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Title: Reliability-based structural design of retaining walls supporting spatially variable 

soils 

 
The design of retaining walls is affected by spatial variability in the properties of the 

retained backfill and the foundation soil. In practice, the conventional approach for designing 

retaining walls is deterministic in nature and is based on ensuring acceptable design factors of 

safety for different limit states of wall failure. The only exception is the design method that is 

available in Eurocode 7, where partial load and resistance factors have been recommended to 

ensure a target level of safety in the design. Although these codes are considered to include the 

uncertainties in the design load and capacity, the recommended partial safety factors may not 

realistically incorporate the impact of spatial variability in the properties of the supported 

backfill and foundation soil on the design, since the calibration studies that were conducted to 

determine the safety factors were not based on realistic random field modeling of the soils 

involved. In addition, existing reliability-based design approaches for retaining walls focus on 

the failure in the soil and do not include design aspects of the structural behavior of the wall. The 

main objective of this thesis is to quantify the level of risk associated with the design of a 

cantilever retaining wall using the conventional deterministic design approaches and approaches 

that are based on partial factors of safety (ex. Eurocode 7). The objective will be attained by 

utilizing random fields that represent the variability in the backfill and foundation soils in the 

finite difference software FLAC 2D®. The effect of the properties of the random field on the 

design of the retaining wall will then be investigated to provide recommendations that would aid 

the design of cantilever walls supporting cohesionless backfill. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Backgound 

In the traditional design approaches for retaining walls, the earth pressure 

distribution that is needed in design is generally evaluated using the Rankine, Coulomb, 

or Lancelotta earth pressure theories, which simplistically assume that the backfill soil is 

homogeneous and that the foundation soil that supports the wall is infinitely rigid. In 

these approaches, every mode of failure (limit state) is examined separately to ensure 

target factors of safety against the particular limit state. Eurocode 7 replaced the 

traditional factor of safety approach by the partial factor of safety approach, whereby 

select/appropriate factors are used to reduce the strength/resistance parameters and to 

increase the applied load. The partial safety factor approach is expected to provide a 

more realistic design risk against the different limit states considered.  

Recently, various fields in geotechnical engineering (ex. slope stability, 

foundation design, and retaining systems) have been tested/affected by random field 

modeling, whereby the soil is modeled as a random field in the context of finite element 

or finite difference software packages. These studies have highlighted the importance of 

modeling the spatial variability of the soils as random fields with predetermined realistic 

spatial correlation structures, rather than simple random variables. These studies showed 

that traditional design factors of safety may not always lead to acceptable levels of risk 

in the design for particular spatial correlation structures. In addition, results obtained by 

Goh et al. (2009) showed that the partial safety factor approach used in Eurocode 7 

cannot be reliably used to ensure target levels of risk for all cases of soil variability. 
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They showed the need for a fully probabilistic design approach which models all the 

sources of uncertainty in the problem and develop a direct linkage between uncertainties 

in the design variables and the probability of failure.  

This study is devoted to investigating the effect of spatial variability of soil 

properties on the structural design of walls using the random finite difference method 

implemented by FLAC 2D®. The backfill soil will be assumed to be a cohesionless sand 

and the foundation soil will be modelled as a stiff/dense material. Both soils will be 

modeled using random fields. 

 

1.2 Objectives and scope of research 

An investigation of the previous work on retaining walls points to the 

importance of the effect of spatial variability of soil properties on the geotechnical 

limit states for design. Moreover, most of the published studies simulate the properties 

of the backfill soil using random variables rather than true random fields. They study 

the stability of walls and the probability of failure without investigating the effect of 

the spatial variability of the properties of the backfill soil on the structural behavior of 

the wall (moments, deflection, steel reinforcement etc.). 

The main purpose of this thesis is to conduct a probabilistic analysis to 

accomplish the following goals: (1) quantify the risk level that is inherent in cantilever 

retaining wall designs that are based on deterministic approaches or partial safety 

factor approaches (Eurocode 7), (2) study the sensitivity of the inherent risk levels to 

the different parameters involved such as mean value, coefficient of variation, and 

spatial correlation structure of the soil properties under and behind the retaining wall, 

and (3) propose/recommend changes to the partial safety factors in Eurocode 7 to 

produce designs with a consistent and realistic target probability of failure. 
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To reach the goals mentioned above, the following steps are needed: 

1. Conduct a literature review that focuses on the studies that relate to the 

reliability based design of retaining walls supporting cohesionless backfill. This 

includes conducting a literature review on the applications of retaining systems that are 

modeled using FLAC 2D and the method used to design a cantilever retaining wall 

according to Eurocode. 

2. Design a cantilever retaining wall according to Eurocode using traditional 

methods. 

3. Create a procedure to conduct Monte Carlo Simulations for retaining walls 

using soil properties that are modeled using random fields (using R software) and 

transport these realizations to FLAC 2D to run the stability analyses.  

4. Conduct a parametric study to quantify the effect of varying certain 

parameters such as the mean, the COV, and the correlation lengths of the random field 

describing the soil properties of the backfill and the foundation soil. 
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CHAPTER 2 

LITERATURE REVIEW 

 

The design of different types of retaining walls using probabilistic approaches 

that take into consideration the variability of soil properties has been addressed by 

many researchers in the literature. The following is a review of some of these works: 

 

2.1 Studies involving the reliability based design of retaining walls: 

Chalermyanont et al. (2005) used Monte Carlo simulations to study the effect 

of variability in soil properties on the probability of external failure of Mechanically 

Stabilized Earth (MSE) walls where they considered three types of failure: overturning, 

bearing capacity, and sliding. A second analysis was done to assess the internal stability 

of MSE walls taking into account the spatial variability of the soil, within a practical 

reliability-based design procedure. 

In order to simulate the spatial variability of soil properties, the authors 

divided the foundation and the backfill into a series of cells, where the soil properties 

are uncorrelated. The factor of safety was calculated using traditional methods. The 

results related to the sliding mode of failure indicated that the coefficient of variation 

(COV) and the mean of the backfill internal friction angle have a significant effect on 

the probability of failure. On the other hand, with reference to the overturning mode of 

failure, the unit weight was found to also have a significant effect. For bearing capacity 

considerations, the mean and COV of both the backfill and foundation soils governed 

the probability of failure. Chalermyanont et al. (2005) developed charts that display the 

required MSE reinforcement corresponding to a target probability of failure. 

Sivakumar and Basha (2008) conducted a parametric study to investigate 10 
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modes of failure for cantilever retaining walls. They showed that the most sensitive 

parameter is the internal angle of friction of the backfill. The authors proposed an 

optimization method that could be used to determine the required wall proportions 

according to the reliability Index and uncertainty in design parameters. 

Goh et al. (2009) proposed a risk-based approach to study the effect of the 

design equation uncertainties and the uncertainty in the geotechnical soil variables on 

the design of cantilever retaining walls in sand, using the “partial factor of safety on 

shear strength” approach. They assumed five lognormally distributed and uncorrelated 

variables: the surcharge, soil friction angle, unit weight, applied moment, and wall 

height. This was the first study which integrated a random model error that accounts 

for the errors from model idealizations in the analyses. 

The results (Figure 1) showed that a fixed partial factor of safety cannot be 

used for all degrees of uncertainty in the soil friction angle, and that the factor of safety 

recommended in several codes (between 1.2-1.25) can be used to yield designs with a 

1% probability of failure, only for the cases involving a friction angle with a standard 

deviation STD that is less than 2 degrees. 

 
Figure 1. Partial Factor Corresponding to Target Pf of 1 and 0.1% (Goh et al. 2009) 

Zevgolis and Bourdeau (2010) introduced a methodology to analyze 
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reinforced concrete cantilever walls using a probabilistic approach. This analysis took 

into consideration the dependency between the failure modes by using the correlation 

among different parameters. The analysis was performed using Monte Carlo 

simulations and the properties of the backfill (unit weight and friction angle) were 

considered random variables that follow a beta distribution. The length of the heel of 

the wall was used as a variable design parameter, where the analysis was performed for 

heel lengths between 1.5 and 3.5 m. 

Zevgolis and Bourdeau found that the factor of safety against sliding and 

bearing capacity failure increases linearly with increasing heel length, whereas it 

increases non-linearly for eccentricity (eccentricity< Base width/6) (Figure 2). In 

addition, they found that a higher degree of uncertainty is obtained for the bearing 

capacity mode of failure and that the pairs of factors of safety of sliding – overturning 

and sliding – bearing are highly correlated. The results also showed that assuming an 

independence between modes of failure will overestimates optimum heel length. 
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Figure 2. Length of Heel vs Factor of Safety (CFSe: factor of safety for eccentricity, 

CFSSL: factor of safety for sliding, and CFSBC: factor of safety for bearing capacity 

(Zevgolis and Bourdeau 2010) 

 

Sujith et al. (2011) utilized the first order reliability method (FORM), second-

order reliability method (SORM) and Monte Carlo simulation (MCS) to calculate the 

probability of failure in the sliding mode for cantilever retaining walls with heights of 

4, 6 and 8 m. They considered five random variables: unit weight of backfill soil, unit 

weight of concrete, the angle of internal friction of the soil, applied surcharge, and the 

coefficient of friction between the concrete and the soil. The effect of the various 

parameters on the probability of failure was expressed by a ‘sensitivity factor’. 

The results showed that the most relevant random variable is the internal 

friction (φ) followed by the concrete-soil coefficient of friction, and that the value of 

the probability of failure is identical for the three methods (Figure 3). 



8 

 

 
Figure 3. Reliability Index and Probability of Failure for the Sliding Mode of Failure 

(Sujith et al. 2011) 

 

The authors also developed design tables that provide the user with an 

appropriate factor of safety for a certain desired reliability index (Figure 4). 

 
Figure 4. Recommended Factors of Safety for Sliding Failure (Sujith et al. 2011) 

 

Zhang et al. (2013) analyzed two stability models for gravity retaining walls 

based on the upper-bound theory of limit analysis, where two failure modes were 

considered as a series of correlated systems. Monte Carlo simulations coded in 

MATLAB were used to calculate the reliability of the retaining wall. The authors 

considered a gravity retaining wall on a highway in Hunan Province-China as a case 

study. 

The results indicated that analyzing a retaining wall using this method that 

applies Monte Carlo simulation and limit analysis theory is more accurate, safe and 

theoretically rigorous than the traditional approach. The authors observed that 

correlations between the multiple failure modes affected the reliability of the model, 

where higher reliability levels where obtained compared to the single failure mode. 
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Zhang et al. (2013) also studied the effect of different parameters on the design 

(internal friction angle, cohesion of backfill, friction coefficient soil-basement, and 

friction angle of backfill soil behind the retaining wall). They concluded that the 

cohesion of the backfill soil, the internal friction angle and the soil-wall friction 

coefficient have an impact on the reliability. 

GuhaRay et al. (2014) considered four failure modes for retaining walls: base 

sliding, overturning, eccentricity (eccentricity > base width/6), and foundation bearing 

capacity failure. They highlighted the need for combining the sensitivity of the random 

variables with the probability of failure (Pf) of each failure mode to introduce a 

probabilistic risk factor (Rf).  

The results showed that the eccentricity and the overturning modes of failure 

are governed by the friction angle of the backfill, while the bearing mode of failure is 

controlled by the friction angle and the cohesion of the foundation soil. Their study 

also concluded that the soil properties are positively correlated. The authors finally 

suggested modifications to the soil parameters and design of the structure according to 

the calculated Probabilistic Risk Factor.  

