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An Abstract of the Thesis of

Khaled Hussein Youssef for Master of Engineering
Major: Electrical and Computer Engineering

Title: Characteristic Mode Solution of Complex-Coefficient Complex-Solution
Differential Equations

Computation of complex coefficient complex solution differential equations
has been a problem that arises in various domains of science and engineering,
and has thus received much attention in years, with marked recent progress.
This thesis aims at applying the Theory of the Characteristic Mode (TCM) ap-
proach along with the Method of Moments (MoM) in solving these problems with
emphasis on procedures for higher order differential equations. Several methods,
known in literature, are available for solving the problem and their complexity
differs based on the accuracy of the solution. The general method is presented
and a simplified version of it is adopted to address this problem considering first,
third, and forth orders complex-coefficients complex solution differential equa-
tions. These examples are considered to clarify the approach and present the
simplicity of the method. As illustrated in this proposal, The approach can be
introduced along with other methods, and can be considered as an attractive way
to solve these special occurrences differential equations and other boundary value
problems
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Chapter 1

Introduction

This thesis introduces the Theory of Characteristic Mode (TCM) along with the
Method of Moment (MoM) for numerically computing the solution of a complex-
coefficient complex-solution differential equation. Numerical methods for finding
these solutions are of great importance and of practical values in various branches
of applied mathematics, science, and engineering. Over the years, the subject has
been an active research area, and many solutions have been proposed [1-6] for
the solution of the problem.

The Characteristic Mode Theory (TCM) for either conducting body [7] or
Apertures [8], are simple and structured methods to solve integro-differential
complex equations and proven, as demonstrated by the authors, to have good
convergence. The simplest, which is the characteristic mode theory for apertures,
has been applied successfully to many engineering problems including slots in a
conducting plane [9-13], slots in a conducting cylinder [14-17], waveguide prob-
lem [18], rectangular apertures [19], and others [20-26]. In short, TCM found a
great characteristic as it lies in its ability to fully characterize the radiation and
scattering properties of an arbitrary object based only on the objects geometry
and material properties.

This property of TCM has also extended to other applications and was proven
to provide valuable insights into an antennas behavior independent of the feed-
ing arrangement as well as providing information about how desirable radiation
modes can be excited [26]. This feature has led to its use to design integrated
antennas in the High Frequency (HF) band for land vehicles, ships and aircraft.
However, TCM had largely remained a specialist field until it was rediscovered
for aiding the design of mobile handset antennas. In particular, TCM provides
a powerful tool to understand and exploit excitation of the terminal chassis to
enhance antenna performance. Another powerful feature of TCM is that multiple
characteristic modes at a given frequency facilitate orthogonal radiation patterns,
which provide effective Multiple-Input Multiple-Output (MIMO) antennas [27].
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Chapter 2

Literature Review

The objective of this literature survey is to give a general overview about some
important concepts related to the thesis work. We start by giving an overview
about MoM, it is good to introduce them to new terms such as expansion and
testing. This is because the MoM method starts by expanding the unknown
quantity, which is to be solved for, into a set of known functions with unknown
coefficients. The resulting equation is then converted into a linear system of equa-
tions by enforcing the boundary conditions at a number of points. This resulting
linear system is then solved analytically for the unknown coefficients. It is here
to note that such an approach is very simple and quite interesting when applied
to differential equation of order less than 3, but it is applicable for equations of
higher order.

As readers of this proposal may not be familiar with radiation and scattering
problem, TCM can simply be described as a numerical procedure based on divid-
ing the general solution of a problem into a set of known solutions with different
weights. The orthogonality property of the set function, derived in the procedure,
is used to determine the weighted sum and hence a general solution is obtained.
As dealing with complex quantities, the solution of a complex-coefficient complex
function is complex by nature and hence it can be divided into a real part and an
imaginary part. This division, once implemented in the differential equation un-
der solution, will result into two interconnected equations, whose solution using
the Method of Moment (MoM) will lead to an eigenvalue problem subject to be
solved under the domain of the problem. Once these eigenmodes and eigenvalues
are obtained, a general solution of the problem is then found.

The Method of Moments (MoM) [28] is a computational method based on,
first discretizing the equations into small segments, then employing known basis
functions with unknown coefficients and using the Galerkins solution to produce a
large matrix of equations. The Galerkin method employed in the MoM is defined
by using the same functions for both expansion and testing. The most delicate
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part of this method resides in the fact that the selection of the basis and testing
functions is unlimited, however, it highly affects the accuracy of the solution.
The idea is to use basis functions to expand the solutions into sets and solving
for a null residual error with sets of weighting functions.

The MoM is used to find numerical solutions for applications related to the
computational electromagnetic field [29]. Compared to other numerical tech-
niques, the MoM is characterized by its accuracy and high speed. In electro-
magnetic problems, some metals could have complex and frequency dependent
permittivity which increase the number of unknowns to the solver. It could re-
quire high computational time and large memory requirements because these are
always increasing proportionally to the electrical size of the integral equation.
The solution for that is to combine the MoM with other methods to get higher
speed and better accuracy.

