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AN ABSTRACT OF THE THESIS OF

Najib Charbel Zgheib for ~ Master of Engineering
Major: Civil and Environmental Engineering

Title: Modeling Demand for Ridesourcing as Feeder for High Capacity Transit
Services: A Case Study of the Planned Beirut BRT

Ridesourcing (Uber, Careem, Lyft, ...) is emerging as a main player in the
transportation industry. However, its relation to mass transit remains ambiguous, with
divided opinions on its complementarity or substitutive effect towards high capacity public
transportation systems. This study examines the integration of ridesourcing and transit,
particularly focusing on modeling the demand for mass transit when ridesourcing is used as
an access or egress mode to mass transit. It extends the existing literature on the integration
of transit and new mobility concepts by providing a modeling framework that incorporates
all stages of multi-modal trips such as those that involve using mass transit. A mixed logit
with error component structure is presented to capture correlations in unobserved factors
across multi-modal alternatives sharing similar modes at certain stages. The framework
incorporates uni-modal and multi-modal travel alternatives and distinguishes between
access, main mode, and egress stages without applying constraints on possible
combinations. An application to Beirut’s planned Bus Rapid Transit (BRT) system,
performed on a data set of 392 respondents, reveals that ridesourcing as a feeder mode is
mostly popular with young commuters while also being perceived as more reliable than
feeder buses and jitneys. Awareness and familiarity are major drivers for the service
implying higher potential in the future. A complementarity effect with transit is found as
the introduction of ridesourcing at the feeders’ level is expected to drive an additional 2%
of commuters to use the BRT. Decreasing ridesourcing fare is effective for its integration
with transit, as a fare decrease of 50% increases BRT market share from 33.53% to 36.89%
of all motorized trips, implying possible synergies between the two modes. Forecasting
results further reveal that additional taxes on parking used by car commuters and increasing
park and ride capacity at BRT stations are effective policies to augment BRT ridership.
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CHAPTER 1

INTRODUCTION

The aim of this thesis is to investigate the complementarity between new mobility
concepts, notably ridesourcing (Uber, Lyft, Careem, ...), and high capacity mass transit by
developing a demand modeling framework for the new technology as first-mile-last-mile
connection to transit stations. This chapter introduces the topic with section 1.1 stating the
motivation behind the study. Section 1.2 describes some perceived relations between
ridesourcing and other commute modes. Section 1.3 presents the research objectives and

contribution, while section 1.4 provides the outline of the thesis.

1.1. Study Motivation

Mass transit systems have been at the heart of governmental spending on urban
transportation for decades. They are built to enhance movement of people and goods, reduce
dependency on automobiles, and diversify mobility options for all sectors of the community.
Trends in public transportation ridership reflect increased popularity, despite some slowdown
since 2014, as distance traveled in transit grew more than vehicle miles commuted on highways
in the USA as shown in Figure 1 (APTA, 2019). This can be explained by a more developed
transit infrastructure and an enhanced awareness on the benefits of public transportation.
However, planners should look beyond main transit corridors as connectivity to major zones of

trip origins and destinations is of paramount importance for efficient operations.
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Figure 1: Growth in Transit Passenger Miles and Vehicle Miles Traveled in the USA with Respect to Levels
at Year 1997 (APTA, 2019)

High capacity transit lines are mainly developed on dense corridors connecting hubs or
within highly urbanized cities. Trip origins and destinations fall frequently beyond walking
distance from public transportation stations. As a result, significant consideration should be
attributed to planning first-mile and last-mile connections as they remain vital to the success of
high capacity transit systems (Tabassum et al., 2017). In fact, accessibility to stations is one of
the main factors affecting demand for transit, especially in developing countries where mobility
options are limited or ineffective (Satiennam et al., 2006). It is not enough to develop transit
corridors, but there is also need to look at integrated feeder networks that provide access and

egress from transit stations.

Buses and jitneys are the most common form of motorized feeders. However, these
modes mainly operate on fixed routes and their service frequency drops during off-peak hours.
Consequently, alternate modes are being adopted to complement the deficiency of traditional
feeders and enhance connectivity to transit stations. An example is bike sharing which is

perceived as a sustainable solution to the last mile problem. Biking complements transit by



extending reach beyond walking range and at lower costs than motorized feeders like
neighborhood jitneys and buses (Pucher and Buehler, 2009). Moreover, non-motorized modes
such as bikes and scooters reduce the environmental footprint of feeders and can be effective
within cities where access and egress trips rarely extend beyond few kilometers. In spite of the
numerous advantages, such feeder modes are by no means global solutions to the accessibility
issue as they are susceptible to bad weather, difficult topography, availability and continuity of
bike lanes, and coverage of transit stations. A case study in Beijing reveals that bike sharing
stations did not cover all transit stops, a problem further aggravated by the lack of cooperation
between different bike rental companies, which imposed wasted time and cost on users
depositing bikes (Liu et al., 2012). When transit systems are built to serve beyond boundaries of
a certain city, bike sharing is no longer feasible and the need becomes eminent for motorized

feeders to connect origin and destination zones with public transport stations.

As a result, new mobility concepts could step up and establish their role in covering
first-mile-last-mile connections. Ridesourcing, also known as ridehailing or transportation
network companies (TNCs), is a notable example of such services. The new technology was not
necessarily developed to feed transit but can fill this role due its flexible trip arrangement and
wide service coverage. Ridesourcing is a mobile-based mobility platform (Uber, Careem, Lyft,
...) that provides commuters with point-to-point rides through smartphone requests and
incorporates tracking options, enhanced payment methods, and a review-based selection of
drivers and vehicles with the aim of providing quality and unique experience to its users (Rayle
et al., 2016). The service was introduced in 2009 and is already established in the transportation

industry with diverse platforms reaching more cities and wider coverage.



Ridesourcing is already disrupting traditional travel modes in several cities. In the city
of San Francisco, the pioneer in ridesourcing implementation, the service completes 170,000
trips on a typical weekday, which represents 15% in intra-city trips and is 12 times larger than
taxi trips. The 570,000 vehicle miles of travel (VMT) commuted daily represent 20% of intra-
San Francisco VMT (Castiglioni et al., 2017). Furthermore, 25% of the residents of the city use
ridesourcing monthly, already exceeding the reach of taxis (SFMTA, 2014). Nowadays, Uber
operates in 85 countries and covers over 903 cities according to UberEstimator, a tool that
demarcates the company’s worldwide footprint (Uber, 2019). Trends reveal no signs of slowing
down with significant year-to-year growth in number of rides and active users as shown in
Figures 2 and 3. In 2019, Uber is estimated to provide 6.27 billion rides for its 110 million

monthly active users worldwide (Statista, 2019).
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Growth trends in the figures above further reveal that the total number of rides is
increasing at a faster pace than the number of active users reflecting that not only the user base is
getting wider, but the average number of trips per person is also growing. This is a sign of user

satisfaction and of increased interest in the service after experiencing its advantages.

The increased popularity of ridesourcing is also affecting traditional travel modes.
According to Lyft’s 2019 economic impact report, 35% of Lyft users are non-car owners with
50% of them more likely to buy a car if the service did not exist (Lyft, 2019). Ridesourcing trips
are expected to overcome bus trips in the United States by the end of 2018 and become the
largest low capacity public transportation mode (Schaller, 2018). However, the factors affecting
ridesourcing use and its impacts on travel behavior are still largely unexplored mainly due to
lack of specific data, the uncertainty over the maturity of the service, and the divergence in
conclusive results for different local contexts and user characteristics (Circella and Alemi, 2018).
The growth of ridesourcing will also impact high capacity transit and feeder modes. A better
understanding of the integration and interaction of ridesourcing with other transit modes is
essential for future urban planning and focus should be placed on establishing the characteristics

of new mobility concepts and the most suitable policies for a smooth and effective integration.

1.2. The Relation between Ridesourcing and Other Public Transport Modes

The exact impact of ridesourcing on other travel modes is still ambiguous. Some
analysts conclude that the new technology will compete with public transport and attract
customers from low capacity commute modes. A survey-based study in San Francisco reveals
that 39% of ridesourcing users would have used taxis if the service was not available, while

another 24% would have taken the bus (Rayle et al., 2014). This shows that the new service is

6



competing for market share with other forms of public transport. Taxi companies seem to suffer
the most with ridesourcing offering similar service while benefiting from several advantages
such as the absence of car ownership and insurance costs. Licensing costs are also absent in
several countries for ridesourcing which is not the case for taxis. Moreover, ridesourcing
platforms allow their drivers to operate at their desired time or schedule which provides them
with the flexibility to operate on part-time basis or during their free days only. This allows for
more competitive pricing schemes and more appeal to drivers which enforces ridesourcing’s
position as an increasingly attractive substitute to traditional taxis (Hall and Krueger, 2017).
UberX, which is the basic and least expensive Uber service, provides fare reductions in the order
of 20% to 30% compared to traditional taxis (Greenwood and Wattal, 2017). This has caused
regulatory challenges and raised calls for a reform in public policy to properly address the
emerging service. Critics also claim that ridesourcing worsens congestion during peak periods,
compromises public safety, and adopts controversial and blurred pricing algorithms (Rayle et al.,
2014). A regression-based analysis of travel data in Las VVegas reveals that ridesourcing
companies significantly cut the share of taxi trips in the city and affect them more than fixed
route transit (Contreras and Paz, 2018). Accordingly, some cities banned ridesourcing
companies, while others enforced regulations for their operation. For example, the city of
Toronto passed a law in July 2016 to limit the number of ridesourcing vehicles, similar to the
defined number of taxi license plates. The city also required ridesourcing drivers to acquire a
special license and to meet driver screening and criminal background requirements before

operating legally (Toronto, 2016).

On the other hand, proponents of the service suggest that it can complement transit and

address some of its limitations. Ridesourcing enhances access for non-car owners and improves



service during non-peak periods and evening hours (Cohen and Shaheen, 2018). In addition, it
can extend the catchment area of mass transit by reaching beyond fixed route buses and serving
areas where traditional modes are deficient. Improved first-mile-last-mile connections can lead to
an increase in transit ridership and multi-modal trips which drives communities towards shared
modes rather than private vehicle ownership. The integrated service can also reduce transport
costs of users and drive economic activities around transit stations (Shaheen et al., 2015). Rayle
et al. (2014) report that 4% of participants in their study used ridesourcing to reach or leave a
public transport station, suggesting that the service is playing a role in first-mile-last-mile

connections.

Several US cities are joining efforts with ridesourcing companies to provide first-mile-
last-mile connections to transit stations. Subsidies on Uber trips were applied in some regions
and the city of Centennial, Colorado teamed up with Lyft to provide free rides to and from light
rail stations (Shen et al., 2017). Lyft is also developing a transit integration service called
“Friends with Transit” consisting of shuttles that pool riders from their houses to mass transit
stations and vice versa (Lyft, 2018). In fact, 29 partnerships were built between US cities and
ridesourcing companies in an effort to improve mobility, reduce parking shortage, fill gaps in the
transit system, and encourage smartphone planning for multi-modal trips combining shared rides
with mass transit (Schwieterman et al., 2018). Figure 4 locates and briefly describes all 29
collaborations. The partnerships are motivated by several factors including better feeder
connections, improved mobility for physically disabled users, an innovative image for the city,
better coverage for low density regions, and serving late night travel needs. Another major
motivation of such partnerships is the sharing of data which allows city planners to better

understand travel patterns and impacts of ridesourcing, thus leading to better transit planning in



the future (National Academies of Sciences, Engineering, and Medicine, 2019). The growth in
partnerships between public authorities and ridesourcing companies implies a major need for

studies that answer questions about the complementarity between this new mobility concept and

high capacity mass transit systems.
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Figure 4: Partnerships between Ridesourcing Companies and Public Authorities in the United States
(Schwieterman et al., 2018)

1.3. Research Objectives and Contribution

The increased popularity of ridesourcing and its establishment as a main commute mode
in urban transportation imply a major contribution to feeder trips, which are prerequisite to

effective transit operations. This study looks to investigate this issue and has the following main

objectives:



- Understanding the effect of first-mile-last-mile connections, including ridesourcing,
on transit ridership.

- Unveiling the main factors affecting demand for transit and feeder modes including
ridesourcing.

- Providing a framework to model the overall transit trip without applying constraints
on any of its three stages (access mode, main transport, and egress mode).

- Investigating the potential of ridesourcing as a feeder mode to high capacity mass

transit in developing countries.

This research has both methodological and practical contributions. At a methodological
level, we provide a demand modeling framework that incorporates all stages of a multi-modal
trip simultaneously. Previous studies have tackled the first mile or last mile stages separately
while fixing the other. The developed framework can also accommodate traditional or emerging
commute modes beyond ridesourcing, whether as feeders to transit or to cover the entire trip.
This allows for a flexible modeling of the choice between uni-modal or multi-modal trips, with

all stages of the latter incorporated in the analysis.

At a practical level, the integration of emerging transportation technologies with transit
is an emerging research topic that is tested in limited settings so far. The exact interactions
between ridesourcing and transit are still ambiguous with studies leading to contradictory and
inconclusive findings. This study contributes further towards unveiling the impact of the
emerging technology on transit and tests its ability to improve first-mile-last-mile connections.
The model is also used for policy analysis which provides planners and policy makers with better

insights on the best strategies for an effective integration that does not negatively affect transit.
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Moreover, the framework will be applied through a case study of the planned Beirut
BRT which provides insights on the potential of ridesourcing in developing countries and draws
comparisons with observed trends in developed urban cities. The topic of ridesourcing in
developing countries, let alone its integration with transit, is rarely tackled in the literature. This
research will analyze the prospect of ridesourcing in a context where traditional public
transportation modes are deficient and badly perceived by a large portion of users, and where

awareness about ridesourcing is also lower due to its recent introduction to the market.

The case study of the planned Beirut BRT will also provide local authorities with better
understanding of the requirements for feeder networks which is lacking so far in the performed
studies. The research will estimate the percentage of commuters that will shift from driving in
different regions which helps in forecasting BRT ridership levels and traffic at various stations.
Results will be forecasted under different policies which allows for better regulation and

integration of the planned BRT system.

1.4. Thesis Organization
The thesis consists of six chapters, with chapter 1 being the introduction and the

remaining chapters organized as follows:

- Chapter 2 provides a literature review on the first-mile-last-mile problem, as well as
a review on the emergence of ridesourcing and its integration with transit.
- Chapter 3 describes the methodology adopted for modeling and the selection criteria

used to select the model that best fits the data.
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Chapter 4 applies the modeling framework in the context of the planned Beirut
BRT. The chapter includes a description of the study area, the designed survey, and
the sampling plan and data collection. A descriptive analysis of the sample
characteristics is also performed before developing a model specific to the case
study.

Chapter 5 presents the estimation results of the defined model and discusses insights
and findings based on the model. Multiple policy scenarios are also defined to serve
as decision tool for better implementation of the BRT and its feeders.

Chapter 6 concludes the thesis and summarizes the main findings. It also reviews the
contributions and limitations of the study, and provides the reader with directions

for future research on this topic.
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CHAPTER 2

LITERATURE REVIEW

This chapter provides a review of the literature on feeders to transit and ridesourcing.
Section 2.1 gives a historical background on the first-mile-last-mile problem. Section 2.2 is an
overview of ridesourcing and the factors affecting demand for the new service, in addition to its
impacts on transit. Section 2.3 reviews the integration of ridesourcing with transit and presents

the challenges and outcomes of this collaboration.

2.1. First-Mile-Last-Mile Connections to Transit

The first-mile-last-mile problem is a major topic in transportation planning and
constitutes the focal point of diverse research projects. Sobeniak et al. (1979) developed
disaggregate demand models for access modes to Canada’s intercity transportation terminals.
The study showed that socio-economic characteristics alongside travel costs, travel duration, and
waiting time play a major role in the feeder selection process. Shared taxi rides are found to be
more desirable as they maintain low travel cost and deliver the comfort and convenience of
automobiles. A study developed on access trips to airports in the San Francisco Bay Area found
that travelers are highly sensitive to access time, while trip purpose largely affects time and cost
sensitivity (Harvey, 1986). Wen et al. (2012) developed a latent class nested logit model to
explore access mode choice behavior for high-speed rail commuters in Taiwan. The analysis
revealed that some commute modes share similar characteristics which induce correlation. As

such, these should be grouped into nests to capture their resemblances. The study concluded that
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commuters are more sensitive to travel cost than travel time when it comes to the access stage of

the trip and strategies should emphasize providing access modes at affordable rates.

Further studies evolved beyond one-dimensional choice sets to provide a wider
representation of the choice process. Fan et al. (1993) built logit and nested logit models to
analyze the selection process of access mode and transit station for commuter rail passengers in
the Greater Toronto Area. Results showed that coefficients for in-vehicle travel time (IVTT)
differ between drivers and passengers in an automobile in the access stage, and that out-of
vehicle travel time (OVTT) outweighs in-vehicle travel time (IVTT) in implied disutility
reflecting that transfer time and waiting time should be minimized for optimal service. Similarly,
Debrezion et al. (2009) built a nested logit model to understand choice for both access mode and
departure station for Dutch railway users. The study revealed that the nested logit model is
suitable for the analysis and concluded that the infrastructure at stations, notably parking spaces
and bike decks, enhance the attractiveness of the station, while public transport frequency and

travel time govern mode choice.

Studies advanced later on to incorporate multiple stages of transit trips. In the
Netherlands, multi-modal trips had a share of around 3% of total trips based on the 1996 Dutch
National Travel Survey, and were growing compared to previous years. In relation to transit,
multi-modal trips covered 80% of train trips and 20% of bus, tram and metro trips, which are
modes more common for trips within cities and for shorter distances than train travel (Van Nes,
2002). Therefore, multi-modality is significant in the transport industry and is worthy of detailed
investigation. Polydoropoulou and Ben-Akiva (2001) introduced a framework to model demand
for different modes in a multi-modal trip. They designed a computer-based stated preference

(SP) survey that includes choice experiments involving not only choice between private and
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public transport, but also choice of access mode when bus or transit is selected for main travel.
The options provided for access were park and ride, kiss and ride, walking and bus (for transit
only). Stated and revealed preference (RP) data were then combined in a nested logit model to
assess choice behavior for main travel and access stage. The study concluded that combining RP
and SP data is superior to estimation with separate data sets, and commuters’ perception to
transit delays plays a significant role in mode choice. Arentze and Moulin (2013) developed a
demand model for multi-modal trips through a series of choice experiments. Three travel modes
were considered: private car/bike, public transport (one mode for entire trip), and multi-modal
trips. The study found that travel distance plays a major role in mode selection for multi-modal
trips and the study distinguishes accordingly among three types of trips: short trips (5 km),
medium trips (20 km), and long trips (65 km). Multi-modal trips become competitive as the trip
length increases, and access and egress modes other than walking become more relevant. The
study also revealed that sensitivity for tickets and parking fares is higher than that of fuel cost,
and walking is preferred as access/egress mode when feasible. Hensher and Rose (2007) further
revealed that total travel time should be split into different components such as in-vehicle travel
time, waiting time, and walking time as each should be weighted differently for a better

modeling of the decision process.

Several recent studies explored the potential of new mobility concepts as access modes
for mass transit as these are expected to disrupt the transportation industry. Bike sharing was
found to be helpful to transit as improved first-mile-last-mile connections lead to more reliance
on public transportation and less on private cars, even though biking can replace transit trips for
short intra-city trips (DeMaio, 2009). Yap et al. (2016) modeled demand for autonomous

vehicles as egress mode to train trips in the Netherlands using stated preference techniques. The
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choice set included driving a private car or adopting a multi-modal train trip. For the latter, train
is defined as the main travel mode with differentiation between 1% class and 2" class travelers.
The access mode was pre-defined and respondents had to select their preferred class for train
travel and an egress mode out of the following: bus/tram/metro, bicycle, self-driven autonomous
vehicle, and automatically driven autonomous vehicle. Results showed that the main potential for
autonomous vehicles as last-mile transport is for first class travelers. These usually have higher

incomes and value the luxury provided by autonomous vehicles such as direct and fast trips.

It must be noted that no studies were found where econometric models were developed
to model both access and egress stages of the trip simultaneously based on stated preference data,

particularly with respect to the consideration of new emerging modes like ridesourcing.

2.2. Ridesourcing

Before integrating ridesourcing with mass transit, it is essential to have a broad
overview on the service and to understand its major drivers and impediments. Consent on the
actual impacts of ridesourcing on the transport industry is not yet fully formed, but the topic has

been a subject of interest recently and several related studies have been performed.

2.2.1. Factors Affecting Demand for Ridesourcing

Planning for ridesourcing relies primarily on identifying the main features affecting
demand for the service. A California-based study (Alemi et al., 2018) investigated factors
affecting the adoption of on-demand mobility by building binary logit models with and without

attitudinal variables. Results from different models were consistent and revealed that young,
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well-educated individuals are most likely to use ridesourcing. The service was found to be
popular with frequent plane travelers and commuters of long business trips, with mixed land use
and enhanced regional accessibility also contributing to the utility of the service. On-demand
mobility was also popular with technology oriented and pro-environmental groups. Analogous
conclusions were found by Young and Farber (2019) as their study, based on survey data from
the city of Toronto, also reflected more eagerness for ridesourcing among the younger

generation, with higher interest amid wealthier segments.

Still investigating key drivers of on-demand mobility, Grahn et al. (2019) explored
characteristics of the service users based on the United States’ 2017 National Household Travel
Survey. Beyond wealth, age, and education, the authors revealed that residence location and trip
purpose significantly affect ridesourcing demand. Residents of urban areas used the service more
frequently, especially for recreational trips, with larger city population and density increasing
overall demand. The adoption rate in highly urbanized areas was double that of suburban regions
in major US cities (Clewlow and Mishra, 2017). Similarly, Yu and Peng (2019) asserted that a
relation exists between the built environment and demand for ridesourcing. Their study was
based in Austin, Texas and concluded that a mixed land use with dense road networks, large
population and employment, and transit accessibility induce higher demand for on-demand

mobility services.

The likely high cost of a private ridesourcing ride was also addressed by ridesourcing
companies through the introduction of ridesplitting (UberPool, Lyft Line, ...), which is a form of
on-demand mobility in which riders with compatible origins and destinations are matched in real
time to the same driver and vehicle, allowing them to split the fee and reduce the commute cost

(Shaheen et al., 2016). The new service makes ridesourcing more accessible to larger sectors of
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the community, allowing it to reach higher market share. Chen at al. (2017) took a deeper look at
ridesplitting in the Chinese city of Hangzhou through data from DiDi Hitch, a platform matching
passengers sharing similar routes, which is a leader in the Chinese ridesourcing market. Their
study concluded that ridesplitting induces larger waiting times but is nonetheless attractive for

long distance trips as it allows to reduce the associated travel costs.

2.2.2. Demand Modeling and Ridership Estimation

A few demand models for new mobility services can be found in the literature. Yang et
al. (2009) modeled demand for diverse forms of shared mobility. Nine travel modes were
available and divided into three categories: car-based modes, public transportation, and multi-
modal trips. The respondent had to select one preferred travel mode from each category before
making a final choice out of the three previously selected modes. Findings revealed that for car-
related modes, higher parking costs and congestion charges are more deterring to commuters
than general travel costs like fuel and ownership costs. Commuters departing during the morning
peak were more sensitive to travel time than costs due to congestion and binding schedules.
People with flexible departure time were also more likely to use car-related modes like driving,

carpooling, or shared mobility.

El Zarwi et al. (2017) developed a framework to model and forecast adoption of new
transport technologies like ridesourcing and autonomous vehicles. The presented model
incorporated latent classes to study behavior towards technology adoption. Results showed that
men and high income segments are more likely to be early adopters, and providing better
coverage around technology firms will increase ridership as innovators are more likely to

embrace the new mobility modes. Alemi et al. (2018) also built adoption models with latent
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constructs to capture heterogeneous preferences of commuters. Three classes were identified,
with the first class corresponding to highly educated and independent individuals who are most
likely to adopt ridesourcing and have a higher willingness to pay to reduce their travel time. The
second class corresponded to dependent millennials who will hop on the new service in suitable
settings such as mixed land use, long distance trips, and airport commutes. The third class
consisted of older, less educated, and rural residents who are least likely to embrace the new

mobility service.

Tarabay and Abou-Zeid (2019) investigated the potential of ridesourcing as a transport
mode for social/recreational trips conducted by students of the American University Beirut, a
private urban university located at the heart of the Lebanese capital. A choice model is developed
based on revealed and stated preference data from a web-based survey and the study forecasts that
around 22% of students will switch from their current modes to ridesourcing if well implemented.

A 40% reduction in ridesourcing fare can lead to a switch proportion exceeding 30%.

