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Cyber-Physical Systems (CPS) like smart cities and industries 4.0 including

nuclear power plants, oil and gas pipelines, electric power grids, railways, and

other Critical Infrastructures (CI) are monitored and controlled by Supervisory

Control and Data Acquisition (SCADA) systems that use advanced computing,

sensors, control systems, and communication network. At first, CPSs were pro-

tected and secured by isolation. However, with recent industrial technology ad-

vances, the increased connectivity of CPSs and SCADA systems to enterprise

networks has uncovered them to new cybersecurity threats and made them a pri-

mary target for cyber-attacks with the potential of causing catastrophic economic,

social, and environmental damage. This thesis work proposes two complementary

cybersecurity risk assessment approaches to evaluate and assess cybersecurity for

CPS networks extensively. First, we propose a game-theoretical model for cy-

bersecurity in Industrial Control System (ICS) using Monte Carlo simulations
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to evaluate the payo↵s, given di↵erent variants of randomness, selected strate-

gies, budget spending, and look-ahead. Second, we propose a refined approach to

frame CPS security in two di↵erent levels, strategic and battlefield, by meeting

ideas from both game theory and Multi-Agent Reinforcement Learning (MARL).

The strategic level is modeled as imperfect information, extensive form game.

Here, the human administrator and the virus author decide on the strategies

of defense and attack, respectively. At the battlefield level, strategies are im-

plemented by machine learning agents that derive optimal policies for run-time

decisions. The outcomes of these policies manifest as the utility at a higher level,

where the aim is to reach a Nash Equilibrium (NE) in favor of the defender. A

framework is implemented to simulate the scenario of a virus spreading in a re-

alistic CPS network. Promising results show that the defender can learn optimal

policies to counter viruses that could be equipped with Artificial Intelligence (AI)

components.
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Chapter 1

Introduction

Supervisory Control and Data Acquisition (SCADA) deployed in Cyber-Physical

Systems (CPS) such as smart cities and industry 4.0 like nuclear power plants, oil

and gas pipelines, electric power grids, railways, and other Critical Infrastructures

(CI) use advanced computing, sensors, control systems, and communication net-

works to monitor and control industrial processes and distributed assets. These

systems, due to the extreme impact level on human lives, are ranked first among

the bank of targets for malicious attackers or even for hostile countries. They

are also considered as a Weapon of Mass Destruction (WMD) because they can

bring notable harm to a high number of humans or cause considerable damage

to human-made structures, natural structures, or the biosphere. In 2010, the

cyber world witnessed the arrival of the most technologically sophisticated and

malicious program developed for a targeted attack. It was the arrival of the first

cyber warfare weapon ever; known as Stuxnet[6]. It turns out after a lot of inves-

tigation and code analyzing that Stuxnet, was only targeting Iran in its Natanz

uranium enrichment plant. The attack was not against SCADA software; it was

aimed at industrial controllers that might or might not be connected to a SCADA
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system [6]. Stuxnet’s dropper loaded rogue code to PLCs made by Siemens, it

went through a complex process of fingerprinting to find the target, and it uti-

lized at least four zero-day Windows vulnerabilities to gain access to vulnerable

computers and search for Siemens PLC software [7]. Since then, similar attacks

proliferated, such as Havex and Industoryer1.

1.1 Problem Definition

Back in the days, CPSs were protected and secured by isolation from the In-

ternet. These systems are distributed in nature and have control loops receiving

measurements from sensors and transmitting control signals to actuators. How-

ever, with the technological industrial advances, CPS and SCADA systems are

being exposed more and more to the Internet. They are growingly using stan-

dard computing and networking technologies, such as TCP/IP, Modbus, remote

access, and web services, to transport sensor data and control signals, to monitor

and control industrial processes. Additionally, the interconnection between these

systems and organizational enterprise networks is hugely increasing. These facts

are only making these systems vulnerable and prone to cyber-attacks. By just

visiting the Shodan Search Engine [8] and searching for connected ICS devices,

55000 ICS devices distributed around the globe are scanned and displayed, with

di↵erent protocols connected to the Internet [9]. Protecting these systems with

available security solutions adapted in traditional networks is very revealed and

not su�cient. Security in conventional networks is primarily concerned with con-

fidentiality and data integrity, unlike the security in SCADA networks that are

concerned with availability, reliability, and safety.

Traditional network security tools such as Intrusion Detection Systems (IDS),

1
https://www.welivesecurity.com/2017/06/16/seven-years-stuxnet-industrial-systems-

security-spotlight/
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Industrial Control Systems

Figure 1.1: Overall problem definition.

firewalls, and the option of isolating these systems are no more an option or a

solution. Attacks on these systems can be very sophisticated and targeted, such

as Stuxnet, or inadvertent, such as Slammer; thus proving the urgent need for risk

assessment approaches, and optimized defense policies in the will of protecting

these systems against future attacks. We illustrate in Fig. 1.1 the scenario of

possible targeted attacks in a red arrow initiated from malicious hackers or rogue

viruses on the controlling systems of the ICS represented by several layers and

subnets. And on the other hand, possible defense strategies in a green arrow

initiated by the network administrator to block targeted cyber-attacks. How to

model our problem? To model the problem, we tend to use methodologies from

recent researches that focus on the use of game theory to formalize the problem as

a game, and the use of Monte Carlo method to simulate most or all possible risks

in cybersecurity areas. Alternatively, the use of Reinforcement Learning (RL) to

add a learning component for our game players to derive optimal defense policies.

Having solutions from both the Monte Carlo method and RL, we question the
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order of use of both solutions. For that, we use the Monte Carlo method first to

discover all possible risks that an ICS environment face, and second we use RL

to add learning properties for game players to derive optimal attack sequences

and defense policies.

1.2 Goals

Recent research focuses on new methodologies for risk modeling and assess-

ment. An increasing interest in game theory, control theory, and network op-

timization are witnessed amongst other methodologies. The goal of this thesis

e↵ort is to propose two complementary approaches that can be used to assess

cybersecurity solutions for CPS and ICS, and also to derive adequate defense

strategies with optimized policies to mitigate cyber-attacks.

The first approach proposes a game-theoretical model for cybersecurity risk as-

sessment in ICS using Monte Carlo simulations. This approach proposes a risk

assessment model which is composed of three layers: (1) a functional network

layer that represents a typical industrial company network, (2) a security layer

that represent the di↵erent security states of the network, (3) and a game theory

layer where the environment, action spaces, utilities, and strategies of a cyber

battle is modeled between an attacker and a defender. A tool is developed in

Python to represent and configure the di↵erent layers and probabilistic parame-

ters and to run the simulations [10].

We refine upon the first approach by introducing Artificial Intelligence (AI) Com-

ponents on both the defender and the attacker sides. This approach is based on

a hybrid human-machine model. The proposed model is based on game theory

and RL, where human adversaries decide on strategies. For instance, how to deal

with security situations with di↵erent intensity levels. From the defender’s point
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of view, which defense components are deployed, how firewalls are configured,

how system patching is managed, etc. From the attacker’s point of view, which

infiltration techniques are used, how the malware is packaged, etc. Based on the

formulated game and decided strategies, RL agents decide on the best actions

(proactive or reactive) to take over the battlefield. Based on the knowledge of

the network and the alerts of the defense systems, the defender chooses actions

and navigates its own state space. The attacker navigates a parallel state space

based on an attack tree. Therefore, the Multi-Agent Reinforcement Learning

(MARL) agents learn the best policy for an automated response at run-time.

These best policies for both the attacker and the defender manifest themselves as

the utilities at the strategic game level. Therefore, we can compute a Nash Equi-

librium (NE) at the strategic level that represents the best possible strategy in

the presence of the adversary. A NE is a point that no party would like to deviate

from without losing utility. We focus in particular on a virus spreading scenario,

with realistic assumptions such as discovering and using zero-day vulnerabilities.

We run simulations using the MiniCPS simulator, and we use OpenAI Gym for

the MARL implementation [10].

1.3 Document Structure

Chapter II presents background information about CPS in general and SCADA

Systems in particular. Detailed information is also given about the threats in CPS

and SCADA systems and the attack vectors. A thorough discussion about risk

assessment, and the Monte Carlo method. We also present existing tools, and

attack trees. Also, a detailed discussion about game theory is given with an ex-

ample that shows the use of this formal tool in the cybersecurity field. In the end,

an overview of RL and MARL is given, while focusing on its central concepts.
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Chapter III discusses literature review and work related to game theory that uses

RL algorithms as a solution to find optimal defense strategies. Limitations of the

presented related work are also discussed.

Chapter IV presents two approaches. First, a game-theoretical model using

Monte Carlo simulations. Second, an extended model including RL agents.

Chapter V shows related discussions and results.

Chapter VI concludes the thesis work.

6



Chapter 2

Background Information

Chapter II presents background information about SCADA systems in CPS.

A discussion is held about risk assessment in CPS, in addition to tools for risk

assessment in CPS, related work and background information about attack trees,

game theory, Monte Carlo simulations, and MARL with RL algorithms.

2.1 SCADA in CPS

This subsection presents information on the di↵erent components of SCADA

systems in CPS and their architecture. SCADA field devices and all the com-

ponents found in the SCADA control centers are introduced. Next, threats that

target SCADA systems, CPS, and control units in addition to highlights on the

methods that help gain access to SCADA systems. Finally, information on inad-

vertent and targeted attacks on SCADA systems in CPS are discussed.

2.1.1 Overview

SCADA systems are highly distributed systems used to supervise and control

geographically scattered assets where centralized data acquisition and control are

crucial to system operation. Popular SCADA networks include water treatment
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Radio / Cellular telemetrySCADA Operator Terminal Control unit (PLC / RTU)
Instrumentation / Actuator

Figure 2.1: SCADA system main components.

facilities, oil and gas pipelines, railways, electric power grids, and more. [11].

Common devices to SCADA networks include mechanical and computerized ones,

thus the need for safety, availability, and reliability requirements. SCADA net-

works include control centers that perform centralized monitoring and control for

field and edge devices over long-distance communication networks. SCADA con-

trol centers monitor and process communications such as alarms and status data

transmitted by SCADA field devices[11]. Fig. 2.1 shows the SCADA system main

components: First, we have SCADA operator terminal represented by a Master

Terminal Unit (MTU), Data Historian, and a Human Machine Interface (HMI).

Second, we have a radio or cellular telemetry serving as a transmitting medium.

Third, we have the on-field control unit represented by Remote Terminal Unit

(RTU), Programmable Logic Controller (PLC), or Intelligent Electronic Device

(IED). And finally, instrumentation to read important data and actuators to ap-

ply forces when required. The SCADA operator receives instrumental readings;

received readings are stored on the HMI to be later analyzed, based on these

readings control messages are sent threw the radio/cellular telemetry passing by

the controlling unit to be finally applied by the actuator on the industrial process.

2.1.2 Threats

In [11], the authors provided a list of possible incidents that can target SCADA

systems in CPS.

• Blocked or delayed flow of information, which could disrupt CPS operations.

8



• Unauthorized changes to commands, or alarm threshold which could dam-

age and disable equipment and subsequently create environmental impact,

and endanger human life.

• Tampered information sent to system operators, to cause the operator to

initiate undesired actions, which will result in negative consequences.

• Infected CPS software or settings with malware or rogue scripts that can

have adverse e↵ects.

The authors in [11], also highlight the potential goals of an adversary once access

to a SCADA system is gained. In the past, network isolation was the primary fea-

ture of SCADA systems. It was isolated from all other networks and the Internet.

