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AN ABSTRACT OF THE THESIS OF 

 

Hussein Sleiman Kassem for  Master of Engineering 

                                                Major: Chemical Engineering 

 

 

Title: Oil and Gas Production System Optimization Using Particle Swarm Optimization 

 

Field development planning and optimization of production system are main 

factors while developing oil and gas fields. The main aim of any oil and gas 

development is to maximize the economic value of projects under study. Reservoir 

engineers focus on optimizing wells placement, trajectory, and type. Facility and 

production engineers have as a role to set and optimize production system elements in 

terms of placement, sizing and their interconnection. Literature review showed an 

important research work in the field of production system optimization. This latter is 

typically classified as tree-like, nodes and segments, multilayers problem, yet recent 

research work only dealt with two layers optimization problems. In addition, recent 

literature presented the use of genetic algorithm (GA), which is a population-based 

method, as an efficient optimizer. Another optimization technique, particle swarm 

optimization (PSO), is introduced in this type of problems. Both methods’ efficiency 

was compared and PSO outperformed GA in terms of convergence time and value. 

Literature showed that many improvements were applied to the standard algorithm. 

Adaptive particle swarm optimization is applied in parallel with two newly introduced 

improvements in this work: Multiple runs initialization, and Restart improvement. The 

novel improved method showed better results than the standard PSO as the complexity 

of the problem is increased starting from two-layers up to four-layers high complexity. 

This introduced method showed robustness and high efficiency in handling multiple 

layers problems. 

Keywords: Field Development Planning, Production system, Optimization, 

Evolutionary algorithms, PSO, GA. 
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CHAPTER I 

INTRODUCTION 

 

With the increasing demand on oil and gas around the world associated with the 

scarcity of the oil and gas reserves, oil companies are moving towards ultra-deep areas to 

unlock unexplored hydrocarbon resources.  The development of fields in such areas is a 

very complex task as it involves sophisticated design procedure at huge expenses. The 

main challenge lies in reducing the capital and operating expenditures of the offshore 

production system while maintaining a prudent and optimal development performance. 

 An offshore field development plan mainly consists of three main components: 

Reservoir, Wells and Subsea production network. At the reservoir level, reservoir 

engineers conduct several subsurface studies to select the most optimal depletion plan. 

Once the depletion plan (well number, type, location, rates and pressure) is set, production 

engineers design the production tubing in a way to further optimize production from well 

bottom-hole till the wellhead. After establishing the production characteristics at 

wellheads, facility engineers design the subsea production network to bring production 

from wells to the facilities for processing and export. Subsea production networks can 

range in complexity from a single well with a flow linked to a host facility, to several 

wells linked via a manifold producing and transferring product via subsea processing 

facilities or directly to an onshore installation. Figure 1 shows a typical subsea production 

network. The main components of a subsea production systems are: 

 Susbea Xtrees/Wellheads incorporating flow and pressure control valves 

 Manifolds for controlled gathering of various fluids streams 
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 Platforms for combining produced hydrocarbon 

 Processing unit are processing produced hydrocarbon 

 Subsea pipelines/flowlines to convey produced/injected fluids between 

wellheads, manifolds, platforms and processing units 

 

Figure 1- Offshore production system 

The components of the subsea production system are interconnected. Manifolds 

organize wells into clusters. These valves are the hub of oil or gas production from several 

wells, which is then transported to a platform by a single pipe, the “riser”. Manifolds 

reduce the number of risers connecting wells to the platform, which in turn reduces the 

total pipeline length used hence allowing for more flexibility in the field operations. The 

location of the manifolds, in turn, affect the length of pipelines and the capacity effect the 

riser diameter etc. The number, location and capacity of each component in a subsea 

production design must be specified in way to optimize production while minimizing the 

total cost of the overall design.  
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A.  Objective 

This work presents an efficient optimization method applying for both onshore 

and offshore fields. In onshore fields, the problem will tackle the planning of the number 

and placement of drill centres as well as gathering centres. However, in offshore fields 

the proposed method applies for setting the subsea production network design, mainly the 

number, capacity and location of manifolds and platforms to be installed, in addition to 

well and manifold designation to manifold and platform respectively. The proposed 

model considers the production layout as a multi-layered system connecting nodes and 

segments, where nodes represent wellheads, manifolds, platforms and segments represent 

the flowlines connecting different components. This model is optimized using hybrid 

evolutionary algorithm: improved particle swarm optimization (PSO). The total cost of 

the subsea production system is used as the objective function of the proposed algorithm. 

 

B.  Thesis Outline 

 This thesis is divided into five chapters. This chapter presented the scope of our 

work, motivation and its objective 

In Chapter 2, an extensive literature review was conducted on evolutionary 

optimization methods mainly, particle swarm optimization (PSO) and genetic algorithms 

(GA) that are applied for optimization problems in general. The workflow along with the 

technical improvements of these methods are described.  
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In Chapter 3, the optimization problem along with the input parameters, 

optimization variables, and objective function are discussed. 

In Chapter 4, a hybrid PSO algorithm is introduced for multi-layer production 

system optimization problem. Improvements were introduced to the standard PSO by 

manipulating the algorithmic parameters and applying a smart initialization which helped 

in speeding up convergence and reaching a consistent result. 

In Chapter 5, results of the proposed method in comparison to the GA and the 

standard PSO are presented. We first compare the performance GA and the Standard PSO 

on two layered system (wellheads and manifolds). We then compare the performance of 

our proposed method to that of the standard PSO on four different optimization problems 

with different level of complexity. Results show the superiority of the standard PSO over 

GA and the newly proposed algorithm over the standard PSO. 
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CHAPTER II 

LITERATURE REVIEW 

Field development is a key activity in an oil and gas project as it comes at a huge 

expense especially in offshore development where investments may reach billions of 

dollars. Consequently, a group consisting of geoscientists, reservoir engineers, production 

engineers and facility engineers team up to come out with the most optimal field 

development plan. Field development planning can be characterized by two optimization 

problems; Well placement and production layout design. In well placement, the number, 

trajectory, location, type and control are altered to maximize one or more driving values; 

e.g. net present value, plateau length or recovery factor. Upon optimizing well placement, 

another important factor arises, that is the design of the production system. The 

production system layout design involves defining the optimal number of production 

system elements (i.e. manifolds, PLEMs, Platforms, and facility), location, sizing, and 

allocation of flowline between different elements [1]. 

Many optimization methods were used for well placement optimization. These 

methods can be classified into gradient based and gradient free methods. Gradient-based 

methods (e.g. Conjugate gradient, Newton’s, and steepest descent methods) require 

computation of the gradient of the objective function. These methods are not widely used 

in well placement optimization problems because of their need to smooth objective 

functions which is not the case in both well placement and platform placement problems 

[2-6].Another family of optimization’s methods used in field development planning is the 

stochastic gradient-free methods such as particle swarm optimization (PSO) and genetic 

algorithm (GA). Stochastic algorithms acquire their robustness of overcoming premature 

converging (local optima) from their inherently randomness. Another feature of these 
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methods is their capability to address a wide range of optimization problems irrespective 

of their complexity. Stochastic optimization methods can also be simply modified, tuned, 

and assisted by other optimizers to enhance their performance, thus work in a hybrid 

manner[6]. Though, no deterministic mathematical convergence can be demonstrated for 

these methods; the convergence can be assessed by a maximum number of iterations, 

prescribed optimal goal value [2], or an “external convergence criterion” as is the case in 

the of production system optimization problem. 

Another important aspect is the production system optimization. Production 

system layout comprises decision about the number, positions, and capacity of assets i.e. 

manifolds, PLEMs, platform, and facility. Optimizing production units’ locations and the 

way these units are connected is an important decision variable in field development 

planning in terms of both drilling cost and enhanced hydrocarbon recovery. This 

optimization problem has as objective function the total production system cost (i.e. cost 

of units in use and cost of connections between the units such as pipelines, flowlines, and 

risers costs). The problem is optimized regarding two main aspects the number of units 

that should be used, and the total length of the connections. Thus, an equilibrium is needed 

between these two factors so that the problem is optimized. Regarding the high cost of 

the units (manifolds, PLEMs, etc..) relatively to the connections’ costs, minimizing the 

number of units will be a critical factor in the optimization process. However, if the small 

number of units will lead to very high connections’ distance this will affect the optimal 

result. In addition, the importance of minimizing the total length of the connections arises 

from two main factors: not only as aforementioned by minimizing the drilling cost and 

investment related to the distances, but, more importantly, from enhancing the 

productivity of the reservoir. The productivity of wells and hence of the reservoir is 
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affected by the well tubing, risers and pipelines length through the associated hydrostatic 

pressure drop in the production system due to fluid lifting. Consequently, the shorter the 

distances, the lower the pressure drop and hence the higher the well productivity. [7, 8] 

The optimization of the production units can be performed post-well location 

optimization problem or can be treated in a joint manner (simultaneously). Dogru 

considered nonlinear mixed integer programming (MINLP) in his work on optimization 

of platform and wells locations. Their algorithm limits are set to be 5 platforms and 1000 

points as a search space.  In contrast, our algorithm is not limited by the number of 

platforms or the search space; the latter is open with only lower and higher limits [9]. 

Although, Dogru’s method is smooth and fast for a low number of wells, time constraints 

and physical limitations were observed for a well count exceeding 30. Hansen et al. 

tackled the problem as multi-capacitated plant problem (MCPLP) where they considered 

the location and capacity of the platforms as optimization parameters in order to minimize 

the investment costs. They used mixed integer programming (MIP) with Tabu search 

heuristic. Tabu search heuristic is a gradient-based optimization tool that searches in the 

neighbourhood of existing solutions for local optimal solutions.  The proposed models 

showed computational problems for more than 30 possible locations and 100 wells [1]. 

Rosa and Ferreira studied the problem of platform and manifolds location. They related 

the problem to the pressure drop taking place in pipelines and used MIP to maximize an 

objective function; an NPV equation related to the placement of platforms and manifolds. 

Their method is exhaustive in computational load as the number of optimization 

parameters increases [7, 10]. Campozona et al.  used an optimization algorithm 

combining meta-heuristic methods such as Tabu search with integer programming (IP). 

