
AMERICAN UNIVERSITY OF BEIRUT

REAL-TIME ESTIMATION OF THE MASS
AND INERTIA TENSOR OF QUADROTORS

FOR CONTROLLER MAPPING

by

MOHAMAD ABDELKADER DHAYBI

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Engineering
to the Department of Electrical and Computer Engineering

of the Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
February 2014







Acknowledgements

Special thanks and respect for Professor Naseem Daher for his advise and
guidance throughout the master’s program. It’s a great pleasure that he accepts
my sincere gratitude for his help and supervision. I would also like to thank the
members of my thesis committee, Prof. Fadi Karameh and Prof. Daniel Asmar,
who provided me with enough support to make this project possible.

I would like to express my recognition and gratitude to my family, who were
always there to support and comfort me no matter how difficult things got.

v



An Abstract of the Thesis of
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Title: Real-time Estimation of the Mass and Inertia Tensor of Quadrotors for
Controller Mapping

The expanding need for UAVs to carry payloads with grasping abilities re-
quires developing and improving the motion control systems of these aerial robots.
Providing UAVs, such as quadrotors, with grasping abilities requires their ability
to transport payloads in optimal time, minimal energy consumption, in addition
to risk lessening in cases of dangerous missions, and many other advantages. This
thesis aims at devising an online estimation scheme of the varying quadrotor’s
parameters as it picks up and manipulates a payload. In particular, the mass and
the moment of inertia tensor of the quadrotor are estimated in real-time, while
subjected to an additional payload, by analyzing the acquired input-output data
in a direct closed-loop fashion and using its rigid body dynamic model. A mod-
ified version of the recursive least squares (RLS) method is leveraged for the
proposed real-time estimation in this work. While most existing methods assume
symmetry of the inertia tensor matrix and disregard its off-diagonal elements,
which affects the control system’s performance due to the disparity between the
predicted model and the physical plant, in this work all of the inertia tensor pa-
rameters along with the quadrotor’s changing mass are estimated and passed to
the control system to achieve enhanced tracking performance. Covariance reset-
ting is integrated into the estimation algorithm to increase its convergence rate
and accuracy. Physical constraints are also used to attain consistent and ratio-
nal estimates of the inertia tensor matrix. The proposed identification scheme is
validated in numerical simulations and experimentation on the Quanser 3 DOF
Hover and on a real-life quadrotor, the Quanser QBall-2. The obtained results
demonstrate the accuracy and convergence rate of the designed estimator, paving
the way in front of its integration into an adaptive control system. This system
identification scheme is a main building block for future work that involves a
controller mapping scheme, which calculates new control actions for the updated
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system using the differential flatness property of quadrotors.
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Chapter 1

Introduction

Due to their numerous and various applications in civil and military areas, ver-
tical take-off and landing (VTOL) unmanned aerial vehicles (UAVs), and espe-
cially quadrotors, have gained a wide interest from academic, industrial, and
governmental institutes [2]. In fact, quadrotors provide many advantages such
as small size, mechanical simplicity, high maneuverability, and ability to carry
a large array of sensing elements. These benefits make quadrotors suitable for
disasters rescue missions and supervision tasks such as security and road traffic
supervision [3]. Further advanced applications could be repair and maintenance
of high-voltage overhead power lines and wind turbines, service of agricultural
crops in remote agricultural lands, and geological sampling of volcanic rock [4]. A
quadrotor is an under-actuated system with four rotors, each producing a thrust
force in the normal direction of the air-frame. Four basic motions are attained
including normal thrust (translation) and three rotations: roll, pitch, and yaw.
The system is open-loop unstable, which emphasizes the value of developing an
accurate model for the flight control system design and for simulation using phys-
ical laws or by system identification approaches.
Furthermore, given the various quadrotor applications, its mass and moment of
inertia change while carrying payloads during its missions, which stresses the
importance for an efficient online system identification scheme to keep track of
these changes. This is crucial for the design of an adaptive control system that
can cope with the system’s variations. From a control system design standpoint,
multiple strategies have been developed previously. For instance, feedback lin-
earization was used in [5], nonlinear control design was used in [6] for precise
trajectory tracking, and robust control was used in [7] for trajectory following
in the existence of disturbances. However, all of the previously mentioned con-
trollers assumed perfect symmetry of quadrotors, which is not always valid.

Due to strong couplings and high nonlinearity, several methods have been
proposed to identify quadrotor systems; these techniques can be divided between
approximating the transfer functions of the quadrotor dynamics and estimating
the model parameters. In addition, parameter estimation schemes are divided
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between offline and online estimation.
In principle, system identification can be achieved in both open-loop and

closed-loop configurations. In open-loop, input is directly given to the quadrotor
without the presence of a feedback loop, and then by measuring the output and
using the prediction error minimization (PEM) method, the system is identified
[8]. However, the instability of the open-loop model of quadrotors causes high
sensitivity of the error function, thus deeming the open-loop identification process
impossible. Furthermore, operating the unstable quadrotor in open-loop could
damage the platform and the surrounding in which the experiments are executed.
Thus, for safety and efficiency of operation requirements, quadrotors need to be
identified in closed-loop.

The rest of this thesis document is structured as follows. In section 2, previous
works on quadrotor system identification are presented. The dynamic model of
quadrotor systems is described in section 3. Section 4 explains the proposed
system identification methodology. Section 5 includes validation of the estimation
approach through numerical simulations and experiments on an actual quadrotor
platform. Finally, conclusions and future work are provided in Section 6.
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Chapter 2

Literature Review

Dynamic modeling is the first and key step for control system design and ac-
curate numerical simulations. In general, system models are derived from first
principles, physical insights, and system identification using input-output data.
For a quadrotor vehicle, traditional flight mechanics can be utilized to obtain its
dynamic model, which features coupling between the states and nonlinearities
that complicate the control system design process. As an alternative solution,
system identification schemes are effective in proposing a model structure and
identifying its associated parameters. However, the quadrotor system’s nonlinear
model along with the closed-loop identification are open problems that should be
tackled while identifying such system.

Considering an off-white model approach, which blends black-box identifica-
tion with white-box modelling based on physical principles, a set of parameters in
the quadrotor’s nonlinear model are taken directly from measurements and cus-
tom experimental platforms, and blended with three-dimensional (3D) models of
all of its parts generated via computer aided design (CAD). In [9], the identifi-
cation problem of a quadrotor UAV was treated in three steps. In the first step,
the complete quadrotor’s dynamic model was obtained via the Newton formalism
and expressed in a form suited for identification of the pertinent dynamic param-
eters. In the second step, the inertia matrix, the aerodynamic friction coefficients,
and the translation drag coefficients were identified via the Levenberg-Marquardt
optimization method using four-wires and two-wires rotational pendulums. The
rotor parameters were estimated using the quadratic optimization method based
on motor input and rotor angular speed measurements. In the third step, the
estimated parameters were validated by comparing the performance of the same
PID controller applied to the estimated model and the real system.In [10] and
[11], experimental identification was used to compute the quadrotor’s model pa-
rameters such as the thrust coefficient, drag coefficient, and the inertia matrix. In
[12], the mass (in Kilograms) was calculated for each part and the full weight of
the assembly was computed using the volume and density of every part utilizing
CAD modeling (SolidWorks) based on mass calculation and library of materi-
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als. Furthermore, the symmetric mass distribution was not assumed and the full
inertia matrix was computed using SolidWorks’ Mass Properties utility.

Other approaches for quadrotor identification are based on steel-grey models,
where its nonlinear dynamic equations are linearized around a working point such
as the hovering regime. For instance, the authors in [13] identified a linear discrete
state-space model of the quadrotor using PEM. However, although such model
is useful for controller design, its linearity tends to decrease the fidelity of the
simulation and narrow its validity to a small range around the linearization point.
In [14], several model structures for the quadrotor system were suggested such
as ARX (Autoregressive with External Input), ARMAX (Autoregressive Moving
Average eXogenous), OE (output error), and BJ (Box-Jenkins). The ARMAX
model was chosen due to its numerical stability and unbiasedness. By adopting
an order of two and using the prediction error minimization (PEM) method,
the parameters of the model were estimated. In [15], the quadrotor system was
divided to sub models: a SISO model for the altitude and MIMO models for the
three angular velocities of the quadrotor. Each sub model was given an ARX
structure and recursive least squares (RLS) was used to estimate the models
parameters from hovering data. However, these estimations can only be used to
design controllers that are effective near the hovering operation condition.

