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An Abstract of the Thesis of

Mohammad Tugan for Master of Engineering
Major: Mechanical Engineering

Title: Unmanned Aerial Vehicle Path Planning for Surveillance Mis-
sions with Regions of Interest

Surveillance missions entail visiting defined sites of interest in an environment
to perform a desired task. The core of the decision making lies in planning the
path and trajectory to achieve the goals assigned with the task; often modeled as
a Traveling Salesman Problem (TSP). Several algorithms exist in literature for
tackling the TSP and its variants. However, the problem is often accompanied
with heavy computational effort. As a result, in several distinct approaches in
the literature, the optimality of the solution comes at the expense of computa-
tional efficiency. In addition, each of the existing algorithms addresses a specific
version of the problem and may not be applicable under different constraints or
conditions imposed on the system. In this thesis, a path planning algorithm is
proposed for surveillance missions that do not only require visiting certain known
specified regions, but also exploring these regions. A planar kinematic model with
bounded steering rate is set as a motion model, and the region exploration is im-
posed as traversing an arc with a nonzero arc-length around a point. Using the
above two assumptions, a time-optimal control problem is defined to ensure com-
pletely visiting and exploring all of the sites, formulated as a Dubins Traveling
Salesman Problem with Neighborhoods. This study builds on previous work done
on the convex optimization solution to derive a geometrical representation of the
local minima for path headings. Hence, solving for the optimal local Dubins ma-
neuver between every pair of consecutive regions along the visiting sequence that
corresponds to the global shortest path. The solution is validated to converge
to that of the brute force approach with simulation results demonstrating the
high computational efficiency of the proposed algorithm for maps with up to 500
regions.
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Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs) have become an active area of research in
robotics and control engineering for the wide range of applications within several
industries. Due to its flexible mobility and the recent drop in the purchase price,
this platform has boomed in the field of engineering technologies. Furthermore,
the rise of autonomous systems has also played a role in this boom. Whether for
surveillance, exploration or search tasks, autonomy has been proven to increase
the efficiency and further ease the completion of such tasks. By installing a
camera and an actuated mechanism, such as a robotic arm (Figure 1.1), the
already wide range of applications is further expanded; Figure. 1.2 shows a UAV
used in rescue missions and fire combat.

Figure 1.1: A robot arm drone product by Prodrone [1]

Adding perception features (mainly localization and mapping) to such plat-
forms can further facilitate autonomy and intelligence integration. Perception
collects data points that maps the surrounding environment and accordingly lo-
calize the robot or vehicle within that environment (awareness). This data is
processed by decision making algorithms to specify actions for the robot to exe-
cute in order to achieve a desired goal or task. The core of this decision making
lies in defining the path that must be followed during a task. The path is built
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Figure 1.2: Rescue tasks performed by a drone firefighter [2]

and defined based on the task deliverable and the constraints imposed by the
environment and the dynamics of the robot/vehicle itself [5, 6, 7]. Furthermore,
autonomy provides the flexibility in conducting cooperative missions by multiple
vehicles (robotic swarms) to perform more complex tasks [8].

Path planning involves finding the optimal path, relative to a defined cost
function, to perform a specific task. However, before planning the path, the
problem to be solved by the planner must be properly defined. First, a cost func-
tion that is generally based on time, energy, or distance must be defined. This
cost/objective function must be optimized by the planner in order to determine
the desired solution. Second, a vehicle model is adopted to describe the states of
the dynamic system and to define its constraints. The constraints on the dynam-
ics are involved in planning the motion of the vehicle over the path solved by the
path planner. Consider a non-holonomic vehicle with a minimum turning radius,
p, that is operated with an A* planner. The planner solution must be translated
into a sequence of Dubins, Curve-Curve-Curve (CCC) or Curve-Straight-Curve
(CSC), paths to be rendered as a feasible maneuver [9, 10]. This often requires
refining the A* solution to a smoother waypoint sequence [10]. In addition, the
choice of the model representing the vehicle may differ under different operat-
ing conditions. For instance, modeling a ground vehicle at lower speeds, where
the dynamics are less dominant, can be achieved with a kinematic model with-
out much compromise on fidelity. At higher speeds on the other hand, where a
kinematic model might fail, a dynamic model will demonstrate a more accurate
representation of the vehicle [5, 11]. Finally, a configuration or search space that
closely represents the environment in which the vehicle is expected to operate
must be defined. A simple example of a configuration space is the 2D occupancy
grid in Euclidean space, as used in A* algorithm, where every point is defined by
a 2D pose in space. A cost function may also be defined in a configuration space
to model obstacles, altitude, and other features in a given environment. Note,
however, that the configuration space, cost function, and vehicle model are often
based on the characteristics and the deliverable of the desired objective, which
range from finding a feasible obstacle-free path connecting two waypoints in a
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Mission

Trajectory

Figure 1.3: Mission vs trajectory planning

configuration space to more complex surveillance and exploration missions.

This thesis tackles a problem that is motivated by search and inspection tasks
for infected trees in dense forests. The trees are modeled as neighborhoods or
regions of interest, hence classifying the problem as a Dubins Traveling Salesman
Problem with Neighborhoods (DTSPN) [12, 13, 14], as will be explained later. In
order to search the regions of interest, the exploration factor is accounted for by
traversing a non-zero arc around the region. As such, the problem is broken down
into two sub-problems: mission and trajectory planning. As demonstrated in
Figure 1.3, mission planning, often referred to as the travelling salesman problem
(TSP) in literature, involves solving for the optimal sequence for the path to
visit the regions of interest. On the other hand, trajectory planning invokes the
Dubins Touring Regions Problem (DTRP) that is concerned with the optimal
path maneuver to visit and explore regions of interest along an optimal sequence.

This work aims at developing a novel algorithm that solves for the optimal
path to visit a set of regions of interest while traversing a non-zero arc around
every region along the path [15]. We build upon the complex optimization ap-
proach utilized in solving the DTSPN [13] to define the local minima heading
between every pair of regions. These local minima of the Dubins maneuver are
then used to solve for the global optimal path. The main contribution of this the-
sis is the proposal of a computationally efficient and feasible approach to solve for
the constrained DTSPN to visit, and explore, regions of interest in a given map.
This is done by redefining the configuration space based on the 2D coordinates
of the region center instead of the 2D position along the path, as is the case of
the classical Dubins maneuvers. It is assumed that the regions are of equal radii,
Tregion, and satisfy the Dy condition, which stipulates that the distance between
any pair of regions in the map must be greater than 4r,.gion. A further extension
to the problem is introduced for regions of non-equal radii, where the same ap-
proach is adopted to develop a planner that solves for a feasible path that visits
and explores every region of interest.



The thesis is organized as follows: chapter 2 provides an overview of prior
work in the fields of optimal path planning the travelling salesman problem,
along with solutions and algorithms that are currently in hand. The problem is
formulated in chapter 3 by first defining the configuration space and the initial
and final configurations of every local maneuver, and then analyzing the brute
force approach to motivate the proposed approach. Chapter 4 demonstrates the
efficiency and feasibility of the proposed approach by starting with the parame-
terization of Dubins CSC paths, then arriving at a geometrical derivation of the
local minima heading, and finally validating the proposed algorithm against the
brute force solution. In chapter 5, the problem is extended to regions of non-
equal radii and a proposed planner is demonstrated. Finally, chapter 6 presents
a conclusion and provides an outlook of the work presented in this thesis.