An adversary needed to gain physical access to the SCADA system to perform

rogue acts. Due to the technological industrial advances, businesses were obliged

to connect their segregated SCADA network to enterprise networks to cut costs

and improve connectivity, and this indirectly connects SCADA systems to the In-

ternet. This allows adversaries to infiltrate the business network, find the SCADA

network, and begin issuing rogue commands to the SCADA network [12]. Even if

SCADA network is not connected Leverett [13], in his work, mention that some

field devices are directly connected to the Internet, negating the need to pene-

trate business networks. SCADA systems also allow some remote connections to

authorized individuals, and these connections provide an additional attack space

for an adversary. In case, an adversary manages to have access to SCADA sys-

tems; they can issue rogue commands that lead to catastrophic results on the

industrial process, nature, or human life. Intentional cyber-attacks can occur

from both insiders and outsiders. Although both can issue attacks on these sys-

tems; insider attacks are more dangerous than outsider attacks mainly because
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an insider has better information about internal-procedures and potential weak

spots in the systems [14].

2.1.3 Attacks

Several attacks in the past have targeted CPS in general and SCADA systems

in particular; all these were proof that these systems are vulnerable and prone

to adversarial cyber-attacks. Slammer reported by Dacey [15] is a Microsoft

SQL Server worm that infected a private computer network at Davis-Besse nu-

clear power plant in Ohio. This worm exploited an SQL vulnerability usually

found in conventional Information Technology (IT) networks, that a↵ects the

power plant indirectly. Slammer is an example of an inadvertent attack that

causes the plant’s process computer to malfunction and generates so much tra�c

that degraded SCADA network communications. Slammer also a↵ected the net-

work tra�c of other physical systems like airline reservation systems [7]. Ralph

Langner[6], consider that Stuxnet is the most technologically sophisticated mali-

cious program developed for a targeted attack. Stuxnet impacted the centrifuges

of the Natanz uranium enrichment facility. The virus targeted control systems

running a Siemens PLC, an utilized at least four di↵erent Windows zero-day vul-

nerabilities to gain access to a computer and search for the Siemens PLC software

[7]. Stuxnet was able to a↵ect the system through the network and threw thumb

drives [16]. Attacks demonstrate the immense threats to SCADA networks and

thus prove the need to implement additional security solutions. Traditional secu-

rity solutions may sound feasible for SCADA systems. However, in the case where

SCADA networks are interconnected to organizational networks, traditional IT

security solutions must be tested first, because they might not be easily extended

to SCADA networks [17]. Failing to test such solutions may result in shutting

down sensitive networks, production and revenue losses, or harm to human life
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or the environment.

2.2 Risk Assessment

2.2.1 What Is Risk Assessment?

Risk assessment [18] is a way to abstract out the technical security details and

come up with a qualitative or quantitative description of the security situation.

It is a systematic process of evaluating potential risks. This process starts with

risk identification, passes by a risk impact assessment, and comes up with final

response and mitigation steps to avoid the risks or reduce their impact [19].

Many ICS environments deploy monitoring tools and Security Information and

Event Management (SIEM) solutions to support compliance and qualitative risk

assessment methodologies such as the NIST cybersecurity framework [20] and

ES-C2M2 [21]. Risk measurement is all-determining the probability of attacks

and their potential impact. Suppose a system security o�cer for a drinking water

utility servicing a small city of about 30,000 residents and assuming that the risk

assessment has identified that with a very low probability, a cyberattack could

shut down the water supply to the city for a week or longer. Despite the very low

probability, this kind of impact is considered critical, and countermeasures for

risk aversion must be taken [22]. Selecting and prioritizing the countermeasures

are based on an elaborate cost-benefit analysis.

Risk Analysis and Management for Critical Asset Protection (RAMCAP) [23]

is one of the earliest quantitative models that defines risk as to the product of

threat (T ), vulnerability (V ) and consequences (C):

R = T ⇥ V ⇥ C
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The Return on Investment (ROI) of a prevention objective is the RAMCAP (R)

divided by the implementation cost ($):

ROI = R/$

Therefore RAMCAP can be used to perform a cost-benefit analysis and prioritize

the available countermeasures based on their ROI. The problems with most risk

assessment standards and methodologies are ([19]):

• the employed definitions are sometimes inconsistent, too general, or lack

rigor.

• the applicability of risk assessment models is, most of the time, limited to

the analyst knowledge, business context, and subjective interpretations.

• databases of risk vulnerabilities and responses are most of the time, not

exhaustive and not up-to-date, which largely a↵ects quantitative models.

• many standards have emerged without substantial di↵erences.

Sometimes, even the basic security requirements for the simplest devices are not

fulfilled. Experts argue that current standards are not the ultimate solution for

risk assessment ([24, 25]). In this thesis work, an alternative solution to ICS

risk assessment based on simulating realistic pen-testing games against the ICS

network model is proposed in one of the approaches.

2.2.2 Monte Carlo Method

Monte Carlo simulation is a method used to learn the impact of risk and

ambiguity in financial, project management, and other forecasting models. A

Monte Carlo simulator helps one conceive most or all of the possible results to

have a better idea about the risk of a decision; it uses the process of repeated
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random sampling to estimate unknown variables. Many risk assessment tools

were built and implemented using the Monte Carlo method to simulate all the

possible outcomes and afterward derive best practices to avoid the risks. A

popular example of the use of the Monte Carlo method is the estimation of ⇡.

Assume that we have a circle of radius 0.5 enclosed in a 1⇥ 1 square, the area of

this circle is ⇡r2 =
⇡

4
. We generate a number of random points n on the enclosed

square, and we keep track of the number of points N generated inside the circle.

By calculating
N

n
we approximate the area of the circle, which is

⇡

4
.

⇡

4
⇡ N

n

⇡ ⇡ 4⇥ N

n

With the increase of n; the approximation of ⇡ will become more accurate.

2.2.3 Preexisting Risk Assessment Frameworks

In this section, background information will be given about risk assessment

frameworks that have used the Monte Carlo method to simulate most or all

possible risks in cybersecurity areas.

CySeMoL

The CyberSecurity Modeling Language (CySeMoL) [26] was proposed to sup-

port ICS and SCADA security managers. CySeMoL is a modeling language based

on logical relations, experimental research in the security domain, and experts

judgment. It covers a variety of attacks, including software exploits, flooding

attacks, privilege abuse, and social-engineering attacks. The language is coupled

with a probabilistic inference engine. The probabilities used by the engine are

a compilation of research results in many security domains. The probabilities

are validated on a component level and a system level. Case studies show that

CySeMoL assessments compare to the assessments of a security professional in

13



terms of correctness.

Haruspex

Haruspex [27] is a software tool that applies a Monte Carlo method to simulate

intelligent and adaptive threat agents. The agents aim to reach predefined goals

through plans with several attack sequences. Haruspex design is strongly model-

oriented and focused on cyber-physical systems such as gas distribution, thermo-

electric, and hydro-electric generation. Several modules are designed to model the

target system, the attack agents, the attack simulations, and the output analysis.

One of the metrics proposed by Haruspex is security stress, which is a measure

of resistance against attacks. Formally the security stress is the probability that

an attacker reaches its assigned goal within a time frame t. The security stress

curves show better how the network resists to the attackers. The security model

of Haruspex is a directed acyclic graph that describes all the attack plans a

threat agent can implement to achieve one of its goals. Each node in this graph

represents a set of rights. An arc between two nodes implies that the rights of

the source node are in the pre-condition of the attack step, and those of the

target node is in the post-condition of the attack step. A right is defined as a

pair composed of one component and one attribute. A sequence of simple attack

steps represents the acquisition of rights through a plan and is modeled by a

path in the graph. The attack is successful if any final node is reached through a

successful path execution. Monte Carlo simulations are required by this approach

since many parts of the model are non-deterministic, for instance:

• the probability of discovering a system vulnerability

• the success probability of an attack step

• the choice among alternative attack steps in a plan
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The framework allows vulnerabilities to be discovered or patched during the sim-

ulation by adding or removing arcs in the graph. The attacker’s strategy for

selecting the next steps can be random or using a look-ahead with a given num-

ber of steps. Countermeasures are integrated by removing arcs in the graph. The

simulator returns a set of countermeasure recommendations taking into account

the cost of each countermeasure and its benefit. The benefit of a countermeasure

is the number of attack plans sharing the corresponding arc. Haruspex allows

for dynamic or conditioned countermeasures. For example, an intrusion detec-

tion system may raise the alarm to switch some connections o↵ and prevent a

plausible exploit

2.3 Attack Trees

A survey back to 2007 discusses the cybersecurity risk assessment methods

of ICS networks and enumerates the organizations disseminating standards and

best practices [28]. Fault Tree Analysis (FTA) [29] is a Probabilistic Risk As-

sessment (PRA) method. It is a deductive approach that starts with a failure or

an undesired event. Although FTA is not originally designed in the context of

information security or cybersecurity, extending it to build attack trees as pro-

posed in [30] is straightforward. Basic event probabilities can replace the failure

rates of events. In this thesis context, the failure can be a compromise of the

controller, providing wrong sensor measurements, or unavailability of the system.

FTA applies systematic backward reasoning to deduce the causes. An attack

tree represents the events and their dependencies. AND and OR gates represent

relationships. The AND gate outputs an event if all input events occur. The OR

gate outputs an event if at least one input event occurs. A minimal cut set is

the smallest number of basic events resulting in the failure or a security breach.
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Hence the probability of a breach can be quantified based on the probabilities of

the basic events. This representation is also useful to quantify the impact of a

basic countermeasure (i.e., by setting the probability of the corresponding basic

events to zero in the model).

In contrast to FTA and attack trees, inductive methods work in the opposite

direction. They start with the initiating events and trace forward to the conse-

quences. FTA and inductive methods are used to conduct Monte Carlo discrete-

event simulations [31] or to calculate fuzzy logic probabilities in a way that couples

personal expertise with the probabilistic tree model [32]. The tree representation

helps in evaluating the possible security countermeasures even when an actual

probability value is not computed.

Very similar to the idea of attack trees is the idea of vulnerability trees. In a

vulnerability tree, a path is modeled and afterward can be followed by a threat

agent to exploit a targeted vulnerability. Patel et al. [33] has merged the two

ideas (attack trees and vulnerability trees) in one augmented vulnerability tree

approach and proposed two metrics to quantify the risk: the threat-impact index

and the cyber-vulnerability metric. The threat-impact index measures the eco-

nomic impact of a successful attack while the cyber-vulnerability metric measures

the vulnerability level.

In [34], attack trees have been applied to SCADA systems with eleven identi-

fied attacker goals. The outcome of their analysis is translated into best practices

and suggested improvements to the MODBUS protocol. In [35], pivotal leaves in

the tree are identified by solving an optimization problem. The results are used

to suggest security improvements. Below we show an attack tree example from

[36].

In this example, the root node depicts the main attacker’s goal, which is to
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Make Phishing Email Get Office Key Remote Access

Figure 2.2: Attack tree example.

compromise the database. To achieve the desired goal, the attacker may follow

two paths. An attack tree allows decomposing the primary attack goal into sub-

goals, making the leaf nodes the starting points to achieve the ultimate goal.

2.4 Game Theory

2.4.1 What Is Game Theory?

Game theory is about agents that are self-interested and interacting through a

shared environment. Each agent has its description of the states of the world and

which states it likes most. Each agent acts based on this description and has a util-

ity function. This function quantifies the degree of preference across alternative

actions and models the impact of uncertainty. The agents have decision-theoretic

rationality in the sense that each one of them acts to maximize its expected utility

in the long run. The game representation takes one of two forms:

• Normal form (usually represented as a table).

• Extensive form, where the timing of the moves and the knowledge about

the previous actions of other players can be modeled.
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Confess Deny

Confess (5 , 5) (0 , 10)

Deny (10 , 0)

A
B

(1 , 1)

Figure 2.3: Prisoner’s dilemma payo↵ matrix.

