

AMERICAN UNIVERSITY OF BEIRUT

On Centralized and Distributed Control of
Communication Networks

by

SARAH ANIS ABDALLAH

A dissertation
submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy
to the Department of Electrical and Computer Engineering

of the Maroun Semaan Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
February 2020

AN{ERICAN UN]VERSITY OF BEIR,I]T

On Centralizcd arul DistribLrted Control of
Communication Netivorks

by

SARAH ANIS ABDALLAH

Appror,-cd b1.

Dr. Ali Chchal.r, Prolirssor

Eler:triral alrl Corrrptrtct Engineerilg

L)r, Aymarr I{nyssi Irlofcssot'

Iilectlical and Cornputel llrLglrreelirrg

ChairnrrLrr

OI

errrltr-,r of Corlrnittet:Dr-. lmacl EllLa.jl. Plolfssol

Electriiral arrl Corrrptrtr:r' Erigirrecring

,a.l^ -L+o'
l)r. \Vilssim It:LrLi. r\ssociatc l'r'r.,li:ssol Nlcmbcr of Coruuri1,1,rx.

Ebcl,rical arrrl Conputcr Eugirrcrerirrg Bcilut ArtrLr I-luivt:rsilv

I)r'. Clcrrrgc Sirkr. Assistant l)lolcssor \{errLbor of Co

l-llectrical iirrd C'orrrputer I.,rginccr.ing, St,losttrh IInivcr.sitr.

Date of disscrtntion defense: .larruary 17, 202{J

I

I

ANJER,ICAN UNIVERSITY OF' BEIR,UT

THESIS, DISSERTATI
RELEASE F

N, PR,O.]ECT
RNf

Sl,uclcrt \lrrc:
Last. liilst N{iddlc

(l -\'liLst u's Tlrt:sis Nlaster's Project ffiouoralDisseltaliou

I rlrLLhorizo the Arrrerican l,'nil.ersity o1 Bcirrt to: (ii) rcproducc h;r.rrl or elccttonic copies
ol rly l.lr:sis. disscrtalior). o[plojccl,: (h) inr:hxlr srxlr r:opir:s in thr: archjvcs ir"lrl cligitnl r'qro-r
itoties oI tlrt Unir.r,rsitr: old (c) rrrlke lierr:ly rl,aillhle srrch copios lo tlrir(l l);rllics Iirl lesealcL
{)r oducational pLu'i)r)s(rs.

T rLrthorizc 1hc Aurcricarr LJrir.ersitv oI IJr:jt'ut. to: (ir) rcpro(luc(. Italrl or clqlr.olir:
col)i(is ol i1,: (b) irrclude such copies irr tlte tu'chives and digital Iepositorios of thc l-inivcr,qity:
and (c) nlrl<c ficr-'ly available ,.uch copics lo lhird pdrties for research or cdrrcational prrlposts
Aftor': One wiyear from the date of submission of my dissertation.

Two --- years from the date ofsubmission of my dissertatiou.
Three - ycars from t he date of subrnissiorr of rny dissertat ion,

a 2 2D2D
S ignn.t I):rtc

'I'his forru is signed il'hcn s11i)mitting the thesis. clissr:r'laLiorr. or project to thc liltivcrsily Liltrtilir.s

Acknowledgements

My recognition and gratitude are addressed to my committee members, Dr. Ay-

man Kayssi, Dr. Ali Chehab, Dr. Imad Elhajj, Dr. Wassim Itani, and Dr.

Georges Sakr for their guidance and advice throughout this work. I would like to

thank my advisors, Dr. Ayman Kayssi, Dr. Ali Chehab, and Dr. Imad Elhajj, for

the support they provided me during my PhD studies. I would also like to thank

my research group who made the graduate studies comfortable and enjoyable.

The deepest gratitude go to my parents who taught me how to fight and never

give up, and who provided me with the best support. Special thanks are for my

friends, for their great help and their continuous support.

v

An Abstract of the Dissertation of

Sarah Anis Abdallah for Doctor of Philosophy
Major: Electrical and Computer Engineering

Title: On Centralized and Distributed Control of Communication Networks

Networks are facing many challenges with the exponential increase in de-
vices and traffic. The lack of seamless scalability, programmability, and remote
management of traditional networks requires the investigation of new network-
ing paradigms. Software-Defined Networking (SDN), with centralized control,
promises to offer the above three features in addition to other advantages. How-
ever, legacy networking protocols have been the subject of research for a long
time, to the extent that some of the techniques they use and the advantages they
provide in some circumstances should not be replaced. At the same time, SDN,
like any other technology, presents some shortcomings, one of which is the single
point of failure.
On the other hand, the centralization or distributedness of control exists beyond
the area of telecommunication. Some systems, such as the nervous system or
administrative and political regimes, exhibit the same interrelationship between
the two types of control. These systems serve as an inspiration to designing hy-
brid control planes in data networks. This thesis aims to model and compare the
performance of both types of control in communication network using OSPF and
Openflow, identifying the strengths and weaknesses of each. It then aims to draw
the control rules that govern the inter-operability of centralized and decentralized
control from the comparative study and in the areas defined above, and use them
to model an adaptive hybrid control system that exploits the advantages of both
centralized and distributed control, with application to networks. The system is
then allowed to shift either completely or partially from a centralized system to
a distributed environment so as to deliver a desired performance. The model is
then applied to telecommunication networks.
Much work in the literature concerns operating and managing networks that con-
tain legacy and SDN nodes. Hybrid SDN switches that support both SDN and

vi

legacy routing protocols have also been presented and studied. Our technique
differs from the literature because we study and control changing network tech-
nologies at the granularity of the switch. We combine notions of control systems,
SDN networks, traditional IP networks and hybrid switches to create optimization
systems that monitor the network conditions and tunes each switch to function
under SDN or IP accordingly. This technique would not only allow exploiting
the advantages of both SDN and legacy networks for enhanced performance, it
would also allow us to study the dynamics between centralized and decentralized
control instances of any system.
Results showed that the proposed methods deliver up to 62% better performance
compared to baseline technologies when network conditions are at 50% of their
maximum allowed values, and up to 95% better performance when network con-
ditions are at 100% of their maximum allowed values.

Contents

Acknowledgements v

Abstract vi

1 Introduction 1

1.1 Contributions . 3

1.2 Dissertation Structure . 4

2 Background 6

2.1 Distributed Routing Protocols in Traditional Networks 6

2.2 Introduction to Software Defined Networking (SDN) 9

2.3 Introducing Logical Versus Physical Centrality 11

2.4 Comparative Analysis . 12

2.5 Overview of Centralization and Decentralization in Different Areas 14

2.5.1 History and Evolution of Network Control Planes 14

2.5.2 Models of Centralized and Distributed Control 21

3 Effect of Centralized and Distributed Control on Networks 29

3.1 Hybrid Control Planes in Networks 29

3.1.1 Integrating Traditional Routing Protocols with SDN . . . 30

3.1.2 Routing Islands . 33

viii

3.1.3 Hybrid Switches . 35

3.1.4 Consistency of Control Planes 37

3.2 Effect of Different Types of Control on Network Services 38

3.2.1 Middle-boxes . 39

3.2.2 MPLS . 49

3.2.3 Multicast . 52

3.2.4 VxLAN . 55

3.2.5 QoS . 57

3.3 Consequences on Network Management 59

3.3.1 NM Layer for SDN . 62

3.3.2 Proposed Management Schemes 64

3.3.3 Guidelines for a Management Framework 68

3.3.4 POC: System Model and Implementation 71

4 Performance Modeling and Testing of Centralisation (SDN) Ver-

sus Decentralisation (OSPF) 78

4.1 Network Convergence in SDN Versus OSPF Networks 78

4.1.1 Network convergence . 79

4.1.2 Theoretical Model . 83

4.1.3 Testing and Results . 87

4.1.4 Simulation and Results . 90

4.2 Performance Analysis of SDN vs. OSPF in Diverse Network En-

vironments . 97

4.2.1 Extension to the Previous Convergence Model 97

4.2.2 Extended Convergence Model 100

4.2.3 Implementation and Testing 104

4.2.4 Discussion and Analysis 119

5 Model of Adaptive Control in Hybrid Systems 123

5.1 Offline Recommender System . 124

5.1.1 Fuzzy Decision System Design 124

5.1.2 Defining the Inference Rules 127

5.1.3 Financial Implications of the System Decisions 129

5.1.4 Implementation and Case Studies 133

5.2 Modeling the General Optimization System 139

5.2.1 HCA Cost . 141

5.2.2 SH Cost . 142

5.2.3 Uncertainty Cost . 142

5.2.4 SS Cost . 142

5.3 Application to Telecom Networks: 143

5.3.1 Adaptive Hybrid System (AHS): Overview and Design . . 143

5.4 Preliminary Optimization Design and Results 147

5.4.1 Optimization Problem Formulation 149

5.4.2 Modeling of Input Parameters 156

5.4.3 Results . 160

5.5 Final Model Formulation . 165

5.5.1 DO problem Formulation 168

5.5.2 GO Problem Formulation 178

5.5.3 Design Alternatives . 179

5.6 Results and Discussion . 181

5.6.1 DO Testing . 181

5.6.2 GO Testing . 190

6 Implementation and Results of Final Complete System 195

6.1 Implementation Details . 195

6.1.1 The Hybrid Switch (HS): 196

6.1.2 The HS State Control System – the Rule Installer Block: . 198

6.1.3 The Monitoring System: 200

6.1.4 The Optimization System/Decision Making: 201

6.1.5 SDN Controller . 201

6.1.6 Experiment Overview . 202

6.2 Testing and Results . 203

6.2.1 Scenario 1: Effect of Communication Delay with Controller 205

6.2.2 Scenario 2: Effect of Topology Change Rate 209

6.2.3 Scenario 3: Effect of Rate of Unknown Packets 212

6.2.4 Scenario 4: Effect of Local Delay 215

7 Summary of Results and Analysis 222

7.1 Overall Results and Analysis . 222

8 Conclusions and Future Directions 226

8.1 Conclusion Related to Network Services and Management 227

8.2 Conclusion Related to Modeling Network

Convergence . 227

8.3 Conclusion Related to the Proposed Designs and the Adaptive

Optimization System . 228

8.4 Future Directions . 229

Bibliography 233

List of Figures

2.1 SDN (bottom) vs. conventional networking (top) 10

2.2 SDN layers as defined by ONF . 10

2.3 Taxonomy of control planes . 11

2.4 Evolution of the control planes; red: centralized control, orange:

hierarchical routing, green: distributed control, blue: hybrid control 17

2.5 Allocation of control tasks . 28

3.1 MPLS label . 50

3.2 Map of management functions for building management schemes

for SDN . 70

3.3 Proposed management framework based on management functions

categorization . 72

3.4 Comparison of the normalized performance cost of the 3 scenarios 74

3.5 Performance cost with varying controller capacity 76

3.6 Performance cost with varying controller capacity in semi-log scale 76

3.7 Performance cost with varying Delay 77

4.1 Simulated network of 50 nodes . 84

4.2 Effect of link delay on convergence delay 88

4.3 Effect of fault location on convergence delay 89

xii

4.4 OSPF convergence . 91

4.5 SDN convergence . 91

4.6 Convergence delay in the OSPF network vs. SDN 94

4.7 Convergence for large network link delays 96

4.8 Datacenter layered architecture and distances 105

4.9 Wan architecture (background image taken from maps.google.com) 105

4.10 Fault location effect on convergence in datacenter 109

4.11 Fault location effect on convergence in WAN 109

4.12 Network congestion effect on convergence in datacenter 110

4.13 Network congestion effect on convergence in WAN 110

4.14 Controller load effect on convergence in datacenter 112

4.15 Controller load effect on convergence in WAN 112

4.16 Controller capacity effect on convergence in datacenter 113

4.17 Controller capacity effect on convergence in WAN 113

4.18 Control link BW effect on convergence in datacenter in log-log scale113

4.19 Control link BW effect on convergence in datacenter in log-log scale114

4.20 Controller capacity effect for different network congestion values

in the datacenter . 114

4.21 Control capacity effect for different network congestion values in

WAN . 115

4.22 Effect of in-band and out-of-band controller on convergence speed

in the datacenter . 116

4.23 Effect of in-band and out-of-band controller on convergence speed

in the WAN . 116

4.24 Convergence delays of SDN and OSPF in the WAN 118

4.25 Effect of the control plane delay on convergence in SDWAN . . . 118

5.1 Case study 1 . 134

5.2 Case study 2 . 135

5.3 Progressive scenario: initial state 136

5.4 Progressive scenario: round 2 . 137

5.5 Progressive scenario: change in update frequency 138

5.6 OS emplacement within system environment 140

5.7 Optimization general model - GO: global optimization, DO: dis-

tributed optimization . 140

5.8 The hybrid network (HN) . 145

5.9 OS functional block diagram . 146

5.10 AHS sub-systems and components 147

5.11 Preliminary design high-Level model 148

5.12 Performance of our system in comparison with fully centralized

and fully distributed settings . 165

5.13 Min delay to controller - max rate of topology change 166

5.14 Max delay to controller - min rate of topology change 167

5.15 Min delay to controller - min rate of unknown packets 167

5.16 Min delay to controller - max rate of unknown packets 168

5.17 Min rate of topology change - min rate of unknown packets 169

5.18 Max rate of topology change - max rate of unknown packets . . . 169

5.19 Min delay to controller – min network size 170

5.20 Max delay to controller – max network size 170

5.21 Optimization solution for different network conditions 171

5.22 Effect of the condition on the optimization results - a 171

5.23 Effect of the condition on the optimization results - b 172

5.24 Control plane states for DO with t1 in random conditions 182

5.25 Control plane states for DO with t2 in random conditions 182

5.26 Percentage of HS’s having distributed control wrt. time 183

5.27 Total percentage of HS’s having distributed control over the total

time period . 184

5.28 Control plane states for fully centralized network conditions . . . 185

5.29 Percentage of HS’s having distributed control wrt. time 186

5.30 Total percentage of HS’s having distributed control over the total

time period . 187

5.31 Control plane states for fully distributed network conditions . . . 187

5.32 Percentage of HS’s having distributed control wrt. time 188

5.33 Total percentage of HS’s having distributed control over the total

time period . 189

5.34 Control plane states for DO with t1 in incremental conditions . . 189

5.35 Control plane states for DO with t2 in incremental conditions . . 190

5.36 Percentage of distributed control vs. time 191

5.37 Total percentage of distributed control 191

5.38 Control plane states for standalone GO in incremental conditions 192

5.39 Percentage of distributed control vs. time 193

5.40 Control plane states for our proposed optimization in incremental

conditions . 194

6.1 Implementation design diagram 196

6.2 Table 0 rules for OSPF mode . 199

6.3 Table 1 rules for SDN mode . 200

6.4 Testing workflow . 204

6.5 Network architecture . 205

6.6 HS states for DO with threshold t1 206

6.7 HS states for DO with threshold t2 206

6.8 HS states for GO with decision based on results of DO 207

6.9 HS states for GO with decision based on delay values 207

6.10 Latency with respect to delay for the different network designs in

semi-log scale . 209

6.11 HS states for DO with threshold t1 210

6.12 HS states for DO with threshold t2 211

6.13 HS states for GO with decision based on results of DO 211

6.14 HS states for GO with decision based on delay values 212

6.15 Latency with respect to rate of topology change for the different

network designs in semi-log scale 213

6.16 Switches states for DO with threshold t1 213

6.17 Switches states for DO with threshold t2 214

6.18 Switches states for GO with decision based on results of DO . . . 214

6.19 Switches states for GO with decision based on delay values 215

6.20 Latency with respect to rate of unknown traffic for the different

network designs in semi-log scale 216

6.21 Delay between switches and controller 216

6.22 Switches states for DO with threshold t1 217

6.23 Switches states for DO with threshold t2 218

6.24 HS states for GO with decision based on maximum delay 218

6.25 HS states for GO with decision based on mean delay 218

6.26 Switches states for GO with decision based on results of DO . . . 218

6.27 Latency for the different network designs in semi-log scale 219

8.1 IOT network . 231

8.2 PLC-DCS system . 232

List of Tables

3.1 Network services in traditional networks, SDN and hybrid networks 60

3.2 Proposed FCAPS allocation in SDN 69

3.3 Simulation scenarios . 74

4.1 Variables . 85

4.2 Simulation parameters for scenario 1 87

4.3 Simulation parameters for scenario 2 88

4.4 Simulation parameters for scenario 3 90

4.5 Experiment settings . 90

4.6 Variables and parameters . 102

4.7 Distances between the WAN sites shown in Figure 4.9 106

4.8 Experiments . 106

5.1 Variables and parameters . 156

5.2 Input modeling . 160

5.3 Variables and parameters . 173

5.4 Variables and parameters . 178

6.1 Parameters for scenario 1 . 205

6.2 Parameters for scenario 2 . 209

6.3 Parameters for scenario 3 . 212

xviii

6.4 Percentage improvement of proposed methods compared to base-

line SDN at 50% and 100% of maximum delay to controller 220

6.5 Percentage improvement of proposed methods compared to base-

line OSPF at 50% and 100% of maximum rate of topology change 221

6.6 Percentage improvement of proposed methods compared to base-

line OSPF at 50% and 100% of maximum rate of traffic corruption 221

To my Lily...

Chapter 1

Introduction

Scalability, security, and availability are harder to guarantee with todays’ net-

works due to the distributed control across the network elements, the lack of

standardization and several other limitations. These characteristics are however

crucial in a world where almost everything is connected, especially critical ser-

vices such as healthcare platforms, connected cars, etc. In fact, and throughout

the years, the network technologies have evolved to adapt to the changing re-

quirements of each period and deliver the required performance. As such, SDN

emerged recently as an attractive new form of networks, which offers centralized

control and easy programmability, and promises to resolve many of the short-

comings faced today [1].

However, hybrid deployment of SDN became a major concern mainly because

networks are already deployed everywhere, and shifting to SDN would require

updating the whole world. Moreover, some IP protocols are mature and present

solid attributes. In fact, traditional practices and distributed protocols have

been used, maintained and enhanced throughout the years, and thus provide

some characteristics that a relatively new technology such as SDN does not yet

1

possess [2]. These can be used to address shortcomings of the centralized SDN

such as the single point of failure.

At the same time, the general question of distributed versus centralized control

in large-scale systems is a very interesting one. In this domain, the traditional

view in telecommunications was to use centralized control, while the Internet

relies on distributed control and seems to have settled the debate for some time.

With the advent of Software-Defined Networks, centralized control is challenging

the distributed model again. But the answer may not be to go with one approach

over the other; the optimal solution lies somewhere in between and depends on

several aspects of the system.

On the other hand, the centralization or distributedness of control exists be-

yond the area of networks or telecommunication; in fact, some systems exhibit

the same interrelationship between the two types, such as the nervous system or

administrative and political regimes. Such systems can be exploited to provide

guidelines on designing hybrid control planes in networks.

Given all the above, this work thus proposes a hybrid approach that dynam-

ically adjusts the level of centralization versus “distributedness” in a system, to

deliver optimal performance. The model, although general, is applied to telecom-

munication network; the network as such would support both SDN and Legacy

networking protocols, leveraging the advantages of each technology given the net-

work conditions. This will result in a controlled network that shifts technologies

given the current network conditions, in order to deliver the desired performance.

The hybrid network can be used as a solution for the coexistence of IP and SDN

networks and incremental deployment of SDN. But most importantly, the hybrid

network will ensure better performance as it is adaptively tuned between SDN,

IP and different combination of both based on its condition. This technique will

2

allow the full exploitation of the advantages of both SDN and IP protocols, be-

cause the network and (or) switch can “decide” when to use SDN and when to

revert to IP, depending if SDN is more favorable in its current condition or not.

Subsequently, this work is to be extended to other systems that exhibit the same

distributed versus centralized behavior.

1.1 Contributions

Our contributions in this dissertation can be summarized as follows:

• Present a study of Hybrid Networks, and their effects on different network

services.

• Design a network management scheme for SDN networks that supports the

deployment of Hybrid Networks.

• Model of the convergence process of both SDN and OSPF and the related

network parameters in a general network, WANs, and datacenters.

• Present a study of systems that exhibit both types of control, namely ad-

ministrative systems and nervous systems.

• Design and implement a recommender system for network technology choice

based on network criteria using fuzzy logic.

• Design an adaptive hybrid optimization system composed of distributed

and global optimization systems that can operate as standalone systems

but also together in a hybrid form.

• Implement a complete hybrid network simulator with all related modules

and the corresponding testing scheme.

3

1.2 Dissertation Structure

The rest of the dissertation is organized as follows: In Chapter 2, we introduce

the different topics that are related to this work. We start by presenting routing

protocols, and then introducing SDN, the new form of networks, pointing out

the advantages and disadvantage of each. We also define Logical versus physical

centrality, defining thus the taxonomy we use throughout this thesis. Then in

Chapter 3, we describe hybrid networks (HN) and elaborate on their operation.

We also present a literature survey on several of the routing techniques used in

the different forms of HNs. We then study the effect of HNs on network services

such as MPLS, middleboxes, and so on, and investigate the consequences of HN

on network management. In this regard, we propose a management scheme that

is able to support the shifting nature of networks. In Chapter 4, we study the

dynamics between centralization and de-centralization of control in in three ar-

eas: political sciences, nervous system and 5G, and deduce the control patterns

that each system uses to shift from its centralized version to its decentralized

one and vice-versa. These interaction are later used in chapter 6 to model the

decision making system. In chapter 5, we revisit networks, and conduct a the-

oretical performance modeling for SDN and an IP routing protocol, OSPF, in

the aim of proving that each technology does perform better under varying net-

work conditions. The analytical models are then validated against experimental

testing. Furthermore, the models are extended to account for two disparate en-

vironments, WANs and Datacenters, to show that the underlying infrastructure

also affects performance. The work in this section is carried out in order to prove

that the two control planes perform differently under different conditions, and

thus justify our proposed adaptive hybrid model. In Chapter 6, we present the

4

different proposals and models for the decision making system, starting from an

offline recommender system up to an adaptive hybrid optimization system, which

allows switches to dynamically change the state of their control plane given net-

work conditions, along with the implementation and results of each proposal.

This is followed by summary of results, analysis, and application of model to

other areas in chapter 7. Finally, we present our conclusions and shed light on

future directions in Chapter 8.

5

Chapter 2

Background

Traditional IP networks rely on distributed routing protocols, where each router

is not only a forwarding agent but also a decision maker. SDN separated the

data and the control planes, and centralized the control within a single entity:

the SDN controller.

2.1 Distributed Routing Protocols in Traditional

Networks

When a router receives a packet, it checks the destination IP address against

its routing table and forwards the packet to the next hop via the corresponding

interface. If no entry matches the destination IP, the packet is sent to the default

route, if it exists, otherwise it is dropped. Routing algorithms populate the

routing tables; they are categorized as Link State routing protocols or Distance-

Vector routing protocols. The distance vector routing protocol, exemplified by the

Routing Information Protocol (RIP) in small networks, populates routing tables

based on the Bellman-Ford algorithm. With this protocol, each node (router)

6

regularly informs all its neighbors of all accessible nodes through it along with

the cost it takes for it to reach them. Collecting information from all neighbors, a

node can then identify the best next-hop that leads to a specific destination along

with the associated cost, and populates its routing table. A node also replaces

any entry to a destination with a new one, if this latter is found to be less costly.

Eventually, the algorithm converges and all nodes will know the best hop with

the least cost for any destination in the network.

In case of a node failure, all nodes, having the failed one as a next hop, would

remove the entry from their tables, advertise the event to neighboring nodes, and

find a new best next hop for the corresponding destination. Iteratively, nodes

advertise new information and the algorithm re-converges [3]. Link State routing

differs from Distance Vector routing in the fact that the topology advertisements

are sent to the whole network and not just to neighboring nodes. Link State rout-

ing algorithms are characterized by a connectivity map computed at each node

(router) of the network. Each router independently builds its map by informing

the whole network of the nodes that it can reach. Specifically, the routers flood

packets (Link State Packets) that convey information about its direct connectiv-

ity to nodes along with the cost of each link. On receipt of this information, each

router separately reproduces the complete topology of the network and computes

the least-cost connectivity graph to all nodes in the network, employing Dijk-

stra’s or any other shortest path algorithm. The resulting graph is then used to

populate the appropriate routing table. Among the Link State routing protocols,

we cite intermediate system to intermediate system (IS-IS) and open shortest

path first (OSPF) [3].

Routing protocols are also classified with respect to their zone of applica-

tion: Intra-domain such as RIP and OSPF, and Inter-domain routing protocols

7

such as BGP. The first type is usually deployed within an autonomous system

(AS), whereas the second is used to interconnect different AS’s under distinct

administrative authorities. BGP is the most prominent and widely deployed

inter-domain routing protocol. It is similar to Distance Vector protocols (DVPs)

with one special characteristic: unlike other DVPs, which rely on the number

of hops, BGP saves and forwards all the AS numbers through which the packet

should be routed to reach a destination. Therefore, BGP is often referred to

as “Path Vector Routing Protocol”. BGP operates in two modes: external BGP

(EBGP) and internal BGP (IBGP). EBGP is used to connect 2 BGP peers across

different AS’s, and IBGP is used when an AS is connected to many other AS’s via

different border BGP routers [4]. Since BGP connects independent AS’s having

different administrative rules and conditions, it enforces policy deployment [5].

In IP networks, switches detain a different role from that of a router. Switch-

ing occurs at Layer-2 within the same network or subnet. Since switches do

not alter the Ethernet frame, their operation is often referred to as “transparent

bridging”. A switch usually saves a forwarding table built when the switch per-

forms “learning”. In fact, when a switch receives a frame on one of its Ethernet

ports, it reads both the destination address and the source address. By saving

the source address in the table, the switch can know which MAC addresses can

be reached and the corresponding ports through which it can do so. When the

switch receives a frame for a destination that is not present in the table, it floods

the frame on all the ports except the one that it received the packet from [6].

8

2.2 Introduction to Software Defined Network-

ing (SDN)

SDN is a developing architecture for networks where the data plane (the infras-

tructure composed of routers and switches) is decoupled from the control plane

[7]. In other words, SDN deprives the switches and routers from the traditional

function of deciding on the forwarding of packets, and grants it to a central

controller which commands the network devices on how to forward packets.

A comparative scheme between SDN and a conventional (inter-network) sys-

tem is shown in Figure 2.1. Instead of having distributed functions and middle

boxes (top scheme), SDN elevates all functions to a top layer called the SDN con-

troller. The Controller is in charge of implementing all functions such as routing,

intrusion detection and firewalling, through applications that run on top of it [8].

Figure 2.2 shows the communication among the SDN layers. The data plane

contains all network elements and communicates with the control plane via south-

bound interfaces. The most deployed southbound protocol is OpenFlow, as stan-

dardized by the Open Networking Foundation (ONF). The controller resides in

the control plane; it is responsible for enforcing rules in the data plane. The

control plane exposes northbound interfaces that allow applications sitting on

top of the control plane to communicate with the latter. A management layer

perpendicular to all three layers is in charge of all management functions [9].

9

Figure 2.1: SDN (bottom) vs. conventional networking (top)

Figure 2.2: SDN layers as defined by ONF

10

Figure 2.3: Taxonomy of control planes

2.3 Introducing Logical Versus Physical Cen-

trality

Figure 2.3 shows the taxonomy that we adopt in our work in relation to the

difference between centralization, decentralization and distribution.

Control planes can be generally centralized or decentralized. Decentralized

control planes are physically distributed control nodes that autonomously perform

control activities and decisions, such as control planes of traditional IP protocols

[10]. Centralized control planes are classified into either physically centralized

or logically centralized. In physically centralized systems, the central controller

physically resides on one node in the system, the SDN controller. The notion

of logical centrality was introduced as a solution to the contested centralized

nature of SDN, which makes it non-scalable and prone to failure. Consequently,

many multi-level controller propositions emerged [11, 12, 13]. These methods

aim at providing scalable SDN networks that can adapt to growing networks, and

implement load balancing in order to avoid the threat of a single point of failure.

As a result, even though solutions that implement distributed controllers and

databases are considered to solve the scalability issues, control is still considered

11

logically centralized. In logically centralized systems, control plane instances

physically reside on different nodes. Logically centralized solutions cover SDN

proposals with many physical controllers that cooperate to serve the control plane.

Examples of logically centralized control planes include horizontal designs where

the controller’s instances share a network-wide view. In horizontal deployments,

all physical controllers have the same role. In ASIC [11], a logical controller layer

implementing a load balancer forwards requests to an underlying layer of physical

controllers that are all connected to the global network database. Hyperflow [14]

also implements horizontal deployments where all controllers share a view of the

whole network, but only control switches in their proximities.

Logically centralized systems also include hierarchical deployments like Kan-

doo [15] where local controllers having local knowledge report to a root controller

having global network knowledge. Kandoo considers hierarchical distributions of

root and local controllers, and distribute the control tasks to either control level

based on the span and frequency of the corresponding network events.

A special case of local controllers and more drastic proposals such as DIFANE

[16] and DevoFlow [17], which utilize the switches to offload the controller by

injecting wildcard rules in them. The switches then constitute extensions to the

controllers. Even though in this case the control plane is pushed to the extremity

of the network, it is still considered as part of the logically centralized system

because it still relies on the SDN controller.

2.4 Comparative Analysis

Each of the two types of networks has its own advantages and disadvantages.

SDN removes the burden of distributed route calculation at the Network Elements

12

level, which provides network administrators more control over their systems. For

example, SDN allows network administrators to easily create routing policies via

an SDN application. The application inputs the policies to the controller via

APIs at the northbound level. The controller then transforms those policies into

forwarding rules to be injected into the switches. Any update or modification is

deployed in the same manner: the administrator interacts with the application

instead of manually modifying policies in each node as in traditional networks.