2.2.3. Relation between Ridesourcing and Transit

As mentioned previously, the evidence on the relationship between ridesourcing and
transit is mixed. Results from Young and Farber (2019) stated that the impact of ridesourcing on
transit and other modes is too small to induce any clear positive or negative correlation, with taxi
being the only exception as ridesourcing seems to be significantly cutting its market share.
Similarly, Habib (2019) developed a model to investigate the competition of Uber with other
commute modes and reached no clear evidence of competition between the service and private
car, public transit, or non-motorized modes. However, with ridesourcing growing exponentially,

it is expected to have an important effect on the ridership levels of other modes (Young and
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Farber, 2019). Hence, it is essential to investigate further the relation of ridesourcing to transit
and clearly define whether it is a relation of substitution or complementarity and under which

conditions.

Strong claims are made about ridesourcing acting as a substitute to transit. While
findings about the relation are mixed, studies lean towards the opinion that ridesourcing’s
substitutive effect outweighs its complementarity to transit (Tirachini, 2019). A
sociodemographic investigation of ridesourcing users in Santiago de Chile concluded that the
ratio of ridesourcing users who substitute ridesourcing with transit to those who combine both
services is 11 to 1, reflecting a stronger substitutive effect (Tirachini and del Rio, 2019).
Clewlow and Mishra (2017) established through a study of seven US metropolitan areas that
ridesourcing is replacing 6% of bus trips and 3% of light-rail commutes reflecting a substitutive
effect between on-demand mobility and transit. Substitutive effects were also reported by Lavieri
et al. (2018) who built a model to assess demand generation and distribution of ridesourcing trips
based on data from RideAustin, an Austin-based ridesourcing company. The model revealed that
higher bus frequencies have a negative impact on weekday ridesourcing demand levels implying
substitution patterns. Similar conclusions were reached by Graehler et al. (2019) who estimated
that ridesourcing services induce a yearly decrease of 1.7% and 1.3% in heavy rail and bus
ridership, respectively, in the United States. Hall et al. (2018) asserted that on-demand mobility
complements transit in areas of low transit usage, but becomes a competitor in cities of high
transit usage. This is mainly attributed to ridesourcing’s ability to provide flexible and reliable
trips in cities where transit level of service declines during peak hours due to capacity

constraints.
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On the other hand, opposing claims arise and back up the complementarity between
ridesourcing and transit. Contreras and Paz (2018) suggested a complementary effect between
the two commute modes in Las Vegas based on a linear regression analysis built on time-series
travel dataset. Survey results from New Delhi revealed that 66% of respondents identified access
to transit stations as a major reason to use ridesourcing (llavarasan et al., 2018). Grahn et al.
(2019) reported that for similar sized US cities, ridesourcing usage tripled when heavy rail was
available reflecting possible synergies. Hall et al. (2018) advanced this position by stating that
ridesourcing ridership increased in London during hours of extended Underground service
reflecting that the metro might have induced more demand for the service. The authors went
further and performed a study on the impact of ridesourcing on mass transit based on a design
that monitors difference-in-differences of transit ridership in US cities accounting for the time of
entry of ridesourcing to the market and the intensity of the market entry. Results indicated that
ridesourcing complements transit and increases its ridership by 5% two years after its

introduction in a metropolitan urban area.

Ridesourcing can also play a role in solving the first-mile-last-mile problem by
addressing limitations of existing feeders and encouraging multi-modality for access and egress
trips (Shaheen and Chan, 2016). On-demand mobility can complement fixed alignment buses to
extend the catchment area of transit. It can also replace costly low ridership buses that serve

regions of low demand.

2.3. Integration of Ridesourcing and Transit
Research into the integration of ridesourcing with transit is still limited in the literature

but has been gaining interest recently due to its potential in enhancing point-to-point connectivity
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and extending the reach of mass transit systems by covering first-mile and last-mile trip stages.
Transit agencies and public authorities are increasing their efforts to successfully integrate
ridesourcing schemes into their operations (Cane, 2017). Accordingly, several cities and transit
agencies teamed up with ridesourcing companies to serve as feeders to transit, with enhanced
mobility and data sharing being further motives for the collaboration (Schwieterman et al.,

2018). However, the optimal logistics of such integration are yet to be fully uncovered.

Yan et al. (2019) tested this partnership by deriving a demand model for an integrated
transit system at the University of Michigan Ann Arbor through combined revealed and stated
preference data. The study investigated the potential of ridesourcing as feeder to university
shuttles and found that the service can complement transit by extending its catchment area or by
replacing buses on underutilized lines. Results showed that ridesourcing can give a significant
boost to transit and also decreases operating costs by replacing low-ridership buses.
Ridesourcing as last-mile transport reduces travel time and waiting time and focuses bus

operations on high-density lines serving as a good complement to transit.

Shared mobility platforms are also combined with transit through Mobility-as-a-Service
(MaaS) which aims to enhance movement within cities by building commute packages that
combine public transit with private mobility providers (Polydoropoulou et al., 2019). Revenue
allocation and fare splitting remain however a main issue. That is especially true for ridesourcing
as it adopts dynamic pricing schemes rather than flat rates. Surge pricing is applied during peak
hours and special events when demand levels soar. This surge is highly unpredictable and the
lack of transparency about pricing schemes complicates the potential integration of ridesourcing

with other mobility services (Jiao, 2018).
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2.4. Gaps in the Literature

Studies that model demand for ridesourcing as feeder to transit are limited to the study
by Yan et al. (2019) which is based in a university setting. The issue, to the author’s knowledge,
is not yet tackled in an urban or suburban context where the challenge of first-mile last-mile
connectivity mainly lies. Moreover, most studies on ridesourcing are based on data from highly
urbanized areas, with minor focus on suburban and rural regions. While demand is expected to
be higher in urban settings, these only cover small areas where transit networks are usually
dense, meaning that traditional feeders and non-motorized modes can provide connectivity to
transit. Suburbs and rural areas are where transport coverage is limited and ridesourcing

companies can fill the gap and provide first- and last-mile connections to mass transit systems.

In addition, ridesourcing characteristics are rarely investigated in developing countries
that might not mirror the observed trends in developed urban cities. The factors behind demand
for on-demand mobility are still vague and studies should be performed in different settings
before reaching a universal consent and global understanding of the impacts of the new

technology.

2.5. Summary of Research Studies on Ridesourcing
This section provides a summary table for studies involving demand models for

ridesourcing and its relation with public transportation.
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Table 1: Demand Modeling for Ridesourcing and its Relation to Transit: Summary of the Literature

Does it Impact of
Research Type of Significant Involve . P .
Area . . . Ridesourcing on
Paper Analysis Factors First-Mile- Transit?
Last-Mile? '
Age
Education
Alemi et al. California, Binary Logit T/Zté::gfo;(;/ No Substitute (minor
(2018) USA Model Land Use Mix effect)
Business Trips
Airport Access
Young and Toronto, Statlst!cal Age No significant
Farber Canada Analysis of Income No impact
(2019) Survey Data Car Ownership P
Income
Age No Clear
Grahn et al. USA Generalized Education No Conclusion,
(2019) Linear Model Trip Purpose Possible
Residence Area Complementarity
Population Density
a1z o | S
al. USA . . g No Not Applicable
(2019) (Multinomial Coverage around
Logit) Tech Firms
L Complement
University of . .
Yan et al. Michigan Mixed Logit Additional Pick-ups (Replace low-
Transfers Yes usage bus lines,
(2019) Ann Arbor, Model o . .
Waiting Time reduce operating
USA
costs)
Hall et al. (mettjosﬁli fan Linear Population Yes Complement
(2018) P Regression Education P
areas)
L Income
Lavieri et Cl\gﬂ::':\ll\jlr(;?jfl Residential Density
al. Austin, USA . . Activity Intensity No Substitutive
Fractional Split
(2018) Gender
Model

Car Ownership
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Does it Impact of
Research Type of Significant Involve . P .
Area . . . Ridesourcing on
Paper Analysis Factors First-Mile- Transit?
Last-Mile? '
Parking
Clewlow Availability
and Mishra MaL'JoSrA(\:i(t:es) ::;IVZS Education No Not Applicable
(2017) J y Urban Settings
Pop. Density
Greater Constrained Education
Habib Toronto and Multinomial Income NO No significant
(2019) Hamilton Loqit Trip Start Time impact
Areas g Pop. Density
. - Survey Trip Purpose Substitutive
Tirachini . Analysis, .
. Santiago de . Income Patterns Outweigh
and del Rio . . Generalized Yes
Chile, Chile . . Age Complementary
(2019) Ordinal Logit .
Model Education Effect
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CHAPTER 3

RESEARCH METHODS

This chapter introduces the research methods and framework developed for demand
modeling of a mass transit system with integrated ridesourcing for the feeder stages. Section 3.1
presents the modeling framework and formulation, while section 3.2 discusses the procedure of
selecting the most suitable model based on multiple criteria. Section 3.3 discusses the data
required for model estimation based on the proposed framework, and section 3.4 covers policy

analysis.

3.1. Modeling Scheme
This section defines the proposed modeling approach by providing a framework for the

modeling process as well as the model formulation.

3.1.1. Modeling Framework

The demand modeling procedure of this research requires data collection through
means of a survey involving stated preferences (SP) and/or revealed (RP) preferences of
respondents. The problem at hand involves selecting between uni-modal trips and multi-modal
transit trips with the latter requiring the choice of all modes involved in the trip. As such, some
alternatives share common access modes, egress modes, and/or main modes. A multinomial

mixed logit model with error components is thus proposed as it captures the correlation in

26



unobserved factors across alternatives. Level-of-service variables (travel time and cost
components) of different travel alternatives and the actual choice of respondents can be provided
by either SP or RP data. Socio-economic characteristics of respondents, actual travel behavior,
and perceptions towards different commute modes are collected through means of RP data. The

modeling framework that incorporates both RP and SP data is illustrated in Figure 5.

Level of Service Socio-Economic
Attributes Attributes
(Observed from 5P or RP (Observed from RP Data)

Data)

~—————— Structural Relationship
------- » Measurement Relationship

¥
Observed Choice from 5P
or RP Data (Preferred
Travel Mode)

Y

!

Choice Model

Figure 5: Modeling Framework

3.1.2. Background on Discrete Choice Models
Behavioral models have been long adopted to explain how agents act when they face a

choice. When the choice is discrete, such as the selection of a preferred travel mode, discrete
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choice analysis is employed to build behavioral process equations that can predict the agent’s
choice given the variables of interest (Train, 2009). A typical discrete choice problem should
address four main elements: the decision maker, the alternatives, the attributes, and the decision
rule. Discrete choice models are disaggregate and the decision maker is the individual of
concern. The alternatives are represented by a choice set containing a finite number of options
that are available to the decision maker. The attributes are variables that measure the benefits and
costs of the alternatives to the decision maker, while the decision rule is the process based on
which alternatives are compared and ranked (Ben-Akiva and Bierlaire, 1999). The most common
rule to model behavior for cases with discrete outcomes is random utility maximization. That is,
each alternative is associated with a utility function and the decision maker is assumed to select

the alternative that yields the highest utility (Ben-Akiva and Lerman, 1985).

The utility function is based on factors that are observed by the analyst, and others that
are not observed. Unobserved factors reflect limitations in the analyst’s data collection tools and
his/her inability to capture all features behind the selection process, in addition to taste
heterogeneity. They are represented by a random disturbance term that cannot be
deterministically quantified. Accordingly, the decision maker’s choice becomes probabilistic and
the probability density function of the disturbance term defines the resulting modeling family

(Train, 2009).

The logit model is the most commonly used discrete choice model which assumes that
disturbances follow an Extreme Value Type | distribution and are independent and identically
distributed across alternatives and individuals (Train, 2009). The mixed logit is a highly flexible
extension of the logit family that addresses three limitations of the logit by allowing for

correlation among unobserved factors of different utility functions, random taste variation with

28



heterogeneous sensitivities across individuals, and unrestricted substitution patterns (McFadden
and Train, 2000). The mixed logit will be adopted for the purpose of this research with error
components added to utility functions to capture correlation among unobserved factors of

different alternatives.

3.1.3. Model Formulation: Multinomial Mixed Logit Model with Error Components
This section covers the modeling structure and formulation that are proposed for the
problem at hand including the definition of utility functions and the derivation of the likelihood

function.

3.1.2.1. The Choice Model

The choice model defines the utilities of all possible travel mode combinations as a
function of observed level-of-service attributes of the trip, socio-economic characteristics of the
decision maker, and unobserved error components and disturbance terms. First, let / be the set of
all alternatives with j € J the index of any particular one. The utility of alternative j is structured

as shown in equation (1):

Uj,n,t = Vj,n,t T Wjn+ Ent 1)
Every alternative j incorporates a mode of main transport m, in addition to an access
mode a and egress mode e when needed to complete the door-to-door trip. V; ,, . is the systematic

utility of alternative j for individual n in scenario t (assuming the availability of panel data

through a stated preferences survey for example) and is expressed as follows:
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(2)
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Where V,’,{%f{l is the systematic utility component specific to main mode m, V55 is the
systematic utility component specific to access mode a, and I/;’fﬂ is the systematic utility

component specific to egress mode e, and:

[Main,j _ {1 if alternative j includes mode m as main mode of transport 3)
mn 0 otherwise

JAcc _ {1 if alternative j includes mode a as access mode %)
@ 0 otherwise

[EGT _ {1 if alternative j includes mode e as egress mode ©)
€ 0 otherwise

M is the set of available main travel modes, and A and E are the sets of access and
egress modes available, respectively, for multi-modal trips. Multi-modal trips are defined to have
a main transport mode operating on a fixed alignment, mainly the case for high capacity mass

transit systems, which requires access and egress modes to complete the door-to-door trip.

M_ 1M s strictly 1 as each trip must have exactly one main travel mode.

A_ [AIg YE_ 1597 can be either O for uni-modal trips, or 1 for multi-modal trips assuming
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that only one access and one egress modes are sufficient to connect commuters from/to transit

stations.

The systematic utilities of different trip stages are defined as follows:

Vil = @i + BX4s aea ©

V%%l? — a%ain + BX%%”; meM (7)
Egr _ _Egr Egr

‘/e'n‘t — ae + BXe,n,t e E E (8)

X is a vector of exogenous level-of-service variables (travel time and cost components)

specific to each stage, in addition to the socio-economic characteristics of the respondent. £ is a

vector of coefficients some of which are fixed across individuals (ﬁ,{ is the vector of all fixed
coefficients), while others can be random to model random taste variations (up to K, random
parameters, with the k™ random parameter denoted as Br.n)- V includes a constant « that is
specific to a mode or stage of the trip, with one out of all constants normalized to zero. This
approach reduces the number of constants to be estimated as constants are specific to each mode
rather than each alternative, where an alternative is a combination of an access mode — main

mode — egress mode (such as in the approach adopted in Ben-Akiva and Abou-Zeid, 2013).

wj » 1S a random time-invariant component that is specific to alternative j and individual

n and is expressed as follows:

M A E
— Main,j Main Acc,j ,  Acc Egr,j Egr
Wjn Zlm mn T Ig " wan + I en
m=1 a=1 e=1 (9)

Where wM%n, wAc, and w9  are error components specific to main mode m, access

mode a, and egress mode e, respectively. Each error component has a normal distribution with 0
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mean and standard deviation to be estimated. ¢; , . is an Extreme Value Type | distribution with

zero mean and variance normalized to 72 /6 to set the scale of the utility of alternative j in

scenario t.

It must be noted that for simplicity this framework assumes that every multi-modal trip
has uni-modal access and egress stages. In reality, multiple modes can be used for the access or
egress trips. Moreover, a multi-modal trip might only include an access stage without an egress
stage when the final destination is located at the drop-off location of the main travel mode, and

vice versa. The framework can be expanded to account for such cases by relaxing the constraints

on YA_, 12°“ and YE_, 159" and allowing them to exceed 1 when multiple modes are used for
access or egress, or allow one of them to be 0 when access or egress trips are not necessary.
However, this is not required for this thesis and the simplified utility defined in equation (2) will

be adopted.

3.1.2.2. The Likelihood Function

The method of maximum likelihood is used to estimate the model. In this section, the
likelihood function that needs to be maximized in model estimation is expressed. Let ¥,, bea] x
T matrix reflecting the choice of individual n across all presented scenarios T. y; ,, . is a binary

choice indicator that defines elements of the Y,, matrix as follows:

1 if alternative j is selected by individual n in scenario t

Vime = {g (10)

otherwise

The likelihood of observing all the choices of individual n can be expressed as follows:
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Where f(.) is the probability density function of the corresponding error component or

parameter. 2 is a vector including all parameters that define the distributions of the random

terms.

The likelihood function is the probability of observing the choices of all respondents in

the final sample and can be expressed as:

L= [P0alx. 8L (12)

The log-likelihood becomes the following:

N
LL = z I[PV, X, BL, D] (13)

n=1

3.2. Selection Criteria
This section presents the model selection procedure which is based on a number of

considerations including the sign of the estimated coefficients, the statistical significance of the
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variables, the goodness of fit of the models, the resulting value of time, and cross validation

prediction tests.

3.2.1. Sign of Estimated Coefficients and Significance of Variables

The estimated coefficients quantify the effect of each variable on the utility of the
alternatives that incorporate it, and thus on the overall selection process. A significant coefficient
implies that the corresponding variable is integral to the utility of the equivalent mode and its
effect is non-zero at the adopted confidence level. As for the sign, it reflects whether the variable
improves or deteriorates the utility of corresponding alternatives. For example, an increment in
travel time for the same trip adds more burden on the commuter which implies a negative
coefficient for the travel time coefficient. The relative magnitude of different coefficients also
provides insights on the comparative effect of different variables on the utility of different travel

modes.

3.2.2. Goodness of Fit
Goodness of fit measures are widely used in model selection. In discrete choice models,

the final log-likelihood LL g which was discussed earlier is the main factor for model adoption,
with a higher LL implying better model fit. Another important criterion is the p? measure

which also reflects how well the model fits the data and is computed as follows:

() (14)

2=1
P LL,
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Where LL, represents the log-likelihood of the null model where all parameters are zero
(Johansen, 2013). p? ranges between 0 and 1. A higher p? indicates a model that fits the data

better.

A high p? might sometimes reflect an over-fitted model when the number of parameters
is very high. The Akaike Information Criteria (AIC) and the Bayesian Information Criterion
(BIC) address this limitation by penalizing the excess of parameters in a model. Equations (15)

and (16) provide the formulas for the AIC and BIC measures, respectively.

AIC = =2LLp) + 2K (15)
BIC = —2LL(p) + 2log(N)K (16)
Where LL is the final log-likelihood of the estimated model, K is the number of

parameters in the model, and N is the sample size. The actual value of the criterion is
meaningless but relative values can be used to compare multiple models. The best fitting model

is the one with the lowest AIC/BIC criterion.

It must be noted that all criteria in this section can only be used to compare models

estimated with the same data set and using the same dependent variable.

3.2.3. Value of Time Analysis

The value of time (VOT) is a key concept in transport planning as it allocates a
monetary value to the travel time savings induced by new infrastructure projects or transport
services based on the tradeoff between travel time and cost (Ben-Akiva and Lerman, 1985). The
VOT is the marginal utility of travel time divided by the marginal utility of travel cost. A

deterministic VOT is obtained when both parameters are fixed, while a probabilistic distribution
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is defined through Monte Carlo simulation when one or both parameters are random. The VOT
will be computed for different trip stages and compared to the typical values found in the

literature.

3.2.4. Cross Validation Prediction Test

K-folds cross validation tests are applied to evaluate the robustness of estimation and
predictive power of the obtained models. The test consists of splitting the data set into k equal
sub-sets that are mutually exclusive and collectively exhaustive. In these tests, k -1 sub-sets are
used for model estimation before applying it on the remaining sub-set to compute the likelihood
of replicating the observed choices. The prediction test is repeated over all possible combinations
of sub-sets and the likelihood of all combinations is summed to obtain the overall final likelihood
of the proposed model. The number of folds can vary from 2 to N, where N is the sample size, in
which case the test is named leave-one-out cross validation as N-1 data points are used for
estimation before applying the model to find the likelihood of observing the choices of the
remaining data point. Kohavi (1995) suggests that no more than 10 folds should be used for cross
validation even when computational power allows for it. In this research, a 5-fold cross

validation will be performed to compare models.

3.3. Data Needs
This section covers data that needs to be collected for the proposed modeling
framework. The needed data is obtained using a commuter survey and can be separated into the

following categories:
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1. Trip characteristics of the individual including origin, destination, mode of commute, time
of departure, and travel costs.

2. Socio-economic characteristics of the respondent including gender, income, age, education,
household size, and car ownership.

3. Revealed preferences towards existing travel modes including travel trends, frequency of use
of existing commute modes especially public transportation, and familiarity with emerging
mobility services that are of concern in the study.

4. Stated preference data which reveals the choices made by the decision maker when provided
with multiple hypothetical scenarios. The choice set should cover all modes of main
transport alongside access and egress modes for mass transit that are of interest in the study.
The stated preference design should also provide a flexible and clear experiment in addition
to all level-of-service attributes that are judged to be pivotal in the selection process.

5. Attitudinal indicators and perceptions of the users should be collected when latent variables
are to be included in the model. In that case, respondents are provided with numerous

statements and are then asked to report their level of agreement on a 5-point or 7-point scale.

3.4. Policy Analysis

The final selected model will also be used for forecasting under different policy
scenarios to give an estimate of the demand for ridesourcing at the feeder stage in addition to its
impact on overall transit ridership. Policies will cover pricing schemes of ridesourcing and other
modes in addition to operational policies and will be tested by inducing changes in the variables

of interest and forecasting the corresponding results which will be compared to a base scenario.
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The sample enumeration method will be used to measure the impact of the proposed
policies. These policies serve as a tool for planners and policy makers aiming for a better
integration of ridesourcing with mass transit and looking to effectively provide enhanced first-

mile-last-mile coverage.
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CHAPTER 4

|
CASE STUDY: DEMAND MODELING FOR RIDESOURCING AS

FEEDER TO THE PLANNED BEIRUT BRT

This chapter applies the proposed modeling framework in the context of a case study of
the planned Beirut Bus Rapid Transit (BRT). The model outputs can be used to give a better
overview of the potential of integrating ridesourcing with transit. Section 4.1 describes the
transportation sector in Lebanon and the characteristics of the planned Beirut BRT. Section 4.2
delineates the study area. Sections 4.3 and 4.4 present the survey deign and data collection
procedure, respectively, before providing the descriptive analysis of the sample in section 4.5.
Finally, section 4.6 presents the model specific to the case study with different approaches

considered.

4.1. Transportation Context in Lebanon and the Planned Beirut BRT

4.1.1. Overview of the Transportation Sector in Lebanon

Lebanon suffers from a growing traffic congestion problem, especially in its capital city
Beirut and its suburbs. This is due to increasing travel demand and insufficient road capacity to
cater for diverse activities of the population at an acceptable level of service. As a result,
commuters entering the Lebanese capital experience excessive delays that extend beyond peak
hours. The northern entrance to Beirut suffers the most from congestion as it handles more than
50% of traffic entering the capital, which translates to over 300,000 vehicles entering on a daily
basis. The resulting congestion imposes extended delays and a 20-km trip from Jounieh to Beirut

can take over 90 min (CDR/World Bank, 2017) at peak hours.
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Part of this severe congestion can be attributed to high car dependency and
agglomeration of jobs and services in the capital. The private automobile is responsible for over
80% of motorized trips conducted in Greater Beirut Area (GBA) during the AM peak, a share
that is even larger outside GBA where public transportation is more deficient (IBI Group and
TEAM International, 2009). Car ownership in Lebanon is of the order of 1 car per 3 persons,
with an average occupancy of 1.2 persons per vehicle (MoE/UNDP/GEF, 2015). High capacity
transit systems that operate on fixed alignments with their own right of way are absent, and non-
motorized modes are scarce due to the lack of suitable infrastructure such as sidewalks and
dedicated bike lanes. Cars keep dominating despite low fares of jitneys and buses due to
reliability concerns and bad perception by the public (Danaf et al., 2014). The total share of
public transportation in the GBA is around 29% distributed mainly over jitneys/taxis which
account for 19% of total travel and buses/vans that serve 10% of overall travel (Kaysi et al.,

2010).