This optimizer is coupled with a reservoir simulator that receives the platforms locations 
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from the optimizer, calculates the associated NPV and send it back to the optimizer in a 

loop manner until a convergence criterion is met. This method is applied on a simple case 

of 12 wells and 1 platform and showed high computational load so that only 200 iterations 

were performed [11]. Similarly, Rodrigues et al. used a multi-capacitated Platforms and 

Wells Location Problem (MPWLP) algorithm that employs linear programming and aims 

at minimizing costs by defining the number, location, and capacities of offshore 

platforms. This method only considered one scenario with 1 platform case and, as stated 

by the authors, it is not tested with various levels of complexity [12]. Recently, Sales et 

al.  used GA integrated with Monte Carlo simulation to handle the platform location 

optimization problem. Their method showed better results with less computational load 

compared to the deterministic methods (e.g. IP, MPWLP, MINLP and Tabu search). They 

considered uncertainties associated to the production profile which is, in turn, related to 

the platform positioning. Multiple scenarios are simulated with quick and optimal 

solutions for each case [10].  

In contrast to all aforementioned methods, the used method in this work is 

dealing with multi-layer problem i.e. it is not restricted to wells-Platform positioning, but 

it can handle problems that are of higher complexity such as “wells-manifolds-PLEMs-

Platform-Facility” problem.  

 

A.  Overview of Evolutionary algorithms 

 

1.  Genetic Algorithm 

Genetic algorithm (GA) is an evolutionary algorithm that mimics the natural 

laws of genetics such as crossover, mutation and other genetic operators of chromosomes 
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coming from two parents. Natural selection proposed by Darwin consists that all these 

genetic operators applied in the propagation of the populations are focusing on making 

the survival chance of fittest individuals favored. 

GA is a stochastic algorithm; it also deals with a population of solutions that can 

be recombined to get more fit solutions. It is a robust method as it can deal with 

multidimensional problems. It is a search method that deals with large population of 

solutions. Solutions are represented as chromosomes and this is the first step in GA 

method to encode solutions into chromosomes. The GA consists of an iterative process 

in a way that the population evolves toward the needed criteria through several steps as 

follows:  

 

 Initialization Phase 

Population of solutions with a set of properties is initialized, each solution is 

represented by a chromosome that is composed of many subparts known as genes which 

are the properties to be optimized. 

 

 Encoding 

These solutions can be expressed or encoded into a binary form or can be 

expressed as a real value expression. In case of binary representation, the parameters to 

be optimized are represented in a vector of binary digits. Each parameter is consisting of 

a constant length sub-vector in the chromosome. The length of the parameter 

representation vector is dependent on the lower and upper limits of this factor take as 

example if the boundaries of an optimization parameter are [0 50] so the maximum 

number of binary representations is that corresponding of the conversion of 50 (=110010), 
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so a vector of length 6 is preserved for this parameter. The same is applied for other 

parameters constituting the chromosome and are set in a conventional predefined order. 

 

 Decoding 

 Each set of properties forming a solution presented in a chromosome which is a 

subpart of a group of solutions (Population). As discussed in the encoding part, know the 

inverse is done by translating the binary representation of each optimization parameter 

and this value is used in setting the simulation inputs to get results and then evaluate the 

objective function. While decoding the chromosomes will give us the parameter value 

which is also called the “phenotype”. 

 Fitness Value 

This value is a main factor in natural selection method since it relies on the 

survival of the fittest. So, we should know how the fitness is considered and calculated. 

Fitness means of how good the solution is, hence in case of maximization problems the 

highest objective function, that can used as reference, will lead into the highest fitness 

value equal to one for example and the other solutions will give less and less fitness 

values. These values are ranked in a decreasing order in case of maximization problems. 

The first iteration of the GA consists of the first three steps beforementioned that are 

encoding, decoding, and Fitness value calculation. 

 

 Propagation of the Algorithm 

 Initialization is the first step to be done so that we have initial solutions guessed 

that have been ranked according to their Fitness values. Know we move to the 

propagation of the algorithm that is done as described in the following section: 
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 Selection 

 Selection step is dependent on the aim of the problem and then is related to the 

Fitness value of the previous solutions. It is defined as the procedure of electing two 

parents of the previous solutions that will mate to give new offspring of solutions by 

permutating and exchanging parts (called genes in genetics) of their chromosomes. The 

higher the fitness value of a solution the higher chance of being picked to mate and 

reproduce in the next step. In this context, the selection pressure is defined as the extent 

to which the best solutions are chosen. Note that there are many types of selection such 

as Roulette wheel, Rank selection, and Tournament selection, etc.  

 

 Crossover  

After electing the best two individuals that will mate and reproduce to give birth 

to two new solution off-springs. This is done through three steps that are: Selection of 

individuals for the mating process, cross site and type (can be single or multiple points 

crossover) and swapping of the segments following the cross site randomly chosen. 

Crossover is a stochastic procedure that is responsible of the diversity of solutions that 

can be progressively enhanced by continuously permutating best parent’s multi-

parameters that will lead to an amelioration in the populations’ solutions. 

 

 Mutation 

 After crossover process new solutions are produced, however the configuration 

of new chromosomes will not be intact as the natural selection theory suggests. These 
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new chromosomes will be subject to mutation that corresponds of three main processes 

i.e. Flipping, interchanging, and reversing. 

Flipping consists of changing of a bit of the mutated chromosome, using a 

mutation chromosome, from 0 to 1 and vice-versa that will lead to the final child’s 

chromosome. 

Interchanging consists of randomly election of two or more positions of a chromosome 

that interchange their bits.  

Reversing consists of a random selection of a bit position that is reversed with 

the bit next to it.  

Mutation is a very important factor that can produce new solutions from out of 

the box by changing some parameters of the new solutions and this is very important to 

overcome the repetition of the same solutions and then overcoming local optima.  

 

 Evaluation and Replacement 

The new solutions are then tested using the same procedures done in the 

initialization phase. The chromosomes of the offspring are decoded as they are already 

encoded. Then their corresponding parameters values (phenotypes) are used as simulation 

inputs. Sequentially the objective functions and the Fitness values are evaluated.  

As for the replacement process the old generation is killed and replaced by the 

new one. This is done through two main methods: basic generational update (𝑁children 

are produced from 𝑁 populations and the whole population is replaced) and the steady 

state update (every produced offspring is inserted to replace the worst existing member). 

In our work we used the steady state update as a replacement method. 
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 Convergence Criteria 

 The convergence criteria are dependent on the problem constraints. If time is 

the main constraint then a maximum number of simulations will be the convergence 

criterion, however a certain hoped value may be considered as optimization goal and be 

index of convergence, or the propagation of the algorithm (e.g. Plateau formation) may 

be also used as a factor to stop or restart the simulation in this case. [13] 

 

2.  Particle Swarm Optimization  

Particle Swarm optimization (PSO) is an evolutionary algorithm developed by 

Kennedy and Eberhart in 1995 [14]. It is inspired by a close behavioural review of schools 

of fish and flocks of birds. Normally, fish and birds travel in groups without colliding 

with one another by following the group and adjusting to its position and velocity based 

on the information provided by the group itself. Each “particle” represents a solution of 

the objective function and a “swarm” depicts the group of particles involved in the 

optimization workflow. These particles could be further grouped into subgroups 

(neighbourhood topologies) allowing the exchange of information from other particles in 

addition to their own. 

The position of each particle in the search space is driven by a calculated velocity 

parameter based on previous iteration results. The velocity is updated by a mathematical 

formulation between the prior particle velocity, its distance to the position where the 

particle achieved its local best and its distance from the particle that achieved the global 

best. Each particle memorizes the best position or “solution” it attains during the entire 

optimization process (local best). The algorithm also memorizes the best position attained 

by any of its particles (global best)[15]. The velocity is truncated by a maximum value 
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defined by the boundary of the search space. Figure 2 represents PSO solution vectors the 

position and the velocity relationship are obtained by the formula below and illustrated 

by Figure 3: 

 𝑥𝑖,𝑗(𝑘 + 1) =    𝑥𝑖,𝑗(𝑘) +  𝑣𝑖,𝑗(𝑘 + 1) (1) 

𝑣𝑖,𝑗(𝑘 + 1) = 𝑤 × 𝑣𝑖,𝑗(𝑘) + 𝑐𝑝𝑟1 (𝑝𝑏𝑒𝑠𝑡(𝑖,𝑗) − 𝑥𝑖,𝑗(𝑘)) + 𝑐𝑔𝑟2 (𝑔𝑏𝑒𝑠𝑡(𝑖,𝑗) − 𝑥𝑖,𝑗(𝑘)) (2) 

 

Where 𝑖 refers to the particle, j refers to the optimization variable and k refers to 

the current iteration. 

 

Figure 2- PSO solution vectors where ● represents a particle ● represents the solution 

vector with the best result in all iteration of a specific particle ● represents the solution 

vector with the best result through all iterations and among all particles 
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Figure 3- PSO position vector update  

 

The velocity equation involves three main parameters; the inertia weight (𝑤), 

the cognitive weight (𝑐𝑝) and the social weight (𝑐𝑔). The inertia weight defines the impact 

of the trend towards the previous particle velocity, the cognitive weight defines the impact 

of the trend towards the particle local best (𝑝𝑏𝑒𝑠𝑡(𝑖,𝑗)) and the social weight defines the 

impact of the trend towards the swarm global best (𝑔𝑏𝑒𝑠𝑡(𝑖,𝑗)). It also involves two 

independent uniform random variables 𝑟1 and 𝑟2 between 0 and 1. The main purpose of 

these variables is to make the overall process stochastically dependent which helps the 

optimizer avoiding local optima traps. 

 

 Propagation of the Algorithm 

 

i. Initialization 
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As for stochastic population-based algorithms, initialization of the first 

population is important in the propagation of the optimization i.e. if we start from a good 

initial position this may help the algorithm by reducing the time and the number of 

simulations needed to reach optimal results. The initialization is mainly done randomly 

by choosing one location from the search space. 

 

ii. Algorithmic Parameter Selection. 
 Many researchers have investigated the effect of PSO algorithmic parameters 

selection (𝑤, 𝑐𝑝, and 𝑐𝑔) on the system convergence. Jiang et al. provided a sufficient 

condition after studying the convergence of the standard particle swarm system [17]. 

Jiang et al. suggested a set of parameters, 𝑤 = 0.715 and 𝑐𝑝 = 𝑐𝑔 = 1.7 . In addition, 

Zhang et al. found that up with a new process in selecting the parameters. The values of 

the parameters are found to be (𝑤 = 0.724, 𝑐𝑝 = 𝑐𝑔 = 1.468) and (𝜔 = 0.785, 𝑐𝑝 =

𝑐𝑔 = 1.331). [15] 

Other researchers have also proposed other sets of parameters; that is for 

example: 𝜔 = 0.6, 𝑐 = 1.7 [18] and 𝜔 = 0.729,  𝑐 = 1.494 [19]. The velocity and 

position of each particle will move within a specified range. The maximum velocity was 

set at 0.1* 𝑋𝑚𝑎𝑥 as per Zhang et al. work [20].  