The MoM is joint with the gradient method to create a novel antenna design
method based on the representation of an antenna structure by a combination
of small segments. It is joint with the unscented transform in [30] to model the
uncertainty that could occur in electromagnetic computations, with same accu-
racy but less simulation than the Monte Carlo approach. The authors of [31] also
used the MoM to analyze effectively the uncertainties of the geometric shape of
3D objects presented by multiple random variables in the integral equations. In
[31], an improved MoM is proposed to analyze the scattering properties of multi-
object electromagnetic systems while adopting an iterative process to increase the
accuracy of the method used. The authors of [32] proposed the use of the wavelet
packet transform with the MoM in the purpose of reducing the computation time
and the storage capacity when dealing with large array elements.

In [33], the MoM was used to find the modal characteristics such as the at-
tenuation and phase constants of plasmonic transmission lines. The starting
point of the algorithm proposed in [34] is the MoM along with the Sherman-
Morrison-Woodbury identity; it performs an investigation of nearest neighbors
on a Hamming graph. The MoM is also used in [35] to solve a time-domain
integral equation applied to a wire-grid model of a conducting body.

This thesis will first outline the problem; derive a general solution where the
unknown function is expanded into a sum of weighted basis functions, where the
weight coefficients are to be found. The Galerkin method, which selects testing
functions equal to the basis functions, is adopted. The problem then becomes a
system of linear equations, which is solved analytically or numerically to find the
needed weight coefficients. Simple examples using first, third, and forth orders
complex-coefficients differential equations are then considered for illustration.
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Chapter 3

Problem Formulation

For readers to be familiarized with MoM, it is good to introduce them to new
terms such as expansion and testing. This is because the MoM method starts by
expanding the unknown quantity, which is to be solved for, into a set of known
functions with unknown coefficients. The resulting equation is then converted
into a linear system of equations by enforcing the boundary conditions at a num-
ber of points. This resulting linear system is then solved analytically for the
unknown coefficients. It is here to note that such an approach is very simple and
quite interesting when applied to differential equation of order less than 3, but it
is applicable for equations of higher order.

Accordingly, it is advisable to start with some basic mathematical techniques
for reducing functional equations to matrix equations. A deterministic problem
is considered, which will be solved by reducing it to a suitable matrix equation,
and hence the solution could be found by matrix inversion. The examples that we
will choose are simple and easily to illustrate the theory without any complicated
mathematics. Linear spaces and operators will be used in our solution. At first,
it is recommended to introduce TCM and define some terms related to first order
non-homogeneous differential equation. The choice of this equation is important
only for better understanding of the solution.
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3.1 General Formulation

A general pth order complex-coefficients linear differential equation, defined over
a domain D, has the form

Cp
dpf(x)

dxp
+ Cp−1

dp−1f(x)

dxp−1 + · · ·+ C1
df(x)

dx
f(x) + C0f(x) = g(x). (3.1)

In (3.1), the coefficients Cp, Cp−1, · · · , C1, C0, f(x), and g(x) are all complex
quantities.

In addition, all coefficients and g(x) are known functions and f(x) is the function
whose solution is to be determined.
(3.1) is called the operator equation and can be written as:

L (f(x)) = g(x). (3.2)

In (3.2), L is the operator, operating on f(x), and given by:

L = Cp
dpf(x)

dxp
+ Cp−1

dp−1f(x)

dxp−1 + · · ·+ C0f(x). (3.3)

In (3.3), p is the order of the differential equation.
As f(x) is usually a complex-valued solution, and the coefficients Cp, Cp−1, · · · , C1, C0

are complex, the operator in (3.3) can be defined,according to the TCM theory,
as the sum of a real operator G and an imaginary operator B. Each operator is
given by:

L (f(x)) = G (f(x)) + jB (f(x)) . (3.4)

where
G (f(x)) = The Real part of g(x) = Re{g(x)}, (3.5)

and
B (f(x)) = The Imaginary part of g(x) = Im{g(x)}. (3.6)

These operators are determined from the given differential equation. In the next
step, the domain of solution is divided into N segments of equal length, and the
function f(x) is now defined over the n intervals of definition as follows:

f(x) =
N∑

n=1

infn(x), n = 1, 2, · · · , N. (3.7)

In (3.7), fn is the expansion function and it is a real-valued function defined
over the nth interval and satisfy the boundary condition of the problem, in is
its unknown coefficient to be determined and N is the total number of expansion
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functions. The method of Moments (MoM) with Glisson basis functions, used to-
gether with the model decomposition formulated by Harrington that implements
the direct solution by MoM and the modal decomposition in terms of character-
istic modes. Both methods work with the same discretization, and therefore with
the same impedance matrix,Z.
The discretized impedance opertaror Z can be separated as: Z= R+jX

where R and X have to be real and symmetrical. Since both operators B and
G are linear, the first equation (3.3) could be written as:

L (f(x)) = Cn

N∑
i=1

Vi
dn(fi(x))

dxn
+ Cn−1

N∑
i=1

Vi−1
dn−1(fi−1(x))

dxn−1 + · · · (3.8)

where Cn represents the complex coefficients that should be determined, Vi

represents the multiplication of [in ∗ fn], also the boundary conditions from 1 to
N ( N is chosen according to our need)
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3.2 Method of Solution

Denoting O(.) any of the two operators defined in (3.4) and g be the right side
of equation (3.2), the problem now is to solve the equation

O (f) = g V O (f)− g = 0. (3.9)

In (3.9), O (f) is a linear integro-differential operator, f is an unknown function
to be solved and g is a known function. To find (f), it should be approximated
by a sum of weighted basis or expansion functions as follows:

f ≈
N∑

n=1

infn, n = 1, 2, · · · , N. (3.10)

Where fn is the expansion function, in is its unknown coefficients to be determined
and N is the total number of expansion functions.Since the operator O is linear,the
first equation could be written as:

O

(
N∑

n=1

infn

)
≈ g. (3.11)

Where the residual is given by:

R = g −O

(
N∑

n=1

infn

)
. (3.12)

The residual or the error has to be equal to zero to get best and most accurate
solution. Therefore, the next step is to make the inner product of the above
equation with the testing or weighting functions called wm which should be similar
to fn as imposed by the method of Galerkin. The inner product is defined as:

〈C,D〉 =

∫
domain of
solution

C∗(x).D(x)dx. (3.13)

Applying (3.13), we obtain

< wm, (O(fn)− g) >= 0. m = 1, 2, · · · , N. (3.14)

Since in is a constant, it could be taken outside of the inner product and the
inner product could be rewritten as:

N∑
n=1

in < Wm, O(fn) >=< wm, g > . n = 1, 2 · · · , N. (3.15)
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This could be written in matrix form as follows:[
Z
][
I
]

=
[
V
]
. (3.16)

With matrix Z defined as:
〈
f1, O (f1)

〉
· · ·

〈
f1, O (fN)

〉
...

. . .
...〈

fM , O (f1)
〉
· · · 〈fM , O (fN)

〉
 (3.17)

And vectors I and V as follows:[
I
]

=
[
i1i2 · · · iN

]T
. (3.18)

[V ] = [< g,w1 >< g,w2 > · · · < g,wM >]T (3.19)

It is then obvious that the vector of unknown coefficients. It could be solved as
follows: [

I
]

=
[
Z
]−1[

V
]
. (3.20)
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Chapter 4

Example of a Real Function

In this section, the presented solution will be applied to real coefficient real solu-
tion differential equation and to complex-coefficients complex-solution differential
equations.

4.1 Solution to Real Coefficient Real Solution

differential Equation

Considering this real differential equation:

−d2f(x)

dx2
= 3 + 2x2. (4.1)

subject to the boundary conditions f(0) = f(1) = 0. The operator used in the
calculations below is O = − d2·

dx2 and the known function is g(x) = 3 + 2x2. Using
the Galerkins MoM, the solution for this equation is found by following the steps
below:
1 - Choose the basis function as fn(x) = x − xn+1for n=1,2,...,N to satisfy both
boundary conditions f(0) = f(1) = 0. Where fn should satisfy the order of
differential equation.
2 -Write the approximated expansion of the unknown function as:

f(x) ≈
N∑

n=1

infn = i1f1(x) + i2f2(x) = i1(x− x2) + i2(x− x3). (4.2)

Assuming N=2 is the total number of subsections on the interval [0,1]. For
Galerkins MoM, choose the weighting functions as:

wm(x) = x− xm+1 m = 1, 2, ...,M (4.3)

For M=N=2, find the elements of the square matrix
[
Z
]
:
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z11 =< w1, O(f1) >=

∫ 1

0

w1(x)O(f1(x))dx =

∫ 1

0

(x− x2)(2)dx =
1

3
. (4.4)

z12 =< w1, O(f2) >=

∫ 1

0

w1(x)O(f2(x))dx =

∫ 1

0

(x− x2)(6x)dx =
1

2
. (4.5)

z21 =< w2, O(f1) >=

∫ 1

0

w2(x)O(f1(x))dx =

∫ 1

0

(x− x3)(2)dx =
1

2
. (4.6)

z22 =< w2, O(f2) >=

∫ 1

0

w2(x)O(f2(x))dx =

∫ 1

0

(x− x3)(6x)dx =
4

5
. (4.7)

Find the elements of the vector
[
V
]
:

V1 =< g,w1 >=

∫ 1

0

g(x)w1(x)dx =

∫ 1

0

(3 + 2x2)(x− x2)dx =
3

5
. (4.8)

V2 =< g,w2 >=

∫ 1

0

g(x)w2(x)dx =

∫ 1

0

(3 + 2x2)(x− x3)dx =
11

12
. (4.9)

Replace the values found and solve for
[
I
]

[
Z
][
I
]

=
[
V
]
V

[
1
3

1
2

1
2

4
5

] [
i1
i2

]
=

[
3
5
11
12

]
. (4.10)

(4.10 ) is solved and the results are obtained.