On the other hand, a frequency-domain system identification method was
used in [16] to obtain a linear representation of the quadrotor dynamics. The ac-
quired frequency response data was validated by evaluating its coherence, which
is an indication of how well the output and input data are correlated. To apply
the identification method, the transfer functions of each axis was first acquired,
followed by state-space representations, and complete system analysis. The ex-
citation signal was chosen to be periodic in order to minimize leakage in the
computation of the frequency spectra. Frequency domain identification was also
used in [17] to estimate angular motions transfer functions of a quadcopter hover
platform.

In [18], a quadrotor’s moments of inertia and the rotor inertia parameters
were estimated using an unscented Kalman filter (UKF) while the aerodynamic
parameters were assumed to be experimentally identified in advance. However,
the structure of the quadrotor was assumed to be symmetrical with respect to
its axes. This assumption ignores the off-diagonal elements of the inertia matrix,
and the proposed method only estimated the diagonal elements, which is not al-
ways the case in a real system with a payload. Furthermore, the parameters were
estimated offline after collecting experimental data and no validation of the iden-
tification was done other than the convergence of the unscented Kalman filter. In
[19], the inertia matrix of the quadrotor, the rotor inertia, and the aerodynamic
parameters were identified. The nonlinear model parameters were analytically ap-
proximated initially and then they were refined using PEM for closed-loop data.
These parameters were then used to design a linear quadratic optimal tracker.
Nonetheless, the off-diagonal elements of the inertia tensor were also considered
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null. In [20], an Assorting Reconfiguring Equipping Solving (ARES) algorithm
was used to identify the full inertia tensor parameters of a quadrotor using an
algebraic solution. Although the asymmetric terms were not considered as null,
the estimation was very sensitive to sensor noise since it did not use an optimiza-
tion scheme for robustness against measurements uncertainties. Furthermore,
the method was used to identify the system’s inertia tensor in an offline fashion,
thus it was not validated for online estimation. Mass estimation of the quadrotor
was performed and validated using experimental data in [21], where three offline
estimation methods were compared and the instrumental variables method was
found to yield the most accurate estimates for closed-loop identification.

Artificial intelligence (AI) was also used to find the system’s unknown param-
eters. For instance, Liu Yang and Jinkun Liu [18] used particle swarm optimiza-
tion (PSO) swarm intelligence algorithm to estimate the inertia parameters of the
quadrotor. Furthermore, an adaptive genetic algorithm (GA) was proposed in
[22] to perform parameter identification of a small unmanned aerial rotorcraft’s
linear model. In [23], a black-box model that uses a neural network to learn the
dynamics of the quadrotor was attempted. Each translational velocity and Euler
rate was given a net in the nonlinear autoregressive network with exogenous in-
puts (NARX) architecture. The result showed that the black-box neural network
model can predict both the roll and pitch with very good accuracy, but with a
poor one for the yaw rate, which should be improved by creating a larger network
or adding more variables to the state vector for the networks.

As for recursive and online estimation of UAV parameters, recursive least
squares (RLS) was carried out in [24] to identify a linear state-space model of a
quadrotor, and in [25] to estimate its mass and inertia tensor while performing
grasping missions. However, the off-diagonal elements of the inertia tensor were
considered to be null when the rotation equation of the quadrotor was used
to apply the regression. In [26], the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) nonlinear identification approach was used to estimate the
parameters of the nonlinear model of a coaxial micro helicopter. A Continuous-
Time Identification Algorithm (CIA) was used in [27] to identify a quadrotor’s
model dynamics for the motion along the vertical plane. The authors in [28] also
made the symmetry assumption and used an Extended Kalman Filter (EKF) and
an Unscented Kalman Filter (UKF) for the online estimation of the geometric
and inertia parameters of a multi-rotor aerial vehicle. The proposed method also
estimates the system’s center of mass position and its sensor module’s relative
position. On the other hand, the moment of inertia estimates’ accuracy was
relatively low, especially about the x− and z−axes where the average error was
19% and 9%, respectively. In [29], an adaptive control system and a gradient-type
algorithm were used to identify in real-time the inertia tensor, mass, and wind
parameters of a quadrotor mini-aircraft. Yet, only the estimation of the system’s
changed mass was tested in simulation and experiment. An online adaptive
parameter estimation was also developed in [30] to estimate the mass and the

5



diagonal elements of the moment of inertia tensor of a quadrotor. A scheme to
obtain an expression of the estimation error was derived by introducing auxiliary
filtered variables, and then an augmented matrix was constructed based on the
derived filtered variables, which was further used to design the adaptive law
to achieve convergence under the standard persistent excitation (PE) condition.
However, the designed estimator was not validated by adding payloads to the
quadrotor in simulation and experiment.

The main gap that exists in the literature of this topic is that when online
estimation of the inertia tensor of quadrotors is implemented, it is assumed to be
symmetric with null off-diagonal elements. This decreases the number of param-
eters in the estimation scheme and the identification becomes simpler, yet less
accurate. Since the null off-diagonal elements assumption is not valid in real-life
quadrotor systems, especially those intended for package delivery purposes where
packages come in different sizes, shapes, and masses, the motion tracking perfor-
mance of the quadrotor will be reduced. In this thesis, an identification scheme
is proposed to estimate all nine elements of the 3x3 moment of inertia tensor ma-
trix along with the system’s total mass, which can be utilized to design adaptive
control laws that can be employed in quality control systems for detecting pay-
load characteristics and implemented in health monitoring algorithms. Yet, the
dynamic parameters of a robot produce physical restrictions that should be ad-
dressed in the identification scheme. For instance, a quadrotor’s mass is positive
and its inertia matrix is symmetric and positive definite [31]; these conditions are
represented by mathematical constraints to yield physically consistent estimates.
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Chapter 3

System Modeling

3.1 Coordinate Frame:

Figure 3.1 represents the coordinates systems and the free body diagram of the
quadrotor [32]. W is the world frame or inertial frame and B is the body-fixed
frame attached to the center of mass. The world frame is used to express the
position and the orientation vectors of the vehicle’s center of mass which are
[x, y, z]T and [φ, θ, ψ]T respectively. Then, the quadrotor presents six degrees of
freedom, where φ, θ and ψ represents the roll, pitch and yaw movements respec-
tively. Z −X − Y Euler angles are used to model the rotation of the quadrotor
in the world frame, the corresponding rotation matrices are, respectively:

R1 = Rot(z, ψ) =

cψ −sψ 0
sψ cψ 0
0 0 1

 (3.1)

R2 = Rot(x, φ) =

1 0 0
0 cφ −sφ
0 sφ cφ

 (3.2)

R3 = Rot(y, θ) =

 cθ 0 sθ
0 1 0
−sθ 0 cθ

 (3.3)

Therefore, the rotation matrix that transforms the coordinates from B to W is:

WRB = R1 ∗R2 ∗R3 =

cψcθ − sφsψsθ −cφsψ cψsθ + cθsφsψ
cθsψ + cψsφsθ cφcψ sψsθ − cψcθsφ
−cφsθ sφ cφcθ

 . (3.4)

By denoting [p, q, r]T as the angular velocity vector in the body frame, it is
calculated from the Euler rates vector using the following transformation matrix:
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ṗq̇
ṙ

 =

0

θ̇
0

+RT
2

φ̇0
0

+RT
3 R

T
2

0
0

ψ̇

 , (3.5)

leading to: ṗq̇
ṙ

 =

cθ 0 cφsθ
0 1 sφ
sθ 0 cφcθ

φ̇θ̇
ψ̇

 , (3.6)

where s and c are abbreviations of the sine and cosine functions, and RT
2 and RT

3

are the transpose matrices of R2 and R3, respectively.

3.2 Rigid Body Dynamics:

The six degrees-of-freedom rigid-body equations of motion are derived by apply-
ing the Newton-Euler formalism in the world frame. The forces on the system
are gravity and the thrust generated by each of the rotors Fi. Then, the linear
acceleration of the center of mass is:

m
dv

dt
+ w ×mv = F, (3.7)

which becomes:

m r̈ =

 0
0
−mg

+W RB

 0
0∑
Fi

 , (3.8)

where r and v represent the position and velocity vectors in the world frame, re-
spectively, m is the mass of the quadrotor, and g is the gravitational acceleration.