 

3. PSO Improvements  

 

 Inertia Improvements 

Inertia weight is the main factor balancing exploration and exploitation in PSO 

optimization process. The contribution of the previous particle velocity to the updated 

velocity is determined by the inertia weight factor [21]. Regarding the importance of this 
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factor in determining the velocity (step vector of each of the optimization parameters), 

many researchers studied the parametric effect of the inertia weight. Some adopted 

constant inertia weight, others considered adaptive inertia weight variation. The 

following table summarizes the main advancements of the inertia values.  

 

 

 

 

 

 

 

 

 

Table 1- Summary of previous reports on inertia weight improvements  

Inertia weight Formula Reference 

Constant inertia weight 𝜔 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = [0.9 − 1.2] [22] 

Random inertia weight 
𝜔 = 0.5 +

𝑟𝑎𝑛𝑑()

2
 

[23] 

Sigmoid increasing 𝜔𝑘 =
𝜔𝑠𝑡𝑎𝑟𝑡 − 𝜔𝑒𝑛𝑑

1 + 𝑒−𝑢×(𝑘−𝑛×𝑔𝑒𝑛)
+ 𝜔𝑒𝑛𝑑 

𝑢 = 10(log(𝑔𝑒𝑛)−2) 

𝑔𝑒𝑛 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

[24] 

Sigmoid decreasing 𝜔𝑘 =
𝜔𝑠𝑡𝑎𝑟𝑡 − 𝜔𝑒𝑛𝑑

1 + 𝑒𝑢×(𝑘−𝑛×𝑔𝑒𝑛)
+ 𝜔𝑒𝑛𝑑 

𝜔𝑠𝑡𝑎𝑟𝑡 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑙𝑖𝑚𝑖𝑡 

[24] 
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𝜔𝑒𝑛𝑑 = 𝑓𝑖𝑛𝑎𝑙 𝑙𝑖𝑚𝑖𝑡 

𝑛 =sigmoid constant = [0.25,0.5,0.75] 

Linear Decreasing 𝜔𝑘 = 𝜔𝑚𝑎𝑥 −
𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 

𝜔 = [0.9 − 0.4] 

[25] 

Linear Decreasing inertia weight 
𝑤 = 𝑤𝑚𝑎𝑥 − (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) ∗

𝑀𝐴𝑋𝐼𝑡𝑒𝑟 − 𝑖𝑡𝑒𝑟

𝑀𝐴𝑋𝐼𝑡𝑒𝑟
 

𝑤𝑚𝑎𝑥 = 0.9 

𝑤𝑚𝑖𝑛 = 0.4 

[26] 

Chaotic descending inertia weight 𝑧 = 𝑟𝑎𝑛𝑑(0,1) 

𝑧 = 4 × 𝑧 × (1 − 𝑧) 

𝜔 = (𝜔1 − 𝜔2) −
𝐼𝑡𝑒𝑟𝑚𝑎𝑥 − 𝐼𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
+ 𝜔2 × 𝑧 

 

[27] 

Chaotic random inertia weight 𝑧 = 𝑟𝑎𝑛𝑑(0,1) 

𝑧 = 4 × 𝑧 × (1 − 𝑧) 

𝜔 = 0.5 × 𝑟𝑎𝑛𝑑(0,1) + 0.5 × 𝑧 

[27] 

Global-local Best inertia weigh 
𝜔𝑖 = 1.1 −

𝑔𝑏𝑒𝑠𝑡𝑖

𝑝𝑏𝑒𝑠𝑡𝑖
 

[28] 

Natural exponential inertia 

weight(e1) 𝜔𝑡 = 𝜔𝑚𝑖𝑛 + (𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛) × 𝑒
−[

𝑡
𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

10

]

 

[29] 

Natural exponential inertia 

weight(e2) 𝜔𝑡 = 𝜔𝑚𝑖𝑛 + (𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛) × 𝑒
−[

𝑡
𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

4

]

2

 

[29] 

Oscillating inertia weight 
𝜔𝑡 =

𝜔𝑚𝑎𝑥 + 𝜔𝑚𝑖𝑛

2
+

𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛

2
× cos

2𝜋𝑡

𝑇
 

𝑇 =
2𝑆1

3+2𝑘
 , 𝑆1 =

3

4
𝑆, 𝑆: 𝑡𝑜𝑡𝑎𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 

[30] 
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For the remaining 𝑆2 =
1

4
𝑆, 𝜔𝑡 = 𝜔𝑚𝑖𝑛 

𝜔𝑚𝑖𝑛 = 0.3, 𝜔𝑚𝑎𝑥 = 0.9, k can be varied [1-7] 

Simulated annealing 𝑤 = 𝑤𝑚𝑎𝑥 − (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) × 𝜆(𝑘−1) 

𝜆 = 0.95 

[31] 

Logarithm Decreasing Inertia 

Weight 

𝑤 = 𝑤𝑚𝑎𝑥 + ( 𝑤𝑚𝑖𝑛 − 𝑤𝑚𝑎𝑥) log10(𝑎 +
10𝑡

𝑇𝑚𝑎𝑥
) 

𝑎 = 1   𝑤𝑚𝑎𝑥 = 0.9    𝑤𝑚𝑖𝑛 = 0.4 

 

[32] 

Exponent Decreasing Inertia 

Weight 𝑤 = ( 𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛 − 𝑑1) × 𝑒

[
1

1+
𝑑2𝑡

𝑡𝑚𝑎𝑥

]

 

𝑤𝑚𝑎𝑥 = 0.95, 𝑤𝑚𝑖𝑛 = 0.4, 𝑑1 = 0.2 𝑑2 = 7 

[33] 

 

 

 

 

 

 Constriction Factor Improvement 

Clerc introduced a new parameter instead of the inertia weight, a constriction 

factor was developed as a function of c1 and c2, which multiplies into the velocity 

equation [34]. The importance of the constriction factor is that it ensures the convergence 

of the system and allows the system to search in an efficient way avoiding premature 

convergence. 

𝑘 =
2

|2 − ϕ − √ϕ2 − 4ϕ|
 

𝑣𝑖+1 = 𝑘[𝜔𝑣𝑖 + 𝑐1𝑟1(𝑥𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡
− 𝑥𝑖) + 𝑐2𝑟2(𝑥𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡

−𝑥𝑖)]  
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𝑥𝑖+1 = 𝑣𝑖+1 + 𝑥𝑖 

Where ϕ = c1 + c2, ϕ > 4 and both c1=c2=2.05 [35]. 

 

 Coefficient Tuning Improvement 

Ratnaweera et al. proposed three improvements to the core of PSO algorithm by 

addressing the coefficients tuning problem [36]: 

Time Varying acceleration coefficients (TVAC): The acceleration constants 𝑐1 

and 𝑐2 represent the weighting of the stochastic acceleration terms that pull each particle 

towards the pbest and gbest solutions. An important identification should be established 

for 𝑐1 and 𝑐2 as both play major roles in improving the performance of the PSO. c1 

represents the “self-cognition” that pulls the particle to its own historical best position, 

assisting in exploring other solutions within that region. c2 represents the “social 

influence” that pushes the swarm to converge to the current globally best region, leading 

to faster conversions. 

Thus, instead of having fixed values for 𝑐1  and 𝑐2  equal to 2 as initially 

proposed, a change in the coefficients values incrementally based on what stage the PSO 

solution is, improves the overall optimal solution of the PSO, as each stage (exploration, 

exploitations, convergence, jumping out) are individually optimized. 

One modification is the Time-Varying Acceleration coefficients that can be 

represented as follows: 

 

𝑐1 = (𝑐1𝑓 − 𝑐1𝑖) ∗
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
+ 𝑐1𝑖 (3) 

𝑐2 = (𝑐2𝑓 − 𝑐2𝑖) ∗
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
+ 𝑐2𝑖 (4) 
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Where 

𝑐1𝑓 = 2.5, 𝑐1𝑖 = 0.5, 𝑐2𝑓 = 0.5, and 𝑐2𝑖 = 2.5 

MPSO-TVAC (Mutated PSO with TVAC): This improvement has the very same 

idea of mutation introduced in the Genetic Algorithm, focusing on introducing new 

solutions in case the Global best in stuck into a local optimum. This improvement serves 

the introduction of diversity in the search space under study. In their work the mutated 

based PSO is applied with the Time-Varying acceleration coefficients beforementioned. 

Self-organizing Hierarchical PSO with TVAC: In this approach the velocity 

update equation is no more dependent on the previous velocity term as proposed by 

Kennedy and  Eberhart [37]. However, this change may lead to local optima solutions. 

To solve this problem, Ratnaweera et al. proposed HPSO with TVAC. This method keeps 

the velocity term from last iteration as zero and the velocity term is reinitialized using a 

reinitialization velocity proportional 𝑣𝑚𝑎𝑥.  

 

 APSO Improvement  

Zhan et al. introduced a new improvement to the core of the PSO, called the 

adaptive particle swarm optimization (APSO). The PSO efficiency is studied through two 

main criteria: number of evaluations needed and premature convergence. In their work 

they proposed first an evolutionary state estimation (ESE) on which the APSO is based 

to enhance the algorithm performance. [38] 

a. ESE: or evolutionary state estimation will study the population distribution in 

each generation. Based on this approach the adaptation of PSO is done. Following 

are the steps describing this clustering-based approach: 

1. Calculation of the mean distance of each particle 𝑖 to all other particles: 
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𝑑𝑖 =
1

𝑁 − 1
∑ √∑  

𝐷

𝑘=1

 (𝑥𝑖
𝑘 − 𝑥𝑗

𝑘)2

𝑁

𝑗=1,𝑗≠𝑖

 (4) 

𝑤ℎ𝑒𝑟𝑒:   

𝑁: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒  

𝐷: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)  

2. Compute the evolutionary factor: 

𝑓 =
𝑑𝑔 − 𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛
∈ (0,1) (5) 

 

𝑤ℎ𝑒𝑟𝑒:   

𝑑𝑔: 𝑔𝑙𝑜𝑏𝑎𝑙𝑙𝑦 𝑏𝑒𝑠𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  

𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑎𝑛𝑑 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦  

3. Classification of 𝑓 into one of four states 𝑆1, 𝑆2, 𝑆3, 𝑎𝑛𝑑 𝑆4 representing 

Exploration, exploitation, convergence, and jumping out respectively.  The 

membership to the evolution states is as follows 𝑆1 → 𝑆2 →  𝑆3 →  𝑆4. 