However, the SDN controller is a single point of failure, and redundancy should

be enforced in an SDN network to avoid network shortage in case of a controller

failure. IP routing protocols, on the other hand, provide reliability and fault

tolerance.

Furthermore, SDN might not be the best choice for routing across AS’s. In

fact, network islands are owned by different authorities. In this case, a central

controller (or central control plane) is not feasible, since different admins will

have different set of policies. Also, they also may not want to share the network

control with other entities for security reasons, for example. Therefore, traditional

inter-domain routing such as BGP remains an appealing solution for inter-AS

routing especially that it has been proven to scale over large networks and it

offers granular control over policies.

Switching can also be improved with SDN, even though it occurs at the limited

LAN. SDN permits greater control and security by manipulating the forwarding

ports of the switches. SDN avoids broadcasting packets over the LAN, which

is vulnerable to eavesdropping and mapping attacks. It also cancels the switch

self-learning procedure, which is vulnerable to MAC spoofing attacks.

Given the benefits of each type of technology, a good approach would be to

deploy both in the network to combine their advantages. However, this type

13

of hybrid network was spontaneously formed, not for the opportunistic reason

stated previously, but as a natural consequence of shifting from a well-established

technology (legacy IP) to a new one (SDN).

2.5 Overview of Centralization and Decentral-

ization in Different Areas

However, centralization and decentralization of control exists beyond networks

as we know them nowadays, it also exists beyond the area of networks. We rely

on examples from the evolution of control planes in telecommunications, from

political systems, and from natural intelligence to model the behavior of our

hybrid system. Consequently, we studied many systems that exhibit the same

interrelation between the two states of control. The most relevant systems are

discussed below.

2.5.1 History and Evolution of Network Control Planes

Control planes in telecommunication evolved throughout the years based on the

needs of each period. Learning the causes affecting these shifts allows us to model

this behavior in our adaptively controlled hybrid design. In the 19th century, the

communication system was extremely centralized . The telephone was introduced

as a means to carry voice signals over long distances. Initially, it was conceived

as a point to point system, where each caller and receiver were connected by

a direct link. The bulkiness of the previous system gave way to the telephone

exchange, which relied on a central switchboard, operated first by a human in

charge of setting up the lines and connecting callers together, and later by ma-

14

chine switching equipment. In these circumstances, the communication system

was extremely centralized. In addition to that, the network was only allowed

to grow up to a certain size. With advancements in Public Switched Telephone

Networks (PSTN), new techniques were needed to support a larger number of

subscribers, because the centralized system was unable to respond to such re-

quirements. Consequently, the control plane started to become more distributed

using hierarchical routing across different levels, starting from local switches up

to regional switches. The trend shows that control shifted from being extremely

centralized when the network was very small to being more distributed to cater

for scalability. With the invention of computers, another type of information,

data, was to be transmitted. The first attempts were to transmit digital infor-

mation of both voice and data over PSTN, using the Integrated Services Digital

Network (ISDN), and later the Broadband Integrated Services Digital Network

(B-ISDN), which uses the Asynchronous Transfer Mode (ATM) technology.

ATM Networks

Control planes started to become distributed with PSTN, and the trend contin-

ued with ATM, which was very popular in the early 90’s. It was conceived and

adopted as the infrastructure for B-ISDN, for carrying voice and data traffic, in

an attempt to bridge the gap between computer networks and telecommunica-

tion. The control plane in ATM is distributed; the switches can autonomously

initiate, terminate, or reject a connection. ATM provides the switches with all the

information, needed to perform these operations, through the Private Network-

Network Interface (PNNI) protocol. PNNI enables each ATM switch to have

an overall view of the network. It populates the routing table, using Dijkstra’s

shortest-path-first algorithm [10].

15

IP Networks

Even though ATM was standardized for B-ISDN, its popularity started declining

in favor of the IP protocol, which was offering better cost performance. The IP

control plane was still distributed, but at a finer granularity; in ATM, decision

functions were performed at the ingress switches via source routing; however, in

IP, each router has the ability to route packets autonomously and along different

paths. Routing algorithms populate the routing tables; they are categorized as

Link State routing protocols or Distance-Vector routing protocols. Each router

separately reproduces the complete topology of the network and computes the

least-cost connectivity graph to all nodes in the network, employing Dijkstra’s or

any other shortest path algorithm. The operation of these protocols is comparable

to that of the PNNI algorithm in ATM [10]. Routing protocols are also classified

with respect to their zone of application: Intra-domain such as RIP and OSPF,

and Inter-domain routing protocols such as BGP. In all IP routing protocols, the

routers are the decision makers; they are in charge of signaling information to

other nodes in the systems, as well as deciding when and where to transfer the

packets, in an extremely decentralized control fashion.

Centralized Routing Control with SDN

With the substantial growth of the internet and cloud computing, network re-

quirements changed. Traditional network infrastructures were less likely to de-

liver the needed performance, due to the distributed control across the network

elements and the lack of standardization. Consequently, SDN emerged as an

attractive new form of networks, which offers centralized control, ease of man-

agement and programmability. SDN deprives the switches and routers from the

traditional decision-making function, and grants it to a central controller. The

16

Figure 2.4: Evolution of the control planes; red: centralized control, orange:
hierarchical routing, green: distributed control, blue: hybrid control

network elements are simply in charge of forwarding packets, following a set of

flow rules injected into them by the controller. The controller builds a complete

topology and link costs as it has a complete view of the network. Network appli-

cations and modules running on top of the controller process this data to make

routing decisions and send them to the controller via the northbound interfaces.

The controller injects the rules into the forwarding tables, called Flow Tables via

OpenFlow (OF) [7].

Hybrid Networks

Hybrid networks deployment was a natural consequence of the availability of two

types of control plane in networks, since full SDN deployment was infeasible for

several reasons (financial, resource, expertise, etc.).

Many works emerged to foster the coexistence of both types. Some techniques

relied on injecting fake link state advertisements by the SDN controller into a

network composed of IP and SDN nodes, which allows combining the central

control of SDN and the distributed route computation of link state protocols [18].

Other proposals considered translating the hybrid network into a logical SDN

17

by transforming the heterogeneous physical infrastructure composed of legacy

and SDN nodes into homogeneous logical SDN nodes. This allows leveraging

all benefits of SDN while avoiding the cost of deploying a full SDN network

[19], [20]. In [21], the authors develop four NP-hard optimization problems,

for choosing the optimal number of hybrid paths (paths that contain at least

one SDN switch), and the number of needed SDN nodes in the hybrid paths.

Additionally, coexistence was considered in [22], which proposed LegacyFlow as

a solution to manage traditional IP equipment within an SDN environment. The

approach consists of introducing a configuration layer that houses configuration

modules specific to each equipment, in charge of translating the rules sent by

to SDN. Other propositions deploy SDN on parts of the network while running

conventional methods on other parts [23, 24, 25].

The previous proposals try to merge between centralized and distributed rout-

ing in networks that are composed of legacy and SDN nodes. However, it is worth

mentioning that one of the most straightforward approaches is to employ hybrid

switches. These switches support SDN and OF as well as the traditional net-

work protocol stack. This type of switches is available in the market by many

vendors [8]. This option was also spread in the literature as some researchers

considered hybrid switches in their hybrid deployment. For example, the work

in [26] tackled an OSPF/SDN network. However, their hybrid network was com-

posed of OSPF-enabled traditional routers and hybrid switches that support both

SDN and OSPF. The hybrid switches served as a gateway between routers and

the controller: they were connected to the controller via the SDN/OF interface

and communicate with the legacy switches via the OSPF interface. Additionally,

Google started to experiment with hybrid deployments in their datacenters by

deploying the B4 WAN, which is an infrastructure conceived to link Google’s

18

datacenters from around the world [27]. A Routing Application Proxy which

transforms routing entries into flow table entries was designed to integrate the

SDN control plane with legacy control. Figure 1 shows the evolution of control

plane as new technologies were invented.

Advantages and Analysis Each of the two types of control has its own ad-

vantages and disadvantages, and hybrid networks promise to emerge as the best

of both. In fact, SDN removes the burden of distributed route calculation at the

node level, which provides network administrators more control over their sys-

tems. However, Link state routing protocols are more scalable and respond better

to changes in the routing path; they provide reliability and fault tolerance. Ad-

ditionally, the SDN controller is a single point of failure, and redundancy should

be enforced in an SDN network to avoid network shortage in case of a controller

failure.

Consistency Issues In the light of the above, the hybrid network is of interest:

it allows operators to exploit the benefits of SDN and legacy networks, and design

an optimized form of a network that suits their requirements. However, hybrid

networks include two types of control that might create signaling inconsistencies.

The problem was initially identified in pure SDN networks [28], where incon-

sistencies might arise from distributed controllers. In [29], the authors tackle

consistency of distributed instances of SDN controllers within an SDN network.

This type of inconsistency occurs when the SDN control plane is implemented

in a hierarchical fashion, or when it is horizontally distributed to account for

large networks and to guarantee network scalability. The authors define a man-

agement layer that spans the different controlled domains, where each domain

is made of a physical SDN controller. The authors show that performance is

19

degraded when the network applications are presented with wrong information

about the network due to stale updates and inconsistencies between controllers’

domains. Having different levels of control is challenging in pure SDN networks

which run a single protocol, OpenFlow. The problem is surely aggravated in hy-

brid networks, which include different “types” of control protocols. In addition to

the coexistence techniques developed in section II.D, other consistency methods

were proposed to guarantee the well-functioning of hybrid control planes. In [30],

Vissicchio et al. develop a framework for ensuring inconsistency-free network

updates in Hybrid networks that are composed of nodes that support SDN and

traditional protocols at the same time. In fact, the authors argue that the pres-

ence of two control planes in the network can cause routing inconsistencies and

create problems such as loop and blackholes. The proposed algorithm ensures

that these anomalies are avoided, making the incremental deployment of SDN in

traditional networks possible. Additionally, the authors of [31] provide a general

framework that solves the issue of control planes in hybrid routing. The work

also supports consistency in an SDN network with different uncoordinated con-

trol hierarchy. It ensures coexistence of all control planes by modeling the theory

behind it. Additionally, the authors propose a new taxonomy for routing con-

trol planes based on their input and output data structures. This classification

was proven to be able to capture anomalies in coexisting control planes in such

a way that any configuration that satisfies the conditions stated is guaranteed

to be free of forwarding inconsistencies. The framework also gives guidelines for

anomaly-free configurations and safe reconfiguration of a network with hybrid

control planes.

20

2.5.2 Models of Centralized and Distributed Control

As previously discussed, hybrid networks were formed spontaneously as a result

of the existence of two types of technologies with different types of control in

networks. However, we can exploit hybrid networks and deliberately design them

to integrate the advantages of traditional and SDN paradigms. In fact, this co-

existence between centralized and distributed control exists beyond the area of

communication networks. It is found in many human induced activities, such

as administrative activities in banking or companies, or in politics and politi-

cal systems. Additionally, the interaction between the two forms of control is

also found as a natural phenomenon in nervous systems of living beings. Thus,

these systems can provide guidelines on designing a similar control framework for

networks.

Political Systems

Over time, political systems have shifted from being completely centralized, to

completely distributed, up to a state where some power is centralized but some

is not. At the same time, a stable distribution of power might be disturbed if

current circumstances favored one type over the other.

Central versus Decentral Power The dynamics between centralization and

decentralization are interesting to consider in the context of politics since they

played a major role in history. The history of Europe best describes the issue as

different political systems rose and failed. For example, the Roman Empire, led

by the emperor, was extremely centralized. However, after its fall, Europe was

left unprotected. This pushed landlords to protect their own environments, in

a system where decentralization was at its peak. However, centralization found

21

its way back in the renaissance after the corruption of the church leaders was

exposed. The status quo is believed to serve some balance between the two types

of power [32]. However, the shift between states of distribution of power did

not only happen sequentially over time. It is dynamically changing in current

political systems as new circumstances emerge. In [33], the authors consider a

framework for the centralization versus decentralization of power in countries

such as the United States. Despite the fact that the modern world is moving

more towards decentralization and division of responsibilities, it does not cancel

the effect of the central power that some systems have (Federal governments),

which can still control some aspects of the different sectors. The main guideline

is to keep everything related to citizens as close to them as possible, which means

that all services related to people are better handled by local administrations

in a distributive manner rather than by farther state administrations. Also, in

the context of the relationship between centralization and decentralization, many

theories state that in order to realize efficient distribution of resources and attain

economic stability, a robust central administration is to be fostered [34, 35]. On

the other hand, some statements [36, 37] consider that decentralization should

be fostered to limit to the malpractices of an incompetent central government.

And finally, some views advocate the equilibrium between central and local gov-

ernments where the appropriate balance should be carefully studied to reach the

optimal equilibrium.

The United States (US) – An example In the US, the division of power

between the different levels of governments is defined according to the nature

of the activities. Basically, the federal government possesses power over critical

national affairs, such as defense, national security and building an army or navy.

22

It also handles all relation with foreign countries such as the decision to enter

a war or sign treaties, and national economic matters such as printing money.

On the other hand, state and local governments conduct activities that are more

related to their close environment. State governments are given the ability to

decide upon laws for contract and family, and education, whereas local govern-

ments are concerned with all activities directly related to people, such as police

and firefighting, health systems, public transportation, housing, and so on [38].

Although the division of power is clearly defined as such, the US witnessed shift

of power back and forth, between central government and distributed state gov-

ernment, throughout major historical milestones such as WWI, WWII and the

great depression. Prior to the 20th century, the federal government had limited

power. However, centralization quickly gained power in times of crises in the

early 20th century (WWI, WWII, and Great Depression) because there was no

way to deal with the disorders other than to rely on the federal laws again. After

the wars ended, decentralization started to be restored gradually [33].

Model Analysis The models extracted from the above serve as guidelines for a

possible model in networks. For example, the emergence of the highly distributed

society after the fall of the Roman Empire –which was the central and only power

– insinuates the need to switch to distributed routing signaling in a network if the

SDN controller fails. Also, allocating the decision to go to war or responding to

crisis to the federal centralized government in the US can be mapped to switching

the network to a fully centralized state in the event of network failure or attack at

the links and nodes level. Moreover, the division of power based on the activity

in the US can be mapped to a segregation of services in the network, where each

service will be controlled centrally or not according to its nature. For example,

23

MPLS and tunneling protocols favor centralized control because it facilitates their

implementation and operation.

Natural Intelligence: The Nervous System

The nervous system of living beings provides another good model for studying

the interactions between states of control. In neuroscience, two types of nervous

systems exist: diffuse and central. An organism with a diffuse nervous system

doesn’t have a brain or any central organ that controls it; it has uncoordinated

distributed neurons in a mesh fashion that react even to minor stimuli. This

is characteristic of lower invertebrates. For higher invertebrates, a collection of

nervous cells is aggregated in a longitudinal form and a brain along with coordi-

nation interneurons. In vertebrates, the centralization of the nervous system is

more pronounced as the nervous system center is clearly contained in the brain,

the spinal cord. This center is in charge of coordinating all activities of the or-

ganism. The vertebrate nervous system has a centralized response to stimuli;

it is composed of two subsystems: the central nervous system (CNS) and the

peripheral nervous system (PNS). The central nervous system is composed of the

brain and the spinal cord, which are the decision makers. The peripheral nervous

system is composed of all sensors that capture events and motors that induce

a certain action. The PNS is in charge of relaying all information captured to

the CNS, and executing the commands it receives from the CNS in response to

the information sent. Although the vertebrate nervous system is classified as

centralized, some of the responses are not emanating from the central organ: the

brain. Sensory nerves relay a stimulus to the spinal cord which is considered as

an extension to the brain. Its function differs from that of the brain because it is

responsible for a specific type of behavior, notably the reflexes. This allows the

24

body to respond quicker to critical events by taking an action before the signal

reaches the brain. Reflexes are classified under two types: reflexes involving 3

or more neurons or long reflexes, such as when a nerve is hit in the knee the leg

automatically reacts, or less than two neurons, for example the automatic blink

of the eye if the cornea is disturbed. An interesting observation is that we are

not aware of any event which signal does not reach the brain, as in the case of

reflexes. Eventually, the brain will receive and analyze the signal but the reflex

would have been already carried out. This characteristic allows reflex actions to

occur relatively quickly by activating spinal motor neurons without the delay of

routing signals through the brain [39, 40, 40].

Model Analysis The nervous system model also shows some guidelines al-

though they differ from the rules followed in political science: the nervous system

has a different reaction to danger or crisis. In fact, in the administrative model,

the strategy to respond to crises is to go fully centralized and give full control

to the federal government. However, the nervous system responds to dangers

via reflexes which are the non-centralized decision-making aspect. The differ-

ence is basically related to the speed of action to be taken versus its skillfulness.

In the first scenario, the political response to political or financial crisis is not

time critical but rather necessitates strong coordination and shrewd decisions.

Whereas when the body faces a danger, for example touching a hot surface, a

quick reaction is needed to avoid damage. In this case, the signal is automatically

decoded in the spinal cord and the action of moving the finger off the surface is

directly undertaken. Analysis of the signal and action is eventually accomplished

by the brain after the reflex is done. This guideline can be used in our design,

because it proposes categorizing the potential dangers on the network between

25

time or robustness critical, and consequently decide on employing distributed or

centralized control, respectively.

Other Applications

Security: Bockchain Technology The question of central versus distributed

also infiltrated the security domain. The Blockchain technology was introduced

as an alternative to the existing centralized regulatory body, which controlled

all transactions carried out over the Internet. It was also conceived as a re-

placement to the Public Key Infrastructure (PKI) system for the advantages it

provides in terms of encrypting, storing, and managing public keys. In fact, the

distributed characteristic of Blockchain makes it fault-tolerant, and single point-

of-failure averse. The threat of trusted third party is mitigated with Blockchain,

which alternatively relies on cryptographic hash functions to verify and validate

transactions. Additionally, it provides more automation because human inter-

vention is no longer needed. It also promises better manageability and more

cost-effectiveness [41, 42]. Given the advantages of Blockchains, research was

channeled through implementing the previously centralized PKI system using the

new decentralized technology. Certcoin [43] was proposed as a blockchain-based

PKI, where the identities and public keys are coupled with the corresponding

instruction, for example register, revoke, update and so on, and stored in the

blockchain ledger. They are consequently processed via the normal mining or

verification of the blockchain network.

5G: D2D communication We can also see the interaction between central-

ized and distributed aspects in 5G with the recent introduction of device-to-device

communication (D2D). In fact, with D2D, devices are allowed to communicate di-

26

rectly with each other without relying on the backbone network if they are in each

other’s proximity. D2D communication was rarely studied in cellular networks

until the emergence of 5G where it gained more weight. In fact, 5G introduced

new requirements such as reduced latency, context aware services along with an

exponential increase in number of applications and connected devices. This em-

phasized the need for D2D because it can reduce the burden on the base station

(BS) due to the increased traffic, which reduces delays and delivers better perfor-

mance. Furthermore, users can rely on D2D to exchange critical information in

case of emergency when the BS infrastructure and communication network are

down due to disasters. This is similar to reverting to distributed routing when

there’s a given problem on the network, for example, if the controller goes down

[44, 45].

In light of the above, we defined rules that trigger a system to move from

centralized to distributed control. The control tasks can be allocated among

distributed and central control planes as shown in Figure 2.5.

27

Figure 2.5: Allocation of control tasks

28

Chapter 3

Effect of Centralized and

Distributed Control on Networks

3.1 Hybrid Control Planes in Networks

Although SDN is emerging as a new networking paradigm to overcome the short-

comings of traditional 7-layered networks, the shift from traditional networks

cannot happen overnight. Consequently, three forms of networks are available

today: traditional networks built using Layer-2 switches and Layer-3 routers im-

plementing distributed control protocols, pure SDN with centralized control and

programmable control and data planes, and hybrid traditional-SDN networks,

which are combinations of the previous two and are typically the result of partial

SDN deployment. In this section, we refer to the last type of networks as Hybrid

Networks (HN). HN are already being implemented, and many techniques are

developed to support their deployment. For example, the work in [46] introduces

HN and categorizes them with respect to their behavior. The first category of HN

is composed of two types of equipment, SDN and traditional nodes that are usu-

29

ally grouped by routing islands. The second category segregates network services

and deals with each type of services with either SDN or traditional paradigms.

The nodes in these networks can be of either type, or a node that supports both

type of paradigms. In the third category, different classes of traffic are processed

with either SDN or traditional protocols. Finally, the last category integrates

both paradigms in one framework, where SDN is in charge of all the services, sits

on top of the traditional protocols, and controls the distributed traditional pro-

tocols. The HN types are also compared in terms of cost, scalability, robustness,

etc.

3.1.1 Integrating Traditional Routing Protocols with SDN

Hybrid deployment is gaining interest for many reasons; first of all, full SDN

deployment may be infeasible for several reasons (financial, resource, expertise,

etc.), but more importantly, stakeholders realize that a better routing scheme

would be generated by integrating the advantages of traditional and SDN paradigms

instead of completely replacing the first. In fact, traditional routing has been de-

veloped for many years, proven globally for years in production environments,

and a lot of research has been invested in the field, all of which can be exploited

along with the offerings of SDN to improve routing. Many works emerged to that

end, each providing a different combination of the features.

In [18], Vissicchio et al. presented Fibbing, a routing technique that joins

the central control of SDN and the distributed route computation of link state

protocols. The authors argue that link state routing protocols are more scalable

and actually respond better to the changes in the routing path, and thus route

computations should be performed by these protocols. On the other hand, they

take advantage of the centralization provided by SDN to control the distributed

30

protocols. The Fibbing (SDN) controller is fully informed about the network

topology, and it is capable of computing an Augmented Topology (AT) of a

network, which corresponds to the real network topology extended with fake

nodes and altered link weights. The authors proved the existence of such an

AT by translating the network into Directed Acyclic Graphs (DAGs), casting

them into sets of constraints and then computing a new AT to address this set

of requirements. The Fibbing controller feeds the AT to any link-state routing

protocol by fabricating fake link state advertisement (LSA) to advertise the fake

routes. This indirectly allows the controller to control traditional routers and

redirect traffic in the desired direction. The paper presents three scenarios where

Fibbing can be employed: traffic steering, failure recovery after link breakage,

and load balancing. The operation of the approach is simple; when the controller

wants to enforce a route, it advertises a fake node on that route having the

destination as a next hop with minimal cost. Upon receipt of the advertisement,

routers save the fake route as a valid best path to destination. The link state

algorithms will force traffic through the fake route which physically corresponds

to a real path with different weights. This technique can be extended to cover

cases where the network is formed of traditional routers and SDN switches since

it allows forcing flows to go through the right hybrid path.

A similar “lies-injection” approach was employed for switching in [47]. Jin et

al.’s method did not only present an approach for switching in hybrid networks,

it also showed that a hybrid network can offer the full advantages of SDN if the

SDN to traditional switches ratio and the location of the switches are optimal.

Just like Fibbing, the Telekinesis controller injects fake MAC addresses via the

PacketOut function of OpenFlow. A switch having learned the new MAC address

inserts in its forwarding table a forged entry that associates a port to a spoofed

31

MAC. Telekinesis becomes able to control all the SDN and non-SDN switches

interfaces, and to steer traffic through them.

HybridFlow [20] is another attempt to reconcile between legacy control plane

and the SDN plane, and enable the hybrid network to operate. HybridFlow

transforms the hybrid network into a virtual SDN, where legacy switches are

clustered with one SDN switch to form a virtual SDN switch. All physical ports

are translated to virtual ports, which are exposed to the control applications.

Since these applications can only see virtual ports of virtual SDN switches, the

controller is in charge of translating the control rules to match the real hybrid

network.

Partial SDN deployments are also considered in [19], where the authors pro-

pose “Panopticon”, a framework that facilitates the operation of HN. Panopticon

abstracts the hybrid network into a logical SDN network, by transforming the

heterogeneous physical infrastructure composed of legacy and SDN nodes into

homogeneous logical SDN nodes. Consequently, the network is modeled as a

collection of paths from source to destination, and offers all advantages and pro-

grammability of SDN as long at least one SDN switch exists on each path; the

more SDN switches on a path, the more it is controllable. The paths consist

of VLAN tunnels that segregate the end points from the physical network. The

tunnels are forced to pass through one or more SDN switches, whose location and

number are chosen based on a cost optimization problem. This framework allows

operators to leverage all benefits of SDN while avoiding the cost of deploying a

full SDN network.

In [21], the authors develop four NP-hard optimization problems, for choosing

the optimal number of hybrid path (path that contain at least one SDN switch),

and the number of needed SDN nodes in the hybrid paths, while keeping the

32

cost below a certain target, and then minimizing the cost with respect to each

of the number of hybrid paths and the number of SDN nodes in the paths. This

scheme, allows leveraging all the benefits of SDN while avoiding the incurred cost

of totally replacing traditional network with pure SDN. Additionally, coexistence

of both types of appliances was considered in [22], which proposed LegacyFlow as

a solution to manage traditional IP equipment within an SDN environment. The

approach consists of introducing a configuration layer that houses configuration

modules specific to each equipment. These modules are connected to legacy data

path block in charge of translating the rules sent to the SDN controller (to which

it is connected to) to vendor specific rules corresponding to the underlying type

of switch via the corresponding configuration module.

3.1.2 Routing Islands

The above approaches tightly mix SDN with traditional practices; both paradigms

coexist within the network. Other propositions deploy SDN on parts of the net-

work while running conventional methods on other parts.

In [23], Hall et al. argue that SDN will replace the intra-domain routing proto-

cols such as RIP and OSPF, but not BGP. Routing inside an island is handed-off

to the SDN central control plane, which implements internal routing via a routing

application, while routing across islands is still performed via BGP. The paper

focused on the BGP/SDN interface and introduced the Quagga for SDN Module

(QuaSM) to support this integration. QuaSM is an SDN extension to the Quagga

Routing Suite. It actually manages connections between BGP routers and han-

dles all decisions related to route selection and route advertisement. Therefore,

EBGP is still deployed across AS’s but supervised from a central SDN entity.

On the other hand, IBGP can be fully replaced by QuaSM since this latter is ex-

33

posed to both BGP and SDN interfaces. It learns routes from EBGP and informs

internal border routers via SDN. The centralized control plane is thus aware of

internal and external information. This technique can be used to integrate SDN

islands with traditional islands in the network. It can also be used within large

pure SDN networks comprised of many AS’s to connect them together.

Kotronis et al. presented a similar idea in [48]. They exploited the concept of

centralization of control in SDN, and proposed to outsource routing within AS’s to

an external trusted entity, the contractor. The difference between this approach

and SDN lies in the fact that the SDN controller is part of the network, managed

by the same administrator and spans one physical network but many virtual

networks, whereas the contractor is an independent entity that could serve many

physical networks. The contractor is in charge of managing all routing within

an AS based on Service Level Agreements (SLAs) agreed upon with the AS

administrator. SLAs allow it to serve many AS’s at once. It also handles routing

across AS’s by managing EBGP sessions; it acts as a man-in-the-middle, as all

BGP messages pass through it allowing it to make global routing decisions. The

contractor hence introduces the possibility of eliminating BGP for two reasons:

first of all, when the contractor manages internal routing for many AS’s and

shares SLAs with each, it can also manage routing across those AS’s and cross-

match the pair of SLAs to figure out the rules to be enforced. And second,

the contractor is free to use any method, BGP or any other new protocol that

complies.

In [24], a contrasting approach was considered, where SDN was employed to

manage AS’s border to border connection, while OSPF was used as an intra-

domain routing protocol. In their work, the authors use SDN control plane to

manage distributed protocols within the AS’s. The method relies on subdivid-

34

ing of the network into OSPF islands that are interconnected by SDN border

switches. The centralized control plane is aware of the whole network, because

all OSPF advertisements are relayed to the SDN controller by the border SDN

nodes. Consequently, this latter can alter the advertisements and push them back

in the network via the border switches, which will eventually be flooded in the

neighboring OSPF island. The authors also develop an optimization algorithm

based on ILP that provides the optimal partitioning of the network with bal-

anced subdomain size. Results show that this form of partitioning outperforms

networks with only IP routing, while providing similar performance of pure SDN.

3.1.3 Hybrid Switches

The previous proposals try to merge between centralized and distributed routing

in networks that are composed of legacy and SDN nodes. However, it is worth

mentioning that one of the most straightforward approaches for Hybrid control

planes is to employ hybrid switches. These switches support SDN and Openflow

as well the traditional network protocol stack. This type of switches is available

in the market by many vendors [8].

This option was also spread in the literature as some researchers considered

hybrid switches in their hybrid deployment. For example, the work in [26] tack-

led an OSPF/SDN network. However, their hybrid network was composed of

OSPF enabled traditional routers and hybrid switches that support both SDN

and OSPF. The hybrid switches were connected to the controller via the SDN/OF

interface and communicate with the legacy switches via the OSPF interface.

Additionally, Google started to experiment with hybrid deployments in their

data centers [27], by deploying the B4 WAN, which is an infrastructure con-

ceived to link Google’s data centers from around the world. Their architecture

35

is composed of three layers: the highest layer spans network applications such as

traffic engineering. The middle layer is composed of site controllers, which are

connected at the lower layer to switches that run legacy routing protocols aug-

mented with an Openflow agent. Each hybrid switch is connected to a cluster of

BGP router that connects the B4 infrastructure to the sites. The centralized con-

trol of SDN was exploited for traffic engineering where almost 100% bandwidth

utilization was achieved. The work included a Routing Application Proxy that

was designed to integrate SDN control plane with legacy control. The applica-

tion basically transforms routing entries into flow table entries using the ECMP

hashing technique.