Normal-Form Game

A two players normal-form game is defined as follows:

• Action set for player i: Ai

• Utility function or payo↵ for player i: ui: Ai ! R

The normal-form game is usually represented by a matrix showing the players,

strategies, and payo↵s. More commonly, it can be represented by any function

that associates a payo↵ to every possible combination of actions. a = (a1, a2)

2 A1 ⇥ A2 is an action profile and, u = (u1, u2) is a utility profile.

Below, we discuss an example of a normal form game, the famous prisoner’s

dilemma to present the concept of Nash Equilibrium (NE):

In this dilemma, we have two prisoners in a separate room; the police o↵er

each a deal. Confess, and accuse the other prisoner and earn a zero-day in prison

if the other player denies. If both players deny, they each end up in prison for

one year. If both players confess, they each go to prison for five years. Fig 2.3,

is the payo↵ matrix of the prisoner’s dilemma normal form game:

A NE is reached if no prisoner can change its strategy and improve its pay-

o↵. If both prisoners decide on denying, then both are sentenced to one year of
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Nash Equilibrium

(0 , 10)

Deny (10 , 0)

A
B

Prisoner's Dilemma
Payoff Matrix

(1 , 1)
Global Optimal

Figure 2.4: Nash Equilibrium for the prisoner’s dilemma.

prison. One player can deviate decreasing its sentence to zero while the other to

ten years. This means that (Deny, Deny) is not a NE. Now consider for prisoner A

and B, (Deny, Confess) strategy, respectively. If prisoner A deviates to a confess

strategy, his prison sentence decreases to five while increasing B prison sentence

from zero to five. This means (Deny, Confess) is not a NE and by symmetry

(Confess, Deny) is also not a NE. Finally, consider a (Confess, Confess) strategy

where no prisoner is left with a choice to deviate for a lesser prison sentence.

Thus, (Confess, Confess) is the NE of the prisoner’s dilemma. Fig. 2.4 shows the

NE of the prisoner’s dilemma.

Extensive-Form Game

An extensive-form game is defined as follows:

• Set of players: N

And for each player i:

• The set of strategies: Si

• The payo↵ function: ui: Si ! R
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(-5,0) (10,10)

Figure 2.5: Kodak Vs. Polaroid game tree.

Extensive-form games formalize a time sequencing of moves based on trees.

Each vertex in the game tree represents a point of choice for a player. The

ramifications of the vertex represent possible actions for that player. Payo↵s are

defined at the bottom of the tree. Backward induction is commonly used to

evaluate the game.

Below, we discuss an example of a perfect information extensive-form game: It

is a competition between Kodak trying to enter the instant photography market,

and Polaroid that can either accommodate this market entry or fight it [37]. Fig.

2.5 shows the tree of the game.

We can induce a normal form game, by converting the extensive from game

into a normal form game.

• N = {K,P}

• SK = {Out, In}, SP = {F,A}

• Payo↵ matrix.
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Figure 2.6: Backward induction equilibrium.

This example is a backward induction equilibrium; at a backward induction

equilibrium, each player plays optimally at each decision node of the game tree.

So, in this case, the unique backward induction equilibrium is (In, A). Knowing

that backward induction equilibrium eliminates equilibria based on incredible

threats. Also, we can notice that (Out, F) is sustained by an incredible threat

from Polaroid. Finally, the set of Nash equilibria is: (In,A), (Out, F ). Fig. 2.6

shows the backward induction equilibrium of the Kodak vs. Polaroid game.

2.4.2 Zero-sum Game vs. Non-zero-sum Game

In game theory, we have two concepts of games: a zero-sum game, which

is considered as complete competitive games where what is considered suitable
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for one is terrible for the other. Furthermore, in a zero-sum game, an optimal

solution can always be found. The non-zero-sum game di↵ers from a zero-sum

game in that there is no single optimal strategy. Also, the non-zero-sum game

is not strictly competitive because such games generally have both competitive

and cooperative elements.

2.4.3 Perfect Information Game vs. Imperfect Informa-

tion Game

Two types of games are derived from the zero-sum game: perfect and im-

perfect games. In a perfect information game, every player knows the results

of all previous moves; such games include chess and tic-tac-toe. In this type of

game, there is at least one best strategy; this strategy does not guaranty winning

the game but reducing the losses. On the other hand, in imperfect information

games, the players do not know all the previous moves; this is due because the

players often play simultaneously.

2.4.4 Deterministic Game vs. Stochastic Game

In a deterministic game, we specify a choice of action for each player at every

stage of the game. In games where players take turns, the policy is considered

deterministic. In this case, it is optimal for the move to be a function of the

state. An example of a deterministic game is chess because if we use the same

moves at each game, we will obtain the same outcomes. In a stochastic game, we

have a probability of transition at each stage of the game. In games where the

players move simultaneously, the policy is considered non-deterministic. In this

case, an optimal player will randomly choose an action at each stage of the game;

this means that the probability is a function of the state. Stochastic games have

applications in economics, computer networks, and others.
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2.4.5 Example About A Game Theory Approach for Cy-

bersecurity

Fielder et al. [38] suggest a game-theoretic model that optimally allocates

cybersecurity resources such as defender’s time across di↵erent tasks. In their

work, non-zero-sum games represent the environment. Eventually, a mixed NE

between the attacker and the defender (e.g., administrators of the system) is

reached, because the actions taken are not deterministic but rather regulated by

probabilistic rules. The defender Nash strategy is the solution to a minimax prob-

lem. An e�cient minimax solver is proposed using Singular Value Decomposition

(SVD). Enhancing the di↵erent model components requires expert feedback from

system administrators.

The first approach in this thesis adopts a similar game theory approach.

It proposes a new model of risk assessment based on simulating a stochastic

extensive-form game. The game represents attacker versus defender interactions

across a typical industrial cyber-physical system network. The environment is

more realistic and, therefore, complicated. Monte Carlo simulation methods are

used to estimate the utilities of attacker and defender. The second approach is

also modeled as an imperfect information extensive-form game to formalize the

interaction between agents. Both approaches are detailed in chapter IV.

2.5 Reinforcement Learning

In this section, an overview is given on Reinforcement Learning (RL). It fo-

cuses on central topics in RL, in addition to a discussion about Multi-Agent

Reinforcement Learning(MARL).
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2.5.1 What Is Reinforcement Learning?

RL dates back to the early days of cybernetics and works in statistics, psy-

chology, neuroscience, and computer science [39]. It gained much attention in the

last few years in the area of machine learning and Artificial Intelligence (AI). RL

defines how an agent learns through trials and errors in a dynamic environment

to maximize utility.

RL is defined by: (1) set A, represent all the possible actions that an agent can

take. (2) set S, represents all the possible states in an environment. (3) R is an

immediate reward to evaluate the agent’s action (S,A) ! R. (4) policy ⇡ that

the agent employs to determine next action based on the current state S ! A.

(5) Discounted expected long term reward V , it is the expected long term reward

under a policy ⇡; V = ⌃�i
Ri. (6) Action value, is the long term return of the

current state s, taking action a with policy ⇡. In RL, the agent interacts with

the environment via observation and allowed action space. At each step of inter-

action, the agent will apply a specific action a from the set A on a specific state s

of the environment. This action will return output for the agent represented as a

new state s0 from the set S, and a reward R. This process keeps on running until

the environment returns a terminal state, we call this an episode. The agent

should choose actions that tend to increase the overall expected reward. This

behavior can be learned by systematic trial and error, using a wide variety of

available algorithms. By other means, the agent job is to find a policy that maps

a state to action, in order to maximize long term rewards. Some important appli-

cation for RL is related to search, human decisions, lately, network optimization

and cybersecurity. In Fig. 2.7 a general glimpse is given about RL (environment,

agent, action, sate, and reward).
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Reward: rt+1

State: st+1
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Figure 2.7: Reinforcement learning environment, agent, input, and outputs.

2.5.2 Exploration vs. Exploitation

RL is an online learning process. There are no data sets given to the model.

Data is gathered as we go. Actions taken a↵ect the type of received data. For

that reason, it is good to take di↵erent actions to receive di↵erent results. This

means exploration is used to discover the environment first, and gather more

information that could lead to better results. However, exploitation is used to

exploit and use the best decisions, given the information gathered about the

explored environment so far.

2.5.3 On-Policy/ O↵-Policy

A policy is a function that maps a state to an action. There is two types

of policies: a deterministic policy, that means a specific states leads always to

the same action, and a stochastic policy where a specific state leads to di↵erent

actions based on a probability distribution.

2.5.4 Reinforcement Learning Algorithms

There is a wide range of algorithms that can be applied to RL, below is a

comparison among the most popular and used algorithms.

In the case of an on-policy algorithm, we present an on-policy algorithm called
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State-Action-Reward-State-Action (SARSA); when getting action A
0 from S

0:

S
0 ! A

0 we use the same policy ⇡ used to brought action A from State S: S ! A

In the case of an o↵-policy algorithm, we need an algorithm that allows us to

learn a policy that regulates the interaction with an environment under certain

conditions to maximize rewards. An instance of an o↵-policy algorithm is the Q-

learning algorithm. Q-learning is a traditional RL algorithm is about selecting an

action given a state to maximize the overall reward. It is a tabular representation

formed of actions as rows and states as columns and filled with values called the

Q-values. The highest Q-value can map the best action to take considering a

particular state. Below, we explain the Bellman equation that helps in filling

what we call the Q-table with the Q-values.

NewQ(S,A) = Q(S,A) + ↵[R(S,A) + �maxQ
0(S 0

, A
0)�Q(S,A)]

Before learning begins, the Q-table is initialized with arbitrary or zero Q-

values, then the Q-values for each state S and action A are updated with the

above equation to update the Q-value for state S and action A. The equation

starts by using Q(S,A) an exiting Q-value for action A and state S, adding to it

the learned value multiplied by the learning rate ↵. The learned value is formed

by the reward R : S ! A plus the discount factor of the estimated optimal

future value, and from the learned value, we deduct the current Q-value of action

A and state S. The Q-value can also be estimated by using a neural network,

and the algorithm responsible for such estimation is called deep Q-learning. Deep

Q-learning is much better than Q-learning if the number of states is large.
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Figure 2.8: Multi-Agent reinforcement learning (MARL) environment, agent,
inputs, and outputs.

2.5.5 Multi-Agent Reinforcement Learning (MARL)

Multi-Agent Reinforcement Learning (MARL), focuses on models that include

two or more agents that learn by dynamically interacting on a shared environ-

ment. Di↵erent scenarios are created based on the action of each agent applied

on the environment. The complexity of MARL is tightly related to the increase of

agents number. In MARL, we have three types of behaviors; cooperative, adver-

sarial, and neutral. In Fig. 2.8 a MARL context is presented with the interaction

of multiple agent on a shared environment.
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Chapter 3

Literature Review

Chapter III provides a literature review, and related work that has employed

game theory in addition to RL algorithms to propose security decision-making

approaches for ICS and CPS networks. In addition to deriving optimal defense

strategies to reduce the loss caused by cyber attacks.

3.1 Adversarial Reinforcement Learning in a Cy-

ber Security Simulation [1]

This paper [1] focuses on cybersecurity simulations in networks modeled as

a Markov game with incomplete and stochastic elements. It is an adversarial

sequential decision-making problem played with two agents, an attacker, and a

defender. The two will use RL technique (Neural Networks, Monte Carlo Learn-

ing, and Q-learning) to examine their e↵ectiveness against learning opponents.

In [1], they addressed two problems:

• The uncertainty because of an adversary’s inability to conduct detailed

surveillance.

• Defender’s uncertainty about attackers payo↵s
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In the simulation proposed, there are two agents, defender, and attacker. Each

agent has limited access to the network, just like in the real world, and it has

only influence on its side of the values in the nodes. Both agents have the goal of

winning as many games as possible. The attacker goal is to attack the network

and get to the asset. He only has an observation of the current attacked node.