 

 

Figure 4-Classification of membership states with respect to the evolutionary factor f 
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b. APSO: 

1. Inertia weight adaptation: 

The inertia factor has an important role in balancing between global and local 

search. It is not seen efficient to just decrease 𝜔 with time. They propose that 𝜔 follows 

the evolutionary states using a sigmoid mapping:                                                       

𝜔𝑓 =
1

1 + 1.5𝑒−2.6𝑓
∈ [0.4,0.9]                 ∀𝑓 ∈ [0,1] (6) 

                  They considered 𝜔𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.9 in their work. 

2. Acceleration coefficients: 

Exploration (Strategy1): increasing 𝑐1,and decreasing 𝑐2 slightly since in this 

state the particles explore their own historical best positions rather than approaching the 

global best. 

Exploitation (strategy2): increasing 𝑐1,and decreasing 𝑐2 slightly since in this 

state the particles are making use of their explored bests seeking more local niches for 

best solutions. Small 𝑐2 may help in avoiding premature convergence by local optima 

deception. 

Convergence state (strategy3): increasing both 𝑐1𝑎𝑛𝑑 𝑐2slightly to find the 

globally optimal solution by enhancing the global factor 𝑐2 and then grabbing the particles 

to the possible global best. 

Jumping out (strategy4): decreasing 𝑐1and increasing 𝑐2,when the global best 

jumps away to a better optimum. Its new position will be way far from the clustered 

particles. 

|𝑐𝑖(𝑔 + 1) − 𝑐𝑖(𝑔)| ≤ 𝛿            𝑖 = 1,2 

0.05 ≤ 𝛿 ≤ 0.1 
(7) 
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CHAPTER III 

METHODOLOGY 

A. Problem Statement 

Field development can be divided into subsurface and surface development. 

Subsurface development planning includes the optimization of the well count, type, 

trajectory, location and control. As for surface facility development planning, it includes 

the optimization of the production system layout design which involves the placement 

and allocation of drill centres, gathering centres, manifolds, flowlines, platforms and 

facilities. Regarding surface development planning, the production system constitutes a 

substantial portion of the overall cost of the field development hence engineers tend to 

come up with best design that minimize cost while providing an efficient development 

performance.  In this course, the capacity, number, location and allocation of each 

element in the production system e.g. well head, manifolds, platforms and facilities must 

be optimized for obtaining the lowest cost possible.  

The problem is represented by a multilayer node-segment where each node (i.e. 

manifolds, platforms, and processing facilities etc..) has its own capacity (or range of 

capacity) and a well-defined cost. Each segment will be joining a node from layer 𝑖 − 1 

to another one from layer 𝑖. The main objective is to minimize the total cost of the 

production system which will require the election of the optimal number and positions of 

nodes in each layer, and the allocation of nodes between consecutive layers i.e. manifolds 

and wellheads.   This problem is solved using a hybrid evolutionary algorithm that 

couples particle swarm optimization (PSO) with a clustering technique that makes the 

convergence faster and the solution more robust. The algorithm can start with a random 

guess within the search space or can be well defined initial guess (i.e. initial solutions 
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from Clustering techniques such as Kmeans or can be the preliminary solutions of 

previous runs). Each particle (solution) represents a solution vector defining the 

optimization parameters (nodes positions, connection between nodes etc..).   

Spatial search space is defined by an upper and lower bound defined by the 

location of the wellheads. The following is the schematic of multilayers of the production 

problem, it is represented by a tree-like problem as shown in Figure 5 for an offshore 

system. 

 

Figure 5- Schematic of the problem for an offshore field 
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1. Input Parameters  

The input parameters define the number of layers of the problem and this can be 

changed depending on the predefined problem i.e. onshore production systems can be 

represented as two or three layers of optimization that may be the drilling sites / centers, 

gathering centers and processing facility, for instance. However, offshore problems may 

be much more complicated so it can be represented by three or more layers of 

optimization i.e. entry points, manifolds, platforms, facilities etc.…  

Another input parameter that should be defined prior to solving the optimization 

problem is the map data. This data can be entered as an imported map i.e. using maps 

exported from Petrel or any other software. The other way is to define the lower and upper 

bounds of the map and the resolution (that defines the number of grids to which this map 

is divided) of the map. This two-dimensional developed map is used as the search space 

where nodes are to be put. The elevation of each layer is predefined as a constant to all 

nodes or can be defined as a three-dimensional map, however the elevation is not that 

important in the general flow of optimization.  An important aspect of this methodology 

is that every layer can have its own map where prohibited areas can be excluded from the 

search space of this specific layer.  

Well data such as the coordinates and the type of these wells are the starting 

points of this problem. These parameters are the output of well placement optimization 

processes that have been studied by many researchers. The type of the wells, i.e. 

horizontal or vertical, also has an impact on the algorithmic path for example in case of 

vertical wells only one entry point is possible however in case of horizontal wells two 

possible entry points should be considered when solving the problem. 
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Another input parameter is the nodes’ number or range in each layer. This input 

can be predefined based on engineering best practices or can be tuned to get the optimal 

number of nodes within the range. This factor is related to another important input which 

is the capacity of nodes. In other words, how many nodes from layer 𝑖 − 1 can be assigned 

to each node in layer 𝑖. The nodes capacity input parameter can be defined also as a 

constant value or can be varied within a range. These two inputs affect the clustering 

process and the optimization process since the number of nodes in upper layer will define 

the number of clusters in the previous layer. In addition, the capacity of each node will 

also affect the number of elements in each cluster. Thus, these two factors have an impact 

on the whole optimization results as the number of clusters and the elements of each 

cluster dictates the total distance per layer 𝑇𝐷 𝑖  and then will affect the Total Cost. 

The pricing for the nodes in each layer and for the segments between each two 

layers is also an important input variable. This factor will also affect the number and the 

capacity of the nodes. In addition, the positioning of the nodes will be affected by the 

pricing of the segment connecting it with the layers below and above it. For instance, if 

all segments had the same pricing, we expect that the node connected to a cluster of nodes 

in the previous layer should be located near the mean/ geometric median of the elements 

of this cluster. In contrary, if the pricing was not uniform the position of the node should 

be shifted towards the layer having the highest segment pricing. Assuming that the pricing 

of segments per unit length joining nodes of layer 𝑖 − 1 and layer 𝑖 be  𝐶𝑠 𝑖; Then, if 

𝐶𝑠 𝑖+1 > 𝐶𝑠 𝑖 this will lead to shifting nodes in layer 𝑖 to their connected nodes in layer 

𝑖 + 1 in order to minimize the total cost. Thus, the whole problem outcome is highly 

dependent on the estimated pricing of nodes and segments in each layer. Enlisted below 

are the input parameters that constitutes our optimization problem: 
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1. Number of optimization layers “N”, i.e. if we have in the problem (wells-

manifolds-main manifolds-platforms) in this example we have N = 4 . 

2. Search space boundaries and resolution 

3. Wellheads’ data (i.e. wells’ number, coordinates, and types) 

4. Range/ maximum number of nodes at every layer of optimization (manifolds, 

platforms, and facility). 

5. Maximum Capacity (number/range) of each of the optimization nodes. 

6. Pricing of each segment/node according to their capacities.  

 

2. Optimization Parameters (OP) 

The optimization parameters are the variables that should be varied towards 

optimizing the objective function of the problem (Total Cost, CAPEX, or NPV etc...). 

These parameters are seen to be critical in the defined problem, i.e. they are not fixed 

values and changing any of these will affect the objective function value.  

The position of nodes in layers starting from entry point which is the first layer 

since wells’ position is an input parameter. Moving nodes as optimization parameters will 

dictates other parameters such as the connection between nodes. The positioning of nodes 

in layer n should take into consideration many variables such as the clustering of the 

connected nodes in layers n − 1 and  n + 1 in order to minimize the TC. The election of 

these positions can be done using several methods such as choosing the positions of all 

nodes and then assign to them nodes from lower layer in this case positioning is prior to 

clustering and then reiterate until convergence this can be named PSO based Clustering. 

The other method is that nodes in each layer can be chosen based on clustering of the 

nodes of the lower layer this is a “Bottom up Clustering”. The first type of clustering 
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considers the Total Cost and this due to its randomness and its dictation to PSO updates 

that considers the Best Total cost value. However, the Bottom up method may not fully 

consider the impact of positions of nodes in the upper layer on the positioning of nodes 

in any intermediate layer (Last layer is not affected by this factor). This will be 

comprehensively explicated in the Optimization Flow Section. 

The connection between nodes, as mentioned, is dependent on all the other OPs. 

Positions, capacities, and number of nodes in each layer in addition to the pricing weights 

of segments between layers affect the connection of nodes between layers. For instance, 

if pricing of segments is uniform, a node in layer n − 1 must be connected to the nearest 

node in layer n until this latter’s capacity is saturated. Moreover, if a specific node in 

layer n is connected to nodes in the upper and lower layers but the pricing of segments to 

the upper layer 𝐶𝑠𝑖+1 > 𝐶𝑠𝑖. In this case, the node in layer n is shifted towards the upper 

layer (n + 1) node and a node from the lower layer(n − 1)  may be connected to another 

neighbor, nearest node in order to minimize the total cost.   

Number of nodes can be considered as an input or an optimization parameter 

according to the problem in hand. Pricing method (i.e. if the pricing is fixed for a specific 

node or may change with the capacity) and the capacity of nodes affect the election of the 

optimal number of nodes in each layer. The degree wells are spread on the map also affect 

the decision of how many clusters should be defined in the upper layer which is the 

number of nodes in this layer. Yet, the optimality is a trade-off between the cost of nodes 

in each layer and the segments price joining each two layers. Then, engineering 

assumptions or problem definition dictates whether nodes’ number is presented as an 

input or as a range where it is considered as an optimization variable and is changed until 

optimality is met. 



 30 

Another optimization parameter is the nodes’ capacity that is related to the 

availability of each types of nodes in the market. For example, if present manifolds have 

a well-defined capacity in terms of number of connections or flow rate capacity in this 

case a physical limitation is present as an upper bound in terms of defining the capacity 

of this specific type of nodes. The same applies for all other layer’s elements. Also, in 

this case it is problem dependent to assign a specific value of capacity for each node or 

use a range where this value can be optimized. The capacity of each node is highly 

dependent on the number of nodes and the degree of spread of the nodes in lower layer. 

In this problem, the capacity is optimized within a range. Yet, if any node exceeds its 

upper bound capacity, the excess in allocated nodes from the lower layer are assigned to 

other not saturated nodes in a way that optimality or sub-optimality of the run is 

conserved. Other ways may be applied to meet physical limitations such as penalty on 

outliers’ solutions. 