Daryani and Mohamad (2014) used a reliability-based approach to analyze 

cantilever retaining walls embedded in granular soils using Monte Carlo Simulations 

(MCS) coded in MATLAB. The internal friction angle and void ratio of the soil were 

assumed to be correlated random variables, and the correlation lengths of soil 

parameters were assumed to be extremely large. They assumed that the system 

reliability is a series system, which is composed of the rotational and structural failure 

modes. 

The results showed that the embedment depth ratio which is the ratio of the 

penetration depth (D) to the height of the wall (H) affects the rotational failure mode 
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(Figure 5) whereas the structural failure mode depends on the section modulus (Figure 

6). Daryani and Mohamed (2014) concluded that an increase of D/H would result in an 

increase of the reliability index of the whole system.  The section modulus of the wall 

can then be selected based on the depth (Figure 7). They also observed that the 

structural failure mode controls the limit state for a reliability index lower than 2.5 

(Figure 8), whereas the rotational failure mode governs for cases with larger reliability 

indices. 

 
Figure 5. Effects of Variability in Soil Internal Friction Angle on Rotational Reliability 

Index (Daryani and Mohamad (2014)) 

 
Figure 6. Effects of the Variability in Soil Internal Friction Angle on the Structural 

Reliability Index 
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Figure 7. Variation of Series System Reliability Index (Βsys–S) With Section Modulus 

for Different Embedment Depth Ratio (D/H) (Daryani and Mohamad (2014)) 

 
Figure 8. Variation of Component Reliability Indices Corresponding to Rotational and 

Structural Failure Modes and System Reliability Index (Βsys–S) (Daryani and 

Mohamad (2014)) 

 

2.2 Studies involving the design of retaining walls using FEM 

Fenton et al. (2005) used non-linear finite element analysis in combination 

with random field simulation to find the effect of spatial variability on the active earth 

pressure on a retaining wall (Figure 9). They compared the active earth pressure 

resulting from this analysis with the one obtained by classical Rankine and Coulomb 

approaches. Furthermore, they investigated the effect of spatial variability on the 

global failure surface. 
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Fenton et al. (2005) found that the failure pattern is more complex than that 

obtained using the traditional theories, where the results show that the failure surface 

passes through the high friction angle region in the active case and that the location of 

the failure surface is controlled essentially by ko (at-rest lateral earth pressure). 

 
Figure 9. Active Earth Pressure Where the Soil Is Spatially Random (Fenton et al. 

(2005)) 

 

The authors estimated the probability that the driving force exceeds the 

resisting force to sliding for two cases: (1) correlated and (2) uncorrelated angle of 

friction ∅ and the unit of weight of soil. Results showed that a lower probability of 

failure was obtained when the friction angle and unit weight fields were correlated. In 

addition, the authors studied the effect of the coefficient of variation and the correlation 

between the angle of friction and the unit of weight on the resulting factor of safety. 

Fenton et al. (2005) concluded that the factor of safety is reduced when including a 

correlation between input parameters, and the influence of the friction angle is more 

important than that of the unit weight. 

Griffiths et al. (2008) repeated the analysis done in 2005 but for the case of 

passive earth pressure (Figure 10). They showed that the failure occurs at regions of 

lower friction angles and doesn’t follow the same path assumed in the traditional 
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theory. They also observed that the passive earth pressure in this case is 1.8 times lower 

than that obtained using Rankine’s theory. Results also showed that more realistic 

random field could be obtained if samples are extracted from the soil near the wall. 

 
Figure 10. Passive Earth Pressure Where the Soil Is Spatially Random (Fenton et al. 

(2005)) 

 

Sayed et al. (2010) conducted a reliability analysis for a retaining wall using 

the first-order reliability method (FORM) and the finite element method using the 

finite element program 

‘GEOFEM’. The friction angle, unit weight, and wall-soil friction angle were 

considered as random variables. The analysis was applied to a case study. The results 

indicated that the probability of failure is high for the sliding mode of failure, whereas 

the wall is safe against overturning. The authors also proposed a procedure that can be 

used by designers to calculate the probability of excessive lateral displacement (Figure 

11). 



14 

 

 
Figure 11. Probability of Exceeding the Limiting Lateral Wall Deflection for Reinforced 

Retaining Wall (Sayed et al. 2010) 

 

Tang (2011) used the random finite element method (RFEM) to study the 

effect of uncertainty in the soil properties on excavation-induced deformations. To 

represent the geotechnical uncertainties, the author used joint probability distributions 

with random variables. Several finite element runs were also used to determine the 

probability of exceedance of maximum wall deflection. The author concluded that 

different levels of risk exist for the same wall deflection according to the degree of 

uncertainty specified (Figure 12). 
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Figure 12. The Probability of Exceeding a given deflection with Respective to 

Maximum Deflection of Retaining Wall (Tang (2011)) 

 

Dodagoudar et al. (2015) used the nonlinear finite element program GEOFEM 

to analyze a reinforced concrete retaining wall to study the effect of the variability of 

soil properties on the displacement of the wall (serviceability limit-state design). To 

achieve this objective, the Young’s modulus was considered as a random variable. The 

results indicated that as the COV of the Young’s modulus increases, the STD of 

displacement increases, while the mean value is unaffected. 

To validate the developed random finite element program, two examples were 

considered: the first was obtained by Rahman and Rao (2001) and the second was from 

Shinozuka and Yamazaki (1988). Dodagoudar et al. (2015) demonstrated that the 

results obtained using GEOFEM agreed well with those reported in these earlier 

studies. 

Sert et al. (2016) used the random finite element method (RFEM) with Monte 

Carlo Simulation (MCS) to study the effect of vertical spatial variability on the bending 

moment and wall deflection of cantilever retaining walls, as well as the effect of the 

number of Monte Carlo simulations on the predicted maximum lateral wall deflection 
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and maximum bending moment (Figure 13). The study was done at scales of 

fluctuation ranging from θv = 2m to θv = 100m and the internal friction angle was 

assumed to follow a lognormal distribution. 

The results showed that the deterministic approach of analyzing the design of 

cantilever retaining walls overestimates the variation of wall deflection and bending 

moment and, depending on the selected limiting lateral wall deflection, the probability 

of failure may be thus either overestimated or underestimated. The authors concluded 

that a large number of MCS will result in a small variation in the calculated statistics of 

maximum lateral wall deflection, and that there is a strong positive correlation between 

maximum bending moment and the maximum lateral wall deflection (Figure 14). 

 
Figure 13. Effect of Number of Simulations on Predicted Standard Deviation of 

Maximum Lateral Wall Deflection (COV=30%) (Sert et al. 2016) 
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Figure 14. Correlation between Maximum Bending Moment and Maximum Lateral 

Wall Deflection at Various Levels of Spatial Variability (Sert et al. 2016) 

 

The authors also showed that the mean values of the maximum bending 

moment and deflection increased with increasing scale of fluctuation, and that a small 

scale of fluctuation yields a small variation in the maximum lateral wall deflection and 

bending moment (Figure 16 and Figure 17). 

 
Figure 15. Effect of Spatial Variability on Probability of Exceeding the Specified 

Limiting Lateral Wall Deflection for Coefficients of Variation (COVs) Of Internal 

Friction Angle at 30 %.( Sert et al. 2016) 
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Figure 16. Effect of Spatial Variability on the Estimated Mean of Maximum Bending 

Moment (Sert et al. 2016) 

 

Dasgupta et al. (2017) used the finite difference software FLAC® to study the 

effect of spatial variability on the failure surface and the lateral thrust of a 6m retaining 

wall. They applied Monte Carlo simulations to estimate the probability of failure using 

the covariance matrix decomposition technique. The authors assumed the friction angle 

as a random variable, while all parameters were taken as deterministic. 

Dasgupta et al. (2017) deduced that deterministic procedures underestimate 

the lateral earth pressure when compared to the “true” lateral thrust (Figure 17), and 

that the thrust on the wall becomes higher when the variability of soil increases in the 

vertical direction. The worst case scenario was reached when the scale of fluctuation is 

high in both the vertical and horizontal directions (Figure 18). 
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Figure 17. Validation of FLAC3D® Model Used in the Present Study. (Dasgupta Et Al. 

2017) 

 
Figure 18. Variation of Maximum Lateral Thrust with Scale of Fluctuation (Dasgupta Et 

Al. 2017) 

 

Results also showed that the inclination/angle of the failure wedge is not 

affected by the change in the spatial variability of the soil and that there is no 

correlation between the angle of failure and the determination of lateral thrust in the 

numerical analysis (Figure 19 and Figure 20). 
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Figure 19. Failure Surface Analysis – Homogeneous and Deterministic Soil (Dasgupta 

et al. 2017) 

 

 
Figure 20. Failure Surface Analysis (A) Low θh, Low θv; (B) High θh,  

Low θv; (C) Low θh, High θv; (D) High θh, High θv(Dasgupta et al. 2017) 

 
 

 

 

 

 

 

 

 

 

 

 

 



21 

 

CHAPTER 3 

DETERMINISTIC ANALYSIS 

 

3.1 Wall dimensions and soil properties 

A deterministic design of a selected wall is performed as a baseline case. The 

model consists of a 5m-wall that retains a cohesionless backfill, which lays on a layer of 

a stiff/dense foundation material. Figure 21 shows the section of the wall considered in 

the analysis, along with the corresponding dimensions. 

 
Figure 21. Wall Layout With Key Dimensions 

 

The mechanical properties used in the deterministic analysis for the two soil 

layers are summarized in Table 1. 
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Table 1. Soil Parameters 

Soil Parameter Notation Value Unit 

 

Backfill soil 

layer 

Friction angle φ1 33 ° 

Unit weight γ1 18 kN/m3 

Cohesion c1 0 kPa 

Modulus of Elasticity E1 30 MPa 

Poisson’s ratio ν1 0.3 - 

Dilation angle  Ψ1 5 ° 

 

Foundation soil 

layer 

Friction angle φ2 40 degree 

Unit weight γ2 19 kN/m3 

Cohesion c2 100 kPa 

Modulus of Elasticity E2 80 MPa 

Poisson’s ratio ν2 0.25 - 

Dilation angle Ψ2 10 ° 

 

3.2 Failure Modes of Retaining Wall 

The stability of the retaining wall is governed by three modes of failure: 

1-Sliding Failure Mode: The wall should be designed such that the sum of the driving 

horizontal forces is less than the resisting forces. 

2-Overturning Failure Mode: The sum of the moments about the toe that tend to 

overturn the wall should be less than the moment that stabilizes the wall, which is 

mainly the moment from the weights of the wall and the soil above the heel. 

3-Bearing Failure Mode: The maximum applied pressure on the wall base qmax should be 

less than the ultimate bearing capacity of the foundation soil. 

 

3.3 Design of the cantilever retaining wall according to Eurocode 7 

Eurocode 7 proposed three approaches for the design of retaining walls. The 

difference between these approaches lies in the use of different partial factors for 

material properties, actions, effects of actions, and the resistance. Each country adopts a 

design approach according to its practice in geotechnical engineering. In this study, 
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design approach 1 which is applied in UK is selected. Based on this approach, two 

combinations should be checked, the first is called the “structural combination” where 

the partial factors are applied to the actions, and the second is called the “geotechnical 

combination” where partial factors are applied mainly to the geo-material properties. 

The design is governed by the more critical of the two. The partial factors recommended 

by Eurocode 7 are shown in Table 2. 

