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ABSTRACT 
 

AN ABSTRACT OF THE THESIS OF 
 
 
Mark Adel Al Achkar     for Master of Engineering Management 
 
 
 
Title: Modelling resource allocation and interactions in collaborative product development using Agent 
Based Simulation 
 
 
 
 

The main objective of the proposed research is to study collaborative and distributed development 
projects. The availability of resources, their properties (i.e., skills, learning-ability, etc.), their improvement 
(i.e. learning, advancing…), and their interaction dynamics (i.e., predecessor relationships, meetings, etc.) 
play a major role in the allocation and optimization of resources in such an environment (i.e., collaborative 
and distributed development environment). Using Agent-Based Simulation, the objective of this research is 
to estimate and reduce the effort and duration for any product development project using an innovative 
resource allocation strategy that considers the agents’ technical and managerial skills, their overall 
experience, and their learning ability. By simply adjusting the Agent-Based Simulation model’s 
configuration and settings, the model presents itself as a flexible tool to simulate the product development 
process and covers different approaches from the traditional methodologies such as the waterfall model, to 
the more recent PD processes like the Agile model.  The model implemented was able to successfully 
demonstrate the usefulness of each of its features in influencing development time and effort. For example, 
it shows improvement in the development time when using the proposed resource allocation strategy, a 
decrease in the project time when agents cooperate on tasks, demonstrates the effect of learning on task 
execution, and the impact of rework on the PD process. Additionally, two case studies were introduced. The 
case studies show the flexibility of the model and the difference between the Agile model and the waterfall 
model, from an effort and time perspective. Finally, the model was validated using five different projects 
from the software development industry. Each of the project’s managers provided feedback and validated 
the output of the model. The model was successful in simulating several real-life projects related to the 
software development industry and outputting accurate results. 
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CHAPTER 1 

INTRODUCTION 
 

The optimal distribution of development resources is a central issue in managing the product 

development (PD) process. However, the current emphasis on how to handle and use these 

resources has reached peak levels with industries seeking to not only lower their costs and 

maintain their product quality but also to attract and develop talented employees. PD is defined 

as the set of activities starting with a market opportunity and ending with production, sale, and 

product delivery (Ulrich & Eppinger,2012). The goal of the PD process is to create products that 

fulfill the customers’ needs. Many researchers have focused on the importance of task allocation 

in the PD process, whether it is software or a hardware product. However, previous literature 

studied separately task allocation, cooperation, collaboration, meetings, employee improvement, 

as well as task dependency, and how each affects the PD process. This paper will focus on 

combining all of these features in a single agent-based simulation model that can study the effect 

of these individual features – as well as their interaction- on the PD process.  So, the problem is 

PD projects take longer, cost more, and resources are not well utilized and assigned throughout 

the project. This could be due to not having enough meetings to coordinate the various work 

packages, having too many wasteful meetings, misuse of scarce resources - specifically human 

resources, as well as failed negotiation mechanisms. Many models have been proposed to study 

this PD environment, but they have been specific to one or two of the mentioned features and 

how they affect the PD environment. 

Since this thesis investigates multiple stages or phases of agent interactions, a few definitions are 

necessary. We shall distinguish between five modes of interactions: Negotiation, 
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Communication, coordination, collaboration, and cooperation. We define Negotiation as the way 

for conflict resolution. In any conflict, the opposing sides would have to negotiate and 

compromise to reach a mutually agreeable decision. Communication includes all the different 

methods for sharing information and knowledge among the agents or between the agents and the 

client. Coordination is defined as the managerial aspect of dividing tasks between agents. 

Collaboration is work done by multiple agents together to achieve or create something not 

entirely feasible by one agent alone – collaboration indicates a creative aspect of working 

together. Cooperation is having multiple agents working on the same task – physically or side by 

side - in order to complete it faster. Within any PD team, the need for all these five interaction 

modes is almost obligatory.  

In particular, software projects have high percentages of failures due to many reasons. 

Incomplete or evolving requirements, lack of resources, unrealistic expectations are some of the 

causes of delivery failure (Kusumasari et al. , 2011). These reasons are mainly attributed to lack 

of communication among the developers or employees and the users or clients. (Moenaert et al. 

,2000). Other reasons for project failures also exist and they are not restricted to software 

projects. Pinto and Mantel (1990) defined several factors that affect project implementation and 

could impact the success of the project. Out of these factors, we mention client’s feedback and 

monitoring, the project schedule, and the personnel. Within any project, there exists the 

possibility of incorrect task allocation, poor soft skills, unneeded meetings, etc. which could all 

be the root cause of project failure. Dinu (2016) discussed project failures and identified several 

reasons. Some of these reasons include poor planning, inaccurate cost estimation, lack of 

communication, and failure to set expectations. Additionally, the probability of rework due to 

client changes or adaptations always causes the project to be late. The initial estimates for tasks 
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within a project do not always consider the rework by the client. Thus, arises the need for proper 

management tools and techniques for resource allocation, employee learning and improvement, 

meetings, and cooperation, all of which can estimate how the project should be managed. These 

features also provide a way to estimate the project’s chances of success. By improving 

coordination and meetings, the project is rendered easier (Dingsoyr et al. , 2018). By working on 

the allocation techniques, estimating employee learning, and indicating the need for cooperation, 

the project has a higher chance of success. These mentioned factors would also affect the 

project’s budget and cost, as well as scheduled time. 

Employee improvement is the possibility of any employee improving his/her skills and ability 

due to learning by doing. This is another factor that comes to play in the PD process. By working 

on the same type of tasks or learning new skills by completing different types of tasks, the 

employee/agent should be improving eventually.  

Another factor to consider while focusing on task allocation is task dependency. Some tasks may 

require prerequisite tasks to be completed in order for it to start. This happens on a regular basis 

in the PD Process and is reflected via task availability – as the dependent task would not be 

available until its prerequisite task is completed. Another complicating factor that we consider in 

this study is the project management approach, such as waterfall/sequential or Agile/Scrum. 

Each of these approaches has its own characteristics and specifications which are discussed in 

the coming chapters.  

Agent-based models (ABM) can explicitly model the complexity arising from individual actions 

and interactions that arise in the real world. In other words, ABM provide the capability to model 

real-world systems of interest in ways that were either not possible or not readily accommodated 

using traditional modeling techniques (Siebers et al., 2010). A simple example would be to 
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consider a driving intersection. Each driver arriving at the intersection is an independent agent. 

The driver/agent would then have to take the decision of which way to go and by doing so, 

multiple drivers would interact with each other and with the surrounding environment. Their 

interactions with each other could be as simple as a driver letting another pass or not. Using 

Netlogo, a powerful agent-based simulator, we are able to see the effectiveness of ABM as each 

simulated employee will choose their task based on the various simulation options set by the 

user. This will allow us to test multiple scenarios and use cases to study the impact of each 

mentioned factor in the process.  

The goal of this research is to find an improved resource allocation technique for different 

Product Development (PD) processes while taking into consideration the different aspects within 

project management represented by employee interactions, learning and improving, meetings, 

rework, and task dependency. 

In the rest of this document, we will go through the existing literature related to the product 

development environment and different simulation techniques in chapter 2. Then, we will discuss 

the proposed model in chapter 3. Having covered the model, the next step would be to perform 

sensitivity testing for the features in chapter 4 and see how each feature affects the model. 

Chapter 5 includes the two case studies considered in this paper. Chapter 6 is the validation of 

the model based on real life projects. And finally, we conclude in chapter 7.  
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CHAPTER 2 

BACKGROUND 
 

The background section is divided into the following subsections: (1) PD Environment, (2) 

simulation techniques, (3) existing PD simulation models in the literature, and (4) Agile/Scrum 

project management. 

2.1 Product Development Environment 

This section discusses the PD environment and explains the process based on five typical 

scenarios: Task Dependency, Task Allocation Methods, Agent Interactions, Rework/Iteration, 

Employee Learning. Each of these scenarios effects the PD environment in its own way. In each 

scenario, specific literature is studied and analyzed to demonstrate its importance and effect on 

the PD process. 

2.1.1 Task Dependency 

When defining task dependency, the first thing to come to mind is that one task is dependent on 

another task or a group of tasks. But looking into it a bit more deeply would reveal that one task 

could be blocked due to another’s incompletion. It could need a certain percentage of the 

predecessor task to be completed. To explain dependency and interdependency in a simple 

example, let us consider a car that is manufactured and then assembled at the factory. The 

manufacturing process must happen – and be completed – before the assembly could begin. This 

is a simple example that looks into the progress as two main processes, but what if the car’s 

interior is fabricated and then assembled, before the rest of the manufacturing could continue; in 

which the task of manufacturing has a partial completion that allows the dependent task of 
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assembling to start. Yet, when the assembly is partially completed, the manufacturing starts 

again. 

To model task dependency, we first introduce the Design Structure Matrix (DSM). The DSM is a 

representation and analysis tool for modeling relationships between multiple components within 

a system. These relationships could be independent, dependent, or interdependent design tasks. 

The DSM is frequently used in the modeling and analysis of a typical PD process due to its 

ability to represent task interdependencies (Abdelsalam and Bao, 2007). Basically, it is a simple 

binary matrix (containing either 0 or 1 in each cell) to indicate for each column/row combination 

if the activity in the column is related to the activity in the row. The major advantage of the DSM 

over any diagraph is its compactness and the systematic mapping (Yassine et al., 2001). 

Panchal (2009) discussed the importance of task dependency and its effect on the PD cycle. He 

proposed a model in which he considered the interdependencies among different modules of the 

system. Interdependency signifies that if a module A is dependent on module B – or has a 

relation with module B, this does not stop module B from also being dependent on module A.  

This could be simply reflected as a need for the module to have a percentage of another module 

completed to be available to be worked upon. This is handled by considering the dependency 

strength.  

 

Figure 2-1 Dependency Strength (Panchal, 2009) 
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To explain the dependency strength, consider Figure 2-1. In this figure, having a dependency 

strength of 5 indicates that any change in Module 1 will result in a 5% rework in Module 2. This 

could be quite accurate if you consider that the changes in Module 1 will actually affect Module 

2 since it is dependent on Module 1. Panchal (2009) also considered an example in which 

multiple modules are interdependent; the modules are split into 2 types: the core modules 

(modules 0-2) and the external modules (modules 3-8) as shown in Figure 2-2 

 

Figure 0-2 Interdependency (Panchal, 2009) 

Figure 2-2 indicates that the core modules are basically independent with a very low dependency 

strength. On the other hand, having a strength of 2.2 between Module 2 and Module 4 signifies 

that for any change in Module 2, 2.2% of rework is required in Module 4. 

According to Hoegl and Weinkauf (2005) interdependencies in a modular system require a lot of 

information exchange among the participating teams. They also stated that the success of one 

team is dependent on how good the team’s work integrates with other related teams’ works. 
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Basically, this indicates the importance of communication and coordination – discussed in 

Section 2.1.3, especially in a multi-team discipline.  

Stobrawa et al. (2018) stated that the first step to build a model is to find interdependencies 

between workstations since the focus is on the whole system initially. Based on Figure 2-3, 

Stobrawa el al. (2018) considered the employees and their competences as inputs to the system 

along with the material information to obtain material output as additional information for the 

PD process. 

 

Figure 0-3 Production Process (Stobrawa et al. - 2018) 

Johnson et al. (2008) also stated that due to task interdependencies, their DSM – studied in 

Section 2.1.2 - is transformed into blocks where the interdependent tasks are isolated in a 

triangular form and are transformed into the following Tables 2-1 and Table 2-2. In this case, 

Tasks B and C are interdependent (B depends on C and C depends on B) and are partitioned into 

their own block.  



  

9 
 

 

Tables 2-1 and 2-2 Original & Partitioned DSM (Johnson et al., 2008) 

2.1.2 Task Allocation Methods 

Task allocation is the process of choosing which agent will be performing which task – based on 

certain criteria. Task allocation methods are an integral part of this research so this section will 

look into existing techniques and methods. To tackle this challenge, Salhieh and Monplaisir 

(2003) analyzed the resources available. The first resource they considered is the “People” 

resource. This resource is defined as actors with specific knowledge and skills (Technical, 

interpersonal, and decision-making). This would lead to the creation of Actor-Skill Vector 

(ASV). The ASV will set a value for each of the actor’s skill in a direction, such as “Actor 1” 

would have a vector with as many directions as he/she has skills. This is reflected in the 

following vector formula (Salhieh and Monplaisir, 2003):  

(ଵܣ)ܸܵܣ = ൛݇ ∗ ଵܵ, ݇ ∗ ܵଶ, … , ݇ ∗ ௝ܵൟ   Equation( 1 ) 

In Equation 1, ‘j’ is the number of skills ܣଵhas, ‘ ௝ܵ ′ is the value of each skill, and ‘k’ is simply 

whether the actor has the skill or not (݇ = 1 if the actor has the skill, ݇ = 0 otherwise). Consider 

that Actor 1 as a set of skills ܵ{ ଵܵ = 3, ܵଷ = 5} (3 and 5 being arbitrary values for the skills). ݇ 

would be 1 for ܵ1, ܵ3 only and 0 otherwise. In this case, for ݆ skills, the Actor Skill Vector for 

Agent 1 would be: ܸܵܣ(ܣଵ) = {3,0,5, …,0}.     
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The authors then focused on resource assignment which is to find the best way to choose which 

actors will perform which tasks. Basically, it starts with assigning actors to tasks based on skills. 

However, some constraints exist such as the cost of the actor, and its availability. To solve this, 

three strategies are presented: Obtaining new resources, re-sequencing the development process, 

and decoupling tasks. To create the assignment module, it is first necessary to allocate enough 

resources for the completion of the development process. Then, finding the constraints that limit 

development progress; such as cost, availability and efficiency. Finally, to assign resources to 

tasks, a 3D Matrix is formed consisting of task-skill-actor where a binary determination is used 

to set if skill has a matching actor or not. This approach for task allocation is similar to what is 

proposed in our model. However, the use of vectors for the number of skills was not needed as a 

different consideration was used. The proposed task allocation technique will be discussed 

thoroughly in Chapter 3.  

The same issue is tackled by Johnson et al. (2008) by introducing a computational method for 

task allocation. This method is based on a specific managerial mindset, which proposes initially 

the following rules for the manager: focusing on the product’s creation in an efficient, time-

saving and minimal cost way, defining sets of tasks to perform, managing groups of design 

teams to complete the task. Johnson et al. (2008) used a DSM to partition the tasks. 

With geographical constraints and challenges, it is difficult to determine the design teams. 

However, to overcome these constraints, Johnson et al. (2008) indicated that the focus is on the 

designers’ competences and the forming of the designing team based on the assigned task. It is 

also possible to work on independent tasks sequentially by various design teams. To determine 

the designers for each task, the designer is rated on a 6-point scale (0 being no ability and 5 being 

an expert). The rating would also indicate other characteristics such as dedication and ambition. 
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Another criterion is the estimated time for each task to be completed by each designer which is 

usually done by experts and resulting in Table 2-3. 

 

Table 2-3 Designer & Task Time (Johnson et al. ,2008) 

Based on Table 2-3, the team is formed to complete the task in the least amount of time. 

The team assignment is then automated using a Generic Algorithm (GA). As the purpose of the 

method is to optimize task allocation, this GA takes the Designer-Task matrix and task times to 

find the best team selection.  

Acuña and Juristo (2004) also worked on the developer’s personality as key criteria to assign 

roles. They created a software process model that handles the human capabilities factor. Their 

model consists of two relationships that are emphasized in the assignments. First is the 

capability-person relationship: matching the capabilities needed for a software project with the 

person’s personality factors. The second one is a capability-role relationship. The aim here is to 

match the capabilities with the roles of a person in a software team, ranking them between high 

and medium depending on how critical the capability for the given role is. Finally, to assign 

people to roles, four steps are in order: comparison, evaluation, monitoring and consolidation, 

and finally documentation. The aim is to analyze each personal profile against each role to match 

them. 
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Acuña et al. (2006) discussed how to assess the team members’ capabilities and assign them to 

roles that match them, while also matching the tasks’ needs to the roles and their requirements. 

The first step is to emphasize the importance of assigning people to their most suitable role by 

identifying the individuals and their capabilities. The authors start off with defining the traits and 

personalities and continue to find the person’s capabilities and skills. They suggested doing 

famous personalities tests, such as the NEO Personality Inventory-Revised test which addresses 

the “Big Five personality factors (extroversion, agreeableness, conscientiousness, emotional 

stability, and openness to experience)”. Another common test mentioned by Acuña et al. (2006) 

is the 16 Personality Factors (16PF), a more detailed personality test that predicts people’s 

behavior by studying people’s mental health such as level of anxiety, adjustment, as well as 

emotional stability. Doing these personalities tests allowed them to assess the roles suitable for 

each employee and thus finding more suitable tasks for each.  