Following is the list summarizing the optimization parameters under study in 

this specific problem: 

1. Position of nodes in each layer.  

2. The connection between nodes of layer n − 1 and layer n.  

3. Number of nodes at each level of optimization  

4. Capacity of each node 

 

3. Objective Function 

The objective function is the total cost (TC) according to the pricing of all nodes 

and segments. The main aim in this work is to minimize the total cost which forms a part 

of the CAPEX. So, minimizing the total cost will lead to minimizing the CAPEX and 
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then maximizing the NPV. The following is the mathematical representation of the cost 

function. 

𝑇𝐶 = ∑[(𝐶𝑛 𝑖 ×  𝑛 𝑖) + (𝐶𝑠𝑖  × 𝑇𝐷 𝑖)]

𝑁 

𝑖=1

 (8) 

Where: 

𝑇𝐶: 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 ($) 

𝑁: 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑦𝑒𝑟𝑠  

𝐶𝑛 𝑖: 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑙𝑎𝑦𝑒𝑟 𝑖($/𝑛𝑜𝑑𝑒) 

 𝑛 𝑖: 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑙𝑎𝑦𝑒𝑟 𝑖 

𝐶𝑠𝑖:  𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 (𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ)𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 𝑖

− 1 𝑎𝑛𝑑 𝑙𝑎𝑦𝑒𝑟 𝑖 (
$

𝑚
) 

 𝑇𝐷 𝑖: 𝑖𝑠 𝑡ℎ𝑒 𝑇𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟 𝑖 − 1 𝑎𝑛𝑑 𝑙𝑎𝑦𝑒𝑟 𝑖 (𝑚)  

 

B. Proposed Optimization Algorithm 

 

1. Optimization Workflow 

In this section, the general workflow of the proposed algorithm is described. This 

workflow involves seven sequential steps that include input datafile preparation, search 

space setting, algorithmic parameter initialization, nodes assignment, objective function 

evaluation, convergence checking and algorithmic parameters update. Below is a detailed 

description of each of these steps in the proposed optimization algorithm. 

Step 1: Read Data file 
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The input parameters defining the problem such as wells’ data, search space data, 

ranges of optimization parameters, and algorithmic parameters related to the PSO 

algorithm (population size, cognitive and social coefficients, inertia weight etc..).All 

these parameters are stored in and read from a predefined excel spreadsheet which 

represents the datafile of the problem.  

Step 2: Set Search Space 

Upper and lower bounds of platforms and manifolds locations coordinates are 

set in the datafile. These limits can be set to narrow the search space for faster 

convergence and can be considered as the search space since neither a platform nor a 

manifold should, basically, be located outside the field’s boundaries. Typical boundaries 

can be defined as: 

Xlower = min(xwells), Xupper = max(xwells) 

Ylower = min(ywells), Yupper = max(ywells) 

Xlower <  Xp(i) < Xupper 

Ylower < Yp(i) < Yupper 

 

Step 3: Initialization/Update of Optimization Parameters 

The main optimizer used in this problem is the particle swarm optimization 

algorithm. This population-based algorithm as described in Chapter 2starts by initializing 

a predefined number of particles/solutions inside the swarm. These particles represented 

by vectors defining all the optimization variables involved in the problem. An initial guess 

is randomly obtained within the search space defined by the upper and lower boundary 

positions, and specific ranges of other optimization parameters such as nodes capacity. 
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Initialization can be also an input from previous optimization runs or any other 

suboptimal solutions that may help in getting faster to the optimal solution. 

Step 4: Nodes Connection Assignment Using Clustering method 

Assignment of nodes between nodes of layer 𝑖 and nodes of layer 𝑖 + 1 is done 

based on two main criteria i.e. the proximity of nodes in layer 𝑖 to all nodes in layer 𝑖 + 1 

and the maximum capacities of nodes in layer 𝑖 + 1.  

Starting from layer of 𝑖 = 1 and using a bottom up assignment method, distances 

of all nodes in layer 𝑖 to all nodes of layer 𝑖 + 1 are calculated and stored in a matrix. 

Note that, distances are calculated according to the nodes in layer 𝑖 to those in layer 𝑖 +

1. In this sense, the pivot is the distance from nodes of previous layer to the nodes of next 

layer. In other words, if the pivot was the nodes in the higher level the clustering is then 

based on the proximity of nodes in layer 𝑖 + 1 to the nodes in layer 𝑖. Then, if we consider 

wells-manifolds level, in case of up-bottom clustering each manifold is seen to which 

wells is near and assigned accordingly. However, if the bottom up method is applied, 

wells are seen to which manifold are near and the assignment is done accordingly. In this 

way, the least distance can be achieved and in the same time if one manifold is not 

assigned to any of the wells it can be eliminated. Thus, the number of nodes can also be 

optimized in parallel to the distance optimization.  

After calculating the bottom up distances, these distances are ranked in an 

increasing way in order to choose in an optimized way the connectivity between nodes of 

different layers. 

Each node in layer 𝑖  is assigned to the nearest node in layer 𝑖 + 1 taking into 

consideration the maximum capacity of these latter nodes. In other words, nodes are 
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assigned until the nodes in the higher level are saturated. Saturated nodes cannot support 

any additional connection. 

In this Step, used nodes are identified and a check of the assignments of nodes 

is done. In case not all nodes are assigned the algorithm will proceed to Step 5. Unless, 

meaning that all nodes of the considered layer are assigned, layer index is updated layer 

(𝑖 = 𝑖 + 1). Sequentially, another check of whether the layer index 𝑖 <

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠 or not. If this criterion is met the algorithm will continue to 

Step 2 to assign the nodes of the next level. Unless, the process will be ended and all 

nodes in all layers are then assigned. 

In this step, used nodes in the lower layer are eliminated and the saturated nodes 

of the higher level are also eliminated. In addition, the maximum capacity of each node 

in the higher level is also updated ( max 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗+1 = max 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗 −

𝑛𝑜𝑑𝑒𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑗). Where: 𝑗 is the number reiterations until all nodes of layer 𝑖 are 

assigned. 

After eliminating the used elements in the lower layer and the saturated nodes in 

the upper layer. Lower and upper layers are updated accordingly to undergo a new 

assignment process according to their updated attributes. Thus, the process will go to the 

Step 2 again with updated pools of the same layers’ indices. 

Using this method of clustering two important features were added. In one hand, 

controlling nodes’ capacity in an efficient way by only defining the maximum capacity 

so that a more room to consider the optimized distance is available. In the other hand, 

some nodes will not be connected to any of the lower layer nodes, and then can be 

eliminated. Thus, number of nodes is also controlled in parallel with the total distance 

reduction. 
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Step 5: Objective Function Evaluation 

  After deciding number of nodes in each layer and assigning connections 

between nodes. The evaluation of the Cost Function (Total cost) of all the 

swarms/solutions is done using the defined Objective Function “TC”. This factor affects, 

as aforementioned, both the CAPEX, the productivity of wells, and, hence, the NPV.  

Step 6: Checking Convergence  

Convergence of the algorithm is the key factor of its efficiency. Stochastic 

methods such as PSO and GA handle complex problems, though no clear criterion is set 

for their convergence. They mainly rely on the number of iterations or some criteria that 

should be set according to the problem under study. Following is the function that checks 

convergence of the optimizer after all the parameters are set at each iteration. 

Convergence criteria is considered as the maximum number of iterations that is 

predefined as an input. 

Step 7: PSO Parameters Update 

The results of all solution in the run are stored and ranked in order to define the 

Global Best and the particle Local Best for all the swarms/solutions of the population 

under study. After determining the Global Best and Local Best. The Velocity term is 

updated using its definition from the PSO algorithm. The Velocity is a vector defining 

the change in each element of the position vector which represents the particle/solution. 

The position vector for each solution is updated in Step 3. 

Continue from Step3. 
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Figure 6– PSO General Workflow 

 

 Clustering Function (Step 4)  

Assignment of nodes between nodes of layer 𝑖 and nodes of layer 𝑖 + 1 is done 

based on two main criteria i.e. the proximity of nodes in layer 𝑖 to all nodes in layer 𝑖 + 1 

and the maximum capacities of nodes in layer 𝑖 + 1.  

1. Starting from layer of 𝑖 = 1 and using a bottom up assignment method, distances 

of all nodes in  layer 𝑖 to all nodes of layer 𝑖 + 1 are calculated and stored in a 

matrix. Note that, distances are calculated accroding to the nodes in layer 𝑖 to 

those in layer 𝑖 + 1. In this sense, the pivot is the distance from nodes of previous 

layer to the nodes of next layer. In other words, if the pivot was the nodes in the 

higher level the clustering is then based on the proximity of nodes in layer 𝑖 + 1 

to the nodes in layer 𝑖. Then, if we consider wells-manifolds level, in case of up-
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bottom clustering each manifold is seen to which wells is near and assigned 

accorindgly. However, if the bottom up method is applied, then the wells are seen 

to which manifold are proxim and the assignment is done accordingly. In this way, 

the least distance can be achieved and in the same time if one manifold is not 

assigned to any of the wells it can be eliminated. Thus, the number of nodes can 

also be optimized in parallel to the distance optimization.  

2. After calculating the bottom up distances, these distances are ranked in an 

increasing way in order to choose in an optimized way the connectivity between 

nodes of different layers. 

3. Each node in layer 𝑖  is assigned to the nearest node in layer 𝑖 + 1 taking into 

consideration the maximum capacity of these latter nodes. In other words, nodes 

are assigned until the nodes in the higher level are saturated. Saturated nodes 

cannot support any additional connection. 

4. In this Step, used nodes are identified and a check of the assignments of nodes is 

done. In case not all nodes are assigned the algorithm will proceed to step 5. 

Unless, meaning that all nodes of the considered layer are assigned,  layer index 

is updated layer( 𝑖 = 𝑖 + 1). Sequentially, another check of whether the layer 

index 𝑖 < 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠 or not. If this criterion is met the algorithm 

will continue to Step 2 to assign the nodes of the next level. Unless, the process 

will be ended and all nodes in all layers are then assigned. 

5. In this step, used nodes in the lower layer are eliminated and the saturated nodes 

of the higher level are also eliminated. In addition, the maximum capacity of each 

node in the higher level is also updated ( max 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗+1 = max 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗 −
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𝑛𝑜𝑑𝑒𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑗). Where: 𝑗 is the number reiterations until all nodes of layer 𝑖 

are assigned. 

6. After eliminating the used elements in the lower layer and the saturated nodes in 

the upper layer. Lower and upper layers are updated accordingly to undergo a new 

assignment process according to their updated attributes. Thus, the process will 

go to the Step 2 again with updated pools of the same layers’ indices. 