[I] =

[
i1
i2

]
=

[
13
10
1
3

]
(4.11)

Finally, find the unknown function f(x)

f(x) ≈ i1(x− x2) + i2(x− x3) =
13

10
(x− x2) +

1

3
(x− x3). (4.12)

All the above steps are done using a MatLab script and both, the analytical solu-
tion for this differential equation and the solution found by the MoM, are plotted.
Figure 4.1 below represents a graph for analytical solution. Figure 4.2 represents
the two plots which clearly show that f(x) found by the MoM is the same as
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that found by MatLab. There are functions that MATLAB calls implicitly when
you perform certain actions with objects You can change how user-defined ob-
jects behave by defining methods that control specific behaviors. To change a
behavior, implement the appropriate method with the name and signature of
the MATLAB function, so dsolve equation was the best command to define the
differential equation with its condition which will tell us also the coefficients that
we need to represents.

Some differential equations are not as well-behaved, and show singularities
due to a failure to model the problem correctly, or a limitation of the model that
was not apparent. Some DEs can be solved analytically in closed-form, but most
have to be approximated by numerical procedures, which can be unstable.

Ordinary Differential Equations (ODEs), in which there is a single indepen-
dent variable and one or more dependent variables, can be solved using DSolve.

Partial Differential Equations (PDEs) have two or more independent variables
and one dependent variable. Finding exact symbolic solutions of PDEs is a diffi-
cult problem, but DSolve can solve most first-order PDEs and a limited number
of the second-order PDEs.

Figure 4.1: Analytical Solution
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Figure 4.2: Real Function Solution

4.2 Solution to Complex Function Complex Co-

efficient Differential Equation

Similarly, consider the following complex-coefficient complex-solution differential
equation:

O(f) = g V O(f)− g = 0. (4.13)

Where O is a linear integro-differential operator, f is an unknown complex
function to be solved and g is a known complex function. As dealing with complex
quantities, the solution of a complex-coefficient complex-function is complex by
nature and hence it can be divided into a real and an imaginary part. This
division, and also the division of the operator into real and imaginary parts,
once implemented in the differential equation under solution, will result in two
interconnected equations, whose solution using the MoM will lead to a problem
subject to be solved under the domain of definition. To find complex f, it should
be approximated by a sum of weighted basis or expansion functions as follows:

f(x) ≈
N∑

n=1

infn =
N∑

n=1

anfn + j
N∑

n=1

bnfn n = 1, 2, ..., N. (4.14)

Where fn is the expansion function, an are the unknown coefficients of the real
part and bn are the unknown coefficients of the imaginary part of fn and N is
the total number of expansion functions. an and bn are to be determined. Opreal
and Opimag are the real and imaginary parts of the linear integro-differential
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operator, respectively. Since the operator O is linear, the differential equation
could be written as:

Opreal

[ N∑
n=1

anfn(x) + j

N∑
n=1

bnfn(x)

]
+ jOpimag

[ N∑
n=1

anfn(x) + j
N∑

n=1

bnfn(x)

]
= gR + jgI (4.15)

After expanding the equation, there exists two residual equations given by:

R(real) = gR −Real(LHS). (4.16)

R(imag) = gI − Imag(LHS). (4.17)

The next step is to make the inner product of the above equations with the testing
function called wm which should be equal to fn as imposed by the method of
Galerkin. In the examples below, the calculations are presented in details step
by step.
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4.3 First Order Example of a Complex Func-

tion Complex Coefficient Differential Equa-

tion

df(x)

dx
+ jf(x) = 2ejx − jx2 + x− 2. (4.18)

The steps of the solution of this equation are presented below.
1- Identify the real and the imaginary parts of the operator

(f
′

R + jf
′

I) + j(fR + jfI). (4.19)

where
Opreal = f

′

R − fI . (4.20)

Opimag = f
′

I + fR. (4.21)

2- Identify the real and the imaginary parts of the right side function:

Real
{
g(x)

}
= 2 cos x + x− 2. (4.22)

Imag
{
g(x)

}
= 2j sinx− x2. (4.23)

3- Equate the real and the imaginary parts from both sides:

Opreal = Real
{
g(x)

}
. (4.24)

Opimag = Imag
{
g(x)

}
. (4.25)

4- According to the Galerkins method, choose the same basis and weighting
functions. It is to note that the chosen function must meet the boundary values
of the problem. In this case, we select the following function:

fn(x) = xn+1 n = 1, ..., N. (4.26)

Then

f(x) =
N∑

n=1

anfn(x) + j
N∑

n=1

bnfn(x). (4.27)

and
wm(x) = xm+1. (4.28)

5- Calculate the inner product of the previous equations with the weighting func-
tion chosen and apply the real and imaginary parts of the operator on the basis
function chosen:

< (Opreal, wm) >=< Real
{
g(x)

}
, wm > . (4.29)

< f
′

R − fI , wm >=< 2 cosx + x− 2, wm > . (4.30)
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Extending the real operator:

N∑
n=1

anf
′

n(x)−
N∑

n=1

bnfn(x). (4.31)

Extending the real operator:

N∑
n=1

anOp1 −
N∑

n=1

bnOp2. (4.32)

Taking the inner product of the above equation〈( N∑
n=1

anOp1 −
N∑

n=1

bnOp2

)
, wm

〉
=

〈
2 cosx + x− 2, wm

〉
. (4.33)

Using the linearity property of the operator, we obtain:

N∑
n=1

an〈Op1, wm〉 −
N∑

n=1

bn〈Op2, wm〉 = 〈2 cosx + x− 2, wm〉. (4.34)

This can be written in the following format

N∑
n=1

anZ −
N∑

n=1

bnA = VR. (4.35)

The same procedure is extended to the imaginary part of the operator. In this
case,

〈Opimag, wm〉 = 〈Imag
{
g(x)

}
, wm〉. (4.36)

In this example,
〈f ′

1 + fR, wm〉 = 〈2j sinx− x2, wm〉. (4.37)

Extending the imaginary operator, we obtain;

N∑
n=1

bnf
′

n(x) +
N∑

n=1

anfn(x) =
N∑

n=1

anOp2 +
N∑

n=1

bnOp1. (4.38)

Taking the inner product of this operator with the testing function, we obtain〈(
N∑

n=1

anOp2 +
N∑

n=1

bnOp1

)
, wm

〉
=< 2j sinx− x2, wm > . (4.39)

N∑
n=1

an < Op2, wm > +
N∑

n=1

bn < Op1, wm >=< 2j sinx− x2, wm >, (4.40)
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which can also be written in a matrix format

N∑
n=1

anA +
N∑

n=1

bnZ = VI . (4.41)

6 - Solve the system of the form A.x=b

N∑
n=1

anZ −
N∑

n=1

bnA = VR. (4.42)

N∑
n=1

anA +
N∑

n=1

bnZ = VI . (4.43)

Combining both equations of (4.42 )and (4.43 ) into one matrix equation, we
obtain [

Z A
A Z

] [∑N
n=1 an∑N
n=1 bn

]
=

[
VR

VI

]
. (4.44)[

Z A
A Z

] [
xa

xb

]
=

[
VR

VI

]
. (4.45)

Such that: [
Z
]

=


〈
w1, Op1(f1)

〉
· · ·

〈
w1, Op1(fN)

〉
...

. . .
...〈

wM , Op1(f1)
〉
· · · 〈wM , Op1(fN)

〉
 (4.46)

[
A
]

=


〈
w1, Op2(f1)

〉
· · ·

〈
w1, Op2(fN)

〉
...

. . .
...〈

wM , Op2(f1)
〉
· · · 〈wM , Op2(fN)

〉
 (4.47)

[
VR

]
=
[
〈gR, w1〉〈gR, w2〉 · · · 〈gR, wM〉

]T
. (4.48)[

VI

]
=
[
〈gI , w1〉〈gI , w2〉 · · · 〈gI , wM〉

]T
. (4.49)

7 - Finally, create the function f(x) =
∑N

n=1 anfn(x) + j
∑N

n=1 bnfn(x)and plot
it. M = N = 2 is chosen because the plot does not present any major changes

for more iterations. The elements of the square matrix
[
Z
]
are found to be:

Z11 = 〈w1, Op1(f1)〉 =

∫ 1

0

w1(x)Op1(f1(x))dx =

∫ 1

0

(x2)(2x)dx =
1

2
. (4.50)

Z12 = 〈w1, Op1(f2)〉 =

∫ 1

0

w1(x)Op1(f2(x))dx =

∫ 1

0

(x2)(3x2)dx =
3

5
. (4.51)
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Z21 = 〈w2, Op1(f1)〉 =

∫ 1

0

w2(x)Op1(f1(x))dx =

∫ 1

0

(x3)(2x)dx =
2

5
. (4.52)

Z22 = 〈w2, Op1(f2)〉 =

∫ 1

0

w2(x)Op1(f2(x))dx =

∫ 1

0

(x3)(3x2)dx =
1

2
. (4.53)

The elements of the square matrix
[
A
]

are found to be:

A11 = 〈w1, Op2(f1)〉 =

∫ 1

0

w1(x)Op2(f1(x))dx =

∫ 1

0

(x2)(x2)dx =
1

5
. (4.54)

A12 = 〈w1, Op2(f2)〉 =

∫ 1

0

w1(x)Op2(f2(x))dx =

∫ 1

0

(x2)(x3)dx =
1

6
. (4.55)

A21 = 〈w2, Op2(f1)〉 =

∫ 1

0

w2(x)Op2(f1(x))dx =

∫ 1

0

(x3)(x2)dx =
1

6
. (4.56)