Chapter 2

Literature Review

The objective of this work is to develop an algorithm that solves for the optimal
path that visits, and explores, regions of interest in a given map. Surveillance
missions that involve visiting cities or points of interest is often modeled as a TSP
[16]. Since the regions of interests are modeled as circular regions of equal radii,
the problem can be expanded to DTSPN. In DTSPN, the problem is divided
into two sub-problems: mission and trajectory planning. The proposed problem,
however, imposes an exploration constraint on the desired trajectory plan that
involves traversing a non-zero arc around every region. As such, the nature
of Dubins maneuvers (arc and straight line segments) is utilized to plan this
constrained path. In this chapter, we present some background material, starting
with the typical Dubins vehicle and its associated optimal path, followed by an
overview of the literature on path planning in general. The chapter ends with a
more specific overview on surveillance missions and the TSP.

2.1 Dubins Optimal Curves

For a given map with defined circular regions, and provided a path sequence
to visit all the regions, the shortest global path maneuver can be defined as a
concatenation of local maneuvers between every pair of consecutive regions along
that sequence. In this study, the local maneuver is considered as a Dubins optimal
maneuver solution connecting an initial and final configuration states. Dubins
considered a graphical approach to build his minimum path synthesis for vehicles
with constrained curvature, or with minimum turning radius [9]. The synthesis
proves that for a given initial and final pose, the shortest path belongs to one of
the six following CSC and CCC segments (Figure 2.1): RSR, RSL, LSR, LSL,
LRL, and RLR, where R denotes turning right, L denotes turning left, and S
denotes moving in a straight line. Figure 2.2 demonstrates the four possible CSC
paths between a pair of configuration states. This conclusion arises from the fact
that the shortest path is found to be a concatenation of straight line segments
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or arcs with radii that are equal to the minimum turning radius of the vehicle.
This was later validated in 1992 by Boissonnat [17] using Pontryagin’s maximum
principle. It is important to note that Dubins vehicle is assumed to be travelling
at constant speed between the pair of poses, hence having a constant minimum
turning radius along the entire Dubins path segment. A first-order model of a
unicycle with limited steering rate and a minimum turning radius, p, referred
to as a Dubins vehicle [9] is considered for the motion model. The state of the
vehicle model can then be defined by the configuration (z,y, ) € SE(2), where
(z,y) denote the position of the vehicle in R? and the heading angle of the vehicle
is denoted by ¥ € S'. Furthermore, if the vehicle is assumed to be travelling at
a constant velocity, v, then the model can be formulated as follows:

T cos Y
y|=v|sinv|,|ul<1 (2.1)
¥ 7

The yaw rate, 1, is bounded by the control input, u, and the sign of u denotes the
direction of the turn: clockwise (turning right) and counter-clockwise (turning
left). Control input, %m,,, denotes the maximum steering effort corresponding to
the minimum turning radius of the vehicle traveling at constant velocity, v.

The time-optimal problem for a start to an end configuration has been solved
for the Dubins vehicle and in fact, the time optimal paths are the well-known
Dubins paths [9]. It was proven in [9] that the shortest path connecting two
configurations in a plane is one of six possible maneuvers that can be divided
into two types: CSC type (LSL, LSR, RSR, and RSL) and CCC type (RLR and
LRL), where C is an arc with a minimum turning radius and S is a straight line
with no steering, R and L indicate whether the C section is turning clockwise or
counter-clockwise (Table 2.1).

The emergence of the Dubins vehicle model have made the Dubins path ap-
proach a convenient motion planning tool for non-holonomic vehicles in wide
ranges of operation: ground, underwater, and aerial [18, 19, 20, 21, 22]. In [10],
the authors use 3D Dubins maneuvers to translate the optimal path solved for
by the A* planner to velocity and orientation commands for non-holonomic ve-

Figure 2.1: Dubins CCC and CSC maneuver [3].



Figure 2.2: Demonstration of CSC Dubins maneuver [4].

Symbol u
L Umax
R —Umaz
S 0

Table 2.1: The path segments from which all optimal Dubins paths can be con-
structed

hicles. The nature of Dubins solution, straight lines and arcs, have rendered it
a tempting tool for surveillance missions involving regions of interests modeled
as disks (DTSPN) [16]. In this thesis, the path is planned based on the shortest
sequence of Dubins paths to visit and explore all the regions of interest in the
environment. In addition, Dubins maneuvers are leveraged to abide the planner
to the exploration factor imposed on the desired solution of having to traverse
a non-zero arc around every region. The classical Dubins problem, however, is
extended by redefining the initial and final configuration for each local maneu-
ver; the configuration is defined for every region as (z,y, §) € SE(2), where (z, y)
denote the position of the center of the region in R?, and the heading angle of
the vehicle is denoted by 6 € S!. For every local maneuver, the initial and final
headings are set according to the position of the initial and departure (the region
from which the path departs the final regions towards) regions with respect to
the final region.



2.2 Optimal Path Planning

In the context of robotic path planning, several parameters must be defined by
the task or application deliverable in order to adopt or develop the appropriate
planner. First, a defined vehicle model is utilized to represent the maneuvering
capability of a robot or vehicle. Accordingly, a configuration space is defined
to represent the states of the vehicle in the operating environment. Finally, a
cost function is adopted based on a defined cost metric to optimize the path
according to the constraints imposed on the system. Path planning algorithms
are thereby developed based on the availability of these three elements: vehicle
model, configuration space, and cost function.

Path planning algorithms can be divided into two main categories: node-based
and sampling-based algorithms [5, 11]. Optimal node-based algorithms represent
the configuration space in cost assigned nodes. The cost can be calculated based
on a specified heuristic, and the path to the goal node is planned accordingly.
One of the early developed path planning algorithms is the Dijkstra algorithm,
which searches for the shortest path based on costs of edges that are previously
known. An extension of Dijkstra’s algorithm is given by the A* algorithm, which
post-calculates the cost towards the initial state and a heuristic estimation of the
cost towards the goal state. Due to their relative simplicity on implementation,
A* algorithms have been used on multiple platforms including UAVs [10]. Several
algorithms branched out of A* to offer more degrees of freedom on the config-
uration space. For instance, the D* algorithm, also referred to as Dynamic A*
in literature, uses sensor data to detect dynamic obstacles in the environment,
hence adding a temporal element in the configuration space [5, 11]. The D* algo-
rithm then reallocates the cost distribution in the space and accordingly modifies
the path to take into account dynamic obstacle avoidance. Other extensions to
the A* planners were developed to solve for smoother optimal paths such as the
anytime A* or phi* algorithms. Phi* checks for a line of sight between every new
node and its parent node of the current node; in the absence of any obstacles
between the two nodes, the current node is removed from the path and a straight
line is extended between the parent and the new node. By repeating this algo-
rithm along the path, the solution converges to a more optimal and smoother
version of the A* solution [5, 11].