As hybrid networks deployment became more popular, a test bed was needed

in order to validate the different ideas through experiments. SDN is already

widely emulated and simulated via Mininet, but no environment for hybrid testing

is readily available publicly. OSHI was presented as an open source experimental

tool for emulating hybrid networks and hybrid nodes [49]. OSHI builds on Mininet

and adds nodes that support OVS and IP routing. Its operation is inspired

from the IP/MPLS integration and the introduction of tags or labels in order to

differentiate the types of traffic. In fact, the OSHI node segregates IP traffic from

SDN traffic by appending VLAN tags to flows. The method is feasible when the

underlying links do not implement VLAN or when OSHI uses a set of reserved

tags – to avoid VLAN tag collisions. The OSHI node implements a regular

OVS, augmented by an IP routing/forwarding module to which it is connected

by virtual ports. Upon receipt of a packet, OVS examines the tag, and forwards

it along the normal SDN path if it is SDN traffic or to a virtual port if it is IP

traffic. Consequently, that packet is processed by an IP routing daemon, which

is Quagga in this tool. OSHI also offers a graphical user interface for topology

36

management and a set of performance Measurement Tools (OSHI-MT).

3.1.4 Consistency of Control Planes

In the light of the above, the SDN network is attractive: it allows operators to

exploit the benefits of SDN and legacy networks, and design an optimized form

of a network that suits their requirements. However, hybrid networks include

two types of control that might create signaling inconsistencies. Therefore, many

works that address this issue were conducted. In Google’s B4, an application

that translate information between the two was developed, whereas in OSHI the

two control planes were being updated simultaneously.

Initially, the problem was identified in pure SDN networks [28], where incon-

sistencies might arise from distributed controllers, even before hybrid networks

were considered. In [29], the authors tackle consistency of distributed instances

of SDN controllers within an SDN network. This type of inconsistency occurs

when the SDN control plane is implemented in a hierarchical fashion, or when it

is horizontally distributed to account for large networks and guarantee network

scalability. The authors define a management layer that spans the different con-

trolled domains, where each domain is made of a physical SDN controller. The

authors show that performance is degraded when the network applications are

presented with wrong information about the network due to stale updates and

inconsistencies between controllers’ domains.

Different levels of control are degrading in pure SDN networks which run a

single forwarding protocol. The problem is surely aggravated in hybrid networks,

which include different types of protocols, having either distributed or centralized

control. In [30], Vissicchio et al. develop a framework for ensuring consistency-

free network updates in Hybrid networks that are composed of nodes that support

37

SDN and traditional protocols at the same time. In fact, the authors argue that

the presence of two control planes in the network can cause routing inconsistencies

and create problems such as loop and blackholes. The proposed algorithm ensures

that these anomalies are avoided, therefore making the incremental deployment

of SDN in traditional network possible. Additionally in [31], the authors provide

a general framework that solves the issue of hybrid routing control planes- cen-

tralized versus distributed. In fact, with the emergence of SDN hybrid networks

that support both Openflow and legacy routers, a framework was to be provided

to ensure consistency among the control planes of the different protocols. The

work also supports consistency in an SDN network with different uncoordinated

control hierarchy. It ensures coexistence of all control planes by modeling the the-

ory behind it. The authors also present a general model for a hybrid router that

can function with any control plane. Additionally, they propose a new taxonomy

for routing control planes based on their input and output data structures. This

classification was proved to be able to capture anomalies in coexisting control

planes in such a way that any configuration that satisfies the conditions stated

is guaranteed to be free of forwarding inconsistencies. The framework also gives

guidelines for anomaly-free configuration and safe reconfiguration of a network

with hybrid control planes.

3.2 Effect of Different Types of Control on Net-

work Services

Hybrid networks gained a lot of interest first for augmenting advantages of IP

routing with advantages of SDN, and second for constituting a solution for in-

cremental deployment of SDN. However, the Internet infrastructure implements

38

many services other than routing. Network services differ in their requirements:

some services perform better with a centralized signaling plane, and some do

not. For example, compared to legacy networks, SDN was proven to provide

a better infrastructure for MPLS. Whereas the distributed control plane favors

middle-boxes deployment. Consequently, hybrid networks (HN) became an ef-

fective solution that exposes two types of control planes in the network, so that

the different network services can be implemented with the control plane that

is the most favorable for their operation. Accordingly, we showed below how

different services are implemented in the three types of networks, pointing out

the advantages and disadvantage of implementing each service with the different

technologies.

3.2.1 Middle-boxes

A middle-box is a network element that carries out a particular activity, such as

a firewall or a proxy. The following subsections cover some of the most common

ones.

Firewalls

Traditional Networks A firewall is a popular type of middle-boxes, respon-

sible for enforcing access policies. In today’s network, a firewall can also be

implemented on the application layer running on hosts. However, these will not

be considered in this paper as only network layer Firewalls are of interest. A

network firewall grants or prevents access from an outside “world” to a given

network based on a set of predefined rules that states if the outsider is to be

trusted or not. These rules are generally set by the administrator and they are

used to filter packets based on the port and IP addresses of source or destina-

39

tion, TTL or protocols. Firewalls are usually classified as stateful or stateless.

Stateful firewalls monitor and track the states of the TCP or UDP connections

that pass through in the aim of speeding up the processing, whereas stateless fire-

walls don’t. A router can have firewalling capabilities if it is in charge of passing

packets across different networks [[50], [51]].

SDN An SDN switch inherently acts like a firewall since it has the capability

to forward or drop flows based on the rules that the controller injects into its for-

warding table [52]. The rules are defined and computed by a firewall application

running on top of the controller, which communicates with that latter via REST-

like northbound APIs. Many controllers provide built-in Northbound API for

Firewalls such as OpenDaylight [53], Floodlight [54], and Ryu [55]. The firewall

can also be implemented in the controller; POX offers the possibility to write a

Firewall module in it, as in [55] or [56]. The controller then enforces the rules on

the switches via OF. Researchers went further towards building complete firewall

frameworks that offer full access-control in SDN. For example, FLOWGUARD

[57], built in floodlight, provides two mechanisms to increase the reliability of

firewalls in SDN: increase violation detection by examining the flow at the switch

level, as well as tracing the flow path and better violation resolution.

HN Openflow together with the controller rules and the SDN switches can

create sufficient SDN firewalls. However, this will not provide full control over

the network, which is exactly why we saw the emergence of enhancements to that

scheme as in [57]. In fact, well-known SDN switches such as Cisco’s Nexus 9000

or the OVS switches function as stateless firewalls [52] and thus, they cannot

completely cover all functionalities of traditional firewalls, more specifically the

stateful firewalls. Therefore, much work in the literature addresses the issue of

40

firewalls in SDN suggesting that one is better off integrating traditional firewalls

and middle-boxes in SDN networks rather than completely discarding them [58].

Analysis Even though SDN provides flow filtering, it does not mimic the op-

eration of a traditional firewall, as discussed above. However, SDN allows the

implementation of distributed firewalling. Firewall Switches can be dispersed

within the network and easily managed by the controller: they can be config-

ured separately or configured as multiple instances of a single firewall. In fact,

a topology module running on the controller creates a top view of the network

with the exact location of the FS. The controller can then execute a firewalling

module, which synthesizes rules based on the locations of the firewalls and the

administration policy plan. The controller inserts the rules in the flow tables of

the FS. Furthermore, since the FS are Linux based, they can host any piece of

software such as a firewall module. The module can be connected to the virtual

port of the OVS. This module can be programmed to enable them to perform

state-full decisions, which will turn the switch into a legitimate firewall.

Requirements of the given network are crucial in order to decide whether to

go for SDN or for a hybrid setting. The type of network, its size and its usage

dictate these requirements. A small private network would not need more than

a filtering functionality provided by SDN, whereas a university campus would

definitely necessitate stronger firewall functionalities provided in a distributed

manner across the network.

Proxy

Traditional Networks A proxy server has many functions, ranging from mon-

itoring and control, performance enhancement to security tasks. A proxy is

41

thought of being a server that caches resources in order to improve the response

and more generally the performance over the Internet. However, it can also

implement a content-control platform along with authentication, which allows

controlling the information and resources on the network and logging the cor-

responding user. This also means that the proxy can actively listen and record

data and activities occurring in the network [59].

SDN The implementation of a proxy server with SDN is similar to that of a

firewall. A proxy application is in charge of creating rules in response to the

different scenarios. The controller acquires these rules via NB interfaces and

injects them into switches, or proxy-switches. Similar work was proposed in [60]

by Anderson et al. by relying on the SDN architecture to implement an efficient

and scalable proxy for cloud providers. The proxy is deployed on an actual SDN

switch connected to the manager, which actually resides on the controller. The

manager controls the resources and decides on their allocation based to demand.

These decisions are translated into OpenFlow actions injected into the proxy-

switch. As all traffic is directed to the proxy, each flow is compared to a rule that

dictates its fate. Given the nature of the rules installed on the proxy-switch, it can

implement traffic redirection, load balancing and many other functions. Similar

work was proposed in [61], whereby an ARP proxy module was implemented on

an SDN controller to improve performance.

HN The scenario presented in the previous section and illustrated in [60] would

also operate in hybrid networks. In fact, given the proxy-switch virtual IP ad-

dress, a network operator can force all nodes in a network to send their packets to

that IP regardless of the final destination. As the proxy-switch receives packets, it

will match them against the flow rules inserted in its table. Another scenario for

42

proxies in hybrid networks happens when the proxy is itself a traditional server

deployed in an SDN environment.

Analysis A proxy server is as easily implemented in hybrid networks as in

traditional or SDN networks. It is a service that does not have favorable archi-

tecture since it constitutes an access point with a static location with respect to

the services it controls. It is easily deployed on extremities of a network to grant

entrance to the Internet island or other servers.

Deep Packet Inspection (DPI)

Traditional Networks Deep Packet Inspection (DPI) differs from the normal

network filtering since it inspects the payload as well as the header. The increased

complexity of DPI with respect to header-based filters enables them to detect,

recognize and categorize packets that otherwise would go undetected. DPI detects

viruses, non-conformity to protocols or intrusions based on which it makes a

decision on how to process the packet. This technique is usually employed by

large companies, ISPs and governments [62].

SDN SDN deals with network traffic based on flows and not individual packets.

However, DPI is still possible since the controller can inject the “packet-in” rule

in a switch in such a way that received packets are sent to the controller [63]. A

DPI application or controller module will then examine the packet and return it

to the switch. Based on this concept, Li and Fu proposed a DPI extension to OF

in an SDN environment [64]. They however implemented the DPI system as a

module on the controller itself. The DPI module receives the packet, processes

it, compares it to the policy table, sends the packet back to the switch and

updates the switch’s flow table. The authors claim that implementing DPI as

43

a controller module gives a more robust solution than implementing DPI as a

network application since it decreases the communication overhead between the

controller and the application.

HN DPI can be implemented in a hybrid network by using legacy middle-boxes.

Legacy and SDN nodes can coexist based on the routing and switching techniques

for hybrid that were previously discussed [18]. Nonetheless, the DPI system can

also be implemented as an SDN application on top of the controller. The DPI

will thus be enforced only on some SDN switches which forward packets to the

controller for processing.

Analysis Even though DPI can be implemented in SDN, the centralized flow

based architecture might not be the best option for this kind of service. In

fact, DPI requires an in-depth inspection of the suspicious packets, which is not

supported by the switches. Consequently, packets should be sent to the controller

to be inspected, leading to the overload of the controller. Another SDN practice

is to perform DPI on the first packet of the flow. In this scenario, only the

first packet of a flow is sent to the controller, which injects the rule to apply

to subsequent packets of the flow based on the DPI performed by a module or

an application. This scheme is however vulnerable to attacks since a node can

fabricate the first packet of a flow to be harmless and then tamper with the

subsequent packets. DPI can also be implemented on a switch by adding a Linux

DPI program. The controller then installs rules to redirect the packets that

match a certain profile to this DPI switch. This solution solves overloading the

controller, but does not differ from deploying a traditional DPI middlebox in a

network. The DPI middlebox can be connected to an SDN switch that normally

forwards flows along the SDN datapath but relays packets to the DPI interface

44

port according to some rule. Therefore, we can argue that SDN does not simplify

the implementation of DPI, and that DPI in traditional networks is as efficient

as in SDN.

Intrusion Detection and Prevention Systems

Traditional Networks An Intrusion Detection System (IDS) is also a device

deployed in a network to monitor all traffic. It is different from a firewall since its

aim is to detect abnormal behavior rather than just inspecting incoming traffic

as the firewall does. In addition to preventing attacks from the outside network,

IDS looks for and mitigates intrusions from within the network itself, and signals

an alarm in response to any suspicious activity. An IDS system either operates

online in real-time, or offline on collected data. It is composed of three main

entities: a manager, a list of malicious signatures, and monitoring sensors. The

sensors compare any dubious activity to the list of signatures and send an alarm

to the manager in case of a match [65]. An intrusion prevention system (IPS) is

similar to an IDS because it also monitors traffic. However, the main difference

between the two is that IPS is able to take action after detecting the security

breach. For example, in addition to signaling an alarm, IPS can also drop the

packet, block flows or reset TCP connections in response to intrusions.

SDN Literature shows an emerging interest with IDS in SDN as many ideas

emerged in that area. However, many of these are concepts that are yet to be

fully developed, which indicates that this area is still in its initial stage. Many

proposed IDS schemes did not target SDN for the sake of finding IDS implemen-

tation alternatives for SDN, but given the different management and monitoring

benefits that the latter delivers. Lobato et al. [66] provided an example of such

45

architectures by implementing an IDS system, FITS. The controller is in charge

of redirecting the packets to the IDS unit by injecting the corresponding rules

in switches. The IDS processes the packet and raises an alarm to the controller

whenever a malicious flow is detected. Then, the controller appends a drop action

to the forwarding rule associated with that flow. TIPS [67] is another example of

IDS that is not initially conceived for SDN, rather its takes advantage of the cen-

tralized nature of SDN to implement a robust and efficient IDS. The IDS scanners

lie between two SDN switches which constitute a separation layer between the

outside network and the internal network. All traffic is redirected to the switches

which send packets to the scanners. This scheme provides load balancing among

scanners and defends from attackers aiming to tamper with them.

HN In [66] and [67], similar schemes were extended to hybrid networks. In fact,

as long as the IDS is connected to an SDN controller and a hybrid SDN switch,

the type of devices that exist on the network becomes insignificant. Traditional

routers can communicate with the hybrid SDN switch as it presents two interfaces,

a traditional one and an OpenFlow one. The IDS scheme should be implemented

in SDN and enforced via the SDN switch only.

Analysis Intrusion detection System deployment is SDN is similar to that of

DPI. Malicious packets are either sent to the controller that has an IDS module,

or to a traditional IDS scanner. Similarly to DPI, the IDS SDN version induces

overhead to the controller if the first option is used. Also, implementing IDS

is as efficient as adding a legacy scanner to the SDN network. Therefore, SDN

does not provide additional advantages to traditional IDS. However, SDN is a

better architecture for IPS. In fact, the ubiquitous SDN controller provides a

better platform for intrusion prevention. IPS is limited in traditional networks

46

as these networks do not behave well in real-time. Any change applied to the

network needs to propagate along all nodes, and this effect drastically grows with

the size of the network. SDN, on the other hand, delivers a real-time response;

the controller has a full view of the network, topology maps are generated via

powerful network applications and rules are immediately updated in the switches.

When a security alarm is generated, the IPS module collects information form the

topology module and the switch that raised the breach, computes new rules and

changes routes if necessary. The controller can thus react to intrusions instantly.

Middle-boxes in Hybrid networks

A special interest was given to the integration of legacy middle-boxes with SDN

for many reasons. First of all, middle-boxes are expensive, and companies are not

ready to dispose of functioning middle-boxes and invest in new SDN applications.

Second, big stakeholders fear grouping all critical and security functions in one

central component. The controller might become overloaded with all these func-

tions which would constitute a threat the quality of service of the network. In

[58], Fayazbakhsh et al. proposed a method that incorporates middle-box man-

agement to the SDN management plane, instead of completely changing their

architecture or eliminating them. “FlowTags” are added by middle-boxes to the

headers of flows that pass through them, and constitute the interface between

middle-boxes and SDN controllers and switches. These tags are then decoded by

SDN switches and used along with the original OF forwarding entries. An impor-

tant aspect of “FlowTags” is that minor modifications are applied to middle-boxes

and to SDN entities; those latter still use OF for their operation. The system was

tested for performance with Mininet, and built as a POX module on top of the

controller. Results showed that the overhead induced by the addition of the tags

47

is negligible (less than 1%), and that its operation is linear with respect to the

network size. SIMPLE [68], or Software-defined Middle-box Policy Enforcement,

takes advantage of the characteristics of an SDN environment and applies it for

middle-box management. It allows the integration of existing middle-boxes to

SDN. SIMPLE provides network operators an interface to specify policies at a

very high level; these policies are then translated into forwarding rules applied

on the underlying infrastructure. SIMPLE requires three inputs: the policies,

the network topology and the resource constraints, such as memory, CPU, size of

routing tables, etc.; it also requires few additions to the data plane, such as tags

and tunnels, in order to account for the overhead of the new method. SIMPLE

runs offline ILP to create forwarding rules given the size of TCAM tables. This

algorithm runs offline since network topologies are unlikely to change on a small

timescale. Load balancing on the other hand, is accounted for through online

LP, since the flow rate is frequently changing overtime. SIMPLE proved to be

effective when implemented with POX on Mininet and Emulab. Nimble [69] is

another module for the integration of legacy middle-boxes in SDN networks. It

is implemented in POX, and is composed of 3 blocks: a resource manager, a

dynamic handler and a rule generator. An administrator inputs the processing

logic into NIMBLE. These rules along with location of the middle-boxes allow

NIMBLE to define the routing path for traffic through middle-boxes when nec-

essary. In this design, each middle-box is connected to an SDN-enabled switch

that has both SDN and traditional interfaces. It is worth noting that service

chaining plays an important role in all the above methods. Tags appended to the

flows identify the sequence of the middleboxes a packet should be routed to. As

packets flow through the chains, tags are popped off to avoid loops.

48

3.2.2 MPLS

Traditional networks

MPLS or Multiprotocol Label Switching was first conceived as a solution to the

complexity of ATM. It was also designed to mitigate the routing shortcomings of

IP, such as the slower routing caused by independent decisions at each router and

long IP headers, its connectionless state which prevents any QoS service, and so

on. MPLS is a data transport technique that sits between layer 2 and 3, forming

a middle point between packet forwarding (IP) and circuit-switching (ATM) pro-

tocols. The protocol is based on assigning labels to IP addresses, which creates

a virtual end-to-end tunnel over any transport protocol. An MPLS network is

composed of the following entities: Label edge routers (LER), in charge of ap-

pending MPLS labels to packets entering the network and popping labels off the

packets leaving. They reside on the edge of the network. These routers should

be able to process all types of networks (ATM, Ethernet, etc.) on their ports.

Inside the network, label switching routers (LSR) are in charge of transporting

the packets with high speed through a Label Switching Path (LSP), using the

labels appended to each packet [70].

MPLS Labels

MPLS labels are one of the most important factors in MPLS since they en-

compass all needed information for forwarding the packet. In other words, only

the labels are examined to construct the forwarding decision. These labels are

composed of 4 fields as shown in figure 3.1.

Many MPLS labels could be appended to a datagram, forming a stack. In

49

Figure 3.1: MPLS label

each MPLS label, the actual label is the first 20-bit field, followed by 3 experi-

mental bits that are used for QoS. The next bit (bit 23) is the Bottom of Stack

bit. This latter is set to 1 if this label is the last in the label stack. The last

group of bits represents the time-to-live, having the same function as the TTL

in a usual IP header. These labels are provided to LSRs and LERs via the ap-

plication layer protocol called Label Distribution Protocol (LDP). Figure 3 also

shows the positioning of the MPLS label between the headers of layers 2 and 3

[70].

MPLS Operation

In MPLS, labels are associated to forwarding equivalence class (FEC), which

is a packet flow, or a group of packets flowing from source to destination following

one path. In LDP, the mapping between FEC and labels are initiated by down-

stream routers, and are used to create the routers’ label information base (LIB)

table, along with the corresponding information about input and output ports.

When a packet reaches an MPLS domain, the LER determines the corresponding

FEC, looks up in its table the appropriate label (or label stack), and appends

it to the packet. The router also uses the next hop for this FEC to forward the

packet in the MPLS network. When LSR receives the labeled packet, it inspects

the MPLS label (or the top label of the label stack), looks up the label against

its table, and swaps it with the corresponding outgoing label. The packet is then

50

forwarded along the output port. When the packet reaches the LER on its way

outside the MPLS network, the packet would have one MPLS label left. The

LER pops off the label leaving the packet with a normal IP packet.

SDN

MPLS was integrated with SDN for the first time in 2011, when MPLS support

was added to OpenFlow version 1.1 [71]. MPLS functions were upgraded through-

out the subsequent versions of OF, and new actions such as Pushing MPLS

Header, Popping MPLS Header, Setting MPLS TTL and Decrementing MPLS

TTL, were added to the action list of OF. MPLS operation became straightfor-

ward: when a packet reaches an ingress switch, the controller orders the switch

to append an MPLS tag to the flow. As the flow is circulating in the MPLS do-

main, instructions to swapping the MPLS labels are injected to the inner routers.

Before the packet leaves the MPLS network, the MPLS label is removed via the

pop label action [72].

HN

Deploying MPLS in hybrid network is straightforward if the network administra-

tor chooses the SDN switches to create the MPLS. The tunneling is then created

via those switches using the technique presented in the previous section. How-

ever, when the administrator is forced to use both SDN and legacy switches to

form the MPLS network, either because the number of available SDN switches is

not sufficient or because legacy switches are placed in strategic locations, MPLS

will require a hybrid control. SDN controller manages SDN switches and an

MPLS controller manages traditional routers. Once labels are issued, The SDN

and MPLS controllers exchange labels and topology information for a smooth

51

MPLS operation.

Analysis

Even though MPLS was developed to simplify shortcoming of IP and ATM, the

MPLS control plane remains very complex in traditional networks. SDN offers a

central control that is exploited by MPLS to solve this issue. Combining a central

controller and an MPLS extension to OF makes SDN a suitable platform for this

protocol. With SDN, the controller knows the topology of the network and knows

the location of the MPLS routers. It injects add MPLS labels rules in ingress

routers, swap labels rules to internal routers, and pop the MPLS label rules to

border routers. Hybrid networks can be favorable for MPLS only if the MPLS

network spans the SDN switches only. If legacy routers are added to the MPLS

network, the scheme becomes more complex than that of MPLS in traditional

routers.

3.2.3 Multicast

Traditional networks

Multicast is a type of routing where a source sends a message only once but this

latter is received by multiple destinations. Three entities characterize it: the

address of the multicast group, the multicast tree and the tree creation based on

a receiver joining a group. The multicast group IP address defines the recipient

of the multicast message; hosts interested in joining a particular group receive

packets destined to its IP address. At the same time, a source uses it as a

destination address and sends the packet once as a unicast message, not being

aware of the hosts that will receive it: it is the routers’ responsibility to duplicate

52

and send the message along many interfaces to the different members of the

group. Signaling between hosts and their gateways (routers) about joining or

leaving multicast groups is managed by the Internet Group Management Protocol

(IGMP). Whenever a host requests to join a group, the corresponding gateway

router initiates the creation or modification of a multicast routing tree. This tree

ensures that all members of a group receive the multicast messages as it indicates

to routers when to duplicate and whom to forward to. Many protocols have been

developed for the tree construction, such as the Protocol Independent Multicast

(PIM) and the Distance Vector Multicast Routing Protocol (DVMRP) [73].

SDN

Many Multicast approaches in SDN were presented, mostly targeting SDN based

datacenters. These approaches actually took advantage of the SDN architecture

and control plane in order to address the challenges faced today with Multicas-

ting. SDN simplifies Multicast routing since the controller possesses a global

and comprehensive view of the network, which greatly decreases the overhead in

forming multicast trees. The bottleneck for Multicasting in SDN is thus reduced

to finding the most efficient algorithm for the tree creation. In fact, research

in the field is mainly concentrated on that issue. For example, Scalar-pair Vec-

tors Routing and Forwarding (SVRF) [74], a multicast routing and forwarding

algorithm for SDN-based datacenters, is conceived as a solution for the prob-

lems incurred by multicast specifically in datacenters. SVRF is based on the

Chinese Remainder Theorem and the prime number for membership calculation,

and proved to have faster processing time and less memory usage when compared

to the state of the art “Bloom Filter”. Nevertheless, the authors clearly state

that SVRF works only in pure SDN networks. Avalanche Routing Algorithm

53

(AvRA) [75] is another proposed multicast routing algorithm for SDN. AvRA is

designed to work for any Tree or FatTree topology in datacenters. Even though

it is implemented as a controller module, it does not require any additions to

the SDN switches. In fact, AvRA is implemented as an OpenDaylight module

that creates and updates routing trees for Multicast groups in polynomial time.

The module monitors the network for hosts sending IGMP messages to subscribe

to the different groups via the “ListenDataPacket” of Opendaylight. Multiflow

[76] is an SDN application that operates like Avalanche. It takes advantage of

the exposed NOX APIs to employ IGMP snooping and determine which hosts

are interested in joining multicast groups. Multiflow then runs the best route

discovery to create the trees based on Dijkstra Algorithm.

HN

If one could expose the topology of the hybrid network to the controller, then

the problem becomes similar to that of multicast in pure SDN. The multicast

tree can be dynamically computed using techniques similar to those presented in

the previous section. Communication between legacy and SDN switches uses an

approach similar to that of fibbing [18]. The topology discovery is initiated by

SDN switches which then share it with the controller.

Analysis

Multicast is by nature computationally expensive, because every time a host joins

or leaves a group, multicast requires the creation of a modified multicast tree to

assimilate the changes. This process is relatively demanding in traditional net-

works, which basically relies on flooding the network to discover the topology and

prune the Multicast tree. With SDN, the full topology and the hosts requests are

54

available to the controller. Topology changes are transparent to the controller be-

cause their representation is handled by dedicated topology modules or apps. As

discussed previously, SDN Multicast is henceforth simply a tree creation problem.

3.2.4 VxLAN

Traditional networks

VxLAN is an L2/L3 technique that enables two or many networks to be connected

as if they are on the same L2 domain. It is especially useful in data centers for

connecting Virtual Machines that reside on two disjoint networks. VxLAN in-

troduces many advantages to data centers especially that it expands the number

of possible VLANS. In fact, the length of the current VLAN identifier and the

use of the Spanning Tree Protocol limit the amount virtualization. VxLAN pro-

vides easier network isolation for multi-tenant environments, since L2 isolation

is limited by the maximum VLAN number and L3 isolation is limited by the

fact that tenants might use the same internal IP addresses. VxLAN also reduces

the size of MAC tables at the rack extremity switches [77]. VxLAN can only be

implemented in a network which supports multicast, IGMP and PIM. The mac

address of the destination VM needs to be known to establish a communication

line. Assuming the case, the VXLAN Tunnel End Point (VTEP) appends the

VXLAN Network Identifier (VNI) of the destination VM and encapsulates it in

a VxLAN header to be sent to the corresponding receiving VTEP. This latter

checks if the VNI/MAC association exists, and forwards the de-capsulated packet

to the destination VM. If the MAC of destination is not available, the source VM

sends a regular ARP message. This message is collected by the VTEP which adds

the corresponding VxLAN header and encapsulates in a multicast packet sent to

55

the group associated with the destination VNI. Receiving VTEPs process packets

and broadcasts it to nodes associated with the VNI. The destination VM then

responds with a normal unicast ARP response, which is re-encapsulated by the

receiving VTEP and sent back to the sending VTEP and ultimately the sending

VM [78].

SDN

The VxLAN protocol extension is readily available in Open vSwitches. OVS

provides VxLAN tunnels, implemented in kernel space and VxLAN encapsulation

and decapsulation. The VxLAN tunnels are mapped to virtual ports of the

switch, i.e. tunnels are created by adding a port of type VxLAN to the OVS.

The overlays between the OVS are configured by assigning the IP of the other end

of the tunnel to that port and the VNI to the tunnel. OVS also allows specifying

the OF port of the tunnel, which provides better control over the interfaces in

the network. Flow entries loaded to the switch by the controller direct traffic for

the VMs residing on both sides of the tunnel end points. In case of a missing

forwarding rule, OVS sends only the first packet of the flow to the controller and

handles consequent flow packets using the same rule, in order to accelerate traffic

flow [[79], [80]].

HN

VxLAN can operate in hybrid environments similarly to other tunneling protocols

such as MPLS. As long as the VTEP are OVS, the protocol operates exactly

the way it does in pure SDN networks. As the OVS switch is programmed to

create a VxLAN tunnel on a given OF port, which is then tied to a remote OVS

destination, the tunnel is created regardless of the nature of other switches in the

56

network

Analysis

Based on the previous sections, it is better to adopt SDN for the VxLAN pro-

tocol for many reasons. First of all, SDN can avoid ARP packets flooding and

ARP responses for the MAC address inquiry at each VxLAN connection. ARP

resolution can be performed at the SDN control layer, and directly provided to

the VMs. Also, SDN allows control over the VxLAN ports and the corresponding

VNI for better traceability. Finally, support for VxLAN already exists in OVS,

which means that there is no incurred overhead.

3.2.5 QoS

Traditional networks

All services cited above were conceived to improve the performance over networks.

With the emergence of multimedia applications, another parameter developed,

aiming to deliver these demanding services in the best quality possible. Qual-

ity of Service (QoS) aims at guaranteeing the quality required for a good user

experience. It basically obeys four constraints: reliability, jitter, delay and band-

width. QoS is achieved by many techniques that address each one or more of the

four parameters. Over provisioning the service with bandwidth or buffer space

might seem the easiest approach; however it is an expensive approach. Another

technique deployed at the receiving side consists in using buffers before delivery.