A22 = 〈w2, Op2(f2)〉 =

∫ 1

0

w2(x)Op2(f2(x))dx =

∫ 1

0

(x3)(x3)dx =
1

7
. (4.57)

The elements of the vectors
[
VR

]
and

[
VI

]
are:

VR1 = 〈gR, w1〉 =

∫ 1

0

gR(x)w1(x)dx =

∫ 1

0

(2 cosx+x−2)(x2)dx = 0.0616. (4.58)

VR2 = 〈gR, w2〉 =

∫ 1

0

gR(x)w2(x)dx =

∫ 1

0

(2 cosx+x−2)(x3)dx = 0.0435. (4.59)

VI1 = 〈gI , w1〉 =

∫ 1

0

gI(x)w1(x)dx =

∫ 1

0

(2j sinx− x2)(x2)dx = 0.02465. (4.60)

VI2 = 〈gI , w2〉 =

∫ 1

0

gI(x)w2(x)dx =

∫ 1

0

(2j sinx− x2)(x3)dx = 0.1875. (4.61)

After replacing the values found in the system of equations, the coefficients an
and bn are calculated by solving the system A.x=b.

an =

[
0.6092
−0.2261

]
, bn =

[
1.0188
−0.5784

]
(4.62)
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Finally, the approximated expansion of the unknown function could be written:

f(x) ≈
N∑

n=1

anfn + j
N∑

n=1

bnfn

= a1f1(x) + a2f2(x) + jb1f1(x) + jb2f2(x)

= a1x
2 + a2x

3 + jb1x
2 + jb2x

3

= 0.6092x2 − 0.2261x3 + j1.0188x2 − j0.5784x3. (4.63)

All the above steps are done using a MatLab script and both, the analytical
solution and the solution found by the MoM for this complex-coefficients complex-
solution differential equation, are plotted. Figure 4.2 represents the two plots
which shows that Real{f(x)} and Imag{f(x)} found by the MoM is the same
as those found by the MatLab function dsolve.

Figure 4.3: Complex Function First Order DE Solution
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4.4 Third Order Example of a Complex Func-

tion Complex Coefficient Differential Equa-

tion

To prove that the method of moments could be applied to higher order differential
equations, two more examples were added. Considering the following complex-
function complex-solution third order differential equation:

j
d3f(x)

dx3
+ (2 + j)

d2f(x)

dx2
+ (1 + j)

df(x)

dx
+ 2jf(x)

= −2jx3 − (1 + 3j)x2 − (12 + 6j)x + (2− 8j). (4.64)

The steps of the solution of this equation are presented below:
1- Identify the real and the imaginary part of the operator:

j(f
′′′

R + jf
′′′

I ) + 2(f
′′

R + jf
′′

I )

+ j(f
′′

R + jf
′′

I ) + (f
′

R + jf
′

I) + j(f
′

R + jf
′

I) + 2j(fR + jfI). (4.65)

OpReal = −f ′′′

I + 2f
′′

R − f
′′

I + f
′

R − f
′

I − 2fI . (4.66)

OpImag = f
′′′

R + 2f
′′

I + f
′′

R + f
′

I + f
′

R + 2fR. (4.67)

2- Identify the real and the imaginary part of the right side function:

Real
{
g(x)

}
= −x2 − 12x + 2. (4.68)

Imag
{
g(x)

}
= −2x3 − 3x2 − 6x− 8. (4.69)

3- Equate the real and the imaginary parts from both sides:

Opreal = Real
{
g(x)

}
. (4.70)

Opimag = Imag
{
g(x)

}
. (4.71)

4- According to the Galerkins method, choose the same basis and weighting
functions that meets the boundary conditions of the problem. In this case, we
select:

fn(x) = wm(x) = x− xn+1. (4.72)

5- Calculate the inner product of the previous equations with the weighting func-
tion chosen and apply the real and imaginary parts of the operator on the basis
function chosen:

〈Opreal, wm〉 = 〈Real
{
g(x)

}
, wm〉

〈−f ′′′

nI + 2f
′′

nR − f
′′

nI + f
′

nR − f
′

nI − 2fnI , wm〉 = 〈−x2 − 12x + 2, wm〉 (4.73)
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Extending the real operator, we obtain:

OpReal =−
N∑

n=1

bnf
′′′

n (x) + 2
N∑

n=1

anf
′′

n (x)−
N∑

n=1

bnf
′′

n (x)

+
N∑

n=1

anf
′

n(x)−
N∑

n=1

bnf
′

n(x)− 2
N∑

n=1

bnfn(x)

=
N∑

n=1

an

[
2f

′′

n (x) + fn
′(x)
]
−

N∑
n=1

bn

[
f

′′′

n (x) + fn
′′(x) + f

′

n(x) + 2fn(x)
]

=
N∑

n=1

anOp1 −
N∑

n=1

bnOp2. (4.74)

Taking the inner product of (4.74) with the testing function, we obtain:

〈 N∑
n=1

anOp1 −
N∑

n=1

bnOp2, wm

〉
=< −x2 − 12x + 2, wm >

N∑
n=1

an, < Op1, wm > −
N∑

n=1

bn < Op2, wm >=< −x2 − 12x + 2, wm >, (4.75)

which can be written in a matrix format

N∑
n=1

anZ −
N∑

n=1

bnA = VR. (4.76)

Similar operation is done for the imaginary operator

〈
Opimag, wm

〉
=
〈
Imag

{
g(x)

}
, wm

〉
(4.77)

〈f ′′′

nR + 2f
′′

nI + f
′′

nR + f
′

nI + f
′

nR + 2fnR, wm〉 = 〈−2x3 − 3x2 − 6x− 8, wm〉. (4.78)
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Extending the imaginary operator:

N∑
n=1

anf
′′′

n (x) + 2
N∑

n=1

bnf
′′

n (x) +
N∑

n=1

anf
′′

n (x) +
N∑

n=1

bnf
′

n(x)

+
N∑

n=1

anf
′

n(x) + 2
N∑

n=1

anfn(x)

=
N∑

n=1

an
[
f

′′′

n (x) + fn
′′(x) + fn

′(x) + 2fn(x)
]

+
N∑

n=1

bn
[
2f

′′

n (x) + fn
′(x)
]

=
N∑

n=1

anOp2 +
N∑

n=1

bnOp1

〈 N∑
n=1

anOp2 +
N∑

n=1

bnOp1, wm

〉
= 〈−2x3 − 3x2 − 6x− 8, wm〉

N∑
n=1

an < Op2, wm > +
N∑

n=1

bn < Op1, wm >= 〈−2x3 − 3x2 − 6x− 8, wm〉 (4.79)

In a matrix format, 4.47 can be written as:

N∑
n=1

anA +
N∑

n=1

bnZ = VI . (4.80)

6- Solve the system (4.76) and (4.80) of the form A.x = b

N∑
n=1

anZ −
N∑

n=1

bnA = VR. (4.81)

N∑
n=1

anA +
N∑

n=1

bnZ = VI . (4.82)

[
Z A
A Z

] [∑N
n=1 an∑N
n=1 bn

]
=

[
VR

VI

]
. (4.83)

[
Z A
A Z

] [
xa

xb

]
=

[
VR

VI

]
. (4.84)

Similarly, the solution for this equation in both ways, Matlab function solve and
the method of moments, is presented in the figure below in which the first plot
is the solution of the third order differential equation using solve and the second
plot is the result found by using the MoM. The number of subsections on the
interval [−2, 2] is chosen to be N = M = 12 in this case also for the same reason
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that, for higher values, no major change is observed on the curves.

7- finally, create the function f(x) =
∑N

n=1 anfn(x) + j
∑N

n=1 bnfn(x) and plot
it.

Figure 4.4: Complex Function Third Order DE Solution
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4.5 Fourth Order Example of a Complex Func-

tion Complex Coefficient Differential Equa-

tion

The same steps as for the previous example are followed even for higher order dif-
ferential equations. The details for solving the following fourth order differential
equation are presented.

3j
d4f(x)

dx4
+ (2 + j)

d3f(x)

dx3
+ j

d2f(x)

dx2
− df(x)

dx
− 2f(x)

= −4jx6 + (2− 2j)x5 − (55 + 2j)x4 − (242− 454)x3 − (2295 + 55j)x2

− (32 + 298j)x− (59− 18j).
(4.85)

1- Identify the real and the imaginary part of the operator:

3j(f IV
R +jf IV

I )+(2+j)(f
′′′

R +jf
′′′

I )+j(f
′′

R+jf
′′

I )−(f
′

R+jf
′

I)−2(fR+jfI). (4.86)

Opreal = −3f IV
I + 2f

′′′

R − f
′′′

I − f
′′

I − f
′

R − 2fR.

Opimag = 3f IV
R + 2f

′′′

I + f
′′′

R + f
′′

R − f
′

I − 2fI . (4.87)

2- Identify the real and the imaginary part of the right side function:

Real

{
g(x)

}
= 2x5 − 55x4 − 242x3 − 2295x2 − 32x− 59.

Imag

{
g(x)

}
= −4x6 − 2x5 − 2x4 + 454x3 − 55x2 − 298x− 18. (4.88)

3- Equate the real and the imaginary parts from both sides

Opreal = Real

{
g(x)

}
.