Sampling-based algorithms require prior knowledge of the workspace, as they
involve representing the environment or the workspace as a set of nodes where the
path is built by tracing it from one node to the other. The node selection is often
performed through a random search until a feasible desired path is found. One of
the traditional sampling-based methods is the Rapidly Exploring Random Trees
(RRT), which works as follows. The path segment propagating from node to node
in the tree is traced by taking the 3D Dubins path between the two nodes. After
defining an initial and goal node/region in a configuration space, the tree starts
exploring the search space by choosing a point at random, and if the selected
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node is obstacle-free, a line segment of specified length is extended from the node
in the tree closest towards the selected node. The algorithm repeats until the
tree reaches the goal node or region [5, 11, 23, 24]. The main drawback of this
method is that it does not guarantee convergence to an optimal or shortest path.
Despite that, RRT was successfully leveraged in [23] to design a path planner
for an UAV to achieve both dynamic and static obstacle avoidance based on
RRT. However, due to its high computational efficiency, RRT has remained an
active area of research, specifically in solving for a near optimal solution. Several
modified RRT algorithms have been developed to solve for near-optimal solutions
[25. 24, 26]. RRT* provides a modified version of RRT to guarantee asymptotic
convergence to an optimal solution. The algorithm selects a random sample in
the free space and extends a path from the closest node on the generated tree
to the sample. If the path is obstacle-free, the algorithm compares the cost of
reaching the sample from a set of potential parent nodes on the tree within the
vicinity of the random sample [26]. Other modifications can be on the definition
of the configuration space; for instance, in the TRRT algorithm suggested in [27],
a cost function is integrated in the configuration space prioritizes downbhill over
uphill movement for a surface vehicle [24].

While traditional path planning algorithms have shown excellent results for
finding obstacle-free feasible paths to connect two configuration states in an envi-
ronment, further measures must be taken in the context of surveillance missions
and search tasks. In such applications, it is desirable to solve for a path that
visits a set of predefined sites or regions of interest in a given map. In this study,
for circular regions of equal radii, a Dubins vehicle with a predefined configura-
tion space is utilized to plan the trajectory of the shortest path maneuver along
a path sequence. The problem is hence extended from a TSP to a DTSPN.

2.3 The Travelling Salesman Problem

As mentioned earlier, traditional path planning algorithms have desirable perfor-
mance in finding an obstacle-free path connecting two configurations, limitations
arise in surveillance missions where further constraints on the mission and the
path are imposed. For a given map with a defined set of sites of interest, the prob-
lem transforms into solving for the path that visits all of these sites. The TSP
has been utilized to model and yield time-optimal solutions to visiting known
locations in a map [28, 16, 29, 30]. Typically, the motion models are trivial, zero
dynamics, where the edge costs are linked to the Euclidean distance between two
sites. The TSP can even handle asymmetric costs [28], nonetheless, integrating
the cost with the motion model has not been fully explored.

Hints of one such integration of the edge-cost and the motion model can
be seen in the DTSPN in [14]. This problem branches out from the standard
TSP and the Dubins Travelling Salesman Problem (DTSP). In TSP, the shortest

9



(a) TSP (b) DTSP
Figure 2.3: TSP vs DTSP

path to visit all waypoints is a series of straight lines connecting each pair of
waypoints along the path (Figure 2.3a). On the other hand, the DTSP considers
the Dubins maneuvers to connect every pair of waypoints. In fact, the DTSP
corresponds to the TSP with an additional minimum turning radius condition of
the Dubins vehicle, demonstrated in Figure 2.3b. DTSPN becomes an extension
to DTSP where regions or neighborhoods, modelled as disks instead of points, are
to be visited along the path. Other variants of the DTSPN arise when further
constraints are imposed on the maneuver around the region. Such constraints
may be imposed by the dynamics of the vehicle [31], or the nature of the task
deliverable [32]. Note that for the DTSPN, the headings of the vehicle along
the path are not known a priori, which results in adding infinite possibilities
that further complicate the problem. As a result, several approaches exist in
the literature that can be categorized into three classes: decoupled approach,
transformation methods, and the evolutionary approach.

In the decoupled approach, the mission or the path sequence is determined
independently of the headings of the path. The mission is often solved for using
a polynomial time approximation scheme for the Euclidean Traveling Salesman
Problem (ETSP) presented in [33]. One of the most common algorithms in this
approach is the Alternating Algorithm (AA), demonstrated in Figure 2.4a [34],
[35]. The sequence of visits is determined by the solution of the ETSP and the
odd segments of the solution are replaced with the shortest Dubins maneuver con-
necting a pair of straight line segments. One of the variants of the AA approach
is the receding horizon algorithm, which determines the heading by assigning a
look-ahead distance between a pair of points along the sequence [36]. An alterna-
tive approach is proposed in [13] where a local optimization technique is employed
to determine the waypoints and the headings to the goal, also motivated by the
work done in [37] in formulating the convex optimization problem to DTSPN for

10
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(a) Alternating Algorithm [34].

(b) Convex optimization solution to
DTSPN [13].

Figure 2.4: Decoupled approach

free initial and final headings at every local maneuver. However, the solution
only visits regions of interest at a point on the boundary as shown in Figure 2.4b.

Transformation methods, on the other hand, take assumptions on the head-
ings and compute the length of the shortest maneuver between all pairs of regions
[38]. The maneuvers complete the graph that demonstrates the problem and the
graph is fed to an Asymmetric Travelling Salesman Problem (ATSP) solver. Ge-
netic algorithm and randomized sampling-based resolution complete approach are
proposed by [28] and [39], respectively, to solve the DTSPN. The latter transforms
DTSPN into ATSP that is solved in [40] by LKH algorithm.

The shortcoming of the more traditional algorithms, such as the AA and
transformation methods, is that they can only guarantee multiplicative factor
approximation of the optimal solution. As a result, evolutionary optimization to
generate machine learning through automated discovery was proposed to solve
for the DTSPN (3], [41]. In the memetic algorithm [41], for instance, the authors
propose boundary-based encoding scheme to determine the visiting points of
every neighborhood, and an evolutionary algorithm to derive the optimal Dubins
tour.

The approach in [13] provides a solution that competes with the results from
the evolutionary approach with relatively less computational expense. However,
the solution only visits the regions of interest at one point on the boundary
before heading towards the next region along the sequence, hence neglecting
the exploration factor imposed in the problem of having to traverse a non-zero
arc around every region. This study, just like in [13], builds on the definition
of shortest local and global Dubins maneuver used in formulating the convex

11



optimization problem proposed and solved in [37]. Furthermore, the approach
leverages Dubins’ nature of straight lines and curves to abide by the exploration
constraint on the path. The initial and final headings for every local maneuver
along the sequence is based on the positions of the initial, final, and departure
regions with respect to eachother. Dubins problem is then extended by redefining
the initial and final configuration of the maneuver, where each configuration is
defined by 2D Euclidean coordinates of the region center and the vehicle heading
on the boundary of the region with radius 7,e4ion. The defined parameterization
of Dubins CSC maneuvers is then used to derive a geometrical representation
of the local minima. By taking the appropriate assumptions on the headings
for the local Dubins maneuver between every pair of regions along the path
sequence, the number of possible paths is reduced to one optimal solution by
imposing a condition on the local final heading angle 6 corresponding to two
different tangential positions, clockwise and counter-clockwise, around the region
(disk). This expands the solution of [13] to solve for the constrained path problem
addressed in this work. The proposed algorithm is validated by the classical brute
force approach, where all possible paths for every sequence of visits is analyzed,
and follows a similar approach [15].