The buffer then delivers packets to receiver at a constant rate, which smooths

out jitters. Nonetheless, it does not help reduce delays. Traffic shaping is also

considered for QoS, whereby transmission rate is regulated at the sender rather

57

than at the receiver. It is achieved by an agreement between sender and the ac-

tual network (links): a service level agreement, which states the traffic capacity

supported, is exchanged between the sender and the carrier at the start of each

connection. If both parties keep their side of the agreement, the data will be

delivered smoothly and congestion avoided [81].

SDN

SDN is expected to assist in delivering QoS, consequently much research arose in

this area. OpenQoS [82], an OpenFlow controller which is dedicated to ensuring

quality for multimedia applications, separates traffic into multimedia and regular

flows. OpenQoS then routes each type of traffic according to algorithms that

ensures guaranteed routing for multimedia and normal shortest path for regular

data traffic. QoSFlow [83] provides traffic shaping and congestion avoidance by

controlling scheduling algorithms and packet schedulers, in the aim of improving

QoS. It extends OF 1.0 by creating a new datapath. This latter is a combi-

nation of the traditional OF datapath and a QoS module composed of three

elements: Traffic Shaping, enqueueing of flows and Packet Schedulers. Traffic

shaping and packet schedulers manage the resources and the traffic available to

the queues according to the controller’s QoS commands. This technique delivers

high flexibility and on-demand resources provisioning for applications. Q-Ctrl

[84] is another proposal for a QoS framework in SDN. It realizes end-to-end QoS

for multimedia applications, but also for scientific and web applications. Q-Ctrl

sits on top of the floodlight controller. It is composed of a QoS manager, network

topology monitor and database, and a QoS flow injector. Applications send their

requirements in quality to the QoS manager, which manages network resources

based on inputs from the network topology monitor. The Flow injector then

58

inserts flows into the SDN controller and subsequently the OF switches.

HN

QoS can be envisioned in hybrid networks. If the QoS module in (or on top

of) the SDN controller exposes APIs to “sensors” on the network, it can collect

information such as available resources and link traffic. This information is then

presented to a QoS module that manages resources according to the demand.

Analysis

QoS is also a service that is better deployed in SDN. In fact, a QoS module in

SDN has access to all sorts of data in real time. This obviously enhances the

quality of the services especially that the manager can regulate throughput and

bandwidth on the fly. It monitors the virtual and physical network, constantly

checks for the applications requirements, and regulates resources to requirements

as they vary.

The different services and their implementation are summarized in table 3.1.

3.3 Consequences on Network Management

Hybrid network introduced heterogeneity in the control planes, which became

a major problem to consider in order to avoid inconsistencies in the network

states. Another dimension to consider in addition to network services is the

network management (NM) plane, which ought to change to support this evo-

lution. Accordingly, the Open Networking Foundation (ONF) [85] emphasized

the importance of NM and added a management layer to the SDN architecture,

59

Traditional SDN Hybrid

Firewall One firewall is simple
to implement

Implementing dis-
tributed firewalls is
more complex SDN
allows distributed
firewalls

Legacy firewalls can
be employed in SDN
networks

Proxy Simple Simple Simple

DPI Complex Centralized architec-
ture not favorable
SDN does not give
an edge to DPI

Take advantage of
traditional DPI sys-
tems and integrate
them in SDN

IDS/IPS Complex SDN gives an edge to
IPS although it does
not improve perfor-
mance of IDS com-
pared to traditional
networks

Legacy IDS/IPS can
be implemented in
SDN although the
performance of SDN-
IPS is better

MPLS Very Complex SDN is a good archi-
tecture for MPLS

Easy if MPLS is
deployed on SDN
switches, very com-
plex otherwise

Multicast Very Complex Easy thanks to SDN
control plane

No added value be-
yond that of pure
SDN

VxLAN Very Complex Easy thanks to SDN
control plane

Easy if tunnel end
points are SDN
switches, complex
otherwise

QoS Complex Better performance
thanks to the real
time reactivity of
SDN

Feasible but no
added value beyond
that of pure SDN

Table 3.1: Network services in traditional networks, SDN and hybrid networks

60

indicating that if NM is not given enough care to be able to support SDN, this

latter would not function properly [9]. In a later issue [86], the ONF introduced

Network Orchestration, which exploits the network virtualization offered with

SDN, abstracts physical resources, and adaptively allocate them to network ser-

vices [87]. Orchestration binds the gap between requirements of applications and

network operators on one side, and the available network infrastructure on the

other [88]. As such, NM becomes an important player for network orchestration

and SDN exploitation. Consequently, we investigated NM with SDN, as a first

step to defining how management of hybrid networks can be designed. Addition-

ally, we further elaborated on the Fault, Configuration, Accounting, Performance,

Security (FCAPS) model and study its applicability to SDN, and proposed the

categorization of network functions as a guideline to implement SDN manage-

ment.

In [89], Wickboldt et al. present an overview of the development of SDN

throughout the years, starting from the year 2008, when OpenFlow was first

introduced, up to the current status of the concept in academia and the mar-

ket. However, the authors were particularly interested in management of SDN

networks; in fact, as the whole network is shifting, so should its management.

Obviously, traditional network management does not apply to SDN, since the re-

quirement for the new paradigm is different than those of the traditional 7-layered

networks. The authors compare management activities such as bootstrapping,

resilience and availability activities, security, monitoring, network programmabil-

ity and performance between the two schemes. The work concludes with a list

of challenges that management faces with the current setting of SDN, and the

authors argue that these challenges should soon be mitigated in order to avoid

patching management add-ons in the future. Nonetheless, NM within SDN is

61

far more critical than it appears. In fact, as argued by Hall et al. [23], SDN

was originally adopted in data centers, where trust was a minimal concern, since

that environment usually featured only one control authority. However, in most

networks, many authorities deploy their virtual networks on top of one shared

physical fabric. In this case, the trust issue becomes a major challenge for SDN

and more specifically for NM in SDN. The authors consider managing routing in

such open and shared environments, in the aim of finding a solution for running

private flows on the same physical switches. The work consisted of extending the

Quagga routing suite with an SDN routing module. Internal routing is lifted off

the routers up to the central control plane that keeps track of the state of the

whole island (or Autonomous SDN network), with eBGP being used for routing

across islands.

3.3.1 NM Layer for SDN

Many proposals considered management as an inherent part of the SDN controller

and implemented it as a module in or on top of it, such as Frenetic [90] and

Procera [91]. However, a major drawback of this kind of management technique is

that the controller becomes a single point of failure; any error on the control plane

may disable the controller and the management plane at once. The controller

also becomes overloaded, especially if the network is large. Another drawback of

delegating management functions to the controller is the programmable nature

of that latter, which makes it prone to attacks and consequently, compromises

the management plane [92].

Instead, researchers started considering other alternatives. The ONF started

working on defining a scheme for the issue. The management layer was hence-

forth marked as a layer perpendicular to the three layers of SDN: data, control

62

and application, as shown in section 2.2 Figure 2.2. It is basically in charge of all

functions that do not belong to any of the three layers, such as all client related

tasks, resource allocation to users, identification and authorization tasks, boot-

strapping and so on. This layer communicates with all three layers as shown,

however no clear characterization of the functions of the management layer has

been set yet. Furthermore in [93], Devlic et al. analyze the above model provided

by ONF. In this model, the OF-Config protocol, set by the ONF, was used to

configure and communicate with all three layers of SDN. The implementation of a

special protocol dedicated for management (and different from OpenFlow) by the

ONF implied that the separation between management and control is necessary.

The setting consisted of virtualizing carrier networks and offering different control

granularity to different users depending on their roles and privileges. The authors

were particularly interested in defining the roles of OpenFlow and OF-Config in

management, as currently presented by the ONF. An experiment was carried out

by mimicking the steps of device configuration in the use-case, and results showed

that this model features many weaknesses: first of all, the OF-Config points and

the controllers are considered as distinct units in the ONF model. However, these

two should be tightly connected in order to ensure fast reaction within the sys-

tem. Moreover, the authors detect gaps in OF-Config and OpenFlow protocols,

especially when it comes to the discovery of physical resources, configuration of

logical links, and instantiation of logical switches.

Whether control and management are merged together within the controller

or they are separated into two different entities, both ideas were subject to fur-

ther research; different models were proposed, each with its own advantages and

disadvantages.

63

3.3.2 Proposed Management Schemes

The management schemes presented in the literature are very diverse in their na-

ture: some researchers proposed a controller-manager, others thought of distinct

policy based manager, and some even considered of distributed management. The

different models and their applications are reviewed in this section.

Management as an Inherent Part of the Controller

As a first attempt to model network management in SDN, Wang and Matta re-

viewed proposed SDN controllers and the corresponding network architectures in

[94], focusing solely on management in the control plane; in other words, the au-

thors considered the management layer to be the control layer itself. The survey

aimed at identifying the management schemes for different controllers. Starting

with NOX SDN controller, the management layer featured only one controller,

which might not be efficient for large expanding networks. Another SDN con-

troller, Onix, on the other hand, creates many instances of the controller, each

allocated to a certain subset of switches and routers, which better serves scala-

bility. Network virtualization offered by FlowVisor responds better to efficient

resource utilization by exploiting network virtualization; it permits different NOX

controllers residing on top of FlowVisor, to share the same network substrate via

virtual partitioning and isolation of the network. Another important aspect of

management is the ease with which an operator can control the network, a char-

acteristic provided by PANE. Similar to NOX, PANE has one central controller

in the management layer, however PANE offers an API that allows users to have

control over the network, such as for reserving bandwidth. Nevertheless, a ma-

jor drawback is the lack of full support for QoS. Again, the authors concluded

their work by indicating weaknesses of the surveyed SDN controllers’ manage-

64

ment since these schemes are closely tied to TCP/IP and inherit its problems of

mobility, QoS support, and security. Building on these drawbacks, they present

the Recursive Inter-Network Architecture (RINA), a policy-based management

layer that resides at the top of the SDN architectures and mitigates the above

cited problems.

Policy-based Management

In [95], Smith et al. extend their previous work on management for traditional

networks in [96] to be applied to SDN networks. They develop a resilience scheme

centered on policy-based management that can reside on top of the SDN in-

frastructure. A resilience manager reads event measurements, monitoring data

(bandwidth) and/or any fault or anomaly (attacks or intrusions) from the net-

work, and chooses the appropriate action to execute based on predefined man-

agement patterns. These patterns are high-level formulations of the management

policies that express the corresponding configuration to apply in response to the

occurrence of a given event. The patterns or rules are associated to roles offline,

but the applications are associated to roles online, depending on the availabil-

ity of resources. Examples of roles are: Rate Limiter, Traffic Classifier, Virtual

Machine Replicator, Link Monitor etc. The framework was tested on Mininet

using the POX controller. The framework was able to mitigate a denial of ser-

vice attack 20 seconds after its start. Kim et al. elaborated on Procera [91],

also a policy-based control framework. Procera provides a platform for network

operators to easily control the SDN network via policies and rules. These high-

level rules are then translated into OpenFlow like instructions, which are in turn

implemented onto the forwarding plane via the controller. An event source is

any network element (e.g. middlebox) that transmits any kind of information

65

to the policy engine. This latter processes the events and the policies installed,

synthetizes the appropriate action to be taken, and sends it to the controller to

be enforced on the fabric with OpenFlow. Procera aims at simplifying the de-

ployment of complex policies on big dynamic networks, which was verified when

tested on the Georgia Tech campus. Procera also proved efficient when tested

in a home network. Han et al. revisited policy-based SDN management in [97],

but from a different perspective: a framework called layered policy management

(LPM). The paper addresses policy deployment on all three layers: application,

control, and data. In fact, each layer features a set of challenges that are best

solved locally; consequently three types of policy management techniques were

developed: management for inter-module dependency (at the controller level), for

inter-application dependency (at the application level) and for intra-table depen-

dency (at the switch level). Policy segmentation was employed to resolve the first

type of dependencies, whereas the second type was solved by allocating priority

scores to applications. Finally, “flow isolation”, which consists of appending tags

to every new flow in the table, was used to settle intra-table dependencies. The

authors validated their work via a proof-of-concept implementation on Mininet

with Floodlight, and tested on a configuration taken from a real backbone net-

work in Stanford [98].

Programmable Management

In [92], Kukliński introduced the programmable SDN manager, a new perspec-

tive of SDN management. The author argued that since the whole SDN network

became programmable by software, so should its management. Delegating man-

agement functions to the controller itself shows many shortcomings that could

be mitigated by adding a centralized management node to SDN. In this scheme

66

some management functions could be delegated to the controller, especially those

related to applications that are installed and running on the controller, but the

presence of the SDN node implementing large-scale management functions and

looking over the whole network assures more robustness. However, this scheme

still features a single point of failure and a bottleneck (the SDN management

node), which the author proposed to overcome by adding programmability to the

management, distributed on all levels: manager, controllers and switches. This

method obviously incurs changes to the SDN architecture as currently defined

and to the switches as well, but proved to cope better with scalability, response

delay and reliability. While network management has proven to be a hard task in

traditional networks, it is not greatly simplified with SDN. In fact, while SDN al-

leviates the burden of configuring each network element separately, the controllers

as they are currently designed provide limited management interfaces. For ex-

ample in [99], the authors developed “Semantic Network Management” aiming

to present an easy, high-level management to operators, who will only have to

define high-level information, rather than subnets, IP addresses, and routes. The

32-bit IP address space is divided into Group pool and ID, and Host pool and

ID, which are later used to simplify forwarding and reduce entries in flow tables.

For example, the method allows to aggregate flow entries for hosts belonging to

the same group, and consequently, it automatically assigns addresses such that

the number of flow entries in tables is minimized. Semantic Network Manage-

ment was implemented in EasyWay, an application built on top of the RUNOS

OpenFlow controller. Benefits of the presented approach span performance and

flow tables learning, while the overhead is kept minimal.

67

Management Transition: Legacy networks to SDN

In [100], Kuklinski and Chemouil exposed the challenges of SDN network manage-

ment by comparing it to that of traditional networks. Starting with the FCAPS

model, they showed the different functionalities and drawbacks of OpenFlow,

mainly its inability to perform controller programmability, a new management

function required in SDN. Similarly, [101] pointed out that even though SDN

presents an opportunity to simplify management by providing a central data ac-

quisition/control entity, it also creates additional requirements related to network

programmability, dynamism in policy creation, and network bootstrapping. This

latter was invoked in [102], where InitSDN was introduced as a tool to manage

network bootstrapping on two levels: the data slice and the control slice.

3.3.3 Guidelines for a Management Framework

Even though the controller can carry out the role of a manager, such a choice

might have been carried out for practicality only, especially that management

issues in SDN have only recently been considered and identified. In fact, relying

on the controller solely might overload it especially that it is already in charge of

controlling network services. Consequently, choosing the right type and amount

of management functions to be consigned to the controller becomes crucial. The

separation between SDN manager and SDN controller is recently an active area of

research; many papers tackle this issue and expose the different related problems

[100]. Building on the literature and on the FCAPS model, we define its appli-

cability on the changing management environment with SDN, given the roles of

the manager and controller.

68

Level Manager Controller
Fault X

Configuration X X
Accounting X
Performance X X

Security X

Table 3.2: Proposed FCAPS allocation in SDN

Extension of FCAPS to SDN: Categorizing the Functions

FCAPS is an ISO standard for telecommunications and network management,

and the most widely used [103]. We categorize the different network functions

into the corresponding areas of FCAPS and SDN level (controller or manager).

Each level can be allocated to either the controller or the manager depending on

the function that it encompasses (Table 3.2). We define a rule of thumb which

is in-line with what is proposed in the literature [100], and with the separation

that is observed in the OpenDaylight SDN controller [104], as follows: Critical

tasks that need to be handled in real-time or for an extremely short duration are

assigned to the controller, whereas tasks that require monitoring over a larger

time scale are assigned to the manager.

Accordingly, Fault and Security are attributed to the controller due to their

critical impact. Configuration, Accounting and Performance management require

rather longer processing and data analysis time; they can be thus attributed

to the manager. However, some functions related to dynamic configuration or

performance management, such as traffic engineering (TE), should be handled

quickly and thus should be assigned to the controller instead. These are marked

in grey in Table 3.2.

Figure 3.2 lays down a subset of the main management functions with respect

to their relation to Fault, Configuration, Accounting, Performance or Security.

69

Figure 3.2: Map of management functions for building management schemes for
SDN

Each function is assigned to either controller (blue border) or manager (red bor-

der). SDN-specific management functions are shown in red rectangles. Another

guideline for the classification can be followed based on proximity and the extent

of knowledge that each entity has regarding the different layers: Tasks that are

carried out at layers 2 and 3 of the network are assigned to the controller, whereas

tasks that are carried out at layer 4 and above are assigned to the manager.

Proposed Architecture

The choice for the rule of thumb to employ for the allocation of management

applications depends on the type of network and the nature of the services run-

ning on top. All functions allocated to the controller, defined as Management

Modules, are implemented as modules of that controller, having the same level of

importance as control modules, for example when it comes to reserving resources.

However, they use OF-Config to communicate with the network substrate instead

of OpenFlow. Functions allocated to the manager, defined as Management Ap-

70

plications, will be implemented as applications on the application layer. Their

role is less critical than that of Management Modules, which justifies the fact that

they are implemented further away from the data layer. At the same time, their

proximity to the top layers allows them to run layer 4-and-above management

functions more efficiently. These applications do not communicate with the de-

vices; instead they acquire the needed statistics and infrastructure information

indirectly from the controller via Northbound Interface. Recent research started

considering the switches’ role in undertaking some control tasks to ensure scala-

bility of SDN networks [92], [17], [105]. Even though this could be controversial

given the SDN specific control/data planes split, it does allow switches to con-

tribute to the management plane. In this case, the switches can help management

applications in data collection or policy enforcement, thus offloading these func-

tions from the controller. Consequently, the Management Applications would be

able to bypass the controller and directly communicate with the switches. How-

ever special care should be taken in order to ensure consistency between controller

and manager.

Accordingly, the proposed architecture is a virtual management plane that

is perpendicular to the layers of the SDN, and intersects the control and the

application layers (Figure 3.3). The Orchestrator encompasses both manager

and controller.

3.3.4 POC: System Model and Implementation

To validate our framework, we modeled the different network entities and defined

the performance cost as follows:

• Vector A = ai contains the different applications ai, and length of A is the

71

Figure 3.3: Proposed management framework based on management functions
categorization

number of applications.

• Vector R = r1, r2, . . . , ri, where ri is the performance requirement of appli-

cation ai.

• Vector X = x1, x2, . . . , xi, where xi indicates if application is assigned to

controller (xi = 1) or to manager (xi = 0). For scenario 1, X is all ones,

and for scenario 2, X is all zeros.

• Vector Y = y1,y2, . . . ,yi, where yi shows the criticality of application ai.

• αc and αm represents the overhead of assigning non-critical apps to con-

troller and critical apps to manager, respectively.

• Vectors φc = φc,1,φc,2, . . .φc,i and φm = φm,1,φm,2, . . .φm,i show the

72

bad-assignment penalty of application ai for controller and manager, re-

spectively.

The bottleneck of the controller layer is its capacity (C), because an over-

loaded controller can cause a network downtime. Alternatively, the bottleneck

of the manager is rather the communication bandwidth (M) to the controller

(through northbound interface). The performance cost involves two sub-costs:

processing delay cost from an overloaded controller and communication delay

cost from running time critical apps on manager. To compute the processing

delay from the controller, we take the multiplication of the performance require-

ments of applications with the controller penalty of bad-assignment, summed over

all apps, and then divided by the controller capacity. Alternatively, to compute

the communication delay cost, we take the multiplication of performance require-

ment of applications with the manager penalty of bad-assignment, summed over

all apps, and then divided over the communication bandwidth. Consequently,

the performance cost Θ is:

Θ =

A∑
i

(1 + φc,i)(airi)

C
+

(1 + φm,i)(airi)

M
(3.1)

where

φc,i = αc(Yi ⊗ Xi)

and

φm,i = αm(Yi ⊗ Xi)

We simulated the system using MATLAB. We measured performance cost in

three scenarios as shown in Table 3.3. The application criticality vector Y was

initialized randomly so that 50% of apps are critical and 50% are non-critical

73

Scenarios

Scenario 1:Proposed Framework Distribution of management apps among manager and controller

Scenario 2: Controller Only All management applications running on the controller

Scenario 3: Manager Only All management apps are running on the manager

Table 3.3: Simulation scenarios

Figure 3.4: Comparison of the normalized performance cost of the 3 scenarios

to ensure fair allocation cost between manager and controller. The controller

capacity and communication bandwidth are initially set to half of their maximum

capacity (50% on a normalized scale).

Results and Analysis

Figure 3.4 shows the performance of the 3 scenarios with network operation. The

proposed model outperforms the other two scenarios in normal network opera-

tion where application requests vary over time. We can see an improvement of

around 27.5% between the proposed design and the two other scenarios. Figure

3.5 shows the performance cost when controller capacity increases while the com-

munication BW from manager to controller is kept at 50% of its maximum value.

74

When controller capacity is at 0, the performance cost shows an asymptotic be-

havior towards infinity in scenario 2. This is expected because if the controller

capacity is close to 0, then no app can run on it. The proposed scenario also

shows high performance cost at 0 due to the contribution of the controller cost

term in the proposed system’s cost function. Scenario 3 has a constant cost due

to the fact that the manager is not affected by controller capacity. When the

controller capacity increases (Figure 3.6), performances of scenario 1 and the

proposed system decrease, because C starts reducing the controller cost term in

both scenarios, to the point where the proposed system starts showing better

performance than scenario 3. As controller capacity keeps increasing, the cost

of scenario 2 becomes equal and then less than scenario 3, and asymptotically

it becomes superposed to the cost of the proposed design. This is also expected

because for a big capacity, the processing bottleneck of the bad allocation of non-

critical tasks to the controller disappears and thus its performance cost becomes

comparable to the ideal distribution of tasks. A similar analysis can be performed

by varying communication delays between manager and controller/ infrastructure

(Figure 3.7). When the delay is small (i.e. the bandwidth M is high), scenario

3 shows a behavior comparable to the proposed design because under this con-

dition, there is no overhead incurred from the bad allocation of critical tasks to

manager. As the delay increases, the performance cost of scenario 3 increases

and surpasses the performance cost of the proposed design. For high delays the

cost of scenario 3 increases. This also affects the cost of the proposed design due

to the contribution of the manager cost term in its cost function. The cost of

scenario 2 is nearly constant, because the controller cost is not affected by the

bandwidth capacity.

75

Figure 3.5: Performance cost with varying controller capacity

Figure 3.6: Performance cost with varying controller capacity in semi-log scale

76

Figure 3.7: Performance cost with varying Delay

77

Chapter 4

Performance Modeling and

Testing of Centralisation (SDN)

Versus Decentralisation (OSPF)

4.1 Network Convergence in SDN Versus OSPF

Networks

Software-Defined Networking (SDN) brought about several benefits in terms of

flexibility and ease of management. SDN also promised easier network conver-

gence [1], especially that the SDN architecture introduces a single node to su-

pervise, control, and manage the network: the controller. This latter has full

view and knowledge of the network; it can access and configure all resources,

and quickly react to any changes that occur in the links or devices. Intuitively,

one would think that the centralization introduced with SDN does not only pro-

vide easier convergence to a new state, but also a faster one when compared to

78

distributed routing protocols. In fact, in SDN, the controller is the only node

responsible for making routing decisions. Alternatively, in legacy IP networks,

all routers exchange topology information in order to agree on the state of the

network; subsequently each node creates its own routing table. However, some re-

search showed that SDN convergence is not as fast as anticipated, and that some

unseen delays that hinder the expected fast convergence also exist in SDN-enabled

networks [106]. Moreover, distributed routing protocols have been developed

for years: convergence, being an important aspect of a functional network, was

thought of early on, and techniques to improve it were introduced. For example,

incremental Shortest-Path First (SPF) were developed to increase convergence

efficiency [2]. In this section, we are interested in theoretically comparing con-

vergence of centralized SDN with the standard OSPF routing protocol and then,

experimentally testing the two network types and evaluating their convergence

speed, to verify that the theoretical study matches the actual results. Subse-

quently, we analyze and try to identify the causes behind the mismatch between

what was theoretically sound and the experimental implementation.

4.1.1 Network convergence

Related work

Network convergence was always a concern, given the importance of failure recov-

ery and fast reaction to topology changes, for limiting lost traffic and interruption

of services. Many papers compared the convergence of intra-domain routing pro-

tocols [107, 108] with the aim of finding the protocol that delivers the fastest

convergence, and concluded that OSPF has faster convergence than RIP and

EIRP. Pei et al. [109] model the convergence of path vector routing protocols

79

such as BGP to analyze their convergence delays with respect to topologies and

network sizes. With the introduction of SDN, new interest in investigating con-

vergence delays of this new technology as compared to those of traditional routing

protocols surfaced. In fact, intuitively the characteristics of SDN should deliver

fast, if not seamless network recovery, after a topology change. Zang et al. [106]

investigated this issue. They modeled the convergence process in OSPF and SDN

at a high level, and experimentally tested both networks to determine the delay

it takes for each network to converge. Their results showed that OSPF performs

better than SDN. However, when the link delay increases, SDN starts showing

faster network convergence. In fact, in SDN, the controller is the one responsible

for topology discovery and path computation. Consequently, advertisements are

not flooded throughout the network, and thus the speed of the links does not

affect convergence. Alternatively, convergence delay in SDN is affected by the

performance of the controller, and by the efficiency of the routing modules used.

Although one would expect SDN to deliver faster failover, the results in [106] are

not surprising, especially that the OSPF protocol has been thoroughly studied

throughout the years and continuously enhanced to deliver faster convergence

[110]. SDN routing performance was also compared to inter-domain protocols.

In [111], Gopi et al. compared the convergence speed of SDN to that of BGP in

networks of different sizes. Results showed that SDN was able to deliver faster

convergence, especially as the network grows in size.

Convergence General Definition

In traditional networks, network convergence is defined as a network state in

which all routers have the same routing information, and their routing tables

contain paths to all destinations in the network [112]. Alternatively, in SDN,

80

convergence can be defined as the state of a network where all destinations are

reachable. The definition of convergence is slightly different in SDN; it is de-

fined as the state when the controller has an updated map of the network with

shortest paths to all destinations. Consequently, the states of the flow tables in

the switches become associated to whether the controller dispatches the rules to

the switches or not. Even though network elements have different roles in each

network type, the main convergence aspect is similar in both schemes. Generally,

convergence takes place in four steps [113]:

1. Identifying the topology event. The event can be any change related to

topology; however, we are mainly focusing on link failure due to its impact

on network operation and availability.

2. Transmitting the event. This step concerns propagating the event to the

appropriate network nodes. In traditional networks the nodes are routers,

whereas in SDN, the concerned network node is the controller.

3. Handling the event. This is achieved when the nodes restore the converged

status of the network, by calculating alternative paths.

4. Updating the routing and forwarding tables.

These high-level steps are translated differently in traditional and SDN net-

works, given the different characteristics of each technology.

Convergence in Traditional Networks

We chose OSPF as an example to analyze convergence in traditional networks,

because it is a standard that has good convergence performance compared to

other distributed protocols. Topology changes are detected in OSPF in two man-

ners: either through an indication from the physical layer (e.g. a “lost carrier”

81

message), or via the expiry of the “dead interval” delay, which corresponds to four

times the “hello interval” [114]. When the topology change is signaled, the router

which detects it sends an LSA update message to its neighbors, which succes-

sively ripple the message throughout the network. Each router then re-computes

its routing table, and sends the update. Upon receiving the new updates, routers

in turn compute their new routing tables. To control the table re-computation

and avoid multiple SPF computations at each update receipt, the SPF compu-

tation at each router is held-off until an SPF counter is expired. Once all the

routers in the network are notified of the topology changes and have computed

their new routing tables, the network has converged.

Convergence in SDN

The convergence process in SDN is different from the above. Any change in

SDN network topology is unswervingly indicated to the controller via a Port

Status message sent from the concerned switch [72]. The controller updates its

topology map, calculates shortest paths to all destinations, and sends new rules

to the switches. The controller should not need to do network discovery again

at each port-down status update. Only the map of the network topology is

updated with the new event, assuming that if anything else had changed in the

network, the controller would have been notified. This procedure is theoretical

and its applicability depends on the implementations of the routing modules.

Some controller implementations might do full network discovery after a topology

change event is received, to ensure that the controller has the most recent topology

of the network, which adds extra delays to the convergence process in SDN. Upon

receipt of the new rules, the switches update their flow tables.

82

4.1.2 Theoretical Model

In this section, we model the network convergence in traditional networks and in

SDN, to analytically compare convergence delays in these two types of networks.

Global Parameters

Some network related parameters are common to the two models. We define

them as follows.

• The number of nodes in network (n)

• The number of links in network (l). Given that the network is a connected

graph, it must have at least (n-1) links and at most (n(n−1))
2

links [115].

Consequently:

(n− 1) 6 l 6
(n(n− 1))

2

• The depth of the network (f). We model the depth of the network from fault

location to extremities as a n-vertex forest. It has an average tree-depth

of O(log n) [116]. For the network in Figure 4.1 for example, the longest

path in the network is 15 nodes. The best-case scenario occurs when the

fault appears in the middle of the network, which makes it at most 8 hops

away from extremities. If the fault is closer to extremities, then it is farther

away from the extremity on the other side. Consequently, for the network

in Figure 4.1, f varies between 8 and 15.

• The detection delay dd or the time it takes to detect the change in topology.

This delay is very small in SDN because it corresponds to a port status

change at the SDN switches, which is directly sent to controller. In OSPF,

the delay is also very small if detected by a loss of carrier at layer 2, which is

83

Figure 4.1: Simulated network of 50 nodes

more frequent than waiting for the “dead interval” to expire. In the latter

case, the delay equals four times the OSPF “hello” interval.