4.1.2. The Planned Beirut BRT

One approach towards mitigating congestion is to develop a high capacity mass transit
system that provides an alternative to private cars. Bus Rapid Transit (BRT) constitutes an
example of such systems that is widely popular in developing countries. The system is a bus-
based public transit scheme that dedicates lanes for bus operations to avoid interaction with
regular traffic, with priority at intersections to reduce delays. Istanbul implemented a BRT
system in 2007 based on the system’s ability to match the service level of rail systems while
maintaining the flexibility of buses at relatively lower investment costs (Babalik-Sutcliffe et al.,

2015). However, South America remains where BRT systems are mostly embraced as a prime
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mass transit facility. In the Colombian capital Bogota, the TransMilenio BRT was launched with
instant success and decreased average travel time by 32% while increasing land price along the

corridor, growing tax revenues, reducing pollution, and creating job opportunities (Turner et al.,

2012).

The World Bank and Lebanese officials aim to follow suit by introducing a BRT
system that can relieve the bill and burden of traffic congestion. The system will run along the
northern coastal highway, with the first phase extending from Tabarja (TB27 in Figure 7)
towards Charles Helou station (TB1 is Figure 7) in Beirut. The proposed BRT alignment will

mainly serve commuters flowing into Beirut through its northern entrance where congestion is at

its worst.

The proposed alignment will run a distance of 24 km with 28 stations spaced at 850-m
intervals. Buses will run on two dedicated lanes (one per direction) that will be built in the
middle of the existing highway. Bus stations are to be provided in the middle of the two
dedicated lanes for smooth boarding/alighting, and pedestrian bridges will connect commuters to
the BRT. Buses will operate at pre-defined headways and follow reliable schedules that are
shared online and projected on screens at stations (CDR/World Bank, 2017). The proposed BRT

layout at stations is shown in Figure 6.
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Figure 6: BRT Layout at Stations (CDR/World Bank, 2017)
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Legend
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igure 7: Proposed BRT Alignment (CDRrId Bank, 2017)

4.1.3. Purpose of the Case Study

The case study investigates the potential of ridesourcing in Lebanon in terms of its
complementarity to mass transit systems and specifically as a feeder to the proposed Beirut BRT.
The study focuses only on trips entering Beirut during the morning peak through its northern
entrance in accordance with BRT coverage. The study was limited to current car users as these
account for the majority of motorized trips circulating in the GBA. This approach also allows to
reduce the number of alternatives in the model as only two main modes will be considered: car

and BRT.

4.2. Study Area

The study area is delineated in a way to cover the majority of regions where BRT trips
are expected to originate or be destined while keeping data collection feasible. The case study
analyzes trips entering into Beirut during the morning peak. As such, the study area is divided

into origin zones where BRT trips originate and destination zones where trips are headed. Some
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zones are strictly origins or destinations, while others can serve as both depending on their

relative location in the study area and relative to the BRT alignment.

Since travel times and costs vary significantly for different trip end nodes (trip distance
can range from 3 km! up to over 40 km), the study area was divided into 9 origin zones (1 to 9 in
Figure 8) and 8 destination zones (A to H in Figure 8). Zones 6, 8, and 9 can also serve as
destinations for trips originating at zones 1, 2, or 3 due to the large distance traveled by BRT
compared to the access/egress distances which makes BRT trips more attractive. Zones are
defined based on traditional traffic analysis zones of Lebanon and the relative location to the
BRT alignment. For example, a large zone in proximity of the BRT is divided into two sub-
zones: one where walking to the BRT is feasible, and the other beyond walking distance
(assumed around 750m) to the BRT. Coastal municipalities are agglomerated into zones where
walking is feasible as access and/or egress mode, while municipalities away from the BRT
alignment are grouped separately. Smaller and more refined zones are defined for areas where
population and demand are expected to be high and larger zones are adopted for areas of lower

expected demand.

The BRT pre-feasibility report estimates that the largest portion of demand will be from
areas adjacent to the BRT alignment (northern regions of GBA, Jounieh, and Tabarja,
represented as zones 2, 3, 6, 8, and 9) as commuters residing there can easily board the new
proposed transit system and will avoid long stretches of traffic on the highway (World Bank,
2015). Zones beyond walking distance to the BRT alignment can also be served by the system

due to motorized feeder lines. The typical interconnectivity ratio, which is a measure of access

! Trips shorter than 3 km were not considered as these would have a lower incentive to switch to BRT compared to
longer trips.

43



and egress time as a proportion of total travel time, typically falls between 0.2 and 0.5
(Krygsman et al., 2004) with a mean of around 0.4 (Goel and Tiwari, 2016). The study area was
bounded based on an interconnectivity ratio of around 0.5 which verifies that access and egress
trips combined are not longer than the BRT trip itself. Therefore, regions within a practical
access distance to the BRT were also included as possible trip origins (zones 1, 4, 5, and 7).
Municipal Beirut (zones A to C) and northern regions of Greater Beirut where main corporations
and universities are located (zones D to H, 6, 8, and 9) are considered valid work/college

destinations for the purposes of this study.
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Figure 8: Study Area
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4.3. Survey Design

Data was collected by means of a questionnaire tailored for the purpose of this case

study. The survey was approved by the Institutional Review Board (IRB) at the American

University of Beirut in November 2018, and is provided in Appendix A. The questionnaire

consists of 6 sections. The first section contained questions determining eligibility to participate

in the survey while the remaining sections were designed to collect two types of data: revealed

preference data and stated preference data.

4.3.1. Screening Criteria

An individual is eligible for participation in the study if the following criteria are met:

v

v

The individual must be an adult (18 years or older).
The individual is a full time or part time worker/student.

The individual commutes to work/college by private car as driver or as

passenger on board.

The individual’s work/college trip involves commuting on the coastal highway

(or any parallel road such as the sea-side road) for 3 km or more.
The individual’s residence is located within zones 1 to 9 (Figure 8)
The individual’s work/college destination is within zones A to H (Figure 8)

If the individual lives in zones 1, 2, or 3, then zones 6, 8, and 9 are also possible

destinations in addition to zones A to H.
For individuals residing in zones 4 to 9, only zones A to H are possible

destinations.
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4.3.2. Revealed Preference Data

The revealed preference part of the survey consists of four separate sections, in addition
to the current travel itinerary of the respondent which was already acquired in the screening
phase. Section 2 inquires about the characteristics of public transportation with questions about
the availability of nearby stations in the vicinity of the respondent’s residence, in addition to the

frequency of public transportation usage.

Section 3 investigates the attributes of the respondent’s typical commute to
work/college with questions about time of departure, trip distance and duration, satisfaction with

the commute, parking arrangement, and flexibility of work/college schedule.

Section 5 incorporates attitudinal statements about cars, existing buses, the proposed
BRT system, and ridesourcing. The respondent is also asked about previous usage of
ridesourcing to assess the familiarity with the service and the impact of awareness on the overall
adoption of the service. As for attitudinal statements, they allow participants to express their
position towards the presented statements based on a 5-point scale where 1 represents a strong
disagreement and 5 corresponds to a strong agreement. This type of data is useful for latent

variables models in which indicators can capture the respondent’s attitudes and perceptions.

Lastly, section 6 collects socio-economic details of the respondent including gender,

age, educational level, household size, driver licenses, and income.

4.3.3. Stated Preference Data
Since the BRT is not yet operational in Lebanon, mode choice data is collected

through a stated preference survey. Section 4 of the questionnaire presents 3 hypothetical
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scenarios to each respondent and asks them to select their preferred travel alternative. This
section provides an overview of the scenario design including the variables and levels presented

in these scenarios.

4.3.3.1. Overview of Scenarios

Stated preference data constitutes the core for modeling and analysis in this study.
Scenarios are presented to capture travel mode preferences of participants based on a set of

included variables. First, a typical BRT trip was divided into three distinct stages (Figure 9):

1. Access stage: this covers traveling from home to the closest BRT station at which

commuters can board BRT buses.

2. Main transport: this corresponds to traveling by BRT from the boarding station to the

station where the commuter would alight the BRT.

3. Egress stage: this covers traveling from the alighting station to the final work/college

destination.

Respondents were also provided with a broad description of the characteristics of the
proposed BRT assuming that some might not be aware of the system. The notion of ridesourcing
was also explained ahead of the scenarios to make sure that all respondents understand the

features that differentiate it from traditional travel modes.

47



Access

Stage
BRT Station

Main
transport:
BRT

BRT Station
>> Egress
( Stage

S

-

Work/College

Figure 9: Three Stages of a Typical BRT Trip

Respondents can choose to travel by private car (as they currently do) or by BRT
complemented by their preferred access and egress modes. Respondents can choose one of seven
provided access modes: park and ride, walking?, bus, taxi, jitney (mainly known as service in the
Lebanese market) which is a shared taxi that can pick-up and/or drop-off passengers at any point
along its route, ridesourcing (private), and ridesourcing (shared). Egress modes are the same as
access modes but without park and ride as commuters will not have access to their cars at that
stage of the trip. Accordingly, 42 combinations of access and egress modes are possible for BRT

trips which yields 43 possible options for the respondent to choose from after accounting for

2 Walking is available as access mode for zones 2, 3, 6, 8, and 9, and as egress mode for zones A, D, G, 6, 8, and 9.
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private cars. Including all combinations as separate options into a single experiment will lead to

complex choice tasks. Therefore, the selection process is divided into three steps (see Figure 10):

» Step 1: Preferred BRT Trip:

In this step, the respondent is assumed to use the BRT over the line-haul segment and is
asked to select his/her preferred door-to-door trip. Two independent selections are made: one for
the preferred access mode and another for the egress mode, both based on the provided attribute
values of travel times and costs. Attribute values are defined based on the actual origin and

destination zones of the respondent.

» Step 2: Choice Confirmation:

In this step, travel cost and time components are aggregated for the overall BRT trip
(including the line-haul segment) based on selections made in step 1, and a table including the
total travel time and total cost is provided to the respondent. The respondent can confirm his/her

picks and proceed to step 3, or choose to go back to step 1 and select other feeder modes.

» Step 3: Choice between Preferred BRT Trip and Private Car:

By now, the respondent has already selected a preferred overall BRT trip. The final step
of the scenario is to choose between this BRT trip and using the car all the way (for given
hypothetical time and cost values based on the origin and destination zones of the respondent) to

check whether the respondent will switch to the BRT or keep commuting by car.
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The same totals obtained in step 2 for the overall trip are shown in a table alongside
travel times and costs for using the car all the way, and the respondent is asked to make a choice

between the car and the BRT based on the presented values.

This procedure allows to capture users’ preferences for transit feeder modes while also
assessing the potential for switching from private cars to transit. The adopted design also
simplifies the choice process without compromising relevant information. Figure 10 illustrates

all three steps of a typical scenario.
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Figure 10: Overview of a Typical Scenario

4.3.3.2. Variables and Levels

As seen in Figure 10, travel time and cost attributes are presented through different sub-
categories. Fuel cost, daily parking cost, and trip fares are provided separately. This allows
testing users’ sensitivity to different cost components, with previous studies revealing that

commuters are more sensitive to parking cost and ticket prices than they are to fuel price
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(Arentze et al., 2013). In-vehicle travel time, walking time, and waiting time are presented

separately for the same purposes.

As stated in section 4.2, the study was divided into multiple zones due to differences in
travel time and cost across different zones. Based on the adopted zonal configuration, 81 origin-
destination combinations are possible, with each of them having different travel characteristics.
A unique set of levels is defined for each origin-destination pair to make sure that respondents
are presented with realistic values for the attributes of their trip. Each set includes all attributes
that are presented in a typical scenario, with four levels defined for each attribute in the scenario
tables. Scenarios are generated based on the random design approach (Walker et al., 2017), with

3 scenarios presented to each respondent.

The chosen levels cover a range as wide as possible while ensuring that all values
remain realistic. For example, the four levels for in-vehicle travel time by car are defined in a
way to have an optimistic level, assuming that congestion is relieved after the BRT
implementation, a pessimistic level, assuming congestion becomes more severe after reducing
traffic lanes to accommodate the BRT, and the two remaining levels are slight variations of the
current typical travel times, which are obtained from Google Maps for the AM peak period. As
an example, the following three tables provide the adopted levels for access, main, and egress

modes for trips originating at zone 7 and destined to zone A.
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Table 2: Variables and Levels for Access Modes for Trips from Zone 7 to Zone A

Variable Access Mode” Level 1 Level2 Level3 Level4
Park & Ride 6 8 11 12
. Bus 12 14 15 16
'”'Veﬂicrfeﬁa"e' Jitney 10 11 12 13
(min) Taxi 13 14 15 16
Ridesourcing (Private) 9 10 12 13
Ridesourcing (Shared) 11 12 13 14
Park & Ride N/A
. . Bus 1 3 5 6
Wa'm?n;'me Jitney 3 4 5 7
Taxi 5 7 8 10
Ridesourcing (Private) 2 3 5 6
Ridesourcing (Shared) 2 3 5 7
Park & Ride 1 2 3 4
Bus 3 6 8 10
Walking Time™  Jitney 1 2 4 5
(min) Taxi N/A
Ridesourcing (Private) N/A
Ridesourcing (Shared) N/A
Park & Ride 1,000 1,500 2,000 3,000
Bus NA
o JitNEY NA
Fuel Cost (L.L.™™) Taxi NA
Ridesourcing (Private) NA
Ridesourcing (Shared) NA
Park & Ride 1,500 2,000 2,500 3,000
Bus NA
Daily Parking Cost  Jitney NA
(L.L.™™) Taxi NA
Ridesourcing (Private) NA
Ridesourcing (Shared) NA
Park & Ride NA
Bus 1,000 1,500 2,000 2,500
- Jitney 2,000 2,500 3,000 4,000
Fare (LL7) gy 4000 5000 7,000 8,000
Ridesourcing (Private) 3,000 4,000 5,000 7,000
Ridesourcing (Shared) 1,500 2,500 3,000 4,000

“Walking is also available as access mode for zones adjacent to the BRT alignment (zones 2, 3, 6, 8,

and 9). Walking time

is the only variable of interest when walking is the access mode.
“ Walking time is only considered for modes that lack the flexibility to pick commuters from their

doorsteps and drop them right at stations like bus and jitney. Park and ride includes a short walking

time from the parking to the station.

Hkk

1 USD = 1,500 L.L. at the time the survey was conducted.
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Table 3: Variables and Levels for Main Transport Modes for Trips from Zone 7 to Zone A

Variable Main Mode Level 1 Level 2 Level3 Level4
In-Vehicle Travel Car 40 50 55 65
Time 13
(min) BRT 15 16 19
. . . Car NA
Waiting Time (min) BRT 1 2 3 4
Walking Time Car 5 8 10 15
(min) BRT 1 1 2 2
Car 2,500 3,000 3,500 4,000
Fuel Cost (L.L.) BRT NA
Daily Parking Cost  Car 6,000 8,000 1,0000 1,2000
(L.L) BRT NA
Car NA
Fare (L.L.) BRT 1,500 2,000 3,000 4,000
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Table 4: Variables and Levels for Egress Modes for Trips from Zone 7 to Zone A

Variable Egress Mode” Levell Level2 Level3d Level4
Walking NA
. Bus 11 13 14 15
'”'Veﬂicrfeﬁa"e' Jitney 10 11 12 13
(min) T§X| _ _ 7 9 10 11
Ridesourcing (Private) 8 9 10 11
Ridesourcing (Shared) 8 9 11 12
Walking NA
Bus 1 2 3 4
Waiting Time (min) Jitney 1 2 3 4
Taxi 1 2 3 4
Ridesourcing (Private) 1 2 3 4
Ridesourcing (Shared) 1 2 3 4
Walking 5 7 10 15
Bus 2 3 4 5
Walking Time™  Jitney 1 2 4 5
(min) Taxi NA
Ridesourcing (Private) NA
Ridesourcing (Shared) NA
Walking NA
Bus 1,000 1,500 2,000 2,500
Jitney 1,000 2,000 3,000 4,000
Taxi 4,000 5,000 6,000 8,000
Ridesourcing (Private) 2,000 3,000 4,000 5,000
Ridesourcing (Shared) 1,000 1,500 2,000 3,000

* Walking is only available as egress mode for zones adjacent to the BRT alignment (zones A, D, and G).
Walking time
is the only variable of interest when walking is the egress mode.
** Walking time is only considered for bus and jitney which lack the flexibility to pick commuters from
their doorsteps and drop them right at stations.

4.4. Sampling Plan and Data Collection
This section goes over the determination of sample size and distribution over the

different zones alongside the adopted sampling technique and data collection.
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4.4.1. Sample Size

The sample needed for estimation of a proportion of the population with a particular
characteristic (e.g. the percentage that will switch from car to BRT) is calculated using the
following equation:

_ Zé/z Xp(l—-p) (17)
S — dz

Where p is the actual proportion of the population, Z, /, is the Z -value extracted from
the standard normal distribution table that corresponds to a two tailed significance level a, and d
is the allowable error between the sample and the population proportion. An allowable error of
0.05 will be adopted, with p set at 0.5 as this value maximizes the sample size when no better
estimate of p can be used. As for «, the most common values in transportation planning practice

are 0.05 and 0.10 which imply sample sizes of 384 and 271, respectively.

Accordingly, a sample size of 400 was adopted, which was also consistent with the
available budget. However, it must be noted that equation (17) is used to estimate a proportion of
the population based on a binary Bernoulli outcome, such as the proportion using the BRT rather
than the preferred mode combination of a multi-modal trip. While our experimental design is
more complex than a Bernoulli experiment, this remains the best guideline for this purpose and a

sample of 400 participants is sufficient in general for standard discrete choice models.

4.4.2. Sampling Plan

The next step was to adopt a sampling strategy to distribute it over the study area.

IVTTeqr
IVTTRRT+2XIVTT g4¢¢

Stratified random sampling was adopted based on the exogenous variable:
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where IVTT,,, and IVTTggy represent in-vehicle travel time by car and BRT, respectively, and
IVTT,.. is the in-vehicle travel time to access the BRT by car. The exogenous variable gives an
indication of the ratio of travel time by car to travel time by BRT, and stratified sampling was
adopted because different behaviors are expected for different values of the exogenous variables.
A large ratio reflects that traveling by car is more time consuming than traveling by BRT. Hence,
the larger the ratio, the more likely commuters are to use the BRT. Twice the access travel time is
used since egress time cannot be controlled when sampling based on residence location (sampling

does not consider work/college location).

As seen in Table 5, the 9 origin zones are divided into 4 strata based on the
corresponding value of the exogenous variable. Stratum 1 is assigned only 10% of the total
sample size as private cars are expected to be more attractive in this case. Stratum 4 is assigned
20% of the total sample size. For this stratum, BRT should be significantly faster than private
cars as BRT riders skip long stretches of congestion during their trip that is mostly along the
highway. Responses from these zones will reveal whether commuters have strong preference
towards private cars and whether travel time is the main factor in mode choice. As for strata 2
and 3, they are attributed 35% each of the total sample since this is where the trade-off in
variables is most significant due to relatively close travel times between the BRT and the private
car, with a small advantage to the BRT. Hence, these strata can give a clearer insight about how
the trade-off between different variables affects overall mode choice. It must be noted that
stratification does not affect model estimation but affects forecasting for which proper weights

will have to be defined.
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Table 5: Stratified Sample

i Share of Sample
Stratum Interval for TToer I IVIT — Zones (%)

1 T 5 10

2 [1, 1.5] 1,2,4 35

3 [15, 2] 80 %

. (2, o] 6,8,9 20

Within each stratum, responses are distributed over zones based on population estimates
obtained from TMS Consult, a local transportation firm. Each zone is sub-divided into up to 8
sub-zones (A’ to H”) to ensure that the sample is well distributed over the area, and observations
are distributed over sub-zones proportionally to their population. The following table shows how

the sample is distributed over zones and sub-zones:

Table 6: Sample Distribution over Zones and Sub-Zones

N=400
Zone 1 2 3 4 5 6 7 8 9
m 51 24 115 66 40 13 25 35 31
A 5 5 35 3 8 5 5 14 13
B’ 5 40 8 5 14 6
c 10 2 40 13 4 5 7 6
D’ 8 2 NA 13 8 NA 5 NA 6
E 5 5 NA 3 4 NA 5 NA  NA
F 5 5 NA 4 NA NA NA  NA
G 5  NA NA 13 4 NA NA NA  NA
H’ 5  NA NA 7 NA NA NA NA NA
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4.4.3. Data Collection
Data collection was performed in January and February 2019 by a professional survey
company. The interviewers were trained on the topic to be able to handle any sort of clarification

about the included specifications, or inquiry about information beyond the provided details.

400 respondents were interviewed in their homes by trained interviewers and selected as
in Table 6, with each respondent receiving 3 different scenarios for a total of 1200 choice
experiments. The geographical coordinates of residences were recorded using tablets with GPS
to make sure that the sampling plan was respected. The sample is dispersed over the study area

as shown in Figure 11.
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Figure 11: Spatial Distribution of the Sample over the Study Area
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4.5. Descriptive Analysis

891 respondents were approached in order to obtain 400 completed questionnaires, for a
response rate of around 45%. Out of the 491 rejections, 175 were refusals and 316 were not
eligible to participate for one of the following reasons: retired or unemployed respondent (43%),
commute mode is not private car (38%), work/study outside of the study area (10%), distance

commuted on coastal highway or parallel roads is below 3 km (5%), or zero car ownership (4%).

Responses were also reviewed to identify potential data issues. Choices reveal that taxi
was not popular as feeder mode with only 3 and 8 selections for access and egress stages,
respectively, out of 1200 scenarios in total. This set was not sufficient to estimate coefficients
specific to taxi alternatives. As such, the 8 respondents who chose taxi were eliminated from the

data set which left a sample size of 392.

This section summarizes the performed descriptive analysis of the final data set and
describes the sample demographics, mode choice, socio-economics, and correlations between

different factors and BRT and ridesourcing usage for the 392 responses used in modeling.

4.5.1. Sample Demographics
The sample demographic and socio-economic characteristics obtained from the
collected responses are summarized in Table 7. This analysis is performed to assess the

representativeness of the sample.
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Table 7: Distribution of Sample Demographic and Socio-Economic Characteristics (N = 392)

Survey Question

Option

Percentage of

Respondents
A 33.67
B 15.82
C 16.84
D 9.44
E 5.36
Destination Zone F 3.06
G 5.61
H 2.30
6 2.81
8 2.55
9 2.55
Full time worker 90.56
Main Occupational Status Part time worker 3.57
Full time student 5.36
Part time student 0.51
1 30.61
2 50.26
Household Car Ownership 3 14.29
4 2.81
5+ 2.04
More than once a week 0.00
About once a week 6.63
Public Transportation Usage Few times a month 6.12
Frequency About once a month 2.30
Several times a year 6.38
About once or twice a year 8.42
Never 70.15
I Flexible arrival and departure 8.16
Fleﬁgg:ge?::vmork Flexible arrival or departure 26.28
Not flexible 65.56
Used Ridesourcing Previously Egs éggé
Male 62.76
Gender Female 37.24
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Table 7 (Cont.): Distribution of Sample Demographic and Socio-Economic Characteristics (N = 392)

Percentage of

Survey Question Option Respondents
18-24 7.91
25-29 13.27
Age 30-39 24.74
40-49 35.71
50-64 17.60
64+ 0.77
Less than high school diploma 4.85
High school diploma 17.35
: . Technical school 14.54
Highest Education Level Some college 1735
Bachelor Degree 42.35
Masters/PhD 3.57
1 4.08
2 9.44
. 3 19.13
Household Size 4 3827
5 21.94
6+ 7.14
0-1,499,999 0.77
1,500,000-2,999,999 31.89
3,000,000-4,499,999 25.51
Monthly Household Income ~ 4,500,000-5,999,999 16.33
(L.L) 6,000,000-7,499,999 4.85
7,500,000-9,999,999 5.10
10,000,000-14,999,999 1.02
I don’t know / No answer 14.54

"1USD =1,500 L.L.

As shown in the table above, around 66% of respondents’ commutes are destined to
Municipal Beirut (Zones A, B, and C) where the largest firms and universities are located.
However, this market segment is over-represented as employment figures from TMS Consult

reveal that Municipal Beirut accounts for 55% of employment in the destinations defined in the
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adopted study area. These figures however do not include students and are national figures in

Lebanon that are not based on the proposed layout of the study area.

Full time workers constitute the dominant majority of the sample and frequent public
transportation users (on a monthly basis) represent a low share of around 15% which was
expected as only car users were included in the study. Car ownership is relatively high with 70%
of households owning 2 or more cars. This is much higher than the 25% found by TEAM (1995)
in the Greater Beirut Transportation Plan. This can be attributed to the elimination of households
with no cars from our study, the growth in car ownership during the last 24 years, and the
possibility that car ownership rates are higher outside Greater Beirut as public transportation

outside the capital is even more deficient.

Around 63% of the sample are male, and around 95% have a high school diploma with
46% having earned a college degree. The age is well distributed over the sample with the largest
portion, around 36%, falling between 40 and 49 years. The average household size of the sample
is 3.87 which is comparable to the average of 4.23 obtained from the Central Administration of
Statistics’ (CAS) Living Conditions Survey in 2007. As for the average household monthly
income, over 68% of reported incomes fell below 4,500,000 L.L. (around 3,000 USD) while only

7% exceeded 7,500,000 L.L. (around 5,000 USD).