The attacker wins the game when he gets the asset. The defender’s goal is to

detect the attacker before reaching the asset. The defender has access to each

node on the network.

At each time step, both agents choose an action from their set of possible actions.

When an attack value is incremented, this indicates that the attack is successful;

if the attack value outcomes the defense value, this means that the attacker has

won the game. In this case, the attacker move to the next node. When the attack

value of the attack type is lower than or equal to the defense value, the attack is

blocked. In this case, the attack is detected with a probability always between

0 and 1. If the attack is detected, the game ends, and the defender wins. If the

attack was not detected, another game step is played. At the end of each game,

the winner gets a reward of +100 and the loser a reward of -100. It is a zero-sum

game.

The agents in this simulation need to optimize their behavior, such that they win

as many games as possible. Agents will base their decision based on the current

state of the network. The entire state of the network is partially observable for

both agents. Moreover, they have access to di↵erent kinds of information about

the network. The agents also have di↵erent actions to choose from.

In their work [1], di↵erent RL algorithms (Monte Carlo learning, Q-learning, Neu-

ral Network, and Linear Network) are used with di↵erent exploration algorithms

(✏ greedy, Softmax, Upper Confidence Bound UCB-1, Discounted UCB) to find
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the best strategies for both agents. Notable results show that for the defender

agent, both algorithms based on neural networks perform worse than all algo-

rithms based on tabular representations. This reflects the problem that neural

networks have with adversarial learning. The network is slower in adapting to a

continually changing environment than other algorithms, therefore being consis-

tently beaten by attackers.

Another remarkable result is that Q-learning is among the best algorithms for

the defender agent, while it is among the worst for the attacker agent. This is

probably the case because the action-chains or optimal policy is less clear for

the attacker. Another possible explanation for the Q-learning attacker under-

performing the Monte Carlo ✏-greedy algorithm could be that Q-learning takes

slightly longer to find an optimal policy.

Below, in Fig. 3.1 we present the network simulated in [1], with its key informa-

tion:

• Attack starts from node ’START’.

• An: Attack of type n.

• V: defense values.

• D: detection chance if attack fails.

• N: network node.

• If attack value overpowers defense value, attack is successful.

• Else attack is detected with a probability D.
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Figure 3.1: The game from the Attacker and Defender perspective.

3.2 Evaluation of Reinforcement Learning-Based

False Data Injection Attack to Automatic

Voltage Control [2]

False Data Injection (FDI) attacks intend to threaten the security of power

systems. FDI attacks have been recognized as significant threats to smart grids.

In [2], a novel strategy of FDI attacks is proposed, which aims to distort the

regular operation of a power system regulated by Automatic Voltage Controls

(AVCs).

In [2], FDI attacks to power systems with automatic voltage controls are studied,

where the attacker is an online learner conducting attacks with data-driven strate-

gies. The attack strategy is modeled as a Partial Observable Markov Decision

Process (POMDP) problem. Attack actions are determined based on believed
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state inferred from recorded observations. A Q-learning algorithm with Near-

est Sequence Memories (NSM) is adopted because this problem is impossible to

be solved analytically; this will help the attacker to reach optimal strategy by

using RL algorithms. As a mitigation to the proposed FDI Attack, bad data

detection and correction method is developed, which is based on Kernel Density

Estimation (KDE). In [2], the authors assumed that the attacker is a malicious

program inserted into the monitor and control unit of a substation. The attacker

has no prior knowledge; it has to learn an e↵ective attack strategy by trials and

errors. The attacker should also be smart enough to attack and learn stealthily.

Q-learning has been applied to solve POMDP models in many applications. K-

nearest sequence memory was used to improve the e�ciency and e↵ectiveness

of the Q-learning process. Results have shown that false data injection can cre-

ate voltage collapse with minimal knowledge and information about the whole

environment. Online learning helped in choosing attack moments to make the

attack more stealthy. In this literature, the attacker’s action was evaluated in the

absence of a defender, and the information about vulnerable elements was not

identified. To mitigate disruptive attacks, the authors proposed a bad data detec-

tion and correction by replacing susceptible data with its Maximum Likelihood

Estimation (MLE) value. Test cases validated the feasibility of the proposed at-

tack and the e↵ectiveness of the mitigation approach. The authors in [2] o↵ered

in their future work an idea which is; the feasibility of FDI attacks based on RL

and virus spreading.

Below, in Fig. 3.2 we show the proposed state transition in [2], with its key

information:

• a(t): Attack action.
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Figure 3.2: State transition of the POMDP during FDI attack.

• z(t): Tampered state of the power system, sent to dispatch center.

• x(t): Estimated system state; input for optimal power flow module.

• c(t): Regulation command.

• After c(t) is executed the system will change to s0 (t+1).

• o(t+1): Attacker observation of the next state.

3.3 A Game-Theoretic Approach to Cross-Layer

Security Decision-Making in Industrial Cyber-

Physical Systems [3]

In [3], a security decision-making game model is proposed with stochastic

elements to characterize the interaction between attackers and defenders in In-

dustrial Cyber-Physical Systems (ICPS) to generate optimal defense strategies
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to minimize system losses. Their approach was tested using case studies on hard-

ware in the loop simulation test-bed. The distinction of their approach is that

it was based on quantitative vulnerability analysis and time-based unified pay-

o↵ quantification. In their work, they modeled a stochastic security game. The

defender is equipped with an IDS which can detect attacks in real-time, and the

attacker can probe the system to identify the defender’s action.

The attacker can adopt all the possible atomic attacks, and also can choose a non-

operation action. On the other hand, the defender will take all the known security

countermeasures, in addition to the non-operation action. For the payo↵s, the

payo↵ of the attacker equals the benefit minus the cost. Also, the opposite of

this is applied to the payo↵ of the defender, knowing that the game is considered

a zero-sum game. For the strategy profiles, since it is a stochastic game, this

means it is a mixed-strategy game. However, in a game problem, each player

will try to maximize the total payo↵ by finding the optimal strategy, and this is

called the Nash Equilibrium; where no player will deviate from a specific strategy

profile. To reach this optimality, they have used an algorithm from other liter-

ature to optimize the strategy profile of both players. However, this algorithm

is only applicable in case all the model parameters are known. For that reason,

they referred to the Q-learning algorithm to approximate the optimal strategies

by continually updating a Q-function despite not knowing the model parameters.

They used Common Vulnerabilities & Exposures (CVE) database, to retrieve

exploitability of real vulnerabilities and use them in the game model, also they

introduced a transition graph that shows the possible transitions from a start

point until reaching field devices and manipulates them.

To prove their approaches; they conducted two experiment one using an algo-

rithm by assuming that all the model parameters are known in advance, and the
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Figure 3.3: Attacker game state transition graph.

second one using the Q-learning algorithm to acquire the optimal attack/defense

strategy profile. What is attractive to the work in this thesis is related mostly to

the second experiment. They managed using the proposed Q-learning algorithm

to obtain the optimal strategy profile. In their future work, they proposed; the

introduction of unknown vulnerabilities into the system in addition to incomplete

information of other player’s actions.

Below, in Fig. 3.3 we present the attacker game state transition graph in [2],

with its key information:

• Attacker, can exploit vulnerabilities or a apply a no-operation action.

• Defender, can patch vulnerabilities and apply a no-operation action.

• Vulnerabilities, are gathered from public databases.

• Attacker game state, take user/root privileges in cyber space and ma-

nipulate equipment in physical space.
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3.4 A Multistage Game in Smart Grid Security:

A Reinforcement Learning Solution [4]

Most smart grid research investigates di↵erent attack techniques while negat-

ing defense strategies. Game theory methods are applied for attacker-defender

games in the smart grid. However, existing works only adopt a one-shot game

and do not consider the dynamic process of the electric power grid. In this work

[4], they propose a multistage game between the attacker and the defender us-

ing RL to identify the optimal attack sequences. The proposed reinforcement

learning solution can identify optimal attack sequences that help the defender

to enhance the security of the system. A comparison will be given between a

one-shot game and a multistage game, to show the significance of the multistage

attack. The main contribution in the mentioned work is: (1) they consider the de-

fender’s action and finds the attacker’s optimal action sequences, (2) the learned

optimal attacks actions will then be used as protection set for the defender, (3)

the proposed multistage attack shows better performance compared to the one-

shot attack in term of transmission lines outage. The proposed reinforcement

solution can take advantage of generation loss and line outages. The game was

modeled as a Markov decision zero-sum game, with two players an attacker and

a defender that makes the actions, in turn, each will have a specific policy to

follow and rewards to gain at each game step. In this game, both of the players

have complete information about each other’s payo↵ function. The two players

repeatedly play the games according to their knowledge until the end. The ob-

jective of the attacker is to maximize the discounted sum of the future rewards,

while the objective of the defender is to minimize it. In a multistage game, NE

can be obtained by the repetitive decision-making process. Q-learning was used
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as the best solution to find the optimal player’s policies (NE). They presented

the two players’ zero-sum game between the attacker and the defender on the

W&W 6-bus system and the IEEE 39-bus system. The obtained results showed

the critical lines that are prone to attacks, and that also causes severe cascading

failures. From this learned information, the critical lines can be included in the

defender’s protection set. The more critical lines included in the protection set,

the fewer optimal policies will be available for the attacker to reach with the

minimum number of actions. These results gained from simulated attacks pro-

vide useful information for power system operators to manage system planning

and help the defender to prepare defense strategies better. As future work, they

proposed the use of deep learning to identify vulnerable branches better.
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Chapter 4

Methodology

In this chapter, two approaches will be introduced and discussed: the first is

based on human decisions (pen-testing), and the second is AI equipped (auto-

matic virus spreading).

First, inspired by Haruspex [27] an approach will be proposed below based on

game theory and a model of three layers that simulates a cyber battle between

a pen-tester and a network administrator on an CPS network. This approach is

tested and justified with a developed tool [10] and detailed results.

Second, inspired by the infamous Stuxnet attack and from related works [1, 2, 3, 4]

discussed previously, a more comprehensive and specific approach will be pro-

posed with a learning element. This approach is based on ideas from both game

theory and MARL; it is based on two levels: a strategic level modeled as an

extensive-form game with stochastic elements to simulates adversaries behaviors

and a battlefield level to conduct simulation for malware spreading in both the

cyberspace and the physical space of a CPS. With the Q-learning algorithm ap-

plied on the battlefield level, optimal attack steps are derived. On the other hand,

optimized policies for selected strategies are derived to impede the spreading of
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a virus in the CPS network.

4.1 A Game Theoretical Model using Monte Carlo

Simulations

This approach is modeled using game theory, a formal tool used here for

strategic behavior analysis between two adversarial battling on an CPS network.

One to penetrate systems, access and compromise industrial assets, and disrupt

the normal function of industrial control units. And the other to monitor, con-

trol, and defend CPS assets and networks. This approach is composed of three

layers: the functional network layer, the security layer, and the game theory layer.

The network layer models a typical industrial company network that represents

network devices, including a demilitarized zone (DMZ), enterprise network, in-

ternal network, and a SCADA network that is controlling PLCs and RTUs in

the network field. The security layer represents the di↵erent security states of

the network. This Security Layer acts as a platform for a cyber battle between

the network administrator (defender) and the pen-tester (attacker). The actions,

utilities, and strategies of this battle are modeled in the top game layer. Many

games were simulated using a Monte Carlo method. A Python tool is developed

to represent and configure the di↵erent layers and probabilistic parameters and

to run the simulations [10]. Note that we use interchangeably the terms “pen-

tester” and “attacker”. In reality, they may imply di↵erent settings: A pen-tester

is usually hired to perform tests against the system and report findings. In this

sense, it can be more closely monitored, and can be granted some entry access

points. In contrast, much less information is assumed about a real attacker who

can be an insider or outsider.
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4.1.1 Model Advantages

This approach has the following advantages:

• It builds on top of previous research on the topic and after a detailed and

thorough study of related work. Lessons learned from previous risk assess-

ment methodologies, and models such as attack and vulnerability trees,

Monte Carlo simulations, control theory, and game theory are incorporated

in this model and segregated into three layers: network, security, and game.