• The SPF calculation time dSPF. This delay is modeled by the ratio of

the SPF instructions count over the instructions per second (IPS) of the

network element performing the SPF calculation [117]. In our calculation,

we used 215 IPS. For the average case complexity, the SPF instruction count

is of the order of O(l + nlog(n)) [110].

• The congestion factor cf, which represents the network congestion at time

t; is modeled as a normal random variable drawn from the distribution

N(1, 1).

• The link delay dl, represents the delay observed on the links in the network.

All variables are summarized in Table 4.1.

OSPF Convergence Time

For the calculation of convergence time for OSPF, we define one more parameter:

84

Variables
n Size of the network
l Number of links
f Network depth at fault location
dd Detection delay
NLC Network link capacity
dSPF SPF calculation time
IPS Instructions per second
cf Congestion factor
dl Link delay
dFOU Forwarding table update delay
CLF Controller load factor
linkBW Bandwidth of links between controller and switches
dCN Controller notification delay
dRF Rules dispatching delay
dFLU Flow table update delay

Table 4.1: Variables

• The forwarding table update delay dFOU, which represents the time it takes

to update the router forwarding table, on the order of 10’s to 100’s millisec-

onds [110].

As mentioned in section 4.1.1, the convergence delay in OSPF is the sum of

the detection delay, the event propagation delay dl×f, the SPF calculation delay

- which is accounted for twice, once at the first router, and once at the farthest

router after having received all updates- and the forwarding table update delay. It

is defined as follows (in this model, we assume that routers directly flood LSAs):

ConvOSPF = dd + dl × f+ dSPF × 2 + dFOU

SDN Convergence Time

For SDN convergence modeling, we define additional SDN-specific parameters as

follows:

85

• The controller load factor (CLF), represents the load of the controller at

time t, and is modeled as a normal random variable drawn from the dis-

tribution N(1, 1). The controller is in normal load when the load factor is

equal to 1.

• The controller notification delay dCN is the time for the port status message

to reach the controller. Given the high speed of links between controller

and switches, this delay should be very small. In our design, it is modeled

as the inverse of the bandwidth (linkBW) between controller and switches,

which is defined as the product of the link bandwidth and the controller load

factor at time t. The propagation delay between controller and switches is

assumed to be negligible by design. Consequently:

dCN =
1

(LinkBW × CLF)

• The rules dispatching delay dRF, is the time it takes for the controller

to dispatch all rules to the switches. It is defined as the “Flow Mod”

processing time (fabrication and transmission), and propagation time of

the messages to the switches. The system can be modeled as a Mn/M/1

bulk arrival queue where n is the number of nodes in the network [118]. We

assume that rules for a single switch are processed together and thus the

number of customers in the queue corresponds to the number of switches.

Consequently, the processing time of one “Flow Mod” message follows the

exponential distribution with parameter µ, where µ is the processing rate

of the controller [119]. The total processing delay is given by 1
µ

. The

propagation delay is defined by the number of switches in the network

multiplied by the controller notification delay. The dispatching delay is

86

n = 50 dFOU = 10 ms
l = 64 CLF = normrnd(1,1)
f = 8 linkBW = 108 bps
dd = 1 ms dFLU = 10 ms
c = normrnd(1,1) NLC = 10 Mbps
IPS = 215 instructions/sec

Table 4.2: Simulation parameters for scenario 1

therefore given by:

dRF = (
1

µ
+ n× dCN)

• The flow table update delay dFLU, which represents the time it takes to

update the switche flow table, assumed to be in the order of 10’s to 100’s

msec as in the OSPF update case.

Referring to section 4.1.2, SDN convergence delay is calculated as the sum

of detection delay, controller notification delay, the SPF calculation delay at the

controller, the rules dispatching delay, and the flow tables update delay. It is

defined as follows:

ConvSDN = dd + dCN + dSPF + dRF + dFLU

4.1.3 Testing and Results

We implemented the models using MATLAB, and observed the convergence delay

in three scenarios, described below. In the first scenario, we swept over link delay

dl from 1 to 10 milliseconds with a step of 0.001, and watched the effect on

convergence delay, with the parameter values in Table 4.2.

The results depicted in Figure 4.2 show that SDN convergence is not affected

by the network link delay, whereas OSPF convergence is drastically affected by

87

Figure 4.2: Effect of link delay on convergence delay

this delay. This is expected because convergence in OSPF relies on rippling OSPF

advertisements throughout the network, and the speed of network links affect the

time it takes for these messages to reach all the nodes.

Scenario 2 tests the system convergence for different values of the depth of the

network at the fault point, i.e f is varied between 8 and 15, using the parameter

values in Table 4.3.

Figure 4.3 shows the effect of the location of the fault on the convergence delay.

n = 50 dFOU = 10 ms
l = 64 CLF = normrnd(1,1)
dl = 1 ms linkBW = 108 bps
dd = 1 ms dFLU = 10 ms
c = normrnd(1,1) NLC = 10 Mbps
IPS = 215 instructions/sec

Table 4.3: Simulation parameters for scenario 2

88

Figure 4.3: Effect of fault location on convergence delay

SDN is not affected by the fault location, as expected, because the controller is

directly notified about the failure by the corresponding switch. On the other

hand, OSPF is influenced by the failure location. In fact, when the fault occurs

at node 8, in other words, when a link at the center of the network goes down,

OSPF converges faster than when a link at the extremity of the network fails

(fault location = 15). This is also expected because when a link closer to the edge

fails, the advertisements should ripple through the whole network, whereas if the

link in the middle fails, then, ads traverse nodes from both sides simultaneously,

which saves time.

In the third scenario, we varied two parameters: we swept over network size

n from 1 to 100 nodes, and over the number of links from (n− 1) to b (n×(n−1))
2

c

with a step of 1. The parameters were set as in Table 4.4

89

dl = 1 ms dFOU = 10 ms
l = 64 CLF = normrnd(1,1)
f = 8 linkBW = 108 bps
dd = 1 ms dFLU = 10 ms
c = normrnd(1,1) NLC = 10 Mbps
IPS = 215 instructions/sec

Table 4.4: Simulation parameters for scenario 3

Nodes #Hosts #Links
Setting 1 50 OSPF routers 2 64
Setting 2 50 Open-Flow SDN switches 2 64

Table 4.5: Experiment settings

Convergence delay observed in each type of network is represented through

a 3D plot, in Figures 4.4 and 4.5. We notice that OSPF converges faster than

SDN when the network size and the number of links are small. However, as

the number of nodes and/or the number of links increases, SDN shows faster

convergence. The highest delays are observed when the network size and the

number of links are maximum.

4.1.4 Simulation and Results

Network Setup

To experimentally test convergence delays, we created a network topology of 50

nodes in two configurations 1) OSPF network and 2) SDN network. The network

topology is shown in Figure 4.1, and details of each configuration are shown in

Table 4.5. We used Mininext [120] to implement the scenarios, because it provides

an extension to Mininet hosts, which enables them to run the Quagga routing

suite. These Quagga nodes are used as OSPF routers in scenario 1.

Open-Flow-enabled switches in scenario 2 are the normal switches used in the

Mininet/Mininext emulators. For the SDN experiment, we used the Floodlight

90

Figure 4.4: OSPF convergence

Figure 4.5: SDN convergence

91

controller with the PortDownReconiliation module enabled. This module deletes

switches flows at port down event, which allows us to optimize the controller

response. In fact, instead of waiting for the rules to expire on the switches

before asking for new forwarding rules, the switches can directly inquire about

forwarding assistance from the controller.

Measuring Network Convergence

Convergence was triggered by bringing down a link and measuring the time it

takes for the network to be connected again. To test network convergence, we

chose the longest path in the network, and assumed that if this path converged,

then the whole network has converged. Additionally, there is no straightforward

technique to measure path convergence in a network. Many techniques were

presented and used in the literature. In [106], convergence is measured by starting

an HTTP server on the destination node, and starting an Httping to the server

from the source node on the other end of the network. The convergence delay is

the time for the Httping to get restored. However, as mentioned by the authors,

this technique involves extra delay due to the HTTP TCP connection setup.

Another technique for testing OSPF convergence relies on checking if all routers’

routing tables are complete and all destinations can be reached [112]. However,

the algorithm for checking the status of the routing tables and comparing them

will add overhead delay that will affect the measured convergence value. Also,

this technique cannot be used for SDN networks. Consequently, we used the

method presented in [107]: we start a continuous ping from the source host to

the destination node in the network, and start packet capture at the destination.

We then bring down a link, and watch traffic interruption and then recovery.

To find the convergence delay, we verify the sequence numbers of the received

92

packets, and calculate the delay based on the missing sequence numbers and the

frequency of the pings. The testing script pseudocode is shown in Algorithm 1.

Data: Topology, Configuration
Initialization: Start Mininext Network;
if Topology is OSPF-Topologies then

Apply-OSPF-Configurations(configuration)
else

Apply-SDN-Configuration(configuration)
end
while Host1 ping Host2 do

Run collection of ICMP replies
Bring Link Down
Wait for Ping to operate again

end
Stop network
Parse results

Algorithm 1: Testing pseudocode

Experimental Results

We tested network convergence for different link conditions, and different fault

locations. We implemented experiment 1 and 2 from section 4.1.3, and fixed the

network size and number of links as specified in Table 4.5. Results are shown in

Figures 4.6 and 4.7.

• Effect of link delay: as expected with OSPF, we observe that as the link

delay increases, the convergence delay increases (see Figure 4.6). Also as

expected, SDN convergence delay is not correlated to link delay, i.e. the in-

crease in link delay does not automatically cause longer convergence delays.

In fact, in the case of the failure of link 43-50 in Figure 4.6, we observe that

the network with 5 ms link delay converges faster than the network with 1

ms delay. Also, when link 23-25 fails, the 1 ms delay and the 5 ms delay

networks have comparable convergence delays.

93

Figure 4.6: Convergence delay in the OSPF network vs. SDN

• Effect of fault location: fault location is expected to affect convergence delay

in OSPF because it affects the number of nodes that the advertisements

should cross to reach all nodes in the network. However, it is not expected

to affect convergence delays in SDN. When comparing the different fault

locations in OSPF (see blue and grey bars in Figure 4.6), we notice that for

the same link delays (i.e. for bars of same color), the convergence delay is

the least when the fault occurs within the network (the link between nodes

23 and 25) as compared to the other fault location. This result is expected

as shown theoretically in Figure 4.3.

• Effect of network size: we chose a size of 50 in experimental analysis. In

fact, testing OSPF networks of bigger sizes is unfair to the protocol, because

an OSPF network of very large size is bad practice and not deployed in real

life.

In order to emphasize the delay differences between SDN and OSPF, we re-

94

peated the experiments with longer link delays of 50, 100, and 200 ms. The

results in this case are summarized in Figure 4.7. When the network link delay

increases to tens of milliseconds, we are able to observe the convergence advan-

tage of SDN over OSPF. For delays of 100 ms and 200 ms, SDN converges faster

than OSPF. For link 43-50 at a link delay of 200 ms, the SDN convergence time

is only 60% that of OSPF. Results also show that when the fault occurs inside

the OSPF or SDN network (link 23-25), this latter converges faster than when

the failure occurs at the extremities (links 3-5 and 43-50). Moreover, Figure 4.7

also shows that if the failure occurs closer to the source (link 3-5), the network,

be it OSPF or SDN, converges faster than if the failure had occurred closer to the

destination (link 43-50). This is due to the fact that if the failure happens close

to destination, the ingress network node at the source will be the last node to

be informed of the topology event. Updates will reach source node late because

the link delays used are relatively large. Consequently, the ingress node will still

forward a packet along the known path until notified of the change. On the other

hand, if the failure had occurred at the source, the node would have directly

reacted and resolved network convergence, as soon as the first packet is ready to

be sent through the network.

Theoretical vs. Experimental Results

Analytical results were obtained using parameters from the experiments. Conse-

quently, we are able to compare experimental and theoretical results. Theoretical

and experimental results for OSPF seem to match more closely than those for

SDN. In [106], the authors mention that convergence in OSPF networks is related

to link delay, whereas convergence in SDN is related to controller performance.

However, convergence in SDN does not depend on the controller only. It is also

95

Figure 4.7: Convergence for large network link delays

related to switch performance. In fact, in [121] the authors analyzed the pro-

cessing latencies of SDN control plane. They consider delays to dispatch rules to

switches and the time it takes for the switches to update their flow tables. They

also study the interaction between control and data planes, through thorough

testing of different vendor switches. They report that the performance of the

control plane and the switches is not deterministic, i.e. switches might casually

interrupt the processing of control instructions for as long as 200 milliseconds.

Also, the authors show a delay between insertion of a rule on a switch and this

latter starting to send packets, which means that there is a delay between the

control plane and data plane inside the switch itself.

The experimental study verified the validity of the theoretical model, with

some irregularities due to the implementation details of the controller, the ef-

ficiency of its modules, and the emulation of the switches [121], that are not

apparent to operators and users.

96

4.2 Performance Analysis of SDN vs. OSPF in

Diverse Network Environments

In the previous section, we showed the importance of network convergence in net-

works, since it can limit the damage resulting from network failures and changes.

Consequently, a lot of research considered comparing the performance of differ-

ent routing protocols whether in IP or SDN, to assess their convergence speed

and reaction to failures. We modeled OSPF vs. SDN networks in general net-

work deployments and studied their comparative convergence delays for different

network conditions. However, the type of network and the architecture choices

also affect performance. Consequently we extended the work in the previous

section to model network convergence for two network architectures, datacenters

and WANs, in the aim of discerning the difference in SDN and IP convergence

processes and speeds when the network type and characteristics change.

4.2.1 Extension to the Previous Convergence Model

The model developed in section 4.1 compared SDN and OSPF in random networks

under general but ideal settings. The study did not investigate the effect of

network type on the performance of the two technologies. However, network type

and architecture do have a big impact on the behavior of SDN and OSPF. In fact,

SDN was initially conceived for a private Local Area Network (LAN) [122]. It

then quickly infiltrated datacenters due to the benefits that it offered to these

environments in terms of virtualization and ease of management [7, 123]. In both

scenarios, the network is relatively small in terms of diameter, and usually under

a single domain authority [23]. Additionally, the work in in section 4.1 gives little

care to modeling the SDN control plane, as it assumed that the connection to

97

the controller is very fast, which is in line with the theoretical definition of SDN.

However, in real deployments, connections between switches and controllers are

normal network links. Also, the controller/switch pairs do not have to be one

hop away from each other, i.e. the controller might not be connected directly to

all the switches in the network. Incorporating this aspect within the convergence

model provides insights regarding the actual convergence process within SDN.

Datacenters and WANs

We are interested in studying SDN and OSPF in well-defined network types:

datacenters (DC) on one hand, and Wide-Area Networks (WANs), on the other.

We choose these two very disparate network architectures to emphasize the per-

formance differences of SDN and OSPF deployments. In fact, the two scenarios

differ in their architecture setup, latencies, links and connections types, and ap-

plications running on them, which will allow us to clearly observe the behavior

of the two routing protocols.

Moreover, each technology is favorable to a certain type of networks. For

example, SDN is by design datacenter friendly, however, its application to WANs

is still in its early stages. In fact, datacenters are usually characterized of being

run by a single administrator and with short distances between switches since

a datacenter spans a couple of buildings at most, which means hops are only

a few meters to tens of meters away from each other [124]. The introduction

of SDN to datacenters simplifies their management [125]. It is also proposed

to use SDN in datacenters for security solutions to detect and mitigate attacks

such as Distributed Denial of Service (DDoS) [126]. Additionally, SDN provides

network programmability thanks to virtualization and Application Programming

Interfaces (APIs), which makes it easy to run third-party software on the DC

98

infrastructure [127]. On the other hand, WANs cover large distances, connecting

different local area networks. Their deployment is characterized by expensive and

complex high-performance core routers and high-speed links to mitigate the effect

of big geographical distances [124]. WANs are by nature hard to manage, and

they are usually over-provisioned to handle demand spikes. However, SDN offers

remote management and virtualization which help solve some problems of the

traditional WAN. This avoids overprovisioning by relying on dynamic resource

allocation and offers faster reaction to failover [128].

In [129], the authors review the state of the art in SDN deployments in WANs

(SD-WAN), with a special interest in the comparison between the challenges of

SD-WAN and datacenters. They argue that even though SDN deployment is

more frequent in datacenters, the deployment in WANs has recently increased

in popularity, especially that WANs are hard to manage. They are also more

exposed to failures than datacenters since they are usually overprovisioned. Even

though these challenges can be addressed by exploiting the virtualization and

efficient network management of SD-WAN, this faces other types of impediments.

For example, resiliency to failure is hard to provide with the centralized system

especially in large systems such as the WAN. However, many proposals consider

SD-WAN to interconnect datacenters, such as Google’s ‘B4 WAN deployment’

[27], which employs SDN to manage the WAN networks that connect different

Google datacenters.

In-band and Out-of-band Control

In addition to the network architecture, the deployment of the network technol-

ogy affects its performance. For example, the choice of in-band or out-of-band

control affects the speed of the SDN control plane, which also drove us to con-

99

sider it in our comparison study. In SD-WAN deployments, the controller can

use in-band signaling whereby the control plane utilizes the same links as the

data plane, or out-of-band signaling, i.e. separate links to connect the control

plane to the switches. In the first case, the design might suffer from performance

shortcomings as the control links are not dedicated. Whereas the second sce-

nario incurs additional costs for implementing different channels for the control

plane [130]. In datacenters, the control and data planes can share network links,

although datacenters usually implement out-of-band SDN control.

Taking into consideration all the above design alternatives, we theoretically

model the SDN and OSPF convergence processes, and define the architectures

testbeds and scenarios, in the aim of identifying and assessing the behavior of the

two routing technologies with respect to all the aforementioned varying network

parameters.

4.2.2 Extended Convergence Model

Further in this section, we extend the SDN and OSPF network convergence mod-

els of section 4.1 to account for more realistic scenarios and architectural spec-

ifications (WANs and datacenters). As such, we introduce new variables, and

redefine others.

• The link delay dl, observed on the network links, is remodeled as the scalar-

matrix product of the matrix of the distances between two nodes Γ , times

the reciprocal of link speed, assumed to be 2
3
× c, where c is the speed

of light. Generally, the speed of the signals on links in wired networks is

approximated to 2
3

rd
the speed of light, due to the permittivity of the ma-

terial that the links are made of such as copper-polyethylene or fiber optics,

100

which carry signals at approximately 0.7c. Γ is specific to the architecture

and type of the network.

dl =
Γ

2
3
× c

• The event propagation delay is modeled by the transmission delay at every

link and the link delay over all the links in the network. The effective

network link bandwidth is given by the product of the link capacity (NLC)

and the congestion factor.

dp =
1

NLC× cf
+ Σdl

• We redefine the controller notification delay (dCN), which is the time for

the port status message to reach the controller. In fact, in section 4.1,

the links between switch and controller were assumed to be of very high

speed. However, this does not apply in practice since the links between

the controller and switches are mostly normal network links. Also, they do

not have to be one hop away, i.e. the controller might not be connected

directly to all the switches in the network. Phemius et al. [131] study

the effect of these control links on the network performance. The authors

compare the underlying Transmission Control Protocol (TCP) and User

Datagram Protocol (UDP) protocols effects on the latency and how the

implementation of each protocol affects the buffering process at the level

of the switches. Consequently, the model of the channel between switches

and the SDN controller was introduced to study the effect of the control

channel on performance. Therefore, a propagation delay is added to the

model to account for the delay observed on the control channels. In our

101

Variables
n Size of the network
l Number of links
f Network depth at fault location
dd Detection delay
dp Link propagation delay
NLC Network link capacity
dSPF SPF calculation time
IPS Instructions per second
cf Congestion factor
dl Network Link delay matrix
dFOU Forwarding table update delay
CLF Controller load factor
linkBW Bandwidth of links between controller and switches
dprop Propagation delay on control plane
dCN Controller notification delay
dRF Rules dispatching delay
dFLU Flow table update delay

Table 4.6: Variables and parameters

design, the transmission delay is modeled as the inverse of the bit-rate or

bandwidth (linkBW) between controller and switches, which is defined as

the product of the link bandwidth and the controller load factor at time t.

The propagation delay is modeled as the distance matrix divided by speed,

which is also assumed to be 2
3
× c. Consequently:

dCN =
1

LinkBW × CLF
+ dprop

Where dprop = χ
2
3×c

and χ is the distance vector between the controller

and the SDN switches, which is specific to the simulated network type and

architecture.

All variables are summarized in Table 4.6.

Given these additions, we define the convergence process of OSPF and SDN

102

as follow:

OSPF Convergence Time

ConvOSPF = dd + dp + dSPF × 2 + dFOU (4.1)

ConvOSPF = dd +
l

(NLC× cf)
+ Σdl +

#inst

IPS× 2
+ dFOU (4.2)

SDN Convergence Time

ConvSDN = dd + dCN + dSPF + dRF + dFLU (4.3)

Retaining the assumption that rules are broadcasted all at once:

ConvSDN = dd+(
1

LinkBW × CLF
+dprop)+

#inst

IPS
+(

1

µ
+n×max(dCN))+dFLU

(4.4)

Furthermore, we define additional equations to model convergence delays

when the controller is in-band:

ConvSDNIB = dd + dCN + dSPF + dRP + dFLU (4.5)

where dRP is the delay for rule propagation in the network and is defined by the

sum of the transmission of the rules on the control network, their propagation

to the switch which is directly connected to the controller, n̂ , and the rules’

propagation within the network, as follows:

dRP = (
n

LinkBW × CLF
+ dprop(n̂)) + dp (4.6)

Consequently,

103

ConvSDNIB = dd + (
1

LinkBW × CLF
+ dprop) +

#inst

IPS

+ (
n

LinkBW × CLF
+ dprop(n̂)) + dp + dFLU (4.7)

4.2.3 Implementation and Testing

We model realistic architectures of both WANs and datacenters to test our con-

vergence model. The topologies are shown in Figures 4.8 and 4.9, respectively.

Table 4.7 specifies the real distances between the WAN sites shown in Figure

4.9. We investigate both in-band and out-of-band SDN controllers for both ar-

chitectures. In datacenters, the location of the controller is not critical since the

distances between the switches are very small. Consequently, they will not have

a big impact on traffic propagation in the network. In this case, the controller

is assumed to be connected to switch s1, as shown in Figure 4.8. For the WAN,

these distances become considerable. This is why for the WAN experiment, we

examine two scenarios: In the first scenario, the controller C1 is located at the

edge of the network (connected to switch s10 as shown in Figure 4.9). In the sec-

ond scenario, the controller C2 is located in the middle of the network (connected

to switch s7 as shown in Figure 4.9) to check the effect of controller placement

especially for in-band control.

Simulation Setup

This model accounts for the delays incurred on the control plane links, i.e. the

links between controller and switches. In fact, in practice, these links are usually

the same type of links as network links, rather than fast links. The connection

104

Figure 4.8: Datacenter layered architecture and distances

Figure 4.9: Wan architecture (background image taken from maps.google.com)

105

Link Distance
A 444 km
B 261 km
C 406 km
D 325 km
E 527 km
F 1,107 km
G 1,587 km
H 790 km
I 2,000 km
J 1,000 km
K 463 km
L 244 km
M 553 km
N 368 km
O 260 km

Table 4.7: Distances between the WAN sites shown in Figure 4.9

Experiments
1- Effect of fault location on convergence
2- Effect of network congestion
3- Effect on controller load
4- Effect of controller capacity
5- Effect on controller/switch link speed
6- Controller capacity vs. network congestion
7- Effect of in-band vs out-of-band controllers

Table 4.8: Experiments

can also be logical, i.e. links do not have to be direct connections between the

controller and switches; they may be hops apart. This extended model reflects

the behavior of such logical links by introducing a delay matrix for the control

plane channels. The model is tested on the two network architectures (shown

in Figures 4.8 and 4.9) under the scenarios reported in Table 4.8. The distance

matrices for network links (Γ) and the distance vectors between the controller

and SDN switches (X) are defined as follows:

106

ΓDatacenter =

0 0 3 5 0 0 0 0 0 0

0 0 5 3 0 0 0 0 0 0

3 5 0 4 3 5 0 0 0 0

5 3 4 0 5 3 0 0 0 0

0 0 3 5 0 4 4 3 7 8

0 0 5 3 4 0 8 7 3 4

0 0 0 0 4 8 0 0 0 0

0 0 0 0 3 7 0 0 0 0

0 0 0 0 7 3 0 0 0 0

0 0 0 0 8 4 0 0 0 0

in meters.

ΓWAN =

0 B A 0 0 0 0 0 0 0 0 0

B 0 0 C 0 0 0 0 0 0 0 0

A 0 0 D E 0 0 0 0 0 0 0

0 C D 0 0 0 0 0 0 0 0 0

0 0 E 0 0 F 0 0 0 0 0 0

0 0 0 0 F 0 H G 0 0 0 0

0 0 0 0 0 H 0 0 I 0 0 0

0 0 0 0 0 G 0 0 J 0 0 0

0 0 0 0 0 0 I J 0 L 0 K

0 0 0 0 0 0 0 0 L 0 O M

0 0 0 0 0 0 0 0 0 O 0 N

0 0 0 0 0 0 0 0 K M N 0

where quantities A to O are specified in Table 4.7 in km.

107

XDatacenter = [5 5 7 7 10 10 13 12 12 13] in meters

XWAN−C1 = [3.5 3.5 3.7 3.7 4 1.5 2.3 1.2 0.3 0.05 0.3 0.6] in km

XWAN−C2 = [1.1 1.2 1.3 1.3 1.5 0.8 0.05 0.85 2.02 2.2 2.4 2.6] in km

Results and Analysis

The analysis of results follows 2 axes: comparing the performance of OSPF to

that of SDN under different network conditions on one hand, and identifying

the effect of the type of network on the performance of the two protocols, on

the other. In the graphs below, we plot the convergence delay versus different

network parameters as per Table 4.8. In some of the experiments, we represent

the axes by the inverse of the variable in question (marked by a –1 on the axis

unit), to emphasize the variations of the curves in the graphs, especially when

the intersection between the OSPF and the SDN curves is not easily detectable.

We first study the effect of fault location in both networks in experiment 1. We

can see from Figures 4.10 and 4.11 that the location of the fault does not affect

the convergence delays in both datacenters and WANs. Although the result

is expected for SDN, the behavior of OSPF was not in accordance with the

previous results, which showed increasing convergence delay for OSPF when the

fault moves to the network extremities (Figure 4.3). This is due to the fact that

the predefined architectures are small in size (10 nodes for datacenter network

and 12 for the WAN network), unlike the previous general network architecture

which contained 50 nodes.

However, the second experiment (Figures 4.12 and 4.13) shows that network

108

Figure 4.10: Fault location effect on convergence in datacenter

Figure 4.11: Fault location effect on convergence in WAN

109

Figure 4.12: Network congestion effect on convergence in datacenter

Figure 4.13: Network congestion effect on convergence in WAN

congestion affects OSPF but not SDN, which explains the horizontal red lines

in the Figures. This is expected because rippling the advertisements in OSPF

is highly affected by the congestion on the network links. Alternatively, SDN

uses a separate control plane, which makes the control operations independent

from the network data links. Additionally, Figure 4.13 shows that SDN always

outperforms OSPF in WANs, whereas in datacenters, OSPF outperforms SDN

when the congestion factor is larger than 0.4, which corresponds to traffic less

than 60% of the normal traffic condition (Figure 4.12).

In Experiments 3 to 5, we are controlling variables related to the SDN con-

110

troller in both SDN and OSPF networks. Obviously, these variables will not

affect convergence of OSPF because the network does not include a controller.

However, the main idea is to observe the behavior of SDN when these variables

change and discern when SDN performs better than OSPF for these changes. For

example, when we vary controller capacity, we are looking to see if/how controller

capacity can make SDN perform better than OSPF.

The Controller Load Factor (CLF), which is tested in Experiment 3, does

not affect convergence in both types of networks (Figures 4.14 and 4.15). In

fact, both the datacenter and WAN networks are small, and thus the controller

doesn’t have a large number of switches to service. This is why CLF has very

little effect on the performance of the SDN network. However, when we compare

SDN to OSPF, we observe that SDN converges faster in both the datacenter and

the WAN. The difference in convergence speed is larger for the WAN than it is

for datacenters. This is mainly because the distances separating nodes in the

WAN incur link delays that hinder OSPF convergence speed. In Experiment 4,

the controller capacity, unlike the controller load, does have a big impact on the

convergence delay in the SDN network. In fact, we observe in Figures 4.16 and

4.17 that the delay is exponentially reduced as the controller capacity increases;

the more capacity a controller has, the faster it can service switches, which reflects

positively on the convergence speed. When comparing the datacenter to the

WAN, we notice that SDN outperforms OSPF faster in the WAN (at about 5% of

the maximum capacity, compared to 60% for the datacenter). Alternatively, when

testing for the bandwidth (BW) between the SDN controller and the switches for

normal network operation in Experiment 5, we deduce that the BW doesn’t

affect the convergence performance (straight lines for increasing BW capacity in

Figures 4.18 and 4.19) as soon as it starts increasing. This is expected in the

111

Figure 4.14: Controller load effect on convergence in datacenter

Figure 4.15: Controller load effect on convergence in WAN

architectures we defined because they include a small number of SDN switches (10

in the datacenter and 12 in the WAN). Consequently, regardless of the volume of

the control data, the BW does not constitute a bottleneck to network operation,

except when the controller is not reachable (which corresponds to 0 BW).

Experiment 6 consists of studying the effect of network congestion as controller

capacity increases, to identify any correlation between the two variables. When

comparing the behavior of OSPF to that of SDN in both Figures 4.20 and 4.21, we

observe that OSPF convergence is correlated to network congestion, because for

increasing values of network congestion, the OSPF convergence delay increases.