4.5.2. Mode Choice
The 392 respondents were presented each with 3 different scenarios for a total of 1176

choice experiments. The choices are summarized in Table 8.
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Table 8: Mode Choice Results

Percentage of

Main Mode Scenarios (1176

Scenarios)
Car 65.48
BRT 34.52

Percentage of
Scenarios where
BRT was Chosen

(406 Scenarios)

Access Mode

Park & Ride 45.91
Walk 30.05
Bus 8.17
Jitney 2.16
Ridesourcing (Private) 2.64
Ridesourcing (Shared) 11.06

Percentage of
Scenarios where
BRT was Chosen

(406 Scenarios)

Egress Mode

Walk 33.89
Bus 9.62
Jitney 18.03
Ridesourcing (Private) 3.13
Ridesourcing (Shared) 35.34

In 34.52% of scenarios, the choice was BRT as mode of main transport while the choice
in the remaining scenarios was not to switch from private cars. Among the scenarios where BRT
was chosen, park and ride was the most popular access mode with a share of around 46% while
walking accounted for 30% of access trips and 34% of egress modes despite not being feasible at
all zones. For zones where walking is available, 43% of BRT users chose it for access while 52%
selected is for egress. Shared ridesourcing was much more popular than private ridesourcing

revealing that public transit users value cost more than privacy in feeder trips. It must be noted
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that 59% of respondents selected car for the three scenarios revealing that some commuters have
strong preference for driving, while 28% selected BRT for main travel in all scenarios reflecting

a market segment that is highly enthusiastic to have and use mass transit for work/study trips.

4.5.3. Socio-Economic Characteristics and Correlation to Mode Choice
In this section, the effect of demographic and socio-economic characteristics on BRT
and ridesourcing usage is assessed. This helps in identifying key variables that can be included in

the model. Table 9 describes the main findings.

Table 9: Demographic and Socio-Economic Variables in Relation to BRT and Ridesourcing Usage

Percentage of Percentage of
Survey Question Option Scenarios BRT Users
y b Choosing BRT Choosing

Ridesourcing™
1 35.83 36.43
2 34.52 43.14
Household Car Ownership 3 29.17 55.10
4 33.33 45.45
5+ 54.17 38.46
About once a week 41.03 18.75
Few times a month 66.67 39.58
Public Transportation About once a month 96.30 53.85
Usage Frequency Several times a year 34.67 38.46
About once or twice a year 50.51 66.00

Never
. Flexible arrival and departure 38.54 24.32
Fleﬁr?:;:g e?rfe\xork Flexible arrival or departure 26.54 29.27
Not flexible 37.22 48.43
Used Ridesourcing Yes 45.75 62.86
Previously No 32.84 38.10
Gender Male 26.42 37.44
Female 48.17 46.92
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Table 9 (Cont.): Demographic and Socio-Economic Variables in Relation to BRT and Ridesourcing Usage

Percentage of Percentage of
Survey Question Option Scenarios BRT Users
Choosing BRT Choosing
Ridesourcing™
18-24 61.29 47.37
25-29 48.72 46.05
Age 30-39 45.02 52.67
40-49 23.33 30.61
50-64 19.81 21.95
64+ 33.33 66.67
Less than high school diploma 70.18 25.00
High school diploma 37.75 36.36
: : Technical school 32.16 40.00
Highest Education Level Some college 35 29 30 56
Bachelor Degree 30.12 54.00
Masters/PhD 28.57 75.00
1 37.50 61.11
2 37.84 50.00
. 3 35.56 47.50
Household Size 4 3289 3514
5 36.82 37.89
6+ 23.19 68.75
0-1,499,999 55.56 40.00
1,500,000-2,999,999 19.47 27.40
3,000,000-4,499,999 33.33 31.00
Monthly Household 4,500,000-5,999,999 48.44 47.31
Income (L.L.") 6,000,000-7,499,999 59.65 38.24
7,500,000-9,999,999 63.33 55.26
10,000,000-14,999,999 25.00 0.00
I don’t know / No answer 35.09 23.98

*1USD =1,500 L.L.
" Using private and/or shared ridesourcing for access and/or egress stages

The analysis reveals no clear effect of car ownership on BRT ridership. Frequent public
transportation users are more likely to switch to the BRT than those who rarely use transit.

Females and commuters who are familiar with ridesourcing are also more in favor of the new
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transit system. BRT ridership is negatively correlated to age with older users embracing the
transit system at lower rates than their younger counterparts. Household size and educational
level do not seem to have a significant impact on main mode choice, while the relation with

respect to monthly family income is ambiguous.

As for ridesourcing, the main socio-economic factors affecting demand are apparently
familiarity with the service, flexibility of work arrangement, frequency of public transportation
usage, gender, age, and education. The share of ridesourcing increases for commuters with no
work flexibility and for those who rarely use public transportation. The share of ridesourcing is
inversely proportional to the age of commuters with younger people more likely to use the new
mobility concept. Education also reveals a clear relation to ridesourcing usage with more
educated segments embracing the service at higher rates. As for gender, ridesourcing is more

popular with females than males based on the collected sample.

BRT preference was also assessed based on residence area and destination zone.
Residents in zones far from the BRT alignment (zones 5, 1, 4, and 7, ranked by decreasing
distance to the BRT) were more reliant on cars, as shown in Figure 12, suggesting that long
access trips decrease the attractiveness of the BRT. Long egress trips are also detrimental to the
BRT as destination zones that are far from stations had lower BRT shares (zones H, F, G, C, and
H as shown in Figure 13, ranked from farthest to closest to the BRT alignment). This suggests
that mass transit systems mainly cater for trips starting and ending at the proximity of the

alignment with utility gradually decreasing as we move further away from the corridor.
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4.6. Demand Modeling

The discrete choice modeling framework developed in Chapter 3 is applied using the
data collected to model demand for ridesourcing and other modes as feeders to the planned
Beirut BRT. This section covers the assumptions of the case study, the model specification, and

the model development.

4.6.1. Assumptions
Several assumptions are made to reduce the complexity of the model and ease its

estimation. The main assumptions are the following:

» The alternative specific constant for a particular mode is equal for all travel stages. That
is, 2 = a9 = a,, VuEU=ANE

» Similarly, the error components are assumed to be specific to the mode of travel rather
than the trip stage. One error component is defined by mode assuming that attitudes
towards a particular feeder are independent of trip stage. This assumption was used to
reduce the random terms in the model which reduces the computational burden involved
in model estimation.
wi = w9 = w, VueU=ANE
Therefore, the number of error components for feeders equals the size of the set F =
{A U E} which includes all feeder modes but avoids duplication.

> Private car is the only uni-modal trip considered, with traditional public transportation

modes like buses, taxis, and jitneys not included for all-the-way trips. That is mainly to

reduce the number of alternatives in model estimation but also because public
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transportation, as discussed previously, has a low share of overall trips with the car
dominance prevailing. Accordingly, the success of the BRT highly depends on
convincing drivers to switch. Thus, the model estimated in this thesis is a switching
model from car to BRT.

» The BRT is the other main transport mode considered as it will be, once implemented,
the only high capacity transit system operating on the northern entrance to Beirut. Each
BRT trip is assumed to require exactly one access trip and one egress trip. No trip can
skip one of the stages or use multiple modes for access or egress. This assumption
allowed to reduce the complexity of the stated preference design to avoid confusion of
participants and ensure responsive and educated selections.

» The alternative specific constant of the car alternative is normalized to zero, while the
same is done for the error component of the BRT. The constant of the BRT was also
normalized at zero as it is assumed to be incorporated in that of the feeders, with each
BRT alternative including two feeders each of which has a specific constant to be

estimated.

4.6.2. Model Specification

The systematic utilities are defined by mode of main transport, access mode, and egress
mode. The utility of any alternative j can then be obtained by combining utilities of modes at
different stages. After eliminating taxi from feeder options, we are left with 2 main travel modes,
6 access modes, and 5 egress modes which allows for 31 different travel alternatives. The sets of

available modes are defined as follows:

M = {Car, BRT}
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A = {Park and Ride, Walk, Bus, Jitney, Ridesourcing (Private), Ridesourcing (Shared)}

E = {Walk, Bus, Jitney, Ridesourcing (Private), Ridesourcing (Shared)}

Three different approaches are tested before selecting a final specification: the first
approach considers total travel time with separate coefficients based on trip stage, the second
approach is similar to the first one but distinguishes between in-vehicle and out-of-vehicle travel
times, while the third approach is similar to the second but adopts different coefficients for in-
vehicle travel time of different feeder modes. The three approaches are discussed next, and the
most suitable model is selected after estimation in chapter 5 based on the criteria defined in
chapter 3. It must be noted that several other approaches were tested but did not lead to

significant results.

4.6.2.1. Approach |: Model with Total Travel Time

This approach does not separate between in-vehicle and out-of-vehicle travel time.
Instead, it separates travel time based on the stage of the trip (main, access, egress). V’, which is
the sum of the systematic utility and error components, is defined below for each main, access,

and egress mode.

. TTMam, .
V’gl(f;,%,t =0+ ﬂTT/ln(dist)_Car T + .BCost,nCOStIC“/Ic%,Trll,t + ﬁAge_CarAgen
n(dist), (18)
+ IBFlex_CarFlexiblen + ﬁPTuser_CarPT_Usern + wCar,n
VlMain =04 TTMain + C tMain 19
BRTnt = Brr Brr T TeRT m,t + BcostnCOStERT 1 ¢ (19)
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1Acc _ Acc
V barkarident = Apark&ride + Brr_reedersT Iparkarident

Acc
+ .BCost,nCOStPark&Ride,n,t + Wpark&Riden

1Acc — Acc
4 Walkn,t — Awalk + .BTT_FeedersTTWalk,n,t + wWalk,n

1Acc — Acc Acc
4 Busn,t — Apus + .BTT_FeedersTTBus,n,t + BCost,nCOStBus,n,t

+ ﬁPTuser_Bus]itneyP T_User, + Wpysn

1Acc _ Acc Acc
V]itney,n,t - a]itney + .BTT_FeederSTT]itney,n,t + BCost,nCOSt]itney,n,t

+ .BPTuser_Bus]itneyPT—Usern + w]itney,n

1Acc _ Acc
|4 Ride(Pri)n,t — aRide(Pri) + .BTT_FeedersTTRL'de(Pri),n,t

Acc
+ BcostnCOStrigepriynt
+ .BRide_UserRide_Usern + ﬁAge_RideAgen

+ ,BFlex_RideFleXiblen + wRide(Pri),n

VIACC

— Acc
Ride(Sha)nt — aRide(Sha) + ﬁTT_FeedersTT

Ride(Sha)n,t
+ Costhes
Cost,n Ride(Sha)n,t
+ .BRide_UserRide—Usern + .BAge_RideAgen

+ .BFlex_RideFleXiblen + WRide(Sha)n

1Egr _ Egr
|4 walknt — EWalk + :BTT_FeedersTTWalk,n,t + Wwalkn

1Egr _ Egr Egr
4 Busn,t — ABys + ,BTT_FeedeTSTTBus,n,t + ﬁCost,nCOStBus,n,t

+ ,BPTuser_Bus]itneyPT—Usern + wBus,n
V,Egr

_ . Egr Egr
Jitneynt — Qjitney + ﬁTT_FeederSTT]itney,n,t + ﬁCOSt,nCOSt]itney,n,t

+ ,BPTuser_Bus]itneyPT_Usern + (U]itney,n
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1Egr _ Egr
4 Ride(Pri)n,t — XRide(Pri) + ﬁTT_FeedeTSTTRide(Pri),n,t

E
+ ,BCost,n COStRzlre(Pri),n,t

(29)
+ ﬁRide_UserRide_Usern + ﬁAge_RideAgen

+ ﬁFlex_RideFleXiblen + WRide(Pri),n

1Egr _ Egr
4 Ride(Sha)nt — XRide(Sha) + BTT_FeederSTTRide(Sha),n,t

E
+ BcostnCOS thlre(Sha),n,t
(30)
+ .BRide_UserRide—Usern + .BAge_RideAgen

+ ,BFlex_RideFleXiblen + wRL'de(Sha),n

The utility of an alternative is then defined by adding those of its different stages. For example

the utility of the Bus-BRT-Jitney alternative is defined as follows:

_ Acc Main
UE;_iS—BRT— = pys t Ajitney + ﬁTT_FeedersTTBus,n,t + BTT_BRTTTBRT,n,t
itney,n,t

Egr Egr
+ BTT_FeedeT'ST’I}itney'n't + ﬁCOSt,TLCOSt]itney'n't

Main Acc (31)
+ ﬂCost,nCOStBRT,n,t + ﬁCost,n COStBus,n,t

+ 2:BPTuser_Bus]L'tneyPT_Usern + WBys,n + w]itney,n

+ EBus—BRT—]itney,n,t

The car total travel time is interacted with the logarithm of the distance to imply that the
marginal disutility of an additional minute is different for short trips and long trips. The

logarithm was used since adopting a linear interaction of travel time with distance yields the
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inverse of the average speed along the trip which is counterintuitive as short and long trips can
have similar speed but should not have equal disutility. The base e was used for the logarithm as
base 10 results in values below one for trips below 10 km which is not desirable. That problem
will not occur with the base e as a minimum highway commute of 3 km is one of the screening
criteria. This interaction is adopted only for car travel time as congestion and road design imply
that trips of the same distance can require significantly different travel times. This is not the case

for BRT which operates on a dedicated lane with more homogeneous travel speeds.

The cost coefficient is defined as a log-normal coefficient to capture unobserved taste
variation in cost across individuals (equation 32). Time coefficients are deterministic as their
large number requires high computational power when the random specification is adopted. The
log-normal specification allows to maintain a negative cost coefficient for all observations which
is why it was preferred over the normal distribution (Train, 2009). Error components o are also
defined as the product of a standard deviation o to be estimated and a random simulated term

following the standard normal distribution as shown in equation (33):

ﬁCostn = _e(uBCOSt'n+ O'BCOSt_nX-QCost,n) QCost n"’N(Otl) (32)
Wan = Tuy X gn qEQ=MUAUE, 0,,~N(0,1) (33)
HBcostn 2N Opco ., AT€, respectively, the mean and standard deviation of the underlying

normal parameter across the entire population, with both parameters to be estimated. o5t Can

be obtained for each individual through simulation. Table 10 describes all explanatory variables

included in the utility functions.
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Table 10: Explanatory Variables Used in the Model based on Approach |

Variable Type Description
. Total one-way travel time by mode H at stage Z for
TT% Cont!nuous respondent n in scenario t (in hours)
mt variable
. Cost of one-way trip by mode H at stage Z for
Z
Costyn, Cont!nuous respondent n in scenario t (in 1,000 L.L.)
variable
, Continuous L .
dist, variable Total one-way trip distance for respondent n (in km)
Continuous Age of respondent n (in years), with r_nldpomt value
Age variable used for the reported range (e.g., 21 is used for the
n 18-24 range)
A value of 1 indicates that respondent n has a fully
. . or partially flexible work/study arrangement. A
Flextbley, Dummy variable value of 0 indicates a non-flexible schedule.
A value of 1 indicates that respondent n uses public
PT User, Dummy variable transportation frequently (at least once a month). A

value of 0 indicates otherwise.

4.6.2.2. Approach Il: Model with Separated In-Vehicle and Out-of-Vehicle Travel Times

This approach is similar to the previous one with the exception that the total travel time
is divided into in-vehicle (IVTT) and out-of-vehicle (OVTT) travel time. At the same time, the
out-of-vehicle travel time is separated into walking and waiting time to estimate separate

coefficients for each variable. The systematic utilities become as follows:
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VlMain =0+ ﬁ IVTTCI}:II?‘TT‘,:I
nt — In(dist)_C .
Carn,t IVTT /In(dist)_Car ln(dlSt)n

: : Main Main
+ .BWalking_Time Walklng—TlmeCar,n,t + ﬁCost,n COStCar,n,t

+ .BAge_CarAgen + BFlex_CarFlexiblen + .BPTuser_CarPT_Usern
+ wCar,n
V/Main =04+ IVTTMain + . . Waiti Ti Main
BRTnt — BTt _BRT BRT,n,t .BWaltmg_Tlme atting_Iimegrr nt
Main
+ .BCost,nCOStBRT,n,t

Acc
IVTTPark&Ride,n,t

VlAcc
In(accdist),

Park&Rident — ®Park&Ride T ﬁIVTT/ln(dist)_Car

+ .BWalking_Time Walking—Timelégﬁk&Ride,n,t
+ BcostnCOS tggf‘k&Ride,n,t + Wpark&Rriden
V’ﬁ/coflk,n,t = Awaik + .BWalking_TimeWalking—Timeﬁq/Cczclk,n,t + Wwaik,n
Vlgzczg,n,t = Qpys + ﬁIVTT_FeedersIVTTéqisc,n,t
+ :BWaiting_Time Waiting—Timegzig,n,t
+ :BWalking_Time Walking_Timeéﬁg,n,t + BCOSC,TLCOStg‘ng,n,t
+ ,BPTuseT_Bus]itneyPT—Usern + wBus,n
V’ﬁggey,n,t = a]itney + ﬁIVTT_FeedersIVT?}?I:Crfey,n,t
+ :BWaiting_Time Waiting—Time]Aiircley,n,t

: : Acc Acc
+ .BWalking_Time Walklng—Tlme]itney,n,t + .BCOSt,nCOSt]itney,n,t

+ ,BPTuser_Bus]itneyPT_Usern + (U]itney,n
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1Acc — Acc
4 Ride(Pri)nt — aRide(Pri) + ﬁIVTT_FeedersIVTTRide(Pri),n,t

i, . Acc
+ ﬁWaiting_Time Waltlng—TlmeRide(Pri),n,t
Acc .
+ BcostnCOStrigepriynt T Briex_rideFlexibley
+ .BRide_UserRide-Usern + BAge_RideAgen + wRide(Pri),n
VIACC _ + IVTTACC
Ride(Sha)nt — aRide(Sha) .BIVTT_Feeders Ride(Sha)n,t
+ Bwaiting TimeWaiting_Timef<s
Waiting_Time g_ Ride(Sha)n,t
Acc :
+ ,BCost,nCOStRide(Sha),n,t + Briex_riaeFlexible,
+ Bride_userRide_User, + .BAge_RideAgen + WRide(Sha)n

1Egr _ . . Egr
4 walknt — Awak T .BWalking_TimeWalkmg—TlmeWalk,n,t + Wwaik,n

1Egr _ Egr
|4 Busnt — QBus T .BIVTT_FeedersIVTTBus,n,t
s , Egr
+ .BWaiting_TL'me Waltlng—TlmeBus,n,t
+ Walking Timer? . + Cost9"
:BWalking_Time atking_ lmeBus,n,t ﬁCost,n 0s Busn,t

+ ,BPTuseT_Bus]itneyPT—Usern + wBus,n

V,Egr

— Egr
Jitneynt — a]itney + ﬁIVTT_FeederSIVTT

Jitney,n,t

Egr

+ ,BWaiting_Time Waltlng—Tlme]itney,n,t

. . Egr Egr
+ .BWalking_Time Walklng—Tlme]itney,n,t + ﬁCost,nCOSt]itney,n,t

+ ,BPTuser_Bus]itneyPT_Usern + (U]itney,n
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1Egr _ Egr
4 Ride(Pri)ynt — XRide(Pri) + ﬁIVTT_FeedersI VTTRide(Pri),n,t

Egr

+ Bwaiting_Time Waltlng—TlmeRide(pn'),n,t

(45)

Egr .
+ ﬁCost,nCOStRide(pri),n,t + Briex_riaeFlexible,

+ ﬁRide_UserRide_Usern + ﬁAge_RideAgen + WRide(Pri)n

1EgTr _ Egr
4 Ride(Sha)n,t — %Ride(Sha) + Bvrr_Feeders| VTTRide(Sha),n,t

Egr

+ .BWaiting_TL'me Waltlng—TlmeRide(Sha).n.t

(46)
E .
+ ,BCost,nCOStRigczZ(Sha),n,t + ﬁFlex_RideFlexlblen

+ .BRide_UserRide_Usern + ﬁAge_RideAgen + C’JRide(Sha),n

For IVTT, it was found that using the car coefficient for park and ride resulted in a
better model overall. The rest of the specifications are similar to the first approach, with the

exception of some new variables which are defined in Table 11:

Table 11: Explanatory Variables Used in the Model based on Approach 11

Variable Type Description
IVTTY ., Continuous Total one-way in-vehicle travel time by mode
variable H at stage Z for respondent n in scenario t (in
hours)
Walking_Timef ., Continuous Total one-way walking time by mode H at
variable stage Z for respondent n in scenario t (in
hours)
Waiting_Time?,,, Continuous Total one-way waiting time by mode H at
variable stage Z for respondent n in scenario t (in
hours)
COStg,n,t Continuous Cost of one-way trip by mode H at stage Z
variable for respondent n in scenario t (in 1,000 L.L.)
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Table 11 (Cont.): Explanatory Variables Used in the Model based on Approach 11

Variable Type Description
dist, Continuous One-way door-to-door trip distance for
variable respondent n (in km)
accdist, Continuous One-way access distance for respondent n (in
variable km)
Age, Continuous Age of respondent n (in years) , with
variable midpoint value used for the reported range
(e.g., 21 is used for the 18-24 range)
Flexible,, Dummy variable A value of 1 indicates that respondent n has a
fully or partially flexible work/study
arrangement. A value of 0 indicates a non-
flexible schedule.
PT _User, Dummy variable A value of 1 indicates that respondent n uses
public transportation frequently (at least once
a month). A value of 0 indicates otherwise.
Ride_User, Dummy variable A value of 1 indicates that respondent n used

any form of ridesourcing previously in
Lebanon or abroad. A value of 0 indicates
otherwise.

4.6.2.3. Approach I11: Model with IVTT Coefficient Specific to Each Mode

The third approach has the same specification as the second approach with only one

exception: instead of using a unified coefficient for the IVTT of all feeders, coefficients are

defined by feeder mode. Traditional public transportation modes are assumed to share the same

IVTT coefficient while the two ridesourcing options share their own coefficient. The car

coefficient for IVTT is still used for park and ride. The coefficients do not change across

different trip stages and vary only by mode. The systematic utilities are defined as follows:
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VlMain =0+ ﬁ IVTTCI}:II?‘TT‘,:I
nt — In(dist)_C .
Carn,t IVTT /In(dist)_Car ln(dlSt)n

: : Main Main
+ .BWalking_Time Walklng—TlmeCar,n,t + ﬁCost,n COStCar,n,t

+ .BAge_CarAgen + BFlex_CarFlexiblen + .BPTuser_CarPT_Usern
+ wCar,n
V/Main =04+ IVTTMain + . . Waiti Ti Main
BRTnt — BTt _BRT BRT,n,t .BWaltmg_Tlme atting_Iimegrr nt
Main
+ .BCost,nCOStBRT,n,t

Acc
IVTTPark&Ride,n,t

VlAcc
In(accdist),

Park&Rident — ®Park&Ride T ﬁIVTT/ln(dist)_Car

+ .BWalking_Time Walking—Timelégﬁk&Ride,n,t
+ BcostnCOS tggf‘k&Ride,n,t + Wpark&Rriden
V’ﬁ/coflk,n,t = Awaik + .BWalking_TimeWalking—Timeﬁq/Cczclk,n,t + Wwaik,n
V' gesmt = Agus + Brvrr_pusser VT Tigsn
+ :BWaiting_Time Waiting—Timegzig,n,t
+ :BWalking_Time Walking_Timeéﬁg,n,t + BCOSC,TLCOStg‘ng,n,t
+ ,BPTuseT_Bus]itneyPT—Usern + wBus,n
V’ﬁggey,n,t = a]itney + ﬁIVTT_BusSeTI VTT]?tcrfey,n,t
+ :BWaiting_Time Waiting—Time]Aiircley,n,t

: : Acc Acc
+ .BWalking_Time Walklng—Tlme]itney,n,t + .BCOSt,nCOSt]itney,n,t

+ ,BPTuser_Bus]itneyPT_Usern + (U]itney,n

80

(47)

(48)

(49)

(50)

(51)

(52)



1Acc _ Acc
4 Ride(Pri)nt — aRide(Pri) + ﬁIVTT_RideIVTTRide(Pri),n,t

i, . Acc
+ ﬁWaiting_Time Waltlng—TlmeRide(Pri),n,t
Acc .
+ BcostnCOStrigepriynt T Briex_rideFlexibley
+ .BRide_UserRide-Usern + BAge_RideAgen + wRide(Pri),n
V/Acc — . + - IVT Acc
Ride(Sha)nt — aRlde(Sha) .BIVTT_RLde Ride(Sha)n,t
+ Bwaiting TimeWaiting_Timef<s
Waiting_Time g_ Ride(Sha)n,t
Acc :
+ ,BCost,nCOStRide(Sha),n,t + Briex_riaeFlexible,
+ Bride_userRide_User, + .BAge_RideAgen + WRide(Sha)n

1Egr _ . . Egr
4 walknt — Awak T .BWalking_TimeWalkmg—TlmeWalk,n,t + Wwaik,n

1Egr _ Egr
V' gusme = %Bus T Bvrr_susser VT Tgysn ¢
s , Egr
+ .BWaiting_TL'me Waltlng—TlmeBus,n,t
+ Walking Timer? . + Cost9"
:BWalking_Time atking_ lmeBus,n,t ﬁCost,n 0s Busn,t

+ ,BPTuseT_Bus]itneyPT—Usern + wBus,n

V,Egr

_ Egr
Jitneymt = Yitney T Brvrr_pusserIVTT

Jitney,n,t

Egr

+ ,BWaiting_Time Waltlng—Tlme]itney,n,t

. . Egr Egr
+ .BWalking_Time Walklng—Tlme]itney,n,t + ﬁCost,nCOSt]itney,n,t

+ ,BPTuser_Bus]itneyPT_Usern + (U]itney,n
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1Egr _ Egr
4 Ride(Pri)n,t — XRide(Pri) + Bivrr_ridel VTTRide(Pri),n,t

Egr

+ .BWaiting_Time Waltlng—TlmeRide(pri),n,t

(58)
E .
+ ﬁCOSt,nCOStRﬂIe(Pri),n,t + ﬁFlex_RideFleXLblen

+ ﬁRide_UserRide_Usern + ﬁAge_RideAgen + WRide(Pri)n

1Egr _ Egr
V' Ride(shaynt = Fride(sha) T Bvrr_riaelVT Tpige(shayn,e

Egr

+ .BWaiting_TL'me Waltlng—TlmeRide(Sha).n.t

(59)
E .
+ ,BCost,nCOStRigczZ(Sha),n,t + ﬁFlex_RideFlexlblen

+ .BRide_UserRide_Usern + ﬁAge_RideAgen + c’JRide(Sha),n

Explanatory variables are the same as those of approach Il and can be seen in Table 11.