The three competences considered by Stobrawa et .al (2018) for task allocation were: 

Performance, Experience, Level of Practice. Performance summarizes the employee's time and 

quality of work. Experience is how much experience the employee has in a specific work 

process. Assuming that more experience leads to better performance. Level of practice would be 

the fact that repeating the same activity should lead the employee to performing it better. The 

matrix is built based on these three competences, where each has a value between 0 and 1. The 

values are determined by comparing to a default value; if an employee needs twice the default 

time to complete a job, the performance would be 0, if the default time is respected the 

performance would be 1. A special algorithm is applied to determine the best coefficient for each 

employee to determine who should get the task. This coefficient is called the allocation score ܽ௘,௧, calculated as indicated in Equation 2: 
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ܽ௘,௧ = ∑ ௪೎.௡೎,೐∑ ௪೎        Equation (2) 

In Equation 2, ݓ௖ is the weight for each competence,݁ is the total number of employees and ݐ are 

the tasks considered, and ݊ is the normalized value for each competence. These weights are 

different for each company and differ based on the focus of the considered company. Let us 

consider we are allocating task 1 where the number of employees ݁ is 2, and there exist two 

competences with their respective weights ݓଵ = 4 and ݓଶ = 2. For employee 1, the normalized 

value for competence 1 is ݊ଵ,ଵ = 0.5, and for competence 2, ݊ଶ,ଵ = 0.3. For employee 2, ݊ଵ,ଶ =0.4 and ݊ଶ,ଶ = 0.8 

Then ܽଵ,ଵ = ௪భ∗ ௡భ,భା ௪మ∗௡మ,భ௪భା௪మ  = ଶ.଺଺ = 0.43 and ܽଶ,ଵ = ଷ.ଶ଺ = 0.53. Based on these calculations of ܽ௘,௧, we would decide to allocate employee 2 for task 1 since its allocation score is higher. This 

basically indicates that its skills are closed to what the task requires. 

Additionally, this topic was tackled by Kandemir and Handley (2019). They addressed the 

general assignment problem (GAP) which involves finding the minimum cost of assigning tasks 

to agents such that each task is assigned to one agent.  ∑ ∑ ܿ௜௝ݔ௜௝௝∈௃௜∈ூ      Equation (3) 

Equation 3 represents the simulation optimization formula for the GAP. ܿ௜௝ is the cost of having agent ݅ 
on task ݆, ݔ௜௝ is 1 if ݅ performs ݆ and is 0 otherwise. The goal is then to minimize this function in 

such a way that each task is assigned to only one agent while also considering the availability of 

each agent. 

2.1.3 Agent Interactions  

This section discusses the five types of agent interactions mentioned previously and summarized 

in Table 2-4. 



  

14 
 

Interaction Definition 

Negotiation Interaction between opposing agents to resolve a conflict or any 

difference of views. 

Communication Vocabular interaction between the agents where discussions happen, 

and knowledge and information are shared 

Coordination Distribution and assigning tasks, while considering dependent work 

among the assignees.  

Collaboration Agents working together on creating or designing. (i.e. Brainstorming 

and creative thinking) 

Cooperation Agents working on performing tasks together at the same time. 

Table 2-4. Agent Interactions Definitions 

2.1.3.1 Communication 
Communication is the first and most important type of interaction and so it is the most 

challenging. Moenaert et al. (2000), considered that for the success of any PD project – 

especially on a global scale, effectiveness in communication is a prerequisite. Allen (2007) 

concluded that that lack of communication among the team members has led to project failures. 

He also distinguished between three types of communication as described in Table 2-5. 

Classification Description 

Type I Communication to coordinate the work (Coordination) 
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Type II  Communication to maintain staff knowledge of new developments in their 

areas of specialization (Information) 

Type III Communication to promote creativity (Inspiration) 

Table 2-5. Types of Technical Communication (Allen, 2007) 

The definitions set by Allen (2007) in Table 2-5 are very similar to what we defined in Table 2-

4. What Allen (2007) considered as types of technical communications and labeled Coordination, 

Information, and Inspiration respectively, is what Table 2-4 indicated to be Coordination, 

Communication, and Collaboration. 

2.1.3.2 Coordination 
Dingsoyr et al. (2018) discussed coordination in Agile Projects and concluded that Complexity in 

Agile projects makes it harder for their management; this complexity is due to the Agile flow, 

which works in differently spanned iterations that focus on completing specific features each 

time. IT Projects are more challenging for the managers to coordinate and assign tasks. Here lies 

the difference between traditional project management -such as the waterfall model - and agile 

management. The waterfall is always progressing downwards. Phases are executed in order, one 

after the other; a phase cannot start unless the previous is done (Bassil, 2012) 1. On the other 

hand, agile tends to focus on self-management with processes and iterations being the goals. 

Another notable difference is the level of coordination and communication between the project 

                                                            
1 The waterfall model goes through five phases: First phase is the analysis, in which all the 
project’s requirements are acquired and studied. Second is the design, where the designers 
mainly focus on planning and solving the problem. Phase three is implementation, the 
realization of the project requirements. Fourth step is testing is the validation phase in which 
the systems are tested to meet the requirements. Final phase is maintenance, this is the post-
delivery process to refine the deliverables (Bassil, 2012) 
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handlers and the stakeholders due to frequent releases. Additionally, Dingsoyr et al. (2018) 

discussed the importance of physical meetings since they allow richer communication for better 

coordination. Even though communication could be done by different methods such as virtual 

meetings, emails, and online chatting, physical meetings will push towards a better 

understanding among the attendees. A higher rate of group meetings set by the management 

usually leads to a technological novelty. In Agile specifically, this higher rate is insured through 

the iteration planning meeting (sprint meetings), daily meetings, as well as retrospectives. The 

daily meeting is called a daily scrum, a short meeting in which all the team members report in 

about their last day's activity and their current day planned activity. Agile project management is 

further discussed and explained in Section 2.4. 

2.1.3.3 Collaboration 
According to Kvan (2000), the term ‘Collaborative Systems’ mainly describes the use of 

multiple distant systems to support work between designers/developers. Computer-supported 

collaborative design is a term used frequently. This collaboration is key between designers to 

share information and data, as well as to provide communication. Kvan (2000) suggested that 

Collaboration success is achieved when a group can complete something undoable by individual, 

mainly in a creativity related aspect. Despite some implications that the maximum number of 

collaborators could only be around 4 or 5, studies have shown that the actual number has no real 

limit (Kvan, 2000). Collaboration in design would be different than another type of 

collaboration, since it needs a higher sense of work to achieve creativity. Collaboration Design is 

in general an act that involves multiple people. It could be a close coupled design process in 

which multiple designers work together to complete a single design product where their work is 

simply added together to complete the design product. In fact, most design work is in a loose-
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coupled process where each designer contributes to multiple design products with their 

respective knowledge and expertise. 

Bergner et al. (2016) also discussed how collaborative activity across multiple grade levels 

demonstrated positive outcomes on different aspects. Organizational research has also shown the 

effectiveness of collaboration in improving performance in organizations; in an input-output 

framework, affected by communication and coordination, it is more likely to have effective team 

outcome. Additionally, Bergner et al. (2016) described personality and agreeableness - the trait 

of accepting others’ opinions- and how a team with higher average agreeableness would exhibit 

better performance, primarily due to the coordination happening among the team members.  

To relate the mentioned interaction modes to the types of meetings possible, let us consider that 

all types of interactions could occur in a physical meeting. Communication and negotiation 

would be easier during physical meetings due to the high level of interaction present among the 

attendees. Coordination could be done through virtual meetings due to the lack of physical 

exchange and information sharing; it is rather essential to simply distribute and coordinate the 

tasks and activities. Collaboration and cooperation could be done via physical, telephony, or 

internet-based communication methods. Since their purpose is working together either to find a 

solution or to implement one, physical attendance could provide an efficiency boost. 

Johnson et al. (2008) suggested that by having regular meetings, design teams check what other 

teams’ parameters are, which makes it easier for a conversion among them. However, there is an 

allowable separation – the distance between the teams’ parameters, which informs the 

agents/teams how close or far they are from the others’ parameters. The agent could be: In the 

allowable envelope, on the same side of the allowable reason as it was last meeting, or on 
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opposite of the allowable reason as it was last meeting. Thus, there exists a meeting cost which is 

the amount of time spent to prepare and hold a meeting. So, to find the correct number of 

meetings, Johnson et al. (2008) proposed a convergence model. This model shows that after 

multiple product design iterations, the product design team should have converged to a solution. 

To prove this, multiple simulations are tested for the convergence time with different 

coordination rules - that would affect the level of coordination - such as having high frequency of 

meetings with short meeting times, or low meeting frequency with longer meeting times. These 

rules show that convergence is always easier to reach with coordination. Johnson et al. (2008) 

showed the difference between having too few, too many, and just enough meetings using 

different scenarios and frequencies and proved that with different meeting frequencies and 

meeting cost, the convergence time also varies. For example, Johnson et al. (2008) calculated the 

average for 1000 simulations and then compared the distributions of having a meeting for every 

100,200, and 300 iterations in the system. Then, they compared the average convergence time. 

This model actually gives an insight on the importance of meeting frequencies and their 

durations to determine the best convergence among the team members.  

We shall specifically see how meeting frequency, duration, and result will affect the PD process 

in Chapter 3. 

2.1.3.4 Cooperation 
Many researchers visited the definition of cooperation, and how it would affect the PD process. 

Leithold et al. (2016) discussed how cooperation could happen in small firms to encourage and 

improve the PD process. They indicated that for small firms to grow, and due to their limited 

financial and human resources, it would be easier for them to cooperate among each other. 

Similarly, Ernst et al. (2010) identified cooperation as a basic need for the PD process. However, 

their discussion focused on cooperation among different PD departments (Sales, Marketing, 
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Research and Development). Thus, they focused on Cross- Functional Cooperation which 

indicates a certain level of involvement and information sharing between agents of the three 

mentioned departments. Olfati-Saber et al. (2007) presented the cooperation concept in 

networked multi-agent systems. They studied consensus and how it affects a multi-agent system, 

while also emphasizing the importance of cooperation. In their paper, Olfati-Sabet et al. (2007) 

interpreted cooperation as “giving consent to providing one’s state and following a common 

protocol that serves the group objective”. 

2.1.3.5 Negotiations 
The last defined interaction is negotiations. Kusiak and Wang (1994) discussed negotiation 

specifically and considered that nowadays concurrent design aims to ease and solve multiple 

constraints and challenges in a product design cycle as well as reducing cost and time. This 

would involve specialists of multiple backgrounds with limited knowledge of other disciplines 

that could cause conflicts among them or could help them improve. Thus, rises the need for 

negotiation. Conflicting goals among the specialists will need negotiations leading to a mutually 

accepted product design. Usually negotiations focus on finding a solution for the conflicts even 

in the most complex of processes. Kusiak And Wang (1994) developed a goal-directed 

negotiation model based on decision analysis which is proposed for resolving conflicts. This is 

done through a model that generates, analyzes and chooses the solutions based on three criteria: 

maximum joint utility, minimum individual utility differences, and a combination of these two. 

The design negotiation scenario is illustrated with an example of a valve. This valve will allow a 

type of fluid to pass at a certain pressure and will hold the fluid in equilibrium. 

This example helps to imagine a design by three agents, where each spring and enclosure 

represents an agent. They must work together at a certain threshold and even compromise 

together to allow the fluid/project design to be achieved. This simple example represents how 
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negotiation should happen to reach an equilibrium through coordination and perhaps 

compromise. 

Scott and Antonsson (1996) considered that by formalizing the negotiation process, design teams 

can promote a better information exchange and trace the design history. Having a tool for formal 

negotiation would make it easier to include important performance goals. The authors dived into 

examples of why design negotiation is needed. One of the examples is having an incremental 

improvement for an existing automobile chassis to increase a certain attribute by 10%. If the task 

was not attained, the designers/engineers would begin a negotiation process. They could ask for 

additional resources or a compromise on the target. Here, negotiation serves as a method to 

discover and discuss the constraints faced.  

Chien et al. (2013) separated between cooperative negotiation and competitive negotiation. They 

described the cooperative negotiation as the one that involves cooperation between various 

system levels through information sharing among the systems and components. Whereas the 

competitive negotiation is based on individual decision-making at a single level within the 

system. In their model, Chien et al. (2013) discussed a decision-making process to utilize both 

types of negotiations through different scoring methods for each to determine the decisions. In 

their research, Cooper and Taleb-Bendiab (1998) also discussed how a negotiation support 

should work in a multi-agent system. They suggested seven steps that vary from conflict 

detection and identification, to negotiation management and finally conflict solution. Thus, a 

model was created that handles the design agents, analyzes the designs suggested, and suggests 

their decision resolution through a Decision Tree where each arc is a decision. 
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2.1.4 Rework/Iteration 

In any PD process, the probability of having to work on completed tasks could vary but is always 

present. Rework usually happens due to one of two reasons: Either it is due to a feedback from 

the client, or a change in a certain task leads to change in a dependent task. Browning and 

Eppinger (2002) suggested that since work is being repeated and the designer already knows that 

task’s details, its rework duration would not be as long as the initial duration. They introduced 

DSMs (discussed in Section 2.1.1) that focus on the rework probability as well as the rework 

impact. 

Yassine et al. (2001) discussed the probability of rework through the following steps. First step is 

to setup the subjective assessment by defining the Information Variability (IV) and Task 

Sensitivity (TS). IV describes the probability that the information regarding a certain task has 

changed, thus the task as whole could have been altered. TS on the other hand, describes how 

sensitive a certain dependent task is to the information change due to IV. Second step is mapping 

and calibration. This step mainly focuses on calibrating the rework scale, to see how much 

rework would have to be applied on the dependent task due to its sensitivity. Third and final step 

is validation. This is done by validating that the changes that caused the rework didn’t ruin the 

system.  

Simpeh et al (2015) built a model to determine the probability of rework and its distribution. By 

using a cumulative distribution function (CDF) and sample research data in the construction 

industry, they were able to create a table that specifies the probability of a certain percentage of 

rework required. For example, they determined that the mean total rework cost (as a percentage 

of the original cost) is 5.12% with a 76% that a project would exceed this rework cost.  
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2.1.5 Employee Learning 

Employee learning is the ability and capacity for an employee to be learning new skills or 

improving existing ones. Whether by repeating the same type of tasks or by performing new 

types, the employee should have the ability to learn and improve their own skills – skill levels 

precisely, in a way that reflects them improving on the job. Learning could be considered as 

work experience as it would make sense that an employee who has a lot of experience is 

someone who has learned a lot and improved their skills to a level superior than someone starting 

their job fresh out of academia. According to Nissen and Levitt (2004), knowledge is considered 

an important resource in any modern enterprise. However, it is evenly distributed among the 

employees. The dynamic of knowledge is the ability to transfer certain knowledge through the 

enterprise between the organizations, the employees… Thus, emerges the idea of Knowledge 

Management (KM) in an attempt to describe different flows of different kinds of knowledge. 

Takeuchi and Nonaka (1986) have discussed multiple concepts of learning while working on 

projects, among which the most notable is the multifunctional learning where experts are 

encouraged to accumulate experience outside their own expertise. They gave an example of a 

printer that was developed by a team of mechanical engineers, which required them to learn 

electronics and design. Another example is a team of sales engineers that was required to design 

a Personal Computer; they were successful by going beyond their roles, learning from users and 

experts simultaneously.  

Denkena et al. (2017) discussed in details the employees’ competencies. The competencies are 

based on cognitive abilities, motivation, and practical skills. These factors are then weighed to 

calculate the suitability of an employee to a certain task. The employees are rated on a five-point 

scale for each task or operation.  Learning effects are also taken into consideration through a step 
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function which predicts competence development based on the number of executed operations. 

Denkena et al. (2017) based their learning formulas on basic functions developed by Wright 

(1936) and Levy (1965) who suggested the following Equation 4 (Wright Learning Formula) and 

Equation 5 (Wright Learning Formula - Limited). 

௡ݐ = . ଵݐ ݊ି௞      Equation (4)  

௡ݐ = ܿ + ଵݐ)  − ܿ). ݁ି௞(௡ିଵ)     Equation (5) 

Equation 4 & Equation 5 are applicable as a learning curve, where ݐ is execution time according 

to the number of executions (݊). ݇ is the agent's learning rate. Equation 5 expands on this using ܿ, a limit value. This literature’s implementation of the learning process function was indeed 

useful for our paper; the formula suggested for the agent’s learning is used and is on point 

considering how this paper views the learning process in an agile product development process. 