112

Figure 4.16: Controller capacity effect on convergence in datacenter

Figure 4.17: Controller capacity effect on convergence in WAN

Figure 4.18: Control link BW effect on convergence in datacenter in log-log scale

113

Figure 4.19: Control link BW effect on convergence in datacenter in log-log scale

Figure 4.20: Controller capacity effect for different network congestion values in
the datacenter

This delay is independent of the controller capacity (as expected, as the OSPF

network doesn’t include an SDN controller) since it is constant for all values of the

x-axis. However, we notice that even though the behavior of SDN is dependent

on the controller capacity, it is not affected by network congestion. In fact, we

observe on the graphs the superposition of SDN convergence delay curves for

different values of network congestion, while the convergence delay decreases as

the controller capacity increases.

Experiment 7 studies the effect of in-band controllers. As previously men-

114

Figure 4.21: Control capacity effect for different network congestion values in
WAN

tioned, for the datacenter network we are modeling, the in-band controller is

physically connected to one switch in the network, which in turn relays the con-

trol information to its neighboring switches in a mechanism similar to message

rippling in OSPF. Consequently, the controller capacity does not have an effect

on the convergence speed, which explains the straight yellow line in Figure 4.22.

However, we observe that the in-band controller performs worse than OSPF. This

is because in addition to the message rippling that is common to SDN and OSPF,

there exist additional delays related to sending the rules from the controller to

the connected switch(es). We tested two controller locations for the WAN net-

work: network extremity and center. Results are shown in Figure 4.23. Again,

the convergence of the networks with in-band controllers is independent of the

controller capacity. However, their location affects their convergence speed. In

fact, OSPF outperforms SDN with in-band controller when this latter is on the

edge of the network. However, OSPF is greatly outperformed by SDN with an

in-band controller located in the middle of the network. In this scenario, the

distance needed to deliver the message to all switches is half of the distance of

the whole network, which explains why it is faster than when the controller is

115

Figure 4.22: Effect of in-band and out-of-band controller on convergence speed
in the datacenter

Figure 4.23: Effect of in-band and out-of-band controller on convergence speed
in the WAN

connected to an edge switch.

Experimental Results

In addition to the analytical simulation, the architectures defined in Figures 4.8

and 4.9 are implemented in Mininext [120] with the real distances defined in

ΓDatacenter and ΓWAN. We use the same method as the one used in the previous

section to test convergence speed. It consists in running a continuous ping from

source to destination, bringing a link down on the flow path in the network, and

116

collecting missing sequence numbers at the destination to compute the conver-

gence delay. In this experiment, the distances between the network nodes are

defined as per Figures 4.8 and 4.9, and network variables are set to their default

values in Mininext. Given that the distances in the datacenter are very small, the

delay on the links is extremely small. Consequently, as the time to convergence

is faster than our machine resolution, this latter was not fast enough to capture

the convergence delay in datacenter; we were not able to collect experimental

results for this architecture. Alternatively, Figure 4.24 shows results comparing

OSPF and SDN convergence for the predefined WAN architecture. We notice

that SDN converges faster than OSPF in the WAN for all the trials performed.

These results are in line with our analytical findings of section 4.2.3. In fact,

when observing Figures 4.11, 4.13, and 4.15, we see that in the WAN SDN deliv-

ers faster performance all the time for all values of the varied parameters. When

the varied parameter is the capacity of the SDN control plane, Figures 4.17, 4.19,

4.21, and 4.23 also show that SDN deliver better performance than OSPF does

except when this capacity is small, as expected. In fact, when the SDN control

planes becomes a bottleneck, SDN will certainly perform badly.

We also study the effect of the delay of the control plane on the convergence

delay (Figure 4.25). As expected for OSPF, results show that the convergence

delay is approximatively constant, reaching an average value of 2.4 ms. Al-

ternatively, for SDN, as the delay to controller increases, the convergence delay

increases, until a given delay (272 ms) for which SDN becomes slower to converge

than OSPF. In fact, the slower the control links, the longer it takes for control

packets to be exchanged between the switches and the controller; consequently,

the longer it takes for the network to converge.

117

Figure 4.24: Convergence delays of SDN and OSPF in the WAN

Figure 4.25: Effect of the control plane delay on convergence in SDWAN

118

4.2.4 Discussion and Analysis

Improvement over preliminary work

Given that the preliminary results were obtained from a general network archi-

tecture, we investigate the effect of the network and architecture type on the

performance of the two protocols. This justifies our choice of two disparate net-

works, the WAN and the datacenter. We extend the previous model to be applied

on the two network types, and test the protocols’ convergence performance ac-

cordingly. This incurs many enhancements over the preliminary design. First of

all, the exact topology and the distances are fed to the model, instead of assigning

the number of nodes only like for the old model. This gives better representa-

tion of reality and better precision, since it allows us to locate the fault instead of

relying on the general modeling of the depth of a network (O(log n)) as in the pre-

vious model. Second, the simulation/implementation is done using real network

parameters, eg. real distances, delays, etc. In addition to architectural enhance-

ments, the model also has better accuracy since it includes the representation of

the control channel. In fact, in real SDN deployments, the control plane links are

regular network links that suffer from transmission and propagation delays. In

the preliminary work, the control links were assumed to be very high-speed links

with zero delay. This work also extends the previous experimental setting: in

Matlab, the testing scenarios include additional tests on parameters that weren’t

considered before, such as the effect of network congestion, of the controller load,

of the control links speed, and the effect of in-band versus out-of-band control in

SDN. As for the simulation on Mininext, a test for the effect of the control links

delay on the WAN and datacenter is conducted in addition to the comparative

test for convergence delay.

119

Key Observations

The work in this chapter concerns the routing performance of two control plane

technologies: centralized control plane with SDN and distributed control plane

with IP networks deploying the OSPF routing protocol. We first start by study-

ing the performance of the protocols in a general network architecture. The

model is first tested on Matlab, and then simulated on Mininext for a random

architecture consisting of 50 network elements. In the first set of experiments,

the two protocols outperform each other with changing network conditions. For

example, network link delay affects convergence delay of OSPF more than that of

SDN. Consequently, for low link delay, OSPF converges faster than SDN. How-

ever, as the delay increases, OSPF becomes slower to converge. These results are

expected, since the convergence process in OSPF relies on the network links to

advertise changes whereas in SDN the control plane is used to update the routing

information in the switches. Other parameters like fault location have the same

effect as the link delay; OSPF convergence suffers as the fault occurs more to-

wards the extremity of the network, whereas SDN convergence is not affected by

fault location. As for the experimental testing, the network parameters are set

in Mininext to match the parameters in Tables 4.2 to 4.4. Comparing analytical

to experimental results allowed us to validate the general model. Essentially,

experimental results show that convergence of OSPF is affected by the network

link delays whereas SDN convergence is not, which matches the finding of the

analytical testing. Also, when it comes to fault location, experimental results

show that OSPF is more affected by the location of the fault than SDN, which

is also in line with the analytical finding.

Similarly, we test the enhanced model analytically and experimentally. For

the analytical testing, we run scenarios in Matlab to observe the effect of different

120

network parameters on the convergence speed. When testing for fault location,

the behavior was different from that of the general network. In fact, in the ex-

tended work, fault location didn’t have an effect on the convergence of OSPF,

unlike what was previously observed. As justified earlier, this is due to the fact

that the architectures of the WAN and the datacenter include less nodes than the

general network architecture. As for network congestion, we observe different be-

havior in datacenter and WAN: in the datacenter, OSPF has better convergence

up to almost 60% congestion, whereas SDN always outperforms OSPF in the

WAN. The other parameters (i.e. controller load, controller capacity, and band-

width between controller and switches) are related to SDN networks, but the

experiments allow to find the break-even point at which one technology starts

performing better than the other. The controller load didn’t affect convergence

speed because the simulated networks are already small in size, however high

controller capacity and high BW allowed SDN to converge faster than an OSPF

network running under the same network conditions. The SDN control type and

placement problem is also evoked: we compare the effect of in-band and out-of-

band control on the performance of SDN with respect to performance of OSPF.

We conclude that a network with in-band SDN control behaves like an OSPF

network, with extra overhead due to the delay it takes for the controller to flush

the rules to the connected switch. The location of the in-band controller also

affects SDN performance: the more the controller is placed towards the center of

the network, the better the performance of SDN. Results from these experiments

aren’t always in accordance with the results from the general model, which jus-

tifies the extension of the previous model, and validates our hypothesis that in

addition to network parameters and circumstances, the performance does depend

on the network type and architecture.

121

In this section, we extend the OSPF and SDN convergence models to ac-

count for control plane delays, and compare the two for important network types,

namely datacenters and WANs, to study the effect of the network type and pa-

rameters on the performance of the protocols. Results show that OSPF and

SDN behave differently in datacenters and WANs, and that SDN and OSPF

have varying convergence speeds within the same network type. In other words,

in datacenters like in WANs, the two protocols outperform each other for differ-

ent values of network variables. Although one can prefer a technology over the

other, it all comes down to the network design and characteristics which actually

affect the performance of the protocols and deliver better convergence speeds.

122

Chapter 5

Model of Adaptive Control in

Hybrid Systems

The evolution of the control plane in communication networks was driven by

the needs of each time period. For example, PSTN was introduced following

telephone exchange to account for scalability. Also, ATM was created to address

the need of carrying voice and data. Alternatively, control in nervous systems

and political systems is affected by the status quo and the nature of the events

taking place. For example, in the nervous systems, critical events that requires

fast response (eg. reflexes) are handled with the distributed control, whereas in

political systems, critical events that require shrewd decisions (eg. decision to go

into war) are handled with central control. These guidelines can be generalized

and applied to any system that exhibits both type of control. Referring to section

2.5 and Figure 2.5, we rely on the defined allocation of control tasks to determine

the control rules for our proposed optimization systems below.

123

5.1 Offline Recommender System

The first proposed design for a technology recommendation system was an offline

decision making system based on fuzzy logic. The motivation behind the work

was related to the fact that the network operator is left with many choices when

deploying or updating a network. However, with the new options of network

forms, the decision becomes less straightforward. Many factors come into play

aside from performance such as financial issues, which further complicates the

situation. This first design consisted in a fuzzy decision system that embodies

network deployment best practices according to the advantages gained with each

technology (legacy and SDN), and provides technology and financial recommen-

dations that help operators decide on what type of network is best to deploy given

their network and service requirements, in the light of its effect on the company’s

CAPEX and OPEX. The tool recommends the type of network to opt for based

on a set of parameters that the operator advises.

5.1.1 Fuzzy Decision System Design

A fuzzy system is a good candidate for the network recommendation tool since

it deals with many uncertain and vaguely defined variables [132]. For example,

when talking about network size, there are no well-defined boundaries for the

size categories. In other words, we are very well certain that a network with 2

nodes is considered as a small network; however, a network with 10 nodes can

be considered either small or medium. The system then responds with defined

actions such as the choice of technology to use. Therefore, the system is modeled

as a Fuzzy Inferences Systems. In fact, all input variables that come into play

in this case are fuzzy; they do not show clear cut limits between their ranges.

124

This applies to all of the inputs of the decision making block such as network

size, utilization, frequency of updates, percentile of services deployed, or initial

technology deployment. Network size (NS) is considered as an input to the Fuzzy

System because SDN and IP networks perform differently with the network size.

Consequently, the choice of technology depends on this variable. The size can be

Small, Medium or Large depending on the number of nodes in the network. The

smallest network can be composed of one node; therefore, one is the low limit

of our variable. The network can be as large as needed: the upper limit on the

variable is infinity. The ranges are defined as follows:

• Small (S): 1 – 15

• Medium (M): 10 – 50

• Large (L): 40 – Infinity (200)

The network utilization (NUT) or traffic load is another parameter we con-

sider. In fact, when utilization is high, the central control plane can be overloaded

due to the increased level activity of the switches [133]. NUT is denoted as a

percentage of the maximum network capacity; the ranges are defined as:

• Very high (VH): 85 – 100 An extremely high network capacity target is a

bad network design. Consequently, the utilization threshold is usually set

below this range.

• High (H): 50 - 90

• Average (A): 35 - 70

• Low (L): 0 - 40

125

Network updates (NUP) can be very infrequent or extremely frequent. NUP

directly influence the choice of technology because SDN provides an easy pro-

grammable interface for updating network nodes, and removes the burden of

individually configuring routers [134]. The Frequency of these updates is classi-

fied in an interval of 0 to 12 months, the minimum being once every 12 months

(once a year) and the maximum is once every 0 month or daily updates. The

ranges of updates are given as follows:

• Low (L): once every [6 – 12] months

• Average (A): once every [3 – 7] months

• High (H): once every [1 – 4] months

• Very High (VH): once every [0 – 2] months

Initial Technology Deployment (ITD) refers to the state of the existing net-

work. This parameter is considered as an input to the Decision System because

the initial deployment influences the state of the final network. ITD can be SDN,

Heterogeneous, or Traditional ranging from:

• Traditional (T): 0 % are SDN nodes

• Heterogeneous (H):]0-100[% are SDN nodes

• SDN: 100% are SDN nodes

The Ease of Management (EM) relates to the number and types of services

that are required in the network. We quantify it with percentages, from hard-

est (0%) to easiest (100%). A network is hard to manage if it supports many

technologies such as MPLS, VxLAN, or Middle-boxes, which are inherently hard

to manage. On the other hand, the network is easily manageable if it doesn’t

126

implement any extra service (other than routing). This parameter also affects

performance because the harder the network is to manage, the better it is to

move towards SDN, given the advantages in network management and control

that this latter provides [134]. The ranges are defined as follows:

• Low (L): 0 – 35

• Average (A): 30 – 70

• High (H): 65 – 100

In our design, the output is the technology to choose for the new network

upgrade. The network technology choice (NT) can be:

• SDN: 100 – 90% SDN switches

• HighHeterogeneous (HH): 95 – 45% SDN Switches

• LowHeterogeneous (LH): 55 – 5% SDN Switches

• Traditional (T): 10 – 0% SDN Switches

5.1.2 Defining the Inference Rules

The inferences rules are defined as follows:

1. If ITD == SDN && EM == L && NUT == (L||A)

→ NT = HH

2. IfITD == SDN && EM == L&&NUT == (H||EH)

→ NT = LH

3. If ITD == SDN && EM == H

→ NT = SDN

127

4. If ITD == SDN && EM == A && NUP == (H||VH)

→ NT = SDN

5. If ITD == SDN &&EM == A && NUP == A && NS == L

→ NT = HH

6. If ITD == SDN && EM == A && NUP == A && NS ==M

→ NT = SDN

7. If ITD == SDN && EM == A && NUP == A && NS == S

→ NT = SDN

8. If ITD == H && EM == L

→ NT = LH

9. If ITD == H && EM == H

→ NT = SDN

10. If ITD == H && EM == A && NUT == (H||VH) && NS == L

→ NT = T

11. If ITD == H && EM == A && NUT == (H||VH) && NS ==M

→ NT = LH

12. If ITD == H && EM == A && NUT == VH && NS == S

→ NT = HH

13. If ITD == H && EM == A && NUT == H &&NS == S

→ NT = SDN

14. If ITD == H && EM == A && NUT == A && NS ==M

→ NT = HH

128

15. If ITD == H && EM == A && NUT == A && NS == L

→ NT = LH

16. If ITD == H && EM == A && NUT == A && NS == S

→ NT = HH

17. If ITD == H && EM == A && NUT == L && NS == S

→ NT = SDN

18. If ITD == H && EM == A && NUT == L && NS == (L||M)

→ NT = HH

19. If ITD == T && EM == (L||A)

→ NT = SDN

20. If ITD == T && EM == H && NUT == (H||VH)

→ NT = T

21. If ITD == T && EM == H && NUT == (A||L)

→ NT = SDN

5.1.3 Financial Implications of the System Decisions

Technological decisions are directly coupled with financial implications. In fact,

the decision variables that drive the technology choice also affect CAPEX and

OPEX, which are in turn influenced by this choice.

CAPEX and OPEX Applied on Decision Variables

CAPEX mainly concerns buying infrastructure and network software [135], but

it also includes cost of training and acquiring knowledge. Consequently, Net-

work size and Utilization are correlated to CAPEX since any change in any of

129

these variables induces an investment in infrastructure (routers, switches, links

and so on) which directly affects CAPEX. On the other hand, OPEX includes

all expenses related to the operation of the network, such as installation, service

delivery and maintenance [135]. In this case, Utilization, frequency of Network

Updates and Ease of Management explicitly influence OPEX; a high Utiliza-

tion or a high Frequency of Updates require more Network Maintenance and

consequently more expenses, whereas Ease of Management is related to Service

Provisioning and the Easier the network to operate, the less incurred expenses.

As the network variables influence costs and expenditures of companies, the

decisions that are based on these variables also influence CAPEX and OPEX.

In our design, the inferences rules thrive to reduce OPEX and keep the increase

in CAPEX as low as possible in order to stay in line with companies’ financial

preferences. In fact, companies seek to reduce their OPEX and invest in CAPEX

because reducing their expenses allows them to stay competitive in the market

(price-wise) and grow market shares. It also increases their benefits which makes

them more attractive to investors [136]. The recommendation of the Fuzzy Sys-

tem improves OPEX because the technical decisions are deliberately crafted to

reduce downtime and bottlenecks and increase the efficiency and the ease of han-

dling of the network. On the other hand, CAPEX is basically affected by the pur-

chase of new equipment and technologies, and training for employees. SDN can

contribute in reducing the increase in Capex because the technology is cheaper

than legacy boxes [137]. Furthermore, training is only required when operators

are introducing a new technology to the network, because if the initial network

is SDN or hybrid, then the personnel are already familiar with SDN. We are

assuming that any network employee already knows how to operate traditional

networks, and training for that matter is not necessary at this point.

130

Cost, Management Overhead, and Performance Gain Evaluation

A low ease of management means many services deployed. Some services, such

as middle boxes, are more efficient than their SDN equivalent. Therefore, if

the initial network is SDN, choosing a heterogeneous network where most of the

nodes are SDN but the ones that are particularly related to those services are

traditional nodes transforms the network into a more efficient one. Investment

in CAPEX takes place because of the purchase of new legacy network boxes,

but OPEX is kept low because the efficiency of the network is increased (Rule

1). In addition to the above analysis, when utilization is high, it might overload

a centrally controlled network. A distributed approach is more appropriate in

this case, which explains the choice of Heterogeneous where SDN nodes do not

outnumber traditional ones. CAPEX is also affected because of the cost of new

regular network boxes. However, OPEX is kept low because operating costs

are reduced due to and increased efficiency and a reduced risk of failure (Rule

2). On the other hand, when the ease of management is high, it means that

very few services are implemented; the recommendation is to extend the network

with SDN. In this case CAPEX is only affected if the operator chooses to buy

extra SDN nodes, but OPEX is also kept low because managing and running the

network are easier thanks to SDN (Rule 3).

When the ease of management is average in an SDN network, then SDN could

be adopted if the update frequency is high or very high. In this case, the increased

complexity in dealing with many services is mitigated by the fact that SDN

greatly simplifies the update procedure. In this case OPEX is kept low because

managing and running the network are easier thanks to SDN. However, when the

updates are not very frequent, the benefit of having SDN for updates exceeds

the shortcomings of the average numbers of services only when the network size

131

is small or medium. When the network is large, it is better to opt for a High

Heterogeneous network. This decision affects CAPEX because middle boxes are

being purchased. Again, OPEX is protected because an eventual overload (that

incurs cost of repair and loss) on the controller is avoided (Rules 5, 6, 7). When

the initial network is hybrid, CAPEX is not affected, or only slightly affected if

the company decides to buy extra hardware, because the network already contains

both types of appliances. Training is not needed because employees are already

exposed to both types of networks. As for OPEX, the effect of Update Frequency,

Ease of Management and Size of Network is the same as above (Rules 8 to 18).

However, if the initial network is traditional, CAPEX is influenced not only due to

the purchase of new SDN equipment, but also because of the investment in SDN

training for personnel. The variation is kept minimal because SDN technology is

cheap. OPEX is kept low as per the above analysis as well (Rules 19, 20 and 21).

Financial Recommendation

The System provides recommendation for technology deployment complemented

with the financial implication of the decision. However, the degree of variation

in OPEX and CAPEX is specific to each network, and a case by case study is

required in order to deduce exact figures and numbers.

Some companies criticize the increase in CAPEX on the ground that funds are

not always available for investment. In this case, a company can mitigate the

effect of high OPEX by leasing the equipment for a certain number of years,

which transforms CAPEX into OPEX.

132

5.1.4 Implementation and Case Studies

The Fuzzy System is implemented using MATLAB. The variables and the in-

ferences rules defined above were integrated into the fuzzy model. Since our

system features 5 inputs, visualization of the results is done by fixing 3 of them,

and studying the variations of the output decision with respect to the other 2

variables. The Mamdani inference method is used to model the fuzzy inference

system. Fuzzification of the input variables is performed using triangular mem-

bership functions, because they provide an average degree of membership for the

variables [138]. Additionally, defuzzification at the output is implemented using

the centroid method.

Case Studies

Figure 5.1 shows how the decision varies with size and utilization when frequency

of updates is low to average (once every 6 months), an average number of ser-

vices are implemented (50%), and the initial network is heterogeneous (50% SDN

nodes).

As seen in the figure, for the above 3 conditions, when the network size is large

and the utilization is high, opt for an addition of traditional nodes (output of 0).

In fact, when the network size is large and utilization is high, having also a good

number of services deployed will overload the controller. This latter is receiving

a large flow of packet-in (due to high utilization), and communicating with a

large number of switches (large network), but also has to run a good number of

services.

The controller becomes a point of failure and the risk of network shortage

becomes high. Also the delay becomes higher because the single resource is being

drained. In this case, it is better to opt for traditional nodes even because this will

133

Figure 5.1: Case study 1

slightly increase network management at the sake of better network performance

and network availability. Consequently, OPEX is protected and CAPEX is only

increased by the price of the new legacy routers.

The second case study shows more contestable situations; these do not correspond

to any of the specified inference rules, and they illustrate the benefit of using a

fuzzy system. Figure 5.2 illustrates an example.

In this scenario (case 2), frequency of updates is low to average (once every

6 months), the initial network is heterogeneous (50% SDN nodes), but the ease

of management is low to average (33%). In this case, rules cannot specify what

output to obtain because the ranges of the input variable are within the gray

zone, for example we are not sure if 33% is low or average ease of management.

Consequently, the fuzzy system representation for those sets of input is required

in order come up with a decision.

134

Figure 5.2: Case study 2

Progressive Scenario

Given an initial Traditional network, where the Ease of Management is Average

and the Update Frequency is Average, the Fuzzy System output the recommen-

dation shown in Figure 5.3.

If the Utilization is low (20%) and the Network Size is Medium (20), then the

recommendation is to opt for a High Heterogeneous network with high ratio of

SDN switches versus traditional ones. In fact, even though number of services

is average, updates are moderately frequent and the network size is average, the

combination of all three in traditional networks incurs high management and

control costs.

Consequently, it is better to start introducing SDN in this network, especially

that the utilization is low which means that the controller will not be drained

with high packet-in/packet-out activity. SDN can be used to implement the

135

Figure 5.3: Progressive scenario: initial state

services that are easier to manage with SDN like MPLS, and help in providing a

more automated approach to network update thanks to the resulting partially-

centralized control. Cost increase and CAPEX are kept minimal because the

price of SDN switches is lower than traditional routers, even if there was a slight

investment in employees training. OPEX is also protected because SDN provides

more effective network and service management which reduces operating costs.

On the next network extension, the current network is a hybrid network,

where the Ease of Management is Average and the Update Frequency is Average

(assuming that these variables are kept constant). The Fuzzy System outputs

the recommendation shown in Figure 5.4.

Again, if the utilization is low (20%) and the size is medium (30, because we

added SDN switches on the previous round), the recommendation is also High

Heterogeneous. This scenario affects cost, management overhead and perfor-

mance similarly to the previous one: Management is more efficient; CAPEX and

136

Figure 5.4: Progressive scenario: round 2

OPEX are kept minimal. Employee training is not required because it already

took place at the previous network update (previous scenario). We notice from

Figure 4 that for that given network with the same Ease of Management and

Update Frequency, the recommendation is always High Hybrid. So we reached a

steady state. This steady state is maintained as long as the Ease of Management,

the Update Frequency, and the Utilization are kept constant. If the update fre-

quency increases for example, then the recommendation of the Fuzzy System is

as in Figure 5.5.

This option is feasible because on the previous 2 updates the network was

moving towards high SDN which makes it easy for the operator to move to full

SDN. This is expected because SDN is recommended when the update frequency

is high. Consequently, as the network shifts towards SDN, the increase in CAPEX

is minimal because it concerns only the price of new SDN switches which are

137

Figure 5.5: Progressive scenario: change in update frequency

cheap. Training is not required because the personnel is already trained and has

been working with SDN switches for two updates now. OPEX is also protected

because a high update frequency in a medium sized network would have required

more engineering and configuration man-hour in traditional or hybrid networks

than in SDN, which would have drastically increased OPEX and management

overhead.

The decision system developed in this subsection is an offline decision making

system that is ran once, before network deployment, to decide on the type of

technology to opt for. The subsequent decision making systems are online system

that run every period and update the control state of the switches according to

the results obtained.

138

5.2 Modeling the General Optimization System

We define a general system that embeds distributed control and centralized con-

trol, corresponding to distributed Agents and one Central Authority (CA) re-

spectively. The Agents compose a network of Agents, which we also refer to as

the System Environment, and all Agents can communicate with the CA. In this

system, both the CA and the Agents can play the role of the control plane; in

case of the CA, the control plane is centralized, whereas in the case where Agents

do the control, the control plane is distributed.

Based on the allocation rules, we generalize the division of control tasks that are

identified in Figure 2.5: We designed an algorithm in which the system decides

if control decisions will be centralized or distributed, based on an optimization

problem that aims to maximize system robustness. System Robustness as defined

in this work is a property relating to three basic metrics: Availability, Reliability,

and Scalability. Consequently, the control rules that we follow maximize one or

more of these metrics. In other words, agents adaptively switch their control

plane from centralized to distributed given network conditions. Control rules are

inspired from the interaction between central and distributed control in the dif-

ferent systems previously discussed.

The decision-making system can be in turn computed centrally at the CA level,

or in a distributive manner at the Agents level. It can also be in itself hybrid,

by combining a sub-optimization (DO) that is run in a distributive manner on

the Agents, on top of which runs a global optimization (GO) on the CA, in a

manner similar to a bi-level Optimization. The location of each module of the

Optimization System (OS) with respect to the System Environment is shown in

Figure 5.6, and the high-level optimization model is shown in Figure 5.7.

139

Figure 5.6: OS emplacement within system environment

Figure 5.7: Optimization general model - GO: global optimization, DO: dis-
tributed optimization

140

In this optimization, the DO algorithm is invoked at every To period on each

Agent. Alternatively, the Agent recomputes its optimization algorithm at any

event occurrence advertised by its neighbor or by the CA. To avoid excessive

computations, we define a Hold-off Timer THoldOff, which specifies the delay that

the Agent must wait before recomputing the algorithm upon an event notification.

THoldOff is defined by design; it should be smaller than the period To. Results from

the DO of all Agents are passed on to the GO, which computes the percentage

of distributedness of the system, taking into account the results of the Agents.

The variable of the optimization problem is the control state of the agent, and

the supervised variables (system parameters) are defined as follows:

1. The CA response time to any communication received from an agent. It

represents the CA availability, reachability or responsiveness.

2. The stability of the environment; ie. rate of changes in the network.

3. The uncertainty in the environment, or the number of unknown events that

occur in the network.

4. The size of the environment.

The control rules are defined as follows:

5.2.1 HCA Cost

The health of the CA is evaluated by its responsiveness. The associated cost is

measured by the delay it takes the CA to reply to the Agents.

Control rule 1: When the CA delay increases, instruct the Agent to rely less on

the CA and go more distributed, to ensure Availability. Similar to the situation

141

in political science, when the central authority fails, power is transferred to state

governments [11].

5.2.2 SH Cost

The health of the system (SH) is evaluated by its stability. Control rule 2: When

the rate of changes in the network increases, instruct the Agents to rely on the

CA.

If the topology of the network keeps changing, the CA provides a comprehensive

view of the system that makes it react better to these changes and ensure higher

system Reliability.

5.2.3 Uncertainty Cost

The Uncertainty cost (UC) is evaluated by the characteristics of the events:

known, unknown, or abnormal.

Control rule 3: When the rate of unknown information increases, the Agent should

rely more on the central control since this latter has better knowledge, providing

thus improved network Reliability.

5.2.4 SS Cost

Large systems perform better when intelligence is distributed.

Control rule 4: When the size of the system increases, the Agent is better off

being more distributed. Distributed algorithms provide more Scalability in this

case.

As previously defined, Robustness is achieved by improved Availability, Reli-

ability, and Scalability. These metrics are in turn defined as the combination of

142

the 4 control rules defined above.

5.3 Application to Telecom Networks:

5.3.1 Adaptive Hybrid System (AHS): Overview and De-

sign

Centralization and decentralization of control exists in today’s network. While

IP still rely on distributed control and routing algorithms, SDN emerged as the

centralized guru. Consequently, the model developed in the previous section

can be applied to networks when they feature both types of controls. In fact,

SDN removes the burden of distributed route calculation at the node level, which

provides network administrators more control over their systems [7]. However,

Link state routing protocols are more scalable and respond better to changes in

the routing path; they provide reliability and fault tolerance [3]. Additionally, the

SDN controller is a single point of failure, and redundancy should be enforced

in an SDN network to avoid network shortage in case of a controller failure

[8]. Essentially, each of the two types of control has its own advantages and

disadvantages, and hybrid networks promise to merge as the best of both.