Figure 3.1: Quadrotor free body diagram
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Rotors 1 and 3 rotate in the −zB direction, and since the moment produced
on the quadrotor’s chassis is opposite to the direction of rotation of the blades,
then M1 and M3 are positive whereas M2 and M4 are negative. With L, the
distance from the axis of rotation of the rotors to the center of the quadrotor,
and using the Euler rotational equation of motion, the rotational acceleration is
given by:

I
dw

dt
+ w × Iw = τ, (3.9)

which becomes:

I

ṗq̇
ṙ

 =

 L(F2 − F4)
L(F2 − F4)

M1 −M2 +M3 −M4

−
pq
r

×
pq
r

 , (3.10)

where I is the inertia tensor that can be written as:

I =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 . (3.11)

The thrust force of each motor is given by:

Fi = cTw
2
i (3.12)

where cT is the thrust coefficient. Similarly, the drag torque is given by:

Mi = cQw
2
i , (3.13)

where cQ is the drag coefficient.
Thus, the total thrust and moments about the x−, y−, and z−axes can be

written as: 
∑
F

τx
τy
τz

 =


cT cT cT cT
0 LcT 0 −LcT
−LcT 0 LcT 0
cQ cQ cQ cQ



w2

1

w2
2

w2
3

w2
4

 . (3.14)

The control system computes the needed thrust and moments and commands
the speed of each motor to track a desired trajectory. The rotor speeds are given
as reference for the Direct current (DC) motors whose dynamics are presented
as a first-order system. The DC motor is a second order system, whose angular
speed wm is calculated from the applied voltage V using the following Laplace
transform equation:

wm(s)

V (s)
=

Kt

(J s+ b)(Ls+R) +KtKe

, (3.15)
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where J is the moment of inertia of the rotor, b is the motor viscous friction
constant, Ke is the electromotive force constant, Kt is the motor torque constant,
R is the electric resistance, L is the electric inductance, and s is the Laplace
operator. The mechanical dynamics are considered slow compared to the fast
electrical dynamics. Thus, the slower pole will dominates the dynamics and the
DC motor can be modeled then as a first order system up to a certain range of
frequencies. Therefore, the transfer function relating the applied voltage, V , to
the motor speed, wm, is given by [33]:

wm(s)

V (s)
=

Km

Tms+ 1
, (3.16)

where Km is the the Direct Current (DC) motor gain, and Tm is the motor’s time
constant.
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Chapter 4

System Identification

System identification is defined as using observed input-output data to build
mathematical models of dynamic systems. Yet, the generation of this data de-
pends on the identification experiment [8]. When the system to be identified
operates as part of a closed-loop configuration such as a quadrotor, several ex-
perimental approaches may be used to generate identification data. An evident
approach is an open-loop experiment, where the controller feedback loop is opened
and direct input signals are given to the system and output data is recorded. On
the other hand, an alternative method can be conducted where the system is
identified while it is executed in its closed-loop structure and disturbances are
introduced via set point changes [34]. Figure 4.1 illustrates the open-loop and
closed-loop configurations where u is the system input, y is the system output, r
the reference or set point, C the controller, and G represents the system.

In fact, each method has its own advantages and disadvantages, thus multi-
ple factors should be taken into account when deciding on the approach to be
adopted. In open-loop, the user has total control on the direct input that is ap-
plied to the system, which allows for more control of the persistence of excitation
(PE) conditions and generation of more informative data. However, controlling

(a) Open-loop identification

(b) Closed-loop identification

Figure 4.1: open-loop and closed-loop identification

11



an unstable system in open-loop may be detrimental for the system and its sur-
roundings. Hence, it is more practical to operate it in closed-loop to reduce the
influence of disturbances on the system, allow constrained output identification,
and permit for better identification of control-relevant dynamics [35]. Neverthe-
less, the main drawback of closed-loop identification is that the feedback loop
causes correlations between the input signals and the system noise leading for
biasedness in the estimates. In addition, the rejection of disturbances leads to
a reduction of the excitation level of the system and the information content in
the data used for identification [36]. Due to the aforementioned issues of closed-
loop estimation, and although they work well when adapted for open-loop data,
most well-known identification methods such as correlation and spectral analysis
methods fail when applied directly to input-output data captured from a closed-
loop system [35, 36]. To tackle this challenge, Forssell & Ljung proposed the
prediction error method (PEM) as a robust approach under closed-loop condi-
tions as demonstrated in [37], which makes it suitable for a wide range of data
conditions and parameterization structures. In addition, PEM has the ability to
achieve minimum asymptotic variance that is comparable to that achieved under
open-loop conditions [34][38].

When performing closed-loop system identification, three main approaches
are available [35]:

1. Direct approach: feedback is ignored and the system is identified using only
input-output data.

2. Indirect approach: the system is identified in closed-loop using the reference
signal as the input; then based on the knowledge of the controller, the open-
loop system is estimated.

3. Joint input-output (I/O) approach: the input is jointly regarded with the
output as the output of the closed-loop system is driven by a certain refer-
ence subjected to noise. Then the open-loop system parameters along with
the feedback signal are estimated.

It is noted that the indirect approach requires perfect knowledge of the con-
troller, and the joint I/O approach requires at least the knowledge of the controller
structure. Thus, the identification scheme can be very complex when applying
these two approaches to a closed-loop system that is controlled by a nonlinear
controller. On the other hand, the direct approach does not require any knowl-
edge of the feedback control law structure or the controller type. Since many
systems used for quadrotors motion control are nonlinear to achieve solid per-
formance and account for nonlinearities, the direct approach is deemed as the
most suitable approach and is adopted this thesis. However, a main point to
consider with the direct method is the risk that the closed-loop system may lose
its identifiability in case of regulation, where no reference signal is applied, which
should be taken into careful consideration to circumvent its occurrence [8].
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4.1 Persistence of Excitation

The primary principle behind the success of any identification process is the
choice of experimental conditions, which have a strong influence on the accuracy
of the estimated model. In fact, the primary design variables are the signal input
characteristics, the total experiment time, and the sampling rate [39]. These
variables should be optimized to obtain the most informative data leading to the
highest accuracy. The primary and most important variable is the input signal
since it allows for the identifiability of the model structure that uniquely describes
the data set. This is achievable, if and only if, the input is persistently excited to a
sufficiently high order [8]. In closed-loop identification, the problem becomes more
challenging since there is no direct access to the input signal making persistence
of excitation (PE) hard to guarantee. Furthermore, even if PE conditions are
attained, the system may not be identifiable when no reference signal is applied
and the system performs regulation, thus the problem is solved by including a
reference signal [8]. An input is persistently exciting of order n, if and only if, the
rank of its covariance matrix is n, i.e. its power spectral density is larger than
zero at n distinct frequencies. In summary, if the system contains n unknown
parameters, the closed-loop control signal should be persistently exciting such
that its spectral density is larger than zero at n distinct frequencies to excite all
modes corresponding to the individual parameters.

4.2 Recursive Least Squares

In model-based control systems, having an accurate model is critical and that is
especially true when the system properties vary over time, which is when online
estimation is crucial to give the control system the ability to adapt and account
for changes in order to maintain stability and tracking performance. In recursive
identification methods, the parameter estimates are calculated recursively over
time: if the parameter estimate is θ̂t−1 at iteration t − 1, then recursive identi-
fication computes the new estimate θ̂t by updating θ̂t−1 with a gain-multiplied
error when a new observation becomes available at iteration t [40].

Several methods exist for recursive identification including recursive least
squares (RLS), Kalman filter (KF), recursive instrumental variable (RIV), recur-
sive maximum likelihood (RML), and extended least squares (ELS) [41, 42, 43].
A comparison between RLS, RIV, RML and ELS was conducted in [41], where it
was stated that RLS provided the fastest convergence rate and the smallest com-
putational effort and complexity. On the other hand, RLS estimates were poor
(biased) compared to other algorithms when the signal-to-noise ratio is large.
Furthermore, RLS does not estimate noise dynamics whereas RML and ELS ex-
hibit this property. The same conclusion was reached in [39] and [43] in which
RLS performance was compared to the Kalman filter in terms of computational
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complexity and speed. In addition, it was shown that RLS does not require the
knowledge of the covariance matrix of the noise, whereas Kalman filtering gives
better estimates than RLS in terms of accuracy and biasedness.