12



Chapter 3

Problem Formulation

Since the problem is modeled as a DTSPN, a first-order unicycle model, also
referred to as a Dubins car model given by equation (2.1), is adopted as a vehicle
model. Note, however, that this model is used to plan a trajectory that traverses
around the regions of interest and does not necessarily represent the model of
the UAV itself. The classical Dubins problem, however, is extended by redefining
the initial and final configuration for each local maneuver; the configuration, g, is
defined for every region as (z,y,0) € SE(2), where (z,y) denote the position of
the center of the region in R? and the heading angle of the vehicle is denoted by
§ € S'. In order to complete the definition of the problem tackled in this study,
several assumptions are considered on the regions of interest and the dynamics
of the maneuver. Consider a map of mutually exclusive regions modeled as disks
with radius, rregion. Furthermore, assume that every pair of regions along a path
sequences are separated by a distance greater than 47,.4,,. For every sequence
of visits, the path is expected to traverse a non-zero arc around every region. As
a result, the local maneuver between every pair of regions can be considered a
Dubins maneuver with a minimum turning radius equal to 7region. The objective
becomes minimizing the global Dubins maneuver along the path sequence.

The optimization problem, for n regions of interest, can now be formulated

as:
n—1

[ =T(gn, q1) + Y T(a: i), (3.1)

i=1

where I' is the sum of lengths of the local Dubins maneuvers along the path
sequence (between every pair of regions). Minimizing equation (3.1) can be
achieved by solving for the optimal configurations, g, that correspond to the
optimal heading for cach local Dubins maneuver, © = [6;, 62, ..,0n]. Note that
the configuration of the end points of the maneuver, ¢’s, belong to a set of infi-
nite possibilities. In addition, the continuity of the global path depends on the
direction of the headings, 6 in g, about the region. Hence, the problem at hand
becomes setting the appropriate heading at initial and final regions, and accord-
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Figure 3.1: Heading configuration

ingly solving for the global optimal path while taking into consideration the path
continuity.

3.1 Defining the Initial and Final Configurations

In a 2D Euclidean space, each region is modeled as a circle or a disk with a radius
Tregion, 2D position of its centers, and the heading angle, §. The configuration of
the vehicle around each region can be redefined as follows:

q= [xcentera Yeenter 0] (32)

If  is the heading of the vehicle on the boundary of the region, then the angu-
lar position of the vehicle about the center of the region, a, can be calculated,
depending on the direction of the turn about the region, as follows:

P e
a 5 (3.3)
a-=0+g, (3.4)

with (4) denoting the left or counter-clockwise direction and (-) denoting the
right or clockwise direction (Figure 3.1). o and 6 are used to calculate the position
of the vehicle along boundary of the target region in the global coordinate frame,
(z,y), as follow:

T = Zregion + Tregion COS C, (35)

Y = Yregion + Tregion sin a. (36)
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It is assumed that all regions are of the same radius, 7,¢gion, and the distance
between every pair of regions satisfies Dy conditions; the distance between every
pair of regions is greater than 47,.4io,. The candidate Dubins maneuver between
every pair of regions can then, by elimination, be limited to the Dubins CSC
maneuvers; RSR, RSL, LSL, LSR. Each of the maneuvers can take the vehicle
from one configuration state around an initial region to a desired configuration
state around the target or final region in the local maneuver. Consider a LSL
maneuver between a pair of regions to take the vehicle to a position of angle, 8y,
at the final region. This heading can be achieved at the counter-clockwise and
clockwise direction around the final region (Figure 3.2). But since the interest of
the path is to explore every visited region, the path candidates are narrowed down
to the path segments that travel around the region and hence the constraints on
the direction. Figure 3.3 shows the possible CSC Dubins paths between a pair of
regions of equal radius, 7 egion, Subject to the direction constraint.

Figure 3.2: The LSL Dubins paths to take the vehicle to a desired direction
around the target region (black in the clockwise direction and red in the counter-
clockwise direction).

As mentioned in the previous section, the problem can be divided into two
sub-problems; mission planning (sequence of visits) and trajectory planning (ma-
neuver along the sequence of visits). In the approach proposed in this study, for
every path sequence, the local CSC Dubins maneuver between every pair of re-
gions is calculated by defining an assumption on the headings based on the angle,
B; the angle the line connecting the centers of the initial, current, region and the
final region, along the sequence, makes with the horizontal. In other words, 8
represents the locations of a pair of consecutive regions along a sequence with
respect to eachother in the global frame. Consider Figure 3.4a with three regions,
C;, Cy, and Cy, along the sequence where the initial configuration for the local
Dubins maneuver from every region defined as, ¢; € Cj, q; € Cf, and g4 € Cy,
with the corresponding headings assumptions defined as follows:

15



91' = ﬁi, (37)

05 = B, (3.8)

8, = Ba. (3.9)

B; denotes the position of the initial region with respect to the final region,
while 3y denotes the position of the departure region with respect to the final
region. As in Figure 3.4a, if the vehicle follows a RSL Dubins maneuver from
C; to Cy, following the precedent assumption on the headings, the problem is
refined to solving for the angle a4 that corresponds to 6 heading at the optimal
orientation about the center of the region Cjy; clockwise or counter clockwise
orientation. Due to the path continuity limitation, the paths RSL and RSR are
eliminated (since the vehicle arrives at C in the L, counter-clockwise, direction)
and the path candidates become LSL and LSR.

Hence, the problem can be expanded as follows. For a given map with n
regions of interest, each modeled as a circle or a disk, C, with equal radius,
Tregion, and assuming that the desired path to visit all regions starts and ends
at the same region, it is sought after to find the sequence that corresponds to
the shortest path to visit all regions. In addition, since the desired path along
the sequence is constrained by the condition imposed in exploring the regions,
traversing a non-zero arc around every region, while taking into account the path
continuity limitation, solving for the optimal maneuver along that path sequence
becomes a necessity.The brute force approach is considered to tackle this problem
where the length of every path for every visiting sequence is calculated to find
the shortest global path corresponding to the shortest visiting sequence.

Figure 3.3: CSC Dubins paths between a pair of regions of equal radius, 7,egion
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(b)

Figure 3.4: Assumptions are taken on the headings based on the locations of a
pair of consecutive regions along a sequence with respect to each other

3.2 Brute Force Approach

If the total number of regions is n and all paths start and end at the same region
(last region along every sequence is the starting region along a sequence), then
the total number of path sequences, s, is:

s=n! (3.10)

Assume that the map satisfies D4 condition and the assumption on the head-
ings of the local maneuver discussed in the previous section holds. In this case,
the candidate Dubins maneuvers between a pair of regions are; LSL, RSL, RSR,
and LSR (Figure 3.3). However for a path traversing along a sequence, the lo-
cal path between every pair of regions further restricts the Dubins candidates as
shown in Figure 3.5. In other words, the continuity in the overall path limits the
path candidates on every local maneuver between a pair of regions. Hence, for n
regions, the total number of paths per sequence, p, is given as:

p; = 2L (3.11)

Note that the increment in the exponent of equation (3.11) arises from the
condition on starting and ending the visiting sequence at the same region. The
approach calculates every path by summing the length of the Dubins maneuvers
between every pair of regions along every possible visiting sequence. From equa-
tions (3.10) and (3.11) the total number of paths, T, for a given map of n regions
of interest can be calculated as follows:

T = nl(2™). (3.12)

Consider a map with four regions of interest, each with radius r,egion = 4,
with the 2D coordinates of the center of every region, C, given as:
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Figure 3.5: Path continuity along a sequence of visits

74,51
115,56
33,65
59,37

C= (3.13)

For a map of four regions, there exist 24 visiting sequence and 32 paths per
sequence and, hence, 768 global path candidates. The length of every path for
every path sequence is calculated and the shortest path along every sequence is
then extracted, demonstrated in Figure 3.6a (also in Table 3.1). The shortest path
is found to belong to a family of combinations of visit sequence and path maneuver
(Figure 3.6b). This hints that the final solution can be solved for by eliminating
possible global path candidates. For instance, every visit sequence belonging to
the same visiting loop converges to the same solution; visiting sequences [4, 3, 1, 2]
and [4,2,1, 3] both belong to the same visiting loop and hence converge to the
same solution (Table 3.1).