We apply the above general model to networks to leverage the advantages

of SDN (centralized control plane) and IP (distributed control plane). In this

scenario, we refer to our system, which includes the optimization system and the

controlled hybrid network, as the Adaptive Hybrid System (AHS). The CA is the

SDN controller, and the Agents are hybrid switches (HS). These switches support

both Centralized and Distributed routing protocols. They can be either controlled

by the SDN controller in a centralized manner, or they can operate as regular

143

routers and make their own routing decisions in a distributed fashion. We assume

that the network of HS is an overlay solution, and that all switches are virtually

connected, forming peer adjacency. Also, the HS communicate information about

their own network.

The Hybrid Network (HN) Design

In our design, the HN is composed of homogeneous switches that natively support

both centralized and distributed routing protocols, the Hybrid Switches (HS), and

of the SDN controller. The SDN controller is assumed to be the central authority

that is omnipresent and has full knowledge of all aspects of the network. The HS’s

can be centrally controlled by the SDN controller or they can act autonomously,

in which case they become capable of making their own routing decisions. This

is due to the fact that the HS’s support both the IP protocol stack and the

OpenFlow protocol, which enables them to understand both types of signaling.

The forwarding table on Hybrid Switches is the compilation of forwarding

rules learnt from the distributed and the central control planes to ensure con-

sistency among both planes. In fact, in our design, the controller is in charge

of maintaining the consistency of both control planes (centralized control plane

(CCP) and distribute control plane (DCP)) in the network. The controller has

a full view of all network elements including the HS’s with distributed control

plane, and can control any HS at any time no matter what state it is in. Actually,

the HS’s are instructed to send LLDP packets to the controller, which can be used

by the controller to construct the full network map. The controller adds a rule

on all HS’s with CCP to broadcast (ripple) OSPF hello messages, to ensure that

OSPF advertisements are being received by all Hs’s. When needed, the controller

injects fabricated packets in the network via the HS’s. The controller controls

144

Figure 5.8: The hybrid network (HN)

how OSPF computes the routing tables of an HS with DCP, by instructing the

neighboring HS’s with CCP to send fabricated routing messages in the network,

in a technique similar to [18]. This ensures that both types of control planes are

always up to date.

When an HS switches from the DCP state to the CCP state, it sends its

routing table to the controller. This latter uses it to update its network map

and fabricate the routing messages to be sent to the network. In the opposite

case, when the HS switches from the CCP state to the DCP state, the controller

sends to the HS all the forwarding information that it needs to operate in the

network. Alternatively, when the controller goes down, all of the HS will revert

to the DCP state. The network will behave as if it is bootstrapping. Figure 5.8

shows the HN, composed of an SDN controller, and the HS’s.

The Optimization System Design

The Optimization System is also hybrid; it is composed of a Global Optimizer

(GO) running on the SDN controller, and Distributed Optimization (DO) in-

stances running on each HS. Consequently, there are different design alternatives

145

Figure 5.9: OS functional block diagram

to the Optimisation system. The decision to go with CCP or DCP can emanate

from the controller when this latter invokes the GO, and instructs the HS’s to

use CCP or DCP given results of the optimization. Alternatively, each HS can

run the DO to individually decide if it wants to use CCP or DCP given network

conditions. Local network parameters are monitored on each HS which performs

local optimizations, whereas global measurements that are only available at the

controller’s level (such as network size) are monitored at the SDN controller level.

Both local measurements and global measurements are exchanged between the

controller and the HS when needed. Figure 5.9 shows the functional block di-

agram of the OS. The network composed of HS and the SDN controller is the

controlled plant. Performance characteristics are monitored, and fed back to the

GO or the DO, which runs the optimization algorithm and feed the results back

to the HS by adjusting the states of their control plane.

The representation of the whole AHS with the different systems and compo-

nents is shown in 5.10. This figure shows where each component is located and

whether it executes on the SDN controller or the switches.

146

Figure 5.10: AHS sub-systems and components

5.4 Preliminary Optimization Design and Re-

sults

The preliminary focused on the DO, and applied the model to telecommunication

networks. It also defined the optimization variable as the extent of decentraliza-

tion of the Agent. This means that the model allowed the Agent to run both

control states and rely on central control with a certain percentage of Agents

and use distributed control with the rest of the Agents. In this scenario, the CA

is the SDN controller, and the Agents are hybrid switches (HS). These switches

support both Centralized and Distributed routing protocols. They can be either

controlled by the SDN controller in a centralized manner, or they can operate as

regular routers and make their own routing decisions in a distributed fashion.

The high-level model is shown in the diagram of Figure 5.11:

• The two outputs correspond to the extent of decentralization in space and

147

Figure 5.11: Preliminary design high-Level model

time (frequency).

• The system has 4 measured system properties: The Health of the Controller,

the Heath of the Network, the Health of the Traffic, and the Network Size,

which correspond respectively to the CA response time, the stability of

the environment, the uncertainty in the environment, and the size of the

environment, in the general model. These parameters are explained and

translated into network specific measurement in the following sections.

The system we considered includes different time dynamics. It comprises

components that operate in different timescales, and at different costs. In fact,

the input variables, which are read from sensors, change fast and sampling their

values is relatively not expensive. However, controlling the output variables,

and shifting the network nodes from centralized to distributed and vice-versa is

expensive both in time and overhead. The fast change in the input variables will

not translate as quickly on the output side. Consequently, care should be given

to these variations, otherwise the stability of the system will be severely affected.

We envision filter blocks before and after the optimization block to smoothen out

the measured and controllable values (Fig. 1). These filters will also make the

system robust to outliers, and prevent the system from directly changing states

when it receives an abnormal reading from a sensor.

In this preliminary model, we also defined performance to serve three basic

148

metrics: availability, reliability and scalability. Consequently, the control rules

that we follow aim to maximize one or more of these metrics. Since it is easier

to measure delays and costs in the network, we minimize the cost of not achiev-

ing performance instead. This is equivalent to minimizing the performance cost

incurred by unhealthy controller, network, and traffic, and by the network size.

5.4.1 Optimization Problem Formulation

The system environment is assumed to be an overlay network. The overlay net-

work is modelled by a complete graph (where each node is connected to all other

nodes) G(V,E), where V is the set of HS’s and E is the set of links (tunnels).

Let rs denote the degree of distributedness in space of the HS s. It represents

the amount of control information received from peer HS’s over the total amount

of control information received. In the overlay network, this percentage can be

subsequently translated into the number of peers that the HS can listen to and

exchange information with using graph theory. When rs is 0, the HS is fully

centralized, and when rs is one, the HS is fully distributed.

rs =
ControlPacketsfromDistributedSystem

TotalControlpackets
(5.1)

Let fs denote the degree of distribtedness in time of HS s. It represents the

normalized frequency per event at which the HS communicates with its peers,

fs =
fs,dist

fs,max
(5.2)

where fs,dist represents the frequency of talking to peers, and fs,max the max-

imum bound of fs,dist, which corresponds to maximum frequency at which the

network nodes can process messages. Let f ′s denote the degree of centralization

149

in frequency. It represents the normalized frequency per event at which the HS

communicates with the SDN controller, normalized between 0 and 1.

f ′s =
f ′s,cent

f ′s,max
(5.3)

where f ′s,cent represents the frequency of talking to the central controller and

f ′s,max the maximum bound of f ′s,cent. f ′s,max corresponds to the maximum

frequency that the server can handle. fs and f ′s move in opposite directions.

When fs = 0, the node is fully centralized, because it is not talking to peers

at all. The bigger the fs, the more decentralized the HS is, since it will be

communicating less with the controller.

For each node s, let ds represent the measured delay in controller response,

and ps the probability of unknown packets as seen by s. We also define the

parameter l to represent the rate of topology change observed in the network, and

the parameter n to represent the size of the network. l and n are communicated

to the switches by the controller. The algorithm is invoked at every To period

on each HS. For each measured parameter in 5.11, we define an incurred cost.

These cost sub-functions are in line with the cost functions defined in the general

model, and justified below:

Health of the Controller Cost

The health of the controller (HC) is evaluated by its responsiveness. The asso-

ciated cost is measured by the delay it takes the controller to reply to the HS’s

control message (eg. Reply to a Packet-in message).

Control rule 1: When the controller delay increases, instruct the switch to

rely less on the controller and go more distributed, to prevent the central control

150

plane from hindering network Availability.

Rationale: Similar to the situation in political science, when the central au-

thority fails, power is transferred to state governments [33]. The delay between

controller and HS indicates that the controller is either overloaded, down, or the

link connecting them is malfunctioning. In networks, the central control plane

becomes a bottleneck, and excessive reliance on it will incur operation downtime.

In this case, the HS should read more control information from the distributed

control plane because the central control plane is not able to provide the HS with

timely information. Therefore, the distributedness in space should increase, thus

rs should increase. fs should also increase because the HS should communicate

less with a non-responding central control plane. Consequently, to enforce the

above behavior, the cost function is proportional to the measured delay and in-

versely proportional to rs and fs. The variable β1 bounds the controller health

cost and keeps it from tending to infinity when the system is in the centralized

state (i.e. rs or fs are equal to 0). β1 is a parameter chosen by design: its effect

limits the cost to 1
β1

. d
dmax

when rs or fs are equal to 0. The cost is defined as

follows, where ds is the delay to controller measured at the HS and dmax is the

maximum allowed delay:

CostHC =
ds

dmax
.

1

rs.fs + β1

(5.4)

Health of the Network Cost

The health of network (HN) is evaluated by its stability. The associated cost

is measured by the rate of topology changes in the network. This rate is com-

puted by the controller using traffic statistics collected from the network devices,

such as the port status message sent by the switch to indicate a change in the

151

corresponding port status[139]. For example, Opendaylight includes a statistics

manager responsible for gathering network information [140].

Control rule 2: When the rate of topology changes increases, instruct the

switch to rely on the controller and go more centralized, to ensure higher network

Reliability.

Rationale: Similar to the political model, in times of crisis, the control is

shifted to the central power. When compared to networks, the SDN controller

has better reaction to topology changes. In fact, the controller is aware of the

network topology because it implements many functions like topology manager,

and continuously updates a Network Information Database (NIB), that keeps

track of information about the state of the network such as host locations, link

capacities, the traffic matrix, etc. Subsequently, the central control plane can

handle frequent topological changes thanks to the network-wide visibility [141].

Therefore, when the topology change rate increases, the switch should be more

centralized in space, so rs should decrease to allow it to rely more on the controller

than on its peers. Also, fs should decrease to allow the switch to talk more

frequently to the controller. Consequently, the cost function is proportional to

the measured topology change rate and to rs and fs, and defined as follows, where

l is the rate of topology change and lmax is the max allowed rate of topology

change:

CostHN =
l

lmax
.rs.fs (5.5)

Health of Traffic Cost

The health of traffic (HT) is evaluated by the characteristics of the traffic; known,

unknown or abnormal. The associated cost is measured by the rate of unclassified

packets, or the rate of packets that the switch receives to which it does not have

152

an associated flow entry in its table.

Control rule 3: When the rate of unclassified packets increases, the switch

should rely more on the central control plane, providing thus improved network

Reliability.

Rationale: In fact, since the central control plane has full knowledge of the

network, then, given a certain traffic pattern that is unknown to the HS, the HS

can benefit from the knowledge of the controller rather than drop the packet,

therefore increasing reliability. The packet-in action allows the switch to send an

unclassified packet to the controller for further inspection and processing [142].

Consequently, the HS should become less distributed in space and rs should de-

crease. Also, exchanging control information with the controller more frequently

will help reducing the probability of unclassified packets because the flow-rules

will remain up to date, which will consequently reduce the cost of unknown pack-

ets. Accordingly, fs should decrease. The cost is proportional to the unknown

packets rate, and to rs and fs, and defined as follows, where ps is the rate of

unknown packets, and pmax is the maximum allowed rate of unknown packets:

CostHT =
ps

pmax
.rs.fs (5.6)

Network Size

The network size (NS) can be inferred from the size of the routing table, or

directly obtained from the controller [141].

Control rule 4: when the size of the network increases, the HS is better off

being more distributed. distributed algorithms provide more Scalability in this

case.

Rationale: Large networks perform better when the intelligence is distributed

153

across the system. Consequently, SDN’s most important drawback was the lack

of scalability in increasing network sizes [143]. Although many techniques were

presented to address and account for the scalability issue in SDN, the problem

remains a bottleneck. In fact, the issue is not just about processing power of the

control plane, it also concerns the increased overhead in task scheduling, increased

contention and many other factors that degrade the performance of the central

control with an increased number of switches [133]. The cost is thus affected by

network size, and inversely proportional to rs and fs. Similar to β1, the variable

β2 bounds the network size cost and keeps it from tending to infinity when the

system is in the centralized state (i.e. rs or fs are equal to 0). It limits the cost

to 1
β2

. n
nmax

when rs or fs are equal to 0. The cost is defined as follows, where n

is the network size and nmax is the maximum network size:

CostHC =
n

nmax
.

1

rs.fs + β2

(5.7)

CostHN and CostHT values range from 0 to 1. Consequently, to keep all four

costs within that same range and remove any potential bias, we set β1 and β2 to

1. Under this setting, CostHC and CostNS will also vary between 0 and 1. θs

is the total performance cost at HS s, defined as the weighted sum of the above

four cost sub-functions:

θs = α1.Cs,HC + α2.Cs,HN + α3.Cs,HT + α4.Cs,NS (5.8)

The weights are chosen by design given the emphasis that the network oper-

ator wants to assign to each input on overall performance. Additionally, we set

two constraints on the optimization to ensure feasible solutions:

154

ps(1 − rs.fs) <
1

n
.C (5.9)

rs, fs ∈ [0, 1] (5.10)

Constraint 5.9 bounds the unknown packets rate sent to the controller (the

left-hand side) by a maximum value C/n (assuming equal distribution of capacity

among HS’s) beyond which the switch goes back to a more distributed state, to

mitigate the effect of an eventual attack (for eg. DoS on the controller). Equation

5.10 indicates that rs and fs are real values in the interval [0, 1]. The variables and

parameters are summarized in Table 5.1. The optimization problem is defined

as:

min
rs,fs∈[0,1]

θs ∀s ∈ V

subject to:

ps(1 − rs.fs) <
1

n
.C

rs, fs ∈ [0, 1]

where

θs = α1.Cs,HC + α2.Cs,HN + α3.Cs,HT + α4.Cs,NS

CostHC =
ds

dmax
.

1

rs.fs + β1

CostHN =
l

lmax
.rs.fs

CostHT =
ps

pmax
.rs.fs

155

Variables
s A Hybrid Switch in the overlay network
rs Extent of decentralization in space of s
fs Extent of decentralization in frequency of s
Parameters
ds Delay measured at HS s in ms
dmax Max allowed d in ms
l Rate of topology change in changes/s
lmax Max allowed rate of topology change in changes/s
ps Rate of unknown packets at HS s in packets/s
pmax Max. allowed rate of unknown packets in packets/s
n Network size
nmax Maximum network size
C Capacity of SDN controller
α1 Controller delay effect on total performance
α2 Network stability effect on total performance
α3 Traffic effect on total performance
α4 Network size effect on total performance

Table 5.1: Variables and parameters

CostHC =
n

nmax
.

1

rs.fs + β2

5.4.2 Modeling of Input Parameters

To simulate the behavior of the system, we modeled each of the input parameters.

Rate of Unknown Packets

The rate of packet arrival at a given switch is modeled by a Poisson distribution

[144], with expected value of λ. Consequently, the rate of unknown packets is

modeled as:

E[Rate] = λ× p (5.11)

Where λ is the average arrival rate in the switch which follows a Poisson Pro-

cess (the arrivals in different switches are independent), and p is the probability

156

of unknown packets.

Controller Delay

Given that the rates of arrivals at the switches are independent, if the network is

composed of N active switches, then, the rate of packets-in messages seen at the

controller is given by the sum of the rates of unknown packets at each switch.

The rate of arrival is given by:

λc =

∫N
1

λi × pi (5.12)

Since the rate of arrival at each switch follows a Poisson distribution with

parameter λi, the rate of packet-in at the controller also follows a Poisson distri-

bution with parameter λc (composition algorithm). Additionally, in probability,

the time spent between events in a Poisson distribution follows the exponential

distribution [119]. Consequently, the time it takes for the controller to process

the packet-in messages is given by the exponential distribution with parameter

µc. As a result, processing packets-in at the controller can be modeled as an

M/M/1 queue. The average time a packet spends in the controller, including the

time of waiting in the queue and processing time, is defined by [145] as follows:

E[Tc] =
1

µc − λc
(5.13)

We defined the controller delay to be the delay of controller response as seen

by the switch. Consequently, the average controller delay is the sum of the time

the packet spends at the controller added to the round-trip travel time from the

switch to the controller, modeled by a normal distribution. The average controller

delay is thus given by:

157

E[Dc] = E[Tc] + E[RTT] (5.14)

Topology Change

We modeled the topology change as the sum of four rates (assuming each of the

four types of events happens independently of the other), as shown below:

• Link failure and link creation: This corresponds to the probability of one

link failing, modeled as an exponential failure density distribution with

constant failure rate [146].

– Reliability function (No failure occurs before time t):

R(t) = e−λt (5.15)

Where λ(t) is the failure rate (constant).

– Exponential failure density function:

f(t) = λe−λt (5.16)

With t > 0, With mean or expected value of

E(x) =
1

λ
(5.17)

By extrapolation, link creation is also modeled with the exponential distri-

bution.

• Node failure: Node Failure can be also modeled by the exponential failure.

However, switches have a lifetime and they undergo wear-out with time.

158

Consequently, the Weibull distribution can be used to account for this effect

[147]. Probability density function

f(t) =
k

λ

t

λ

k−1

e−(tλ)
k

(5.18)

With t > 0, With mean or expected value of

E(x) = λΓ(1 +
1

k
) (5.19)

Where Γ is the gamma function, with a shape parameter k and a scale

parameter λ > 0.

• Node creation: Assuming that node creation corresponds to a pure birth

process, it is modeled as a Poisson process with rate of λ [148]. Death

process has been modeled previously with the Weibull distribution.

Size of Network

The size of the network is an integer number ranging from 1 to N where N is the

maximum number of switches that we define. Consequently, it is modeled with

a uniform distribution over the interval [1, N] as follows:

E(x) =
1

2
(1 +N) (5.20)

Input parameters models are summarized in Table 5.2.

159

Input Modeling Distribution Expression
1. Rate of Unknown Packets Poisson Rate = λ× p
2. Controller Delay E[Dc] = E[Tc] + E[RTT]
a. Queue Time M/M/1 Queue E[Tc] =

1
µc−λc

b. Round Trip Time Normal Distribution E[RTT]
3. Topology Change
a. Link Failure Exponential Distribution E(X)= 1

λ

b. Link Creation Exponential Distribution E(X)= 1
λ

c. Node Failure Weibull Distribution E(x)=λΓ(1 + 1
k
)

d. Node Arrival Poisson E(X)=λ
4. Network Size Uniform Distribution E(x)=1

2
(1 +N)

Table 5.2: Input modeling

5.4.3 Results

We tested our optimization problem to verify its behavior under different network

conditions. We simulated varying network conditions using the models defined in

Table 5.2. The built-in Matlab function fmincon, which implements the interior

point algorithm, was used to solve the optimization problem. Figure 5.12 shows

the performance of our optimization problem with respect to a fully centralized

network and a fully distributed one, with changing network conditions over time

by varying the means of the different distributions between 0 and 1 with a step

of 0.1. As expected, the optimized scenario (red line) has the least cost.

Behavior of the Optimization System

Figures 5.13 to 5.20 show the system’s behavior for varying network conditions.

For each 3D plot, we fix 2 input variables to either their minimum or maximum

value, and observe the effect of the variations of the other two variables on the

decision. In Figure 5.13, we set the mean of the delay to controller variable to

its minimum value and the rate of topology change to its maximum value. These

are conditions favorable to centralization. The graph shows that the resulting

160

system is always centralized regardless of the value of the network size or the

rate of unknown traffic. A slight increase towards decentralization occurs when

the rate of unknown traffic is minimal and the network size is big (which is in

line with our control rules). In Figure 5.14, the delay to controller is set to

its maximum and the rate of topology change to its minimum value (conditions

favoring the distributed state). In this case, When the rate of unknown traffic is

low, the system is distributed. It moves towards to the centralized state as the

rate increases (as expected). The system moves to the fully centralized state when

the network size is small and the rate of unknown packets is at its maximum.

Figure 5.15 shows the results when the delay to controller is at its minimum value

and the rate of unknown packets is at its minimum. This condition doesn’t favor

one state over the other. However, we notice from the plot that the system tends

to the decentralized state for most of the values of the network size and the rate of

topology change, except when either has a low value. When the rate of topology

change is at its maximum, the system moves quickly to the centralized state to

give the SDN controller full control of the unstable network. Figure 5.16 shows

the results when the delay to controller is at its minimum value and the rate of

unknown packets is at its maximum. The system as such favors the centralized

state for all values of the other two input parameters. In Figure 5.17, the rate

of topology change and the rate of unknown packets are set to their minimal

values. Results show that the optimization returns a fully distributed network

for all values of network size and delay to controller. When the delay to controller

and the network size are minimal, the system is slightly less distributed. Figure

5.18 represents the conditions when the rate of topology change and the rate of

unknown packets are at their maximum. The system is centralized for all values

of the other two input parameters. Figure 5.19 shows optimization results when

161

the delay to controller is minimum, and the network size is the smallest. In

this case, we expect the values of r and f to be 0, because when the delay to

controller and network size are small, centralization is advantageous. When the

rate of unknown traffic is small, as the topology change rate starts decreasing, the

system starts becoming more distributed, which means that the system becomes

more decentralized. When the topology change rate and unclassified packets are

at their minimum, the system becomes very distributed (almost fully distributed).

Figure 5.20 shows optimization results when the delay to controller is maximum,

and the network size is the biggest. When the rate of unknown traffic is low

the system is fully distributed, except for high values of the rate of topology

change where the system because less distributed. The system becomes the most

centralized when the rate of unknown traffic and the rate of topology change are

at their maximum.

Effect of a Single Input Change on Optimal Decision

The graphs in Figure 5.21 show the extent of centralization required under dif-

ferent network conditions, in three scenarios:

1. When the network conditions are favorable for a fully distributed system

(red line)

2. When the network conditions are favorable for fully centralized system (blue

line)

3. When the network conditions are equally favorable to either forms (green

line)

Figure 5.21 shows results when fixing the means of 3 input variables and

showing the effect of the fourth input variable on the optimization output. We

162

notice that when the conditions are favorable for decentralization (scenario 1), the

system always tends towards fully distributed control, for all values of the fourth

input variable. Alternatively, in scenario 2, the system is always centralized for

all values of the fourth input variable. In Figure 5.21.a, when the network is

tested under scenario 3, an increase in the delay to controller moves the control

plane more to the distributed state (consistent with control rule 1). The same

behavior is observed in Figure 5.21.c, where an increase in network size causes

the network control to go towards a distributed state (control rule 4). In Figure

5.21.b, we notice that the rate of topology change increases, the network goes

more distributed (control rule 2). As for the rate of unknown number of packets

(Figure 5.21.d), the increase in the rate causes the network to become more

centralized, as expected (control rule 3).

Effect of the Constraint

We performed another test where we varied the capacity of the controller to see

the effect of the constraint on the optimization problem. The network was tested

in scenarios 1 and 2. Figure 5.23.a shows the results when increasing the rate of

topology change, while Figure 5.23.b shows the results when increasing the rate

of unknown traffic, in conditions that are favorable to centralization (scenario 2).

We notice that as the controller capacity decreases, the system becomes more

distributed. This is expected because the smaller the capacity of the controller,

the switches should depend less on this latter to avoid creating a bottleneck.

Analysis

Results showed that our optimal system has lower cost than a fully distributed

network or a fully centralized one, running in the same network conditions (Figure

163

5.12). Additionally, the variations of the level of centralization vs. distributedness

with respect to changing network conditions correspond to the control model that

we had specified based on guidelines in previous sections. Actually, a minimum

delay to controller favors centralization. In this case, if any of the rate of topology

change, the rate of unknown packets, or the network size, favors centralization

(i.e. maximum rate of topology change-Figure 5.13, maximum rate of unknown

packets - Figure 5.16, or minimum network size-Figure 5.19), the system basically

tends to full centralization, for all values of the other two system inputs. In fact,

when the controller is highly responsive, it is better to rely more on this latter

and take advantage of its global knowledge. However, if the rate of unknown

packets favors decentralization (i.e. min rate of unknown packets - Figure 5.15),

the system is better off distributed. In this case, given that the rate of pack-

ets is minimum, the traffic is known to the node and no further information is

needed from the controller, even if this latter is highly responsive. Consequently,

the system will be distributed, except in two cases: when the topology changes

frequently, in which case the node would require the global topology knowledge

from the controller, or when the network size is small. Furthermore, if the topol-

ogy is frequently changing and the traffic is unfamiliar to the node (i.e. the rate

of unknown packets is high) (Figure 5.18), the node is expected to rely more on

the controller, regardless of the speed of its response. In fact, neither the topol-

ogy nor traffic are known to the node, thus the controller guidance is beneficial.

In our model, the delay to controller is bounded by a maximum delay and a

maximum controller capacity C, which keeps the controller from overloading and

alternatively limits the controller response delay. Alternatively, if the changes in

topology are very rare, and the traffic is known to the network (Figure 5.17), the

system is decentralized for all values of delay to controller and network size. In

164

Figure 5.12: Performance of our system in comparison with fully centralized and
fully distributed settings

fact, the controller’s help is not needed in this case, and its responsiveness does

not affect the distributed model; the network size does not affect the distributed

model either, because this latter supports scalability. Finally, if the controller

is not responsive and the network is large (Figure 5.20), then the network is

distributed for known traffic and for infrequent topology changes. However, as

the traffic becomes unfamiliar and the topology starts changing frequently, the

network is better off relying on the controller despite of its slow response, mainly

because the network node needs topology and the traffic from the omniscient

controller.

5.5 Final Model Formulation

The solutions of the preliminary control model resulted in Hybrid Switches that

use central and distributed control planes at the same time, i.e. the HS’s rely

on the SDN to communicate with some parts of the network, while use OSPF to

communicate to the rest of the network. Another approach is to cast the HS’s

to be either centralized or distributed. The resulting network as such would be

hybrid, whereas each HS by itself is either centralized or distributed.

This drove a variation of the previously defined distributed optimization (DO)

165

Figure 5.13: Min delay to controller - max rate of topology change

166

Figure 5.14: Max delay to controller - min rate of topology change

Figure 5.15: Min delay to controller - min rate of unknown packets

167

Figure 5.16: Min delay to controller - max rate of unknown packets

system in section 5.4. This optimization follow the same rules as the General

Optimization system.

5.5.1 DO problem Formulation

Since this DO optimization problem decides on the control state of the HS, we

define the system variable s differently than the variable of the preliminary model

r. In this formulation, s the probability of the state of the control plane of the

HS. When s = 0, the HS is fully centralized, and when s = 1, the HS relies

completely on the distributed control plane. As in the preliminary model, the

supervised variables are defined for networks as follows:

1. The controller response time ‘d’ to a message received from a switch. It

represents the controller’s availability, reachability or responsiveness.

168

Figure 5.17: Min rate of topology change - min rate of unknown packets

Figure 5.18: Max rate of topology change - max rate of unknown packets

169

Figure 5.19: Min delay to controller – min network size

Figure 5.20: Max delay to controller – max network size

170

Figure 5.21: Optimization solution for different network conditions

Figure 5.22: Effect of the condition on the optimization results - a

171

Figure 5.23: Effect of the condition on the optimization results - b

172

Variables
s Probability of state of the HS’s control plane
Parameters
n Size of the network (Normalized)
d SDN controller delay (Normalized)
t Rate of topology changes (Normalized)
p Number of unknown packets (Normalized)
gi Cost functions
hi Mapping functions
αi Weighting factors
θA Robustness Criterion at the HS
θCA Global Robustness Criterion at the SDN controller

Table 5.3: Variables and parameters

2. The rate of topology change ‘t’.

3. The Count of unknown packets ‘p’ (“Packet In” to the controller) which

represent the amount of unclassified packets in the traffic.

4. The network size ‘n’, which corresponds to n = nn + nl , where nn is the

number of network nodes and nl is the size of network links.

The system variables are defined in table 5.3

The control rules defined previously are applied to this model as well. The

below elaborates on the techniques used to formulate the sub-cost functions for

the optimization problem. For all 4 parameters, we define the expected response

of the optimization problem at the boundaries.

Controller Response Time

If the SDN controller is non-responsive, or if the delay between the controller and

the switcher is large, the switcher should go distributed to prevent the central

control plane from hindering network Availability. At the boundaries, when:

173

d = 0→ s = 0

d = 1→ s = 1

(5.21)

the mapping from d to s can be linearly defined as s = d.

Let g1 be the cost function that relates s to d. In order to maximize g1, solve

g ′1(s) = 0 . Given the boundaries above (eq. 5.21), we deduce that a solution

that maximize g ′1 is s = d. In other words, we want to solve for s when g ′1 is set

to 0, such that the above mapping between s and d becomes a solution.

g ′1(s) = 0⇒ s = d⇒ g ′1(s) = d− s⇒ g1(s) = ds−
1

2
s2 (5.22)

For a more general solution, the mapping between ‘s’ and ‘d’ could be any

function that obeys conditions in 5.21. The mapping can be chosen to be any

other function depending on the behavior to enforce in the system. It follows that

g1(s) = s.h1(d) −
1
2
s2

where h1(d) is the mapping function between ‘s’ and ‘d’.

The Rate of Topology Change

If the topology of the network keeps changing, the central SDN control plane

provides a comprehensive view of the network that makes it react better to these

changes and ensure higher network Reliability. At the boundaries when

t = 0→ s = 1

t = 1→ s = 0

(5.23)

the mapping from t to s can be linearly defined as s = 1-t.