This will be discussed in detail in Chapter 3. 

Starting with Nonaka (1994) and with Nissen and Levitt (2004) continuing his work, the latter 

built a flow that represents time and supports a multidimensional representation framework for 

analysis of knowledge-flow patterns. However, this attempt came up short as the modeling is the 

dynamics were static and not completely usable. Using Nonaka’s (1994) Spiral model as a 

cornerstone, this section focuses on the model integration. Nonaka’s (1994) model featured four 

enterprise processes. To quickly describe each, we can say that Socialization is experience 

sharing among team members; externalization is described as the use of metaphors to articulate 

knowledge and make it easier. Combination is the coordination between different groups in an 

organization (using documentation) to link and explain intra-team concepts. Internalization is 

different members in the organization combining their knowledge to produce work (mostly 
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through learning while doing). 

Second part of this model is the Nissen and Levitt (2004) Life Cycle Model. This model uses 6 

phases to describe the knowledge flow: creation, organization, formalization, distribution, 

application, and evolution. Creation is new knowledge generation in an enterprise. Organization 

and grouping knowledge through repositories are the second phase. Third phase is transforming 

this knowledge to a formal representation. Fourth is sharing the earned knowledge through 

transfer. Fifth is the effective knowledge use for solving and advancing. Finally, in the sixth 

phase, is the evolution and refinement of knowledge. Based on Nissen and Levitt (2004) and 

Nonaka (1994), we can state that their attempt to dive into knowledge dynamics and knowledge 

flow is represented in two sections of this paper. While the knowledge transfer and sharing is 

interpreted in the Coordination section of this paper, the creation and application phases are 

useful for the learning process and the agent learning modules implemented in Chapter 3. 

2.2 Simulation Techniques 

In this section, we look into different simulation techniques that could be useful for our model. 

The first simulation environment to consider is System Dynamics (SD). It is an approach to 

problem solving developed in the early 1960s. A system is defined as a collection of 

continuously interacting elements whereas the dynamics is the change over time. In SD, the 

components or the elements are called the structure of the system. This structure defines 

performance and explicitly shows the relations among the elements. By doing so, any change in 

one element could affect multiple others. Another concept in SD is the Mental Model, which 

indicates that every person that interacts with a certain process would have its own model of this 

process. By sharing this mental model among them, the people would be able to improve the 

system or the process by simply reaching consensus. As for its validity, SD models could be 
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considered as a best guess among the participants based on their understanding of the system 

(Sweetser - 1999). 

Second simulation approach to consider is the Discrete Event Simulation (DES). DES is mainly 

implemented in systems where changes of states or values happen in interest points at discrete 

points in time, rather than continuously. (Fishman, 2013). To better explain this, an example of a 

bus picking up passengers is considered.  

 

Figure 0-4 Discrete Event Simulation – Bus Example 

Based on Figure 2-4, let’s assume we have five bus stations with passengers waiting, the 

changing factors are the following: Location of the bus, number of passengers on the bus, 

number of passengers waiting at each station. At every station, when the bus arrives, we could 

assume that the number of passengers on the bus will change, as well as the number of 

passengers waiting at the station. This example describes the DES and emphasizes the discrete 

modeling as a non-continuous way of thinking since changes will only happen at certain points. 

(Fishman, 2013).  
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Another modeling technique is the Monte Carlo (MC) Simulation. Monte Carlo is a widely used 

simulation technique since it is able to handle variant needs. It mainly focuses on using 

mathematical algorithms to simulate and study quantitative analysis and decision making. It 

allows the users to see multiple possible outcomes of their models; using probability 

distributions, the system will calculate the results over and over with using different random 

values for each calculation to finally produce a distribution of possible outcomes. Even though it 

could be used a valid simulation model, Monte Carlo focuses more on the probability of risk 

related system as whole rather than what is needed – focus on the individual team member and 

its effect. Monte Carlo models assume that the process behaves stochastically based on certain 

logic specific to the model (Maier et al., 2014). 

Agent-Based Modeling (ABM) is a modeling framework for simulating dynamic processes with 

autonomous agents. The agent makes its own decisions without any external interference (Klügl 

and Bazzan, 2012). This type of simulation is mainly used for decision making situations – in our 

case the choosing of a task to perform. Klügl and Bazzan (2012) considered that the Agent-

Based Model is built on three elements: Agents, Relationships, and Environment. Agents are 

simply the subjects of the simulation. Their actions and behaviors are studied in the simulation 

and usually have the following attributes, regardless of the simulation. 

‘Autonomy’ means that the agents are completely independent and self-driven; their decisions 

are automatic and simulated. ‘Modularity’ means that an agent is usually unique and different 

from the other agents. ‘Sociality’ means that an agent has interactions with other agents. And 

finally, ‘conditionality’ means that an agent would have a state determining its attributes and 

behaviors. Relationships determine how the agents are related and interact with one another. 

Interactions between agents will determine the simulation as the environment will be made by 
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agents of different types and all results depend on how agents deal with one another. Garcia 

(2005) talked about the different uses of ABM in Innovation and focuses on the benefits and 

advantages of using ABM while also mentioning the suitable environment for ABM. Garcia 

(2005) compared ABM to other simulation techniques and pointed out that the ease of use for 

ABM represents a massive advantage. This ease of use is due to the lack of complex equations 

and statistics, primarily because ABM focuses on individual agents; noting that as rules are 

added on the system or on the agent the system complexity would increase slowly. Al Hattab and 

Hamzeh (2016) considered ABM as a method to analyze the collective behavior of agents within 

a system by allowing the agents to take individual decisions. Based on that, they created an ABM 

where the agents were people with a set of interchanging states which change depending on 

interactions among the agents. Also, while using ABM, Awwad et al. (2014) benefited from 

having heterogenous agents with different capabilities and goals. They stated that ABM offers 

the ability to test various scenarios with minimal effort. 

Zankoul et al. (2015) studied the difference between DES and ABM in a construction site, 

considering the logistics and resources used. They modeled the DES as a sequence of discrete 

events where the entities go through the process sequentially. They also built an ABM simulation 

consisting of four agents with their own states which could affect the other agents. For example, 

the truck (Agent A) is to be filled using the excavator (Agent B). Even though the results of their 

models were almost identical, Zankoul et al. (2015) stated that using ABM instead of DES 

presented advantages such being easier to understand, more flexible, as well as having a better 

model performance. 
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Having seen these three simulation techniques, Agent Based was selected as it would indeed 

focus on team members and setting them as agents and considering the entire process as a flow 

of interactions and actions taken by the agents. 

2.3 Existing Simulation Models for Product Development Processes 

In this section, we are going to look into some existing simulation models that handle PD 

processes with a focus on task allocation. In the specific case of Software Product Development, 

Ngo-The and Ruhe (2009) explained the process of assigning tasks to developers. With the vast 

differences in skills among the software developers, they introduced an average skill level with a 

factor of 1.0 for each type of task. With a managerial judgment, the developers will get a 

productivity factor prod (d, q) where d is the developer and q is their ability to perform the task – 

and if yes how productively will they perform it. They propose a productivity vector ‘u’ which 

uses 4 factors: the developer d, time t, task n, and productivity factor q. This results in the 

following definition of u: ݑ(݀, ,ݐ ݊,  This vector will be set to 1 if at a time ‘t’ the developer. (ݍ

‘d’ is working on task(‘n’,’q’). The task factor depends on the task ‘n’, and on the productivity 

factor ‘q’. 

 

Figure 0-5 Task Distribution - Ngo-The and Ruhe (2009) 
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The human resource assignment is then done following Figure 2-5 - which represents an example 

of three developers to be assigned to nine different tasks for three different features, using the 

productivity vector. The best possible assignment considers the productivity of the developers, 

their availability, and the possible dependencies between tasks. This literature’s suggested 

solution to task allocation is very accurate, since it uses a productivity vector which looks into 

the developer’s time and productivity factor. However, our paper will go a bit further with the 

cooperation feature which allows multiple developers (agents) to work on the same task 

simultaneously.  

Garcia (2005) also used ABM to develop a model that would study how manufacturers compete 

for customers using “Innovative Products” and “Incremental Products”. Having two types of 

agents - late adopters and early adopters, Garcia built a Netlogo model that studies development, 

research, performance, and resource allocation. 
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Figure 0-6 Netlogo Model - Garcia (2005) 

The Netlogo model in Figure 2-6 features the input settings (Consumer, manufacturer, control-

manufacturer, and contingency), the agent map where the agents move and behave based on their 

rules, as well as the performance charts. In the model’s rules specifications, Garcia (2005) set the 

agent’s movement and engagement rules which are based on theoretical studies and assumptions, 

as well as case studies. Also, to be defined were the manufacturers’ rules; basically, the 

manufacturer’s strategy depended on the consumer demand while also considering the limited 

resources available. A trade-off was in order between the two different types of projects based on 

the consumer demands. 
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2.4 Agile and Scrum Project Management 

Agile project management has been around for a while now and is becoming a popular 

management strategy for various types of PD processes. It is originally a software project 

management process -introduced in 2001 through the Agile Manifesto- that focuses on fast 

iterations as a way to break down large projects into releasable iterations. This facilitates 

complex projects by dividing the complexity into simpler and easier iteration, which makes the 

development process easier. Another advantage is that by applying iterations and frequent 

feedbacks, the product in development is being regularly reviewed and it would make it easier to 

keep it on track. Also, it has a high adaptability rate. The iterative approach allows modifications 

or incrementations in each iteration. (Hughes, 2019) 

Even though it is considered to be limited to software PD, it could be useful for any PD process. 

Cooper and Sommer (2016) discussed this point and believed that the agile methods can be 

integrated with gating approaches to adapt to a product manufacturing process. They introduced 

the hybrid model of Agile-Stage-Gate to benefit from the beforementioned agile advantages, as 

well as the existing Stage-Gate which is designed to assist in selecting the right projects within a 

company and decide key stages and roles. As a first step, they studied the compatibility of Agile 

and Stage-Gate and found that the Agile methods complete the stage-gate model by providing 

day-to-day planning and progress reporting which it lacks. Their second step was to see if this 

hybrid model could work for physical products. They based their findings on Sommer et al. 

(2015) which researched five manufacturing firms that implemented the hybrid model and found 

that the firms have had improved efficiencies and reduced work and rework efforts.  

Sliger (2011) defined scrum as an agile method of iterative and incremental product delivery 

method that relies on regular feedback and collaborative decision making. She also went on to 
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explain the scrum framework. The process begins with a product backlog; a set of features 

required by the client/customer referred to as the Product Owner. The next step is the sprint 

planning meeting, but before going into that, let us define the sprint. It is basically a defined time 

window – usually between one and four weeks- in which work is done on the backlog’s features.  

The sprint planning meeting happens before launching the sprint and it is in this meeting that the 

team decides which features are to be worked on during the sprint. This leads to the creation of a 

sprint backlog. Following the meeting, the sprint is launched and work on the tasks begin. 

During the sprint, the team attends a short daily meeting (usually around ten or fifteen minutes 

long) known as the daily scrum in which the members talk about what they did the previous day, 

and what they plan on doing today and what issues they are facing. At the end of the sprint, the 

team displays their work to the Product Owner and receives feedback to adjust the next sprint. 

The team also has a retrospective meeting in which they discuss the sprint and how to improve 

for the following sprint. Figure 2-7 shows the multiple stages of a Scrum product development 

process discussed in this section. 
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Figure 0-7 Scrum Product Development  

In our study, Figure 2-7 could be represented as follows: an input file to the model containing all the tasks 

selected during the sprint planning phase, as well as their attributes. The product development phase and 

the testing phase are part of the tasks to be completed during the simulation. The delivery phase would 

simply be the end of the sprint. The retrospective and the daily scrum are represented by the meetings 

performed by the agents and the client.  
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CHAPTER 3 

AGENT-BASED MODEL FOR RESOURCE ALLOCATION & 

INTERACTION IN PD 

 

Consider a PD project that has I (1 ≤ ݅ ≤ participants and J (1 (ܫ ≤ ݆ ≤  design activities or (ܬ

tasks. These I participants shall be referred to as agents. As beforementioned, agent-based 

modeling is advantageous in our context since our focus is on the individual agent (Garcia, 

2005). Agent-Based modeling first requires defining the I agents; by initially specifying them. 

They are the drivers/decision-makers of the system. Next, is to define their behaviors. The 

behaviors of the agents will depend on the system’s settings and how each agent should respond 

to their respective situations in the simulation model. Third, is to determine the relationships 

among the agents and to add the methods controlling their interactions. The team members will 

be the human employees that will go from one task to another to accomplish the tasks. They will 

each have specific attributes that determine their efficiency with values ranging from 1 to 10 

(their technical skills, their managerial skills, and their overall experience), their learning ability ݈ 
– which depends on each agent’s character, and their available time to work. The learning ability ݈ ranges from 0 to 10. The value 0 would indicate an agent with no ability to learn, 5 would 

indicate an average learner and 10 is for a very fast learner. The agent’s available time ܼ௜ 
indicates the time during which the agent is available during the project. 

The tasks, on the other hand, will be waiting for employees to perform them.  Each task also has 

a set of skills ratings, which are the needed skills and their minimum level. Additionally, each 

task has the minimum, medium, and maximum estimated time for completion and its priority 

factor. Furthermore, the tasks have weights for the two skills – technical and managerial - as well 
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as a weight for the overall experience attribute and another for the priority level used only for the 

dependency priority. These weights indicate how important each factor or skill is for the 

selection of the task. By using a scale of 0 to 1, where 0 is lowest and 1 is highest, a weight of 

0.9 out of 1 will emphasize the importance of this factor for the task. These weights and how 

they affect the task allocation method will be explained more in the following section. Also, the 

tasks have a rework probability, a rework impact, dependency relations and their respective 

dependency strengths and impacts – all of which will be explained in the next sections. 

To discuss the tasks’ status, any given task ݆ could have one of the following statuses. Pending 

tasks are the main type of tasks which are available or ready to be worked on. The dependent 

tasks require prerequisite tasks to be completed before they become available for working on 

them. The completed tasks are simply the tasks that one or more agents have worked on and 

completed. Finally, the rework status for the tasks is assigned to tasks  that have been completed, 

but due to changes or new requirements, have been reset to be repeated. Having explained the 

setup, the upcoming sections will explain the agent’s behaviors and simulation flow. 

3.1 Task Allocation Method 

The primary challenge in developing the task allocation method is determining for each agent ݅ 
which task from the full set of tasks ܬ, is the suitable task to be performed. To address this, we 

propose Equation 6, called the “skill difference coefficient” (SDC) denoted by  Δ௜௝௡೔௤೔. Δ௜௝௡೔௤೔ = ௜௡೔௤೔௠ܣ௝௠หݓ − ௝ܶ௠ห + ௜௡೔௤೔௧ܣ௝௧หݓ −  ௝ܶ௧ห + ௜௡೔௤೔௟ܣ௝௟หݓ −  ௝ܶ௟ห Equation (6) 

This equation is based on the formula suggested by Stobrawa et al. (2018) discussed in Section 

2.1.2. However, it has been adjusted according to our needs. Δ௜௝௡೔௤೔ represents the skill difference 

coefficient for agent ݅ and task ݆ while considering the number of tasks completed ݊௜ by agent ݅ - 
since the talents of agent ݅ would change depending on the number of tasks completed and rely 
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on the last task completed by agent ݅, ݍ௜. All the parameters in Equation 6 and their possible 

values are represented in Table 3-1. (A table containing all the variables is available in the 

Appendix A) 

Parameter Definition Values ࢏ Agent ݅ 1 ≤ ݅ ≤ Task ݆ 1 ࢐  ܫ ≤ ݆ ≤ ݅ ݅ Number of tasks completed by agent ࢏࢔ ܬ ≥ Last task completed by agent ݅ 1 ࢏ࢗ 0 ≤ ݍ ≤  ݅ Skill Difference Coefficient between agent ࢏ࢗ࢏࢔࢐࢏ઢ ܬ
and task ݆ considering ݊௜ and ݍ௜ 0 ≤ Δ௜௝௡೔௤೔ ≤ ࢓࢏ࢗ࢏࢔࢏࡭ Weight of overall experience on task ݆ 0 – 1 ࢒࢐࢝ Weight of technical knowledge on task ݆ 0 – 1 ࢚࢐࢝ Weight of managerial knowledge on task ݉ 0 – 1 ࢓࢐࢝ 10  Managerial talent for agent ݅ for ݊௜ completed 

tasks, with ݍ௜ being the last task completed 

by agent ݅ 
1– 10 

࢚࢏ࢗ࢏࢔࢏࡭  Technical talent for agent ݅ for ݊௜ completed 

tasks, with ݍ௜ being the last task completed 

by agent ݅ 
1 – 10 

࢒࢏ࢗ࢏࢔࢏࡭  Overall Experience for agent ݅ for ݊௜ 
completed tasks, with ݍ௜ being the last task 

completed by agent ݅ 
1 – 10 

 Required managerial skill on task ݆ 1– 10 ࢓࢐ࢀ
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Available table for agent ݅ ܼ௜ ࢏ࢆ Required overall experience on task ݆ 1 – 10 ࢒࢐ࢀ Required technical skill on task ݆ 1 – 10 ࢚࢐ࢀ ≥ 0 

Table 3-1 SDC Attributes 

To explain Equation 6, consider a situation where we are trying to choose the most suitable task 

for agent ݅ among the ܬ tasks. The weights vary between 0 and 1 (0 ≤ ,௝௠ݓ ,௝௧ݓ ௝௟ݓ  ≤ 1) with 0 

being the lowest weight and 1 being the highest, with the sum of all three weights being equal to 

௝௠ݓ) 1 + ௝௧ݓ + ௝௟ݓ = 1).  These weights represent the importance of the specified skill to this 

task – how much this skill weighs for the entire task; they should be set by the project managers 

that are assessing the tasks for their allocation. Their expertise should allow them to define the 

values for the weights accordingly.  