• It bypasses computational di�culties by using Mont Carlo simulations since

the space of possible strategies is infinite. Previous works were limited

to simple and abstract models due to these di�culties. However, attacks

against CPS are getting much more sophisticated, which requires more

extensive and randomized modeling.

• It ensures flexibility for the security administrator to customize the system

parameters.

• It integrates both proactive and reactive security mechanisms, and budget

spending modeling to put both the defender and the attacker under realistic

constraints.

4.1.2 Network Layer

An example of the network layer is depicted in Figure 4.1. The network has

an Internet Firewall and a DMZ firewall. The network is segmented into four

areas or sub-networks:

• The internet DMZ exposes the organization’s external services, such as web

services.
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Field Network ­ (Extreme Impact) SCADA Network ­ (High Impact)

Enterprise LAN/WAN ­ (Medium Impact) Internet DMZ ­ (Low Impact)

Internet

Offices Computers
Web Server Email Server Database Server 

SCADA Server SCADA Historian 
 

SCADA HMI 
RTUPLC Actuator

Figure 4.1: Example of a functional network layer

• The enterprise local and wide area networks (LAN/WAN) hosting users

end-devices and internally shared services such as printers.

• The SCADA network is hosting the SCADA server, HMI, and historian.

The SCADA server is responsible for the data acquisition and the manage-

ment of controllers. The SCADA HMI provides the interface to monitor

and control the PLCs and RTUs. The Historian database is used to collect

and store sensors data for analysis and monitoring.

• The multi-drop network is hosting RTUs, PLCs, and actuators.

4.1.3 Security Layer

The security layer is composed of the attack-vulnerability tree, which is avail-

able for the pen-tester and the strategic response model, which is available for

the defender.
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Attack-Vulnerability Tree

In Figure 4.2 each node in the attacker tree is a security state representing

the current security status as viewed by the attacker. The security state node has

a utility value quantifying the reward of reaching this state. Reward points are

widely used in security certification exams and pentesting competitions. Some

examples of reward points in our scenario are:

• Obtaining scanning information = 1 point

• Firewall Bypassing = 4 points

• Denial of Service, hijacking a TCP connection = 20 points

• Compromising a host, SQL injection, replay attack to bypass authentication

= 30 points

• Root privilege escalation, exploit against the field network = 40 points

Edges between the states indicate the possibility of transferring from one state

to another by performing a successful action. The attacker may traverse di↵erent

paths to reach a target state with a high reward. Examples of target states

are the ability to control RTUs and PLCs, the ability to provide wrong sensory

measurements, or the ability to deny the availability of monitoring and logging

the events in the field network. Vulnerabilities are collected from open source

databases such as CVE Details [5] and using open source tools like MulVAL [40].

Response Strategic Model

The response strategic model is a three-phase process as shown in Figure 4.3.

For more details we refer the reader to [41] and [42]. Of particular interest is the

response phase that can be automated to a large extent using table-driven rules

and flowcharts. The rule-based response system forwards unresolved alerts to the
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Figure 4.2: Example of an attack tree in the security layer

Preparing

Critical assessment of the CPS network

Carry out cybersecurity threat analysis

Consider implication of people and
technologies

Prepare incident facilities, analysis
resources, mitigation software

Responding Following up

From A Vulnerable
ICS/SCADA

Network

To A Secure
ICS/SCADA

Network

Identify cybersecurity incident

Define objectives and investigate the
situation

Take appropriate action

Recover systems, data, and connectivity

Thorough assessment of the incidence

Report the incidence

Build on lessons learned

Update key information and processes

Figure 4.3: An example of a cybersecurity strategic response model

human analyst. For example, the response plan of a Modbus slave attack on an

RTU is shown in Figure 4.4.

4.1.4 Game Layer

In the game layer, the defender and attacker player are modeled, rewards,

and actions, as shown in Figure 4.5. The defender is equipped with an intrusion

and anomaly detection system (IDS) at the security layer for monitoring the

security state of the network layer. The IDS is responsible for sending security

alerts to the defender. Each alert w has a confidence value C(w), a severity
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Figure 4.4: Modbus slave attack response module

S(w) and costs B(w). The defender pays the cost of the alert only in case

the alert is considered and analyzed. Both the defender and the attacker have

predefined limited budgets. The budget represents the resources of each party,

such as money, time, and expertise. Upon considering an alert, the strategic

response model is used to predict the current security state and the next step of

the attacker. The defender has to take one of two actions:

Reactive

Act immediately to restore the previous security state. The taken response

succeeds with a probability P (d). The total success probability is: C(w) ⇤

P (d). The total budget spent is B(w) + B(d).

Proactive

Predict the next step of the attacker and act to prevent it. The taken
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response succeeds with a probability P (d0) > P (d). The chance is higher

since the defender is being proactive rather than reactive as in the first

choice. However, the prediction is correct with a chance P (pred). The

total success probability is: C(w)⇤P (pred)⇤P (d0). The total budget spent

is B(w) + B(d0).

The attacker is either an outsider or an insider who is given a node in the

DMZ. The attacker uses the attack-vulnerability tree from the security layer to

choose a suitable path to compromise a target node. The attacker has predefined

the total budget and look-ahead. The attacker strategy is based on the ratio of

exploration versus exploitation. In exploration mode, the pen-tester chooses an

attack step at random with a predefined probability of success. In exploitation

mode, the attacker chooses the action maximizing the reward given the current

state and the available look-ahead. Attackers and defenders can choose di↵erent

budget spending strategies ranging from very conservative to very eager. The

simulation performed runs an experiment with di↵erent pure and mixed strate-

gies. Concretely the possible actions of the defender maybe by adding a firewall

rule, throttling an external IP address or blocking it, shutting down a service

or a node, or sometimes allowing some attack steps in order to collect more in-

formation about the attacker, such as in the case of a honeypot. Among the

pen-tester action steps, enumerate reconnaissance steps, scanning and probing,

exploiting a service, initiating remote shells or reverse shells, privilege escalation,

password/hash cracking, flooding, or denial of service steps, social engineering,

poisoned data injection, initiating malicious control commands. Each node in the

security layer is assigned a reward or utility value and is concretely linked to the

compromise of a functional node in the network layer. Target nodes have much

higher rewards than intermediate nodes. This game is considered a zero-sum
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Figure 4.5: Example of a game in the game theory layer

game. The utility lost by the defender is awarded to the attacker and vice versa.

The risk value is the utility of the game, and it is the final reward obtained by

the attacker after that both parties have spent the total amount of their bud-

gets. Both players try to maximize their profit by selecting the best strategies.

However, no learning component is assumed in this approach.

4.1.5 Implementation Setup

A tool has been designed and developed using Python 3.7 to run game simula-

tions [10]. It was developed using an Intel Core i7-7700 CPU running at 3.60 GHz

and 32.0 GB of RAM. The tool takes for input three configuration files: (1) the

network file contains the network topology and interconnections, (2) the security

file contains the attack/vulnerability tree and the counterpart strategic response

mode, and (3) the game file contains the player profiles and chosen strategies,

the nodes rewards, the total budgets and success probability of actions. First,

an input file was used to describe the architecture of the proposed network layer
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with all the possible transitions between the network nodes. The data provided

was stored in a two-dimensional python list to be accessed later during the sim-

ulation runs. Second, an input file was used to describe the attack/vulnerability

tree in the security layer in addition to the severity level of each security node.

The severity level was stored in a python list that will be used later in the sim-

ulation runs. Third, for each simulation scenario, a di↵erent input file was fed

into the simulation tool describing the strategy profile of each agent, the number

of game steps, reward points for each network node depending on its severity

level. To implement Monte Carlo simulation, the random python module was

used to describe stochastic elements in the proposed game model such as the

probability of attack success, probability of detecting attacks using a simulated

IDS, probability of defense success, probability of choosing between being active

or proactive in the defense strategies. The randomness was not always uniform;

it was also biased depending on the strategy of budget spending adopted by the

agents. Finally, a vast number of simulation runs were conducted, and each game

with its corresponding rewards was recorded into a two-dimensional python list

to be later sampled and plotted to two di↵erent graphs that give a comprehen-

sive overview of each simulated scenario. The first plot shows the frequency of

compromising each subnet in the proposed network layer, and the second plot

displays a curve showing how the network was resilient to the pen-tester attacks

in terms of reward points.

4.1.6 Simulation Results

Below, the presentation of the five scenarios conducted using the python tool

developed. Each simulation will be discussed apart with its corresponding set-

tings configuration, such as policy profile and budget spending, obtained results

that can be discussed on two plotted graphs for each scenario, in addition to a
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conclusion describing the overall game scenario with its winner. The results are

the output of 106 simulation runs of each scenario.

First scenario: Random strategies

The first scenario is a baseline to compare with other scenarios. In this sce-

nario, both the attacker and the defender have random strategies in choosing

attack and defense actions. The prior probability of the success of an attack

step ai is Psuccess(ai). The confidence value of the alerts is random and uniformly

distributed. The posterior probability of success of an attack step if the defender

took a reactive response is:

Psuccess(ai|reactive) = Psuccess(ai) ⇤ (1� C(wi) ⇤ P (di))

The posterior probability of success of an attack step if the defender took a

proactive response:

Psuccess(ai|proactive) = Psuccess(ai) ⇤ (1� C(wi)P (pred)P (d0i))

Let: P (d0i) = 70% and P (di) = 50%. The choice proactive/reactive is random

(50%). We take P (pred) = 0.8 which means that being proactive gives us a

better chance to defend (0.7 ⇤ 0.8 = 0.56) than being reactive (0.5). Based on

the targeted nature and the attack impact, the attacker reward can be 10, 20,

30, or 40 points. The simulation stops once a target node (i.e., a leaf node) is

compromised. Future rewards are less important than present rewards. we use a

discount factor � to take this fact into account. The number of all possible points

is used to normalize the reward:

Rattacker =

P
i �

i ⇤R(ai) ⇤ Psuccess(ai|defender)P
i �

iR(ai)
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(a) Frequency of compromising critical tar-

gets in subnets with di↵erent impact levels

(b) Cumulative reward of the attacker per

time step (simulations and average)

Figure 4.6: Random strategy for defender vs. Random strategy for attacker

where:

Psuccess(ai|defender) =P (reactive)Psuccess(ai|reactive)

+P (proactive)Psuccess(ai|proactive)

The defender reward is Rdefender = 1�Rattacker since it is a zero-sum game. Figure

4.6a shows the frequency of compromising nodes in subnets with di↵erent impact

levels. Results show that compromising internal subnets is more challenging than

targeting the DMZ nodes. Figure 4.6b shows the cumulative reward curves for

10,000 sampled simulations as well as their average. Discrete-time steps shown at

the x-axis with the assumption that the attacker is taking a new action at each

time step. The average curve is an indication of the resilience of the network to

a random attack. This curve shows a small slope and ends by having less than

40% of the total game rewards. The defender has won this game. Even though

the defender has a random strategy, the risk is low in this scenario.
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Second scenario: Exploration attack

In this scenario, the attacker is given a look-ahead of 2 and an exploitation-

exploration strategy. The attacker will compute the reward of the first two steps

for each path. The exploitation probability is set to 15%. In the case of exploita-

tion, the attacker randomly chooses one of the paths with max rewards. The

exploration probability is set to 85%. In the case of exploration, the attacker

randomly chooses between the paths with less than max rewards. Interestingly,

the exploration leads to long paths with higher accumulated rewards since it will

lead to critical control targets.