Table 2. Partial Factors According to Eurocode 7. 

Combination 
Partial factors on actions Partial factors on soil properties  

γG,unfav γG,fav γQ,unfav γφ γc γcu γγ 

1 1.35 1.0 1.5 1.0 1.0 1.0 1.0 

2 1.0 1.0 1.3 1.25 1.25 1.4 1.0 

 

γG,unfav: partial factor for unfavorable permanent action 

γG,fav: partial factor for favorable permanent action 

γQ,unfav: partial factor for unfavorable variable action 

γφ: partial factor for the friction angle 

γc: partial factor for the cohesion 

γcu: partial factor for the undrained shear strength 

γγ: partial factor for the weight density 

 

Hence, to design a cantilever retaining wall according to Eurocode, the 

following steps are required: 

STEP-1 Given the height of the wall, preliminary sizing of the different parts of the 

retaining wall (heel, toe, and stem) are assumed.  



24 

 

STEP-2 The dimensions of the wall are determined by checking its stability against 

the three failure modes mentioned above, for the two combinations. 

For the sliding failure mode, the ratio of the resisting forces to the driving 

forces is: 

 𝑐𝐵 + 𝐹𝑣 × 𝑡𝑎𝑛 𝛿

𝐹ℎ 
 

(1) 

where 𝑐  the cohesion of the foundation soil and B is is the width of the footing. 

The value of 𝑐 is divided by the partial factor proposed by Eurocode γc = 1.0 in 

combination 1 and by γc = 1.25 in combination 2 (Table 2). 𝐹𝑣 is the sum of the vertical 

forces which constitute a favorable action that stabilizes the wall. 𝛿 is the soil-structure 

interface friction angle (assumed to be equal to 2/3 of the friction angle of the 

foundation soil). The value of tanφ is divided by the partial factor proposed by 

Eurocode γφ = 1.0 in combination 1 and γφ = 1.25 in combination 2 (Table 2). 𝐹ℎ is the 

sum of horizontal forces due to earth pressure. 

 
𝐹ℎ = 𝑘𝑎 × 𝛾1 × 

𝐻2

2
 

(2) 

The value of the active earth pressure ka is calculated using Coulomb equation: 

 
𝑘𝑎 =

𝑐𝑜𝑠2(φ − α)

𝑐𝑜𝑠2α × 𝑐𝑜𝑠(α + δ) × (1 + √
sin(φ + δ) × sin(φ − β)
cos(δ + α) × cos(α − β)

)2

 
(3) 

Where φ: angle of friction, δ: angle of friction between structure and soil, β: 

slope inclination, and 

α: back face inclination of the structure. The value of 𝐹ℎ (unfavorable 

permanent actions that destabilize the wall) is multiplied by 1.35 in combination 1 and 

by 1.0 in combination 2 (Table 2). 
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For the overturning failure mode, the ratio of the resisting moment to the 

overturning moment is 𝑀𝑣 / 𝑀ℎ , where 𝑀𝑣 is the sum of the moments resulting from 

vertical loads, which stabilize the wall and 𝑀ℎ is the sum of the moments resulting from 

horizontal loads that tend to overturn the wall. The unfavorable permanent actions are 

also multiplied by 1.35 in combination 1 (Table 2). 

 

For bearing capacity, the ratio of the ultimate bearing capacity of the soil to 

the maximum bearing pressure on the footing is given by qu  / q𝑚𝑎𝑥 . 

 𝑞𝑢  = 𝑐 𝑁𝑐 𝑆𝑐 𝑑𝑐 𝑖𝑐 + 𝛾 𝐷 𝑁𝑞 𝑆𝑞 𝑑𝑞𝑖𝑞 ++ 0.5𝛾 𝐵’𝑁𝛾 𝑆𝛾 𝑑𝛾𝑖𝛾   (4) 

𝑁𝑐 ,𝑁𝑞 ,𝑁𝛾 : bearing capacity factors.  

𝑆𝑐 ,𝑆𝑞 ,𝑆𝛾 : shape factors. 

 𝑑𝑐 ,𝑑𝑞,𝑑𝛾: depth factors. 

𝑖𝑐 ,𝑖𝑞 ,𝑖𝛾 : inclination factors. 

 qmax  is equal to 
𝑄

𝐵𝑏
(1 +

6×𝑒

𝐵
) for e < 

𝐵

6
 and 

4𝑄

3𝑏(𝐵−2𝑒)
 for e > 

𝐵

6
 

Where: e is the eccentricity, Q is total vertical load, B is base width, b is base 

length=1m. 

The values of 𝑐 and tanφ are divided by the partial factors given in Table 2 for 

combination 2. 

 

STEP-3 For the wall dimensions shown in Figure 21 and the soil properties presented 

in Table 1, the calculations for the three geotechnical failure modes are 

presented in are summarized in Table 3 
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Table 3. Failure Mode for The Two Combinations 

Failure modes Combination 1 Combination 2 

Sliding: (𝑐𝐵 + 𝐹𝑣 × tan 𝛿)/ 𝐹ℎ  2.26 2.68 

Overturning: 𝑀𝑣 / 𝑀ℎ  1.15 1.25 

Bearing capacity. qu  / qmax   5.21 5.13 

 

STEP-4 For the structural failure modes, the magnitude of the bending moment and 

shear force are calculated and multiplied by 1.35 in combination 1 (Table 2). 

The critical values are considered in the design. The calculations are 

summarized in Table 4.  

Table 4. Values of shear and moment for the two combinations 

Outputs Combination 1 Combination 2 

Bending moment (kN.m) 133.8 123.7 

Shear force (kN) 80.3 73.8 

 

The required steel area is calculated using the equations proposed by Eurocode 

7.  

 𝐴𝑠 =
𝑀

0.87 × 𝑓𝑦 × 𝑍
 (5) 

Where 

 𝑍 = 𝑑 × (0.5 + √0.25 −
𝑘𝑚
1.134

) (6) 

  𝑘𝑚 =
𝑀

(𝑏 × 𝑑2 × 𝑓𝑐𝑘)
 (7) 

𝑓𝑦 is the yield strength of steel assumed to be equal to 420 MPa, 𝑓𝑐𝑘 is the 
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compressive strength of concrete at 28 days assumed to be 25 MPa, d is the effective 

depth, and 𝑀is the bending moment. The value of the unfavorable permanent actions is 

multiplied by 1.35 in the combination 1.  

The calculations of the required steel area and number of bars are summarized 

in the Table 5: 

Table 5. Calculations of The Number of Steel Bar / m 

Bending moment (KN.m) 133.8 

𝑑 [𝑚𝑚] 205 

 𝑘𝑚 =
𝑀

(𝑏 × 𝑑2 × 𝑓𝑐𝑘)
 0.1274 

𝑍 = 𝑑 × (0.5 + √0.25 −
𝑘𝑚
1.134

) 0.17 

𝐴𝑠 =
𝑀

0.87 × 𝑓𝑦 × 𝑍
 [
𝑚𝑚2

𝑚
] 2155 

Number of bar/ m 
7 bars/m (diameter 

20 mm) 

 

The area of steel should be greater than the minimum required area of tension 

steel  𝐴𝑠 𝑚𝑖𝑛 proposed by Eurocode 2: 𝐴𝑠 𝑚𝑖𝑛 = 0.26 × ( 
𝑓𝑐𝑡𝑚

𝑓𝑦
) × 𝑏 × 𝑑 where 𝑓𝑐𝑡𝑚 is the 

mean value of axial tensile strength. 

𝐴𝑠 𝑚𝑖𝑛 = 330 mm2/m < 𝐴𝑠  

The resisting shear force of the wall is: 

 
𝑉𝑟𝑒𝑠 = 0.12 × 𝐾𝑣 × 𝑏 × 𝑑 × (100 × 𝑓𝑐𝑘 × 𝜌)

1
3 

(8) 

Where  𝑘𝑣 = 1 + √
200

𝑑
  and 𝜌 =

𝐴𝑠

𝑏×𝑑
  

𝑉𝑟𝑒𝑠 = 145 kN > calculated shear force. 

 



28 

 

CHAPTER 4 

PROBABILISTIC ANALYSIS 

 

4.1 Introduction 

The design wall that is depicted in Figure 21 and subject of the deterministic 

analysis of the previous section, was analyzed probabilistically in FLAC 2D® by 

assuming that the friction angles of the backfill and foundation soil are modeled using 

random fields.  In order to isolate the impact of the friction angle on the response, all 

other soil parameters in Table 1 were assumed to be deterministic.  

The main objective of the probabilistic study is to investigate the effect of 

statistical parameters of the random field of the friction angle (𝜇𝜑 , 𝐶𝑂𝑉𝜑, 𝜃𝜑) on the 

structural response of the retaining wall. To achieve this objective, the analysis was 

conducted for different mean, correlation length, and COV of friction angle. The 

assumed values for these parameters are shown in Table 6 and are expected to cover the 

practical/realistic range of possible values for each parameter. 

Table 6. Statistical Parameters of The Friction Angle φ 

Parameter Values 

Mean (degrees) 30, 33, 36 

COV (tan φ) 0.05, 0.1, 0.15, 0.2 

Vertical and horizontal 

correlation length (m) 
1, 2.5, 5, 10, 25 

 

4.2 Numerical modelling 

FLAC® (from Itasca) is a robust software package for modeling soil and soil-

structure interaction problems. The software-specific FISH language allows faster 

model construction, generation of random fields, and the automation of simulations. The 
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software was utilized to build a wall-soil model (Figure 22) that has the same 

dimensions as the model used in the deterministic analyses (Figure 21). Plane strain 2D 

conditions were adopted with the Mohr-Coulomb constitutive model for both the 

backfill and the foundation soil layers. Due to limitations in computational efforts, and 

in order to account for the developed failure wedge, the backfill soil layer width was set 

to extend up to 6.5m from the wall and the depth of the foundation soil was taken to be 

5m. The boundary conditions were fixed at the bottom and laterally restrained at the 

sides of the model. Square elements were chosen with a side of 1/6m to represent the 

soil body. A code was developed to generate random fields for the friction angle of the 

soil using R software as presented in the appendix. The model size, boundary conditions 

and mesh size were checked to have little/no impact on the calculated wall response. 

 
Figure 22. FLAC® Model: Soil Layers and Dimensions 

 

The probabilistic study was conducted using Monte Carlo Simulations. The 
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main output parameters of interest are the displacement of the wall, the bending moment 

at the wall base, the maximum shear at the base of the wall, and the resultant lateral 

thrust on the wall. Based on trial and error analyses, a decision was made to conduct the 

probabilistic analysis using 1600 random field simulations. This number of realizations 

was found adequate to yield 95% confidence in the calculated mean values for all output 

parameters within 1% error. The required number of simulations was calculated using 

the following formula: 

 
𝑁 = (

196

% 𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 𝜇𝑌
)
2

𝐶𝑂𝑉𝑌
2 

(9) 

Where COV𝑌 is the coefficient of variation of the output “Y” and “% Error 

in 𝜇𝑌” is the degree of precision of the mean of “Y”. As an example, the required 

number of realizations for a percentage error in 𝜇𝑥−𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 that equals 1% and 

a COV𝑥−𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡of 0.14 (highest COV observed in this study) is 750 realizations. 

1600 realizations were adopted in this study. 