The talents and skills are scaled from 1 to 10, to represent the different levels of skills. 1 being 

the lowest grade and representing the novice, 10 being the highest – representing the expert, 5 

being the average grade representing a mediocre person, and the grades in between represent 

different shades of expertise. Using these weights for each attribute of task ݆ (i.e., managerial ݓ௠, technical ݓ௧, and overall experience ݓ௟), the formula will determine the difference between 

the talents ܣ௜௡೔௤೔௠ , ௜௡೔௤೔௧ܣ , ௜௡೔௤೔௟ܣ (managerial, technical, overall experience) with respect to the 

number of tasks completed by agent ݅ (݊௜) and the last task completed by ݅ (ݍ௜),  and the 

minimum required skills for task ݆ ( ௝ܶ௠, ௝ܶ௧, ௝ܶ௟), then it will multiply each difference (ܣ௜௡೔௤೔௠ −
௝ܶ௠, … ) with its respective weight. 

Additionally, let us consider the case where there exists a priority effect. For each prerequisite 

task ݆, there exists have a priority weight ݓ௝௣(0 ≤ ௝௣ݓ ≤ 1). Additionally, ܲ is the priority factor 

applicable only for tasks that have dependent tasks (0 ≤ ܲ ≤ 10). ܲ indicates the importance of 
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finishing the prerequisite tasks in order to convert the dependent tasks into an available status. To 

focus on the importance of having a priority, we introduce the selection coefficient ߤ௜௝௡೔௤೔. 
௜௝௡೔௤೔ߤ =   ቊΔ௜௝௡೔௤೔ − ݁ݏ݅ݓݎℎ݁ݐ݋ Δ௜௝௡೔௤ݏ݇ݏܽݐ ݁ݐ݅ݏ݅ݑݍ݁ݎ݁ݎ݌ ݎ݋݂ ௝௣ܲݓ    Equation (7) 

Equation 7 represents the selection coefficient ߤ௜௝௡೔௤೔ which combines the skill difference 

coefficient Δ௜௝௡೔௤೔ with the additional priority factor ܲ and the task’s priority weight ݓ௝௣. 

Including the priority factor would lower the value of ߤ௜௝௡೔௤೔ and favor the task ݆ for selection. 

This factor only affects prerequisite tasks based on their priority weight ݓ௝௣. In case a task is not 

a prerequisite task, the value of ݓ௝௣ would be 0. By applying the priority factor, we are 

decreasing the value of ߤ௜௝௡೔௤೔. Since our aim is to get the closest match between the agent’s 

talents and the task’s skills, we will rely on the results of Equation 7. It will allow us to select the 

task ݆ where ߤ௜௝௡೔௤೔is the smallest as the chosen task to work on by agent ݅. In this sense, the 

closer the agent’s talent value is to its respective task’s skill value, the smaller value of ߤ௜௝௡೔௤೔ is 

obtained. To specify the selection of tasks to agents, ߤ௜௝௡೔௤೔ is calculated for each agent ݅ task ݆ 

combination. As an example, consider the following selection coefficient matrix ߮,shown in 

Figure 3-1, for two agents and two tasks.  

߮ = ቎ ૚࢐ ૚࢏૛࢐ −2 ૛࢏1.5− −3 −2 ቏ 

Figure 0-1 Hypothetical Selection Matrix 

Considering the matrix in Figure 3-1, the selection would be done starting by choosing the 

smallest coefficient in the matrix and allocating that agent to the task. Then the column of the 

task and the row of the agent are removed from the matrix – this is repeated until all agents have 

been allocated tasks. Starting with ߤଶ ଵ ௡భ௤బ of agent 2 and task 1, we allocate task 1 to agent 2 
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since it has the smallest value of the selection coefficient in the matrix. Next, we consider task 2 (݆ = 2). Even though agent 2 (݅ = 2) has the smallest ߤ for task 2, agent 2 would be assigned 

to task 1 (݆ = 1) since their selection score is even less. In this case, task 2 would be assigned to 

agent 1. 

With a task ݆ determined for agent ݅, we need to find the difference between its talents and the 

task’s required skills in order to estimate its performance on the task. Therefore, we introduce the 

task execution coefficient ߱௜௝௡೔௤೔ in Equation 8.  

 ߱௜௝௡೔௤೔ = ௜௡೔௤೔௠ܣ௝௠൫ݓ  − ௝ܶ௠൯ + ௜௡೔௤೔௧ܣ௝௧൫ݓ − ௝ܶ௧൯ + ௜௡೔௤೔௟ܣ௝௟൫ݓ −  ௝ܶ௟൯   Equation (8) 

Equation 8 represents the task execution coefficient ߱௜௝௡೔௤೔ which is used to determine how the 

agent would perform on their task. Without the priority factor, and by using the actual difference 

(positive and negative), the ߱௜௝௡೔௤೔ focuses only on the difference between the agent’s talents and 

the task’s required skills at a certain number of completed tasks ݊௜. This allows us to reflect on 

the actual difference between the agent ݅ and the task ݆, and present a real task execution 

simulation. By having a positive value of  ߱௜௝௡೔௤೔ we could determine that agent ݅ would perform 

the task better than average. Similarly, a negative value of  ߱௜௝௡೔௤೔ would mean that agent ݅ 
would perform below average. 

3.2 Meetings & Collaboration  

This feature is designed to simulate the effect and behavior of having a team meeting, from a 

time consumption perspective and a performance perspective. As previously mentioned, 

Dingsoyr et al. (2018) talked about the importance of physical meetings and how they enrich 

communication and collaboration. According to Moe et al. (2018) – at least for the Agile process 

- we should include and take into consideration the daily scrums and the iteration planning 
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meetings. This will be reflected in our PD model by having two types of meetings, one that 

covers collaboration and communication, and another that covers client meetings.  

For the first type, we will consider a daily meeting among agents, called a daily scrum in Agile 

process. During this meeting the agents would talk about what they have accomplished or 

worked on during the previous day and discuss difficulties they are facing. Collaboration could 

happen among the agents in such a meeting as a form of knowledge and information exchange. 

The collaboration could simply happen by having an agent suggest a solution to another agent’s 

problems which would make their task a bit easier and increase the agent’s ߱௜௝௡೔௤೔. The effect of 

this collaboration will be reflected in a random factor ݉ called meeting factor; this factor could 

vary between positive and negative. (−1 ≤ ݉ ≤ 2, the set of values of ݉ is explained in Section 

3.6.4). Having a positive factor would indicate that the collaboration had a positive outcome on 

the task completion, and the agent’s task execution coefficient ߱௜௝௡೔௤೔ increased by ݉. A 

negative factor would mean that some lack was discovered due to the collaboration thus the 

agent’s  ߱௜௝௡೔௤೔ decreased by ݉. The frequency of such a meeting is denoted as ߙ௠௘. 

The second type of meetings would be the client meeting. This type of feature would simulate 

having meetings with clients, an example would be the retrospective in the Agile process which 

discusses the tasks completed within the last sprint. As experienced in real-life circumstances, 

this meeting has a chance of requiring task rework; this is basically a request by the client for a 

change in an already completed task and thus returning its state to pending or in need of work. 

The probability of a rework happening, and the percentage of rework required in case of a 

rework will both be values inputted by the user in the simulation model. The first percentage 

(rework happening) is ߩ ௝,௞ೕ and represents the probability of a client requiring changes after the 

completion of a task ݆ for the ݇௧௛ iteration of ݆, and the second is called ߜ௝  (Impact of task 



  

41 
 

rework) and represents the percentage of rework required due to the requested changes on the 

same task ݆. The rework probability ߩ ௝,௞ೕ is set by the project manager to estimate the possibility 

of having to rework on task ݆. It is also related to the client meeting frequency. The project 

manager’s estimate should take into consideration the client meeting frequency ߙ௠௖. Having 

more frequent meetings would lower the rework probability since the client would have more 

information and could provide early feedback on possible changes and reworks.  The frequency 

of the client meeting is denoted as ߙ௠௖. 

During both types of meetings, we will assume that within the agents’ communication amongst 

themselves, as well as their communication with the client, some type of negotiations take place. 

During these negotiations, the participants would discuss their solutions or ideas in order to find 

a common ground – through compromise or persuasion. To take this into account, the meeting 

time (also considered as Meeting Cost) will be reduced from each agent’s remaining time. The 

meeting costs for team meetings and client meetings are denoted ߚ௧ and ߚ௖, respectively. 

3.3 Cooperation 

Cooperation is an important feature discussed in this paper. As defined in the introduction, it is 

the process of allowing more than one agent to perform a single task. This feature represents the 

possibility of having a difficult task, that requires a lot of time for one agent to complete, being 

completed by two or more agents. Let us first define what will be considered as a difficult task in 

our simulation. When determining the task to be performed by the agent, we defined a threshold 

called the cooperation threshold ℎ. It is a user input value ranging from -5 to 0. It will be 

compared with the agent’s  ߱௜௝௡೔௤೔ (since it will focus on only talent versus skills) - for each task 

– to decide whether the task should be available for cooperation or not. Simply put, if    ߱௜௝௡೔௤೔ <
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ℎ, the task would be available for other agents to work on. For example, having an agent ݅ and a 

task ݆ with an ߱௜௝௡೔௤೔ = −2 (-2 being an arbitrary value of the ߱௜௝௡೔௤೔), comparing this ߱௜௝௡೔௤೔ to ℎ (consider ℎ = −3) might indicate that task ݆ is not worth having cooperation – more than one 

agent working on it. In case the task required cooperation, the same algorithm that chooses the 

task allocations will be applied but it will take into consideration the already assigned tasks that 

need cooperation. An extra feature available is to restrict having more than ܻ agents on the same 

task. By determining ܻ, we are limiting the maximum number of agents working on the same 

task. In our model, we are setting ܻ = 2 when there exists cooperation. This variable could 

change based on the project or the company. In case there is no cooperation allowed, the value of ܻ is automatically set to 1. 

3.4 Agent Learning 

In this section, we consider how improving agents’ talents will affect task execution and the PD 

process. To do this, we propose a learning formula to estimate the value of learning from each 

task completed.  The execution time for each task is multiplied by (݊ି௞) to reduce the time, 

where ݊ in the number of tasks completed and ݇ is the agent’s learning ability (Denkena et al. -

2017). We build on this relationship to reflect how the number of executions will advance the 

agent's talent (thus lowering the execution time of any related task). We assume that agent ݅ 
improves whenever it finishes a task ݆. To determine its improvement on each talent, we use the 

weight for each skill. Since it represents the importance of the skill for the task, we consider that 

by finishing this task ݆, agent ݅ will have improved its skills (ܣ௜௡೔௤೔௠ , ௜௡೔௤೔௧ܣ , ௜௡೔௤೔௟ܣ ) in a relative 

manner to the task’s weights (ݓ௝௠, ,௝௧ݓ  ௝௟). To do this, we will use Equation 9 that will affectݓ

each of the agent’s talents (respectively to their weights) for each time the agent finishes a task 

and improves its talents. 
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௜,௡೔ାଵ,௤೔௦ܣ  = ௜௡೔௤೔௦ܣ + ௪೜ೞ൭௡೔ భ೗೔൱        Equation (9) 

In Equation 9, ܣ௜,௡೔௤೔௦  is the agent’s talent of type ݏ(where ݏ is an index for the specified skill; s = 

{m, t, l}) for the current number of tasks completed ݊௜ by agent ݅, considering that the completed 

task is ݍ௜ (the current agent’s task). ݓ௤௦ is the task's skill weight, and ݈௜ is the agent's learning 

ability –defined in Chapter 3. Equation 9 allows the agent to improve their talents based on the 

type of task it just completed. A task ݍ with a high weight in technical skill would be of technical 

nature, and by completing it, agent ݅ would improve its technical talent the most, based on the 

task’s technical weight ݓ௤௧. The same applies for a task with a focus on managerial or a higher 

experience level. All the agent’s talents will improve relatively to the weights on the task.  

3.5 Task Dependency 

Dependency among the tasks is an important factor in any PD process. It indicates the 

development flow which requires a certain sequence of execution. As discussed in Chapter 2, 

task dependency is a feature in this study and allows the realization of a specific flow in the PD 

process. Since the tasks’ details are imported for each simulation (as explained in Section 3.6.1), 

the dependency relation, strength and impact between the tasks are based on the imported data. 

As a simple example, suppose task ݆ depends on task ݒ. If so, task ݆ will not be available to be 

performed or worked on until the completion of task ݒ. We define the dependency strength ௝߬௩ 

and the dependency impact ߝ௝௩.  In case there exists a dependency relation between task ݒ and 

task ݆, ௝߬௩ is the strength of this dependency; in other words, the probability of having to work on 

task ݆ when rework is performed on ݒ. And in case there exists rework on task ݆ due to the 

rework on ݒ, the dependency impact ߝ௝௩ represents the percentage of rework needed (i.e. what 
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fraction of task ݆ is repeated). These attributes are mainly used for the rework feature and their 

importance is explained in Section 3.6.4. 

Additionally, the same parameters are used to implement the feedback rework among tasks. 

Suppose that upon the completion of a dependent task ݆, we also implemented changes involving 

the prerequisite task ݒ.  In this case, the dependency strength and impact between tasks ݆ and ݒ 

are used to determine the possibility and amount of rework on task ݒ. The details are explained 

in Section 3.6.4. 

As for the effect of dependency in the task allocation process described in Section 3.1, we 

introduce a dependency priority ܲ. This factor is a user input value (0 ≤ ܲ ≤ 10), which 

determines the priority level of the pre-requisite tasks such as ݒ. The higher it is, the more 

importance is given to the prerequisite tasks. Its value is between 0 and 10, 0 indicating that the 

dependency has no effect on the allocation process, and a max value of 10 to represent urgent 

prerequisite tasks. Therefore, the value is subtracted in the selection coefficient formula, as 

means to prioritize task ݒ ahead of another task which could have a better selection coefficient 

but is not a prerequisite to any other task.  

3.6  Implementation 

This section explains how the model works using the Agent-Based Simulation software Netlogo. 

It will cover the creation of agents and tasks, the task allocation method, meetings, task 

dependency, as well as agent learning. Diving into the details of the implementation will show 

how each of the beforementioned features is implemented and used, and how the model’s 

options affect the model. Before discussing each feature, let us define the model settings as in 

Table 3-2. 
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Setting Name Setting Value Description Parameter 
Agent Learning ON/OFF Agents improve their skills - 

Cooperation ON/OFF Allowing agents to work 
together 

- 

Cooperation Agent Limit ܻ ≥ 1 Maximum number of agents 
allowed to work on the same 

task  

ܻ 

Cooperation Threshold −5 ≤ ℎ ≤ 0 If > ߱ the task is eligible for 
cooperation 

ℎ 

Dependency ON/OFF Dependency between the 
tasks  

- 

Dependency Priority 0->5 Value of Dependency 
priority in ߤ 

ܲ 

Meetings Allowed ON/OFF Simulating a team meeting - 
Meetings Frequency 0 ≤ ݁݉ߙ ≤ 50 A team meeting happens 

every ߙ௠௘ time steps 
 ௠௘ߙ

Meetings Duration 1 ≤ ݐߚ ≤ 10 Duration of team meeting 
(in time steps) 

 ௧ߚ

Client Meetings Allowed ON/OFF Simulating a Client meeting 
and their feedback 

- 

Client Meetings 
Frequency 

0 ≤ ܿ݉ߙ ≤ 100 A team meeting happens 
every  ߙ௠௖ time steps 

 ௠௖ߙ

Client Meetings Duration 1 ≤ ܿߚ ≤ 10 Duration of client meeting 
(in time steps) 

 ௖ߚ

Table 3-2. Netlogo Model Settings 

3.6.1 Agent and tasks creation 

The first step of the model is to setup the agents and tasks. The details of each user and each task 

are imported from comma separate values (CSV) files as soon as the user clicks on setup 

(Available in Appendix B). The system will create the model by setting the agents’ names and 

initial coordinates as well as setting their color to green to indicate their status as ready and 

available. The agents will then be created with different availability times, skills, and learning 

ability; based on the specifications determined in the file.  