While it is guaranteed that this approach obtains the optimal solution, solving
for every path becomes computationally unfeasible in more populated or dense
maps. As a result, a smarter and more computationally feasible approach is re-
quired to tackle the problem addressed in this study. Since the objective is to
minimize (3.1) using the appropriate assumption on the headings and the corre-
sponding optimal direction around the regions of interest, the Dubins maneuver
for a pair of regions is parameterized to geometrically find the local minima head-
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Figure 3.6: Brute force: Simulation results

ing and solve for the optimal solution. The local minima heading is used to define
an optimization condition based on the assumed headings to solve for the local
maneuver, between every pair of regions along the sequence, corresponding to
the global shortest path.

19



Sequence Shortest path Length of shortest path
4321 | ’RSRRSRRSLLSR’ 215.0513
4312 | ’RSRRSLLSRRSR’ 212.2274
4231 | 'LSLLSLLSRRSL’ 249.4172
4213 | 'LSLLSRRSLLSL’ 212.2274
4132 | ’RSLLSRRSRRSR’ 249.4172
4123 | 'LSRRSLLSLLSL’ 215.0513
3421 | 'LSLLSLLSRRSL’ 212.2274
3412 | 'LSLLSRRSLLSL’ 215.0513
3241 | 'RSRRSRRSLLSR’ 249.4172
3214 | ’RSRRSLLSRRSR’ 215.0513
3142 | 'LSRRSLLSLLSL’ 249.4172
3124 | ’RSLLSRRSRRSR’ 212.2274
2431 | 'RSRRSRRSLLSR’ 212.2274
2413 | 'RSRRSLLSRRSR’ 249.4172
2341 | 'LSLLSLLSRRSL’ 215.0513
2314 | "LSLLSRRSLLSL’ 249.4172
2143 | 'RSLLSRRSRRSR’ 215.0513
2134 | 'LSRRSLLSLLSL’ 212:2274
1432 | LSRRSRRSRRSL’ 215.0513
1423 | 'RSLLSLLSLLSR’ 249.4172
1342 | 'RSLLSLLSLLSR’ 212.2274
1324 | ’LSRRSRRSRRSL’ 249.4172
1243 | LSRRSRRSRRSL’ 212.2274
1234 | 'RSLLSLLSLLSR’ 215.0513

Table 3.1: Shortest path for every sequence
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Chapter 4
Proposed Algorithm for DTSPN

In a given map with defined regions of interests modeled as disks of equal radius,
Tregion, it 1s desired to find the shortest path to visit all regions while travers-
ing a non-zero arc around every region. As such, the problem is modeled as a
DTSPN. While the brute force approach solves for the optimal solution, due to
its high computational inefficiency, it is rendered feasible only for low populated
maps. The convex optimization approach in [13] guarantees convergence to the
optimal solution with high computational efficiency for densely populated maps.
The solution, however, only visits the regions at one point on the boundary; cor-
responding to the local minima position and heading, hence it does not factor in
the exploration factor in the constrained DTSPN proposed in this study. In this
chapter, the Dubins CSC paths are parameterized using the initial and final con-
figurations defined in the problem formulation. Based on this parameterization,
the optimization problem is redefined by expressing the difference between the
length of candidate local maneuvers in terms of the initial and final configura-
tions. An expression of the local minima is then derived upon which an algorithm
is proposed to solve for the constrained DTSPN presented in this study [15].

4.1 Dubins Path Parameterization

Notation | Definition
Le¢ distance between the centers of a pair of regions.
L length of the straight path segment.
7 arc segment angle around the initial region.
Y2 arc segment angle around the target region.
8 angle the line L~ makes with the horizontal axis.

Table 4.1: Notation

Using the assumptions taken in formulating the problem. it is sought after to
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derive a geometrical representation of the local minima heading to define a deci-
sion making criteria on the local maneuver. Dubins CSC paths are parameterized
in this chapter to build up for that purpose. As per the problem formulation, un-
like the case with the classical Dubins curves, the initial and final configurations
are defined by the 2D euclidean coordinates of the center, and the heading angle
on the boundary, of the corresponding region. Since it is assumed that all regions
are at distances greater than 47,.4i.n from eachother, only the Dubins CSC paths
are considered.

4.1.1 RSR Path

Figure 4.1: RSR Path

Let the initial region with radius r, be centered at p; = (z;,y;) with the initial
heading angle 6;, then the path configuration at the initial point can be defined
as q; = [pi,0;] where ¢ € R? x S'. Similarly, the path configuration at the final
region is g5 = [py,0f]. If the angle of the initial and final curved path segments
are denoted as y; and <y, respectively, and the straight line segment as L, (Figure
4.1), then the length of the Dubins maneuver is L = L, + r(y; + 7). The
parameters can now be derived in terms of the line connecting the two regions,
L., and the angle that it makes with the horizontal, 3, as follows:

L,=1L,, (4.1)
T = mod(6; — B, 27), (4.2)
Y2 = mod(B — 0y, 27), (4.3)

where
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g = mod(tan_l(u), 2m), (4.4)
Tf— T

L. = ((ys — y:)? + (x5 — z:)?)12, (4.5)

Since the directions of the path about both regions are in the clockwise, right
direction, then the angular positions of the initial and final point are o; = 6; + %
and ay = 0y + 7, respectively.

4.1.2 RSL Path

\ -
N \\ // -7 Ls
~ _’/\,/

Figure 4.2: RSL Path

Similarly, for the RSL parameterization, the initial point on the path at the
initial circle is defined as ¢; and the final point as q;. However, since the final
point is in the counter-clockwise, left direction, the angular position of the final
point about the final circle is ay = 07 — 7.

For L. and f3 as previously defined, the length of the straight line segment of
the RSL path can be derived as follows:

Ls = (L% — 4r%)2. (4.6)

Equation (4.6) is derived by leveraging the fact that the straight line segment
connects two tangent points, thus forming two right-angled triangles with L, as
their hypotenuse.