Using this method of clustering, two important features were added. In one hand, 

controlling nodes’ capacity in an efficient way by only defining the maximum capacity 

so that a more room to consider the optimized distance is available. In the other hand, 

some nodes will not be connected to any of the lower layer nodes, and then can be 

eliminated. Thus, number of nodes is also controlled in parallel with the total distance 

reduction. Figure 7 represents the workflow of the proposed clustering method. 



 39 

 

Figure 7- Clustering function workflow 

 

2. Improvements on Standard PSO 

Based on the superiority of the PSO algorithm compared with GA, PSO was 

considered as the main optimization tool in this work. Several improvements were 

introduced in the literature, as described in literature review section, to enhance the 

efficiency in terms of convergence and time. 

 

 Adaptive Particle Swarm Optimization (APSO)  

Adaptive Particle Swarm Optimization (APSO) showed superior to the Standard 

PSO. Thus, APSO is considered as the main optimizer. APSO, as described in the 
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literature review, is an improved version of PSO that focuses on determining the 

evolutionary state of the solutions. After determining the evolutionary state of the 

problem, algorithmic parameters are adapted accordingly. This will ensure a better and 

smooth convergence of the problem. Figure 8 represents the steps of the APSO algorithm 

applied to the defined multilayer problem. 
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Figure 8- APSO algorithm workflow 
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 Multiple Runs Initialization  

Initialization of the initial guess in the PSO algorithm is considered as a main 

factor affecting the results of the algorithm. Hence, initialization improvement was 

introduced in this context the “Multiple Runs Initialization”. Generally, PSO consists of 

a population of solutions that are initialized randomly. These initial guesses are updated 

using the PSO velocity and position equations.  

This introduced improvement consists of the running APSO algorithm multiple 

times but for few generations (i.e. 200 generations). The best result of each run is stored 

as one initial solution. The process is repeated until all initial particles (solutions) are 

initialized. Based on this initialization, the main optimization loop starts from a 

“relatively good” initial guess.  

Figure 9 describes the workflow of multiple runs initialization that is applied prior to the 

main optimization loop: 
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Figure 9- Multiple runs initialization workflow 

 Restart  

Another improvement was added to the APSO algorithm the “Restart” step. 

Restarting the particles of a population is done after facing the pre-convergence plateau. 

This method was introduced to mutate the present solutions by reinitializing the 

population randomly, but, the history of the particle’s best and Global best. The new 

mutation to the PSO solution will lead to a better convergence by introducing new random 

solutions to the problem after having a constant solution for a certain number of 

generations. This number of generations where the solution is not converging is 

predefined as an input to the problem. This parameter could be further tuned depending 

on the problem under study. 

Figure 10 presents the complete proposed algorithm that is introduced in this 

work, this algorithm is compared with other algorithms and its superiority was verified. 
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Figure 10- Proposed Algorithm complete workflow 
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CHAPTER IV 

RESULTS AND DISCUSSION 

In this section, we compare the performance of three different optimization 

algorithms; Deterministic Optimization Algorithm (DOA), Genetic Algorithm (GA) and 

Particle Swarm Optimization (PSO) on 2 layered production system problem where the 

location of platform was altered while fixing the location of a predefined number of wells. 

DOA is a method that considers all possible combinations and evaluates the Objective 

Function of each. The OLYMPUS case is used for illustration for many cases [39]. In 

order to compare the performance and limitations of each of the employed methods, 

problems with different levels of complexities are considered.  

 

A. GA Vs. PSO  

In this section, we compare the performance of three different optimization 

algorithms; Deterministic Optimization Algorithm (DOA), Genetic Algorithm (GA) and 

Particle Swarm Optimization (PSO) on 2 layered production system problem where the 

location of platform was altered while fixing the location of a predefined number of wells. 

DOA is a method that considers all possible combinations and evaluates the Objective 

Function of each. The OLYMPUS case is used for illustration for many cases [39]. In 

order to compare the performance and limitations of each of the employed methods, 

problems with different levels of complexities are considered.  

 

1. Case 1: Varied Number of Wells, 1 Platforms 

We optimized the location of one platform with different numbers of wells for 

validation purpose. For this example, the three optimization methods yielded the same 
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results regardless of the number of wells (up to 20 wells) as illustrated in Figure 11 for 

eight wells.  

 

Figure 11– Single Platform location optimization using the three optimization methods 

(8 wells) 

 

A major limitation in terms of CPU and memory was noticed when applying the 

DOA which made it incompatible to the proposed evolutionary algorithms. The time 

consumed by the deterministic method increases exponentially with the number of wells 

and exceeded 650 minutes for no more than 26 wells as illustrated in Figure 12. For a 

larger well number memory limitation is faced, and this method is no longer valid. On 

the other hand, PSO and GA are not affected by the number of parameters (number of 

wells and platforms) as illustrated in Figure 13. 
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Figure 12– Deterministic method time performance 

 

 

Figure 13– GA vs. PSO performance 

 

After excluding the deterministic methods from the comparison, we analyzed 

the performance of both evolutionary algorithms, PSO and GA in terms of consistency 

and convergence time at different level of complexity.  
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2. Case 2: Vertical Wells – 20 Wells, 2 Platforms. 

PSO showed superiority over GA. PSO converged to its best solution that 

minimizes the objective function; the total cost. GA converges to a sub-optimal solution; 

15 million $ larger than PSO. PSO more efficient than GA in optimizing the well number 

corresponding to each platform. PSO assigns 8 wells for Platform1 and 12 wells for 

Platform 2 (Figure 14–B) while GA just spitted the wells equally between the two 

platforms (Figure 14–A).  

 

A – Solution using GA 

 

B – Solution using PSO 
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C – GA vs. PSO Performance 

Figure 14 – Case 1, Vertical Wells: 20 Wells, 2 Platforms 

 

3. Case 3, Vertical Wells – 30 Wells, 3 Platforms. 

 The level of complexity is upgraded so that we can compare both methods’ 

performance. In this case we consider the presence of 30 defined wells subject to three 

platforms that should be optimized in terms of location and number of wells assigned to 

each of them. Results are shown in Figure 15. GA assigns equal number of wells to both 

platforms as illustrated in Figure 15–A while PSO assigns 14 wells to Platform 1, 10 to 

Platform 2 and 6 to Platform 3. PSO shows a better performance than GA: PSO converged 

in less than 50 generations while GA did not converge even after 700 generations. 

Furthermore, the optimal solution reached by PSO clearly outperforms that reached by 

GA. 
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A – Solution using GA 

 

B – Solution using PSO 

 

C – GA vs. PSO Performance 
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D – GA vs. PSO Performance. Zoom on the first 50 iterations. 

Figure 15 – Case 2, Vertical Wells: 30 Wells, 3 Platforms 

 

4. Case 4, Vertical Wells – 50 Wells, 2 Platforms. 

 As beforementioned PSO vs. GA optimization performance in terms of the total 

wells distances is now compared at a higher level of complexity. In this case 50 wells are 

considered that should be assigned to 2 platforms. Results are shown in Figure 16 and 

illustrate the higher performance of PSO compared to GA both in terms of the optimality 

of the reached solution and the required number of iterations to reach this solution. 

 

A – Solution using GA 
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B – Solution using PSO 

 

C – GA vs. PSO Performance 

Figure 16 – Case 3, Vertical Wells: 50 Wells, 2 Platforms 

 

5. Case 5, Vertical Wells – 100 Wells, 5 Platforms. 

 In this case we consider a highest level of complexity by considering 100 

defined wells that should be clustered and connected to 5 different platforms. The number 

of decision variables exceeds 100 in this case which requires more generations by both 

methods to reach optimal solutions. As shown in Figure 17, PSO reached optimal solution 

after about 600 generations (iterations) however the GA is stuck in a local optimum that 

makes it far from convergence in this exercise. From Figure 17–A, we can see that GA is 
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far from an optimal solution as depicted by wells sub-optimally connected to platforms. 

This is not the case for PSO where “visual” verification does not show this issue; wells 

appear to be connected to the right platform. 

 

A – Solution using GA 

 

B – Solution using PSO 
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C – GA vs. PSO Performance 

Figure 17 – Case 4, Vertical Wells: 100 Wells, 5 Platforms. 

 

6. Stress Test of the Proposed Algorithm.  

Unlike the limitations encountered and reported in the literature on the feasibility 

and efficiency of the optimization problem [1, 7-12], our proposed algorithm converged 

regardless of the level of complexity up to the 5000 wells, 100 platforms limit case (Case 

9) that we have considered. Results are presented in Figure 18 and Table 2. These results 

confirm the robustness of the algorithm and its suitability to be used for any practical 

platform placement optimization task. 

  

A – Case 4: 100 wells, 5 Platforms B – Case 5: 500 wells, 20 Platforms 
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C – Case 6: 1000 wells, 50 Platforms D – Case 7: 5000 wells, 100 Platforms 

Figure 18 – Stress test of the proposed platform optimization algorithm, Results of PSO 

optimizer for high number of platforms and wells. 

 

Table 2—Summary of the proposed algorithm stress test results (vertical wells). 

Case/Performance 

Time/Generation 

(s) 

Number of 

generations  

CPU 

Time(s) 

Case 4: 100 wells, 5 platforms 0.1 400 40 

Case 5: 500 wells, 20 platforms 1.1 600 660 

Case 6: 1000 wells, 50 

platforms 5 800 4000 

Case 7: 5000 wells, 100 

platforms 20.657 1000 20657 

 

7. Horizontal Wells. 

 Platform location optimization in the case of horizontal wells is to ensure a 

minimum platform-to-heel measured depth. That is, the optimizer needs to select, among 

other parameters, the toe and heel of the well based on that criteria (see Figure 19 for 

illustration). One extra parameter, by well, is added to the optimization problem which 
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adds, in turn, to the complexity of the problem. The PSO algorithm is modified to account 

for the horizontal wells and shows very good convergence and consistently smooth 

results. The efficiency, robustness and consistency of the used algorithm are illustrated 

on Figure 20 and Figure 21 for 50 wells, 5 platforms (Case 8) and 100 wells, 5 platforms 

(Case 9), respectively. 

  

A – 6 producers, 6 injectors – Original 

well direction 

B – 6 producers, 6 injectors – Switched 

well direction 

Figure 19 – Illustration of the extra parameter associated to platform placement 

optimization in the case of horizontal wells: Decision of the heal and toe of the well to 

minimize the platform-to-toe measured depth.  

 

Figure 20 – Case 8, Horizontal wells: 50 wells, 5 Platforms. 
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Figure 21 – Case 9, Horizontal wells: 100 wells, 5 Platforms. 