Similar to the agent creation, the tasks are created based on a second user imported CSV file. 

Based on their details, tasks without a prerequisite will be colored in grey to indicate that they 

are pending and ready to be performed. If the task dependency feature is enabled and the 

imported task has a prerequisite based on the dependency relation ߠ௝௩, it is considered as a 
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dependent task and will be colored in blue. Note that every dependency has its own object/record 

to allow for multi-dependency among the tasks. 

3.6.2 Task Allocation 

As explained in Section 3.1, the task allocation method requires calculating - for each agent - the 

difference between the agent’s acquired talents and the tasks’ required skills. This step happens 

automatically after setting up the agents and tasks and occurs on each time step for the agents 

that do not have an assigned task (explained in next section). Let us consider the initial task 

allocation after the creation step. For each agent ݅, the system will go through all the tasks in the 

set of tasks ܬ. For each task ݆ in the set ܬ, if ݆ is available by being colored in grey (status 

pending) or orange (status rework – discussed in Section 3.6.4), ߤ௜௝௡೔௤೔ is calculated and if the 

calculated ߤ௜௝௡೔௤೔ is the lowest among the tasks, ݆ is set as the agent’s task. As explained in 

Section 3.1, the selection process allocates the tasks to the agents based on their lowest 

combination scores, starting with the smallest values of ߤ௜௝௡೔௤೔. Technically, along with assigning 

the task, its coordinates are used to place agent ݅ next to it. This is specifically done in Netlogo as 

to have the task ݆ adjacent to the agent ݅. Being in a two-dimensional simulation, ݆’s coordinates 

are along the x-y axis. Having ݅ and ݆ in adjacent positions is used to show each agent’s assigned 

task at time ݎ. 

Also taken into consideration is the cooperation feature which allows multiple agents to be 

allocated to a single task. If the cooperation is allowed, ߤ௜௝௡೔௤೔ is compared to the cooperation 

threshold ℎ, to indicate if ݆ needs can solicit the help of other agents. That way, when the system 

is choosing a task for another agent ݅′, task ݆ is checked for allocation even though it has an 

assignee. An additional option is to restrict having more than two agents performing the task. By 

enabling this feature, each task ݆ could at most be assigned to two agents. 
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3.6.3 Simulation Process 

The system’s time steps can be considered as any unit of time. Let us define time ݎ as the value 

of the system clock – note that ݎ will be considered in hours. At each time step, the system 

checks if all the tasks are completed or all agents are out of time, if any of these conditions is 

true, the system will stop and the simulation ends. Once the simulation stops, the system will 

indicate whether the simulation was successful or not. The simulation is considered successful if 

all the tasks are completed at the end of the simulation. If the simulation stopped because the 

agents were out of time, the simulation is considered not successful. Otherwise, the system will 

check ݎ to see if it is time for a team meeting or a client meeting. Referring back to Section 3.2, 

the system will check if the time value ݎ is a multiple of any of the meeting frequency values 

(team meeting frequency ߙ௠௘, or client meeting frequency ߙ௠௖). If so, the system will launch 

one of the meetings processes, which will be discussed thoroughly in Section 3.6.4. If the time ݎ 

does not match any of the previous conditions, the system will launch the process of task 

execution and task allocation. 

The task execution process goes through all the agents iteratively and checks that each agent ݅ 
still has time available; otherwise, the agent will be colored in red and will stay still as ݅ is then 

considered to have used up all its available time. Another condition is to check if agent ݅ has an 

assigned task, if not, ݅ will be colored in blue and stay still as it waits for a task to be assigned to 

it. To focus on executing tasks, let us consider that agent ݅ has time remaining and has an 

assigned task ݆. Our model assumes that there exists some time spent by agent ݅ to select task ݆ 

(as a setup time), which can be considered idle time by agent ݅ (i.e. wasted). The agent’s 

available time is reduced by a factor ߯ – the idle time – for each task selection. This factor is 

explained in Section 3.6.5. 
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To consider the task execution process, we will note the remaining time for task ݆ as ݐ௝௥௡೔௞ೕ௤೔.  
If  ݐ௝௥௡೔௞ೕ௤೔ > 0, ݆ still has work to be performed, and the agent’s previously calculated Skill 

Difference Coefficient ߱௜௝௡೔௤೔ is applied to find how much the remaining task time ݐ௝௥௡೔௞ೕ௤೔ 
should decrease for every time step. In this sense, the remaining task time ݐ௝௥௡೔௞ೕ௤೔ would be 

reduced by a value relative to ߱௜௝௡೔௤೔. Considering that for an the execution coefficient ߱௜௝௡೔௤೔  ௝௥௡೔௞ೕ௤೔ should be reduced by 1 for every time step since this would be the average value ofݐ ,0=

matching between the agents’ talents and the task’s skills. Furthermore, taking the extreme 

values of ߱௜௝௡೔௤೔ (ranging from -10 to 10) and considering that for ߱௜௝௡೔௤೔ = 10 agent ݅ should be 

reducing the task time ݐ௝௥௡೔௞ೕ௤೔ by 2 (twice as fast as an average performer), we propose the 

following Equation 10 to calculate the task remaining time ݐ௝௥௡೔௞ೕ௤೔ based on ߱௜௝௡೔௤೔. 
௝,௥ାଵ,௡೔,௞ೕ,௤೔ݐ = ௝௥௡೔௞ೕ௤೔ݐ   − (0.1߱௜௝௡೔௤೔ + 1)   Equation (10)  

In Equation 10, ݐ௝,௥ାଵ,௡೔,௞ೕ,௤೔ is the remaining time for task ݆. Since ߱௜௝௡೔௤೔ is related to the 

number of tasks completed (݊௜) by agent ݅, the task time will also depend on ݊௜.Furthermore, the 

execution coefficient depends on the last task completed by agent ݅ and thus the remaining time 

also depends on ݍ௜.  Additionally, the remaining task time will also depend on the task iteration ݇ 

– explained in this Section 3.6.4. For ߱௜௝௡೔௤೔ ≥  ௝௥௡೔௞ೕ௤೔ would be reduced by a value betweenݐ  ,0

1 and 2 (since the maximum value of ߱௜௝௡೔௤೔ is 10). On the other hand, for a ߱௜௝௡೔௤೔ <   ௝௥௡೔௞ೕ௤೔ݐ ,0
would be decreased by a value between 0 and 1. This would simulate the task execution process 

based on different talent values. An agent with talents less than the task’s required levels would 

need more time to perform it, thus effectively reducing the remaining task time ݐ௝௥௡೔௞ೕ௤೔  by less 
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than 1 for every time step. The same applies for an agent whose talents are better than the task’s 

required skills. The agent would be decreasing ݐ௝௥௡೔௞ೕ௤೔ by more than 1. 

Next, if ݐ௝௥௡೔௞ೕ௤೔ =0, the task ݆ is considered to be completed. ݆ is then colored in green, and if the 

Agent Learning feature is enabled, ݅’s talents will be increased as indicated in Section 3.4. A 

final check on the task level is the dependency. If ݆ is a pre-requisite task to any other task ݒ ,ݒ is 

then rendered available by being colored in grey (instead of blue) if all the pre-requisites of ݒ are 

completed. Lastly, having completed the assigned task, ݅ needs to determine the next task. The 

task allocation process is started again, and the flow continues. 

3.6.4 Meetings & Rework 

As mentioned in the previous section, meetings will occur based on certain time frequencies ߙ௠௘ 

and ߙ௠௖. The first case to consider is the team meeting. Suppose we are at a certain time in the 

process and it is time for a team meeting. To simulate a meeting between the team members, we 

would go through the agents and change their respective ߱௜௝௡೔௤೔ randomly. The system will 

randomly select – with equal probability - between the following set of values:  

{-1,0,1,2}. These values are considered since they would have a moderate impact on ߱௜௝௡೔௤೔ that 

would replicate an average effect of meeting communication. In other words, it has an equal 

probability of increasing the ߱௜௝௡೔௤೔ by 2 or 1, decreasing it by 1, or leaving it as it is. As 

mentioned in Section 3.2, this would simulate the effect of communication between agents. Since 

communication in a meeting is more likely to help improve the tasks, we included two positive 

values ,one neutral value, and one negative value. The changes to the agents’ ߱௜௝௡೔௤೔ would only 

affect the task completion time (discussed in 3.6.3). By specifying this, communicating during 

the meeting could ease a task (by increasing the ߱௜௝௡೔௤೔), could render it harder (by decreasing 
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the ߱௜௝,௡೔), or could have no effect on it. Additionally, the meeting duration ߚ௧ is decreased from 

the agents’ respective remaining times.  

The second case to consider is the client meeting, which occurs between the team members and 

the client. As mentioned in Section 3.2, it is during this meeting that rework is discussed. 

Suppose we are having a client meeting. The system will go through the completed tasks and 

based on their rework probability ߩ௝,௞ೕ(imported from the original task details file), the system 

will set the task ݆ to be reworked. The new task time ݐ௝௥௡೔௞ೕ௤೔ is calculated as indicated in 

Equation 11. 

௝௥௡೔௞ೕ௤೔ݐ = ௝ߜ  ∗  ௝,଴,଴,଴,଴,଴    Equation (11)ݐ

Noting that in this case ݇ > 0 since this is a rework and it wouldn’t be the first iteration of this 

task. ߜ௝ is the rework percentage of ݆ and ݐ௝,଴,଴,଴,଴,଴ is the original time of ݆.  ݆ would then need 

extra work to be performed and it would be available to be allocated, thus it would be colored in 

orange. Consequently, the rework probability ߩ௝ is reduced for every iteration. In this manner, 

we can apply Equation 12. 

௝,௞ೕାଵߩ =  ௝,௞ೕ/2     Equation (12)ߩ 

Equation 12 signifies that for every iteration of rework, we would reduce the probability of 

having rework on the same task ݆ by half. This represents the smaller chance of having to rework 

a task on which we have already had rework. 

An extra feature to consider is the dependency in the rework. If ݒ is a prerequisite task for ݆, 

when ݒ requires some rework, it would be logical to assume that if ݆ is completed, it could also 

need rework. With a probability of rework on ݆ equivalent to the dependency strength 
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௝߬௩ (defined in Section 3.5), ݆ would be set to available for work as well (also colored in orange), 

and its new task time ݐ௝௥௡೔௞ೕ௤೔ would be set as follows in Equation 13: 

௝௥௡೔௞ೕ௤೔ݐ = ௩ߜ  ∗ ௝,଴,଴,଴,଴,଴ݐ ∗  ௝௩   Equation (13)ߝ

In Equation 13, ݐ௝௥௡೔௞ೕ௤೔ is the new task time of task ݆ for its ݇௧௛ iteration, ߜ௩ is the same rework 

percentage of ݐ ,ݒ௝,଴,଴,଴ is the original task time of j, and finally ߝ௝௩ is the dependency impact 

between ݆ and ݒ. This would indicate the impact of rework on task ݆ due to the rework on task ݒ. 
Rework on ݆ is related to the percentage of rework on ݒ, as well as the dependency impact 

between them.  

Another case of rework to consider is rework due to feedback. Consider the same scenario where 

task ݆ depends on task ݒ which in turn depends on task ݌. These relationships are illustrated in 

Figure 3-2. 

 

Figure 0-2 Rework from Feedback 

Looking into Figure 3-2 and upon completion of task ݆, there were some modifications done that 

required a form of rework on task ݌ – note that task ݌ had already been completed since it is a 
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prerequisite for ݒ. The probability of this happening is equivalent to the dependency strength ௝߬௣. 

In case of rework required, task ݌ would require additional time of work based on Equation 14. 

௣,௥,௡೔,௞೛௤೔ݐ = ௣,଴,଴,଴,଴,଴ݐ  ∗ ௝௣ߝ ∗  ௣   Equation (14)ߜ 

3.6.5 Idle Time 

To simulate the time that agent is not actually working on a task, nor is it in a meeting, we 

introduce the idle time on the agent. Basically, it is the time to simulate breaks or time wasted 

during the day. The idle time for agent ݅ will be incremented – and thus the remaining available 

time for agent ݅ decremented, whenever agent ݅ is selecting a task. That way, the agent’s 

available time takes into consideration time spent without working. The idle time is a factor ߯ 

(0 ≤ ߯) where 0 indicates no time loss happens at all. In our model ߯ = 1, but it could be a 

different value based on the company simulating the PD process. 

3.6.6 Process Flowchart 
 

Figures 3-3, 3-4 ,and 3-5 represent the entire process of the model (A complete version of the 

process flow is available in Appendix C). It starts by checking the tasks available for work as 

well as the agents available and that do not have any assigned tasks. The tasks available are the 

pending tasks, and the tasks that have been set to rework. The agents available are those who still 

have available time and are not assigned to any tasks. By calculating their skill difference 

coefficients and their selection coefficients, the selection matrix is built and then the task is 

assigned to the most suitable agent. With the agent’s task determined, the execution coefficient is 

calculated. 
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Figure 3-3 Process Flow – Task Allocation 

For each time step, the system checks if it is a time for a team meeting or a client meeting, and if 

so, the flow follows the described steps in Section 3.6.4. Figure 3-4 represents the actions 

happening if it is a team meeting, a client meeting, or a simple task execution. If a team meeting 

occurs, the task execution coefficient is updated based on the effect of the meeting. If it is a 

client meeting, there exists the possibility of rework that applies the equations 11,12, and 13. If 
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no meetings occur, the task execution takes place and the remaining time of the task is updated 

as described in Section 3.6.3.  

 

Figure 3-4 Process Flow – Task Execution and Meetings 

Furthermore, when the in-progress task is completed, the agent’s talented are updated, and the 

agent is available again. If the completed task provides feedback rework to another task, it 

follows the steps in Section 3.6.4 and applies Equation 14. Additionally, the system checks the 

tasks which are dependent on the completed task. If all the prerequisite tasks have been 

completed, the dependent task is now considered as pending – available to performed. 
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Figure 3-5 Process Flow – Task Completion 
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CHAPTER 4 

TESTING, ANALYSIS, AND DISCUSSION 

 

In this chapter, we investigate how the different features affect the model and its results. We also 

study some popular project management processes and show how they can be simulated using 

our model. Defining the data of the model is necessary to be able to study the features and 

understand how each feature affects the results. To compare the results, we need to have suitable 

tasks and team members. We consider a team of three software developers that have prepared a 

set of 15 tasks for a new feature in their sales application. The application should allow the users 

to create orders and select products and their quantities to order. While also viewing a dashboard 

with reports containing details about their respective orders. Table 4-1 contains the tasks’ 

descriptions and respective times. Each task has a specific identification number and a range of 

time values (in hours). Next, we define the level of skills required for each task. As explained 

previously, each task has 3 characteristics each with their weights. Additionally, each task has a 

priority weight used for the dependency priority only for the prerequisite tasks. Thus, we build 

Table 4-2. 
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Description Task 
Number 

Min 
Time 

Med 
Time 

Max 
Time 

Orders List Page Design 1 20 24 30 
Orders List Page Design 
Implementation 

2 
16 20 24 

Fetch Existing Orders 3 12 15 20 
Order Orders by Date 4 2 4 7 
Order Creation Page Design 5 6 10 15 
Order Creation Page Design 
Implementation 

6 
12 15 20 

Order Creation Implementation 7 3 5 8 
Order Products Selection 8 15 20 22 
Order Products Quantity Selection 9 16 20 25 
Order Deletion 10 9 12 15 
Order Submission 11 4 8 13 
Order Invoice Generation 12 13 16 20 
Report Generation 13 2 5 8 
Order Dashboard 14 7 10 15 
Testing 15 20 25 30 

Table 4-1 Tasks Description & Times 

Task 
Number 

Technical 
Skill 

Managerial 
Skill 

Overall  
Exp 

Technical 
Weight 

Managerial 
Weight 

Exp 
Weight 

Priority 
Weight 

1 8 3 7 0.5 0.2 0.3 0.2 
2 9 5 6 0.6 0.2 0.2 0 
3 7 5 4 0.4 0.3 0.3 0.2 
4 3 4 8 0.1 0.4 0.5 0 
5 7 8 8 0.3 0.4 0.3 0.3 
6 7 5 8 0.5 0.2 0.3 0.2 
7 9 7 8 0.4 0.2 0.4 0.5 
8 2 6 6 0.1 0.5 0.4 0.4 
9 5 7 4 0.2 0.4 0.4 0.1 

10 9 6 6 0.6 0.2 0.2 0 
11 3 8 5 0.4 0.3 0.3 0.2 
12 5 7 8 0.1 0.5 0.4 0 
13 7 8 8 0.2 0.3 0.5 0 
14 4 10 4 0.2 0.5 0.3 0 
15 6 7 8 0.3 0.3 0.4 0 

Table 4-2 Task Requirements 

Having defined the requirements, we must consider the rework feature. To do so, we need to 

estimate the probability of having rework for each task, and the percentage of rework required.  