Since the quadrotor model is unstable, fast estimation of the varying pa-
rameters needs to be performed. Furthermore, since the quadrotor’s on-board
processor consumes a majority of the computational power to execute feedback
control, a lightweight algorithm in terms of computational effort and memory us-
age is required to perform the estimation. Given that, the recursive least squares
method is employed in this work as the identification approach to estimate the
quadrotor parameters. The adopted scheme is based on the the prediction error
method (PEM) [37], which aims at minimizing a cost function of the squared
errors between measured outputs of the actual system and the predicted outputs
of the estimated model, which is expressed as:

ŷ = ϕT Θ̂, (4.1)

where ϕ is the regressor vector and Θ̂ is the parameters vector. The cost function
to be minimized is given by:

V (Θ̂) = ‖y − ŷ‖2 =
n∑

k=1

λn−k(y[k]− ϕ[k]Θ̂)2, (4.2)

where λ ≤ 1 is a forgetting factor used to discount old data to cope with pa-
rameters changes, k is the current time step, and n is last time step. The cost
function is solved recursively to yield the following recursive least squares (RLS)
estimation algorithm with exponential forgetting [40]:

ε[k] = y[k]− ϕT [k]Θ̂[k − 1],

P [k] =
1

λ
(P [k − 1]− P [k − 1]ϕ[k]ϕTP [k − 1]

λ+ ϕT [k]P [k − 1]ϕ[k]
),

K[k] = P [k]ϕ[k],

Θ̂[k] = Θ̂[k − 1] +K[k]ε[k].

(4.3)

where ε is the error between the measured and the estimated output, P is
the covariance matrix, K is the gain that multiplies the error to update the
parameters and k is the current sample.

4.3 Covariance Resetting

In some applications, in which the physical properties of the system are changing,
it is crucial to track the variations in its dynamics. To do so, it is indispensable to
discount old data. However, this process involves compromises. If the parameters
are constant, it is preferable to base the estimation on many measurements to
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to reduce the effect of disturbances. On the other hand, if the system is chang-
ing, it can be very misleading to use a long data record since the parameters
may be changing eventually. To accommodate this problem, the best solutions
are obtained if the nature of the parameters variations is known. In fact, two
prototype situations are presented: one case is when the parameters are slowly
drifting, whereas the other case is when the parameters are constant for long
periods, and then they jump from one value to another. The former is solved
using exponential forgetting. As mentioned in the previous section, it is based on
the assumption that the least-squares function is replaced by a loss function that
exponentially discounts old data. Exponential forgetting works well when system
parameters change homogeneously, however it is less effective in the face of oc-
casional abrupt changes. When sudden parametric variations are expected, the
covariance matrix is reset to a large value, which is known as covariance resetting
(CR) [44]. To apply CR, the residual between the measured and the estimated
outputs is continuously monitored, and when it exceeds a specified threshold, the
covariance matrix is reset either by decreasing the forgetting factor to λ = 0.0001
or by resetting the covariance matrix elements directly. In case of a quadrotor
system, when it picks up, carries, and drops off delivery packages, its mass and
inertia tensor matrix changes abruptly. Therefore, it is substantial in this case to
use covariance resetting to track these changes rapidly. This fast tracking ability
helps the quadrotor’s control system to promptly adapt to the system dynamical
changes, which enables it to present an enhanced performance. To apply CR on
the quadrotor, the sudden system variations can be firstly detected via tracking
the total thrust generated by the motors to enable the quadrotor to hover in
place. Once the variation is detected, the covariance matrix is reset to a defined
value. This is done by performing the following alteration on the RLS algorithm
shown in eq. (4.3)

ε[k] = y[k]− ϕT [k]Θ̂[k − 1],

if variation=true: P [k] = diag(np) ∗ V al

else: P [k] =
1

λ
(P [k − 1]− P [k − 1]ϕ[k]ϕTP [k − 1]

λ+ ϕT [k]P [k − 1]ϕ[k]
),

K[k] = P [k]ϕ[k],

Θ̂[k] = Θ̂[k − 1] +K[k]ε[k],

(4.4)

where np is the number of parameters that need to be estimated, diag(np) is an
np× np diagonal matrix and V al is the value of its diagonal elements.
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4.4 Physical feasibility of inertial parameters iden-

tification

Dynamic parameters of robots have a physical meaning, thus the physical fea-
sibility of the obtained values should be taken into consideration when they are
estimated [31]. In fact, when parameter estimation is performed using linear
equations that model nonlinear systems, the physical feasibility of the estimated
values may not be guaranteed. In this work, since the inverse of the inertia matrix
is estimated first and then the latter is calculated by inversion as it will be shown
later, the physical consistency of the identified values is critical. In particular,
if the obtained values of the inertia matrix inverse are not physically feasible, it
will not be invertible, and hence the inertia tensor could not be calculated.

Physical consistency of quadrotor dynamic parameters as defined by [45] is
described by the following conditions:{

m > 0

I � 0,
(4.5)

where m is the system mass, I is its inertia matrix, and � 0 denotes positive
definiteness of I. This means that its inverse, J = I−1, is also positive definite:

J � 0, (4.6)

thus it can be diagonalised and written as:

J = RGRT , (4.7)

where G is a 3x3 diagonal matrix whose elements are the eigenvalues of J :

G =

Gx 0 0
0 Gy 0
0 0 Gz

 , (4.8)

and R is a 3x3 orthogonal rotation matrix that aligns the reference frame with the
principal axes of rotation. Since I is calculated using a set of integrals over the
body mass density, its eigenvalues and equivalently the eigenvalues of its inverse
are always positive guaranteeing that I � 0, then

Gx > 0,

Gy > 0,

Gz > 0.

(4.9)

However, the above condition is not sufficient to guarantee physical feasibility
of the identified parameters [46]. Due to the positiveness of mass density, the
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triangle inequality condition should be met. The condition states that the sum
of any two eigenvalues is always greater than the remaining one:

Gx +Gy > Gz,

Gy +Gz > Gx,

Gz +Gx > Gy,

(4.10)

Therefore, a 3x3 inertia matrix inverse is said to be physically feasible if it
is symmetric, positive definite and, its eigenvalues satisfy the triangle inequality
conditions [47]. Equation (4.10) can be written as:

Gx +Gy +Gz > 2Gz,

Gy +Gz +Gx > 2Gx,

Gz +Gx +Gy > 2Gy,

(4.11)

which leads to:

Gx +Gy +Gz

2
> max(Gx, Gy, Gz). (4.12)

Equation (4.12) can be reformulated as:

trace(I−1)

2
> λmax(I−1), (4.13)

where λmax represents the maximum eigenvalue. If equation (4.13) is written in
a matrix form, the resulted equation is:

trace(I−1)

2
Id � I−1, (4.14)

where Id is a 3x3 identity matrix. Finally, equation (4.14) is expressed as:

Y =
trace(I−1)

2
Id − I−1 � 0. (4.15)
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Chapter 5

Experimental Implementation

The proposed estimation scheme is first implemented on a three degrees-of-
freedom (3 DOF) Hover platform that possesses roll, pitch, and yaw motions
but without vertical take-off and landing (VTOL) capability. Once the scheme
is validated on the 3 DOF Hover platform, it is then implemented on a real-life
quadrotor system, the Quanser QBall-2 platform.

5.1 3 DOF Hover

Since directly running experiments on a quadrotor aerial vehicle can be chal-
lenging, and for safety reasons and platform preservation, it is decided to first
run experiments and test the proposed algorithms on a “quadrotor-like” three
degrees-of-freedom hover platform (3 DOF Hover) from Quanser. As shown in
Fig. 5.1, it is a quadrotor that can only perform rotational movements, making
it safer to use, more stable, and more suitable for indoor experimental testing.

Since the 3 DOF Hover platform does not move in the z-direction, (3.7) does
not apply to it its dynamics, which deems the identification of the mass impossible
and only the moment of inertia can be estimated. The Euler angle velocities are
the same as those of the body frame and (3.9) could be written as:

φ̈θ̈
ψ̈

 =
[
I−1
]  0 ψ̇ −θ̇
−ψ̇ 0 −φ̇
θ̇ −φ̇ 0

 [I]
φ̇θ̇
ψ̇

+
[
I−1
] τxτy
τz

 . (5.1)

The nonlinear model in (5.1) is used to build a high fidelity simulation of the 3
DOF Hover in the MATLAB/Simulink environment to validate the identification
scheme before its experimental implementation. When operating the platform
around the zero Euler angles equilibrium point, the second term in the right
hand of (5.1) can be neglected. The linearized input-output equation becomes:
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Figure 5.1: Quanser 3 DOF Hover

φ̈θ̈
ψ̈

 = I−1

τxτy
τz

 , (5.2)

where τx, τy, and τz are the torques applied on the x−, y− and z− axes, respec-
tively.