4.6.3. Model Development

Several approaches were tested before adopting the final three shown above. Models
with a constant IVTT coefficient were estimated in addition to models with market segmentation
based on trip distance and models with piecewise linear time coefficients before concluding that
interacting time with the logarithm of trip distance yields the best overall fit. Random time
coefficients were also tried but yielded very complex and computationally burdensome models
due to the large number of time variables. As such, the cost coefficient was the only random
variable which results in a distributed value of time. Models with combined OVTT were also
estimated but results showed that distinguishing waiting time from walking time led to a better

model fit.
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Socio-economic variables of interest were mainly identified through the descriptive
analysis. Some variables showed high correlation with choices but were found to be not
significant (gender, educational level) which might be attributed to the small sample size. These
were eliminated from the final model. Outlier analysis was also performed to improve the model.
Choice probabilities were predicted for all observations in the sample and those below 0.01
(around 5% of all observations) were filtered and analyzed. Characteristics of the outliers were
compared to those of the remaining sample in the aim of identifying additional variables that can
improve prediction for these observations. The outliers showed no significant divergence from
the rest of the sample and no further data points were eliminated. In fact, the low probabilities
can be attributed to the fact that the probability of using the BRT is divided over 30 different

alternatives which results in low probabilities for each alternative.

Latent variables were also explored based on indicators in section 5 of the survey.
Hybrid choice models, which include latent variables, are widely used in discrete choice models
as they represent behaviorally the unobserved heterogeneity across individuals resulting from
different perceptions and attitudes (Walker and Ben-Akiva, 2002). However, these models
resulted in estimation issues due to the large number of variables and parameters involved. A
larger sample may be required for such specifications, especially since the number of alternatives

is large. Therefore, latent variables were excluded from the final models.
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CHAPTER 5

RESULTS

After defining the model specific to the case study, this chapter presents the estimation
results for the three approaches before selecting the preferred model based on selection criteria
discussed in chapter 3. The selected model will be analyzed and used for policy analysis. Section
5.1 provides the estimation results for the three approaches defined in chapter 4. Section 5.2
presents the procedure adopted for selecting the best model, before performing stability analysis
and discussing findings from the model in section 5.3. Section 5.4 focuses on forecasting and

testing the variation of BRT and ridesourcing ridership under different policy scenarios.

5.1. Model Estimation Results

PythonBiogeme version 2.6a was used for model estimation (Bierlaire, 2016) with the
simulated likelihood maximized through Monte-Carlo integration with “MLHS” draws which are
well suited for discrete choice models (Bierlaire, 2015). Model estimation was performed for the
three defined approaches, in addition to several other specifications that were out-performed by
the aforementioned approaches or eliminated for statistical significance considerations. Two
thousand draws were used for estimation as most level-of-service variables stabilized at this
stage, with further stability analysis performed later on after selecting a final model. Estimation

results and model statistics are provided in Table 12.
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Table 12: Estimation Results and Model Statistics for All Three Approaches

Approach 1 Approach 2 Approach 3
Parame
Variable/Param ter -value Parameter value Parameter value
eter Estimat P Estimate P Estimate P
e
xpyus -0.0966 0.95 -0.34 0.74 -0.479 0.80
Qpark & Ride 2.78 0.04 1.61 0.12 1.63 0.40
QRide(Pri) 0.724 0.61 0.672 0.6 0.599 0.74
aR,-de(Sha) 2.49 0.06 2.80 0.01 2.82 0.13
AJitney 0.0232 0.99 -0.188 0.87 -0.381 0.84
Ay alk 1.21 0.38 1.33 0.22 1.17 0.54
Car
IVTT/In(distanc - - -5.55 0.1 -6.29 0.06
e) (h/In(km))
IVTT BRT (h) - - -2.28 0.54 -3.71 0.21
IVTT Feeders ) ) 232 022 ) )
(h)
IVTT
Bus/Jitney (h) i ) ) i -2.55 0.19
IVTT
Ridesourcing - - - - -3.58 0.09
- .(h) -
Wa't'?r% Time . : -14.40 0.00 141 0.00
walldgmime . 7.05 0.00 761 0.00
Car Travel
Time/In(distanc -6.31 0.04 - - - -
e) (h/In(km))
BRT Travel
Time (h) -1.99 0.43 - - - -
Feeders Travel
Time (h) -6.24 0.00 - - - -
HBcostn -0.844 0.00 -0.754 0.01 -0.761 0.06
OB osin 0.803 0.00 0.734 0.03 -0.703 0.20
Flexibility 3.18 0.04 4.43 0.02 3.8 0.00
(specific to car)
Flexibility
(specific to -1.59 0.01 -0.994 0.05 -1.05 0.02
ridesourcing)
PT User 5.40 0.01 -4.61 0.02 5.7 0.00
(specific to car)
PT User
(specific to bus 0.894 0.03 1.42 0.00 1.36 0.00
& jitney)
Ridesourcing
User (specific to 1.38 0.05 1.48 0.00 -3.58 0.09

ridesourcing)
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Table 12 (Cont.): Estimation Results and Model Statistics for All Three Approaches

Approach 1 Approach 2 Approach 3
Parame
Variable/Param ter -value Parameter value Parameter value
eter Estimat P Estimate P Estimate P
e
Age (specificto ) 67 0.088 0.288 0.00 0.258 0.00
car, in years)
Age (specific to
ridesourcing, in  -0.0278 0.00946 -0.0305 0.15 -0.0372 0.03
years)
O wpus 1.52 0.00 1.27 0.00 1.09 0.00
O wopuri 3.22 0.00 3.63 0.00 3.05 0.00
O wRide(Pri) 0.939 0.08 1.56 0.00 1.65 0.00
O 6 Ride(sha) 0.625 0.25 0.889 0.05 1.13 0.00
O )itney 2.38 0.00 -2.55 0.00 2.2 0.00
O o aik 2.68 0.00 2.51 0.00 2.75 0.00
Ciar 8.12 0.00 8.91 0.00 9.36 0.00
L(0) -3,833.52 -3,833.52 -3,833.52
L(B) -1,186.611 -1,170.814 -1,170.264
p2 0.690 0.694 0.694
ﬁz 0.685 0.686 0.686
AIC 2,423.223 2,397.629 2,398.528
BIC 2,549.969 2,539.585 2,545.555
Final Gradient +9.083E-05 +7.526E-06 +7.962E-05

5.2. Model Selection

In this section, a model out of the three estimated ones will be selected based on criteria
defined in section 3.2. Accordingly, signs of the parameters and significance of the variables will
be assessed alongside the goodness of fit of the models, value of time analysis, and cross

validation tests before adopting a final model.

5.2.1. Signs of the Parameters and Significance of the Variables
The signs of the estimated level-of-service coefficients were consistent with

expectations as travel time and cost coefficients were all negative for the three estimated models
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which implies that an increment in any time or cost component decreases the utility of the
corresponding travel mode. However, some significance issues exist for the travel time of the
BRT and feeders. For the first model which combines IVTT and OVTT, all variables are
significant at the 5% level except for the BRT travel time. When IVTT and OVTT are separated,
the waiting and walking time variables were highly significant, and their coefficients diverged
substantially from the estimated coefficients of IVTT which implies that the model with
separated time components is superior and allows better interpretation. However, significance
issues remain for the BRT’s IVTT, and to a lesser extent that of feeders. However, these level of
service variables cannot be eliminated due to their integral role in the choice process. Model 3 is
slightly preferable as the coefficient for ridesourcing IVTT becomes significant at the 10% level
after splitting feeders, but the BRT’s IVTT coefficient remains not significant even though its p-

value decreased compared to model 2 implying higher significance.

Significance concerns are also faced for the constants and variance of shared
ridesourcing’s error component, while only significant socio-economic parameters were kept in

the final models.

5.2.2. Goodness of Fit

Goodness of fit is usually an essential criterion for model selection. Since the same data
set was used to estimate all models, the rho-square and final log-likelihood can be used for
comparison. The Akaike and Bayesian Information Criteria will also be assessed for model

selection as shown in Table 13.
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Table 13: Goodness of Fit Measures

Model 1 Model 2 Model 3
L(0) -3,833.520 -3,833.520 -3,833.520
L(B) -1,186.611 -1,170.814 -1,170.264
p? 0.685 0.686 0.686
AIC 2,423.223 2,397.629 2,398.528
BIC 2,549.969 2,539.585 2,545.555

The final log-likelihood and adjusted rho-squared show that separating in-vehicle travel
time from out-of-vehicle travel time improves the model. The AIC Criterion reflects a slight
advantage to model 2 characterized by a unified coefficient for feeders’ IVTT as it has the lowest
AIC value, thus the best overall fit. Models 2 and 3 remain better than model 1 which further
supports that separating travel time components is beneficial while using different coefficients
for feeders results in an over-fitted model. The BIC criterion, which penalizes additional
parameters more than the AIC criterion, shows an increased preference towards model 2 as

model 3 is further penalized for its additional coefficient.

Overall, goodness of fit measures reveal that model 2 is the best fit for the data.
Separating IVTT and OVTT strengthens the predictive power of the model, but a further

segregation of IVTT coefficients based on feeder type results in an over-fitted model.

5.2.3. Value of Time Analysis
Value of time is of paramount interest in model analysis because it is heavily relied on

for pricing and monetization of benefits in travel time savings. Accordingly, resulting values of
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time from different models are assessed for the different modeling approaches before adopting
the preferred model. Since the cost coefficient is random with log-normal distribution, the values
of time were computed through Monte Carlo simulation for 1,000 observations. A distribution of
the value of time is obtained and the average, median, and range are reported.

Table 14: Value of Time Analysis (L.L./h) for the 3 Different Models

Car* BRT  Feeders Bus/Jitney Ridesourcing Waiting Walking

Model Average 19,439 6,137 19,242 - - - -
1 Median 14,368 4533 14,213 - - - -
Min 814 257 805 - - - -

Max 137,237 43,281 135,714 - - - -

Model Average 15,624 6,344 6,455 - - 40,068 19,617
2 Median 12,429 4,989 5,077 - - 31,512 15,428
Min 963 364 370 - - 2,299 1,125

Max 102,304 43,173 43,931 - - 272,673 133,496

Model Average 17,491 9,369 - 6,440 9,041 35,609 19,219
3 Median 13,412 7,556 - 5,193 7,291 28,716 15,498
Min 1315 497 - 342 480 1,890 1,020

Max 217,395 72,970 - 50,155 70,413 277,326 149,677

* VOT*In(distance) is reported for Car, where distance is the door-to-door travel distance

The analysis shows that for model 1, the VOT for feeders is over three times that of the
BRT which seems excessive. Models 2 and 3 show relatively close values of time; however,
model 3 shows lower value of time for bus and jitney compared to the BRT which contradicts
with literature findings to be discussed later in section 5.3. Models 2 and 3 also show that
commuters are more sensitive to OVTT compared to IVTT which is also consistent with
previous findings from other studies (e.g.: Danaf et al., 2019). Model 3 seems the best overall as

it provides similar results to model 2 while allowing more flexibility for feeders.
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5.2.4. Cross Validation Prediction Test

A 5-fold cross validation test was also performed before selection as a measure of
predictive power of the model. The data set was divided into 5 sub-sets where 4 are used for
estimation and one for prediction. The 5 possible combinations of subsets are all tested and

results are shown in Table 15.

Table 15: 5-Fold Cross Validation Test Results

Model 1 Model 2 Model 3
Li(B) -315.064 -302.757 -299.466
L2(B) -310.456 -312.941 -303.140
L3(B) -371.070 -377.268 -374.523
L4(B) -294.042 -291.807 -289.338
Ls(B) -390.956 -392.544 -385.549
Sum -1681.589 -1677.316 -1652.016

The cross-validation test shows that model 3 yields the lowest log-likelihood and has
thus the best ability to predict the observed choices. Thus, relaxing the constraint of equal IVTT
sensitivity for all feeders allows for better mode choice prediction and as such, model 3 is the

most desirable for this purpose.

5.2.5. Conclusion

Overall, it is clear that model 1 is inferior to the other two and will be thus eliminated.
Models 2 and 3 are close both in specification and in performance, with model 3 being slightly
over-fitted with additional parameters but allowing for better choice prediction and enhanced
analysis, especially when it comes to comparing different feeders. Accordingly, model 3 will be
selected for these purposes, especially as it is preferable to have separate ridesourcing

coefficients as the new service is of main interest in the study.
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5.3. Findings and Analysis

After selecting model 3, estimation was repeated at different starting points and at a
higher number of draws to validate the stability and robustness of the estimated parameters.
Stability was reached at 25,000 draws after the number of draws was progressively increased by
increments of 5,000. Stability is assumed to be reached when all estimated parameters, except
alternative specific constants, vary by less than 10% in absolute value compared to the results

from the previous estimation exercise.

After fixing the number of draws, the starting values of the parameters were changed
progressively to test the robustness of the estimation results as different starting values might
lead to different local maxima of the log-likelihood function. The estimation results were found
to be robust with changes in estimated coefficients persisting below 10% for different initial

values. Estimation results for the final and stable model are shown in Table 16.

Table 16: Estimation Results for the Final Model (R= 25,000 draws)

Parameter Robust Standard

Variable/Parameter Robust t-test p-value

Estimate Error

Apus 0.0583 1.67 0.03 0.97
®park & Ride 2.16 1.59 1.36 0.17
QARide(Pri) 1.07 1.69 0.64 0.52
aR,-de(Sha) 3.33 1.54 2.16 0.03
AJitney 0.146 1.58 0.09 0.93
Awalk 1.96 1.73 1.13 0.26

Car IVTT/In(distance
i (kEn)) ) 5.75 3.47 -1.66 0.10
IVTT BRT (h) -2.30 2.71 -0.85 0.40
IVTT Bus/Jitney (h) -2.25 1.66 -1.36 0.17
IVTT Ridesourcing (h) -3.37 1.97 -1.71 0.09
Waiting Time (h) -14.50 3.11 -4.65 0.00
Walking Time (h) -7.37 2.06 -3.58 0.00
HBcosen -0.721 0.218 -3.31 0.00
OB cosin 0.664 0.147 45 0.00
Flexibility (specific to 479 182 263 001

car)
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Table 16 (Cont.): Estimation Results for the Final Model (R= 25,000 draws)

Parameter Robust Standard

Variable/Parameter Estimate Error Robust t-test p-value
Flexibility (specific to -1.03 0.494 2.08 0.04
ridesourcing)
PT User (specific to car) -5.07 1.88 -2.7 0.01
PT User (specifictobus 4 34 0.43 3.13 0.00
& jitney)
Ridesourcing User 131 0.492 2.66 0.01
(specific to ridesourcing)
Age (specific to car, in 0.305 0.0888 343 0.00
years) ] ' ' '
_ Age (specific to 10.0308 0.0184 167 0.09
ridesourcing, in years)
O opus 1.24 0.43 -2.89 0.00
O wopari 3.20 0.637 -5.02 0.00
O o Ride(pri) 1.70 0.466 -3.65 0.00
O o Ride(sha) 0.989 0.338 -2.93 0.00
G )itney 2.55 0.451 -5.65 0.00
O o ali 2.56 0.447 -5.72 0.00
Circar 9.46 1.76 -5.36 0.00

Initial Log-Likelihood: -3,833.52
Final Log-Likelihood: -1170.043
Rho-Squared: 0.694
Adjusted Rho-Squared: 0.686
Akaike Information Criterion: 2,398.086
Bayesian Information Criterion: 2,545.112
Final Gradient Norm: +8.914E-05

All estimated level-of-service variables carry negative signs as anticipated. The standard
deviation of the cost coefficient is highly significant which indicates significant taste
heterogeneity across individuals and supports the log-normal specification. The marginal utility
of car is always negative but decreases in magnitude as the door-to-door travel distance
increases. This implies that a congested 20 km trip that takes 40 min is more burdensome than a
longer trip that requires similar travel time due to better traffic conditions. This makes the BRT
more attractive over congested corridors where large delays inflate the in-vehicle travel time, and

less attractive over lightly congested corridors where longer distances can be commuted at the
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same travel time. The marginal disutility of car IVTT is also lower for long trips compared to

shorter ones and the non-linear decrease over distance is illustrated in Figure 14.

Marginal Disutility of Car IVTT vs Trip Distance

Marginal disutility of Car IVTT
(in absolute value)

0 10 20 30 40 50 60 70
Door-to-Door Trip Distance (km)

Figure 14: Variation in Marginal Disutility of Car IVTT as a Function of Trip Distance

As distance increases, the coefficient becomes more flat implying that the effect of
distance is reduced for longer trips. It must be noted that the variation is very steep for trips
below 10 km. However, this is not a concern for the study as very short trips are excluded from
the study as dictated by the study area and screening criteria. In fact, few trips are below 10 km

with the shortest door-to-door trip being around 7 km.

Sensitivities for BRT and traditional feeders’ IVTT are relatively similar. As for
ridesourcing, the marginal disutility of IVTT is higher for feeders than for the main mode which
is consistent with the literature (Yap et al., 2016; Arentze and Molin, 2013). This implies that

extending the transit corridor and reducing connecting trips result in a better quality of service if
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other factors are held constant. Commuters are also more sensitive to ridesourcing IVTT
compared to traditional feeders. This suggests that ridesourcing has more potential for short
feeder trips and can be explained by an implicit belief of users that the service’s pricing
algorithm reflects travel duration. The coefficients of out-of-vehicle travel time components are
significantly more negative than those of in-vehicle travel time, indicating an intuitive additional
burden for walking and waiting times. Commuters are found to be more sensitive to waiting time
than walking time which is consistent with Arentze and Molin’s conclusions for the egress stage
(2013) but not for the remaining legs. These results also contradict with Yap et al.’s findings
(2016) which reveal more sensitivity to walking time. This can be attributed to an established
perception in the Lebanese market of unreliable waiting times due to the current state of

operating public transportation.

The computed values of time will not be deterministic as imposed by the specification
of the cost coefficient, and will accordingly be computed through simulation. In the case of the

car, the VOT is also systematically dependent on the logarithm of the total trip distance. Monte

Carlo simulation of 1,000 instances indicates that the average car value of time is VOT/"9 =

15,539
In(distance)

. This translates to around 6,744 L.L./h for a 10-km trip which is higher than the

values of 3,928 LB/h (in year 2010 L.L.) found by Danaf et al. (2014), and 5,500 L.L. found by
IBI Group and TEAM (2009). Inflation and socio-economic differences are factors to consider
before comparing the values of time for different years. Beyond car users, values of time were
also derived for the BRT and its feeders with average values obtained in the order of 6,212
L.L./h for the BRT, 6,077 L.L./h for bus and jitney, and 9,101 L.L./h for ridesourcing. Values of
time are robust and consistent with results obtained from the model estimated with 2,000 draws.

Only the BRT’s VOT changed significantly as its coefficient is not highly significant and was
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thus less robust to changes in the number of draws. Traditional feeders have values of time
similar to that of the BRT while that of ridesourcing exceeds the main mode’s VOT by 46.5%.
Hensher et al. (2006) found through their evaluation of possible public transportation
investments in Sydney that value of time for access is almost the same as that of the main mode,
while for egress modes the value of time exceeds that of the main mode by 61.8%. As for
walking and waiting time, their respective average values of time are 19,904 L.L./h and 39,160
L.L./h and are significantly above that of in-vehicle travel time, which is consistent with findings
from Danaf et al. (2019) who find that non-motorized and out-of-vehicle travel time have VOTs
that exceed that of public transportation IVTT by 97.7% and 54.4% respectively based on an

application in the Greater Boston Area.

Table 17: Values of Time for the Final Model

Value of Time (L.L./h)

Average Median Minimum Maximum
Car 15,539 12,394 1,455 161,895
In(distance*) In(distance*) In(distance*) In(distance*)

Car (10 km) 6,744 5,382 632 70,310
Car (25 km) 4,824 3,850 452 50,296
Car (40 km) 4,210 3,360 395 43,887
BRT 6,212 4,957 582 64,758
Bus/Jitney 6,077 4,850 569 63,350
Ridesourcing 9,101 7,264 853 94,885
Waiting 39,160 31,253 3,670 408,258
Walking 19,904 15,885 1,865 207,508

Moving to socio-economics, the age coefficients reveal that older commuters are more
inclined towards car commutes, while younger travelers are more likely to embrace ridesourcing
which is similar to literature findings (Alemi et al., 2018; Young and Farber, 2019). The positive

sign of the flexibility coefficient specific to car reflects higher car preference for users with
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flexible work/study arrangements since they can afford some delays imposed by congestion
without disrupting their tasks. As for ridesourcing, the flexibility coefficient becomes negative
implying that ridesourcing is perceived as a more reliable travel alternative when commuters
wants to reach their destination on time. Frequent public transportation users are more likely to
use the BRT and even more in favor of traditional feeders like the bus and jitney. This is in line
with expectations as commuters already using such modes are supposedly more in favor of them
and are likely to adopt them as feeders when using the BRT. Last but not least, commuters who
have previously used ridesourcing are more likely to embrace it for the feeder trips as reflected
by the positive sign of the corresponding coefficient. This implies that users of ridesourcing are
satisfied with the service, and that awareness campaigns and progressively increasing reach and

familiarity will drive more people into using ridesourcing for access and egress trips.

5.4. Forecasting and Policy Analysis

The selected model will be calibrated then used for forecasting and policy analysis. An
origin-destination matrix for vehicle trips in Lebanon was obtained from SETS International for
the AM peak in year 2012. As the zonal configuration was not fully compatible with the
proposed study area, some zones were merged while others divided and the gravity model® used
to obtain the desired sub-matrix. Moreover, a 2% yearly traffic growth is assumed similarly to
the rate used in the BRT pre-feasibility report (World Bank, 2015), an average vehicle
occupancy rate of 1.2 (MoE/UNDP/GEF, 2015), and a car share of 80% of total vehicular trips

(1Bl Group and TEAM International, 2009). The resulting matrix is for car passenger trips which

3 Trips were distributed proportionally to the ratio of the population of the origin zone to the square of the travel
distance between the origin and destination.
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is compatible with our analysis. Demand is forecasted for the year 2019 which is when the
current study data was collected. It would be preferable to forecast for the year of the BRT

launch but that date is not officially announced.