The interface soil-structure between the wall and the backfill behavior is 

governed by the normal stiffness (kn) and shear stiffness (ks). It is recommended that kn 

and ks be set to ten times the equivalent stiffness of the stiffest neighboring zone (Itasca 

Consulting Group, 2011): 

 

𝑘𝑛 = 𝑘𝑠 = 10 𝑚𝑎𝑥
𝑘 + (

4
3)𝐺

∆𝑧𝑚𝑖𝑛
 

(10) 

Where: 𝑘 & 𝐺 are the bulk and shear moduli, respectively. 𝑘 & 𝐺  are 

calculated by the following equations: 𝑘 =
𝐸

3×(1−2×𝜈)
  and 𝐺 =

𝐸

2×(1+𝜈)
   

The values of 𝐸 and 𝜈 are presented in Table 1. 

 ∆zmin is the smallest width of an adjoining zone in the normal direction and it 
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equals to 0.1m (mesh resolution adjacent to the interface zone). Using the previous 

equations, 𝑘𝑠 and 𝑘𝑛 of the interface wall-soil are assumed to be equal to 9.6 MPa/m for 

the foundation layer, and 4.04 MPa/m for the backfill layer. 

The random field of the friction angle is defined by three parameters: the mean 

of the variable, the coefficient of variation, and the correlation length. The correlation 

structure for an anisotropic random field is computed using equation 11:  

 𝜌(Δx, Δz) = exp (−
2|Δx|

θh
−
2|Δy|

θv 
) (11) 

Where Δx and Δy are the horizontal and vertical distances between two points 

and 𝜃ℎ and 𝜃𝑣 are the horizontal and vertical correlation lengths. 

Two cases of spatial variability of soil properties are analyzed: (1) Isotropic 

spatial variability, where the horizontal correlation length 𝜃ℎ is equal to the vertical 

correlation length 𝜃𝑣 and (2) Anisotropic spatial variability where the horizontal 

correlation length is different than the vertical correlation length. The second case is 

more realistic since soils in nature are formed/exist in roughly horizontal layers. 

Figure 23 shows the spatial variability of the friction angle for four isotropic 

random fields, with correlation lengths ranging from 1.0m to 25.0m. Figure 24 is a 

similar plot but generated for anisotropic random fields, with a constant horizontal 

correlation length of 10m and a varying vertical correlation length. The generation of 

the random field for the friction angle is performed using the statistical software R and 

then exported to FLAC® by the following procedure: Using the FISH function that is 

built-in FLAC®, the coordinates of each element of soil geometry are exported to the 

software R to calculate the distance between any two elements. The correlation matrix 

which designates the correlation coefficient between any two elements in the finite 

difference mesh is constructed based on the Markovian correlation function in equation 
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11. Monte Carlo Simulations using a lognormal distribution for the friction angle are 

then generated from the mean vector and covariance matric of the different soil 

elements. The simulated values of 𝜑 for each random field realization are obtained and 

stored in separate text files. Several functions in the FLAC® software are called-in to 

draw the geometry of the model, map the friction angle corresponding to each element, 

and run the model to obtain the different required outputs. 

 

  
Figure 23. Spatial Variability of The Friction Angle for Different Correlation Lengths 

(Isotropic Case) 
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Figure 24. Spatial Variability of The Friction Angle for Different Correlation Lengths 

(Anisotropic Case) 
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CHAPTER 5 

RESULTS OF THE NUMERICAL ANALYSES 

 

5.1 Introduction 

The outputs of interest of the Monte Carlo Simulations (Maximum moment, 

maximum shear, lateral earth pressure, and maximum horizontal displacement) are 

presented graphically in Figure 25. The means, standard deviations STD, and coefficient 

of variation COVs for these outputs are shown for all the cases analyzed in the first 

section of this part. In the second section, the resulting probabilities of failure based on 

the EUROCODE 7 recommended partial factor are displayed. In the final section, 

partial factors that result in a targeted reliability index are proposed. 

  
Figure 25. The Outputs of the Monte Carlo Simulations 
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5.2 Isotropic correlation case 

5.2.1  Base case scenario (deterministic foundation layer) 

Figure 26 shows the variation of the mean, STD, and COV of the maximum 

bending moment and maximum shear force with the correlation length for the base case 

scenario, in which µ(φ) = 33º and a COV (tan φ) = 0.1 are adopted. In the base case 

scenario, the friction angle of the foundation soil is assumed to be deterministic. It is 

observed that the mean of the maximum moment equals 104 kN.m and it is not affected 

by the change in correlation length of friction angle. This mean value is slightly higher 

than the deterministic value of the maximum moment (99 kN.m) obtained in FLAC® 

using a deterministic friction angle of 33 degrees. The STD of the moment increases 

asymptotically from 3.7 to 10kN.m as the correlation length increases from 1 to 10. For 

correlation lengths that are greater than 10, the value of STD remains approximately 

constant. This is due to the fact that the correlation length becomes larger than the 

height of the wall. The corresponding coefficients of variation of the maximum moment 

increase from 0.035 to 0.1 as the correlation length increases from 1m to 25m. Similar 

trends are observed for the maximum shear force with a probabilistic mean value that is 

identical to the deterministic value of 59.5kN and a standard deviation that increases 

from 1.6 to 4.3kN, resulting in COVs that range from 0.026 to 0.07 for the maximum 

shear. 

The increase in the COVs of the maximum moment and shear with the 

correlation length is expected. As the correlation length of the friction angle increases, 

the random field of the friction angle becomes more and more spatially correlated and 

homogeneous. This reduces the positive impact of variance reduction due to averaging 
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of the friction angle in the failure zone behind the wall on the overall uncertainty in the 

output parameters (moments and shears). For smaller correlation distances, the random 

field in any given simulation is more erratic, resulting in variance reduction in the 

average friction angle in the soil elements in the failure zone behind the wall. This will 

reduce the uncertainty in the maximum moments and shears as evidences in the smaller 

COVs at small correlation lengths.  

 
Figure 26. The Variation of The Mean, STD, and COV of The Maximum Bending 

Moment and Shear Force With The Correlation Length (µ (φ) = 33º, cov (tan φ) =0.1) 

 

Figure 27 shows the variation of the mean, STD, and COV of the maximum 

horizontal displacement and the resultant earth pressure with the correlation length for 

the base case scenario with a µ(φ) = 33º and a COV (tan φ) =0.1. The mean of the 
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maximum displacement remains constant and equal to 21.6mm as compared to the 

deterministic value (21.3mm). The STD increases from 1mm to around 3mm when the 

correlation length increases from 1m to 25m. The coefficient of variation increases from 

4.4% to 13.3% for a correlation length of 25m. 

On the other hand, the mean of the resultant lateral force is constant and equal 

to the value of the shear force (~60kN). This value is similar to the value obtained from 

the deterministic approach (59.5kN). The STD increases from 1.8kN to 4.6kN as the 

correlation length increases from 1 to 25m. The COV also increases from 0.036 for θh= 

θv=1m to 0.093 for θh= θv=25m. 

The variation of the COVs of the four outputs (maximum bending moment, 

maximum shear force, maximum horizontal displacement, and resultant lateral force) 

with the correlation length in consistent with the concept of the averaging effect of soil 

properties along the correlation zone. Thus, as the scales of fluctuation decrease with 

respect to the scale of the failing wedge, the COVs of the outputs decrease. On the other 

hand, when the scales of fluctuation approach the dimensions of the soil wedge, the 

COVs of the outputs reach asymptotic values. 
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Figure 27. The Variation of The Mean, STD, and COV of (A) The Maximum Horizontal 

Displacement(M), and (B) The Resultant Lateral Force(Kn) With The Correlation 

Length(µ (φ) = 33º, cov (tan φ) =0.1) 

 

5.2.2 Effect of spatial variability in backfill friction angle 

The results in Figures 25 and 26 pertain to the case with a friction angle with a 

COV of 0.1. Figure 28 shows the variation of the COVs of the four output parameters 

with the COV of the friction angle for the case with θh = θv = 1m. The COV of the 

maximum moment, maximum shear, maximum displacement, and resultant earth 

pressure increase linearly when the COV of the friction angle increases from 0.05 to 0.2. 

The maximum value is 0.08 for the maximum x-displacement which corresponding to a 

COV (tan φ) equal to 0.2. The relatively small COVs of the outputs as compared to the 

COV (tan φ) are attributed to variance reduction due to averaging, for the case with the 
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small correlation length (1m) of the friction angle. 

 
Figure 28. The Variation of COV of The Four Outputs for Different COV (tan φ)( µ (φ) 

= 33º, θh=θv= 1m) 

 

5.2.3 Effect of spatially variable foundation soil  

In an effort to explore the effect of spatial variability of the foundation soil 

layer on the structural behavior of the cantilever retaining wall, the analyses are 

repeated by considering a soil under the footing with a random friction angle having a 

mean (φ) of 40°. The simulations are conducted for different correlation lengths and 

different COVs of the friction angle. 

Figure 29 shows the variation of the COV of the four outputs for different 

correlation lengths for two cases: 1 variable layer (only the backfill soil is considered as 

random soil) and 2 variable layers (the backfill and the foundation soils are considered 

as random soil) for the isotropic case (µ (φ) = 33º, COV (tan φ) =0.1). It is noticeable 

from all the cases that the variability in the foundation layer has practically no effect on 

the structural demands and deflections of the retaining wall. These results may be 
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explained by the fact that the bending moment, shear force, and resultant earth pressure 

are not sensitive to changes in the foundation soil friction angle, particularly given that 

the soil has a relatively high cohesion value that was kept as a constant (100 kPa) in the 

analysis. In this case, the structural demands on the wall are more affected by the 

friction angle in the backfill soil. The same conclusions were obtained for the cases with 

anisotropic soil properties. 

 
Figure 29. The variation of COV of the four outputs for different correlation lengths for 

two cases: 1 variable layer and 2 variable layers (isotropic case, µ (φ) = 33º, COV (tan 

φ) =0.1) 

 

5.3 Case of anisotropic random field for φ 

In an effort to investigate the impact of the correlation structure of the random 

field of the friction angle on the results, simulations were conducted for two cases: The 

first is the isotropic spatial variability considering similar correlation lengths in the 

vertical and horizontal directions (θh = θv), and the second is the anisotropic spatial 

variability, where the horizontal correlation length is fixed at a constant value of 10 m 

and the vertical correlation length is varied. Simulations were conducted for five vertical 

correlation lengths of 1, 2.5, 5, 10 and 25m. The variation of the statistical parameters 
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(mean, STD, and COV) of the output variables are plotted as a function of the vertical 

correlation length for these two cases for comparison. 

 

5.3.1 Comparison between isotropic and anisotropic fields. 

The variation of the COVs of maximum moment, maximum shear, maximum 

x-displacement and lateral earth pressure with the vertical correlation length for the base 

case with (µ(φ) = 33º, COV (tan φ) = 0.1) are shown in Figure 29. For the anisotropic 

case, the horizontal correlation length is fixed at 10m. 