The direct identification approach can now be applied to each row of (5.2)
with the unknown parameters being those of the inertia matrix inverse. For
instance, by expressing I−1 = J as:

J =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 , (5.3)

the linear equations, on which linear regression is applied, are given by:

φ̈ = A11 ∗ τx + A12 ∗ τy + A13 ∗ τz,
θ̈ = A21 ∗ τx + A22 ∗ τy + A23 ∗ τz,
ψ̈ = A31 ∗ τx + A32 ∗ τy + A33 ∗ τz,

(5.4)

where the φ̈, θ̈, and ψ̈ accelerations calculated by double differentiation of
the measured Euler angles are considered the outputs of the linear regression
model and the torques are the inputs or regressors. Thus, after estimating the
parameters of J , the inertia matrix is obtained by matrix inversion operation.
The corresponding RLS estimation algorithm with exponential forgetting on the
roll dynamics equation is then given by:
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Figure 5.2: 3 DOF Hover’s direct closed-loop identification scheme

ε[k] = φ̈[k]−
[
τx[k] τy[k] τz[k]

] A11[k − 1]
A12[k − 1]
A13[k − 1]

 ,
P [k] =

1

λ
(P [k − 1]− P [k − 1]ϕ[k]ϕTP [k − 1]

λ+ ϕT [k]P [k − 1]ϕ[k]
),

K[k] = P [k]

τx[k]
τy[k]
τz[k]

 ,
A11[k]
A12[k]
A13[k]

 =

A11[k − 1]
A12[k − 1]
A13[k − 1]

+K[k]ε[k].

(5.5)
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Figure 5.3: Infrared obstacle sensor module (RKI-3141)

Figure 5.4: Infrared obstacle sensor mounted on the hover platform

Similarly, the RLS estimation algorithm that is applied on the pitch motion
equation is given by:

ε[k] = θ̈[k]−
[
τx[k] τy[k] τz[k]

] A21[k − 1]
A22[k − 1]
A23[k − 1]

 ,
P [k] =

1

λ
(P [k − 1]− P [k − 1]ϕ[k]ϕTP [k − 1]

λ+ ϕT [k]P [k − 1]ϕ[k]
),

K[k] = P [k]

τx[k]
τy[k]
τz[k]

 ,
A21[k]
A22[k]
A23[k]

 =

A21[k − 1]
A22[k − 1]
A23[k − 1]

+K[k]ε[k].

(5.6)
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Finally, the RLS estimation algorithm that is applied on the yaw motion
equation is given by:

ε[k] = ψ̈[k]−
[
τx[k] τy[k] τz[k]

] A31[k − 1]
A32[k − 1]
A33[k − 1]

 ,
P [k] =

1

λ
(P [k − 1]− P [k − 1]ϕ[k]ϕTP [k − 1]

λ+ ϕT [k]P [k − 1]ϕ[k]
),

K[k] = P [k]

τx[k]
τy[k]
τz[k]

 ,
A31[k]
A32[k]
A33[k]

 =

A31[k − 1]
A32[k − 1]
A33[k − 1]

+K[k]ε[k].

(5.7)

To obtain accurate estimates of the inertia tensor elements, the measured
accelerations (outputs) and the torques (inputs) should be as close as possible
to the real accelerations and torques applied on the 3 DOF Hover platform.
Thus, when recording encoder measurements (position) and differentiating twice
to obtain acceleration signals, low-pass filters are used to attenuate high frequency
noise content. As a result of the introduced low-pass filters, a time delay is
induced in the outputs, which necessitates synchronizing the input signals before
performing estimation. Furthermore, it is substantial that the model used to
calculate the torques from the voltages sent to the 3 DOF Hover’s motors, along
with the identified parameters, represent the real system with high fidelity. In
fact, the torques applied on the 3 DOF Hover air-frame are expressed as:
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Figure 5.5: Vernier double range force sensor used for cf identification

Figure 5.6: Identification of thrust coefficient cf

τx = cf ∗ L ∗ (w2
r − w2

l ),

τy = cf ∗ L ∗ (w2
f − w2

b ),

τz = ct ∗ (w2
r + w2

l − w2
f − w2

b ),

(5.8)
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where τx, τy, and τz are the input torques, L is the hover’s arm length, cf is
the thrust coefficient, ct is the drag coefficient, and wi is the angular speed of
each motor.

While L is fixed and given, cf and ct need to be identified from measurements.
Since the rotor angular velocities are not measured due to the absence of an
on-board tachometer, they are estimated using the DC motor dynamic equa-
tion (3.16). The propellers blades attached to the motors induce aerodynamic
drag forces, which tend to decrease the static gain and increase the time constant.
Since the torques calculated in (5.8) are directly proportional to the accelerations,
as demonstrated in (5.2), they are filtered by the same low-pass filters applied on
the output to synchronize the two signals. Due to its simplicity, robustness, and
disturbance rejection ability, a proportional-integral-derivative (PID) controller
is used to control the 3 DOF Hover motion and generate the input commands to
the system [48]. The identification scheme is portrayed in Fig. 5.2, where R is
the reference signal.

The proposed estimation method is first tested in simulation for primary
validation purposes. To implement the nonlinear model of the 3 DOF Hover
represented by (3.9), the thrust and drag coefficients, cf and ct, and the DC
motor characteristics are required to calculate the input torques. To accurately
estimate the first-order model of the DC motors in (3.16), an infrared obstacle
sensor module (RKI-3141), shown in Fig. 5.3, is used to determine the motor
speed.

The sensor is mounted on the 3 DOF Hover platform as shown in Fig. 5.4.
The sensor is high (1) when no obstacle is detected and low (0) when a propeller
blade passes in front of it. Thus, each turn, the sensor output will be zero twice
due to the presence of the two blades of the propeller. The speed is determined by
measuring the frequency of the falling edges of the sensor output signal divided
by two. The rise time is calculated by detecting the time needed for the rotational
speed to reach 63% of its steady state value, which is the time constant of first-
order systems.

After applying several input voltages, it is noted that the static gain depends
on the applied voltage level, whereas the time constant is fixed. Thus, the first-
order model of the DC motors is given by:

wm(s)

V (s)
=

Km

0.2 s+ 1
, (5.9)

with

Km = −0.003008u2 − 0.01199u+ 8.072, (5.10)

where u is the analogue voltage (between 0 and 24 V) applied on the motor.
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The inertia tensor of the Quanser 3 DOF Hover, as expressed in its data-
sheet [1], are Ixx = 0.0552, Iyy = 0.0552, and Izz = 0.1104, all in kg −m2, and
zero off-diagonal elements due to symmetricity assumption. Thrust coefficient,
cf , is identified by measuring the propeller’s thrust force versus speed, and curve
fitting the data in accordance with (3.12), as shown in Fig. 5.6, where F is the
measured force and Fe is its estimate after identification. A dual range force
sensor (Vernier DFS-BTA) is used to measure the force as shown in Fig. 5.5.
Coefficient ct is estimated beforehand by applying a square wave with frequency
f = 0.5Hz and amplitude A = 5o to the 3 DOF Hover in the yaw degree-
of-freedom, and using its corresponding linear regression equation (5.4), which
becomes with L = 0.1968 m:

ψ̈ =
ct

0.1104
∗ (w2

r + w2
l − w2

f − w2
b ).

(5.11)

The final identification yields the following values: cf = 7.32 ∗ 10−5 N and
ct = 3.46 ∗ 10−6 Nm.