The success percentage of an attack step is 70%, with the introduction of budget

spending B(ai) for the attacker. The simulation stops when the attacker runs out

of budget or reaches a leaf node. The confidence of the alerts and the probability

of successful prevention are uniformly distributed. Hence, the attacker has more

edge by using the look-ahead with exploration tendency.

Figure 4.7a shows the frequency of compromising nodes in subnets with di↵erent

impact levels. Note that the attacker is almost ignoring the enterprise subnet

since it tends to explore paths with less apparent rewards based on the look-

ahead. Since the defender strategy is random, the attacker succeeds in reaching

the critical subnets.

Figure 4.7b shows the cumulative reward curves for 10,000 sampled simulations

as well as their average. The x-axis has discrete time steps, and the attacker is

taking a new action at each time step. The average curve is an indication of the

resilience of the network to a random attack. This curve shows a relatively large

slope and ends by having more than 70% of the total game rewards. Here the

attacker has won this game; the risk is high in this scenario.
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(a) Frequency of compromising critical tar-

gets in subnets with di↵erent impact levels

(b) Cumulative reward of the attacker per

time step (simulations and average)

Figure 4.7: Random strategy for defender vs. Look-ahead = 2 for attacker

Third scenario: Greedy defender

In this scenario, both defender and attacker are allowed to increase the chances

of success Psuccess(ai) and Psuccess(di) by paying more budget. The following

formulas govern this process:

P (ai|bi) = P (ai) + (1� P (ai)) ⇤
bi

K(B)

P (di|bi) = P (di) + (1� P (di)) ⇤
bi

K(B)

C(wi|bi) = C(wi) + (1� C(wi)) ⇤
bi

K(B)

P (predi|bi) = P (predi) + (1� P (predi)) ⇤
bi

K(B)

WhereK(B) is the maximum allowed budget to spend per action and is a function

of the total budget of B. Therefore a party can reach 100% success for action in

case it spends the amount of K(B). A total budget of B = ↵ ⇤K(B) allows ↵

actions to succeed with certainty. In this simulation, let ↵ = 4. For the attacker,
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the budget can be the time and e↵ort for gathering information about the target

before unleashing the action, the time to discover a new vulnerability or adapt an

existing one, or the cost to buy a suitable vulnerability from the dark web. The

defender can spend the budget to increase the chance of a successful prevention

step, or to enhance the quality of the alerts of the IDS. In practice, this is the

cost or the time of an expert (human or not) to analyze the alert before handing

it to the defender, or the e↵ort to analyze and trace the security incidents.

In this scenario, the defender is proactive and greedy. The defender is proactive

80% of the time and reactive only 20% of the time. The defender spends the

maximum allowed budget per action, alert confidence, and next step prediction.

The attacker strategy is the same as in the second scenario. No extra budget is

used to raise the success probability of the attacker’s actions.

Figure 4.8a shows the frequency of compromising nodes in subnets with di↵erent

impact levels. Figure 4.8b shows the cumulative reward curves for 10,000 sampled

simulations as well as their average. The curve escalates slowly in the beginning,

due to the high quality of the defender reaction. Suddenly, the defender runs

out of budget, and the attacker takes over the game to finish with 60% of the

cumulative reward. The risk is high in this scenario.

Fourth scenario: Conservative defender

The fourth scenario has the same settings as for the third scenario. However,

the defender uses a strategy of conservative budget spending. In the early stages

of the game, the attacker has more potential in conducting successful attacks.

The defender starts investing in the quality of alerts when the attacker reaches

targets of impact level 3 or 4.

Figure 4.9a shows the frequency of compromising nodes in subnets with di↵erent

impact levels. A relative drop is noticed in the frequency of successful attacks in
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(a) Frequency of compromising critical tar-

gets in subnets with di↵erent impact levels

(b) Cumulative reward of the attacker per

time step (simulations and average)

Figure 4.8: Greedy budget spending for defender

(a) Frequency of compromising critical tar-

gets in subnets with di↵erent impact levels

(b) Cumulative reward of the attacker per

time step (simulations and average)

Figure 4.9: Conservative budget spending for defender

the field Network (Impact level 4).

Figure 4.9b shows the cumulative reward curves for 10,000 sampled simulations

and their average. The average curve reaches 40% of the total game rewards.

Fifth scenario: Uniform defender

In the fifth scenario, the defender’s strategy is to spend the budget along the

attack time uniformly. The defender starts from the early beginning of the game

in investing small amounts in the confidence of the IDS alerts, the probability
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(a) Frequency of compromising critical tar-

gets in subnets with di↵erent impact levels

(b) Cumulative reward of the attacker per

time step (simulations and average)

Figure 4.10: Uniform budget spending for defender

of success for defensive actions, and prediction accuracy while using proactive

defense.

Figure 4.10a shows the frequency of compromising nodes in subnets with di↵erent

impact levels. As notice an even smaller probability of targeting nodes at levels

three and four.

Figure 4.10b shows the cumulative reward curves for 10,000 sampled simulations

and their average. An impressive performance is observed since the attacker re-

wards curve barely exceeds the 20% of the total game rewards. This scenario

shows that a balanced defense is even better than a conservative one. No at-

tacks on the surface nodes should be tolerated while focusing all the e↵orts on

protecting the last line of nodes.

4.1.7 Closing Notes

This approach proposed new modeling of a typical industrial network using

three layers: network, security, and game. Risk is evaluated in terms of the Nash

equilibrium of a zero-sum game in between a pen-tester equipped with an attack

tree and a defender equipped with an IDS and a strategic response graph model.
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The concept of Nash Equilibrium is that no player would like to deviate from

the current state. Each agent has the best possible response given the portfolio

of played strategies. This situation is ideal from a security point of view since

attacks can never be stopped. However, best responses need to be known given

limited time and budget. A python Monte Carlo simulation tool [10] has been

developed to evaluate the payo↵s given di↵erent variants of randomness, selected

strategies, budget spending, and look-ahead. Simulation runs have experimented

with a combination of pure and mixed strategies for each player. Preliminary

results show the e�ciency of this approach method in selecting the best strategy

for mitigating attacks against CPS. One of the interesting results is that the

uniform budget spending strategy is more e�cient for the defender than both

conservative and aggressive budget spending ones. Therefore the defender must

not rush to block the early steps in the pen-testing and leave the internal nodes

with no protection or be tolerant in under-protecting the surface nodes. In this

approach, a very small subspace of the infinite space of all possible strategies is

explored. In future work we want to line the simulator to a game theory engine

to decide on the parameters to reach a NE.

4.2 A Hybrid Game Theory and Reinforcement

Learning Approach for Cyber-Physical Sys-

tems Security

This approach proposes to frame CPS security in two di↵erent levels, strategic

and battlefield, by meeting ideas from game theory and Multi-Agent Reinforce-

ment Learning (MARL). The strategic level is modeled as an imperfect informa-

tion, extensive form game. Here, the human administrator and the virus author
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Figure 4.11: Our approach in a nutshell: cyber-physical systems, human agents
and machine agents, proposed modeling solution.

decide on the strategies of defense and attack, respectively. At the battlefield

level, strategies are implemented by machine learning agents that derive optimal

policies for run time decisions. The outcomes of these policies manifest as the

utility at the higher level, where we aim to reach a Nash Equilibrium (NE) in

favor of the defender. We simulate the scenario of a virus spreading in the context

of a CPS network. We present experiments using the MiniCPS simulator and the

OpenAI Gym toolkit, and discuss the results in the next chapter.
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4.2.1 Introduction

We propose in this approach a hybrid human-machine approach to model the

security game in between adversaries in the CPS ecosystem, as depicted in Fig.

4.11. At the bottom, the physical systems layer gives a general idea about the

application of CPS and SCADA systems, including smart cities, industry 4.0,

and Critical Infrastructures (CI). Second, the cyber systems layer handles the

operations related to monitoring and controlling the physical systems. The third

layer is for adversaries: the CPS network administrator trying to defend the cyber

systems and reduce potential threats, and the rogue attackers trying to breach the

cyber systems to cause physical damage. On top comes the methodology layer.

We propose a hybrid approach based on game theory as a tool to formalize the

game interactions between the human adversaries who decide on strategies. For

instance, how to deal with security situations with di↵erent intensity levels. From

defender’s point of view, which defense components are deployed, how firewalls

are configured, how system patching is managed, etc. From attacker’s point

of view, which infiltration techniques are used, how the malware is packaged,

etc. This game has an extended form since the security status may change from

low danger estimation to more serious states, and most attacks are multi-stage.

It is also a game with imperfect information, since most of the time, both the

defender and the attacker may not know the exact security state at the current

time. Based on the formulated game and decided strategies, MARL-powered

machine learning agents may decide on the best actions (proactive or reactive)

to take in the battlefield. The states in the RL model are di↵erent since they are

run-time and perfect information states. Based on the knowledge of the network

and the alerts of the defense systems, the defender chooses actions, and navigates

its own state space. The attacker navigates a parallel state space based on an
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attack tree. Therefore, the MARL agents learn the best policy for an automated

response at run-time. These best policies for both the attacker and the defender

manifest themselves as the utilities at the strategic game level. Therefore, we

can compute a Nash Equilibrium (NE) at the strategic level that represents the

best possible strategy in the presence of the adversary. A NE is a point that no

party would like to deviate from without losing utility. We focus in particular

on a virus spreading scenario, with realistic assumptions such as discovering and

using zero-day vulnerabilities. We run simulations using the MiniCPS simulator,

and we use OpenAI Gym for the MARL implementation.

Additional novelties of the proposed model are as follows:

• Simulate a virus attack in a modern CPS network composed of four subnets.

• The use of predefined known and discovered vulnerabilities, in addition to

the chance of discovering zero-day vulnerabilities.

• Derive optimal attack sequences and defense policies using MARL and Q-

learning.

• Create a simulation framework [10] composed of a network simulator and

an RL toolkit.

4.2.2 Proposed Model

The proposed hybrid approach based on game theory and MARL; is divided

into two levels first a higher game strategic level and second a lower battlefield

level.

4.2.3 Strategic level

We model the strategic level using an imperfect information extensive form

game. The states of this game are the overall security status: Low, medium, high
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Figure 4.12: Proposed CPS network topology using MiniCps.

and critical danger. Obviously, the defender does not know for sure what is the

actual state (e.g. the attacker has discovered a zero-day vulnerability). The at-

tacker does not know what is the state since he does not have the full information

about the target network or about all the defender countermeasures. Therefore,

we consider an imperfect information model. This game has an extended form

since the defender will try to recover from bad states to the original (low) state.

The attacker will try to reach the critical state. Therefore the game have mul-

tiple stages. The defender chooses the strategy in terms of countermeasures to

impede the progress of the attacker. The strategy is translated as a set of ac-

tions to choose from at the Battlefield level. The attacker chooses the strategy

in terms of attack methodologies. This strategy is translated as as set of tools,

vulnerabilities and penetration actions at the Battlefield level.

4.2.4 Battlefield level

This level is modeled using MARL and represents a multistage stochastic game

with a learning component; each agent has a game turn with a random transition
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probability and creates a new scenario for the other agent to act accordingly.

The state of the game is composed of the state of the defender based on the

alerts, and the state of the attacker based on its attack tree. The nature of this

game is stochastic, since some attacks can fail with some probability, and some

countermeasures can fail with another probability.