In addition, with p; and p, defined as shown in Figure 4.2, the arc angles, 7,
and 7., are expressed as:
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Ho = mod(cos'l(é—s—), 2m), (4.7)
e}

w1 = mod(B — g, 2m), (4.8)
M= mOd(oi - "I‘l) 27T)a (49)
Y2 = mod(8; — pa, 2). (4.10)

4.1.3 LSL Path

qi

Figure 4.3: LSL Path

Let the initial region with radius 7, be centered at p; = (z;,y;) with the initial
heading angle 6;, then the path configuration at the initial point can be defined
as ¢; = [p;,0;] where ¢ € R% x S. Similarly, the path configuration at the final
region is g5 = [py,0f]. If the angle of the initial and final curved path segments
are denoted as <, and +, respectively, and the straight line segment as L, (Figure
4.1), then the length of the Dubins maneuver is L = L, + r(y; + v;). The
parameters can now be derived in terms of the line connecting the two regions,
L., and the angle that it makes with the horizontal, 3, as follows:

Ls = Lca (411)
M= mOd(B - 01'1 27T)a (412)
Y2 = mod(0y — B, 2m), (4.13)
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where

= mod(tan'l(%), 2m), (4.14)
Ls = L = ((yy — y:)? + (x5 — z:)%)3. (4.15)

Since the directions of the path about both regions are in the counter-clockwise,
left direction, then the angular positions of the initial and final point are o; =
0; + 5 and ay = §; — 7, respectively.

4.1.4 LSR Path

Figure 4.4: LSR Path

Similarly, for the LSR parameterization, the initial point on the path at the
initial region is defined as ¢; and the final point as g;. However, since the final
point is in the clockwise, right direction, the angular position of the final point
about the final region is ay = 65 + 7.

For L. and 3 as previously defined, the length of the straight line segment of
the RSL path can be derived as follows:

Ls = (L% — 4r%)7. (4.16)

Equation (4.6) is derived by leveraging the fact that the straight line segment
connects two tangent points, thus forming two right-angled triangles with L. as
their hypotenuse.

In addition, with p; and p, defined as shown in Figure 4.4, the arc angles, v,
and 72, are expressed as:

L
s = mod(cos-l(L—S), o), (4.17)
C
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w1 = mod(B — pg, 27), (4.18)
Y1 = mod(p,l - 01;, 27'('), (419)

Y2 = mod(py — 0¢, 2m). (4.20)

Given an initial and final configuration, the presented parameterization of
Dubins paths is used to reformulate the optimization problem to solve for the
local minima heading of the difference in the length of the candidate Dubins
maneuvers. As such, the shortest global maneuver is obtained by solving for
the local minima headings for every region based on its position along the path
sequence.

4.2 Geometrical Representation of the Local Min-
ima

Considering the brute force approach to DTSPN, and given a map with n re-
gions of interest, the total number of paths is equal to n!(2"*!). The optimal
path sequence is solved for using the polynomial time approximation scheme to
the ETSP in [33]. However, there exists an optimal global maneuver along the
sequence among the 2"*! possible maneuvers (also proven in [42]). This can be
demonstrated by considering the Dubins maneuver candidates between a pair of
regions, where the start and end do not belong to the initial and final circles,
respectively, as shown in Figure 4.5. At least two maneuvers, LSL and RSL, can
be eliminated since they result in arc lengths greater than 7, which hints that
the optimal maneuver can be solved for via elimination.

Consider the RSR and RSL paths presented in Figure 4.6, that correspond to
the local maneuvers between two regions with the initial region in the clockwise
orientation. Using the path parameterization presented in the previous section,
the difference between Lgsg and Lrsy can be expressed as:

(AL)rsr-rsL = A = 2Tregionts, (4.21)
where
Lc - Ls - 2?”,_6 ion Cos_l Ls
A= ! ), (4.22)

2Tre gion.

Note that the expression in equation (4.21) does not depend on 6;, since both
maneuvers follow the same path between any arbitrary 6; to § = 3 on the initial
circle, where 3 is the angle that the line connecting the initial region to the
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Figure 4.5: Local Dubins maneuver candidates between a pair of regions with the
start and end points not belonging to the initial and final circles, respectively.
Note that the paths are not overlapping for visual illustration purposes only.

final region makes with the horizontal. Consider the case when (AL) = 0, then
(0f)criticat can be defined as follows starting from equation (4.21):

(Gf)critical = mOd( 4+ B, 27T) (423)

2 region

This heading, however, corresponds to two tangential points on the boundary
of the final region in the local maneuver; clockwise (denoted by superscript ’'+’)
and counterclockwise (denoted by a superscript -’) direction, demonstrated in
Figure 4.7. The angular positions of both points about the final region can now
be expressed as:

T

(af,critical)+ = mOd((gf.critical)+ - 5; 2”)) (424)

™
(af,critical)_ = mOd((Of,critical)_ + 5: 27{) (425)

A conditional statement on the maneuver can now be formulated as follows:
given a pair of regions with a heading angle 6, the angular position about the
center of the region as, a}L = 0y — 5 (Figure 4.8).

o If (afcriticat) ™ < a}' < mod((of eriticar) T+, 2m), then the optimal maneuver
is RSL.

o If (g criticat)t > a}L > mod((af eriticat) T+, 27), then the optimal maneuver
is RSR.

The same approach holds for LSL and LSR paths being symmetrical to RSR
and RSL paths, respectively, with (6f)criticar defined as:
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Figure 4.6: RSR versus RSL maneuver

(gf)critical = mOd( o+ :Bv 277) (426)

’rregion
Similarly, the condition on the maneuver imposed on 6; is established by
defining (af criticar)t as in equation (4.24):

o If (afcriticat)t < a}" < mod((0cf criticar) T+, 27), then the optimal maneuver

is LSL.

o If (af critica)t > a} > mod((of criticat) T+, 27), then the optimal maneuver
is LSR.

4.3 Proposed Algorithm

After establishing the local optimization criteria, the proposed algorithm is pre-
sented in Algorithm 1. The algorithm solves for the shortest global maneuver in

I B4 caitical)”

Figure 4.7: Heading orientation
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a given map of regions of interest from a given starting point on the map. The
shortest visit sequence is solved for using the ETSP solution [33]. The headings
(Heading()) on every region correspond to the initial point on the local Dubins
maneuver; the angle, 5, that the line connecting the current region with the next
region makes with the horizontal axis. Hence, for the j-th pair of regions along
the sequence, Oinitiat = B; and Ofina = Bj41.

Result: path
map = initialize();
sequence = ETSP(map);
© = Headings(sequence);
for every region along the sequence do
Oinitiat = currentHeading;
6 finat = nextHeading;
if first region then
| shortestManeuver(8;nitial, 8 finat);
end
else
| optimalManeuver(0initial, Ofinat);
end
end
rewire();

Algorithm 1: Simplified Algorithm

After solving for the path sequence and the corresponding headings, the local
path between every pair of consecutive regions along the sequence is solved for
using the formulated conditions imposed on i, defined in the previous sec-
tion. Initially, the orientation of the first region is chosen based on the shortest
Dubins maneuver between the first pair of regions. However, this maneuver is

29



re-routed by the optimal maneuver between the last and first region (rewire()),
if the direction of the latter does not agree with the former. Special case arises
when regions are aligned on the same line along the path sequence. In Figure 4.9
for instance, the shortest path to visit four regions along the sequence, [1,2, 3, 4],
will result in a tangential zero arc maneuver around region 3. As such, a bais is
imposed on the RSL and LSR paths in the inequality of the condition statement
to force the global path to traverse a non-zero arc length around aligned regions.