5.1.1 Simulation Results on the 3 DOF Hover

Since only the diagonal elements of the Quanser 3 DOF Hover’s inertia matrix
are given, they can be used as a reference to test the adequacy and accuracy of
the estimation method. In fact, by getting accurate diagonal elements estimates,
it can be deduced that the input torques are persistently exciting. This also
indicates that the off-diagonal elements estimates are also accurate since they
are estimated using the same inputs. Thus, in simulation and experimentation,
the effect of mass addition on the inertia is studied on the diagonal elements
only. The parallel axis theorem [49] is used to compute the effects of adding a
cylindrical mass of 0.05Kg under the left motor at time t = 30 s. For instance,
the new inertia of the 3 DOF Hover about the x−axis is calculated as:
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(a) Estimated parameter Ixx (normalized)

(b) Estimated parameter Iyy (normalized)

(c) Estimated parameter Izz (normalized)

Figure 5.7: Estimates of the inertia tensor diagonal elements, in simulation, with
and without covariance resetting.

(a) PSD of τx

(b) PSD of τy

(c) PSD of τz

Figure 5.8: Power spectral densities (PSD) of the input torques in simulation26



Ixxm =
1

12
M(3r2 + h2),

ICG
xxm

= Ixxm +M(y2 + z2 + 2yzsin(φ)),

Ixxnew = Ixx0 + ICG
xxm

,

(5.12)

where Ixx0 is the initial inertia of the 3 DOF Hover before the mass addition,
M is the mass of a cylinder, r is its radius, h is its height, and y and z are the
coordinates of the added mass when the platform is in its hovering position. The
theoretical inertia matrix of the loaded system, with its off-diagonal elements
manually set for testing, is given by:

Itheoretical =

0.05837 0.001 0.002
0.001 0.05573 0.003
0.002 0.003 0.1131

 .

The obtained matrix by the estimation algorithm at the end of the simulation is:

Iestimated =

 0.05835 0.001291 0.001995
0.001291 0.05571 0.00301
0.001995 0.00301 0.1132

 .

For clarity purposes and due to their small values, the normalized estimates
of diagonal elements Ixx, Iyy, and Izz are shown in Fig. 5.7, with and without
covariance resetting. Inxx0

represents the theoretical value of Ixx, InxxR
represents

its estimate with CR, and Inxx represents its estimate without CR. In comparison,
both methods result in accurate estimates of Ixx, Iyy, and Izz, but CR tends to
increase the convergence rate, which is advantageous for prompt updates of the
controller gains.

27



Figure 5.9: Added mass to the hover platform

(a) Estimated normalized parameter Ixx

(b) Estimated normalized parameter Iyy

(c) Estimated normalized parameter Izz

Figure 5.10: Estimates of the inertia tensor diagonal elements, in experiment,
with and without covariance resetting

Figure 5.8 shows the plots of the right side of the power spectral densities
(PSD) of the input torques, which give an indication about their persistent ex-
citation. As shown, τx and τy are PE with an order of at least 2, and τz is PE
of order at least 4, which indicates that the input torques that are used in the
linear regression equations are persistently exciting, thus yielding the accurate
estimates shown in Fig. 5.7.
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(a) PSD of τx

(b) PSD of τy

(c) PSD of τz

Figure 5.11: Power spectral densities (PSD) of the input torques in experiment

5.1.2 Experimental Validation

The identification scheme is experimentally validated through the addition of a
0.05Kg mass, by hanging it on the Quanser 3 DOF Hover frame underneath its
left motor, at time t = 30s into the experiment as shown in Fig. 5.9. The result
of the identification is shown in Fig. 5.10. It is noted that the experiment has
high frequency noise due to sensor measurements as opposed to simulation, thus
the torque inputs are more persistently exciting, as shown by their PSDs in Fig.
5.11.

The obtained estimates are accurate, which validates the design of the pro-
posed identification scheme, however, the convergence rate is deemed slow. Ixx
estimation shows how covariance resetting boosts its convergence rate, whereas
the estimation of Iyy presents a bias from the desired value. On the other hand,
the Izz estimation is not affected by covariance resetting except when the mass
is added.
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Figure 5.12: Qball2 quadrotor’s command system [1]

5.2 QBall-2 Quadrotor

After validating the inertia tensor estimation methodology on the 3 DOF Hover
platform, it is implemented and validated on a real quadrotor. In addition to the
inertia estimation, it is required to estimate the varying mass of the quadrotor
when it carries a payload. In this work, the Quanser QBall-2 quadrotor is used
to carry a payload and to estimate its changing mass and inertia tensor. The
QBall-2 quadrotor, shown in Fig. 5.12, is an indoor rotary wing platform that is
operated using a ground station and using OptiTrack cameras. It is propelled by
four Park 480 Brushless motors - 1020Kv fitted with 10x4.7 inch APC propellers.
The entire quadrotor is enclosed within a protective carbon fiber cage, which
ensures safe indoor operation. To read measurements from on-board sensors
and drive the propeller motors, the QBall-2 utilizes an on-board avionics data
acquisition card (DAQ) and a wireless Gumstix DuoVero embedded computer
[50]. The quadrotor’s mass is M = 1.73Kg and its arms length is L = 0.2m.
The moments of inertia matrix used in the nonlinear model (3.9) is considered
diagonal with values: Ixx0 = Iyy0 = 0.03Kg.m2 and Izz0 = 0.04Kg.m2.

The OptiTrack Motion Capture System is operated by the ground station and
tracks the position and orientation of the QBall-2 and sends it to the quadrotor’s
embedded system via WiFi. The interface to the QBall-2 is MATLAB/Simulink
with QUARC library. The controllers are developed in Simulink with QUARC
on the host computer, and these models are downloaded and compiled into ex-
ecutables on the target, which in return sends the real-time data to the ground
station. A diagram of this configuration is shown in Fig. 5.12.
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The same estimation used on the 3 DOF Hover platform is used on the Qball-2
quadrotor, however, the input torques and the output accelerations in the linear
regression equations (5.4) are measured differently. In fact, to model the Qball-2,
Quanser identifies the DC motors as the following normalized first-order transfer
function:

wi(s)

u(s)
=

1

0.066 s+ 1
, (5.13)

where wi is the normalized rotational speed of the motor i; i = {b, f, l, r} rep-
resents the back, front, left, and right motors, respectively; and u is the voltage
(between 0 and 1) sent to the motors electronic speed controller (ESC). Quanser
also identifies the maximum thrust and drag torque generated by each motor as
K = 12 N and Ky = 0.4 Nm, respectively. Therefore, the torques are calculated
by:

τx = K ∗ L ∗ (w2
l − w2

r),

τy = K ∗ L ∗ (w2
b − w2

f ),

τz = Ky ∗ (w2
r + w2

l − w2
f − w2

b ),

(5.14)

where L is the quadrotor’s arm length. However, since the QBall-2 uses
Lithium-ion batteries, their voltages is not constant over time, hence the battery
drain effect should be included to improve the identification process. The battery
drain model used in experiment is a simple linear interpolation between two
corresponding battery voltages to two weighing factors multiplying the thrust
created by each motor calculated using (3.12), as illustrated in Fig. 5.13. The
torques are calculated by:

τx = bd ∗K ∗ L ∗ (w2
l − w2

r),

τy = bd ∗K ∗ L ∗ (w2
b − w2

f ),

τz = bd ∗Ky ∗ (w2
r + w2

l − w2
f − w2

b ),

(5.15)

where bd is the battery drain model factor calculated at each time step depending
on the battery voltage. As for the angular accelerations, an STMicroelectronics
3-axis gyroscope [51] is used to estimate the roll, pitch, and yaw angular speeds,
and then by applying differentiation and appropriate filtration, the angular accel-
erations are calculated. A PID controller is used to control the quadrotor motion
and to generate the input commands to the system. The identification scheme is
portrayed in Fig. 5.14.

As for the mass estimation, equation (3.7) for the motion in the z−axis is
used, which is expressed as follows:

mz̈ = FT cosφ cosθ −mg, (5.16)

where FT = K(w2
b + w2

f + w2
l + w2

r) is the total force generated by the motors.
By operating the quadrotor in a hovering state, the derivatives of the position
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Figure 5.13: Battery drain effect model

and Euler angles states are zero. Furthermore, the roll and pitch angles are
approximately negligible. Thus, the linearized version of equation (5.16) becomes:

g =
1

m
FT , (5.17)

which is the regression equation on which the RLS algorithm is applied to estimate
the mass where g is the output and FT is the input.