It can be noted from Figure 30 that the COVs of the different outputs have the 

same trend when comparing the isotropic and anisotropic cases. For vertical correlation 

lengths less than 10m, the COVs of the four outputs for the anisotropic case are greater 

than those of the isotropic one. At a vertical correlation length that is equal to 10m, the 

two curves overlap. Finally, for vertical correlation lengths that are greater than 10m, 

the COVs of the four outputs for the isotropic case are greater than those of the 

anisotropic case. For the first region (θv < 10m), the averaging effect applies in both 

directions (horizontal and vertical) for the isotropic case, while for θv > 10m, less 

averaging effect takes place in the isotropic case with θv = θh = 25m because of the 

larger correlation lengths as compared to the anisotropic case (θv = 25m, θh = 10m). 
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Figure 30.  Variation of COV of Maximum Moment, Maximum Shear, Maximum x-

Displacement, and Lateral Earth Pressure With The Vertical Correlation Length (µ (φ) = 

33º,COV (tan φ) = 0.1) 

 

The simulations were also repeated for different variabilities in the friction 

angle (COV (tan φ)= 5, 10, 15, 20%). Figure 31 presents the variation of the COVs of 

the four outputs for the isotropic and anisotropic case. For the anisotropic case, the 

horizontal and vertical correlation lengths are fixed at 10m and 1m respectively (θh = 

10, θv= 1m). For the isotropic case the horizontal and vertical correlation lengths are 

fixed at 1m (θh = θv= 1m). It can be observed from Figure 31 that for the same vertical 

correlation lengths, the values of COV of all output for the case of anisotropic are 

higher than those of isotropic case. This can be traced to the averaging effect taking 

place in both directions in the isotropic case. 
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Figure 31. Variation of COV of Maximum Moment,Maximum Shear, Maximum X-

Displacement, and Lateral Earth Pressure With The COV(tan φ)(µ (φ) = 33º) 

 

5.3.2 Effect of backfill friction angle 

Simulations were conducted for means of φ that are equal to 30°, 33° and 36° 

considering anisotropic friction angle with a horizontal correlation angle of 10m, in 

order to investigate the effect of the mean of the friction angle on the four outputs. The 

COV (tan φ) was fixed at 0.1. The values of the maximum moment and maximum shear 

are plotted for different vertical correlation lengths in Figure 32. The deterministic 

values are also plotted for comparison. 
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Figure 32. Variation of The Mean, STD, and COV Of (a) Maximum Moment, And (b) 

Shear Forces With The Vertical Correlation Length for Different Friction Angle Means 

for φ=30, 33, 36 (COV (tan φ) =0.1) 

 

The results indicate that the mean of the maximum moment decreases when the 

mean of friction angle increases from 30 to 36, since the lateral earth pressure decreases 

as will be shown in Figure 33. The drop in the mean of the lateral pressure is due to the 

fact that when the friction between the particles increases the soil body can hold itself 

more, reducing the lateral stress on the wall. It can be seen that the STD of the 

maximum moment are not affected by the friction angle for all correlation lengths. As a 

result, the COV of the moment increases when the mean of φ increases since the mean 

decreases and the STD is constant. 

The mean of the maximum shear force also decreases as the mean of the 

friction angle increases from 30 to 36 degrees. Unlike the bending moment, the STD of 
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the shear decreases with increase in backfill density. As a result, the COV in the 

maximum shear seems to be less sensitive to changes in the friction angle of the soil.  

 
Figure 33. The Variation of The Mean, STD, and COV Of (A) The Maximum 

Horizontal Displacement(M), and (B) The Resultant Lateral Force(KN) With The 

Vertical Correlation Length for φ=30,33,36 (COV (tan φ) =0.1). 

 

Figure 33 illustrates the variation of the mean, STD, and COV of the maximum 

horizontal displacement and the resultant lateral force with the vertical correlation 

length for φ=30, 33, and 36°. 

As was seen for the case of the moment, the mean of maximum displacement decreases 

when the mean of friction angle increase. Since the STD of maximum displacement is 

approximately the same for the three friction angles, the COV increases when the mean 

of φ increases. On the other hand, the response of the resultant lateral earth force is 
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similar to that of the maximum shear with reductions in the mean of the resultant earth 

pressure with increases in the friction angle, and a COV that is more-or-less insensitive 

to changes in the friction angle. 

 

5.3.3 Lateral earth pressure for different θv and COV 

In an effort to investigate the effect of the spatial variability of the friction 

angle on the lateral earth pressure behind the wall, many simulations were conducted for 

different COV and vertical correlations lengths. 

Figure 34 shows the lateral earth pressure from 1600 realizations for the 

anisotropic spatial variability case. Four correlation lengths were considered: 1, 2.5, 5, 

and 10m. The COV (tan φ) was fixed at a constant value equal to 0.1. It is observed that 

the lateral earth pressure increases roughly in a linear trend from the top of the wall. A 

sharp peak appears near the base of the wall. This peak may be explained by the fact 

that the lower soil did not reach the active state yet. The pressure drops back due to the 

development of friction at the interface between the soil and wall base. The 

deterministic value of active lateral earth pressure is calculated for the three models 

developed by: Rankine, Coulomb, and Lancelotta. The dotted line displays the variation 

of earth pressure with the depth according to Rankine which is the critical value 

(largest). This line lies approximately at the 33% percentile of the generated realizations 

for all correlation lengths.  

An investigation of the lateral earth pressure profiles in Figure 33 points to the 

importance of the correlation length of the friction angle of the backfill on the results. 

For the case with the smallest correlation length of 1.0m, the lateral pressure profiles 

with depth can be seen to be erratic and are seen to mix with each other for the different 
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realizations. Conversely, for the case involving the largest correlation length of 10m, the 

lateral earth pressure profiles from the different realizations can be distinguished from 

each other, with some profiles being at the lower end of the lateral stress spectrum and 

other profiles in other realizations being at the higher end of the spectrum, irrespective 

of the depth. This response is expected to govern the coefficients of variation in the 

output parameters including displacement, moment, and shear.  

 
Figure 34. Lateral Earth Pressure for Different Vertical Correlation Lengths (µ (φ) = 

33º, θh=10, COV (tan φ) =0.1) 

 

The analysis is repeated for different COVs for the backfill friction angle in 
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order to study the effect of the uncertainty in the backfill friction angle on the 

uncertainty in the resulting lateral earth profiles with depth. Figure 35 shows the lateral 

earth pressure profiles from 1600 realizations for COV (tan φ) =0.05, 0.1, 0.15, and 0.2. 

All these cases have a vertical correlation length that is equal to 1m and a horizontal 

correlation length of 10m. It is clear from Figure 35 that the band of realizations widens 

as the COV (tan φ) increases. This is because the lateral earth pressure is very sensitive 

to the backfill friction angle. Thus, the variation in the outputs increases as the COV 

(tan φ) increases. 

   
Figure 35. Lateral Earth Pressure for Different COVs (µ (φ) = 33º, θh=10, θv=1) 

 

The results of all the numerical analyses are summarized in Table 7 (mean 
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values), Table 8 (standard deviations), and Table 9 (coefficients of variation) for all 

output variables. 

 

Table 7. Summary of The Mean of Outputs for All Cases 

Mean 

(φ) 

COV 

(tan φ) 

Type of 

spatial 

variability 

θh 

(m

) 

θv 

(m) 

mean 

max 

moment 

(kN.m) 

mean 

max 

shear 

(kN) 

mean 

max 

x-

disp.(m) 

mean 

resultant 

lateral 

force 

(kN) 

33 0.1 anisotropic 10 1 103.8 59.7 0.0217 59.5 

33 0.1 anisotropic 10 2.5 104.0 59.9 0.0218 59.6 

33 0.1 anisotropic 10 5 103.7 59.8 0.0217 59.5 

33 0.1 isotropic 10 10 103.4 59.7 0.0216 59.4 

33 0.1 anisotropic 10 25 103.6 59.8 0.0216 59.5 

33 0.1 isotropic 1 1 104.1 59.9 0.0218 59.5 

33 0.1 isotropic 2.5 2.5 103.7 59.8 0.0217 59.6 

33 0.1 isotropic 5 5 103.5 59.7 0.0216 59.5 

33 0.1 isotropic 25 25 103.6 59.8 0.0217 59.5 

33 0.05 anisotropic 10 1 103.2 59.3 0.02154 59.0 

33 0.15 anisotropic 10 1 104.7 60.3 0.02192 60.0 

33 0.2 anisotropic 10 1 106.4 61.3 0.02239 60.8 

33 0.05 isotropic 1 1 103.2 59.3 0.0215 59.1 

33 0.15 isotropic 1 1 105.6 60.9 0.0221 60.5 

33 0.2 isotropic 1 1 107.5 62.2 0.0226 61.5 

36 0.1 anisotropic 10 1 90.3 55.0 0.0180 55.1 

36 0.1 anisotropic 10 2.5 90.1 55.0 0.0180 55.1 

36 0.1 anisotropic 10 5 90.0 55.0 0.0179 55.1 

36 0.1 isotropic 10 10 89.7 55.0 0.0179 55.0 

36 0.1 anisotropic 10 25 89.7 55.0 0.0179 55.0 

30 0.1 anisotropic 10 1 117.7 65.9 0.0254 65.8 

30 0.1 anisotropic 10 2.5 117.5 65.8 0.0254 65.8 

30 0.1 anisotropic 10 5 117.6 65.9 0.0254 65.8 

30 0.1 isotropic 10 10 117.1 65.8 0.0253 65.6 

30 0.1 anisotropic 10 25 117.2 65.8 0.0253 65.7 
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Table 8. Summary of STD of Outputs for All Cases 

Mea

n (φ) 

COV 

(tan 

φ) 

Type of 

spatial 

variability 

θh 

(m) 

θv 

(m) 

STD 

max 

momen

t 

(kN.m) 

STD 

max 

shear(k

N) 

STD 

 Max 

x-

disp.(m

) 

STD 

resultant 

lateral 

force(kN) 

33 0.1 anisotropic 10 1 5.3 2.2 0.0014 2.4 

33 0.1 anisotropic 10 2.5 7.5 3.0 0.0019 3.3 

33 0.1 anisotropic 10 5 9.2 3.6 0.0024 4.0 

33 0.1 anisotropic 10 10 9.9 3.9 0.0026 4.3 

33 0.1 anisotropic 10 25 10.4 4.1 0.0028 4.5 

33 0.1 isotropic 1 1 3.7 1.6 0.0010 1.8 

33 0.1 isotropic 2.5 2.5 6.4 2.6 0.0017 2.9 

33 0.1 isotropic 5 5 8.1 3.2 0.0021 3.6 

33 0.1 isotropic 25 25 10.7 4.3 0.0029 4.6 

33 0.05 anisotropic 10 1 2.8 1.1 0.0007 1.3 

33 0.15 anisotropic 10 1 7.8 3.3 0.0020 3.6 

33 0.2 anisotropic 10 1 10.4 4.4 0.0027 4.7 

33 0.05 isotropic 1 1 1.9 0.8 0.0005 1.0 

33 0.15 isotropic 1 1 5.3 2.3 0.0014 3.0 

33 0.2 isotropic 1 1 6.8 3.0 0.0018 3.9 

36 0.1 anisotropic 10 1 7.8 3.3 0.0020 3.6 

36 0.1 anisotropic 10 2.5 10.4 4.4 0.0027 4.7 

36 0.1 anisotropic 10 5 8.8 2.8 0.0024 3.2 

36 0.1 isotropic 10 10 9.6 3.0 0.0026 3.5 

36 0.1 anisotropic 10 25 10.0 3.1 0.0027 3.6 

30 0.1 anisotropic 10 1 5.2 2.6 0.0014 2.5 

30 0.1 anisotropic 10 2.5 7.5 3.6 0.0020 3.6 

30 0.1 anisotropic 10 5 8.7 4.2 0.0023 4.1 

30 0.1 isotropic 10 10 9.4 4.4 0.0 4.4 

30 0.1 anisotropic 10 25 10.2 4.8 0.0 4.8 

 

Table 9. Summary of COV of outputs for all cases 

Mean 

(φ) 

COV 

(tan φ) 

Type of 

spatial 

variability 

θh 

(m

) 

θv 

(m) 

COV 

max 

moment 

COV 

max 

shear 

COV 

max 

x-disp. 