5.4.1. Calibration of the Constants

One concern is that the model was estimated using SP data and cannot be used for
forecasting unless alternative specific constants are re-calibrated based on observed market
shares (Ben-Akiva et al., 2019; Cherchi and de Dios Ortlzar, 2006). SP data provides better
insights than RP on the trade-offs in the decision making process, but will rarely reproduce true
market shares which is problematic in ridership forecasting and necessitates calibration.
Coefficients of level-of-service and socio-economic variables are not changed, unless the model
scale is varied, to maintain the trade-off that is well captured by SP data. Constants on the other
hand reflect choice shares across the sample rather than the population as attributes and levels
presented in SP data are not always consistent with real alternatives. Accordingly, by calibrating
the constants, the analyst can present a model that reproduces observed market shares while

retaining the enhanced trade-offs across variables ensured by SP analysis (Hensher et al., 2005).

Calibration is challenging when revealed preference data is not available, which is the
case in this study as the BRT is not yet operational. However, actual market shares for bus and
jitney are available (though not solely as access or egress modes), while other BRT studies
performed ridership forecasting and can be used as reference for comparison. As such,
calibration of the constants will be performed to reproduce the observed ratio of bus to jitney

trips similarly to Glerum et al. (2013), a BRT share close to that from other forecasting studies,
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and a realistic target for ridesourcing market share in the absence of the true share (Liu et al.,

2019). This is performed over three different steps:

» Step 1: Calibration of the bus or jitney constants to maintain the actual ratio of their
shares.

» Step 2: Calibration of the constants of all feeders to reproduce the expected market
share of the BRT in the study area as obtained from other studies.

» Step 3: Calibration of the constants of ridesourcing to make sure that its overall market

share is realistic.

Steps 1 and 2 are performed on a base model without ridesourcing as other studies do
not include ridesourcing in the analysis of feeders. In this model, coefficients are assigned their
estimated values without any modification, while base values of the attributes are defined to
reflect real market values as further detailed in Appendix B. After step 2, ridesourcing is added
to the feeders and then its constants are calibrated to yield a market share that is realistic based
on findings in other markets. A final check is then performed to make sure that the final

calibrated model verifies the three constraints.

IBI Group and TEAM International (2009) estimate that during the AM peak, taxis and
jitney are responsible for 6% of trips in Beirut, while buses and vans cover 12.6%. The ratio of
bus to jitney trips is assumed to hold for feeders of the BRT and calibration in step 1 is
performed to reach a ratio of bus to jitney trips that is around 2. As for the BRT share, Khatib &
Alami and TMS Consult were hired to conduct a BRT traffic modelling report in the year 2017.
The latter study forecasts at the launch year a BRT share of 25% from all vehicle trips moving
from northern Mount Lebanon into Beirut, compared to a 60% share for cars and 15% for other

public transportation modes. Since our study only involves car and BRT as modes of main
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transport, other modes are eliminated. The ratio of car trips to BRT trips is assumed to hold
which translates after extrapolation into a share of 70.59% for the car and 29.41% for the BRT.
Thus, constants specific to feeder modes are calibrated based on this BRT share in step 2.
Ridesourcing is then added and the estimated constants are used without any modification at
first. After forecasting accordingly, the ridesourcing market share is calibrated to reach the
desired target by varying the constants of private and shared ridesourcing simultaneously. While
ridesourcing’s share of total trips in San Francisco reaches 15% during weekday peaks
(Castiglioni et al., 2017), its share in most urban cities is closer to 5% (Schaller, 2018). In
counties around city cores, shares fall to between 1% and 3%, while in dense city centers the
share increases significantly and reaches 6.9% and 7.7% in Washington DC and Boston
respectively (Fehr & Peers, 2019). Market share in Beirut is not available, but given international
experience to date, we set an endogenous target of 0 to 5% for ridesourcing’s share of total

vehicle trips in our study area as a higher share is not to be expected at the launch of the BRT.

We start by forecasting market shares using the estimated constants and parameters
while eliminating ridesourcing from the choice sets of all respondents which yields a BRT share
of 32.79% and a ratio of bus to jitney trips equaling 0.81. As we don’t know the true market
shares of the travel modes once the BRT becomes operational, the method suggested by Train
(2009) cannot be used, and a grid search approach is adopted for calibration (Liu et al., 2019). To
reach the desired ratio of bus to jitney trips, the constant of jitney is lowered rather than
increasing that of the bus as the share of the BRT needs to be reduced overall. Table 18 shows
results for the ratio of bus to jitney trips and the overall BRT share for different values of the

jitney constant.
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Table 18: Jitney Constant and Resulting Ratio of Bus to Jitney Trips and BRT Share

Ratio of Bus to Jitney

Ujitney Trips BRT Share

0.146 0.81 32.79%
-0.5 1.19 32.21%
-1 1.59 31.91%
-1.5 211 31.68%

Results from Table 18 reveal that a jitney constant of -1.5 leads to shares that better
reflect the actual market. The BRT share in that case is 31.68% which is within 10% of the share
found in the BRT Traffic Modelling report. As such, no calibration for the BRT share is
performed as the mentioned study does not involve calibration against real market shares, and

since obtained results are close, we stick to our value.

Next, ridesourcing is added as an additional feeder and the grid search approach is
applied again to reach a market share that falls within the target range of 0 to 5% of overall trips.
Table 19 summarizes calibration results. The shares of total trips using any form of ridesourcing
for access and for egress are separately computed, and their average is then computed and
adopted as ridesourcing share.

Table 19: Ridesourcing Constants and the Corresponding Calibration Results

Ridesourcing Ratio of Bus to

(CtRide(Pri) ARide(Sha)) Share Jitney Trips BRT Share
(1.07, 3.33) 8.08% 2,09 34.85%
(0.5, 2.5) 6.68% 2.07 34.28%
0, 2) 4.85% 2.05 33.53%

All three calibration targets are verified in the final model which will therefore be

adopted for forecasting and policy analysis.
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5.4.2. Policy Analysis

Using the calibrated constants obtained in section 5.4.1, the base market shares for this
study are forecasted. The sample enumeration method is used with the appropriate weights
assigned based on the origin-destination matrix and computed as the ratio of the number of total
trips observed from the O-D matrix to the number of observations in the sample commuting
between the same endpoints. The base case levels are defined based on existing travel time and
costs for car and other travel modes, in addition to the expected fare and speed of the BRT as
suggested by the BRT Traffic Modelling report. Appendix B provides further details on base
values definition. The base case scenario serves as a benchmark for comparison to test the
impacts of different policies of interest on the overall market shares of diverse modes. The base

market shares are summarized in Table 20.

Table 20: Forecasting Results for Base Conditions using the Calibrated Model

Number of Peak Hour Percentage of Total Trips in the Peak

Main Mode Person Trips Hour

Car 9,546 66.47%

BRT 4,816 33.53%

Access Mode Number of Peak Hour Percentage of Percentage of
Person Trips Total Trips BRT Trips

Park & Ride 1,314 9.15% 27.29%

Walk 2,722 18.95% 56.51%

Bus 224 1.56% 4.65%

Jitney 114 0.80% 2.37%

Ridesourcing (Private) 62 0.43% 1.28%

Ridesourcing (Shared) 380 2.65% 7.90%

Ridesourcing (Total) 442 3.08% 9.18%
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Table 20 (Cont.): Forecasting Results for Base Conditions using the Calibrated Model

Egress Mode Number of Peak Hour Percentage of Percentage of
Person Trips Total Trips BRT Trips
Walk 2,696 18.77% 55.97%
Bus 789 5.49% 16.37%
Jitney 380 2.65% 7.89%
Ridesourcing (Private) 139 0.97% 2.88%
Ridesourcing (Shared) 813 5.66% 16.88%
Ridesourcing (Total) 952 6.63% 19.76%

14,362 total trips are projected to occur during the peak hour out of which the BRT is
expected to serve over 4,800. When ridesourcing was added, the BRT market share increased
from 31.68% to 33.53% reflecting possible synergies between the two modes. This indicates that
the introduction of ridesourcing increases the number of potential BRT users by enlarging the
catchment area, serving regions where other public transportation modes are deficient, serving
market segments that favor the flexibility and rewards of the new service, or other reasons. In the

following sub-sections, market shares are forecasted for different policies of interest.

Park and ride is expected to be a popular access mode with 27.29% of BRT users
projected to rely on the service to reach transit stations. This translates to over 1,300 commuters,
or roughly 1,000 parking spaces assuming a vehicle occupancy of around 1.3. That is only during
the peak hour, meaning that the provided capacity should be even higher to serve all demand.
While the existing BRT studies do not mention the estimated park and ride at launch, they state
that capacity is expected to be limited. As such, a policy will be dedicated to testing different

levels of park and ride capacity in order to assess its impact on BRT ridership.

Walking is expected to be the most popular feeder with around 56% of BRT trips

involving it for access and egress trips. That share is high but reasonable as population density in
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coastal zones, which are adjacent to the BRT, is much higher than farther zones, meaning that

walking to the BRT is valid for a large portion of the population.

As the study investigates the interaction between ridesourcing and mass transit, several
scenarios will be dedicated to testing this relation. Adding ridesourcing already revealed that it
can induce additional demand for the BRT. Further policies involve varying ridesourcing price to
get insights on its impact on BRT ridership and understand the potential of possible
collaborations between transit authorities and ridesourcing companies. Price reductions can be
achieved through subsidies or when the additional ridesourcing demand and optimal fleet
utilization resulting on dense feeder lines can justify lower fares while maintaining the desired

profit margins.

Moreover, policy makers are mainly interested in enhancing BRT ridership; thus,
scenarios will test policies that can drive commuters towards transit by improving the
attractiveness of BRT alternatives or decreasing that of the car. Policies that involve higher car
parking prices at the destination should deter commuters from driving and their impact will be
tested through different parking price surges. This can be practically achieved by taxing private

parking operators and eliminating free curb-side and public parking.

Improving feeders is another driver for higher BRT ridership and one form can be tested
by reducing bus headways, especially as commuters were highly sensitive to waiting time.
Transit authorities can achieve lower headways by increasing the number of feeder buses and

such investment should be justified before adoption.

The impact of limited availability of park and ride is also tested as the capacity of such

facilities is expected to be restricted. Lastly, an optimal BRT ridership scenario is performed in
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which ridesourcing fare is decreased by 50%, car parking price is increased by 50%, and park
and ride is kept at full capacity simultaneously. This scenario provides insights on the maximum
BRT ridership that can be expected. Table 21 summarizes the scenarios that will be tested in the

following sub-sections.

Table 21: Description of Forecasting Scenarios

Scenario Policy Variation Range  Base Values for Trips
between Zones 2 and
A
5,000 L.L. and 3,000

L . L.L. for private and
Reduction in Ridesourcing P

1 0% to -50% shared ridesourcing
Fares :
respectively (same for
access and egress)
Increase in Car Parking
2 . - 0% to 50% 7,000 L.L.
Prices at Destination
3 Reduction in Feeder Bus 0% 10 -50% 10 m_in (Access),
Headway 6 min (Egress)
_— : 100%
4 Limited P.ark.a.n dRide 100% to 25% (unconstrained
Availability -
availability)
50% reduction in
ridesourcing fare,
o i : :
5 Hybrid Scenario 50% |n(_:rease_|n car Sameas4 prevmus
parking price, scenarios
100% park and ride
capacity

5.4.2.1. Scenario 1: Reduction in Ridesourcing Fare

In the first scenario, the fare of ridesourcing is progressively decreased to assess its
incremental impact on overall market share. This approach raises the utility of alternatives
involving ridesourcing which can benefit the BRT. However, this comes at a cost to transit

authorities or ridesourcing companies depending on who is covering the price reduction. As
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such, this scenario provides insights on whether a subsidy or collaboration with ridesourcing
companies can be justified. Table 22 provides forecasting results for all modes under different

ridesourcing fares that range from the base fare to its half with progressive decrements of 10%.

Table 22: Forecasting Results for Different Levels of Ridesourcing Fare

Percentage Change in Ridesourcing Fare
0%

-10% 20% -30% -40% 50%
(Base)
Percentage of Total Trips
Main Mode
Car 66.47%  66.08%  6558%  64.91%  64.07%  63.11%
BRT 3353%  33.92%  34.42%  35.09%  35.93%  36.89%
Access Mode
Park & Ride 915%  9.28%  9.49%  9.82%  10.33%  11.01%
Walk 18.95%  18.59%  18.17%  17.68%  17.13%  16.56%
Bus 156%  150%  1.43%  1.34%  1.26%  1.19%
Jitney 080%  077%  0.75%  0.73%  0.72%  0.71%
Ridesourcing 043%  057%  0.76%  1.01%  1.30%  1.64%
(Private)
Ridesourcing 265%  3.21%  3.83%  451%  519%  5.78%
(Shared)
Ridesourcing 3.08%  3.78%  459%  551%  6.48%  7.42%
(Total)

Egress Mode

Walk 1877%  18.26%  17.66%  16.99%  16.29%  15.59%
BUs 549%  506%  459%  4.11% = 3.64%  3.22%
Jitney 265%  247%  227%  2.04%  1.83%  1.67%
Ridesourcing 097%  1.24%  1.58%  2.02%  2.56%  3.18%
(Private)

Ridesourcing 566%  6.89%  8.33%  992%  11.61%  13.23%
(Shared)

?T'gfsgurc'”g 6.63%  812%  991%  11.94%  14.17%  16.41%

The applied fare reductions increased market shares for both the BRT and ridesourcing

which indicates that a possible collaboration can be beneficial for both parties involved. As the
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ridesourcing fare is decreased by half, demand for this service more than doubled implying that
overall revenues should increase despite the lower fare. Revenue management techniques and
cost optimization offer an opportunity to ridesourcing companies to benefit from the proposed
policy, in addition to an embellished public image and a higher number of regular users. As for
BRT authorities, a half-reduced ridesourcing fare at the feeder stages is expected to augment
BRT demand by 3.36% as its market share increases from 33.53% to 36.89%. Arrangements for
such integration can include clauses related to data sharing which benefits transit authorities as
ridesourcing companies archive their data neatly compared to traditional public transportation
modes. Moreover, ridesourcing can replace low usage buses and cover low density areas which
bodes well for social equity. The increased BRT share can also reduce traffic congestion and

greenhouse gas emissions though such conclusions require further analysis.

As ridesourcing fare is further decreased, demand for both the BRT and ridesourcing
rises exponentially, which implies that a policy involving ridesourcing fare reductions is mainly
effective for large price drops. Under such policies, ridesourcing companies can sustain part of
the fare reduction, while transit authorities subsidize the remaining part or offer other benefits to
collaborating on-demand mobility providers. Figure 15 illustrates the share of the BRT and

ridesourcing at the access and egress stages under all investigated price levels.
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Mode Shares of Total Trips in the Peak Hour
under Different Ridsourcing Fare Levels

40.00% 2689
35.09% 35.93%
33.53% 33.92% 34.42%
35.00%
30.00%
25.00%
20.00% 16.41%
14.17%
15.00% 9.91% 11.94%
. (]
10.00% 6.63% 8.12% - . 2
089 .78°/I .591 .
5.00% : I l I
0.00% . . .

20% -30% 40% -50%

Percent Change in Ridesourcing Fare

Base Case -10%

HBRT mRidesourcing (Access) m Ridesourcing (Egress)

Figure 15: Summary of Forecasting Results for Different Levels of Ridesourcing Fares

5.4.2.2. Scenario 2: Increase in Car Parking Prices at Destination

This scenario penalizes the utility of the car alternative by gradually increasing car
parking prices at trip destination and assessing the resulting switching rate to the BRT. Park &
ride rates are maintained at the base level as these facilities are expected to be jointly priced with
the BRT and an increase in their parking price will hurt the BRT. Table 23 summarizes

forecasting results for car parking prices increasing from 0% to 50% (10% increments).
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Table 23: Forecasting Results for Different Levels of Car Parking Prices

Percentage Change in Car Parking Price

o)
(E? a/s"e) +10%  +20%  +30%  +40%  +50%
Percentage of Total Trips

Main Mode
Car 66.47%  65.63% 64.78%  63.90%  62.97%  61.95%
BRT 3353%  3437% 3522%  36.10% 37.03%  38.05%
Access Mode
Park & Ride 9.15%  9.46%  9.79%  10.14%  1052%  10.91%
Walk 18.95%  19.31%  19.65%  19.97%  20.28%  20.57%
Bus 156%  1.62%  1.68%  1.75%  1.85%  2.01%
Jitney 0.80%  0.82%  0.84%  0.88%  0.92%  0.99%
E;'ﬂf/z‘gg)rc'”g 043%  044%  0.46%  047%  048%  0.49%
gﬁgfgg;c'”g 265%  272%  2.80%  2.89%  2.98%  3.08%

Ridesourcing (Total)  3.08% 3.17% 3.26% 3.36% 3.46% 3.57%

Egress Mode

walk 1877%  19.09%  19.37%  19.62%  19.87%  20.14%
Bus 549%  572%  598%  6.25%  655%  6.91%
Jitney 265%  2.72%  279%  2.88%  2.98%  3.09%
Ridesourcing 097%  099%  1.02%  1.05%  1.09%  1.12%
(Private)

Ridesourcing 566%  585%  6.06%  6.29%  654%  6.80%
(Shared)

Ridesourcing (Total)  6.63% 6.84% 7.08% 7.35% 7.63% 7.92%

For every 10% additional increment in car parking prices, BRT ridership rises by
around 0.9% on average based on the forecasting range. This policy is effective as it incurs no
extra costs on transit authorities, while diverting car users to public transportation reduces the
burden on infrastructure and the environmental footprint of the transport industry. This policy
can be achieved by imposing high taxes on private parking operators, higher fares for public

parking, and by eliminating free curb-side parking, with such policies being more possible when

108



transit alternatives are provided compared to the status-quo where transit options are limited and
flawed. Figure 16 displays the shares of BRT and ridesourcing from total vehicle trips under

different car parking prices.

Mode Shares of Total Trips in the Peak Hour

under Different Increases in Car Parking Price
38.05%

9 0,

30.00%

25.00%

20.00%

15.00%

10.00% 6.63% 6.84% 7.08% 7.35% 7.63% 7.92%

5.00% .08% 17% .26% .36% 46% 57%

0.00% H | | | N N
Base Case 10% 20% 30% 40% 50%

Percent Increase in Car Parking Price

HBRT m Ridesourcing (Access) Ridesourcing (Egress)

Figure 16: Summary of Forecasting Results for Different Levels of Car Parking Prices

5.4.2.3. Scenario 3: Reduction in Feeder Bus Headway

It was noticed that traditional public transportation modes had relatively low shares
across feeders compared to park & ride, walking, and ridesourcing. While jitney operations are
not usually coordinated and headways are sporadic, feeder buses are expected to operate on
defined schedules. This scenario tests the impact of enhancing feeder bus service by reducing
their headway which decreases waiting time. This policy requires investments in a higher
number of feeder buses and higher operating costs but can be effective as commuters were found
to be highly sensitive to waiting time. Table 24 presents market shares for different feeder bus
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headways starting with the base value and reaching a decrease of 50% through successive

decrements of 10%.

Table 24: Forecasting Results for Different Levels of Feeder Bus Headways

Percentage Change in Bus Headway
0%

-10% -20% -30% -40% -50%
(Base)
Percentage of Total Trips
Main Mode
Car 66.47%  66.35%  66.23%  66.10%  65.96%  65.80%
BRT 33.53% 33.65% 33.77%  33.90% 34.04%  34.20%

Access Mode

Park & Ride 9.15% 9.15% 9.15% 9.15% 9.15% 9.15%
Walk 18.95%  18.89%  18.82%  18.73%  18.64%  18.52%
Bus 1.56% 1.76% 1.98% 2.22% 2.49% 2.78%
Jitney 0.80% 0.79% 0.79% 0.79% 0.79% 0.79%

Ridesourcing (Private)  0.43% 0.43% 0.42% 0.42% 0.41% 0.41%
Ridesourcing (Shared)  2.65% 2.63% 2.61% 2.59% 2.57% 2.55%
Ridesourcing (Total) 3.08% 3.05% 3.03% 3.00% 2.98% 2.95%

Egress Mode

Walk 18.77%  18.68%  18.57%  18.46%  18.32%  18.17%
Bus 5.49% 5.86% 6.25% 6.67% 7.11% 7.58%
Jitney 2.65% 2.61% 2.57T% 2.53% 2.49% 2.46%

Ridesourcing (Private)  0.97% 0.95% 0.93% 0.91% 0.89% 0.87%
Ridesourcing (Shared)  5.66% 5.55% 5.44% 5.33% 5.22% 5.11%
Ridesourcing (Total) 6.63% 6.50% 6.37% 6.24% 6.11% 5.99%

While the impact of this policy on feeder bus ridership is noteworthy, its effect on BRT
ridership is minimal as its market share increased only by 0.67% for a 50% reduction in
headway. This policy seems not very effective overall as the main goal in this case would be to
maximize BRT ridership rather than feeder bus ridership unless the concern is about traffic on

local roads. The implementation of this policy requires investing in more feeder buses and
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operating additional trips. It seems more effective to allocate such funds to subsidies on
ridesourcing or other BRT improvement as their impacts are expected to be more positive on
BRT ridership. Figure 17 shows market shares for the BRT, ridesourcing, and buses for different

variations of feeder bus headways.

Mode Shares of Total Trips in the Peak Hour
under Different Levels of Feeder Bus Headways
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Figure 17: Summary of Forecasting Results for Different Levels of Feeder Bus Headways

5.4.2.4. Scenario 4: Limited Park & Ride Availability

Park & ride was found to be a popular access mode in the base scenario. While current
designs do not include the exact layout and capacity of park & ride facilities, it is expected that
capacity will be limited and not able to satisfy full demand. Therefore, this scenario is considered
to assess the impact of limited park and ride availability on overall BRT ridership. Park and ride
availability levels of 25%, 50%, and 75% are simulated, alongside the base case where
availability is not constrained, and results are summarized in Table 25. Simulation is performed
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to assign the availability of park and ride alternatives for different sample observations. A
random number is simulated from a U(0,1) distribution and availability is assigned for the

corresponding respondent based on the desired availability level.

Table 25: Forecasting Results for Different Park and Ride Availability Levels

Share of the Population for which Park & Ride is Available

100% (Base) 75% 50% 25%
Percentage of Total Trips
Main Mode
Car 66.47% 67.36% 68.21% 69.04%
BRT 33.53% 32.64% 31.79% 30.96%

Access Mode

Park & Ride 9.15% 6.26% 4.23% 2.00%
Walk 18.95% 19.87% 20.70% 21.60%
Bus 1.56% 1.79% 1.96% 2.12%
Jitney 0.80% 1.15% 1.17% 1.23%
Ridesourcing (Private) 0.43% 0.47% 0.50% 0.52%
Ridesourcing (Shared) 2.65% 3.09% 3.23% 3.48%
Ridesourcing (Total) 3.08% 3.56% 3.73% 4.00%

Egress Mode

Walk 18.77% 18.37% 18.19% 17.94%
Bus 5.49% 5.23% 5.10% 4.77%
Jitney 2.65% 2.55% 2.45% 2.39%
Ridesourcing (Private) 0.97% 0.96% 0.85% 0.84%
Ridesourcing (Shared) 5.66% 5.53% 5.21% 5.02%
Ridesourcing (Total) 6.63% 6.49% 6.05% 5.86%

Limited park and ride availability is negatively affecting BRT ridership. Reductions in
BRT share are significant with around 0.85% of overall prospective customers lost for every
25% reduction in park and ride availability. A park and ride availability for 25% of total

expected demand reduces the share of the BRT from 33.53% to 30.96%. As such, transit
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authorities should put efforts to meet demand for park and ride as this feeder mode can cater for
over a quarter of BRT customers and over 9% of overall vehicle trips. Existing public parking
nearby stations and curb-side parking on adjacent roads should be dedicated to BRT riders, while
further parking spaces could be developed if feasible and justified. Resulting modal shares from

different park and ride capacity levels are plotted in Figure 18.