The RLS algorithm for the mass estimation is then:

ε[k] = g[k]− FT [k] minv[k − 1],

P [k] =
1

λ
(P [k − 1]− P [k − 1]ϕ[k]ϕTP [k − 1]

λ+ ϕT [k]P [k − 1]ϕ[k]
),

K[k] = P [k]
[
minv[k]

]
,[

minv[k]
]

=
[
minv[k − 1]

]
+K[k]ε[k].

(5.18)

5.2.1 Simulation Results

To validate the estimation scheme of the varying mass and inertia tensor of a
quadrotor system, it is firstly implemented in simulation. The nonlinear model
represented by equation (3.9) is used and the torques are calculated from the
controller’s output voltages using equations (5.13) and (5.14).

First, the quadrotor is commanded to perform oscillatory movements around
its axes by sending sinusoidal desired trajectories to its Euler angles. This
achieves a persistently exciting input that enables the estimated parameters to be
accurate and unbiased. A mass of 0.1Kg is added at time t = 15s at coordinates
rx = 0.25m, ry = 0.15m, and rz = −0.05m, and it is removed at time t = 35s.
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Figure 5.14: QBall-2 inertia tensor identification scheme.

To estimate the mass, a forgetting factor, λm = 0.999, is used and the result is
shown in Fig. 5.15, where md is the desired mass and m is its estimate.

When the mass is added, it creates two torques about the x− and y−axes.
The values of these resultant torques are, respectively:

τmx = −ry ∗madd ∗ g,
τmy = rx ∗madd ∗ g,

(5.19)
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Figure 5.15: Quadrotor’s mass estimation in numerical simulation

Figure 5.16: Non filtered torque Vs. roll measured acceleration in simulation

Figure 5.17: Filtered torque Vs. roll measured acceleration in simulation

where madd is the value of the added mass. Thus, to provide the same output
performance as that provided before the mass addition, the control system in-
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Figure 5.18: Non filtered torque Vs. pitch measured acceleration in simulation

creases the input torques with offsets equal to τmx and τmy. The new system’s
rotational equations of motion are then:

φ̈ = A11 ∗ τx + A12 ∗ τy + A13 ∗ τz + τmx,

θ̈ = A21 ∗ τx + A22 ∗ τy + A23 ∗ τz + τmy,

ψ̈ = A31 ∗ τx + A32 ∗ τy + A33 ∗ τz.
(5.20)

High-pass filters are used to remove the mentioned offsets from the input
torques. Thus, the final regression equation is given by:

φ̈ = A11 ∗ τxf + A12 ∗ τyf + A13 ∗ τz,
θ̈ = A21 ∗ τxf + A22 ∗ τyf + A23 ∗ τz,
ψ̈ = A31 ∗ τxf + A32 ∗ τyf + A33 ∗ τz,

(5.21)

where τxf
and τyf are the filtered torques. Figures 5.16 and 5.17 show τx (before

filtration) and τxf (after filtration) divided by the desired inertia Ixxd
, respectively,

compared to the measured acceleration Phidd. Figure 5.18 and 5.19 also show
τy (before filtration) and τyf (after filtration) divided by the desired inertia Ixxd

,
respectively, compared to the measured acceleration Thetadd. It can be seen that
after filtration, the two signals are overlapped. This indicates that if the filtered
input torque along with the measured acceleration are used to estimate Ixx, the
obtained estimate will be equal to Ixxd

accurately, as will be shown later. The
same applies to the estimation of Iyy.

When an abrupt change in the quadrotor’s mass occurs, a sudden change in
the total thrust used to maintain the hovering state also appears. Thus, when
the error between the real gravitational acceleration and the estimated one using
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Figure 5.19: Filtered torque Vs. pitch measured acceleration in simulation

(5.17) exceeds a predefined threshold, the covariance matrix used in the RLS
algorithm for the inertia estimation is reset to a value of P = 10 to increase the
estimator’s convergence rate. For instance, the error compared to a threshold of
0.4 is shown in Fig. 5.20, and the corresponding reset covariances for Ixx, Iyy,
and Izz estimation are shown in 5.21, 5.22, and 5.23, respectively.

Figure 5.20: Detected error for covariance resetting in simulation
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Figure 5.21: Ixx estimation auto-covariance in simulation

Figure 5.22: Iyy estimation auto-covariance in simulation
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Figure 5.23: Izz estimation auto-covariance in simulation

(a) Estimated parameter Ixx

(b) Estimated parameter Iyy

(c) Estimated parameter Izz

Figure 5.24: Estimates of the inertia tensor diagonal elements in simulation

The parallel axis theorem is used to compute the quadrotor’s new moment of
inertia that is affected by the added mass, which is considered as a point mass.
Hence, the new inertia tensor becomes:
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(a) PSD of τx

(b) PSD of τy

(c) PSD of τz

Figure 5.25: Power spectral densities (PSD) of the input torques in simulation

Itotal =

Ixx0 0 0
0 Iyy0 0
0 0 Izz0

+madd

r2y + r2z −rxry −rxrz
−rxry r2x + r2z −ryrz
−rxrz −ryrz r2x + r2y

 , (5.22)

where madd is the added mass, and rx, ry, and rz are its coordinates with respect
to the quadrotor’s geometric center. With an added mass of 0.1Kg, the new
inertia matrix is computed as follows:

Itheoretical =

 0.0325 −0.00375 0.00125
−0.00375 0.0365 0.00075
0.00125 0.00075 0.0485

 .
The estimated inertia matrix as obtained via simulation is:

Iestimated =

 0.03246 −0.00371 0.00122
−0.00371 0.03658 0.00094
0.00122 0.00094 0.049

 .
To evaluate the convergence rate and accuracy of the estimation method, the

plots of the inertia tensor diagonal elements are shown in Fig. 5.24. As seen,
when the mass is added, a fast transient response and small steady-state error
are exhibited by the estimator. Since it does not take into account parametric
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Figure 5.26: Eigenvalues of J

Figure 5.27: Eigenvalues of Y before correction
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Figure 5.28: Eigenvalues of Y after correction

uncertainties and disturbances, small deviations and slightly diminished tracking
performance when the mass is added appears in the identified parameters and
are attributed to the fixed-gain PID controller. In fact, when the quadrotor does
not adequately track the desired three Euler angles signals designed to provide
sufficiently excited motions, the inputs’ persistence of excitation will decrease,
and the estimated parameters will swerve from their actual values. It is noted
that, while designing such desired signals, the ability of the quadrotor to track
them simultaneously should be taken into account. For instance, if the frequency
or amplitude of the desired roll angle signal is chosen to be relatively much higher
than those of the desired pitch and yaw angles, the quadrotor will provide poor
tracking performance for the latter. As a result, the pitch and yaw motions will
be less excited, and the parameters estimated using the roll regression equation
will be more accurate than those estimated using the pitch and yaw regression
equations. Similarly, if the frequencies and the amplitudes of the three desired
signals were chosen to be all high, the quadrotor will not be able to track them
simultaneously with adequate performance due to the coupling between these
angles. Then, all the estimated inertia matrix values will be biased. Therefore,
the amplitudes and frequencies of the desired Euler angles signals should be
chosen in a compromised way such that they are not very low so that their
corresponding motions are sufficiently excited while, on the other hand, they are
not very high such that they provide the quadrotor the ability to track them
simultaneously with adequate performance.

The accurate estimation results indicate that the input torques used in the
identification process are indeed persistently exciting, which is established in
Fig. 5.25 that shows the power spectral density (PSD) plots of τx, τy, and τz,
respectively. The three input torques excite sufficient frequencies to accurately
identify the three parameters in each linear regression equation given in (5.4).
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Figure 5.29: Quadrotor’s mass estimation in numerical simulation

Figure 5.30: Detected error for covariance resetting in experiment

To assert the invertibility of the inertia tensor matrix inverse, conditions (4.6)
and (4.15) are continuously verified by calculating their eigenvalues and checking
that they are larger than zero at each time step. If not, the matrix obtained at
the previous time step is used as the current inertia matrix inverse.

Figure 5.26 shows that the eigenvalues of J are positive over time guaranteeing
condition (4.6). However, two eigenvalues of Y in condition (4.15), shown in Fig.
5.27, present negative values between time t = 15 and t = 17. After using the
method explained in the previous paragraph, the eigenvalues are always larger
than zero as shown in Fig. 5.28.