Network Architecture

The game model is based on a modern and realistic CPS network. As shown

in Fig. 4.12, the system is segregated into four subnets: First, a cloud-based

network hosting the web server, email server, and the database server of the CPS

organization. Second, an enterprise network that hosts all the o�ce’s computers

for the CPS enterprise. Third, a SCADA network that host the SCADA Server

responsible for data acquisition, the Human Machine Interface (HMI) used by op-

erators to monitor sensor values and take commands accordingly, and the SCADA

historian where acquired data are stored. Finally, The field network contains the

goal of the attacker which is the control units represented by a Programmable

Logic Controller (PLC) that execute commands sent from the SCADA network to

be applied on the physical processes and also retrieve sensor values from sensors

deployed all over the industrial process line to be afterward sent to the SCADA

network for processing and storing. Each host deployed on the di↵erent subnets

of the CPS network is explicitly assigned a unique private directory acting as its

storage unit. These directories will be used as a ground for virus spreading among

the hosts, the four subnets, and the two layers of the CPS network. The four

subnets are connected using OpenFlow switches, that are in their turn connected

to a Software Defined Network (SDN) controller on the cloud. SDN has been

applied to di↵erent kinds of networks, with its capability to separate the control

plane from the data plane SDN can also be used to support the network com-
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CVE ID Type of Vulnerability Vulnerability Access Exploitability Score CVSS Score
CVE-2019-11133 DoS Local 2 (Low) 4.6
CVE-2011-5163 Overflow Local 1 (Low) 4.6
CVE-2018-1168 Code Execution Local 3 (Low) 7.2
CVE-2016-2281 Gain Privileges Local 7 (High) 6.0
CVE-2016-9360 Gain Information Local 6 (Medium) 4.4
CVE-2015-3940 Directory Traversal Local 4 (Medium) 6.9

CVE-2013-0654 DoS Remote 4 (Medium) 9.3
CVE-2011-1918 Overflow Remote 2 (Low) 10.0
CVE-2015-7908 Code Execution Remote 5 (Medium) 9.3
CVE-2019-6564 Gain Privileges Remote 4 (Medium) 9.3
CVE-2018-11517 Gain Information Remote 2 (Low) 5.0
CVE-2014-0751 Directory Traversal Remote 2 (Low) 7.5

Table 4.1: Sampled vulnerability analysis gathered from CVE details [5].

munication in CPS networks [43]. Also, because CPS networks rely heavily on

communication networks for control, SDN can be used to manage these networks.

The benefits of using SDN in a CPS network are many; it can dynamically

reroute paths for CPS control commands, provide fast failure detection between

the layers of the CPS network, improve the overall security of the network, and

finally evolve the network to support new technologies, services, and needs [43].

To correctly mimic a modern CPS network with its two di↵erent layers and its

subnets, MiniCps [44] is used as a network simulator to target network communi-

cation, control logic, and physical layer interaction. The network topology of the

CPS network is presented in Fig. 4.12. Using MiniCps features, a terminal can

be launched at each host to execute a specific network command. In this thesis

work, we implement the virus spreading among the hosts, Netcat command was

used to read and write files using a TCP connection, which allows the virus to

pass from a directory to another until reaching its final destination.

Vulnerability Analysis

The CPS network that is designed and implemented in this thesis work is a

vulnerable CPS network segregated into four subnets. The cloud-based subnet

is hosted on the cloud by an outside organization such as Amazon Web Services

(AWS) [45], which is a modern practice adopted by all big firms these days. Also,
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the rest of the subnets are hosted locally in the CPS organization. The base

metric provided by CVSS [46] is adopted to quantify vulnerabilities on network

nodes. More specifically, the exploitability score describes best the complexity of

exploiting a vulnerability. Since the first subnet is cloud-based, it is characterized

by a high level of security with a secure IDS integration. However, the rest of the

subnets hosted locally in the CPS organization are vulnerable with an uncertain

IDS integration.

Table 4.1, shows a small sample of the used vulnerabilities related to the dif-

ferent CPS subnets, they are collected from CVE details [5] an online database

that gathers vulnerabilities with their corresponding information such as attack

types, access types, exploitability scores, and CVSS scores. We gathered in total

65 vulnerabilities for the network devices. Each network device assigned with a

set of five vulnerabilities. These vulnerabilities, depending on their exploitability

scores, determine the transition probabilities for the attacker to bypass the net-

work defenses, and reach the end goal. The defender can invest in patching these

vulnerabilities to strengthen the system, with rewards proportional to the ex-

ploitability scores. The proposed game also gives the chance to discover zero-day

vulnerabilities that are unknown to the CPS network administrator until discov-

ered and exploited by the virus attack. This intended feature provides the model

with a sense of real-life virus targeted attacks. The defender must be aware that

undiscovered vulnerabilities may exist.

Game Description

The setting of this game is a vulnerable CPS network based on a dynamic

environment with two adversaries and a probability of transition. The attacker

represented as a malicious virus spreading into the system and targeting the

control units hosted on the field network, and the defender described as the CPS
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network administrator defending the CPS network. The game is played in a

multistage manner, where each agent applies an action on the environment and

receive a reward, and at the same time creates a new situation for the environment

to be faced by the adverse, and this makes the environment dynamic. Fig. 4.13

shows the proposed game model for virus spreading in a multi-subnet and cross-

layer CPS network. The CPS network is formed of two main layers. The first

layer that represents the cyberspace layer contains three subnets: the cloud-based

system, which has a low impact on the overall CPS security. The enterprise

network, with a medium e↵ect on the security of the CPS network. Finally, the

SCADA network in this layer is considered of high-security impact due to its

nature of monitoring and controlling control units and edge devices hosted on

the field network [47].

The second layer represents the physical space layer containing both the field

network that is stamped with an extreme security impact on the overall CPS

operations; due to the presence of the attacker goal, in addition to the physical

industrial process that depends on the functionality nature of the CPS organi-

zation. The purpose of the attacker resides only in the physical layer and more

precisely on the field network. Also Fig. 4.13 shows all the possible transition

paths of the virus on the CPS network. The spread of the virus is done by exploit-

ing vulnerabilities on network devices and switches having firewalls capabilities

until reaching the end goal. Each node of the graph is associated with a set

of vulnerabilities, a vector of defense values containing the exploitability scores

of the corresponding vulnerabilities. The defender is assumed to have complete

information about the architecture of the CPS network.

On the other hand, the attacker has no information about the CPS network;

information is collected in the process of attacks only. At each game step, the
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Figure 4.13: Proposed game model for virus spreading in a multi-subnet and
cross-layer CPS network.

attacker tries to find and exploit a specific vulnerability on a particular node while

the defender counters the attack by increasing the defense values to protect the

system. Whenever the success rate of an attack exceeds the exploitability score

of the selected vulnerability, the o↵ense is considered auspicious, and the virus

advances to the exploited node. However, the defender at each game step tries

to make the system harder to breach by leveraging the complexity of exploiting

vulnerabilities. First, RL is applied using Q-learning to find the optimal sequence

attack path to reach the goal node. Moreover, MARL handling Q-learning is

applied for both agents to reach the NE, and find the best defense strategies.
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Game Formulation

Next is a six-tuples defining the essential parameters of the proposed game

model: the adversaries agents tuple, a set of states representing the 14x6 game

model matrix (14 nodes, 5 vulnerabilities, level of protection), two sets for at-

tacker and defender action samples, a set of reward corresponding to each state,

and finally a set of transition probabilities that is represented by the exploitability

score of the vulnerabilities.

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Agents: X = {Xa, Xd}

States: S = {{S1
1 , ..S

6
1}, . . . , {S1

N , ..S6
N}}

Att. actions: A = {{AS1
1
, ..AS5

1
}, ..., {AS1

N
, ..AS5

N
}}

Def. actions: D = {{DS1
1
, ..DS6

1
}, ..., {DS1

N
, ..DS6

N
}}

Rewards: R = {{RS1
1
, ..RS6

1
}, ..., {RS1

N
, ..RS6

N
}}

Trans. prob: P = {{PS1
1
, ..PS5

1
}, ..., {PS1

N
, ..PS5

N
}}

The defender uses extra parameters during the simulation, which helps de-

termine a win-game for the defender; a value W that returns zero if the virus is

not detected and one if identified by the IDS, and another value T that indicates

if the game is in a terminated state. In addition to value Y that delimits the

steps of an attacker, and a success rate V for the attacker actions. N is used to

indicate the index of the last node on the system:
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8
>>>>>>>>>><

>>>>>>>>>>:

IDS: W 2 {0 : non-detected, 1 : detected}

Terminal state: T 2 {0 : non-terminal, 1 : terminal}

Maximum steps: Y 2 [0; 99]

Success rate: V 2 [0; 99]

Last node index: N = 14

Each agent of the game model has its goal state for winning a game:

• The goal state of the attacker is to reach the control units of the CPS net-

work. It is represented by the end node of the proposed game model in Fig.

4.13 where the attack success rate should exceed the exploitability score;

formally described in equation (4.1):

X
goal
a = 9Sj

N 2 S,ASj
N
2 A and VA

S
j
N

2 IR |

8j 2 [1; 5], T = 1 and VA
S
j
N

> PSj
N

(4.1)

• For the defender goal state, a game is considered auspicious in two cases:

First whenever the attacker actions success does not exceed the transition

probability on the last node, and the IDS detects the attack then blocks

it; formally depicted in equation (4.2). Second when the maximum attack

steps are exceeded; presented in equation (4.3):
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X
goal
d = 9Sj

N 2 S,ASj
N
2 A, VA

S
j
N

2 IR and Y 2 IR

| 8j 2 [1; 5], T = 1,W = 1, VA
S
j
N

 PSj
N
and Y 2 [0; 99]

(4.2)

Or,

X
goal
d = 9Sj

i 2 S,ASj
i
2 A, VA

S
j
i

2 IR and Y 2 IR |

8j 2 [1; 5], 8i, T = 0, 8VA
S
j
i

and Y > 99

(4.3)

4.2.5 Implementation Setup

The goal in this approach is to design and implement a CPS network that is

the closest in architecture and features to modern CPS networks and at the same

time simple to be used for simulation and learning purposes. Fig. 4.14 shows the

proposed framework architecture that is created with the combination of MiniCps

network simulator, and OpenAI Gym toolkit to achieve the requirements of the

proposed hybrid approach [10]. First, the CPS network is created using MiniEdit

a helper tool in MiniCps [44] that allows the creation of a network with a drag and

drop functionality and at the end generates a Python file describing the designed

network with all its hosts, switches, and links. Each network device from Fig.

4.13 was implemented as a host, and the switches implemented as OpenFlow

switches. Upon generation, the file is edited to support explicitly (1) private

directories for each host on the CPS network, (2) IDS implementation to detect

attacks and return proper observation for learning purposes, and (3) integration

of vulnerability analysis on the hosts and switches of the CPS network. Using

OpenAI Gym, the environment of the proposed game model is created; it is a
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Figure 4.14: Proposed framework architecture using OpenAI Gym toolkit, and
MiniCps network simulator.

14x6 matrix representing the 13 nodes of the network plus a starting node as

rows and the set of five vulnerabilities plus the IDS strength for each host on the

network as columns, at each node the first five cells of the matrix contains the

exploitability score of a vulnerability on a specific node and the last cell contains

the strength of the IDS on each node.