 

8. Conclusion 

Optimization parameters include platform locations, the number of wells per 

platform, and the assignment of wells to platforms; that is, which wells are connected to 

which platform. Furthermore, one extra optimization parameter is added in case of 

horizontal well: the platform-to-heel measured depth. We have presented an efficient 

optimization method that can robustly solve this problem regardless of the number of 

wells and platforms. That has been illustrated up to a case comprising 5000 wells and 100 

platforms. 

We compared three different methods: 1) a deterministic approach that clusters 

the wells considering all the possible combinations, 2) the GA algorithm assisted with 

internal distance and 3) well-assignment optimizer applied as assistant in the PSO method 

which is used for the first time for platform placement optimization in field development 

planning. Unlike what is claimed in the literature (Sales et al. 2018), GA cannot address 

this problem; it converges to a sub-optimal solution. 

Different levels of complexity were considered starting from a simple one 

platform case as a validation problem. Several levels of complexity were then added by 
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increasing the number of wells and/or the number of platforms. In all cases, including the 

nine cases presented in this paper, PSO systematically outperformed GA in terms of both 

the optimality of the reached solution and the number of iterations needed to reach that 

solution. GA failed to converge to a solution and got stuck in local optimum in Case 4 

(100 wells, 5 platforms) and above. 

In this context, we can conclude that the PSO assisted with the distance optimizer is the 

most robust and efficient methodology to address this optimization problem in terms of 

convergence time and objective function optimal values; regardless of the complexity of 

the problem.  

 

B. Standard PSO vs.  APSO 

Based on the results of the previous section PSO has shown its superiority 

compared to GA. In this section we compare the efficiency of PSO with our Proposed 

Algorithm “Improved APSO” algorithm. Multilayer nodes and segments problem is 

considered with an increased levels of complexity. Complexity is defined by two main 

factor the number of nodes and the number of layers in the defined example. Simple cases 

of two layers optimization problems were studied first with an increasing number of 

nodes in each layer. Then, we moved to three-layers and four-layers examples in parallel 

with the increase in the nodes’ number in each layer. This systematic approach was 

applied in order to define the limitations of PSO and the advantages of the newly proposed 

algorithm in terms of convergence and time (i.e. number of generations to reach plateau). 
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1. Case1: 20 wells- 1 manifolds 

Starting from a simple case study 20 wells that should be assigned to 1 manifold 

whose location should be optimized only in this case. These 20 wells were defined within 

the map boundaries. As Figure 22 shows for this simple problem both PSO and APSO 

converged quickly to the optimal solution. This optimal solution is the same as the result 

obtained while searching for the geometric median, which is mathematically the closest 

point to all points of a cluster. Thus, having only one cluster of wells in this case the only 

effective factor that should be considered is the position of the manifold which represents 

in this case the geometric median of the wells. 

 

Figure 22- PSO vs. APSO (20 wells- 1 manifold) 

 

2. Case2: 100 wells- 1 manifolds 

Now increasing the number of nodes in the first layer (i.e. the wells) to 100 wells 

while keeping 1 manifold to be placed in this case also. Figure 23 shows also the very same 

result for both algorithms in a very fast convergence rate. This also is the deterministic 
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solution defined by the geometric median of the 100 wells under study. Thus, until this 

level of complexity both algorithms showed a high efficiency in terms of convergence 

value and time. 

 

Figure 23- PSO vs. APSO (100 wells- 1 manifold) 

 

3. Case3: 100wells- 5 manifolds 

In the third case, another level of complexity is added: the number of manifolds 

is increased. Hence, now both positions of manifolds and assignment of wells to 

manifolds is introduced at this level. As Figure 24 shows that both algorithms also 

converged to the very same optimal solution however ASPO started from a better initial 

guess and reached the optimal solution slightly faster than PSO. However, obtained 

results are similar and quick to be reached and this can be returned to the relatively low 

complexity of the defined example.  
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Figure 24- PSO vs. APSO (100wells- 5 manifold) 

 

4. Case: 100 wells- 15 manifolds 

Moving to higher complexity level by increasing layer two nodes to 15 

manifolds, hence, increasing the positions of nodes to be optimized and then the number 

of clusters to be formed to 15 cluster. Another factor is the assignment of wells to each 

of these manifolds’ clusters. As  Figure 25 shows that improved APSO started at this level 

of complexity to show its superiority over PSO standard algorithm. The proposed 

algorithm started from a better initial guess and converged to the optimal solution with 

few generations’ number (200 generations). On the other hand, PSO didn’t converge to 

the optimal value even after 1000 generations. This indicates that the proposed algorithm 

is overcoming early convergence problem (local optimal solutions) and is moving toward 

the Global optimal solution benefiting from the improvements that have been introduced 

to the standard PSO. 
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Figure 25- PSO vs. APSO (100 wells- 15 manifold) 

 

5. Case5: 100wells- 15 manifolds-5 Platforms 

In this case, another layer of optimization is added to the problem which become 

a 3-layers optimization problem containing wells, manifolds, and platforms. This higher 

level imposes additional efforts on the optimization course i.e. the positions platforms 

that represent a new clustering level of the manifolds coming from the previous layer. It 

is a layer by layer clustering; however, the results of the previous layer clustering will 

affect the assignment decision taken by the introduced clustering function. Figure 26 

shows also the superiority of the improved APSO over the PSO also in terms of 

convergence value and rate. In one hand, the proposed algorithm outperformed PSO 

result by about 30 million $. On the other hand, proposed method reached its optimal 

value in about 400 generations; however, PSO didn’t converge even after 2000 

generations. So, increase of the complexity is giving advantage to the improved APSO 

over the PSO algorithm. 
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Figure 26- PSO vs. APSO (100 wells- 15 manifolds- 5 platforms) 

 

6. Case6: 100 wells -15 platforms -5 manifolds -1 facility 

Finally, a 4-layers optimization example is defined i.e. 100 wells, 15 manifolds, 

5 platforms, and a facility. This high complexity level is used to compare the proposed 

algorithm with the standard PSO. This tree-like 4 layers example confirmed the 

superiority of the proposed algorithm over the standard PSO. Figure 27 shows that 

proposed APSO algorithm outperformed the standard PSO also in terms of the 

convergence value and time. Standard PSO, though after 2000 generations, is about 100 

million $ far from the optimal value reached in about 500 generations by the improved 

APSO. Proposed algorithm shows, then, advantage on the standard PSO while the 

complexity of the problem is increased which makes it a more robust and efficient 

approach to deal with these problems of high complexity. 
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Figure 27- PSO vs. APSO (100 wells- 15 manifolds- 5 platforms- 1 facility) 

 

7. Conclusion 

In this section, standard PSO is compared with adaptive particle swarm 

optimization introduced by Zhan et al. [38]. This improved method focuses on analysing 

the evolutionary state of the problem and adapt algorithmic parameters i.e. inertia weight, 

social and global cognitive factors accordingly. Four evolutionary states were defined: 

exploration, exploitation, convergence, and jumping out. Each of these states has its own 

special alteration on the algorithmic parameters.  

Comparison of standard PSO and APSO showed a superiority of the latter 

improved method on different layers of complexity. Starting from very simple examples 

(i.e. two layers problems) and reaching complex multiple layers problems. Thus, APSO 

is chosen to be used as the main optimizer to which new improvements are applied in the 

next section 
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C. Proposed Algorithm 

In the following section, we present the results of the optimization using the 

proposed algorithm i.e. Improved APSO algorithm. This algorithm that can applied for 

multilayers optimization problems is a generic solution of any of these problems. In the 

following two, three, and four layers examples are considered. Results of optimization 

are represented in terms of the Objective function for multiple runs to ensure that the 

proposed method is consistent. Positions and clusters are also represented using PETREL 

software in 2D and 3D maps. Also, in this section the results are represented in order of 

complexity. In this section all the three improvements are applied to the standard PSO 

algorithm: 

1. Parameters adaptation (APSO) 

2. Smart Initialization (multiple runs initialization) 

3. Mutation (Restart of the solutions) 

 

1. Two layers  

 

 Case1: 20 Wells-1 manifolds 

Starting from a simple two-layers example i.e. 20 wells-1 manifold. This 

problem is very simple since the assignment of nodes between first and second layers is 

predefined by default since we have only one node the upper layer. Thus, only the position 

of the manifold is the optimization parameter in this case. Figure 30 shows that even when 

the problem is repeated for 10 independent runs, the objective function is fast converging 

(2-3 generations) to the very same optimal value. Figure 28 and Figure 29 represent 

respectively the 3D and 2D representation of the solution. The position of the manifold 
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in this case represents exactly the geometric median position which represents the nearest 

point to all the cluster’s elements. 

 

Figure 28- 3D plot (20 wells- 1 manifold) 

 

Figure 29- 2D plot (20 wells- 1 manifold) 
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Figure 30- Objective Function 10 runs (20 wells- 1 manifold) 

 

 Case2: 100 Wells-1 manifolds 

Increasing the number of nodes in the first layer to 100 wells while keeping the 

use of 1 manifold is another level of complexity introduced in this example. Though, 10 

independent runs of the same case resulted the very same optimal solution (i.e. the 

position of the manifold is the same as the geometric median of the wells). Figure 33 

shows that the 10 independent runs converged in few numbers of generations to their 

optimal solution. Figure 31 represents the 3D sketch of the 100 wells-1 manifold 

positions and connections. In fact, manifolds and wells are in the same level i.e. in case 

of offshore production system optimization both are on the seabed level, but the sketch 

presents an altitude difference just for readability and clarity of the sketch.  Figure 32 

presents a 2D map sketch of the case in hand, this map defines the position of the manifold 

and the connection between wells and manifold.Figure 32 
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Figure 31- 3D plot (100 wells- 1 manifold) 

 

Figure 32- 2D plot (100 wells- 1 manifold) 
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Figure 33- Objective Function 10 runs (100 wells- 1 manifold) 

 

 Case3: 100 Wells-5 manifolds 

In this 2-layers example the number of nodes in the second layer is increased i.e. 

the number of manifolds that represents the clusters’ number is increased. Two types of 

complexities were added in this case: the positions of the manifolds, and the wells to 

clusters assignment using the introduced clustering method. Figure 36 shows the 

objective function results for 10 different runs of the same problem. The repetition of the 

run is to make sure that the algorithm in use is consistent and robust. The results show 

that in the 10 different runs, started from the very same initialization, the solutions of all 

runs were found to be similar with a slight standard deviation of 0.005%.Figure 34 is a 

sketch of the 3D configuration of the solution. The figure showed 5 well established 

clusters where each well is connected to the nearest manifold taking into consideration 

the maximum capacity of each manifold. Also, in this example the difference in altitude 
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between manifolds and well heads is just for readability and clarity purposes and the 

problem formulation considered them being at the seabed level. Figure 35 represents a 

2D sketch of the wells-manifolds positions and connectivity.  