5.2.2 Experimental Validation

The QBall-2 quadrotor is used to validate the proposed estimation scheme ex-
perimentally. The testing sequence is started with the quadrotor hovering at an
altitude of 1m, then commanding oscillatory trajectories to each of its rotational
degrees-of-freedom, independently. When the desired trajectories are simulta-
neously commanded, the quadrotor’s PID control system is unable to provide
exact tracking performance due to coupling effects between the degrees of free-
dom. This tends to influence the estimation performance since the input torques
do not perfectly correspond to the output accelerations, thus the obtained esti-
mates may feature a slight bias. To circumvent this limitation, three independent
experiments are performed where only one degree-of-freedom is excited at a time.

A mass of 0.1Kg is manually added (via hanging) at time t ≈ 25s at coor-
dinates rx = 0.29m, ry = 0.18m, and rz = −0.06m, and removed (via cutting
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Figure 5.31: Output roll φ angle

its thread) at t ≈ 42s. The quadrotor’s mass is estimated by exciting the yaw
dynamics while the quadrotor is in a hovering state. Figure 5.29 shows the mass
estimation during the yaw excitation experiment, which demonstrates the ac-
curacy of the estimator upon the addition and removal of the payload, and a
comparable transient response relative to the simulation results.

To identify Ixx and Iyy, a sinusoidal wave of frequency f = 7Hz and amplitude
A = 5o is commanded as the desired roll and pitch trajectories, respectively.
To identify Izz, a sinusoidal wave with f = 5Hz and A = 7o is commanded
as a yaw trajectory, where the relatively lower frequency and higher amplitude
are due to the yaw dynamics being slower than the roll and pitch dynamics of
quadrotors. The corresponding obtained output angles in each experiment are
shown in Fig. 5.31, 5.32, and 5.33, respectively. Since each degree of freedom is
excited separately is experiment, the off-diagonal elements cannot be estimated.
Therefore, it would be more efficient to work in the future on finding a smart
reference signal that excites all the degrees of freedom together while guaranteeing
PE using pseudo-random binary signals (PRBS).
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Figure 5.32: Output pitch θ angle

Figure 5.35: Filtered torque Vs. roll measured acceleration in experimentation
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Figure 5.33: Output yaw ψ angle

Figure 5.36: Filtered torque Vs. roll measured acceleration (Zoomed) in experi-
mentation

As implemented in simulation, high-pass filters are also implemented in exper-
imentation to remove the offset in the input torques caused by the mass addition.
Furthermore, low-pass filters are added to remove the high frequency noise from
the acceleration signals. As mentioned previously, filtration causes time delays
between signals, thus by detecting these time delays the two signals are synchro-
nized using a Delay block in Simulink. Figures 5.34 and 5.35 show τx divided
by the desired inertia Ixxd

compared to the measured acceleration Phidd before
filtration and after filtration, respectively. A zoomed part from Fig. 5.35 is pre-
sented in Fig 5.36, which demonstrates how filtration helps to get overlapped
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Figure 5.34: Non filtered torque Vs. roll measured acceleration in experimenta-
tion

estimated and measured accelerations. This means that accurate estimation of
Ixx will be obtained during the experiment. Figures 5.37 and 5.38 also show τy
divided by the desired inertia Iyyd compared to the measured acceleration Thetadd
before filtration and after filtration, respectively. The overlapped measured and
estimated accelerations shown in the zoomed Fig. 5.39 of Fig. 5.35 indicates that
an accurate estimation of Iyy will also be obtained.

Figure 5.37: Non filtered torque Vs. pitch measured acceleration in experimen-
tation
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Figure 5.38: Filtered torque Vs. pitch measured acceleration

Figure 5.39: Filtered torque Vs. pitch measured acceleration (Zoomed) in exper-
imentation

Since no offset in τz is induced by the mass addition, only low-pass filters to
remove the high frequency noise are needed. After filtration and synchronization,
the filtered estimated and measured yaw accelerations are shown in Fig. 5.40.
The zoomed signals shown in Fig. 5.41 elaborate how the overlapped signals will
result in an accurate estimate of Izz in the yaw experiment.
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Figure 5.40: Filtered torque Vs. yaw measured acceleration in experimentation

Figure 5.41: Filtered torque Vs. yaw measured acceleration (Zoomed) in experi-
mentation

Covariance resetting is applied per the method in section 4.3 with an error
threshold of 0.8, as shown in Fig. 5.30, and the corresponding reset covariances
for Ixx, Iyy, and Izz estimation are shown in Fig. 5.42, Fig. 5.43, and Fig. 5.44,
respectively.
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Figure 5.42: Ixx estimation auto-covariance in experimentation

Figure 5.43: Iyy estimation auto-covariance in experimentation
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Figure 5.44: Izz estimation auto-covariance in experimentation

The estimates of the diagonal terms of the inertia tensor obtained during the
three experiments are shown in Fig. 5.45.

(a) Estimated parameter Ixx

(b) Estimated parameter Iyy

(c) Estimated parameter Izz

Figure 5.45: Estimates of the inertia tensor diagonal elements in experiment

It is noticed that the experimentally obtained estimates show strong correla-
tion with the simulation results relative to high accuracy and fast convergence.
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(a) PSD of τx

(b) PSD of τy

(c) PSD of τz

Figure 5.46: Power spectral densities (PSD) of the input torques in experiment

Although the input torques are persistently exciting, as illustrated by their PSDs
in Fig. 5.46, a small bias is observed in the estimates, which is caused by several
modelling inaccuracies, nonlinearities, and uncertainties such as the battery drain
effect, drag and thrust coefficients, and state coupling, to name a few. In fact,
modelling inaccuracies include, for instance, the blade flapping, ground effect,
and ceiling effect that are not incorporated into the model. Furthermore, the
nonlinear terms in (3.9) are neglected, while they are present in the real system.
In addition, the battery drain model is considered linear whereas it is nonlinear
on the QBall-2. It is noted that the torque τz is not affected by the battery volt-
age only, but also its discharging capacity that varies with time given that the
torque generated by a DC motor is directly proportional to the current drawn
by the motor. Thus, as an improvement, a current sensor can be added to the
system to identify the battery discharging behaviour. Last but not least, in the
model used for the identification, the Euler degrees-of-freedom are considered
decoupled in the linear dynamic model while a strong coupling between them
exists in the system as exhibited in its nonlinear model. However, despite such
inaccurately modeled effects, the moment of inertia estimates are within 5% of
their true values.
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Chapter 6

Conclusion

In this work, the mass and all elements of the inertia tensor matrix of a package
delivery quadrotor are estimated using recursive least squares algorithm. Co-
variance resetting is added to the algorithm to speed up the convergence rate
and to accommodate to the abrupt changes applied on the system. To esti-
mate the mass, the quadrotor is operated in its hover state; The input is the
total thrust generated by the motors and the output is the gravitational acceler-
ation. Whereas, to estimate the inertia tensor matrix, the input signals are the
applied torques on the quadrotor’s three rotational degrees-of-freedom and the
output data are the corresponding rotational accelerations. The input torques
are calculated from the voltages applied on the motors using DC motor’s first
order model and the thrust and drag coefficients. The Lithium battery drain
effect is also implemented in the estimation scheme to take into consideration the
gradual voltage drop presented by the batteries. The estimator is validated via
numerical simulation and experimental testing on a physical quadrotor system
and on a hover quadrotor platform. The hover’s DC motors first order transfer
is identified using an obstacle sensor and the thrust and torque coefficients are
estimated using a force sensor. On the other, those of the QBall-2 quadrotor are
provided by its datasheet. As a quadrotor’s dynamic parameters present physi-
cal meaning, several conditions are attained during estimation to get physically
consistent estimates. Such conditions are the positive definiteness of the inertia
tensor and the triangle inequality that should be met by its eigenvalues. The ob-
tained results demonstrate the accuracy, efficiency, consistency, and convergence
rate of the proposed identification scheme. Future work entails integrating the
identification scheme into controller mapping scheme or into an indirect adaptive
control system to achieve output tracking performance when the quadrotor picks
up, carries, and drops off delivery packages of variable masses and shapes. A
current sensor may be added to the system to adequately identify the battery
current drain that affects the motors generated torques. Furthermore, a method
to simultaneously estimate the three rows of the inertia tensor matrix in one ex-
periment may be studied. This would save more time then when each degree of
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freedom is excited independently. The obtained estimated parameters may also
be used in health monitoring algorithms, and employed in quality control systems
for detecting payload characteristics.
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