Mode Shares of Total Trips in the Peak Hour
under Different Park and Ride Capacities
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Figure 18: Summary of Forecasting Results for Different Park and Ride Capacity Levels

5.4.2.5. Scenario 5: Hybrid Scenario

This scenario combines car parking price surges and ridesourcing fare reductions
simultaneously to yield a higher BRT market share. This policy provides insights on optimistic
ridership levels that can be expected for the BRT at launch. In this scenario, ridesourcing fare is

reduced by 50% and car parking price is increased by 50%. Results are summarized in Table 26.
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Table 26: Forecasting Results for Optimal BRT Ridership

Number of Peak Hour

Percentage of Total Trips in the Peak

Main Mode Person Trips Hour
Car 8,401 58.50%
BRT 5,961 41.50%

Access Mode

Number of Peak Hour

Percentage of

Percentage of

Person Trips Total Trips BRT Trips
Park & Ride 1,875 13.06% 31.46%
Walk 2,520 17.54% 42.27%
Bus 203 1.42% 3.41%
Jitney 123 0.85% 2.06%
Ridesourcing (Private) 261 1.81% 4.37%
Ridesourcing (Shared) 979 6.82% 16.43%
Ridesourcing (Total) 1,240 8.63% 20.80%

Egress Mode

Number of Peak Hour

Percentage of

Percentage of

Person Trips Total Trips BRT Trips
Walk 2,357 16.41% 39.54%
Bus 537 3.74% 9.00%
Jitney 270 1.88% 4.54%
Ridesourcing (Private) 515 3.59% 8.65%
Ridesourcing (Shared) 2,282 15.89% 38.28%
Ridesourcing (Total) 2,797 19.48% 46.93%

Forecasting results reveal that BRT ridership can reach around 6,000 passengers during

the peak hour under the mentioned conditions. This corresponds to 41.50% of all motorized trips

compared to 33.53% under base conditions which implies that combining multiple policies can

attract higher BRT ridership. As such, the BRT lane is expected to serve over 5,000 car users

during the peak hour which is higher than the number of car passengers that a highway lane can

serve under a low vehicle occupancy of around 1.2, meaning that the introduction of the BRT

might reduce the severity of congestion at the northern entrance to Beirut.
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5.4.2.6. Summary

Overall, BRT ridership is expected to fall in the 30% to 42% range. Car users are highly
sensitive to parking prices, and increased fares can drive a large portion to switch to the BRT.
When it comes to feeders, investments are best allocated to ridesourcing and park and ride
facilities as improvements in these services are expected to be most beneficial to the BRT.
Reductions in the headways of feeder buses seem to reap minimal gains and thus do not justify

large investments when the objective is to maximize BRT ridership.
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CHAPTER 6

CONCLUSION

This chapter concludes the thesis by summarizing findings and contributions, stating

research limitations, and providing recommendations for future research.

6.1. Summary of Findings

This research provides a framework to model demand for ridesourcing when integrated
with high capacity transit systems while considering all stages of a multi-modal transit trip:
access, main travel, and egress simultaneously. A mixed logit model was developed with an error
component structure to capture correlation in unobserved factors across alternatives involving
similar access, main travel, or egress modes. The systematic utilities and error components are
specific to a mode and stage and are later combined to yield the utilities of alternatives when
these are multi-modal. This approach allows to quantify the relative impact of level of service
variables at different trip stages on the overall selection process, and gives a clear overview of

the impact of feeders on mass transit ridership.

The thesis tests the complementarity between mass transit and ridesourcing, as the latter
service is quickly gaining traction in cities all over the globe. The framework can be easily
extended to accommodate other emerging mobility technologies whether as main modes or as a
feeder. The proposed framework was applied to the planned Beirut BRT based on survey data
collected from a well-defined study area. The case study provides practical insights on the
integration problem.
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The model suggests that ridesourcing is popular with young commuters and those with
inflexible schedules implying a higher perceived travel time reliability of ridesourcing among
commuters compared to traditional public transportation modes like bus and jitney. Previous on-
demand mobility users were more eager to embrace the ridesourcing service for access and
egress reflecting customer satisfaction and potential increase in market share as general

commuters become more keen about and aware of the new service.

Forecasting was also performed using the developed model for the analysis of 4 policies
that aim to augment BRT ridership and quantify the impact of ridesourcing on the transit
system’s popularity. Results reveal that ridesourcing and park and ride widen the target
customers of the BRT and help it reach higher ridership levels. The introduction of ridesourcing
as a feeder augmented the overall market share of the BRT from 31.68% to 33.53%. BRT
demand was found to be highly sensitive to ridesourcing fare demonstrating that a partnership
between mass transit and on-demand mobility can succeed. BRT share increases from 33.53% to
36.89% when the fare is reduced by half. Enhancing park and ride capacity brings high gains to
BRT ridership, while increasing the frequency of feeder buses has a minor positive effect of the
transit system. Car parking rates also had a major impact on BRT ridership and a price surge
reduces the appeal of private cars and drives commuters towards the BRT. Overall, improving
coverage and diversifying feeders to satisfy all tastes is beneficial to high capacity transit

systems.

6.2. Research Contributions
This thesis advances the existing literature on ridesourcing integration with mass transit

at methodological and practical levels. The developed framework fits all stages of multi-modal
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trips and allows the choice between such trips and uni-modal ones without constraining mode
selection at any stage. Most studies on the first-mile-last-mile problem from the demand side
tackle access and egress stages separately while constraining the other. Moreover, the framework
can accommodate any emerging or traditional travel mode at the access, main travel, or egress
stage which allows for flexible choice modeling that can simultaneously and efficiently
incorporate a wide range of travel alternatives. The mixed logit with error components structure
can be easily expanded to accommodate all travel modes available in a certain context in
addition to any planned or suggested future mode which is very convenient in first-mile-last-mile

problems.

At a practical level, the impact of ridesourcing on transit ridership is emerging as a
major topic in transportation research, with different studies leading to contradictory results and
no general consensus yet reached. This study contributes towards clarifying the ambiguous
relation and is a step forward towards building a robust understanding of the relation between
mass transit and on-demand mobility services. To our knowledge, this is the first paper that
conducts demand modeling for ridesourcing at both access and egress stages of a mass transit
system in the full context of an urban city and its suburbs. Furthermore, the case study of
Lebanon explores attitudes towards ridesourcing in developing countries which is rarely tackled
in the existing literature. The study provides insights on such service in contexts where public
transportation is deficient and awareness for emerging mobility services is limited. The
application also complements studies by local authorities on the BRT with further analysis of
ridership levels and possible feeders’ deficiencies. The policy analysis further provides

guidelines for better regulation and implementation of the proposed transit system.

118



6.3. Research Limitations

The main limitation in the study is the lack of initial market shares to use for re-
calibration of the model before forecasting, as the BRT is not yet operational. Furthermore, the
origin-destination matrix used in forecasting was not fully compatible with the study area and
assumptions had to be made before deriving a practical sub-matrix. Another drawback is the
limited sample size used in the survey. With variables defined at the trip stage level and multiple
alternatives possible through diverse mode combinations, high accuracy in model estimation
requires a large sample. Several variables were left out as they turned out to be not significant
despite clear trends observed in the descriptive analysis which might be attributed to a small
number of observations due to the limited sample. Moreover, the layout of the experimental
design does not allow testing the impact of monthly or yearly BRT subscriptions and rather
remains at the level of a single trip. The research was also restricted to current car users to reduce

the number of alternatives while a broader analysis should address users of all modes.

Further limitations include the assumption that ridesourcing is accessible to all
individuals while it should be practically limited to smartphone users. The analysis involving
reduction in ridesourcing fares is not based on supply and demand interaction, with the number
of drivers and vehicles assumed to vary in accordance with demand levels. No spatial analysis
was performed for feeder buses and jitneys and these were assumed to be reachable to all
commuters, while in fact, bus and jitney lines do not cover all road networks. The spatial
location of park and ride facilities was not taken into account when computing access travel time

since the exact locations of these facilities are not yet clearly defined.
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6.4. Recommendations for Future Research

Future research should address the limitations of the current study and build further
beyond it. For the case study, models can be developed to include ridesourcing, and/or other
modes, for main travel to assess the potential of ridesourcing for door-to-door travel and identify
possible competitive trends with fixed alignment transit systems such as the BRT. The study can
also be performed with a larger sample to incorporate more variables and improve significance
of coefficients such as the BRT’s in-vehicle travel time. From a modeling perspective, latent
variables can be added to the model, especially for emerging technologies or modes of transport,
as attitudes and perceptions towards new mobility concepts might play a key role in the selection
process. Future disruptive technologies like autonomous vehicles can also be included due to

their large potential for providing transportation services.

Further analysis can investigate correlations across error components. The study
assumes that the error terms are independent, while in fact, some modes might have correlations
in unobserved factors. A more detailed model can test the magnitude and statistical significance
of the correlations across error terms. Sequential estimation can also be performed separately for
access, egress, and main mode before comparing findings and forecasting results to those

obtained from simultaneous estimation.

Methodologically, future research can build an enhanced experimental design that allows fare
integration for selected multi-modal trips. An interesting approach would be to study the
complementarity of mass transit and ridesourcing in the context of Mobility-as-a-Service (MaaS)
as these services are starting to gain traction in multiple cities. When fare integration is adopted,
studies on fare splitting across stakeholders can also be performed as it is paramount to the

implementation and success of such collaboration.
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APPENDIX A: FULL QUESTIONNAIRE

Ridesourcing and Bus Rapid Transit Feeders in Lebanon
Survey Description and Consent Form

Hello, my name is [INTERVIEWER’S NAME] from [FIRM’S NAME]. I am contacting you on
behalf of researchers at the American College of Beirut. This research study is being conducted by
the Civil Engineering Department to study travel preferences in Lebanon and perception towards
new transportation modes and mass transit systems. Participants of this research are directly
approached by the survey firm to do the interview. Around four hundred participants will take part
in this study. The results of this research will be used by researchers and policy makers to suggest
improved transportation services in the future.

Your participation should take approximately 30 minutes. Please understand that your
participation is completely voluntary: you have the right to choose not to participate or to withdraw
anytime without having to give any reason for your withdrawal. Refusal or withdrawal from the
study will involve no loss of benefits to which you are otherwise entitled nor will it affect your
relationship with AUB or AUBMC. You receive no direct benefits from participating in this
research; however, your participation does help researchers better understand the potential of new
mobility concepts in Lebanon. Your participation in this study does not involve any physical or
emotional risk to you beyond the risks of daily life.

Participation in this study is completely confidential. Your name or any other identifying
information will not be asked. Your individual privacy and the confidentiality of the information
you provide will be maintained in all published and written data analysis resulting from the study.
A copy of the consent form will be kept with you for further reference.

The collected data from this survey will be stored for a minimum of 3 years on the computer of
the principal investigator and the research assistant who will both have access to it. The interview
will not be audio recorded.

If you have questions about your rights as a participant, you can contact the AUB Social and
Behavioral IRB office at: 01-350000 ext. 5454/5455; and if you have questions about the research
study you can contact:

Professor Maya Abou Zeid
Civil and Environmental Engineering

ma202@aub.edu.lb
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[NOTE TO INTERVIEWER: ASK TO SPEAK TO THE ADULT WHOSE BIRTHDAY WAS LAST. IF
HE/SHE IS NOT AVAILABLE, PICK THE ADULT WITH THE PRIOR BIRTHDAY, ETC... IF NO
ADULT IS AVAILABLE AT THE TIME OF THE VISIT, COME BACK AT ANOTHER TIME ]

Do you voluntarily consent to participate in this survey?
1. Yes
2. No

[NOTE TO INTERVIEWER: IF YES, PROCEED WITH INTERVIEW AND GIVE THE
PARTICIPANT A COPY OF THE CONSENT FORM. IF NO, THANK RESPONDENT AND
TERMINATE THE INTERVIEW.]

[NOTE TO INTERVIEWER: THE NEXT QUESTION ABOUT THE RESPONDENT’S ADDRESS
SHOULD BE RECORDED BY THE INTERVIEWER AT THE START OF THE INTERVIEW.]

. Where is the respondent’s residence located?

Zone 1 (Jbeil Caza)

Zone 2 (Tabarja, Safra, Ghedras)

Zone 3 (Jounieh, Kaslik, Jeita)

Zone 4 (Kesserwan caza excluding zones 2 and 3)

Zone 5 (Bikfaya, Bharsaf, Dhour Choueir)

Zone 6 (Dbayeh, Aoukar, Haret EI Bellan)

Zone 7 (Rabieh, Raboueh, Ain Aar)

Zone 8 (Naccache, Tellel Srour, Antelias, Haret EI Ghouarneh)
Zone 9 (Jal El Deeb, Zalka, Deir Salib)

LN UAEWDNR
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Section 1: Screening Criteria

We will first ask you a few questions to determine whether you are eligible to participate in this survey.

1. Which of the following categories best describes your main occupational status? (If you work
and study simultaneously, please select the place you go to more often and consider it for the
rest of the survey)

oV kA wWwNeE

7.

[NOTE TO INTERVIEWER: IF THE ANSWER IS “5”, “6”, or “7”, THANK RESPONDENT AND ASK
TO SPEAK TO THE NEXT ADULT HOUSEHOLD MEMBER WHOSE BIRTHDAY WAS LAST.]

Full-time worker (> 30 hours/week)
Part-time worker (< 30 hours/week)
Full-time student

Part-time student

Retired

Unemployed

Other

1b. How many cars are available to your household (including company cars)?

I S

A Lo DN - O

5+

[NOTE TO INTERVIEWER: IF THE ANSWER IS “0”, THANK RESPONDENT AND END THE

INTERVIEW]

2. How do you commute to work/college most of the time? If you use more than one mode, please
select the mode you use for the longest distance.
1.

© 0N U A WN

Drive private car (alone)

Drive private car with other passengers on board
Dropped off (family member, friend, colleague, etc.)
Service

Bus/minibus

Uber/Careem (or similar app-based services)

Taxi

Motorcycle

Walking all the way from residence to work.

10. Other [Please specify: ]

[NOTE TO INTERVIEWER: IF “1” OR “2” OR “3”, PROCEED TO QUESTION 3. OTHERWISE,
THANK RESPONDENT AND SPEAK TO THE NEXT ADULT HOUSEHOLD MEMBER WHOSE
BIRTHDAY WAS LAST.]

3. Where is your work place/college located?
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1. Municipal Beirut
2. Suburban area within Greater Beirut
3. Outside greater Beirut

[NOTE TO INTERVIEWER: IF THE ANSWER IS “Outside greater Beirut”, THANK RESPONDENT
AND ASK TO SPEAK TO THE NEXT ADULT HOUSEHOLD MEMBER WHOSE BIRTHDAY WAS
LAST]

[NOTE TO INTERVIEWER: ACCORDING TO THE RESPONDENT’S CHOICE, ASK HIM/HER TO
CHOOSE THE SPECIFIC AREA FROM BELOW.]

[NOTE TO INTERVIEWER: IF THE ANSWER TO QUESTION I (ABOUT RESIDENCE) IS “a”, “b”,
OR “c”, PROCEED TO QUESTION 3.1. OTHERWISE, SKIP QUESTION 3.1 AND MOVE TO
QUESTION 3.2]

3.1 Please select the specific area of your work/college:

Municipal Beirut

1. Port 13. Baladieh, Maarad, Riad al-Solh
2. Mar Mikhael, Khodr 14. Serail, Minet al-Hosn

3. Geitawi, Karm el-Zeitoun 15. Ain Mreisseh, al-Zarif

4. Gemmayzeh, Saifi, Remeil, Tabaris 16. Hamra, Wardieh

5. Nasra, Furn al-Hayek, Monot, Sodeco 17. AUB/IC campuses

6. Achrafieh, Mar Mitr, Sassine 18. Manara, Jal al-Bahr

7. Sioufi, Aadlieh, Hotel Dieu 19. Rawcheh, Qoreitem

8. Ras al-Nabaa, Mathaf, Badaro 20. Snoubra, Munla, Verdun

9. Horsh, Qasqgas, Chatila 21. Moussaitbeh, Zaidanieh, Batrakieh
10. Tareek al-Jdideh, Fakhani 22. Tallet al-Khayat, Wata

11. Mazraa, Bourj Abi Haidar 23. UNESCO, Ramlet al-Baida

12. Basta Faouka, Basta Tahta 24. Mar Elias, Dar Mouallimee

Suburban area within Greater Beirut

25. Bourj Hammoud (North), Dora 34. Bouchrieh

26. Bourj Hammoud (South), Nabaa 35. Jdeideh, Sid Bouchrieh

27. Sin el-Fil 36. Dekwaneh, Mkalles

28. Jisr al-Bacha 37. Dbayeh, Aoukar, Haret El Bellan
29. Furn al-Chebbak, Ain al-Roummaneh 38. Rabieh, Raboueh, Ain Aar

30. Chiyah 39. Naccache, Tellel Srour

31. Ghobeiry, Haret Hreik 40. Antelias, Haret EI Ghouraneh
32. Hazmieh, Fayadieh, Baabda 41. Jal El Deeb

33. Hadath, Laylakeh 42. Other
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[NOTE TO INTERVIEWER: IF THE ANSWER IS “Other”, THANK RESPONDENT AND ASK TO
SPEAK TO THE NEXT ADULT HOUSEHOLD MEMBER WHOSE BIRTHDAY WAS LAST ]
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3.2 Please select the specific area of your work/college:

Municipal Beirut
Port

. Mar Mikhael, Khodr

. Geitawi, Karm el-Zeitoun

. Gemmayzeh, Saifi, Remeil, Tabaris
. Nasra, Furn al-Hayek, Monot, Sodeco
. Achrafieh, Mar Mitr, Sassine

. Sioufi, Aadlieh, Hotel Dieu

. Ras al-Nabaa, Mathaf, Badaro

. Horsh, Qasqas, Chatila

10. Tareek al-Jdideh, Fakhani

11. Mazraa, Bourj Abi Haidar

12. Basta Faouka, Basta Tahta

Suburban area within Greater Beirut
25. Bourj Hammoud (North), Dora

26. Bourj Hammoud (South), Nabaa

27. Sin el-Fil

28. Jisr al-Bacha

29. Furn al-Chebbak, Ain al-Roummaneh
30. Chiyah

31. Ghobeiry, Haret Hreik

13.
14.
15.
16
17.
18.
19.
20.
21.
22.
23.
24.

32.
33.
34.
35.
36
37.

Baladieh, Maarad, Riad al-Solh
Serail, Minet al-Hosn
Ain Mreisseh, al-Zarif

. Hamra, Wardieh

AUBY/IC campuses

Manara, Jal al-Bahr

Rawcheh, Qoreitem

Snoubra, Munla, Verdun
Moussaitbeh, Zaidanieh, Batrakieh
Tallet al-Khayat, Wata

UNESCO, Ramlet al-Baida

Mar Elias, Dar Mouallimee

Hazmieh, Fayadieh, Baabda
Hadath, Laylakeh
Bouchrieh

Jdeideh, Sid Bouchrieh

. Dekwaneh, Mkalles

Other

[NOTE TO INTERVIEWER: IF THE ANSWER IS “Other”, THANK RESPONDENT AND ASK TO
SPEAK TO THE NEXT ADULT HOUSEHOLD MEMBER WHOSE BIRTHDAY WAS LAST]
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4. Does your work/college trip involve driving on the coastal highway or any parallel road
to the highway (sea side road, etc.) for more than 3 km?
1. Yes
2. No

[NOTE TO INTERVIEWER: IF THE ANSWER IS “No”, THANK RESPONDENT AND ASK TO
SPEAK TO THE NEXT ADULT HOUSEHOLD MEMBER WHOSE BIRTHDAY WAS LAST.]

Section 2: Characteristics of Different Travel Modes

In this section, we will ask you about your use of public transportation and its availability in the
vicinity of your residence.

5. During the last 12 months, how often did you use public transportation in Lebanon (bus,
minibus, service, ...) for any purpose?
1. More than once a week
About once a week
Few times a month (2-3 times)
About once a month
Several times a year
About once or twice a year
Never

Nou,swnN
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Section 3: Attributes of Commute to Work

In this section, we will ask you about your current trip to work.

10. Taking all things together, how satisfied are you with your commute to work/college
by car?
1. Very Dissatisfied
2. Dissatisfied
3. Neither satisfied nor dissatisfied
4. Satisfied
5. Very Satisfied
[NOTE TO INTERVIEWER: IF THE ANSWER TO QUESTION 2 IS “3”, SKIP QUESTION 11
AND GO TO QUESTION 12.]

11. Do you usually pick up/drop off somebody (children, wife/husband, friend, etc.) on your
way to or from work/college?

Yes, pick-up only on the way back home

Yes, drop-off only on the way to work/college

Yes, pick-up and drop-off on the way to work/college and on the way back home

No

el e

12. What is your most typical door-to-door travel time from home to work/college by car?
1. Less than 30 minutes

From 30 to 44 minutes

From 45 to 59 minutes

From 59 to 74 minutes

From 75 to 89 minutes

From 90 to 104 minutes

From 105 to 119 minutes

120 minutes or more

NV kAW

[NOTE TO INTERVIEWER: IF THE ANSWER TO QUESTION 2 IS “3”, SKIP QUESTIONS 14
TO 18 AND MOVE DIRECTLY TO QUESTION 19.]

14. Do you pay for parking?
1. Yes, | pay from my own pocket.
2. Yes, but the company reimburses/pays parking fees
3. No
[NOTE TO INTERVIEWER: IF THE ANSWER TO QUESTION 14 IS “3”, SKIP QUESTION 15
AND MOVE DIRECTLY TO QUESTION 16.]

15. Where/How do you park your car?
1. On street (park meters)
2. Valet parking
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3. At company/college grounds

4. Private parking lot (on a daily basis)

5. Private parking lot (monthly subscription)
[NOTE TO INTERVIEWER: IF ANSWER TO QUESTION 15 IS “1” or “2” or “4”, GO TO
QUESTION 17 AND SKIP QUESTION 18. IF ANSWER TO QUESTION 15 IS “3” or “5”, GO
TO QUESTION 18.]

16. Where/How do you park your car?
1. On the street
2. At company/college grounds
3. Public parking lot
[NOTE TO INTERVIEWER: NOW MOVE TO QUESTION 19.]

17. What is the approximate daily parking fee (in Lebanese Liras)?
1. Lessthan 3,000 LL
2. 3,000 LL —4,999 LL
3. 5,000 LL —6,999 LL
4. 7,000 LL-9,999 LL
5. 10,000 LL or more
[NOTE TO INTERVIEWER: NOW MOVE TO QUESTION 19.]

18. What is the monthly subscription fee (in Lebanese Liras)?
1. Lessthan 50,000 LL

50,000 LL —99,000 LL

100,000 LL — 149,000 LL

150,000 LL — 199,000 LL

. More than 200,000 LL

20. How many days per week do you commute to work/college?

1

SRS

No o,k wNe
~N o U A WN

21. How flexible is your work/college arrangement when it comes to arrival time and
departure time?

1. Completely flexible — [I arrive when | want to and leave when | want to.]
2. Partly flexible — [ can arrive a bit late but cannot leave before a certain time of day,
or | have to arrive by a certain time but can leave a bit early.]
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3. Not flexible — [I have to be on time in the morning and cannot leave before a certain
time of day.]
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Section 4: Scenarios

The Lebanese government is planning to develop a Bus Rapid Transit (BRT) line running from
Tabarja towards the northern entrance of Beirut at Charles Helou station and already secured
funding for the project through the World Bank.

In this section, you will be presented with different hypothetical scenarios for your work/college
trip and asked to choose your preferred alternative. First, a brief explanation about the Bus Rapid
Transit system will be provided.

Bus Rapid Transit (BRT)

The BRT is a bus system designed to increase the capacity and improve the reliability
(consistent travel time for different days and seasons) of traveling by bus. It has the following
main characteristics:

>

>

One dedicated lane per direction alongside the coastal highway with modern buses
operating exclusively on these lanes.

Stations located all along the highway at frequent intervals of around 1 km with
passengers boarding/alighting only at these stations.

Tickets are sold online and at stations with various options available (ticket for one trip,
5 trips, 10 trips, daily pass, ...).

BRT buses follow exact schedules, with 2 to 3minutes between two consecutive buses
(the arrival time will be specified on screens at the station).

Legend

BRT Tabarja Beirut Trunk Line

Below, you will be shown your current commute mode alongside several BRT options to
determine whether you will switch to the BRT service. If you choose to use the BRT, you
will be asked to choose how you will reach the nearest BRT station (access mode) and how
you will commute from the final station to your work place/college (egress mode).

The access modes include:
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» Park & Ride: you will drive to a parking near the BRT station where you leave your
car and transfer to the BRT.
» Service: you will take a service from the nearest pick-up point to your residence to
the nearest BRT station.
» Bus: you will take a bus from the nearest pick-up point to your residence to the
nearest BRT station.
Taxi: you will request a taxi from your home to the nearest BRT station.
Walking: you will walk all the way from your residence to the BRT station.
Uber/Careem (private): you will request a ride through “Uber” or “Careem” apps
to travel from your residence to the BRT station. This is a private ride with no other
passengers on board. The service has the following characteristics:
e You can request a ride through the mobile app/website and will be
instantaneously matched to the nearest driver available based on real time
GPS data.
¢ You can monitor the driver’s location on the map alongside the estimated
arrival time of the requested vehicle.
e You can check driver’s reviews submitted by other commuters.
e The fare is automatically defined before requesting the ride with payment
allowed through credit cards (with no direct cash transfer), or in cash.
e You will be picked up from your residence.
» Uber/Careem (shared): Similar to the previous travel mode but the ride in this case
will be shared with other passengers along the way and the fare will be split
accordingly.