COV 

resultant 

lateral 

force 

33 0.1 anisotropic 10 1 0.051 0.036 0.063 0.049 

33 0.1 anisotropic 10 2.5 0.072 0.050 0.090 0.067 

33 0.1 anisotropic 10 5 0.088 0.061 0.112 0.081 
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33 0.1 isotropic 10 10 0.096 0.065 0.122 0.086 

33 0.1 anisotropic 10 25 0.100 0.069 0.128 0.090 

33 0.1 isotropic 2.5 2.5 0.062 0.043 0.077 0.058 

33 0.1 isotropic 5 5 0.078 0.054 0.099 0.072 

33 0.1 isotropic 25 25 0.103 0.071 0.133 0.093 

33 0.05 isotropic 1 1 0.019 0.013 0.023 0.018 

33 0.1 isotropic 1 1 0.035 0.026 0.044 0.036 

33 0.15 isotropic 1 1 0.050 0.038 0.062 0.050 

33 0.2 isotropic 1 1 0.063 0.049 0.079 0.062 

33 0.05 anisotropic 10 1 0.027 0.019 0.033 0.026 

33 0.15 anisotropic 10 1 0.075 0.054 0.093 0.072 

33 0.2 anisotropic 10 1 0.098 0.072 0.122 0.092 

36 0.1 anisotropic 10 1 0.060 0.031 0.081 0.046 

36 0.1 anisotropic 10 2.5 0.083 0.042 0.112 0.061 

36 0.1 anisotropic 10 5 0.098 0.051 0.133 0.073 

36 0.1 isotropic 10 10 0.107 0.055 0.146 0.079 

36 0.1 anisotropic 10 25 0.111 0.057 0.152 0.081 

30 0.1 anisotropic 10 1 0.044 0.039 0.054 0.046 

30 0.1 anisotropic 10 2.5 0.064 0.054 0.078 0.061 

30 0.1 anisotropic 10 5 0.074 0.063 0.091 0.073 

30 0.1 isotropic 10 10 0.080 0.067 0.099 0.079 

30 0.1 anisotropic 10 25 0.087 0.074 0.109 0.081 

 

 

 

 

 

 

 

 

 

 

 

 



52 

 

Chapter 6 

IMPLICATIONS ON STRUCTURAL DESIGN OF WALL 

USING EC7 

6.1 Introduction 

In the previous sections, the variability in the load demand (shear and moment) 

on a cantilever wall that is supporting a random cohesionless backfill was quantified. In 

this section, analytical models for the shear resistance and moment resistance of the wall 

are used to calculate the probability of failure for these two limit states (shear failure 

and flexural failure) based on the Eurocode recommended partial factors. Additionally, 

new partial factors are proposed to meet the target probabilities of failure for different 

reliability classification in compliance with the Eurocode. 

 

6.2 Design for Flexure 

After checking the stability of the wall against the three failure modes (sliding, 

overturning, and bearing capacity), a structural design is needed to calculate the steel 

reinforcement to cater for the moment demand. The equation proposed by Eurocode is: 

 𝐴𝑠 =
𝑀𝑅

0.87 × 𝑓𝑦 × 𝑍
 (12) 

  𝑍 = 𝑑 × (0.5 + √0.25 −
𝑘𝑚
1.134

) (13) 

  𝑘𝑚 =
𝑀𝐿

(𝑏 × 𝑑2 × 𝑓𝑐𝑘)
 (14) 
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𝑀𝑅 is the resistance moment, 𝑀𝐿 is the loading moment, 𝑏 is the wall section 

width, and 𝑑 is the effective depth. An equation of 𝑀𝑅 can be extracted from the three 

above equations such that: 

 

𝑀𝑅 = 𝐴𝑠 × 0.87 × 𝑓𝑦 × 𝑑 × (0.5 +

√0.25 −

𝑀𝐿
(𝑏×𝑑2×𝑓𝑐𝑘)

1.134
)  

(15) 

In the structural reliability analysis, 𝑓𝑦 and 𝑓𝑐𝑘 are assumed to follow a 

lognormal distribution with mean values of 455 and 31MPa respectively and a COV of 

0.05. 𝐴𝑠, 𝑏 and 𝑑 are assumed to have deterministic values that are given in the 

deterministic analysis. 

The performance function that is needed to define failure is then given by the 

equation: 

 𝑔 = 𝑀𝑅 −𝑀𝐿 = 𝐴𝑠 × 0.87 × 𝑓𝑦 × 𝑑

×

(

 
 
0.5 +

√
0.25 −

𝑀𝐿
(𝑏 × 𝑑2 × 𝑓𝑐𝑘)

1.134

)

 
 
−𝑀𝐿 

(16) 

In order to calculate the probability of failure of the wall in the flexural mode, 

the probability distribution of 𝑀𝐿  needs to be defined. Figure 36 shows a Q-Q plot for 

the logarithm of 𝑀𝐿 as obtained from the 1600 random field realizations for a typical 

case involving µ(φ) =33º, COV(tanφ) = 0.1, θh=10, and θv=1. The Q-Q plot shows that 

the logarithm of (𝑀𝐿 ) can be assumed to follow a normal distribution. Similar results 

were obtained for other cases indicating that 𝑀𝐿 could be realistically modelled by a 
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lognormal distribution in the structural reliability analysis. Monte Carlo Simulations 

with 10,000,000 realizations were used to calculate the probability of failure defined as 

the number of cases where the performance function in equation 16 results in negative 

values divided by the total number of realizations. The number of simulated realizations 

is calculated from: 

 
𝑁 = (

196

𝑒𝑟𝑟𝑜𝑟
)
2

×
(1 − 𝑝)

𝑝
 

(17) 

The calculation is done with 95% confidence for an estimated probability of 

failure of 0.005% with a percent error of 5%.  

 
Figure 36. Q-Q plot of ln (ML) (µ (φ) = 33º, COV (tan φ) = 0.1, θh=10, and θv=1) 
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The recommended minimum values for the reliability index β for ultimate limit 

states proposed by Eurocode 7 are given in   Table 10. The probabilities of failure for 

the three reliability indices are also shown in the Table. RC1, RC2, and RC3 are the 

three reliability classes of the Eurocode.  

RC3: high consequences of failure. 

RC2: medium consequences of failure. 

RC3: low consequences of failure. 

 

  Table 10. Recommended Minimum Values for Reliability Index Β 

Reliability 

Class 

Minimum value for β for 50 

years reference period 

Probability 

of failure 

RC3 4.3 8.54E-06 

RC2 3.8 7.23E-05 

RC1 3.3 4.83E-04 

 

Reliability analyses were conducted for cases involving random fields with 

different friction angles and different correlation structures for the friction angle of the 

backfill. For each case analyzed, the area of steel reinforcement in the wall was 

calculated based in Eurocode 7 and the probability of failure against flexural failure was 

calculated using the performance function in equation 16.  The resulting probabilities of 

failure are plotted as a function of the vertical correlation length in Figure 36 for the 

cases with φ=30, 33, and 36°, COV (tan φ) =0.1, and θh=10m. Also shown on Figure 36 

are the three target reliability indices that are specified by Eurocode 7.  

The first observation from Figure 37 is that the probability of failure for the 

flexural mode of failure of the wall increases as the correlation length increases, 
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irrespective of the density of the backfill. These results are expected since the COV of 

the maximum moment that acts on the wall was shown to increase with the correlation 

length. The second observation from Figure 36 is that the probability of failure increases 

with an increase in the friction angle of the backfill for any given correlation length. 

This trend correlates well with the trend observed for the COV of the maximum 

moment which was shown in Figure 32 to increase with friction angle. It should be 

noted however that the probabilities of failure that were calculated for the case with a 

friction angle of 30 were much smaller than those observed for the cases with φ = 33 

and 36 degrees. This nonlinearity in the relationship between the probability of flexural 

failure and the friction angle of the backfill soil is related to the nonlinear performance 

function in which the uncertain maximum moment in the wall ML shows up in both the 

load and the resistance components in equation 16. Since the mean and COV of the 

maximum moment ML are governed by the density of the backfill, the probability of 

failure in the flexural model ends up being a non-linear function of the density of the 

backfill as indicated in Figure 32. 

 

The third observation from Figure 32 is that the use of the Eurocode-

recommended partial factors results in probabilities of failure that vary in a wide range 

depending on the mean value and correlation length of the friction angle of the backfill. 

For example, the cases involving loose backfill with a mean friction angle of 30º 

resulted in probabilities of failure that are smaller than the target probabilities of failure 

recommended in Eurocode, irrespective of the reliability classification level (RC1 to 

RC3) and irrespective of the correlation length assumed. For the cases involving the 

denser backfill (mean friction angles of 33 and 36 degrees), the resulting probabilities of 



57 

 

failure were all greater than that allowed for RC3, except for cases involving correlation 

lengths that are smaller than 2.5m. For cases with correlation lengths that are greater 

than 2.5m, the probabilities of failure increase and approach the Eurocode target 

reliability index for RC2 for cases with correlation lengths of 5m, and exceed the target 

reliability index for RC2 for cases with correlation lengths exceeding 10m. It should be 

noted that all analyzed cases resulted in probabilities of failure that were within those 

allowed by Eurocode for reliability classification RC1.  

 
Figure 37. Variation of The Probability of Failure In Flexure With The Vertical 

Correlation Length for φ =30, 33, and 36°( COV (tan φ) =0.1,θh=10m.) 

 

6.3 Design for shear  

The same analysis is done for the shear force. The equation proposed by 

Eurocode is: 

 
𝑉 = 0.12 × 𝐾𝑣 × 𝑏 × 𝑑 × (100 × 𝑓𝑐𝑘 × 𝜌)

1
3 

(18) 

 where 𝐾𝑣 = 1 + √
200

𝑑
,  and 𝜌 =

𝐴𝑠

𝑏×𝑑
 

The performance function is then given by the equation  ℎ = 𝑉𝑅 − 𝑉𝐿 
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Where  𝑉𝐿 is random maximum shear force that is based on the random field 

modeling of the wall in FLAC® and 𝑉𝑅 is obtained from the following equation: 

   
𝑉𝑅 = 0.12 × 𝐾𝑣 × 𝑏 × 𝑑 × (100 × 𝑓𝑐 × 𝜌)

1
3 

(19) 

The results show that the probability of failure for the case of shear is very 

small compared to that for the bending moment for all cases, which indicates that the 

design is very safe for shear. Therefore, the focus in the rest of the study will be on the 

flexural response. 

 

6.4 Recommended partial factors for Eurocode 7 

Since the probability of failure depends on the correlation length, mean friction 

angle, and COV (tan φ), the reliability analysis could be used to recommend partial 

factors that would result in probabilities of failure that meet the three reliability 

classifications given in the Eurocode. To achieve this objective, the probability of failure 

corresponding to a range of partial factors between 0.9 and 1.6 is calculated for the 

studied cases. For illustration, Figure 38 displays the variation of the probability of 

failure with respect to the assumed partial factor for different COV (tan φ) for the case 

when µ(φ) = 33º, θh=10m, and θv= 1m. The probability of failure for the three reliability 

classifications of the Eurocode as well as the recommended partial factors are also 

shown for comparison. 
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Figure 38. Variation of The Probability of Failure With The Partial Factors for Different 

COVs (µ(φ)=33º, θh=10, and θv=1) 

 

It is clear from Figure 38  that the probability of failure decreases when the 

partial factor increases. For COV (tan φ) < 0.15, the design using the current Eurocode-

recommended partial factor is safe for all levels of reliability classifications (RC1 to 

RC3). For COV (tan φ) = 0.2, the probabilities of failure are relatively higher and a 

revised partial factor of 1.45 is necessary to meet the reliability classification RC3. 