These exploitability scores represent the defense values of the defender and

how the network is immune against attacks. Also using Gym library the action

space of both agents are determined, the rewards for each node of the environ-
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ment is set, and helper functions are created to apply the chosen action on the

designed CPS network that is fed into the game model. By merging the CPS net-

work created using MiniCps and its add-ons (Directory creation, IDS integration,

and vulnerability analysis) with the created game model using OpenAI Gym, a

robust framework is designed to conduct simulation, execute di↵erent kind of

strategies, and apply learning algorithms to derive optimal defense policies to

mitigate possible attacks such as viruses attacks and reduce network losses on a

CPS network. In this study, Q-learning was used to achieve the learning element,

the environment designed have a limited number of states with a limited number

of actions allowed for agents this argue the use of an algorithm based on tabular

representations instead of an algorithm based on neural networks. In addition

to the problem that neural networks have with adversarial learning, where the

network is slow in adapting to the continually changing environment [1]. The

proposed framework is used along MARL implementation to conduct di↵erent

game strategies, derive optimal attack and defense policies using Q-learning, and

evaluate the proposed adversarial multistage game-theoretical model. In the be-

ginning, two Q-tables are initialized with zeros for both agents. The rows are

equal to the number of states, and columns corresponding to the number of ac-

tions for the agents. At each game stage, both agents take action and change the

state of the environment while receiving a reward evaluating their actions, re-

spectively. A trade-o↵ between exploration and exploitation is determined using

an epsilon value that starts with a high number indicating more exploration and

decreases with the increase of iterations number meaning less exploration and

more exploitation of the learned actions to states. The Q-tables are also updated

at each game step, and at the end of the simulation runs Q-tables are concluded

showing the best action to choose for each state of the environment. The com-
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Hyperparameters Hyperparameters Sets Best Hyperparameter
Learning Rate [0.3, 0.4, 0.5, 0.6] 0.5/0.6
Discount Factor [0.7, 0.8, 0.9, 0.95, 0.99] 0.8/0.6
Decay Rate [0.005, 0.006, 0.007, 0.008, 0.009] 0.008/0.005

Table 4.2: Hyperparameters tuning.

pleted Q-tables for the attacker helps discover potential vulnerabilities in the

network to ease the attack and reduce the attack steps to reach the control units.

Moreover, the completed Q-table for the defender helps discover optimal defense

policies to counter the attacker’s action by patching the network vulnerabilities

and improving the IDS strength in detecting attacks.

4.2.6 Hyperparameters Tuning

Below, we discuss the di↵erent hyperparameters used during training and

their e↵ect on the performance of learning. Table 4.2 shows all the hyperparam-

eters used to tune the learning tuning, along the best hyperparameters found for

attacker learning only, and for both attacker and defedner learning.

Learning Rate

The learning rate ranges between zero and one; it describes the degree of

accepting a new value compared to previous values. Learning can occur quickly

if the learning rate is close to one, and no learning develops when the rate is close

to zero. For validation, we trained agents with di↵erent learning rates 0.3, 0.4,

0.5, 0.6. The best performance observed when deriving only attacker policies is

when using a learning rate equal to 0.5. When deriving policies for both attacker

and defender a learning rate equal to 0.6 performed better.

Discount Factor

The discount factor Gamma (�) a↵ects how much weight is considered for

future rewards. A discount factor that is close to zero presents an immediate
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reward. However, a discount factor close to one represents the discounted future

reward. A set of discount factors is used to test the performance of learning

agents. A discount factor equal to 0.8 performed best when deriving policies for

the attacker only. On the other hand, for both agents, 0.6 as a discount factor

performed better.

Decay Rate

Epsilon (✏) is the probability that selects the trade-o↵ between exploration

and exploitation. The decay rate is the value by which (✏) is decreased after an

episode. A (✏) value that is close to one represents an exploration, and on the

other hand, a (✏) value that is closed to zero shows exploitation. A set of decay

rate is used to test the performance of the agents. 0.008 shows the best result for

only attacker learning, and 0.005 shows the best outcome for both agents.
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Chapter 5

Discussions and Results

To conclude an optimized sequence of attacks, and determine defense strate-

gies with optimal policies, two di↵erent simulation scenarios are used to show

first the potential of dedicated viruses attacks on a CPS network with no defense

strategies, and second the urge of having optimized defense strategies to counter

these kinds of attacks and reduce system losses.

5.1 Discussions

5.1.1 Strategy Vs. Policy

Fig. 5.1 gives an idea about the use of game theory and MARL; it correlates

the notion of strategies in game theory with the concept of policies in RL. The

problem faced in CPS networks is first modeled and formalized based on game

theory principles. Each player has defined strategies and action space to act

accordingly. Also, with the use of MARL, the formalization of the game model is

implemented into an environment to apply the learning process using Q-learning

algorithm. And afterward, derive optimal policies for the selected strategies.
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Figure 5.1: Strategy Vs. Policy.

5.1.2 Game Strategies

Each agent has three strategies; a common strategy is adopted by both agents,

which is the random strategy that acts as a baseline. In this strategy, both agents

will choose and apply actions to the environment based on arbitrary decisions.

The attacker has a stealthy strategy that relies on reducing the number of steps

and staying low key to avoid being detected. And the second strategy depends

on budget spending to increase the chance of successful attacks. The defender in

addition to the randomized strategy also has two strategies first one relies only

on human capabilities and patch management, and the second relies on machine

capabilities and IDS enhancement.

A simulation of 106 games is conducted with the application of MARL using

the Q-learning algorithm with the proposed framework Fig. 4.14. The frame-
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work requires several inputs such as the network architecture in addition to some

configuration parameters required for the game model design. To depict the sim-

ulation results provided by the framework, a win-factor plot is used, which is a

running average of the gained games for both agents over the entire simulation

runs. A scale of [1,�1] is used: (1) means the defender is the winner, (-1) means

the attacker is the winner and presented with a green and red horizontal lines

respectively.

5.2 Results

5.2.1 MARL Policies

First, attacker strategies are applied to learn their optimal policies and map

actions to states. Fig. 5.2 shows three curves; In diamond, the random strategy

acting as a baseline, and showing no clue for the virus attack in reaching the end

goal and maximizing its rewards. In triangle, a stealthy strategy adopted by the

attacker that shows how the attacker is learning with the increase of iterations

runs. Finally, in circle, a budget spending strategy that performs better than the

previous strategy due to the increase of attack success rate. In Fig. 5.2 optimal

policies were derived for stealthy and budget spending strategies, that showed

excellent performance compared to a randomized strategy.

Second, defender strategies are applied to learn their optimal policies and map

actions to states. Fig. 5.3 shows three curves; In diamond, the same as previ-

ously described acting as a baseline. In triangle, a strategy that relies on human

capabilities only; this strategy showed noticeable performance in preventing the

attacker from winning more games. Finally, in circle, a strategy that relies only

on machine capabilities showed also remarkable performance in limiting attacker

success rate. In Fig. 5.3 optimal policies were derived for human and machine
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Figure 5.2: Win-factor for learned attacker vs. random defender.

strategies; that showed close results and prominent performance compared to

only attacker strategies conducted in Fig. 5.2.

5.2.2 Testing Strategies With Learned Policies

In this section, testing is conducted on the learned policies for both attacker

and defender strategies. The results show the percentage of successful attacks

in a 106 game simulation runs for a virus attack starting from all four subnets

independently and also shows the success rate by layer noting that the work

incorporates both cyber and physical layer.

First, in Fig. 5.4, testing for attacker learned policies is done. Results show

that virus attacks starting from all subnets the attack success rate was way above

the average for both strategies. And it is summarized by layers; where a virus

attack on average managed to succeed by 77% on the cyber layer and by 99% on

the physical layer.

Second, in Fig. 5.5, testing for defender learned policies is done with the

presence of attacker learned policies. Results show noticeable performance in
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Figure 5.3: Win-factor for learned attacker vs. learned defender.

limiting the success rate of virus attacks. Optimized policies for the selected

defender strategies showed that the defender is able to reduce the success rate

of attacks, especially in the first three subnets that represent the cyber layer.

However, these strategies barely changed the results and managed to limit viruses

attacks on the last subnet which is hosted on the physical layer; due to the

presence of the attacker goal where the defender has little to no chance in blocking

attacks. As a summary, a virus attack on average managed to succeed by 25% on

the cyber layer and by 94% on the physical layer. In conclusion, both defender

strategies managed to limit virus attacks success rate.

76



Figure 5.4: Testing only attacker strategies with derived policies.

Figure 5.5: Testing both attacker and defender strategies with derived policies.
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Chapter 6

Conclusion

In this thesis work, we reviewed and presented background information on

game theory, attack trees, threats faced in SCADA systems, RL, and MARL.

Lately used methodologies such as game theory and RL proved their applicability

in addressing security issues in CPS. For the reason, as mentioned earlier, we

discussed the current use of game theory and RL in cited related work solving

security issues and finding adequate countermeasures for potential attacks in ICS

and CPS. In our point of view, we find a promising future in addressing security

problems in CPS using game theory as a formal tool to model security problems,

especially between two adversaries, and RL as an AI technology to address human

problems that need the intervention of machine intelligence.

We first evaluated the risk in terms of the NE of a zero-sum game in between

a pen-tester equipped with an attack tree and a defender equipped with an IDS

and a strategic response graph model. This approach is composed of three layers:

the functional network layer, the security layer, and the game theory layer. Each

agent has the best possible response given the portfolio of played strategies. A

python tool has been developed to evaluate the payo↵s given di↵erent variants of
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randomness, and selected strategies for each agent. Results show the e�ciency of

this approach method in selecting the best strategy for mitigating attacks against

CPS. We learned in this approach, the behavior that the defender should adopt

in the case of facing a pen-tester. The defender must not rush to block the early

steps in the pen-testing and leave the internal nodes with no protection or be

tolerant in under-protecting the surface nodes.

Then we studied the case of a virus spreading in the di↵erent layers and

subnets of a CPS. Future viruses will undoubtedly be equipped with automated

learning components. We took this assumption and propose a framework based

on a hybrid approach using game theory and RL to model an adversarial game

for cross-layer virus spreading in CPS networks. The formulation includes a net-

work architecture with di↵erent layers and subnets that mimics real and modern

CPS network. The utilities of the game are the cumulative rewards that can be

achieved by the RL agents after the learning phase. MARL was applied using

Q-learning for both agents to learn optimal policies.

The obtained results show the ability of the defender to derive optimal defense

policies based on a human-selected strategy to reduce losses and prevent viruses

from spreading into the CPS networks. A mixed defense strategy can lead the

game to a NE, where the attacker would not like to change behavior since it can

be countered more easily. A particular focus in this approach was put on the RL

level in terms of design and simulations. This approach allowed us to study and

learn the behavior of a virus accommodated with AI capabilities to spread into

CPS. On the other, we also discovered the potential of the defender in containing

such targeted attacks while using the same capabilities. In future work, we will

focus more on the strategic level, by dissecting the extended form security game

with imperfect information.
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As we all know, cybersecurity is a process and not a product; however, shortly,

this process will translate from only human e↵ort to a hybrid human-machine

e↵ort. In this thesis, we are installing the first building stone to a cybersecurity

process that relies on human and machine intelligence combined to serve the

security of CPS.
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Appendix A

Abbreviations

AVC Automatic Voltage Control
AI Artificial Intelligence
CI Critical Infrastructures
CPS Cyber-Physical Systems
CPU Central Processing Unit
CySeMoL CyberSecurity Modeling Language
CVE Common Vulnerabilities & Exposures
DMZ Demilitarized Zone
FDI False Data Injection
FTA Fault Tree Analysis
HMI Human Machine Interface
ICS Industrial Control Systems
ICPS Industrial Cyber-Physical Systems
IDS Intrusion Detection Systems
IED Intelligent Electronic Device
IEEE Institute of Electrical and Electronics Engineers
IT Information Technology
KDE Kernel Density Estimation
LAN Local Area Network
MLE Maximum Likelihood Estimation
MTU Master Terminal Unit
NE Nash Equilibrium
NSM Nearest Sequence Memories
PLC Programmable Logic Controller
POMDP Partial Observable Markov Decision Process
PRA Probabilistic Risk Assessment
RA Risk Assessment
RAM Random Access Memory
RAMCAP Risk Analysis and Management for Critical Asset Protection
RL Reinforcement Learning
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ROI Return on Investment
RTU Remote Terminal Unit
SCADA Supervisory Control and Data Acquisition
SDN Software Defined Network
SIEM Security Information and Event Management
SVD Singular Value Decomposition
WAN Wide Area Network
WMD Weapon of Mass Destruction
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