Since these values are related to the client frequency meeting ௠݂௖, it depends on the manager to 
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estimate these values. The higher the value of ௠݂௖, the more likely to get rework since the 

client’s input and feedback comes at a late stage. Usually, this gets easier to estimate as a 

manager becomes more experienced and has better knowledge of the client. This leads to obtain 

Table 4-3.  

Task 
Number 

Rework 
Probability 
(%) 

Rework 
Percentage 
(%) 

1 25 25 
2 15 30 
3 15 20 
4 30 35 
5 50 35 
6 30 20 
7 25 30 
8 5 20 
9 15 30 

10 15 20 
11 30 35 
12 25 30 
13 15 30 
14 35 50 
15 20 10 

Table 4-3 Task Rework 

The final step is setting the DSM for the task dependencies. For our example, there exists 

multiple dependencies for several tasks that connect and interconnect to represent the work 

required for each task – based on its description. Table 4-4 represents the dependency DSM. 

Finally, we specify the team members involved in the project. Table 4-5 Represents the team 

members and their characteristics. To study the features of our model, it is necessary to study the 

results of the model with the different features available. By setting/unsetting the features and 

their values, we are able to see how each feature affects the model. 
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Table 4-4 Task Dependency DSM 

First 
Name 

Last 
Name 

Learning-
Ability 

Tech 
Skill 

Mg 
Skill 

Overall 
experience 

Time 
Available 

John Smith 7 7 7 5 300 
Jane Johnson 2 4 9 10 300 
Kevin Hart 5 8 4 7 250 

Table 4-5 Team Characteristics 

4.1 SDC Task Allocation 
Our first and most important feature is the Task Allocation Scheme. In order to test it properly 

within the model, we created a Random Allocation Scheme that simply assigns agents to tasks in 

a random manner. However, the cooperation feature would influence the allocation. To get 

comparable results, the settings of the model need to have no effect on task allocation. By 

turning off the cooperation feature, we are able to better compare between the SDC Allocation 

and the Random Allocation. Furthermore, the settings consider a working day of 10 hours. The 

meeting frequencies ߙ௠௖ and ߙ௠௘ represent a weekly client meeting and a daily team meeting, 

respectively. As mentioned in Section 3.6.5, the agent’s idle time on task selection  ߯ = 1. Therefore, the settings for our first test are as shown in Table 4-6.  

 

 

 

Task # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 - 25/15
2 70/20 -
3 -
4 50/5 -
5 - 30/15
6 30/15 -
7 - 30/25
8 - 25/15
9 25/60 10/100 -
10 50/5 25/15 20/5 -
11 30/10 40/25 50/5 - 20/25
12 50/70 -
13 -
14 -
15 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 -
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Settings Status 

Client Meetings ON 44 ࢉ࢓ࢻ hours 

Cooperation OFF 

Learning ON 

Task Dependency ON 

Dependency Priority 3 

Team Meetings ON 10 ࢋ࢓ࢻ hours 

Table 4-6 Allocation Settings 

Using the settings in Table 4-6, we simulated the model on the data specified in Tables 4-1 to 4-5 

for a total of 3000 runs on the Random Allocation and another 3000 runs on our SDC Allocation. 

By normalizing the results with emphasis on the task completion time for each task, we obtained 

a 7.1% decrease in total task completion time. The total manhours (completed on all 15 tasks) 

was 7.1% less by using the SDC Allocation instead of Random Allocation.  

 

Figure 0-1 SDC Vs Random Agent Effort 
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Figure 4-1 indicates the values for the Random Allocation and the SDC Allocation in manhours. 

The total task execution time is significantly lower in the SDC compared to the Random 

Allocation, indicating that the allocation scheme is better. The idle time is higher in SDC since 

the agents would finish their tasks quicker, and with no cooperation allowed, they would have to 

wait for another unallocated task to become available. Additionally, the total meeting time does 

not change since the meeting will occur every ߙ௠௘ hours regardless of the case. It is slightly 

lower since the project ends faster with SDC allocation than the random allocation. Our biggest 

advantage is the reduction of the total task time which indicates that less effort is required by the 

agents to complete a task, given that the agents’ talents match the tasks’ required skills in a better 

manner than Random Allocation. Furthermore, the total project time is marginally lower with 

SDC showing a 2% decrease compared to the Random Allocation. Figure 4-2 represents the total 

project time for each of SDC Allocation and the Random Allocation. We see a slight decrease 

for the SDC, this is due to the reduced task execution time for SDC.  

 

Figure 0-2 SDC Vs Random Allocation Total Project Time 
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4.2 Agent Learning 
In this section, we study how the agent learning feature affects the model. As agents complete 

more tasks, their talents improve based on Equation 9. To assess this feature with no interference 

from other features, the settings were defined to only have learning enabled. Table 4-7 shows the 

settings of this simulation. 

 

Settings Status 

Client Meetings OFF ࢉ࢓ࢻ - 

Cooperation OFF 

Learning ON 

Task Dependency OFF 

Dependency Priority - 

Team Meetings OFF ࢋ࢓ࢻ - 

Table 4-7. Agent Learning Settings 

With the settings set in Table 4-7, we would be better able to study the agent learning feature. 

Our focus would only be on the learning and the improvement of the agents, allowing us to 

assess the benefits and the effects of this feature. Let us look into their improvement rate, and 

how that influences the task performance time. 
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Figure 0-3 Agent Learning Agent Effort 

In Figure 4-3, we see how task performance changes with the learning enabled. As the agents are 

improving with each completed task, they should be reducing their task execution time 

accordingly. Based on Figure 4-3, we see a 4% decrease in task execution time when the agent 

learning is enabled compared to the absence of learning. Additionally, we can investigate the 

agents’ improvement and talents after the project. Figure 4-4 shows how each of the agent’s 

talents have improved. Since the agents do not improve with the learning disabled, we can 

consider the “No Learning” results as their initial talents.  Based on this, we built Table 4-8 

which contains the improvement rate for each agent on each skill. 
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Figure 0-4 Agent Learning – Agent Talents 

 

 Technical Skill Managerial Skill Overall Experience 
 No 

Learning 
Learning 

(%) 
No 
Learning 

Learning 
(%) 

No 
Learning 

Learning (%) 

Jane 4.00 4.87 21.84 9.00 10.00 11.11 10.00 10.00 0.00 
Kevin 8.00 9.63 20.37 4.00 4.98 24.48 7.00 8.21 17.26 
John 7.00 8.37 19.51 7.00 8.40 20.06 5.00 6.43 28.56 

Table 4-8 Agent Talents 

In Table 4-8, we assess the improvement of each agent. Agent Jane for example, has a high 

managerial talent initially and a low technical talent, and a full score (10/10) in experience. We 

see no improvement in the experience since it already has a full mark. In the managerial talent, 

an improvement of 11.11% would lead her to have a full score as well since her initial 

managerial score was 9/10. Even though her technical improvement percentage is high at around 

22%, but the value of increase is lower than the others. This is due to the allocation that would 

assign Jane on tasks with a high managerial weight, thus leading her to a focused improvement. 

Regarding agent Kevin, its technical improvement is also high given that the task allocation 

would focus on assigning Kevin to the more technical tasks considering Kevin’s talents. Also, its 
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initial managerial talent is relatively low so its improvement in the managerial aspect would get a 

high percentage even on a score wise. 

4.3 Dependency Priority 
In this section, we investigate the dependency priority feature. This feature (discussed in Section 

3.5), gives a higher priority to the prerequisite tasks based on their priority weight ݓ௝௣. Simply 

put, the prerequisite tasks would have a value for the priority weight based on how important 

their completion is to allow work on dependent tasks. By calculating the selection coefficient ߤ௜௝௡೔௤೔ we are using the priority weight and the dependency priority ܲ to allocate the tasks. In 

this section, we vary ܲ between ܲ = 1 and ܲ = 9 to see how the allocation would change. The 

settings for this test are as shown in Table 4-9. We set all the other features to off and leave only 

the dependency feature on. The results of the simulations are shown in Table 4-9. 

Settings Status 

Client Meetings OFF ࢉ࢓ࢻ - 

Cooperation OFF 

Learning OFF 

Task Dependency ON ࡼ - 

Team Meetings OFF ࢋ࢓ࢻ - 

Table 4-9 Dependency Priority Settings 

ࡼ  = ૚ ࡼ = ૢ 
Task Execution Time 

(manhour) 234.05 236.90 

Idle (manhours) 116.3 100.7 
Total Project Time 

(hours) 115.12 109.82 
Table 4-10 Dependency Priority Results 
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As can be seen in Table 4-10, the total project time is almost identical. The only difference 

between the two values of ܲ lies between the task execution times and the idle times, 

respectively. The first difference is in the execution times. Even though the difference is 

negligible, this increase for ܲ = 9 would indicate that even though the task might not be the 

most suitable or matching for the agent, the agent would be allocated on it due to the dependency 

priority. In other words, the execution on the tasks would take a bit longer since it would not be 

the best allocation considering talent-skill matching. However, by having ܲ = 9, the dependent 

tasks are available to be worked on quicker. Consequently, this is presented in the lower idle 

time. This lower idle time is due to the higher number of available tasks, in such a way the 

agents have a higher chance to find an unallocated task to work on. 

4.4 Cooperation 
In this section, we study the effect of cooperation between agents on the same tasks. By defining 

the cooperation threshold ℎ, we enabled cooperation on the tasks that have been assigned to an 

agent ݅, but with ߱௜௝௡೔௤೔ < ℎ. Before studying this feature, we first need to redefine the tasks’ 

skills and the agents’ talents. We set the agents’ data as presented in Table 4-11. 

First 
Name 

Last 
Name 

Learning-
Ability 

Technical 
Skill 

Managerial 
Skill 

Overall 
Exp 

Time 
Available 

John Smith 7 6 6 5 250 
Jane Johnson 2 4 6 7 250 
Kevin Hart 5 9 9 9 250 

Table 4-11 Cooperation Agents Talents 

One very knowledgeable agent and two relatively weaker agents are used to emphasize the 

cooperation ability and importance. By having two weaker agents, it is almost certain they would 

need assistance on their allocated tasks. However, to enforce this cooperation, we also redefine 

the tasks’ skills as presented in Table 4-12. The tasks in Table 4-12 have a higher skill level 
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required than those defined earlier. By doing so, these tasks will require cooperation. Next, we 

set the settings for the cooperation feature in seen in Table 4-13. 

Using the settings in Table 4-13, we study the difference between having cooperation at two 

different thresholds and having no cooperation. The results are displayed in Figure 4-4. 

Task 
Number 

Tech 
Skill 

Mg  
Skill 

Overall 
Experience 

1 8 7 7 
2 9 5 6 
3 7 5 7 
4 3 7 8 
5 7 8 8 
6 7 7 8 
7 9 7 8 
8 5 6 6 
9 5 7 7 

10 9 6 7 
11 4 8 5 
12 6 7 8 
13 7 8 8 
14 7 10 7 
15 7 7 8 

Table 4-12 Cooperation Tasks Skills 

Settings Status 

Client Meetings OFF ࢉ࢓ࢻ - 

Cooperation ON/OFF {0 ,1-} ࢎ 

Learning OFF 

Task Dependency OFF ࡼ - 

Team Meetings OFF ࢋ࢓ࢻ - 
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Table 4-13 Cooperation Settings 

 

Figure 0-5. Cooperation Agent effort 

As seen in Figure 4-5, the task execution time is almost identical between all three cases. The 

difference can immensely be seen in the idle times. With no cooperation allowed, the agents 

would have to wait for tasks to become available (due to dependency), and thus their idle time 

would increase. On the other hand, with cooperation allowed at ℎ=-1, the agents would work 

together on the tasks while taking into consideration the cooperation threshold ℎ. This is why the 

idle time is less than the no cooperation case (35% decrease in idle time between no coop to 

cooperation with ℎ = −1). Lastly, if cooperation is allowed with no threshold (ℎ = 0), this 

indicates that any agent ݅ could work on any task ݆ if their selection coefficient is the lowest – 

even though it might be assigned to another agent. In this case and the scenario considered (with 

this test’s settings), we see a decrease of 45% in the idle time between no cooperation and 

cooperation with no threshold. This is due to the task allocations that keep all agents working 

and executing the tasks that are chosen by the selection coefficients.  

With such a reduced idle time, we obtain Figure 4-6 which indicates the respective project times 

for all three cases. 

0

50

100

150

200

250

300

Task Execution Idle

M
an

ho
ur

s

No Coop h=0 h=-1



  

69 
 

 

Figure 0-6. Cooperation - Total Project Time 

In Figure 4-6, the difference in total project time between no cooperation and cooperation with ℎ = −1 is a decrease of around 7%. Furthermore, the 40% decrease in idle time between the no 

cooperation case and cooperation with no threshold (ℎ = 0) is reflected in a 9% decrease in the 

total project time. These results confirm that for a scenario where most of the tasks are tougher 

than the agents – have skill levels that are higher than the agents’ talents, it is better to have 

cooperation to reduce the total project time.  

As a summary, the task execution time is barely affected since the task execution would be split 

between two agents. The idle time is lowered since agents would be working at a higher rate 

since they’re not waiting for tasks to become available. And consequently, the project time is 

reduced since the same amount of work is done in parallel instead of sequentially. 

4.5 Client Meeting  
In this test case, we are going to focus on the client meeting and rework features. Our team 

members are those of Table 4-5 (defined originally). Since the client meeting and rework 
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frequency ߙ௠௖. In other words, the less client meetings that occur, the higher the rework 

probability since the client has not given their feedback for some time and what was completed is 

more likely to be different than what the client needs. For this reason, we consider three test 

cases with different client meeting frequencies and different task rework probabilities and rework 

percentages (defined in Chapter 3). 

ࢉ࢓ࢻ  = ૛૛ ࢉ࢓ࢻ = ૝૝ ࢉ࢓ࢻ = ૠ૞ 
Task 

Number 
Rework 

Prob 
Rework 

Percentage 
Rework 

Prob 
Rework 

Percentage 
Rework 

Prob Rework Percentage 

1 20 15 30 25 60 50 
2 12 20 18 30 40 60 
3 15 12 18 20 40 40 
4 20 25 30 35 60 70 
5 35 25 50 35 80 70 
6 22 15 30 20 60 40 
7 20 20 25 30 50 60 
8 4 12 5 20 30 40 
9 12 20 15 30 40 60 

10 12 12 15 20 50 40 
11 25 25 30 35 65 70 
12 22 20 25 30 70 60 
13 12 20 15 30 50 60 
14 27 30 35 50 70 100 
15 15 6 20 10 60 20 

Table 4-14 Rework probabilities for client meeting frequencies 

Table 4-14 represents the rework probabilities and rework percentages for ߙ௠௖ = 22, ߙ௠௖ = 44, 

and ߙ௠௖ = 75,respectively . We consider that by having a client meeting often, we would have a 

lower rework probability and rework percentage. On the other hand, having infrequent client 

meetings would indicate the client has not given feedback on tasks for a longer time. This is 

reflected by the increased rework probability and percentage. By focusing on the client meeting 

alone – with no other feature enabled, we obtained the following results displayed in Figure 4-7. 
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Figure 0-7 Client Meetings Agent Effort 

In Figure 4-7, let us first focus on the difference in the task execution time between ߙ௠௖ = 44 

and ߙ௠௖ = 75. A frequency of 75 (having a client meeting every 75 hours) is accompanied by the 

higher percentage of rework. This is reflected in the higher task execution time which is due to 

the rework after the meeting. Having a medium frequency of meetings with ߙ௠௖ = 44 has an 

8.5% decrease in the task execution time compared with ߙ௠௖ = 75. The idle time is almost 

identical in all three cases since we only have the client meeting feature ON (Cooperation is 

OFF, Dependency is OFF). Lastly, the meeting times would be the highest with the lowest 

frequency since a client meeting would take place every 22 hours – within the project the agents 

and the client would meet several times thus leading to a higher meeting time than the project 

with a lower client meeting frequency. This is reflected in the total project time seen in Figure 4-

8. 
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Figure 0-8 Client Meeting total project time 

Figure 4-8 represents the total project time in all three cases of ߙ௠௖. As seen earlier, ߙ௠௖ = 22 

has the highest meeting in terms of effort, and consequently, this leads to having the highest 

project time. Second highest, is having too few meetings. With ߙ௠௖ = 75, the effort for meeting 

time is the lowest; however, due to rework and the effort in task execution, it has a higher project 

time than ߙ௠௖ = 44. In a sense, these results show a conversion for the optimized/preferred 

value of ߙ௠௖. This relates back to having too few meetings, too many, or just enough. 