Results on Figure 37 indicate that reductions in the recommended Eurocode partial 

factors could be implemented for cases involving lower variability in the friction angle 

of the backfill. For example, for cases with a COV (tan φ) = 0.05, a partial factor of 1.2 

is enough to meet the reliability classification 3 (lowest probability of failure). For COV 

(tan φ) = 0.1, a partial factor of 1.3 is needed.  

In order to investigate the effect of the correlation length on the required partial 

factors, the analysis involving the base case with a µ (φ) = 33º, COV(tan φ)= 0.1, and 

θh=10m was repeated for different correlation lengths. Figure  shows the variation of the 

partial factors required to produce probabilities of failure that are consistent with the 

three target reliability classification levels in Eurocode.   
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Results on Figure 39 indicate that for a target β of 4.3 (RC3), the required 

partial factors increase from 1.26 to 1.5 when the vertical correlation length of the 

friction angle random field increases from 1 to 25m. The same trend is observed for 

RC2 (β=3.8) with relatively lower required partial factors ranging from 1.2 to 1.38. For 

the lowest reliability classification level RC1 (β=3.3), the partial factors decrease to 

reach a value of 1.15 for a vertical correlation length of 1m and 1.32 for a vertical 

correlation length of 25m. It can be deduced that for β=3.3, all partial factor values are 

smaller than the value proposed by Eurocode. For β=3.8, values that are smaller than 

1.35 are required for low vertical correlation lengths (θv < 10) and greater than this 

value for high vertical correlation lengths (θv > 10). Finally, for β=4.3, partial factors 

less than 1.35 are required for θv < 5 and greater than this value for θv > 5. 

 
Figure 39. Variation of Partial Factor With The Vertical Correlation Length [M] for 

Anisotropic Case (µ (φ) = 33º ,COV(tan φ)= 0.1, θh=10 ) 

 

The analysis is repeated for different values of COV (tan φ). The variation of 

the required partial factor with the coefficient of variation for anisotropic case ((µ (φ) = 
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33º, θv=1, θh=10) is plotted in Figure 40. The results show an increase in the partial 

factor when the COV (tan φ) increases from 0.05 to 0.2, for the three βs to reach a 

maximum value of 1.5 for β= 4.3 (COV (tan φ) =0.2). For β= 3.3, the values of partial 

factor are smaller than 1.35 for four the COV (tan φ). For β= 3.8 and β= 4.3, partial 

factors less than 1.35 are required for COV (tan φ) < 0.15 and greater than this value for 

COV (tan φ) > 0.15. 

 
Figure 40. Variation of Partial Factor With The Coefficient of Variation for The 

Anisotropic Case (µ(φ) = 33º, θv=1, θh=10) 

 

The recommended partial factors that are displayed in Figures 39 correspond to 

cases involving an anisotropic random field of the friction angle for the backfill soil 

with a horizontal correlation length of 10m and varying vertical correlation lengths. 

Although the anisotropic random field of φ is expected to be a more realistic 

representation of reality than an isotropic random field, a comparison between the 

required partial factors for the two types of spatial variability could be of significance. 

Such a comparison is displayed in Figure 41.  
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Figure 41. Variation of Partial Factor With (a) The Vertical Correlation Length((µ (φ) = 

33º , θh=10, COV (tan φ)=0.1),and With (b) the COV(tan φ) (µ(φ)=33º , θv =1, 

θh=10(Anisotropic Case)) 

 

Figure 41 shows the variation of the recommended partial factors for the three 

target reliability indices with the correlation length (Figure 41a) and COV (tan φ) 

(Figure 41b). For any given vertical correlation length that is less than 5.0m, it can be 

observed from Figure 41a that the partial factors for the anisotropic spatial variability 

are slightly larger than those of the isotropic case, a response that is compatible with 

results obtained in the previous sections. For correlation lengths that are larger than 

5.0m, the calculated partial factors are identical in the two cases considered. 

Considering different COVs of φ, the curves on Figure 41b also show that the required 

partial factors for the anisotropic spatial variability are greater than those of the isotropic 
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case for the three target reliability indexes. The difference between the required partial 

factors can be observed to increase as the COV of the friction angle increases. It is 

interesting to note that for the specific cases considered in Figure 41b (µ(φ)=33º , θv 

=1m), the current Eurocode partial factor is capable of ensuring reliability levels that are 

consistent with the three target reliability classification s(RC1 to RC3). This conclusion 

does not hold for the equivalent anisotropic cases, which show the need for the use of 

larger partial factors, particularly for COVs of φexceeding 0.15.  

Figure 42 portrays the effect of the mean of the friction angle on the required 

partial factors for the three target reliability indices. It is observed that the partial factors 

vary non-linearly with the mean of φ for the three reliability indexes proposed by 

Eurocode. As the mean of friction angle increase from 30 to 33 the values of partial 

factors increase. These values drop when the friction angle increases to 36. Results on 

Figure 41 indicate that for the lowest reliability classification RC1 (β=3.3), the current 

Eurocode partial factor is adequate irrespective of the density of the sand backfill and 

irrespective of the correlation length. For the intermediate reliability classification RC2 

(β=3.8), partial factors that are slightly greater (~ 1.40) than the Eurocode factor of 1.35 

are needed to maintain the target reliability index for cases with correlation lengths that 

are greater than 5.0 m. For smaller correlation lengths, the current Eurocode factor is 

considered adequate, irrespective of the friction angle of the sand. For the most stringent 

reliability classification RC3 (β=4.3), partial factors that are greater than 1.35 are 

required starting from θv>2.5m for φ=33 and 36º. A recommended partial factor of 1.50 

will satisfy the target reliability level for all correlation lengths and for all sand 

densities. 
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Figure 42. Variation of Partial Factor With The Vertical Correlation Length for Different 

Friction Angle (Anisotropic Case: COV (φ)=0.1, θh=10) 
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CHAPTER 7 

CONCLUSIONS 

 

This study uses the random finite difference method implemented in FLAC 

2D® to investigate the effect of the spatial variability of the backfill soil on the structural 

response of the wall. The friction angle of backfill soil is the only source of uncertainty 

that was incorporated in the analysis. The effect of different random field properties and 

soil parameters was analyzed to investigate the risk level that is inherent in the design of 

a cantilever retaining wall based on partial safety factor approaches proposed by 

Eurocode 7. The results allow designers to use a partial factor on the design according 

to the probability of failure. 

The parameters that were varied are the friction angle of the backfill soil 

ranging from 30 to 36, the vertical and horizontal correlation lengths ranging from 1.0m 

to 25m, and the COV of the friction angle ranging from 0.05 to 0.2. Two types of spatial 

variability in the friction angle of the backfill soil were considered and compared: 

isotropic and anisotropic. 

Based on the results, the following conclusions can be drawn: 

1. The COV of the maximum moment, maximum shear, maximum displacement, 

and resultant earth pressure increase exponentially with the increase of vertical 

correlation length and linearly with the increase of COV (tan φ). 

2. For different COV (tan φ) and different correlation lengths, the values of the COV 

of the maximum moment, maximum shear, maximum displacement, and resultant 

earth pressure of anisotropic spatial variability are higher than those of the 

isotropic case, particularly for smaller correlation lengths. 
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3. The scale of fluctuation of the lateral earth pressure increases as the vertical 

correlation length increases. The band of realizations of the lateral earth pressure 

widens as the COVs (tan φ) increase. 

4. The partial factor (1.35) recommended by Eurocode 7 is insufficient for high 

COVs (tan φ) and high vertical correlation lengths. Results from the anisotropic 

random field with a horizontal correlation length of 10m indicate that for a target 

β=3.3, all recommended partial factor values are smaller than the value proposed 

by the Eurocode. For β=3.8, values that are smaller than 1.35 are required for low 

vertical correlation lengths (θv < 10) and greater than 1.35 for high vertical 

correlation lengths (θv > 10). Finally, for β=4.3, partial factors less than 1.35 are 

required for θv < 5 and greater than this value for θv > 5. 

5. The partial factors for the anisotropic spatial variability are greater than those of 

isotropic case for small correlation lengths. 

6. For the lowest reliability classification RC1 (β=3.3), the current Eurocode partial 

factor is adequate irrespective of the density of the sand backfill and irrespective 

of the correlation length. For the intermediate reliability classification RC2 

(β=3.8), partial factors that are slightly greater (~ 1.40) than the Eurocode factor 

of 1.35 are needed to maintain the target reliability index for cases with correlation 

lengths that are greater than 5.0 m. For smaller correlation lengths, the current 

Eurocode factor is considered adequate, irrespective of the friction angle of the 

sand. For the most stringent reliability classification RC3 (β=4.3), partial factors 

that are greater than 1.35 are required starting from θv>2.5m for φ =33 and 36º. A 

recommended partial factor of 1.50 will satisfy the target reliability level for all 

correlation lengths and for all sand densities. 
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APPENDIX 

 

APPENDIX 1: FLAC® CODE 

new   

call geometry.dat    

call functions.dat   

set file1=' V1.txt'    

set file2=' W (1).txt'   

var1    

function1    

var2    

function2    

solve    

print structures beam    

print struct node position    

print sxx i=39 j=33,60    

---------------------------------------------------------------------------------------------------- 

“geometry” function: 

config 

grid 60 60 

model mohr 

mod null j=30 

gen 0,-5 0,0 10,0 10,-5 i=1,61 j=1,30 

gen 0,0 0,5 10,5 10,0   i=1,61 j=31,61 

group 'layer1' j 1 29 

model mohr group 'layer1' 

prop density=1.9 bulk=5.33E4 shear=3.20E4 cohesion=100.0 friction=40.0 

dilation=10.0 tension=0.0 group 'layer1' 

group 'layer2' i 1 60 j 31 60 

model mohr group 'layer2' 

prop density=1.8 bulk=2.5E4 shear=1.15E4 cohesion=0.0 friction=33.0 dilation=5.0 

tension=0.0 group 'layer2' 

fix y j 1 

fix x i 1 

fix x i 61 

attach remove 

model null i 40 60 j 30 60 

def createNodes 

 jjGp = 30 

 loop iiGp(28,43) 

  iNode = iNode+1 

  xref = x(iiGp,jjGp) 
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  yref = y(iiGp,jjGp) 

  command 

   struct node iNode xref,yref 

  end_command 

  if xref=3 

   crossNode = iNode 

  end_if 

 end_loop 

 iniNode1 = 1 

 iniNode2 = iNode 

 iiGp = 40 

 loop jjGp(32,61) 

  iNode = iNode+1 

  xref = x(iiGp,jjGp) 

  yref = y(iiGp,jjGp) 

  command 

   struct node iNode xref,yref 

  end_command 

 end_loop 

 iniNode3 = iniNode2+1 

 iniNode4 = iNode 

end 

createNodes 

def create_hBeam 

 loop iNode(iniNode1,iniNode2-1) 

  iNode_ini = iNode 

  iNode_end = iNode+1 

  command 

   struct beam begin node iNode_ini end node iNode_end seg 1 prop 1001 

  end_command 

 end_loop 

end 

def create_vBeam 

 loop iNode(iniNode3,iniNode4-1) 

  iNode_ini = iNode 

  iNode_end = iNode+1 

  command 

   struct beam begin node iNode_ini end node iNode_end seg 1 prop 1002 

  end_command 

 end_loop 

end 

struct prop 1001 e 2.58E7 area 0.5 I 0.01041667 

struct prop 1002 e 2.58E7 area 0.25 I 0.0013 

create_hBeam 



71 

 

struct prop 1003 e 2.58E7 area 0.5 I 0.01041667 

interface 1 aside from node iniNode2 to node iniNode1 bside from 28,30 to 43,30 

interface 1 unglued kn=9.6E6 ks=9.6E6 friction=26.67 tbond=0.0 sbratio=100.0 

bslip=off 

interface 2 as from node iniNode1 to node 13 bs from 28,31 to 40,31 

interface 2 unglued kn=4.04E6 ks=4.04E6 friction=22 tbond=0.0 sbratio=100.0 

bslip=off 

create_vBeam 

interface 3 aside from node iniNode3 to node iniNode4 bside from 40,31 to 40,61 

interface 3 unglued kn=4.04E6 ks=4.04E6 friction=22 tbond=0.0 sbratio=100.0 

bslip=off 

attach aside from 1,30 to 28,30 bside from 1,31 to 28,31 

struct beam begin node 13 end node iniNode3 seg 1 prop 1002 

set gravity=9.81 ; m/s2 

history 999 unbalanced 

struct chprop 1003 range 10 10 

struct chprop 1003 range 9 9 

 