Figure 4.9: A bias in the equality is imposed on RSL and LSR paths

The work in [37] seeks to obtain the unique solution presented in [42] for free
initial and final headings at entry and departure respectively. As a result, the
path is parameterized and solved for the local minima between a pair of regions
satisfying D4 and D, , 5 conditions, which are regions of unity radius separated
by a distance equal to 4 and 2 + 2v/2, respectively. Furthermore, the authors
proved that the upper bound of the arc length around every region in a sequence
along the global shortest path depends on the distance between the regions and
the sharpness of the turn along the euclidean path. Similarly, this is implied in
equation (4.23) and equation (4.26) as the heading corresponding to the local
minima, (6f)criticar is €xpressed in terms of the length of the line connecting the
two regions, L., and the angle that line makes with the horizontal, 3.

The proposed approach emphasizes on differentiating between two different
types of local paths connecting ¢; and g;: shortest and optimal. The shortest
local path corresponds to the shortest Dubins maneuver between ¢; and g;. On
the other hand, the optimal local path is the Dubins local maneuver between
g; and gy corresponding to the global optimal path, which is the shortest global
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path to visit all regions. The implication of this differentiation is that the global
shortest path does not necessarily mean that it is also the shortest path locally
connecting the initial and final region. This difficulty arises from the fact that any
heading around a region corresponds to two directions, and hence two different
points around the region. As a result, (6f)criticar 1S expressed in terms of the
angular position (af)eriticar in both clockwise and counterclockwise direction to
reach the two, equivalent, conditions imposed on the path headings.

As discussed earlier, since the algorithm is motivated by the objective of
traversing a non-zero arc around every region and supported by the assumption
that the regions are modelled as Dubins circles with radius, 7,egion, the appro-
priate initial heading in every local maneuver connecting two regions is 3, which
corresponds to the point around the region from which the two path candidates
separate (RSR and RSL if clockwise, and LSL and LSR if counterclockwise). The
algorithm is demonstrated in Figure 4.10 for seven regions of interest with unity
radius. The path sequence is solved for using ETSP and the proposed algorithm.
Because of the sharp turn from region-3 centered at (27, 23) to region-4 centered
at (26.28), with the heading in the initial circle in the counterclockwise direc-
tion, the local optimal maneuver is solved by the proposed algorithm to be a
LSR maneuver (shown in blue in Figure 4.10). It is noted that despite the fact
that the LSL maneuver (shown in red in Figure 4.10) is the shorter maneuver to
reach region-4, however it will result in a greater arc length around the region as
the path transverses to region-5. In addition, the arc length around region-4 will
exceed 7 in the LSL case, which causes the path to intersect with itself, hence ren-
dering it non-optimal [37]. On the other hand, the LSR maneuver corresponds to
the global optimal solution since it will result in the shortest local and global arc
length. The algorithm was also simulated at different region radius and greater
number of regions (region density) for robustness. Figure 4.11a and Figure 4.11b
show simulation results for 40 and 100 regions of interest respectively.

4.4 Discussion

The proposed solution to the constrained DTSPN problem in hand is validated
with the brute force solution. Both approaches are implemented on MATLAB
and the solution and the computational effort are compared. An existing TSP
solver, based on [33], on MATLAB is used to solve for the shortest sequence
throughout the analysis. Since the algorithm solves for a unique global path
solution, the number of iterations in the "for loop” of Algorithm 1, where the
core of the computation occurs, is equal to the number of regions, n. This
further implies that the computational efficiency is independent of the radius of
the regions, Tregion and the density of the map, 5 (where D is the grid width of the
map). This is also evident following a 'Big-O’ notation analysis on the approach
proposed in Algorithm 1 where the "for loop” is of order O(n). Similarly, the
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Figure 4.10: Simulation result for seven regions of interest showing the global
optimal path (blue) and a local non-optimal path around a sharp turn (red).

computational efficiency of the brute force approach is only dependent on n with
a computational complexity of order O(2"1).

For a map with 10 regions of interest, with the center of every region given
in equation (4.27), the proposed algorithm is used to solve for the shortest path
to visit all regions for different 7,cg4i0n. The solution is also compared to that of
the brute force solution with the computational time recorded for each simulation
(Table 4.2); where tp4 and tgp are the simulation time for the proposed approach
and the brute force approach respectively. The solution always converges to that
of the brute force solution. While the proposed algorithm demonstrates faster
performance, the simulation time did not change with the change in 7r¢gion for
both approaches. The proposed algorithm is also tested for maps of different
densities. For r,¢gion = 1, the computational time for maps with different densities
is recorded in Table 4.3. Similarly, the computational time remains in the same
order for different map densities.
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Figure 4.11: Simulation Results
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Figure 4.12 demonstrates the results of the computational time taken to con-
verge to the solution for different number of regions. The brute force approach
takes significantly longer time to converge to a solution for more than 15 regions
(converges to the shortest path solution in 88 seconds for a map of 15 regions).
On the other hand, for the same map, the proposed algorithm converged to a so-
lution in less than 0.09 seconds (Figure 4.12). The algorithm also demonstrated
efficient performance for highly populated maps. As can be seen in Figure 4.12,
the algorithm converged to the shortest path solution for a map of 500 regions in
0.2 seconds. The simulation time for the proposed algorithm is also analyzed for
different orders of regions, n (Figure 4.13). The algorithm demonstrates consis-
tent performance, 0.1 —0.2s for n in the 10 order of magnitude before it increases
to 1.466s for n of order 10*. Computational shortcomings of the proposed algo-
rithm start to appear for n with order of magnitude of 10, and higher; where for
for maps with 104 the algorithm converged to the solution in 211.5s and consumed
more than 12 hours for maps with n of order 106. It is also important to reiterate
that throughout this study, it is assumed that the regions in the map satisfy D,
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condition; the distance between any pair of regions is greater than 4r,.gi,,. As
a result, for maps with more closely packed regions, an alternative or modified
approach has to be considered.

Tregions M | Length of path, m | tpa, ins | tgr, in s Eﬂf}iﬁb * 100
0.5 659.84 0.0548 0.1938 -71
1 665.98 0.0552 0.1778 -69
1.5 672.20 0.0734 0.1708 =57
2 678.50 0.051 0.1467 -65
2.5 684.88 0.0476 0.1532 -69
3 691.35 0.0527 0.1898 =72
3.5 697.89 0.0554 0.1754 -68
4 704.51 0.0511 0.1615 -68
4.5 711.22 0.0508 0.1466 -65
5 718.01 0.0604 0.1296 -53
5.5 724.88 0.0569 0.1471 -61
6 731.83 0.0571 0.1586 -64
6.5 738.86 0.0469 0.1356 -65

Table 4.2: Computational time of the proposed algorithm (PA) verus Brute Force
(BF) for maps with different r,cgion for n = 10 regions.