4.6 Team Meetings 
In this section, our focus is on team meetings. We intend to analyze the effect of team meeting 

frequency on task execution time, as well as the project duration. All the features are turned off 

except the team meetings. We shall set the team meeting frequency ߙ௠௘ for three different cases. 

We consider ߙ௠௘ = ௠௘ߙ ,7 = ௠௘ߙ ,14 = 30, indicating that a team meeting happens every 7 

hours, 14 hours, and 30 hours respectively. 
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Task 
Execution 

(manhours) 
214.48 218.76 221.37 

Idle  
(manhours) 43.72 44.67 44.70 

Meeting 
(manhours) 40.78 18.47 7.35 

Table 4-15 Team Meetings effort 

As seen in Table 4-15, for very frequent meetings (ߙ௠௘ = 7), the execution time is the lowest 

among the three cases. This is due to having more meetings and with the meetings having a 

positive effect on the agents’ execution coefficients. On the other hand, having less frequent 

meetings (ߙ௠௘ = 14) indicates less communication and consequently less improvement on the 

task execution coefficients (i.e. less advice on task execution through meetings). Even more so, 

by having a team meeting every 30 hours (ߙ௠௘ = 30) the task execution effort is the highest 

among the cases. On the other hand, the effort done by the agents to attend meetings in all three 

cases is shown to be very high in the more frequent meeting case. With a meeting every 7 hours, 

agents participate in a meeting very frequently and thus their meeting effort would be high. This 

effort affects the project time in a direct way. This is shown in Table 4-16 which contains the 

project times for all three cases. Due to the higher meeting frequency, the project time would be 

higher. In this sense, having more frequent meetings did reduce the task execution time but on 

the other hand it caused the project time to rise. The challenge would then be to find the 

converging frequency of team meetings based on the project and the team. 

 f=7 f=14 f=30 
Project Time 

(Hours) 99.66 93.97 91.14 
Table 4-16 Team Meeting Project Time 
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CHAPTER 5 

CASE STUDY 
 

In this chapter we demonstrate our Agent Based Model using two case studies. We can present 

different PD environments by modifying the simulation settings. By allowing or preventing 

cooperation, dependency, team meetings and client meetings (or changing their frequencies), we 

can simulate different PD processes. 

5.1 Agile Model 

Our first use case is the Agile Model. We consider the same project introduced earlier in Chapter 

4, but with some changes to the model settings and a longer task list. This case represents one 

sprint of the Order Management application. The work in the Agile process consists of iterative 

sprints which ends by delivering one or more product deliverables. The goal of the Order 

Management application is to develop a portal for users to be able to use and place orders for 

different types of products. The user should be able to sign up and login to the application. Then, 

the user could create an order by going through the available products and selecting what 

matches its needs. After completing this step, the user should submit the order and obtain a 

detailed invoice. The application should also contain a page displaying the user’s previous orders 

and their respective pricings. Finally, it should have a dashboard containing the types of orders 

submitted by the user and a report of the order’s products. 

Tables 5-1,5-2,5-3,5-4, and 5-5 represent the simulation settings, tasks durations, task execution 

characteristics, predecessor relationships between tasks using a DSM, and agents, respectively, 

for the Order Management application. Within a four-week sprint, the simulation settings 

consider an Agile team that meets every day (thus a meeting frequency of 9 hours); this team 
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would also meet with the client on a weekly basis (every 45 hours). Since dependencies exist, we 

would set the dependency priority ܲ=2 to give the prerequisite tasks a moderate advantage in the 

allocation process. Cooperation exists in the Agile model but since the scenario would not 

recommend unneeded cooperation, we consider the cooperation threshold ℎ= -1. Furthermore, 

the agents would be learning and developing their skills as they complete tasks. The 

dependencies consider the testing phase as a task (task 19 in the DSM) and thus it is dependent 

on all the other tasks and could give rework to any of them. 
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Setting Value 
Learning ON 

Cooperation -1 
Dependency 

Priority 
2 

Meetings Every 9 hours 
Client 

Meetings 
Every 44 hours 

Table 5-1 Agile Settings 

 

Description Task 
Number 

Min 
Time 

Med 
Time 

Max 
Time 

Orders List Page Design 1 20 24 30 
Orders List Page Design 

Implementation 
2 16 20 24 

Fetch Existing Orders 3 12 15 20 
Order Orders by Date 4 2 4 7 

Order Creation Page Design 5 6 10 15 
Order Creation Page Design 

Implementation 
6 12 15 20 

Order Creation Implementation 7 3 5 8 
Order Products Selection 8 15 20 22 

Order Products Quantity Selection 9 16 20 25 
Order Deletion 10 9 12 15 

Order Submission 11 4 8 13 
Order Invoice Generation 12 13 16 20 

Report Generation 13 2 5 8 
Order Dashboard 14 7 10 15 
Login Page Design 15 8 10 12 

Login Page Implementation 16 12 15 18 
Sign Up Page Design 17 8 10 12 

Sign Up Page Implementation 18 15 20 22 
Testing 19 20 25 30 

Table 5-2 Order Management App Tasks Times 
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Task 
Number 

Tech 
Skill 

Mg  
Skill 

XP 
Skill 

Tech 
Weight 

Mg 
Weigh

t 

XP 
Weigh

t 

Priority 
Weight 

Rewor
k 

Rework 
Percentag

e 
1 8 7 7 0.5 0.2 0.3 0.2 25 25 
2 9 5 6 0.6 0.2 0.2 0 15 30 
3 7 5 7 0.4 0.3 0.3 0.2 15 20 
4 3 7 8 0.1 0.4 0.5 0 30 35 
5 7 8 8 0.3 0.4 0.3 0.3 50 35 
6 7 7 8 0.5 0.2 0.3 0.2 30 20 
7 9 7 8 0.4 0.2 0.4 0.5 25 30 
8 5 6 6 0.1 0.5 0.4 0.4 5 20 
9 5 7 7 0.2 0.4 0.4 0.1 15 30 
10 9 6 7 0.6 0.2 0.2 0 15 20 
11 4 8 5 0.4 0.3 0.3 0.2 30 35 
12 6 7 8 0.1 0.5 0.4 0 25 30 
13 7 8 8 0.2 0.3 0.5 0 15 30 
14 7 10 7 0.2 0.5 0.3 0 35 50 
15 7 4 8 0.4 0.1 0.5 0.4 25 20 
16 6 7 6 0.3 0.4 0.3 0 15 25 
17 5 7 7 0.2 0.4 0.4 0.3 25 30 
18 8 7 5 0.5 0.3 0.2 0 20 30 
19 7 7 8 0.3 0.3 0.4 0.1 20 10 

Table 5-3 Order Management App Tasks  

 

Table 5-4 Order Management App DSM 

First 
Name 

Last 
Name 

Learning-
Ability 

Tech 
Skill 

Mg 
Skill 

Experience Time 
Available 

John Smith 7 7 7 5 200 
Jane Totter 2 4 9 10 200 
Luke Skywalker 5 8 4 7 200 

Table 5-5 Order Management App Agents 

Task # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 - 25/15
2 70/20 -
3 -
4 50/5 -
5 - 30/15
6 30/20 -
7 50/15 - 30/25
8 - 25/15
9 25/60 10/100 -
10 50/5 25/15 20/5 -
11 30/10 40/25 50/5 - 20/25
12 50/70 -
13 -
14 -
15 -
16 50/20 -
17 -
18 30/30 -
19 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 -
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By running our model for the Agile Model, we were able to obtain results that represent how our 

model works for an Agile sprint. By considering all the tasks performed within the Product 

Development phase of the Agile process, and the last task (testing) for the testing phase, we can 

present an Agile sprint. Table 5-6 presents the total amount of effort needed to complete this 

sprint, as well as the idle and meeting times. Also, it indicates how the effort was distributed 

between nominal work and rework on the tasks – nominal being the first time performing the 

task. These percentages represent the highlight of Agile since they demonstrate a fair distribution 

between regular and rework task execution times. By having more client involvement in the 

Agile model, the rework percentage is a fair percentage of 18% . Thus, by including the client 

more frequently, the impact of rework and rework effort needed would be less than having 

infrequent meetings. 

 Nominal Rework Total 
Effort 

(Manhours) 
282.98 62.09 345.07 

Percentage (%) 82 18 100 
Idle 71 0.00 71 

Meeting 77.41 0.00 77.41 
Table 5-6 Effort Distribution in Agile 
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Task Index 
Estimated 
Min Time 

Estimated 
Med Time 

Estimated 
Max Time Nominal Rework Total 

1 20 24 30 27.02 6.35 33.37 
2 16 20 24 21.34 3.93 25.27 
3 12 15 20 15.68 1.36 17.04 
4 2 4 7 5.51 1.70 7.21 
5 6 10 15 12.22 8.70 20.92 
6 12 15 20 17.82 4.17 21.98 
7 3 5 8 7.44 4.21 11.65 
8 15 20 22 19.98 2.60 22.58 
9 16 20 25 19.09 3.14 22.24 
10 9 12 15 13.23 1.51 14.74 
11 4 8 13 8.11 2.69 10.80 
12 13 16 20 16.39 2.28 18.66 
13 2 5 8 6.13 1.20 7.33 
14 7 10 15 12.16 6.46 18.62 
15 8 10 12 11.63 2.46 14.09 
16 12 15 18 14.74 2.73 17.47 
17 8 10 12 10.36 2.91 13.27 
18 15 20 22 19.96 3.71 23.68 
19 20 25 30 24.17 0.01 24.18 

Table 5-7 Effort for tasks – Agile 

Table 5-7 represents the effort (in manhours) on each task. Most of the nominal efforts are 

around the tasks’ medium estimated values. The rework efforts depend on the rework probability 

and rework percentage of each task – as well as the dependency impact and dependency strength 

between the dependent tasks. Thus, due to rework we would get a relatively higher effort needed 

than the original estimated time. Noting that the standard work time is mostly between the 

medium and max times of the task. The total project time for this Case Study is around 182 

hours. This value lies within the expected range of 3 to 4 weeks of work. Additionally, Table 5-8 

represents the statistics of the agents before and after the sprint, while also indicating their 

improvement rates. Knowing that the improvement rates relate to the learning ability of the 

agent, and its number of tasks completed. The new values of the skills relate directly to the 

number of tasks completed by each agent as well as their respective learning abilities. Jane for 
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example has improved her managerial skill to a top level of 10/10. Having high levels of 

managerial and experience talents, her allocation would be on tasks of such needed skills and 

thus her improvement on the technical aspect would be limited. And due to her having a 

relatively low learning ability, her improvement in the technical was also a bit low. 

  Technica
l Skill 

Manageria
l Skill 

Overall 
Experienc

e 

Time 
Availabl

e 

Tasks 
Complete

d 

Learning
-Ability 

Jane Before 4.00 9.00 10.00 200.00 0 2.00 
 After 5.68 10.00 10.00 62.00 12.33 2.00 
 Improv (%) 41.93 11.11 0.00 - - - 

John Before 7.00 7.00 5.00 200.00 0 7.00 
 After 9.67 9.71 7.89 58.34 10.39 7.00 
 Improv (%) 38.14 38.67 57.72    

Luke Before 8.00 4.00 7.00 200.00 0 5.00 
 After 10.00 6.00 9.58 57.18 10.25 5.00 
 Improv (%) 25.00 50.00 36.85    

Table 5-8 Agent Statistics – Agile 

5.2 Waterfall Model 
In this section, we consider a waterfall model. To show the flexibility of our model, this model 

contains the same tasks in a sequential manner. A few differences exist between the Agile and 

Waterfall models. The first difference is in the simulation settings shown in Table 5-10. Since 

this is a waterfall model, and due to the high dependency within this model, the number of 

available tasks would be limited at each time step. Thus, to reduce idle times and agents not 

working, the cooperation threshold ℎ is set to 0. Additionally, the client meeting in the waterfall 

model happens at the end of the project, but since we would like to demonstrate the rework effect 

of having no client meeting, we set the client meeting frequency to 99 (the maximum value 

possible). Due to that, we see the difference in the rework probabilities and percentages due to 

client meetings – displayed in Table 5-10. We would have a higher rework probability and 

percentages due to having infrequent meetings and the client’s feedback which would affect a 
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higher percentage of each completed task – instead of a rather smaller percentage in the case of 

Agile. 

Setting Value 
Learning ON 

Cooperation 
Threshold 

0 

Dependency 
Priority 

2 

Meetings Every 9 hours 
Client 

Meetings 
Every 99 hours 

Table 5-9 Waterfall Settings 

Task 
Number 

Rework Rework 
Percentage 

1 40 50 
2 25 50 
3 25 30 
4 50 40 
5 80 40 
6 50 30 
7 30 40 
8 10 35 
9 25 40 

10 25 35 
11 50 50 
12 35 40 
13 25 40 
14 50 60 
15 35 40 
16 25 30 
17 40 40 
18 35 40 
19 35 15 

Table 5-10 Waterfall Rework Probabilities 
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Table 5-11 Waterfall DSM 

Table 5-11 is the DSM representing the relations between the tasks. As seen in Table 5-11, the 

tasks are sequential in their dependencies (Task 2 depends on Task 1, Task 3 depends on Task 

2…). This is done to serve as an extreme case of the waterfall model. The frequency of the client 

meetings is set to ߙ௠௖ = 99 since the client meetings are not frequent in the waterfall model and 

normally happen at the end of the process. With these settings and tasks characteristics, let us 

investigate the simulation results.  

Waterfall Nominal Rework Total  Agile Nominal Rework Total 
Task 

Execution 
(Manhours) 

287.95 70.87 358.82 
 Task 

Execution 
(Manhours) 

282.98 62.09 345.07 

Percentage (%) 80.25 19.75 100.00  Percentage 
(%) 82 18 100 

Idle 434.25 0.00 434.25  Idle 71 0.00 71 
Meeting 108.28 0.00 108.28  Meeting 77.41 0.00 77.41 

Table 5-12 Effort Distribution in Waterfall 

Table 5-12 presents the effort distribution in the Waterfall model compared to the effort 

distribution in Agile displayed in Table 5-13. The total task execution effort is split between the 

nominal and rework efforts. We notice a relatively high rework percentage of around 20% 

(70.87/358.82) in the task execution. This is mainly due to the high rework probability and 

rework percentages related to the waterfall model and the infrequent client meetings. On the 

Task # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 -
2 50/20 -
3 30/30 -
4 30/10 -
5 50/20 -
6 30/20 -
7 50/20 -
8 50/50 -
9 30/20 -

10 25/25 -
11 50/25 -
12 30/15 -
13 15/30 -
14 30/100 -
15 20/20 -
16 50/30 -
17 20/20 -
18 50/20 -
19 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 -

Table 5-13 Effort Distribution in Agile 
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other hand, we see that the rework percentage in the Agile model is relatively smaller with a 

difference of 1.75%. Second, the high idle time is a consequence of the sequential task relations. 

Even though cooperation is allowed with no threshold and multiple agents performing the same 

task, cooperation only happens when the task’s skill levels are higher than the agent’s talent 

levels. Consequently, this leads to agents waiting around for tasks to become available as they 

cannot cooperate on the same tasks with other agents. The difference in idle time represents the 

biggest difference between the waterfall and agile models. Since the waterfall model goes 

through each task at a time, it shows an idle time 6 times longer than the agile model. And this 

idle time affects the total project time to last around 313 hours. A relatively long amount of time, 

but it reflects the extreme waterfall case.  
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CHAPTER 6 

VALIDATION 
 

In this chapter, we test real projects in our simulation model. The goal is to validate the output of 

our model for each project based on these two points: 

 Task Allocation: the project manager would agree or disagree with the task allocation to 

the team members. 