 

 

Figure 34- 3D plot (100 wells- 5 manifolds) 
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Figure 35- 2D plot (100 wells- 5 manifolds) 

 

Figure 36- Objective Function 10 runs (100 wells- 5 manifolds) 
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 Case4: 100 Wells-15 manifolds 

Further increase in the number of nodes in layer 2 i.e. increase the number of 

manifolds that should be positioned first and, then, assigned to the corresponding wells 

in the lower layer. From this level of complexity, the need to start using the smart 

initialization technique arises. Figure 39 represents the objective function results that 

can be divided into two main steps: 

1. The smart initialization phase where about 50 runs were conducted. Each run 

represents an optimization trial starting from a random initialization. The 

number of initialization runs is chosen based on the number of particles in the 

population of the main optimization loop i.e. in this case the size of the 

population is 50 particles. These initialization runs are conducted just for 200 

generations, after which the best solution in each run is stored as one initial 

solution of the initialization for the main optimization loop. 

2. Main optimization phase where the process starts from the stored best results from 

the multiple run initialization phase. In this phase, 10 independent runs (50 

particles each 

as the size of the population) are conducted to test the consistency of the proposed 

method. 

Figure 39 shows the complete optimization process starting by the smart initialization 

and ending with the main optimization loop results. Figure 40 shows the main loop 

optimization results where the 10 independent runs converged to the same optimal 

value. In addition, Figure 41 narrows down the figure to the results of the first 200 

generations where all the runs have converged to their optimal solution with no 

deviation in this case. 
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Figure 37and Figure 38 represents respectively the 3D and 2D sketches of the optimal 

solution i.e. the optimal manifolds positioning and clustering. Also, the manifolds are 

considered on the same plan of the well heads (seabed); however, visualization of the 

results imposed to vary the altitude while sketching the 3D plot.   

 

 

Figure 37- 3D plot (100 wells- 15 manifolds) 

 

Figure 38- 2D plot (100 wells- 15 manifolds) 
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Figure 39- Objective Function Initialization and main optimization loop (100 wells- 15 

manifolds) 

 

Figure 40- Objective Function of the main loop 10 runs (100 wells- 15 manifolds) 
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Figure 41-Zoom on the first 200 generations of the objective Function of the main loop 

10 runs (100 wells- 15 manifolds) 

 

2. Three layers  

 

 Case5: 100 Wells-15 manifolds-5 Platforms 

At this stage, three layers example is considered to test the proposed algorithm. 

As described in the methodology section, the capacity input parameter represents the 

maximum capacity of the nodes. In addition, the number of nodes is just an upper limit 

input for the problem. This flexibility of the number of nodes and their capacity in parallel 

with the clustering function that controls these two factors according to nodes’ positions 

that is defined by the main optimizer (APSO) makes the optimization problem more 

practical. As seen in Figure 42 and Figure 43, that despite the input of 5 platforms as a 

maximum number of platforms (initial number of platforms), the solution ended up with 

only three platforms that were placed in optimal locations and assigned in an optimal way 

to the nodes in the lower layer (manifolds).  
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Figure 44 represents the complete optimization process using smart initialization 

(multiple run initialization) for 200 generations. The best results of each of the 50 

initialization runs are stored and used as the initial guess for the main loop optimization.  

The results of the main optimization loop as shown in Figure 45 represents a smooth 

convergence in the 10 independent conducted runs reaching the very near optimal 

solution with a standard deviation of 0.009%. This fact shows the consistency in the 

results obtained using the proposed method. 

Figure 42 presents the 3D sketch of this 3-layers case, where manifolds are the 

clusters’ centres of the wells and, in their turn, the platforms are the clusters’ centres of 

the manifolds. Manifolds and wells heads are on the same altitude level (seabed) but for 

the sake of visualization of the case they are separated in the sketch. However, the 

platforms are usually in offshore fields placed on the sea water level.   

 

 

Figure 42-3D plot (100 wells- 15 manifolds-5 platforms) 

Figure 43 represents the 2D sketch of the solution of this 3-layers case. Figure 

43-A describes layers 1-2; it shows the positioning of the manifolds in layer 2 and the 

well assignment to each manifold cluster. It is important to remark that while optimizing 

nodes of an intermediate layer (layer falling between two other layers) the positioning of 
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these nodes is dependent on both assigned nodes in the lower layer and the node in upper 

layer to which it will be assigned. Figure 43-B shows the 2D result between layers 2 and 

3 i.e. manifolds- platforms layers. Although, the input number of platforms is initially 5, 

the solution found that it is more optimal to use just 3 platforms that are positioned 

optimally based on the introduced clustering function. Figure 43-C represents the best 

solution of the overall 3-layers nodes positions and connectivity i.e. represents well heads, 

manifolds, and platforms. 



 78 

Figure 43- 2D plots (100 wells- 15 manifolds-5 platforms) 

 

 

 A- 2D plot of layers 1-2 (wells-manifolds) 

 

 B- 2D plot of layers 2-3 (manifolds-platforms) 

 

C- 2D plot of layers 1-2-3 (wells-manifolds-platforms) 
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Figure 44- Objective Function Initialization and main optimization loop (100 wells- 15 

manifolds-5 platforms) 

 

 

Figure 45- Objective Function of the main loop 10 runs (100 wells- 15 manifolds-5 

platforms) 
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3. Four layers 

 

 Case6: 100 Wells-15 manifolds-5 Platforms-1 Facility 

Finally, considering the highest complexity example: 4 layers problem having 

100 nodes in the first layer (100 wells), 15 nodes in the second layer (manifolds), 5 nodes 

in the third layer (platforms), and 1 node in the fourth layer (facility). In this high 

complexity case, the number, positions, and assignments of nodes in each layer is 

considered. As the 3D sketch in Figure 46 shows, the wells are clustered to match the 

connect to the 15 well-placed manifolds in layer 2. However, these 15 manifolds are 

clustered into only 3 optimized -location platforms in layer3. This decision taken by the 

clustering function is important since the cost of these additional platforms is found to be 

higher than the additional connections’ costs in case of reduction of nodes’ number. This 

is another important aspect of the proposed algorithm compared with other optimizer such 

as standard PSO, GA etc…  

 

 

Figure 46-3D plot (100 wells- 15 manifolds-5 platforms-1 facility) 
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Figure 48 presents the whole optimization process using smart initialization and 

all improvements added to the standard algorithm. Due to the complexity of the problem, 

100 particles are chosen to constitute the population. Hence, 100 runs were conducted in 

the multiple run initialization process for 500 generations in this case. After initializing 

the first guess of the main optimization loop, another 10 independent runs were conducted 

for 2000 generations each. Figure 49 shows the results of the objective function (total 

cost) for the main optimization loop. Convergence is reached after about 1500 

generations. The results of the 10 independent runs show a very near optimal value with 

a standard deviation of 0.019%. 

Figure 47-A presents a 2D plot that describes the positions and assignment of 

nodes of layers 1 and 2 (well heads and manifolds). Figure 47-B is the sketch representing 

nodes and connectivity between layers 1-2-3 (well heads, manifolds, and platforms). In 

layer 3 the input number of platforms was initialized to 5, however, the optimizer decided 

to use just 3 platforms in this layer. So, the number of nodes is being indirectly optimized 

to minimize the total cost. Figure 47-C represents the results of nodes positions and 

clustering of layers 3 and 4 i.e. the positions and connectivity of platforms to the facility 

in the higher layer. The position of the facility is assumed to be unconstrainted in this 

case just for the sake of illustration. However, the facility usually in case of offshore is 

placed onshore mainly and this will be considered in the further work. 



 82 

 

A-2D plot of layers 1-2 (wells-manifolds) 

 

B-2D plot of layers 1-2-3 (wells-manifolds-platforms) 
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C-2D plot of layers 2-3-4 (manifolds-platforms-facility) 

Figure 47- 2D plots (100 wells- 15 manifolds- 5 platforms- 1facility) 

 

 

Figure 48- Objective Function Initialization and main optimization loop (100 wells- 15 

manifolds-5 platforms-1 facility) 
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Figure 49- Objective Function of the main loop 10 runs (100 wells- 15 manifolds- 5 

platforms- 1 facility) 

 

D. Limitations and Proposed Way Forward 

Production system optimization problem under study is a very important task 

that forms a major part of field development planning. Many assumptions were 

considered in this work for the sake of simplicity and to make sure that the proposed 

mathematical algorithm is tested. This work can be considered as a mathematical 

foundation for the next Engineering decision optimization.  

Factors that should be considered in future work to address some limiting 

assumptions we have taken: 

 Consider horizontal wells in the production system optimization 

 Consider a detailed costing strategy for every component including 

drilling costs 
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 Consider prohibited areas for the placement of nodes and while routing 

the segments 

 Consider the dogleg severity while choosing the entry point to the wells 

and other constraints while connecting nodes in different layer i.e. risers 

that connect platforms to PLEMs should have a base on a well-defined 

constrained distance from platform. 

 Consider the topology of the seabed while optimizing production system. 
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CHAPTER V 

CONCLUSION 

 

Optimization of production system is at the core of the economic development 

of oil and gas reservoirs. Offshore production system optimization is a challenging 

problem that have been extensively studied. In this work, we represented an extensive 

literature review of the methods that are used in optimizing production system problems. 

However, proposed methods have limitations 1) in terms of the number of layers; they 

considered only two layers problems 2) in terms of the number of nodes in each layer. In 

this work, we used a recent applied method in this field of research i.e. genetic algorithm 

GA, and we compared this method to another population-based method the particle 

swarm optimization on a two layers example. PSO outperformed GA on all levels of 

complexity. 

In addition, our defined problem is not restricted to a specific number of layers; 

it is a generic mathematical solution that can handle any number of layers in an 

optimization problem. We first used PSO as the main optimizer assisted with other 

functions i.e. clustering function. PSO algorithm that showed good results was compared 

to an improved version of PSO that overcomes some convergence problems that have 

been faced by the standard algorithm. Three main improvements were added to the 

standard algorithm: 1. Adaptive PSO (literature), 2. Smart initialization using Multiple 

runs initialization, and 3. Restart Function. These improvements led to better solutions 

by the proposed algorithm compared to the Standard PSO, especially when the 

complexity of the example in hand is increased. Another aspect of the proposed algorithm 
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is the consistency of the obtained results while comparing the results of different 

independent runs starting from the same initialization. 

The proposed algorithm shows a superiority over standard PSO, in parallel with 

the robustness that has been verified by the consistency of the results. 
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