Density(%) | tpa, ins | tgp, ins t—”—% * 100
0.0278 0.0492 0.1642 -70
0.0313 0.055 0.2331 -76
0.0358 0.048 0.281 -83
0.0417 0.0455 0.1481 -73
0.0500 0.0451 0.1429 -69
0.0625 0.0482 0.1555 -69
0.0833 0.0518 0.1492 -65
0.1250 0.066 0.1732 -62
0.2500 0.0452 0.1488 -70

Table 4.3: Computational time of the proposed algorithm (PA) versus Brute
Force (BF) for maps with different densities.
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Chapter 5

Extension: Regions with
Non-equal Radii

It has been, thus far, assumed that all regions are of equal radius. In certain
applications, however, it might be of interest to model these regions each with its
corresponding radius. While the proposed approach in the previous chapter will
guarantee a feasible solution based on a concatenation of Dubins CSC maneuver,
the waypoints tracing the overall global path have to be adjusted to the size of
every corresponding region along the sequence. In this chapter, the proposed
approach is used to build a path planner that solves for a feasible path to visit
and explore regions of non-equal radii. The configuration of each region, g, in
equation (3.2) is redefined as follows:

q= [xcentera Yeenter 97 rregion]~ (51)

where 7,cgion is the radius of the region. Furthermore, it is assumed that the map
satisfies D, condition with respect to the maximum 7,egi,. This modification,
however, imposes the necessity to re-parameterize the Dubins CSC paths between
a pair of regions of non-equal radius to solve for the tangent points at arrival
and departure for the modified path. Accordingly, the headings of the path are
redefined based on these tangent points.

5.1 Dubins Path Re-parameterization

5.1.1 RSR Path

Let the initial region with radius ;, be centered at p; = (z;,y;) with the initial
heading angle 0;, then the path configuration at the initial point can be defined
as q; = [p;,0;, 7). Similarly, the path configuration at the final region is qf =
[ps.0,77]. If the angle of the initial and final curved path segments are denoted
as 71 and 7, respectively, and the straight line segment as L, (Figure 5.1a), then
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Figure 5.1: RSR Path

Ls

(b)

the length of the Dubins maneuver is L = Ly + ;771 + 7472. The parameters can
now be derived in terms of the line connecting the two regions, L., and the angle

that it makes with the horizontal, 3, as follows:
Ly = (L2 = (r— /)",

Ti—Tf

6 = mod(B — sin™*( 'L

),
11 = mod(8; — 0, 27),

Y2 = mod(0 — 0y, 2m),

where

1/ Y9 — Y
= mod(tan~! 27),
§ = mod(tan™!(;L—1), 2m)

Lo = ((yr — %:)* + (25 — z:)?)%.

5.1.2 RSL Path

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

Similarly, for the RSL parameterization, the initial point on the path at the initial
circle is defined as ¢; and the final point as qy. However, since the final point
is in the counter-clockwise, left direction, the angular position of the final point

about the final circle is oy = 67 — 7.
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Figure 5.2: RSL Path

For L. and f as previously defined, the length of the straight line segment of

the RSL path can be derived as follows:
L, = (L3 — (ri = 74)")",
6 = mod(8 — si11‘1(ri£—”)),
v = mod(6; — 6,27),

Y2 = mod(6 — 6y, 2m),

Ls = (L% — (r; + 7f)?)3.

(5.8)
(5.9)
(5.10)
(5.11)

(5.12)

5.2 Path Planner for Maps with Regions of Non-

equal Radii

Given a map of regions with non-equal radii, it is sought after to find a feasible
path that visits and explores each region. It is assumed that the map satisfies D,
condition with respect to the largest rgion. The methodology to tackling this
extended problem entails using Algorithm 1, proposed in the previous chapter,
to solve for the maneuver along the ETSP solution for an assumed map with all

the regions having a radius equal to that of the largest region, rregionmaz-
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In the proposed approach presented in the previous chapter, the path pa-
rameterization used in defining the local minima, and hence the solution, is also
used in planning the waypoint sequence for tracing the path. In this extended
case, however, the the modified parameterization of Dubins paths for regions of
non-equal radii is used to trace the solution of the algorithm for regions of radius
Tregion,maz- 11 the case presented in the previous chapter, the same headings, 3’s,
were used in tracing the path. For regions of non-equal radii, on the other hand,
the departure heading of the local maneuver on the boundary of every region is
set equal to the angle 6 in Figure 5.1 and Figure 5.2.

Consider a map of 8 regions denoted as 7" in equation (5.13) where the first
column is the x-coordinate of the center of every region, the second column is the
y-coordinate of the center of every region, and the corresponding radius of every
region in the third column.

5,53,2
17,5,1
9,27,2

21,99, 1

86,23, 3

77,64, 1

86,82, 1

\84,53,3 )

The solution to the ETSP in this case as per [33] is [4,7,6,8,5,2,3,1] and the
global maneuver as per Algorithm 1, for a map with the same region centers and
Tregion = Tregionmaz = 3, 15 'RSR-RSL-LSR-RSR-RSR-RSR-RSR-RSR’. Figure
5.3 shows the feasible path solution obtained by the planner following the ETSP
solution.

Note that computational efficiency, as validated in the previous chapter, is
independent of the radius of the region. In other words, this extended problem
does not impose computational effort on the solver and as a result the planner
can solve for densely populated maps provided it satisfies D, conditions. Figure
5.4a and Figure 5.4b show the feasible path solution for maps with 40 and 100
regions With Feegon s = 3.

(5.13)
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Chapter 6

Conclusion and Outlook

In this study, a novel algorithm was developed that solves for the optimal path to
the constrained DTSPN problem; visit and explore regions of interest by travers-
ing a nonzero arc around each region. This is done by defining and solving for the
local minima headings between every pair of regions along the path visiting se-
quence. For validating the proposed algorithm, the brute force approach was also
investigated; solving for the length of every possible path to extract the shortest
path. The proposed approach leverages the convex optimization problem to the
classical DTSPN to solve for the optimal solution that converges to that of the
brute force approach with minimal computational effort. While the brute force
showed acceptable time performance for up to 15 regions, the proposed algorithm
sustained a constant fast performance tested for maps with number of regions of
order 10*. In addition, an extension to the problem was introduced by consider-
ing regions with non-equal radii. The proposed algorithm was used to solve for a
feasible path solution to visit and explore each of these regions while taking into
account the variations in the turning radius along the path sequence in tracing
the global path. This dictated re-parameterizing Dubins CSC paths for regions
of non-equal radii.

One of the shortcomings of the proposed approach is that it offers no guarantee
that the path will traverse a meaningful non-zero arc around the regions. In other
words, the path might traverse a non-zero arc length around regions that might
not be large enough to account for the exploration factor imposed by the problem
proposed in this study. This is more likely to occur for regions located on a
straight line along a path sequence. A minimum arc tolerance can be introduced
to the optimization conditional statement in Chapter 5 to restrict the path to
traverse a minimum arc length. Under such constraints, however, the proposed
algorithm offers no guarantees in finding the shortest path solution. Furthermore,
while the proposed approach demonstrated consistent, fast performance for maps
of order up to 10*, the computation time significantly increased for order 10° and
higher.

The proposed approach assumes that regions in the map satisfy D, condition;
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the distance between every pair of regions, of equal radius 7,cg;n, is greater than
47region- This implies that the shortest path connecting an initial and final con-
figuration is a Dubins maneuver of type CSC. In more populated maps where the
D, condition is violated, CCC paths are considered as optimal local maneuvers
in Dubins synthesis presented in [9], and as such the formulation of the proposed
solution must be revisited. Future work may also entail revisiting the extended
problem for regions with non-equal radii; while the planner solves for a feasible
path to visit and explore every region, further work must be done in validating
the optimality of the proposed solution.
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