 Project success : the team members and their times of availability are enough to 

complete the tasks. 

The first step is to meet with project managers (PM) and explain the model’s uses and expected 

outputs. Also , it is necessary to define for them the input file templates and their possible values. 

By doing so, each PM would have provided the details and suitable data for the tasks (their skill 

levels, expected times, priority and dependencies), as well as specifying the agents’ data (their 

talents, learning ability, and available time). Then, the PMs need to determine the settings of the 

simulation for each of their projects. The PM would select the values most suitable for their 

project for each of the following settings: team meeting and client meeting frequencies, the 

possibility of cooperation and its threshold, agent learning, and task dependency and dependency 

priority. Finally, we simulate the project using our proposed model and study the results with the 

PM to validate the feasibility of the project and its agents, while considering the task allocations. 

The first project we investigated is called BBL. The BBL PM had provided a list of 11 tasks 

ranging between short tasks (4 hours of estimated time for completion) and very long tasks (120 

hours), with different required skill levels. Also, the PM provided 4 agents (KH,FT,YA,KA) 
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with different talent levels, learning abilities, and available times. The settings determined were 

for a two-week sprint as shown in Table 6-1. 

Setting Value 
Learning ON 

Cooperation 
Threshold 

-1 

Dependency 
Priority 

3 

Meetings Every 10 hours 
Client 

Meetings 
Every 45 hours 

Table 6-1 

By using our model, we obtained a success rate of 96.6% ( the agents were able to finish the 

project given their available times). This basically indicates that the time available for each agent 

suits the project and is enough for the task completion – even considering the meeting times and 

idle times. Next ,we investigated the allocations and execution of each task. To do so, we 

determined the agent with the highest execution time for each task and considered this agent to 

be the lead on the task (i.e. being the allocated agent), and other agents working on the same task 

would be considered as cooperating or additional help for task execution. Table 6-2 represents 

the effort (in manhours) done by each agent for each task.  
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Task 
Index 

FT KA KH YA 

1 0.43 0.63 0.00 5.28 
2 5.96 11.79 0.00 6.66 
3 15.90 1.89 0.00 1.88 
4 9.63 5.52 0.00 5.74 
5 3.92 6.21 0.00 2.72 
6 17.05 5.79 88.00 14.78 
7 1.81 3.23 0.00 1.88 
8 0.17 16.93 0.00 0.09 
9 3.04 4.37 0.00 11.15 
10 7.15 5.52 0.00 20.12 
11 3.84 1.40 0.00 2.33 

Table 6-2 Agent Effort on Task BBL 

To explain Table 6-2, each cell represents the effort (manhour) performed by each agent on each 

task. The agent with the highest execution time is the agent assigned to the task. For example, 

agent YA is assigned to Task 1 since agent YA has the highest execution time (effort) on Task 1. 

By comparing with the PM with what effectively happened during the sprint, we got the 

following comments. Several task allocations were accurate as the agents were assigned to the 

modeled tasks, but some allocations were not successful. Some tasks required a special skill 

within the technical skill related to specific knowledge of a software tool that only one agent had. 

This was the case for tasks 6,8,9 which were allocated to different agents in our model, but had 

the same agent perform them in the actual scenario. Nonetheless, the PM agreed that task 

allocations were accurate if not for the mentioned missing skill. As for the order of execution, it 

was relatively accurate due to the dependencies present. 

The second project studied is denoted GEO. GEO is a relatively short sprint of 1 week, 

consisting of 17 tasks and 2 agents. The tasks and agents differ in their respective skills and 

talents.  
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 AH BG 
1 4.45 0.24 
2 0.09 4.99 
3 3.56 2.54 
4 0.01 5.98 
5 4.00 0.00 
6 7.56 0.65 
7 2.08 2.40 
8 1.24 0.72 
9 0.00 5.00 

10 0.03 3.96 
11 3.53 1.69 
12 1.76 5.96 
13 0.77 1.17 
14 2.12 0.85 
15 2.00 0.00 
16 0.79 1.19 
17 2.00 0.00 

Table 6-3 Agent Effort on Task – GEO 

The project’s success rate is around 94% - given the times of availability of each agent and the 

estimated times for each task. In Table 6-3, we can determine the lead agent for each task and the 

total time for the task’s completion. The allocation happens based on the highest execution time 

on each task, with some tasks requiring cooperation throughout the project. After sharing these 

results with the PM, we obtained a 70% matching rate between the model’s task allocations and 

the actual task executions. Additionally, all the tasks that required cooperation and were modeled 

to have cooperation were in fact completed by both agents within the sprint. As for the order of 

execution, with only one dependency within the project, it was not important for the PM to 

determine. The PM’s feedback for the results was that this simulation model is important to have 

before the launch of the sprint as it provides a better idea of possible allocations; however, it is 

hard to confirm the actual time spent on each task after the project’s completion. This indicates 

the importance of having this simulation model before the launch of the project or sprint as 

means to give a better guidance for the task allocation and execution process. 
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The third project to consider is denoted MDS. This is a long running project split into regular 

sprints. The PM provided 9 long tasks with different skill levels for the current running sprint of 

3 weeks. Also, the PM determined the 5 available agents with their talents and availability times.  

 AK AC JK JA RB 
1 0.00 6.51 11.31 0.78 0.46 
2 0.00 0.93 10.67 0.85 0.56 
3 0.01 1.21 1.29 1.08 1.28 
4 0.00 0.00 0.00 0.00 9.00 
5 0.00 0.04 0.07 0.01 8.18 
6 0.01 0.85 1.56 1.49 0.89 
7 0.02 5.02 8.40 41.77 11.05 
8 0.01 1.88 2.91 2.39 2.47 
9 54.37 33.38 11.70 8.95 16.80 

Table 6-4 Agent Effort on Task – MDS 

This sprint has a success rate of 75%. This is mainly due to the lack of time availability by the 

agents, and the high estimated times of completions for the tasks. In Table 6-4, the results 

determine the agents and their efforts in on each task while indicating which agent would most 

likely be assigned to each task. After reviewing the results, the PM expressed that the allocations 

are accurate for most of the tasks, especially with the individual tasks (such as Tasks 4 and 5 

assigned to agent RB), and with the collaborative tasks with 1 agent leading the task execution ( 

Task 1 with agent JK leading, and Task 7 with agent JA leading). On the other hand, the task 

allocation for agents AK and AC was not very accurate. Agents AK and AC are project 

managers and will most likely be spending their available times across multiple tasks 

cooperating with other agents instead of concentrating on 1 task specifically (like agent AK’s 

allocation on task 9). Despite that, the PM was satisfied with results of the simulation and 

indicated that the model would help determine the feasibility of the sprint and the risk of being 

late on the project – since this is one of the biggest problems faced in this project. 
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Our next project is denoted MKT. This project represents a specialized marketing unit that works 

on multiple projects implementing their own specialization. The PM had provided a set of 15 

tasks with different skills needed and a set of 3 agents with various talent levels. The tasks are 

lengthy with an average of 3 days of estimated time of execution, but with no dependency among 

them since they could belong to different projects. 

 CA GG MA 
1 0.00 0.00 25.67 
2 2.48 25.49 60.63 
3 0.00 0.07 27.06 
4 0.03 5.26 11.02 
5 57.12 84.00 56.42 
6 0.01 3.04 12.54 
7 1.38 30.03 5.07 
8 0.41 5.67 34.51 
9 0.00 32.51 0.00 

10 6.45 53.99 27.35 
11 0.02 35.15 15.81 
12 60.01 0.00 0.00 
13 0.01 2.72 1.94 
14 0.21 4.76 0.42 
15 50.36 2.21 1.96 

Table 6-5 Agent Effort on Tasks – MKT 

The task distribution seems straight forward. Some tasks are set for one agent with no 

cooperation and without the possibility of another agent being allocated on the task. Task 1 for 

example is set for agent MA, task 9 is assigned to agent GG and task 12 is allocated to agent CA 

alone. Some other tasks are allocated to a lead agent but with the possibility of cooperation. This 

is reflected mostly in tasks 2,10,11 that are shared between agents GG and MA. Furthermore, 

task 5 required effort from all the agents due to its extended time. Based on the PM’s feedback, 

the simulation model provided an accuracy of task allocation of 80%. Also, the cooperation 
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indicated in the results was accurate since several tasks were completed by two agents at the 

same time. 

Finally, we investigate our fifth project denoted VLO. VLO is a project based on monthly 

sprints, during which a set of tasks are assigned and completed by 3 agents. For our simulation, 

the PM provided 17 tasks with various requirements and estimated times, as well as their 

respective dependencies. 

 CH CA TN 
1 6.71 1.37 3.27 
2 0.00 0.00 7.00 
3 0.00 0.17 24.17 
4 0.59 2.25 2.17 
5 0.26 1.16 1.59 
6 0.62 6.74 3.58 
7 1.25 1.30 2.07 
8 5.96 6.69 4.05 
9 0.23 3.52 11.44 

10 0.07 6.46 1.54 
11 3.55 3.01 1.36 
12 1.00 0.00 0.00 
13 3.00 0.00 0.00 
14 11.34 1.58 2.22 
15 0.58 11.55 3.66 
16 0.00 23.67 0.00 
17 29.87 0.00 0.00 

Table 6-6 Agent Effort on Tasks – VLO 

The results in Table 6-6 indicate that some tasks are very specific to one agent, whereas other 

tasks are shared by multiple agents. Tasks 2,3,12,13,16,17 are each assigned to one agent with no 

need for cooperation or the possibility of another allocated agent. On the other hand, some tasks 

require cooperation or could be assigned to different agents such as tasks 6-11. By presenting 

these results to the PM, they indicated that most of the allocations were accurate. However, agent 

CH has a different role on the project which prevented it from working on all the tasks that the 
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simulation allocated to it. Nevertheless, the PM was satisfied with the results, especially that 

their sprint obtained a 97% success rate. 

To summarize, the five projects studied indicated a good allocation strategy – similar to what the 

team members actually worked on. All five PMs indicated that the tool or simulation model was 

very useful when launched before the start of the sprint as it indicated guidelines and was 

accurate enough to help in their project’s management. Some PMs indicated that the lack of roles 

affects the simulation and the results as some more roles need to be considered. Overall, the task 

allocation and task execution, along with the cooperation and meeting effects, as well as learning 

and dependency, proved to be very interesting for the PMs. The company to which these projects 

is considering developing a tool to help the PMs do their roles in a more advanced and optimized 

way.  
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CHAPTER 7 

CONCLUSION 

 

Improving project management in the product development process will always be a challenging 

issue. Along with the different methodologies, the project manager would always face a 

challenge to make the best decisions for the project to succeed within time and budget. Thus, 

arises the need for a simulation tool that would provide a better guidance and advice for the 

project manager, in a way to assist them to avoid project failure. The simulation model in this 

thesis serves as a tool with different settings and features that adapt to the project’s actual 

circumstances and contributes with its features to help the project manager obtain a better view 

of the project’s status.  

Starting with an allocation strategy, along with a task execution estimation, our model focused 

initially on enhanced task allocation to improve project execution and reduce development time. 

Then, the model introduced the learning feature to study how an agent would improve by 

completing tasks, and how their skills would evolve over the course of the project. Next, by 

integrating cooperation, the model handled the agents that needed support to finish their 

allocated tasks. Furthermore, communication and negotiations were also covered by 

implementing team meetings and client meetings in which these two forms of interactions take 

place. Additionally, the model investigates task dependency and how a task could have multiple 

prerequisite tasks. Finally, the concept of rework was also modeled either by rework requested 

by the client, or rework due to feedback from other tasks. By applying sensitivity testing for each 

of these features, we were able to demonstrate the effectiveness and impact of each feature. All 

these features put together allowed us to model a product development flow and consider its 
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most important settings to get an output that represented a map for the task distribution within 

the project.  

Furthermore, the two case studies considered allowed us to represent the flexibility of the model 

which spans the spectrum from the traditional waterfall project management model to the most 

iterative Agile methodology. Finally, our validation was done on real-life software development 

projects in which project managers provided their input data and studied the output of the model, 

agreeing to the allocation strategy and the results of the model.  

This model presents a way to improve resource allocation, decide the frequency of team 

meetings, simulate employee learning, consider the effect of rework, choose when cooperation 

on the tasks is needed (and beneficial), and map task dependencies. By combining all these, the 

project manager which uses this model would get a better view of what to expected during their 

PD process. 

However, this model developed has some limitations and thus opportunities for improvement. 

The first limitation is the number of tasks considered in Netlogo. Since it is a two-dimensional 

plane, having too many tasks would lead to multiple tasks in the same coordinates which would 

prevent the agent from finding its allocated task. We could consider using a less visual and a 

more technical coding language such as Java since our primary concern is the output report.  

Another limitation is the role played by the agents. This point was raised by one of the PMs 

during validation, where two agents were PMs and should not be allocated to just one task until 

its completion. This point is to be taken into consideration, possibly developing additional roles 

that would not take part in the task allocation, rather oversee the completion of tasks.  An 

additional feature to consider is the dynamic task creation. This would be used to present an 
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urgent task that was created while the project was in progress – such as client asking for a new 

feature during a client meeting. The solution here would be to restart the allocation. With the 

new tasks added during the client meeting, it would be enough to restart the initial task allocation 

on the current available tasks. With the tasks having a higher priority, they are likely to be 

allocated directly. Lastly, the model focuses on availability to allocate the tasks, but another 

feature to consider is queueing or saving tasks for a specific agent even though the agent is not 

available. This would simulate reserving tasks for the most suitable agent until the agent is 

available. To do so, the model would have to preserve the initial allocations based on the best 

score for each task/agent combination. That way, upon completing the task, the agent would 

check what has already been reserved for it to be its next task based on the selection coefficient. 
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APPENDIX A 
 

Parameter Definition 
A Agents 
T Tasks ݈ Agent Learning Ability ݍ௜ Last task completed by agent ݅ Δ௜௝௡೔௤೔  Skill Difference Coefficient ܼ௜ Available time for agent ݅ ݓ௝௠ Managerial weight ܣ௜,௥௠  Managerial talent at time ݎ ௜ܶ௠ Managerial skill required  ݓ௝௧ Technical weight  ܣ௜,௥௧  Technical talent at time ݎ ௜ܶ௧ Technical skill required ݓ௝௟ Overall experience weight ܣ௜,௥௟  Overall experience at time ݎ ௜ܶ௟ Overall experience required ݓ௝௣ Priority weight ܲ Priority Factor ߤ௜௝௡೔௤೔ Selection Coefficient ݉ Meeting Factor ℎ Cooperation Threshold ݊ Number of tasks completed by an agent ߙ௠௘ Team Meeting Frequency ߚ௧ Team Meeting duration ߙ௠௖ Client Meeting Frequency ߚ௖ Client Meeting Duration ߱௜௝௡೔݅ݍ Task Execution Coefficient ݇ Iteration Number on task ݎ Time  ߩ ௝ Rework Probability of task – due to client meeting ߜ௝ Rework Percentage of task– due to client meeting ߠ௝௩ Dependency relation between task ݆ and task ݒ ௝߬௩ Dependency Strength between task ݆ and task ߝ ݒ௝௩ Dependency Impact between task ݆ and task ݐ ݒ௝௥௡೔௞ೕ௤೔  Remaining Time on task ݆ at time ݎ at task Iteration ݇ 

- considering the agent’s last task and its number of complete tasks ܻ Maximum number of agents on task 
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߯ Idle Time on task selection 
 

APPENDIX B 
 

Example of a Task Details CSV File: 

Description Task 
Number 

Min 
Time 

Med 
Time 

Max 
Time 

Tech 
Skill 

Mg 
Skill 

Experience Tech 
Weight 

Mg 
Weight 

Exp 
Weight 

P Weight 

Task 1 1 4 4 4 6 6 6 0.35 0.35 0.3 0.2 

Task 2 2 24 24 24 4 6 4 0.3 0.4 0.3 0 

 

Description Rework Rework 
Percentage 

Task 
Dependency 

Dep 
Strength 

Dep 
Impact 

Blocking 
Dep 

Task 1  25 25     

Task 2 15 30 1 20 10 1 

 

Example of an Agent Details CSV File 

First 
Name 

Last 
Name 

Learning-
Ability 

Technical 
Skill 

Managerial 
Skill 

Overall 
Experience 

Time 
Available 

John Smith 7 7 7 5 250 

Jane Totter 2 4 9 10 250 

Luke Skywalker 5 8 4 7 250 
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APPENDIX C 

 