Y V V

The egress modes available to leave the last BRT station are the same as the access modes
presented. Only park & ride is not included since you will not have access to your car at that
stage of the trip.
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this icon, Tap here to change its color a
. $7.89

- Bryant so#
"" v ) N1

Now, you will be provided with 3 different scenarios for your commute to work/college,
including the car option and the BRT option. In each scenario, a combination of access/egress
modes to/from the BRT will be presented and not all options will be necessarily included.
For each option, you will be presented with its travel time and cost components (such as time
in the vehicle, waiting time, parking time, walking time, etc.). Please consider each scenario
separately and indicate your preferred option based on how you would actually choose if
faced by such scenario in reality.

THE BRT STUDIES IN LEBANON HAVE PROGRESSED IN THE DIRECTION
OF ITS IMPLEMENTATION AND THE WORLD BANK WILL FUND MOST OF THE
PROJECT. THE BRT WILL BE FULLY OPERATIONAL IN THE NEXT 5-6 YEARS. BY
THEN, TRAVEL CHARACTERISTICS AND POLICIES MAY CHANGE
SIGNIFICANTLY AND THE CURRENT TRAVEL TIMES AND COSTS MAY NO
LONGER APPLY.

ACCORDINGLY, PLEASE BASE YOUR DECISION ON THE PROPOSED VALUES FOR
EACH VARIABLE. THE SCENARIOS MIGHT NOT REFLECT YOUR CURRENT
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TRAVEL CHARACTERISTICS. PLEASE DO NOT CONSIDER YOUR CURRENT

Scenario 1

TRAVEL TIME AND COSTS.

22. Imagine you are about to make a trip to work/college on a typical work day between 7 AM

The mode choice process consists of 3 different steps:

Step 1: The Preferred BRT Trip

and 9 AM. Weather is sunny with a temperature of around 20°C. You are carrying your
typical gear and need to reach your work/college on time.

In this step, the BRT is imposed as main transport mode. You are asked to make two choices
independently for the overall BRT trip: a choice of the preferred access mode adopted to commute
from home to the BRT station, and then a choice of the preferred egress mode for commuting from
the BRT station at which you will alight to your final destination.

(-}

L

BRT
Access Modes Available
o ® _ (i)
ﬁ q" Ta @ uberPOOL
) -l UBER
6. 7
L I;?g';& 2. Walk 3.Bus 4. Taxi 5.Service Ridesourcin Ridesourcing
9 (shared)
(private)
In-
Vehicle
Travel 5 7 5 5 5 6
Time
(min)
o Walkin
- g Time 2 24 10 - 10 -
:" (min)
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Waitin
g Time
(min)

10 3 3 3

Fuel
Cost
(LL)

500

Daily
Parkin
g Cost

(LL)

3000

Fare
(LL)

1000

7000 2000 5000 3000

Selection

In-
Vehicle
Travel

Time
(min)

30

Waitin
g Time
(min)

Fare
(Lb)

3000

@ uberPoOOL

o 7.
2. Walk 3.Bus 4. Taxi 5.Service R Ridesourcing
9 (shared)
(private)

6
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In-
Vehicle
Travel

Time
(min)

(] Walkin
— g Time
f" (min)

24

10 =

10

@ Waitin
g Time
S~ (min)

Fare
(LL)

1000 7000

2000

5000 3000

Selection

Step 2: Choice Confirmation
In this step, you will be asked to confirm the choices you made in step 1. You will be presented
with the characteristics of the overall BRT trip selected in the previous step and will be asked to
confirm your selection. You can choose to go back to step 1 to vary your selection or you can
confirm your current selection. If you confirm your choice, you will no longer be able to go back to

step 1.

BRT Trip Selected

=

In-Vehicle Travel Time (min)

Sum for access, BRT, and egress

3

Average Walking Time (min)

Sum for access and egress

Average Waiting Time (min)

Sum for access, BRT, and egress

Fuel Cost (LL)

Only if Access is “Park & Ride”, 0
otherwise

uEQ

Daily Parking Cost (LL)

Only if Access is “Park & Ride”, 0
otherwise

Fare (LL)

Sum for access, BRT, and egress

Confirm Your Selection
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Go Back to Step 1

Step 3: Choice between Preferred BRT trip and Commute by Private Car
In this step, you will have to choose between your preferred BRT trip selected in the previous steps
and commuting by private car from origin to destination.

Overall Trip
BRT Trip Selected Private Car
ﬁ' In-Vehicle Travel Time (min) Sum for access, BRT, and egress 59
)
5"— Walking Time (min) Sum for access and egress 4
7 o
Waiting Time (min) Sum for access, BRT, and egress 0
—y
Fuel Cost (LL) Only if Access is “Pz_irk & Ride”, 0 4000
otherwise
3 T 6 3 2
Daily Parking Cost (LL) Only if Access is Pz_lrk & Ride”, 0 5000
otherwise
Fare (LL) Sum for access, BRT, and egress ;
Selection

Scenario 2

23. Imagine you are about to make a trip to work/college on a typical work day between 7 AM
and 9 AM. Weather is sunny with a temperature of around 20°C. You are carrying your
typical gear and need to reach your work/college on time.

The mode choice process consists of 3 different steps:

Step 1: The Preferred BRT Trip
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In this step, the BRT is imposed as main transport mode. You are asked to make two choices
independently for the overall BRT trip: a choice of the preferred access mode adopted to commute
from home to the BRT station, and then a choice of the preferred egress mode for commuting from

the BRT station at which you will alight to your final destination.

BRT

® ® _ )
E q_. 11 a - @® uberPOOL
) -I UBER
1. Park & 6. 7
' Ride 2. Walk 3.Bus 4. Taxi 5.Service Ridesourcing | Ridesourcing
(private) (shared)
In-
Vehicle
Travel 5 - 7 5 5 5 6
Time
(min)
(] Walking
- Time 2 24 10 - 10
f" (min)
7N | Waiting
@ Time 2 - 5 10 3 3 3
H— (min)
Fuel
Cost 500 - = -
(LL)
Daily
Parking
m COSt 3000 - - -
(LL)
Fare
(LL) - - 1000 7000 2000 5000 3000

Selection

| I I I I I I I
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In-
Vehicle
Travel 30

Time
(min)

Waiting
Time 2
(min)

Fare
(LL) 3000

Available Egress Modes
® ® _ )
q—- L a @ uberPOOL
A ||
6. 7.
2. Walk 3.Bus 4. Taxi 5.Service Ridesourcing | Ridesourcing
(private) (shared)
In-
ﬁ‘ Vehicle
Travel = 7 5 5 5 6
Time
(min)
(] Walking
- Time 24 10 - 10 -
f" (min)
7 | Waiting
@ Time - 5 10 3 3 3
N~ (min)
Fare
(LL) - 1000 7000 2000 5000 3000
Selection

Step 2: Choice Confirmation

In this step, you will be asked to confirm the choices you made in step 1. You will be presented
with the characteristics of the overall BRT trip selected in the previous step and will be asked to
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confirm your selection. You can choose to go back to step 1 to vary your selection or you can
confirm your current selection. If you confirm your choice, you will no longer be able to go back to

step 1.
(Selected Access Mode) + BRT + (Selected Egress Mode)
ﬁ In-Vehicle Travel Time (min) Sum for access, BRT, and egress
[

3"" Average Walking Time (min) Sum for access and egress
2\ o

Average Waiting Time (min) Sum for access, BRT, and egress
N~

Fuel Cost (LL) Only if Access is “Park & Ride”, 0 otherwise

m Daily Parking Cost (LL) Only if Access is “Park & Ride”, 0 otherwise

Fare (LL) Sum for access, BRT, and egress

Confirm Your Selection

Go Back to Step 1

Step 3: Choice between Preferred BRT trip and Commute by Private Car

In this step, you will have to choose between your preferred BRT trip selected in the previous steps
and commuting by private car from origin to destination.

Overall Trip
(Selected Access Mode) + Private Car
BRT + (Selected Egress
Mode)
ﬁ In-Vehicle Travel Time (min) Sum for access, BRT, and egress 59
)
5‘"‘ Walking Time (min) Sum for access and egress 4
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Waiting Time (min) Sum for access, BRT, and egress 0

Only if Access is “Park & Ride”, 0

uEQ

Fuel Cost (LL) otherwise 4000
3 1a 6 3 ”»
Daily Parking Cost (LL) Only if Acces()st:]sera?sl‘;( & Ride”, 0 5000
Fare (LL) Sum for access, BRT, and egress !
Selection

Scenario 3

24. Imagine you are about to make a trip to work/college on a typical work day between 7 AM
and 9 AM. Weather is sunny with a temperature of around 20°C. You are carrying your
typical gear and need to reach your work/college on time.

The mode choice process consists of 3 different steps:

Step 1: The Preferred BRT Trip

In this step, the BRT is imposed as main transport mode. You are asked to make two choices
independently for the overall BRT trip: a choice of the preferred access mode adopted to commute
from home to the BRT station, and then a choice of the preferred egress mode for commuting from
the BRT station at which you will alight to your final destination.

Access Modes Available
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UBER

@ uberPoOL

1. Park &
Ride

2. Walk

3.Bus

4. Taxi

5.Service

6.
Ridesourcin

g
(private)

7.
Ridesourcing
(shared)

In-
Vehicle
Travel

Time
(min)

Walkin
g Time
(min)

24

10

10

Waitin
g Time
(min)

10

Fuel
Cost
(LL)

500

Daily
Parkin
g Cost

(LL)

3000

Fare
(LL)

1000

7000

2000

5000

3000

Selection

In-
Vehicle
Travel

Time
(min)

30

Waitin
g Time
(min)

Fare
(LL)

3000
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@ uberPoOOL
6.
- . Ridesourcin . £ .
2. Walk 3.Bus 4. Taxi 5.Service g Ridesourcing
(private) (shared)
In-
Vehicle
Travel 7 5 5 5 6
Time
(min)
® Walkin
- g Time 24 10 10
:" (min)
N | Waitin
g Time 5 10 3 3 3
Sy (min)
Fare
(LL) 1000 7000 2000 5000 3000

Selection

Step 2: Choice Confirmation

In this step, you will be asked to confirm the choices you made in step 1. You will be presented
with the characteristics of the overall BRT trip selected in the previous step and will be asked to
confirm your selection. You can choose to go back to step 1 to vary your selection or you can

confirm your current selection. If you confirm your choice, you will no longer be able to go back to

step 1.

(Selected Access Mode) + BRT + (Selected Egress Mode)

In-Vehicle Travel Time (min)

Sum for access, BRT, and egress
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Sum for access and egress

- Average Walking Time (min)
Py
77 o
Average Waiting Time (min) Sum for access, BRT, and egress
r—y

Fuel Cost (LL) Only if Access is “Park & Ride”, 0 otherwise

Fare (LL) Sum for access, BRT, and egress

m Daily Parking Cost (LL) Only if Access is “Park & Ride”, 0 otherwise
N

Confirm Your Selection

Go Back to Step 1

Step 3: Choice between Preferred BRT trip and Commute by Private Car

In this step, you will have to choose between your preferred BRT trip selected in the previous steps
and commuting by private car from origin to destination.

Overall Trip

(Selected Access Mode) + BRT Private Car
+ (Selected Egress Mode)
ﬁ In-Vehicle Travel Time (min) Sum for access, BRT, and egress 59
)
5’— Walking Time (min) Sum for access and egress 4
2R\ o
Waiting Time (min) Sum for access, BRT, and egress 0
N~
. . 66 2 2
Fuel Cost (LL) Only if Access is Pz_trk & Ride”, 0 4000
otherwise
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Daily Parking Cost (LL)

Only if Access is “Park & Ride”, 0

otherwise e

Fare (LL)

Sum for access, BRT, and egress

Selection

Section 5: Attitude towards Different Travel Modes

Now we will ask you about your attitude and perception towards different travel modes. In case you
do not use a particular mode, please answer the related questions based on your perception of the
travel mode in question and what you have heard of it.

25. Please indicate your level of agreement with the following statements about using and
owning cars in Lebanon.

Neither
satisfied
Strongly . Strongly
X Disagree nor Agree
disagree dissatisfie agree
d
a. | like using the car as a mode of 1 2 3 4 5
commuting
b. I can count on the car to get me to
work/college on time
c. The car offers me the flexibility | 1 2 3 4 5
need for my schedule
d. Using the car does not cost much ! 2 3 4 >
1 2 3 4 5

e. Owning a car brings prestige

26. Please indicate your level of agreement with the following statements about buses in
Lebanon. In case you do not use the bus, please answer the questions based on your
perception of this travel mode and what you have heard of it.

Neither
dissatisfied
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a. |like using the bus as a 1 2 3 4 5
mode of commuting

b. I can counton the bus to 1 9 3 4 5
get me to work/college on
time
c. The bus offers me the
flexibility 1 need for my L Z & 4 2
schedule
1 2 3 4 5

d. Buses have poor hygiene

e. | feel safe in the bus

27. Please indicate your level of agreement with the following statements concerning
improved bus services in Lebanon such as the proposed BRT:

Neither
3t_rong|y Disagree satisfied Agree Strongly
isagree nor agree
dissatisfied
a. I am willing to use the B_RT if it 1 2 3 4 5
reduces my commute time
substantially.
b. I am willing to use the BRT if the 1 2 3 4 5
fare is much cheaper than the cost of
using my car.
c. I wouldn’t mind being around other 1 2 3 4 5
people when using the BRT.
d. I wouldn’t mind walking few 1 2 3 4 5
minutes to get to or from a BRT
station.

28. Have you ever used Uber/Careem or similar services inside or outside Lebanon?
8. Yes
9. No

29. Based on your personal experience or anything you have seen, read, or heard, please
indicate your level of agreement with the following statements concerning Uber/Careem
and similar services:

Neither
3t_rong|y Disagree satisfied Agree Strongly
isagree nor agree
dissatisfied
a. | like the idea of using 1 2 3 4 5

Uber/Careem as a mode of
commuting
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b. Knowing the waiting time for 1
pick-up is an attractive feature
c. The driver review system
enhances Uber/Careem’s safety and
overall service
d. The ability to track the driver’s 1
live location is an attractive feature
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Section 6:

Socio-Economic and Demographic Questions

In this section, we will ask you a few questions about characteristics of your household and household

members to ens
include anyone

ure that the Lebanese population is well represented in the sample. Please do not
visiting for a short stay nor live-in domestic workers. If you live with

roommates/housemates, please report characteristics of your family household.

30. What is your gender?

1.
2.

31. Inwhic

ok wnNE

7.
[NOTE TO INT

Male
Female

h of the following categories does your age fall?

18-24

25-29

30-39

40-49

50-64

64+

| prefer not to answer

ERVIEWER: IF ANSWER TO QUESTION 1 IS “a” or “b”, GO TO QUESTION

32; OTHERWISE, GO DIRECTLY TO QUESTION 33]

32. What is the highest educational level that you completed?

1.

N Uk wWwN

No formal education

Less than secondary/high school diploma
Secondary/high school diploma (12 years of schooling)
Technical or vocational school

Some college/university

University undergraduate/bachelor degree or equivalent
Postgraduate, master’s degree, doctorate

33. With whom do your share your current residence?

1.

NouswnN

I live alone
With a partner, without children
With a partner, with children
Alone with children
Roommates/flat mates
I live with my parents at their house
Other (please SPeCify): ...ovueirii e
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34. How many persons, including yourself but not domestic helper(s), live in your
household?
1. 1

O Nk wWwN
~N o A~ ®wWN

35. How many people in your household (including you) have a driver’s license?
0

WO NV A WN R
~o U~ WN PR

36. What is your family monthly income range (approximately) in Lebanese Liras?
1. 0-1,499,999 LL

1,500,000 LL - 2,999,999 LL

3,000,000 LL — 4,499,999 LL

4,500,000 LL -5,999,999 LL

6,000,000 LL — 7,499,999 LL

7,500,000 LL -9,999,999 LL

10,000,000 LL — 14,999,999 LL

15,000,000 LL —19,999,999 LL

. 20,000,000 LL — 29,999,999 LL

10. 30,000,000 LL or more

11. Refuse to answer

12. Don’t know

© 0N YA WN

37. What is your personal monthly income range (approximately) in Lebanese Liras?
1. 0-1,499,999 LL
2. 1,500,000 LL -2,999,999 LL
3. 3,000,000 LL —4,499,999 LL
4. 4,500,000 LL -5,999,999 LL

156



6,000,000 LL - 7,499,999 LL
7,500,000 LL -9,999,999 LL
10,000,000 LL — 14,999,999 LL
15,000,000 LL or more

. Refuse to answer

10. Don’t know

©® N w!

THANK YOU FOR PARTICIPATING IN THIS SURVEY. IF YOU HAVE ANY COMMENT
OR CONCERN ABOUT THE SURVEY, FEEL FREE TO SHARE IT WITH US:

Please add your comments, if any, here:
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APPENDIX B: BASE VALUES DEFINITION FOR

FORECASTING

This appendix provides a description of the definition of base values used for
forecasting. Base values for trips originating in Tabarja (Zone 2) and destined to Achrafieh
(Zone A) will be defined to illustrate the adopted approach for the definition of the values.
Base values for other origin-destination couples were defined following the same approach

but their values will not be discussed in detail in this appendix.

For travel time, in-vehicle travel time was defined for all main travel, access, and
egress modes. Walking and waiting times were also defined separately by mode when
applicable. Car IVTT was defined based on Google Maps estimates during the AM peak
hour. As for the BRT, an average speed of 30 km was assumed for the BRT which is
similar to the speed of Istanbul’s BRT and other similar systems. The road distance along
the coastal highway where the BRT is to be developed was obtained from Google Maps
and the average speed was used to compute the trip duration which turned out to be 49 min
for a trip from Tabarja to Achrafieh. For feeders, the travel time were also obtained from
Google Maps from the centroid of the zone to the expected location of the nearest BRT
station. A base value of 5 min was thus adopted for park and ride. 20% and 30% increases
were applied for jitney and bus respectively due to their frequent stops and lower operating
speeds. A 10% decrease in IVTT was adopted for private ridesourcing as it provides an un-
interrupted trip while avoiding parking time when compared to park and ride. Shared
ridesourcing was assigned a 20% increase in IVTT compared to the private form of the

service due to pick-ups of other passengers, though that will translate into faster times than
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jitneys as the mobile platform incorporates optimal routing and matching algorithms while
jitney pick-up are more random and less planned. For feeders, IVTT values were not
rounded due to their low magnitude and minor variation across each other. The base values

for all IVTTs for trips between zones 2 and A are summarized in the Table B.1:

Table B.1: Base Values for In-Vehicle Travel Time

) IVTT (Shared )
IVTT (Car) 88 min ] ) 5.4 min
Ridesourcing, Access)
IVTT (BRT) 49 min IVTT (Bus, Egress) 12 min
IVTT (Park and Ride, ) ) )
5 min IVTT (Jitney, Egress) 11 min
Access)
) IVTT (Private ]
IVTT (Bus, Access) 6.5 min ] ) 9 min
Ridesourcing, Egress)
) ) IVTT (Shared )
IVTT (Jitney, Access) 6 min ) ) 11 min
Ridesourcing, Egress)
IVTT (Private ]
) ] 4.5 min
Ridesourcing, Access)

Walking time was not included for the BRT due to the absence of transfers as the
BRT operated on one line. The walking time to cross pedestrian bridges and reach the BRT
stop were assigned to the feeders. Car walking time was inflated for zones where parking is
limited as commuters might be forced to park a little farther than their final destination.
Among feeders, ridesourcing had the lowest walking time as commuters are picked-up
from home and dropped-off right at the station. For park and ride, there is need to walk
from the parking to the station, while bus and jitney passengers have to walk to their

stations. For egress, lower walking time were used for bus and jitney as their stations are
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less spaced and more numerous inside the capital. When walking is adopted for access or
egress, base values were defined using Google Maps. The base values for all walking times

for trips between zones 2 and A are summarized in the following Table B.2:

Table B.2: Base Values for Walking Time

Walking Time
Walking Time (Car) 5 min (Shared Ridesourcing, 1 min
Access)
Walking Time (Walk, ] Walking Time (Walk, ]
10 min 15 min
Access) Egress)
Walking Time (Park ) Walking Time (Bus, ]
) 2 min 2 min
and Ride, Access) Egress)
Walking Time (Bus, ) Walking Time (Jitney, ]
3 min 2 min
Access) Egress)
] ) ) Walking Time
Walking Time (Jitney, ) ] ] ] ]
3 min (Private Ridesourcing, 1 min
Access)
Egress)
Walking Time Walking Time
(Private Ridesourcing, 1 min (Shared Ridesourcing, 1 min
Access) Egress)

Waiting time do not apply for car or when walking is adopted as feeder. For the
BRT, a headway of 4 minutes as the BRT study performed by Khatib & Alami and TMS
Consult mentions an expected headway between 2 and 5 minutes. This translates to an
average waiting time of 2 min which was adopted as base value. A higher headway was
adopted for buses due to lower demand on feeder lines. A 10 minutes headway was
assumed for buses at the access stage which translates into a waiting time of 5 minutes on

average, with lower values adopted for egress as operations are denser in the capital. For
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jitney, a lower waiting time of 4 minutes was assumed for access as vehicles pass more
frequently than buses due to their lower capacity and higher number. Lower waiting times
were adopted for ridesourcing as the service allows requesting a ride before getting ready
and tracking the vehicle, which reduces the net waiting time. The base values for all

waiting times for trips between zones 2 and A are summarized in Table B.3:

Table B.3: Base Values for Waiting Time

. ) ) Waiting Time (Bus, ]
Waiting Time (BRT) 2 min 3 min
Egress)
Waiting Time (Bus, ) Waiting Time (Jitney, ]
5 min 2 min
Access) Egress)
Waiting Time (Jitney, ) Waiting Time (Private ]
4 min ) ) 2 min
Access) Ridesourcing, Egress)
Waiting Time (Private ) Waiting Time (Shared ]
) ] 2 min ) ) 2 min
Ridesourcing, Access) Ridesourcing, Egress)
Waiting Time (Shared )
) ) 2 min
Ridesourcing, Access)

As for travel costs, base values were also defined separately for each mode. For
cars, the fuel cost was computed based on distance and an average fuel consumption of 150
km per tank. Daily parking costs were assumed to be 7,000 L.L. in Municipal Beirut, and
3,000 L.L. or 5,000 L.L. outside it depending on the availability of free parking in the zone
of interest. For the BRT the fares were computed similarly to the approach from Khatib &
Alami and TMS Consult who used a dynamic rate that equals 1000 + 120*distance (L.L.).
This translates to 3,880 L.L. for the 24 km trip from Tabarja to Achrafieh, and a rounded

base value of 4,000 L.L. was used as such. BRT fares were rounded to the closest 1,000
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L.L. For park and ride, a daily fare of 5,000 L.L. was assumed. Bus and jitney fares were
setat 1,000 L.L. and 2,000 L.L. which are the current prices in the market and the same
rates were used in the study from Khatib & Alami and TMS Consult. When the
access/egress trips exceed 3 km, the rates were raised to 1,500 L.L. for buses and 4,000
L.L. for jitney. As for ridesourcing, Careem’s fare estimator was used and its minimum fare
of 5,000 L.L. was adopted for private ridesourcing over short trips in zones adjacent to the
BRT, while higher fares resulted for long trips. As for shared ridesourcing, a 40% decrease
was applied compared to the private form of the service as Uber estimates a reduction of
one third on average compared to the private fare while the company recently launched the
enhanced Uber Express Pool which features enhanced routing and matching algorithms and
allows for further fare reductions, thus a 40% decrease was adopted. The base values for all

costs for trips between zones 2 and A are summarized in Table B.4:

Table B. 4: Base Values for Trip Costs

Fare (Private

Fuel Cost (Car) 5,420 L.L. ) ) 5,000 L.L.
Ridesourcing, Access)
Daily Parking Cost Fare (Shared
7,000 L.L. ) ) 3,000 L.L.
(Car) Ridesourcing, Access)
Fare (BRT) 4,000 L.L. Fare (Bus, Egress) 1,000 L.L.
Daily Parking Cost
(Park and Ride, 5,000 L.L. Fare (Jitney, Egress) 2,000 L.L.
Access)
Fare (Private
Fare (Bus, Access) 1,000 L.L. ) ) 5,000 L.L.
Ridesourcing, Egress)
) Fare (Shared
Fare (Jitney, Access) 2,000 L.L. 3,000 L.L.

Ridesourcing, Egress)
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