“function” function: 

def var1 

array fi(1740) 

status=open(file1,0,1) 

status=read(fi,(1740)) 

status=close 

loop i(1,1740) 

fi(i)=parse(fi(i),1) 

endloop 

k=0 

array element(60,29) 

 loop m(1,60) 

  loop n(1,29) 

   k=k+1 

   element(m,n)=fi(k) 

                endloop 

         endloop 

end 

def function1 

 loop r(1,60) 

  loop s(1,29) 

   friction(r,s)=element(r,s) 

  endloop 

 endloop 

end 
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def var2 

array fi2(1860) 

status=open(file2,0,1) 

status=read(fi2,1860) 

status=close 

loop i(1,1860) 

fi2(i)=parse(fi2(i),1) 

endloop 

l=0 

array element2(60,31) 

 loop m(1,60) 

  loop n(1,31) 

   l=l+1 

   element2(m,n)=fi2(l) 

                endloop 

         endloop 

end 

def function2 

t=0 

 loop r(1,60) 

s=30 

t=t+1 

if t<60 

  loop u(1,31) 

s=s+1 

if s<61 

   friction(r,s)=element2(t,u) 

  endloop 

 endif 

endif 

 endloop 

end 
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APPENDIX 2: R SOFTWARE CODE 

Random variable generation: 

require(graphics) 

require(mvtnorm) 

require(truncdist) 

iy=0             #Y-coordinate of the interface between layers 

clx1=10       #Horizontal correlation length of layer 1 (bottom) 

cly1=1         #Vertical correlation length of layer 1 (bottom) 

clx2=10       #Horizontal correlation length of layer 2 (top) 

cly2=1         #Vertical correlation length of layer 2 (top) 

nr=1600     #Number of realizations/simulations 

mfi1=tan (0.69813) #Mean of friction angle of layer 1 

covfi1=0.1              #cov of friction angle of layer 1 

mfi2=tan (0.52359)   #Mean of friction angle of layer 2 

covfi2=0.1              #cov of friction angle of layer 2 

data=(read.csv("C:/Users/bat05/Desktop/model/New folder/my geometry.csv")) 

data=data.frame(N=seq(1,length(data[,1]),1),X=data[,4],Y=data[,5]) 

############################################### 

#Layer 1(top) 

#constructing dx and dy matrices for layer 1 

layer1=data[data$Y<iy,] 

dx1=matrix(rep(NA,length(layer1$X)^2),length(layer1$X),length(layer1$X)) 

dy1=matrix(rep(NA,length(layer1$X)^2),length(layer1$X),length(layer1$X)) 

for (i in 1:length(layer1$X)){ 

  for (j in 1:length(layer1$X)){ 

    dx1[i,j]=abs(layer1$X[i]-layer1$X[j]) 

    dy1[i,j]=abs(layer1$Y[i]-layer1$Y[j]) 

  } 

} 

#Constructing Correlation matrix for layer 1 

cormat1=exp(-(2*dx1/clx1+2*dy1/cly1)) 

isSymmetric(cormat1) 

gau1 <- rmvnorm(mean=rep(0,length(layer1$X)),sig=cormat1,n=nr) #gaussian 

variables 

Uni1 <- pnorm(gau1) #Now U is uniform  

sdfilog1=sqrt(log(1+covfi1^2)) 

mfilog1=log(mfi1)-sdfilog1^2/2 

UU1=matrix(rep(NA,I(length(layer1$X)*nr)),nr,length(layer1$X)) 

for (i in 1:length(layer1$X)){ 

  UU1[,i]=qtrunc(Uni1[,i],spec="lnorm",a=0,b=Inf,mfilog1,sdfilog1) 

  UU1[,i]=(atan(UU1[,i])* 180) / (pi) 

} 
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write.csv(t(UU1),"C:/Users/bat05/Desktop/model/New 

folder/rea1_cly_1_clx_10_cov_0.1.csv") 

#plot(density(UU1[10,])) 

############################################### 

#Layer 2(bottom) 

#constructing dx and dy matrices for layer 1 

layer2=data[data$Y>=iy,] 

dx2=matrix(rep(NA,length(layer2$X)^2),length(layer2$X),length(layer2$X)) 

dy2=matrix(rep(NA,length(layer2$X)^2),length(layer2$X),length(layer2$X)) 

for (i in 1:length(layer2$X)){ 

  for (j in 1:length(layer2$X)){ 

    dx2[i,j]=abs(layer2$X[i]-layer2$X[j]) 

    dy2[i,j]=abs(layer2$Y[i]-layer2$Y[j]) 

  } 

} 

#Constructing Correlation matrix for layer 2 

cormat2=exp(-(2*dx2/clx2+2*dy2/cly2)) 

isSymmetric(cormat2) 

gau2 <- rmvnorm(mean=rep(0,length(layer2$X)),sig=cormat2,n=nr) #gaussian 

variables 

Uni2 <- pnorm(gau2) 

sdfilog2=sqrt(log(1+covfi2^2)) 

mfilog2=log(mfi2)-sdfilog2^2/2 

UU2=matrix(rep(NA,I(length(layer2$X)*nr)),nr,length(layer2$X)) 

for (i in 1:length(layer2$X)){ 

  UU2[,i]=qtrunc(Uni2[,i],spec="lnorm",a=0,b=Inf,mfilog2,sdfilog2) 

  UU2[,i]=(atan(UU2[,i])* 180) / (pi) 

  } 

write.csv(t(UU2),"C:/Users/bat05/Desktop/model/New 

folder/rea2_cly_1_clx_10_cov_0.1.csv") 
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Probability of failure: 

data=read.csv("C:/Users/bat05/Desktop/model/1results/from r/out.csv", strings As 

Factors = FALSE) 

pfall=data.frame(NULL) 

error=10  

p=0.00005 #p=0.5% 

N=(196/error)^2*(1-p)/p 

N=10000000 

meanfc=31 #MPa 

meanfy=455 #MPa 

d=205 #mm 

b=1000 #mm 

sdlogfc=sqrt(log(1+0.05^2)) 

mlogfc=log(meanfc)-sdlogfc^2/2 

fc=rlnorm(N,mlogfc,sdlogfc) 

sdlogfy=sqrt(log(1+0.05^2)) 

mlogfy=log(meanfy)-sdlogfy^2/2 

fy=rlnorm(N,mlogfy,sdlogfy) 

meanlamda_M=1.02 

covlamda_M=0.06 

sdloglamda_M=sqrt(log(1+covlamda_M^2)) 

mloglamda_M=log(meanlamda_M)-sdloglamda_M^2/2 

lamda_M=rlnorm(N,mloglamda_M,sdloglamda_M) 

meanlamda_V= 1.075 

covlamda_V=0.1 

sdloglamda_V=sqrt(log(1+covlamda_V^2)) 

mloglamda_V=log(meanlamda_V)-sdloglamda_V^2/2 

lamda_V=rlnorm(N,mloglamda_V,sdloglamda_V) 

As33=c(1297,1457.5,1470,1500,1600,1700,1800,1900,2000,2100,2326,2516) 

As30=c(1523.4,1723.8,1744.3,1785.6,1911.9,2042.00,2176.12,2314.75,2434.05,2582.2

4,2897.88,3185.17) 

As36=c(1166.03,1312.35,1327.21,1357.08,1447.79,1540.23,1634.49,1730.69,1812.43,1

912.52,2119.86,2300.83) 

 

 

cov_M_load=rep(NA,length(data[,1]))  

cov_M_res=rep(NA,length(data[,1]))  

Mcor=rep(NA,length(data[,1]))  

betta=rep(NA,length(data[,1]))  

for (i in 1:length(data[,1])) 

{  

  for (j in 1:length(As33)) 

  { 

    #pf shear  
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    #Load 

    V_load=rnorm(N,data[i,6],data[i,7]*data[i,6]) 

    #Resistance 

    kv=1+sqrt(200/d)   #kv<=2 

    Asmin= 0.26*(2.6/qlnorm(.05,mlogfy,sdlogfy))*b*d #mm2 

   ro= As[j]/(b*d) 

     V_res=0.12*kv*b*d*(100*ro*(fc))^(1/3)/1000 #kN 

     vmin=0.035*kv^(3/2)*sqrt(fc)*b*d/1000 #check vload<vmin 

    #V_diff=V_load-V_res 

     pfall[i,1]=length(V_diff[V_diff[]>0])/N 

    #pf moment  

    sdlog_mload=sqrt(log(1+data[i,9]^2)) 

    mlog_mload=log(data[i,8])-sdlog_mload^2/2 

    M_load=rlnorm(N,data[i,8],data[i,8]*data[i,9]) #kN.m 

    kM=M_load*1e6/(b*d^2*fc) 

    M_res=(As33[j]/1000000)*0.87*fy*1000*(d/1000)*(0.5+sqrt(0.25-kM/1.134)) 

    #plot(density(M_res),xlim=c(50,200),ylim=c(0,.1))                                  

    #lines(density(M_load)) 

    M_diff=M_load-M_res 

    pfall[i,j]=length(M_diff[M_diff[]>0])/N  

    cov_M_res[i]=sd(M_res)/mean(M_res) 

    cov_M_load[i]=sd(M_load)/mean(M_load)   

    Mcor[i]=cor(M_load,M_res) 

   betta[i]=(mean(M_res)-

mean(M_load))/(sqrt(sd(M_res)^2+sd(M_load)^22*Mcor[i]*sd(M_res)*sd(M_load)) 

     } 

} 

#pf=data.frame(pfM,pfv,pfDR,pfDC,pfDL,pfepR,pfepC,pfepL) 

datapf=data.frame(data,pfall,cov_M_res,cov_M_load,mean(M_res),mean(M_load), 

Mcor,betta) 

write.csv(datapf,"C:/Users/bat05/Desktop/model/1results/from r/pf_33.csv") 

 

 