Opimag = Imag

{
g(x)

}
. (4.89)

4- According to the Galerkins method, choose the same basis and weighting
functions

fn(x) = wm(x) = x− xm+1.

f(x) =
N∑

n=1

anfn(x) + j
N∑

n=1

bnfn(x). (4.90)
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5- Calculate the inner product of the previous equations with the weighting func-
tion chosen and apply the real and imaginary parts of the operator on the basis
function chosen:

〈Opreal, wm〉 = 〈Real
{
g(x)

}
, wm〉

〈−3f IV
ni + 2f

′′′

nr − f
′′′

ni − f
′′

ni − f
′

nr − 2fnr, wm〉
= 〈2x5 − 55x4 − 242x3 − 2295x2 − 32x− 59, wm〉. (4.91)

Extending the real operator:

− 3
N∑

n=1

bnf
IV
n (x) + 2

N∑
n=1

anf
′′′

n (x)−
N∑

n=1

bnf
′′′

n (x)

−
N∑

n=1

bnf
′′

n (x)−
N∑

n=1

anf
′

n(x)− 2
N∑

n=1

anfn(x)

=
N∑

n=1

an

[
2f

′′′

n (x)− f
′

n(x)− 2fn(x)
]
−

N∑
n=1

bn

[
3f IV

n (x) + f
′′′

n (x) + f
′′

n (x)
]

=
N∑

n=1

anOp1 −
N∑

n=1

bnOp2. (4.92)

Taking the inner product of (4.92) with the testing function, we obtain:〈(
N∑

n=1

anOp1 −
N∑

n=1

bnOp2

)
, wm

〉
=
〈
2x5 − 55x4 − 242x3 − 2295x2 − 32x− 59, wm

〉
N∑

n=1

an
〈
Op1, wm

〉
−

N∑
n=1

bn
〈
Op2, wm

〉
=
〈
2x5 − 55x4 − 242x3 − 2295x2 − 32x− 59, wm

〉
. (4.93)

In a matrix format,
N∑

n=1

anZ −
N∑

n=1

bnA = VR (4.94)

The same procedure is used for the imaginary operator;

〈Opimag, wm〉 = 〈Imag
{
g(x)

}
, wm〉

= 〈3f IV
R + 2f

′′′

I + f
′′

R − f
′

I − f
′

I − 2fI , wm〉
= 〈−4x6 − 2x5 − 2x4 + 454x3 − 55x2 − 298x− 18, wm〉. (4.95)
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Extending the imaginary operator:

3
N∑

n=1

anf
IV
n (x) + 2

N∑
n=1

bnf
′′′

n (x) +
N∑

n=1

anf
′′′

n (x)

+
N∑

n=1

anf
′′

n (x)−
N∑

n=1

bnf
′

n(x)− 2
N∑

n=1

bnfn(x)

=
N∑

n=1

an

[
3f IV

n (x) + f
′′′

n (x) + fn
′′(x)

]
+

N∑
n=1

bn

[
2f

′′′

n (x)− f
′

n(x)− 2fn(x)
]

=
N∑

n=1

anOp2 +
N∑

n=1

bnOp1. (4.96)

Taking the inner product of (4.96) with the testing function, we obtain〈( N∑
n=1

anOp2 +
N∑

n=1

bnOp1

)
, wm

〉
=

〈
− 4x6 − 2x5 − 2x4 + 454x3 − 55x2 − 298x− 18, wm

〉
N∑

n=1

an〈Op2, wm〉+
N∑

n=1

bn〈Op1, wm〉

=

〈
− 4x6 − 2x5 − 2x4 + 454x3 − 55x2 − 298x− 18, wm

〉
. (4.97)

In a matrix format, (4.97) is written as:

N∑
n=1

anA +
N∑

n=1

bnZ = VI (4.98)

6 - Solve the system of the form A.x=b

N∑
n=1

anZ −
N∑

n=1

bnA = VR. (4.99)

N∑
n=1

anA +
N∑

n=1

bnZ = VI . (4.100)

[
Z A
A Z

] [∑N
n=1 an∑N
n=1 bn

]
=

[
VR

VI

]
. (4.101)[

Z A
A Z

] [
xa

xb

]
=

[
VR

VI

]
. (4.102)
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7- Finally, create the function f(x) =
∑N

n=1 anfn(x) + j
∑N

n=1 bnfn(x) and plot
it.

Similarly, the solution for this equation in both ways, Matlab function dsolve
and the method of moments, is presented in figure(4.4) below in which the first
plot is the solution of the fourth order differential equation using dsolve and the
second plot is the result found by using the MoM. The number of subsections
on the interval [-2 2] is chosen to be N = M = 12 in this case also for the same
reason that, for higher values, no major change is observed on the curves.

Figure 4.5: Complex Function Fourth Order DE Solution
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Chapter 5

Conclusion

In this thesis, the method of moments along with the Characteristic Mode theory
is used to solve real- and complex-solution differential equations. The functions
to be found are expanded into a sum of unknown coefficients multiplied by a basis
function. Then, the inner product of the differential equation with a weighting
function, equal to the basis function as imposed by the method of Galerkin, is
performed. Finally, the unknown coefficients are calculated by a simple matrix
inversion. The sum of the basis function multiplied by the corresponding coeffi-
cients found will result in the solution of the unknown function.

Four different examples of differential equations are solved to prove the sim-
plicity of the method: one real-solution second order differential equation and
three complex-solution first-, third- and fourth-order differential equations.
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