrix

KT Transpose of matrix K

L Laplacian Matrix

N Index Coding Matrix

un All ones n vector

E(.) Expected value

R Real space

Sn Set of real symmetric matrices

DOF DoF region

E Set of edges

G Undirected graph

L Laplacian Algebra

N (X) nullspace of X

V Set of vertices

� 0 Positive Semidefinite

Diag(, ) Semidefinite, block diagonal matrix

Ki,i Diagonal entry of the matrix K

sup Suprenum

Tr(.) Trace of a matrix
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