174

Following the same approach as for g1, let g2 be the cost function that relates

s to t. Then to maximize g2, find g ′2 such that the above mapping becomes a

solution when g ′2=0.

g ′2(s) = 0⇒ s = 1 − t⇒ g ′2(s) = 1 − (t+ s)⇒ g2(s) = (1 − t)s−
1

2
s2 (5.24)

More generally, g2(s) = s.h2(t) −
1
2
s2

Again, we notice that the function g2 has the same form as the function g1

with h2(t) : s = 1 − t (linear model).

Count of Unknown Packets

If the traffic features many packets that are unknown to the switcher, then this

latter can make use of the knowledge of the central control plane to avoid dropping

packets, providing thus improved network Reliability. At the boundaries when

p = 0→ s = 1

p = 1→ s = 0

(5.25)

the mapping from p to s can be linearly defined as s = 1-p.

Similarly, let g3 be the cost function that relates s to p, then to maximize g3,

solve for s when its derivative is set to 0, such that the above mapping becomes

a solution.

g ′3(s) = 0⇒ s = 1 − p⇒ g ′3(s) = 1 − (p+ s)⇒ g3(s) = (1 − p)s−
1

2
s2 (5.26)

More generally, g3(s) = s.h3(p) −
1
2
s2

175

Network Size

As the network size increases, the centralized control plane provided with SDN

start becoming a bottleneck; distributed algorithms provide more Scalability in

this case. Consequently, at the boundaries when

n = 0→ s = 0

n = 1→ s = 1

(5.27)

the mapping from n to s can be linearly defined as s = n.

Again, let g4 be the cost function that relates s to n, then to maximize g4,

solve for s when its derivative is set to 0, such that the above mapping becomes

a solution.

g ′4(s) = 0⇒ s = n⇒ g ′4(s) = n− s⇒ g4(s) = ns−
1

2
s2 (5.28)

More generally, g4(s) = s.h4(n) −
1
2
s2

Maximizing Robustness

As previously defined, Robustness is achieved by improved Availability, Reliabil-

ity, and Scalability. These metrics are in turn defined as the sum of the four cost

functions g(s). Consequently, Robustness is given by:

θs(s) = α1.g1(s) + α2.g2(s) + α3.g3(s) + α4.g4(s) (5.29)

176

θs(s) = α1(s.h1(d)−
1

2
s2)+α2(s.h2(t)−

1

2
s2)+α3(s.h3(p)−

1

2
s2)+α4(s.h4(n)−

1

2
s2)

(5.30)

θs(s) = s(α1h1(d)+α2h2(t)+α3h3(p)+α4h4(n))−
1

2
s2(α1+α2+α3+α4) (5.31)

θ ′s(s) = (α1h1(d)+α2h2(t)+α3h3(p)+α4h4(n))− s(α1 +α2 +α3 +α4) (5.32)

To maximize Robustness, set θ ′s(s) = 0 to find maximum of θs(s):

θ ′s(s) = 0 (5.33)

(α1h1(d) + α2h2(t) + α3h3(p) + α4h4(n)) − s(α1 + α2 + α3 + α4) = 0 (5.34)

⇒ s =
α1h1(d) + α2h2(t) + α3h3(p) + α4h4(n)

α1 + α2 + α3 + α4

(5.35)

The optimization problem has a closed form solution s which represents the

extent of centralization or decentralization of the switcher. This corresponds to

the probability of the control state for the switcher.

The DO algorithm is also invoked at every T0 period on each HS. Alternatively,

the HS recomputes its optimization algorithm at any event occurrence advertised

177

Variables
s Probability of state of the HS’s control plane
ṡ Percentage of distributedness in the network
Parameters
n Size of the network (Normalized)
d SDN controller delay (Normalized)

ḋ Characteristic value of Controller delay d (Normalized)
t Rate of topology changes (Normalized)
p Number of unknown packets (Normalized)
ṗ Characteristic value of Number of unknown packets p (Normalized)
gi Cost functions
hi Mapping functions
αi Weighting factors
θA Robustness Criterion at the HS
θCA Global Robustness Criterion at the SDN controller

Table 5.4: Variables and parameters

by its neighbor or by the SDN controller. The THoldOff timer also applies (refer

to section 5.2).

5.5.2 GO Problem Formulation

For the global optimization, the controller solves the same optimization system as

the distributed model, however using different definitions for some parameters. In

fact, the rate of changes in the network and the network size are already measured

globally; consequently, their values are directly fed to the centralized model.

However, when it comes to the number of unknown events and the responsiveness

delays of the SDN controller, a characteristic value of the parameters values of

all HS’s is inputted to the global optimizer. The characteristic value can be for

eg. the median or the average. Table 5.4 shows the variables introduced in this

model added to the previous variables.

Using the closed form solution as for the distributed model, we compute ṡ,

which corresponds to the percentage of HS’s with distributed control plane in the

178

network, as follows:

ṡ =
α1h1(ḋ) + α2h2(t) + α3h3(ṗ) + α4h4(n)

α1 + α2 + α3 + α4

(5.36)

Where ḋ and ṗ are the characteristic value of the HS’s d and p values respec-

tively.

In this model, the results of the distributed optimization are used to decide

which HS’s will have the centralized control plane or distributed control plane

given the result of the global optimization, as shown in Figure 5.7.

5.5.3 Design Alternatives

The initial design combines GO and DO; however it is worth noting that each of

the DO and GO is a stand-alone solution which provides results independently

of the other. Consequently, we propose design alternatives as special cases of our

proposed technique.

Special case where GO is not available

In this case, each HS decides if it should have centralized or decentralized ap-

proach based on the DO algorithm. Since the closed loop solution s of the DO

provides a scalar that represents the probability of the state that the HS should

be in, we introduce a uniformly distributed random process to obtain the final

state of the HS: either centralized (s = 0) or decentralized (s = 1).

Special case where DO is not available

The SDN controller runs the GO, computes the percentage of distributedness

of the system, and instructs the HS’s of the state they should be in. Since ṡ

179

provides the percentage of HS’s that should have decentralized control, we rely

on the responsiveness delay (parameter d) to decide between HS’s: the ṡ% HS’s

with the highest delay to the SDN controller will be decentralized.

Case where both GO and DO are available: Hybrid Optimization (HO)

In this case, both optimizations are available, but they are not run together. Each

optimization will be invoked given the nature of the events that are taking place

in the network. In fact, we classify events between local issues and global issues.

In the general model, local issues are generally issues that affect one Agent, or a

small group of neighboring Agents, whereas Global issues are general issues that

affect the welfare of the whole system. To define the network wide issues and the

local issues in telecom networks, examples of local issues can be a ’port down’, a

bad connection to controller, unknown traffic to the node, whereas global issues

can be attacks, frequent link drops, huge traffic, critical traffic, etc. We then

assign the GO to network wide issues, while we assign DO to local issues. In this

scenario, we assume that the controller is always available and has full knowledge

and control of the network. The rationale behind this scheme is as follows: if

the local issues can be resolved at the HS’s level, there is no need to involve the

SDN controller in the optimization process. Additionally, results would be faster

because we avoid the delay incurred by running two optimizations.

The three design alternatives are also special cases of our proposed bi-level

optimization - instead of being alternatives to it. In fact, the first two alternatives

provide robustness, where if one optimization fails in the bi-level system, the

other automatically takes over the optimization as a failover solution. Also, the

third design alternative, when used for events happening within the period T0,

180

provides efficiency to the bi-level system. In fact, if an event happens and triggers

re-computation of the optimization, then based on the nature of the event, only

the appropriate optimization executes (DO or GO), instead of rerunning the full

bi-level optimization.

5.6 Results and Discussion

5.6.1 DO Testing

We started first by testing the DO. The system is implemented using Matlab,

on a network of 20 nodes. Since the closed loop solution s provides a scalar

that represents the probability of the state that the HS should be in, we used a

uniformly distributed random process to obtain the final state of the HS: either

centralized (s = 0) or decentralized (s = 1). To study the effect of the decision

threshold on the result, we define two thresholds: t1 gives equal chances to both

states, whereas t2 favors the centralized state. To simulate random network

conditions, we generated random vectors for the input variables d, t, p, and n,

according to equations 5.37 to 5.40.

di = c1 × rand+ c2 × di−1 + c3 × di−2 (5.37)

ti = c1 × rand+ c2 × ti−1 + c3 × ti−2 (5.38)

pi = c1 × rand+ c2 × pi−1 + c3 × pi−2 (5.39)

ni = c1 × rand+ c2 × ni−1 + c3 × ni−2 (5.40)

181

Figure 5.24: Control plane states for DO with t1 in random conditions

Figure 5.25: Control plane states for DO with t2 in random conditions

As for the hi functions, we used the linear model as follows:

h1(d) = d (5.41)

h2(t) = 1 − t (5.42)

h3(p) = 1 − p (5.43)

h4(n) = n (5.44)

182

Figure 5.26: Percentage of HS’s having distributed control wrt. time

Figure 5.24 and 5.25 show the control states of the different HS’s through time,

where a black circle represents a centralized HS, and a red square represents a

distributed HS. When comparing both figures, we notice that threshold t1 (Figure

5.24) results in a network that has approximately same number of red and black

HS’s, whereas thresholds t2, which favors the centralized state, results in a higher

number of black HS’s (Figure 5.25), as expected. This observation is verified in

Figure 5.26, which shows that the custom threshold t2 (in red) results in a lower

percentage of distributed HS’s in each iteration when compared to the default

threshold t1 (in blue). Figure 5.27 shows the total percentage of distributed HS’s

over all iterations for the two thresholds. We notice that for the default threshold

the total percentage is 50%, which means that approximatively half of HS’s were

distributed. For threshold t2, this percentage drops to around 30%.

183

Figure 5.27: Total percentage of HS’s having distributed control over the total
time period

184

Figure 5.28: Control plane states for fully centralized network conditions

Boundary Study: Fully Centralized

Conditions for a fully centralized network are:

d = 0→ h1(d) = 0

t = 1→ h2(t) = 0

p = 1→ h3(p) = 0

n = 0→ h4(d) = 0

Under these conditions, the closed form solution becomes:

s =
0 + 0 + 0 + 0

α1 + α2 + α3 + α4

= 0

As expected, these conditions result in a network that is fully centralized at

all times (black HS’s in Figure 5.28). This is also verified in Figures 5.29 and

5.30 which show a 0 percentage of distributed HS’s.

Boundary Study: Fully Distributed

Conditions for a fully distributed network are:

d = 1→ h1(d) = 1

185

Figure 5.29: Percentage of HS’s having distributed control wrt. time

t = 0→ h2(t) = 1

p = 0→ h3(p) = 1

n = 1→ h4(d) = 1

Under these conditions, the closed form solution becomes:

s =
α1 + α2 + α3 + α4

α1 + α2 + α3 + α4

= 1

Under fully distributed network conditions, the optimization system results

in a fully distributed network at all times, as indicated by the red HS’s in Figure

5.31. Figures 5.32 and 5.33 also verify these results.

The results above prove that our optimization model respects the boundary

conditions for s.

186

Figure 5.30: Total percentage of HS’s having distributed control over the total
time period

Figure 5.31: Control plane states for fully distributed network conditions

187

Figure 5.32: Percentage of HS’s having distributed control wrt. time

Incremental Network Conditions

We also tested the DO algorithm on incremental network conditions; at the first

iteration, the network conditions favor centralization. They are incremented at

each iteration towards decentralization to reach values that favor decentralization

at the 100th iteration. The system was tested on a network of 100 switches.

Results are shown in Figures 5.34 and 5.35, for thresholds t1 and t2 respectively.

When comparing the two figures, we notice the effect of the threshold on

the decision. In Figure 5.34, as t1 provides 50% chance for both states, we

notice that the transition from centralization to decentralization is around the

50th iteration. However, in Figure 5.35, this transition happens later as expected

(around the 80th iteration), since t2 favors the centralized state. Figures 5.34 and

5.35 also show that the DO model is validated at the boundaries: at iteration 0,

188

Figure 5.33: Total percentage of HS’s having distributed control over the total
time period

Figure 5.34: Control plane states for DO with t1 in incremental conditions

189

Figure 5.35: Control plane states for DO with t2 in incremental conditions

when conditions are for a fully centralized network, we notice that all nodes are

centralized (all black points). Alternatively, at the 100th iterations, all nodes are

decentralized (red points).

Figure 5.36 shows the total % of decentralization in the network. We notice

that the system using t2 (red curve) has a slower increase towards the full de-

centralized state than that of the blue curve (system with t1) . Results of the

incremental network conditions are in line with the expected behavior of the DO.

5.6.2 GO Testing

We also tested the global optimization, first as a standalone solution where pa-

rameter d is used to decides on which switches should be centralized (design

alternative 5.5.3), and second as a bi-level optimization where the results of DO

are fed into GO for the final decision making. We used Matlab to simulate a net-

work of 100 nodes, with varying network conditions as per equations 5.37 to 5.40.

Figure 5.38 shows the state of the 100 switches as network conditions evolve from

190

Figure 5.36: Percentage of distributed control vs. time

Figure 5.37: Total percentage of distributed control

191

Figure 5.38: Control plane states for standalone GO in incremental conditions

favoring centralization to favoring decentralization, under the standalone GO.

At the boundaries, we see that the model converges to full centralization when

network parameters favor this state (iteration 0), and becomes completely decen-

tralized when network parameters favor decentralization (iteration 100), which

corresponds to the expected behavior of the system.

Figure 5.39 compares the total % of decentralized switches for DO and stan-

dalone GO. The response of the standalone GO is a curve that increases linearly

from 0 to 100%, whereas the response of the DO is less stable, and fluctuates

around the straight line, with however the same trend. This shows that the GO

is more stable than the DO and is less sensitive to small variations of the network

conditions.

Finally, Figure 5.40 shows the evolution of the control states in the network,

again under incremental conditions as is the case for Figure 5.38, but for the

bilevel GO-DO system. Similarly to the standalone GO system (Figure 5.38),

this system also obeys boundary conditions. The difference in the color pattern

192

Figure 5.39: Percentage of distributed control vs. time

between the two figures is the decision variable used to decide on switches: in

Figure 5.38, parameter d was the deciding variable, and given that d was being

incremented linearly starting from delay on switch 1 to 100, we were able to see

the symmetric pattern between the black and red dots as the network became

more decentralized (i.e. as d increased). In Figure 5.40, the decision is based or

the result of the underlying DO algorithm, which is by itself controlled by all 4

parameters and not just parameter d.

193

Figure 5.40: Control plane states for our proposed optimization in incremental
conditions

194

Chapter 6

Implementation and Results of

Final Complete System

6.1 Implementation Details

Throughout this dissertation, different components of the network were designed

and tested separately. The optimization systems were simulated with MATLAB,

and tests were performed to verify that the behavior of the system is in line with

the control rules. Performance testing of SDN and OSPF was completed using

python and the MiniNEXT simulator. The final implementation presented in

this section combines all the subsystems that constitute the work. The different

modules that come into play are illustrated in 6.1.

As shown in the diagram in 6.1, the implementation system includes 6 mod-

ules:

1. The hybrid switch (the HS block)

2. The SDN controller block

195

Figure 6.1: Implementation design diagram

3. The HS state control (the Rule Installer block)

4. The monitoring system (the Network Parameters)

5. The optimization system (the Optimization block)

6. And the network performance measurements (The Measured Performance)

The following details the implementation of each block.

6.1.1 The Hybrid Switch (HS):

Designing and implementing the HS is the main task, as it constitutes the building

block of the hybrid network. We previously presented OSHI [49] as a testbed for

hybrid networks; the OSHI node is a hybrid node that supports both SDN and IP

protocols and runs them simultaneously. It is a linux container which implements

OVS and the Quagga suite with OSPF as the enabled IP routing protocol. The

coexistence of the control planes is ensured by exploiting the concepts of multiple

196

flow tables and virtual ports. OSHI implements traffic segregation, and uses VLL

and PW techniques to process classes of traffic with SDN and other classes with

OSPF. In the OSHI network, the ingress OSHI nodes tag the traffic to separate

between SDN flows and OSPF flows, and the egress nodes remove the tags (if

present) before delivering traffic to destination. On the OSHI core nodes, the

simulator installs rules to forward packets received on the physical ports to the

corresponding virtual ports, where they will be delivered to OSPF for processing,

and rules to forwards tagged traffic to table 1 which contains the SDN controller

flows.

The authors in [149] implement a similar scenario, where the network shifts from

SDN to OSPF based on the packet loss ratio of the control channel. In their

work, the network is homogeneous, i.e. the whole network is either SDN or OSPF,

unlike our hybrid network where the switches don’t have to be in the same control

states. The authors use the technique implemented by OSHI to add/pop VLAN

tags to/off packets. On the switches, two forwarding tables exist. Rules installed

by the SDN controller either send received packets to the virtual ports where

the OSPF deamon is running, or to table 1 where the SDN forwarding flows are

installed. Consequently, the control is done at the data plane level, where tagging

or un-tagging packets is the mechanism to force packets to be handled by SDN

or OSPF.

The HS Design

Although the OSHI nodes are hybrid nodes, their functionalities does not corre-

spond exactly to our HS design. We did however use the simulator with some

changes to the nodes’ behavior, to adapt them to the behavior of the HS. There

are two main implementation differences between our design and OSHI. We can-

197

celed the VLL deployment and the VLAN tagging, since the HS is either fully

centralized or fully decentralized, and thus traffic segregation is not adopted; in-

stead, all traffic is treated in the same manner depending on the control state

of the HS. Also, we use the same generic HS based on a generic OSHI node,

instead of defining Ingress/Egress and Core OSHI nodes like it is the case in the

OSHI simulator. To change the HS control state, rules are added to - or deleted

from the switch via the rule installer module. Also, we take advantage of the

multi-table functionality in the OVS to group the rules that correspond to the

distributed control plane in table 0, and those of the centralized control plane

(SDN controller rules) in table 1.

6.1.2 The HS State Control System – the Rule Installer

Block:

In addition to the double routing protocols functionality, the HS houses a rule

installer module, in charge of enforcing the control state of the HS. It forces the

HS to switch from centralized to distributed control or vice-versa given the results

of the DO or the GO, whichever is running.

The python code sits in the rule installer in the HS, and directly injects the

corresponding OVS rules to this latter. These rules dictate the behavior of the

HS with respect to received packets as follows.

OSPF Mode

As per the HS design, the rules in table 0 of the OVS switch map physical ports

to virtual ports; i.e. when in this mode, all packets received will be sent to the

198

Figure 6.2: Table 0 rules for OSPF mode

appropriate virtual twin port. An example of the set of these rules is shown in

Figure 6.2. These rules are from an HS with 4 physical ports, and 4 virtual ports

accordingly, and we can observe the following port mapping:

1. in port=8 → output:7 (first rule) and

in port=7 → output:8 (second rule)

2. in port=6 → output:5 (third rule) and

in port=5 → output:6 (fourth rule)

3. in port=4 → output:3 (fifth rule) and

in port=3 → output:4 (sixth rule)

4. in port=2 → output:1 (seventh rule) and

in port=1 → output:2 (eighth rule)

SDN Mode

To make the HS rely on the centralized control plane, we force all received packets

to be sent to table 1 of the OVS switch. In this table, we find the normal

199

Figure 6.3: Table 1 rules for SDN mode

forwarding rules that the controller injects to route traffic. Example of these

rules are shown in Figure 6.3. The first rule is in table 0; it matches all IP

packets, and sends them to table 1. The next two flows are in table 1 (as shown

in picture), and they do normal packet forwarding from one physical port to the

other as per the SDN controller’s installed instructions.

6.1.3 The Monitoring System:

Normally, the monitoring system measures the system parameters and invokes the

optimization system at each To. In our experiment, we actually set these system

variables, to observe their effect on the network performance in a controlled

manner. We use different tools to enforce the values of the 4 systems parameters

to recreate the effect of changing network conditions.

1. Delay to controller: the netem [150] tool was used to set the delay on the

control channel between the controller and the SDN switches. This tool

allows the user to specify the latency on a given interface in the network.

2. Rate of Unknown packets: we also use the netem tool with the corrupt,

duplicate, and reorder options to inject random traffic in the network.

3. Network size: The network size can be controlled by adding and deleting

HS’s from the network. This parameter can be read via a REST API from

the SDN controller [151, 152].

200

4. Topology change rate: We developed a tool that takes the topology change

rate as input and provokes a series of Mininet’s ”link up/down” commands

for each T0 throughout the simulation depending on the specified rate.

6.1.4 The Optimization System/Decision Making:

The optimization system implements the closed loop solutions for the Global

Optimization (GO), the Decentralized Optimization (DO) elaborated in section

5.5. The DO algorithms can return two types of results based on the type of

threshold chosen (a fair threshold and a threshold that favors centralization, refer

to section 5.6.1). As for the GO, the algorithms implements two decision making

alternatives; decision making based on the result of the DO, or based on the values

of the switch/controller delays. The optimization system with all its variations

was initially developed in Matlab, and then translated to python. As shown in

Figure 6.1, the GO sits on the controller, which is in charge of running the global

optimization, whereas the DO is implemented on each Hybrid Switch, which are

themselves responsible for running the DO algorithm. We created 2 optimization

functions, namely GOfunction and DOfunction, and an optimization script that

calls the functions depending on the chosen design alternative, passes the network

parameter values to the function, and receives the optimal states of the HS’s in

the network.

6.1.5 SDN Controller

We chose Ryu SDN controller since it is fully written in python [55], which makes

the implementation system more homogeneous, given that all system’s compo-

nents are written in python as well. Based on the ”simple switch 13.py” Ryu

201

application, we create the ”Hybrid Network App” to support the hybrid network

that we designed. The Hybrid Network App implements multiple Openflow ta-

bles on the HS’s, and downloads the SDN contoller flows to the HS’s tables 1

instead of table 0, as per the functionalities described in section 6.1.1. GO is im-

plemented in python at the controller’s level. The GO module sits on top of the

Hybrid Network App, it periodically reads the parameters of the network, and

recomputes the GO algorithm, depending on the optimisation design alternative

that is adopted (refer to 5.5.3).

6.1.6 Experiment Overview

After developing all items above, all subsystems were grouped on the testing

machine. The specs are shown below:

• Virtual box version 6.0.14

• OS - Ubuntu Linux 13.04

• OSHI v7

• Mininet v2.1.0

In order to bound the experiment, we set the maximum allowed values for the

network parameters to be as follows:

• The maximum delay that can be observed on the link to SDN controller,

dmax is assumed to be 100ms. This maximum value represents the loss of

communication to the controller.

• The maximum allowed rate of topology change tmax is assumed to be 1

change/s−1, with T0 = 1 minute.

202

• The maximum allowed rate of unknown traffic is set to be 40%, because

the experimental study that we conducted showed that the OSPF network

broke at 40% corruption rate

• The maximum network size is set based on the capacity of the chosen

controller. For these experiments, we set the maximum size to 100.

To measure network performance, we perform measurements using the ping

command and iperf [153] between the two hosts h1 and h2. Ping measures latency,

whereas Iperf tests the network for its bandwidth, throughput, and jitter. We

ran each experiment 20 times for a period of 10× T0 minutes for each run. The

scenarios and the corresponding results are reported below.

6.2 Testing and Results

The testing process workflow is shown in Figure 6.4. For each scenario defined

below, the testing process starts by starting the topology with the OSHI simula-

tor, using however the modified OSHI nodes for the HS’s (as per section 6.1.1),

then starting the Ryu controller and running the Hybrid Network App. Next at

each T0, a python script sets the values of the system variables, calculates the

optimization results, configures the control states of the switches, and measures

the resulting network performance with iperf and ping commands.

This testing is repeated for the two thresholds of the DO, the two decision-making

methods of the GO, an all SDN network, and an all OSPF network, in the aim

of comparing the performance of the different network designs.

The reference network architecture is shown in figure 6.5.

203

Figure 6.4: Testing workflow

204

Figure 6.5: Network architecture

Network value Normalized value
n = 10 n = 0.1
t = 1T−1

0 t = 0.17
p = 0 % p = 0
d = [0 - 100] ms d = [0 - 1]

Table 6.1: Parameters for scenario 1

6.2.1 Scenario 1: Effect of Communication Delay with

Controller

In the first scenario, we set the network size to be 50% of the maximum network

size which corresponds to 9 nodes and 7 links. The rest of the parameters are

set to stable topology and stable traffic. As for the delay to controller, we sweep

over values of the delay from 0 to maximum delay, to study the effect of the

delay to controller on the result of the 4 optimization schemes, and consequently

the network performance. For the purpose of the experiment, and in order to

emphasise the effect of the delay, we set the coefficient alpha1 of the delay

parameter to 10.

The parameters values are reported in table 6.1.

Results are shown below. The control states of the HS’s throughout the

iterations are compiled in Figures 6.6 to 6.9.

205

Figure 6.6: HS states for DO with threshold t1

Figure 6.7: HS states for DO with threshold t2

206

Figure 6.8: HS states for GO with decision based on results of DO

Figure 6.9: HS states for GO with decision based on delay values

207

Figure 6.10 shows the latency for the 4 network designs as the delay to con-

troller increases.

Results show that in the chosen scenario, the optimizations systems favor

decentralized networks, which is expected, because the system parameters in

general favor decentralization, especially that an increasing d hurts a centralized

system. It is worth noting that the latency in SDN and OSPF is comparable, this

is due to the fact that when the HS’s have the flow rules installed already, then the

delay to controller won’t affect performance much, unless an event happens that

pushes HS to ask for controller’s help, like a port failure for example. We simulate

this behavior by performing one topology change for each T0 and for each value

of d to force the HS with centralized control plane to solicit the controller. We

notice that DOt1 gives the best performance among the 4 optimization designs.

In fact, when compared to DOt2, this latter favors centralization, and thus the

complete shift to distributed network takes place later than it is the case in DOt1.

However, a network operator would by choice decide to use a threshold that favors

centralization, if for example network services that require SDN are deployed.

In this case, the operator would pay the price of slightly increased performance

compared to OSPF, but yet increased performance compared to pure SDN, which

suffers from bad switch/controller links. We notice that when the delay increases

to almost reach the maximum delay allowed on the network, all optimization

converge to an all OSPF network. This is also expected, because if the delay to

controller reaches the point considered as a loss of communication to controller,

then trying to communicate to a non-responsive controller is pointless.

208

Figure 6.10: Latency with respect to delay for the different network designs in
semi-log scale

Network value Normalized value
n = 10 n = 0.1
t = [0, 60] changes/T0 t = [0,1] changes/sec
p = 1% p = 0.01
d = 30 ms d = 0.3

Table 6.2: Parameters for scenario 2

6.2.2 Scenario 2: Effect of Topology Change Rate

In Scenario 2, we vary the stability of the topology, by applying a series of link

down/up commands in Mininet, within a period of T0 = 60 sec. The rate of

topology changes varies between 0 and 1, which corresponds to 0 and 60 changes

per T0. The rest of the parameters are set to stable topology, stable traffic, and

small delay to controller.

The parameters values are shown in table 6.2.

Results are shown below. Figures 6.11 to 6.14 show the states of the HS’s for

each iteration. We notice that the 4 optimization systems converge to centrali-

209

Figure 6.11: HS states for DO with threshold t1

sation and full centralization, as per our control rule.

Figure 6.15 shows the latency for the 4 optimization designs as the rate of

topology change increases. We notice that the decentralized system performs well

up to a certain rate where it’s performance break. This is probably due to the

increase of control messages rippled throughout the network links. Performance

of SDN is also affected by the increased topology change rate, however it is also

affected by the delay of it’s control plane, which we set to 30ms to emphasise

the behavior of the optimized networks. Both DO systems start as OSPF net-

works. This is expected because for a topology change rate of 0, a higher delay

to controller pushes the systems to be more decentralized. As the rate of topol-

ogy change increases, the two DO become more centralized. The switch to the

centralized states is faster with DOt2 than with DOt1.

The latency results in Figure 6.15 show that overall, the optimized systems

perform better than OSPF or SDN alone, especially at the boundary conditions.

The DO systems perform better than the GO systems, but these latter do perform

210

Figure 6.12: HS states for DO with threshold t2

Figure 6.13: HS states for GO with decision based on results of DO

211

Figure 6.14: HS states for GO with decision based on delay values

Network value Normalized value
n = 10 n = 0.1
t = 1T−1

0 t = 0.17
p = [0-40]% p = [0, 1]
d = 1 ms d = 0.01

Table 6.3: Parameters for scenario 3

better than the baseline designs (fully centralized and fully distributed) at the

boundaries. As expected,DOt2 performs better thanDOt1, sinceDOt2 converges

to centralization faster than DOt1.

6.2.3 Scenario 3: Effect of Rate of Unknown Packets

In this scenario, we study the effect of the quality of traffic on the network

performance by increasing the % of corrupt packets on the data links. The rate

of unknown packets varies between 0 and 40%. N is set to be 10, and the rest of

the parameters are set to stable topology, and small delay to controller.

The parameters values are shown in table 6.3.

212

Figure 6.15: Latency with respect to rate of topology change for the different
network designs in semi-log scale

Figure 6.16: Switches states for DO with threshold t1

213

Figure 6.17: Switches states for DO with threshold t2

Figure 6.18: Switches states for GO with decision based on results of DO

214

Figure 6.19: Switches states for GO with decision based on delay values

Figures 6.16 to 6.19 show the states of the HS’s for the 4 optimization meth-

ods. We notice that in this scenario, the DO systems and the GO systems have

comparable results when it comes to the states of the HS, and specifically the

% of distribution in the network. When comparing the scenarios for the latency

in Figure 6.20, we observe that the performance of OSPF is degraded with the

increase in the % of corrupted packets; the performance of SDN is also affected

but not to the same extent as OSPF. In fact, in the case of SDN, the decrease in

performance is not due to its control plane, but rather to the data plane itself.

OSPF is more affected mostly because the control plane and data plane share the

same infrastructure, and if this latter is faulty, then not even data is corrupted,

but also control information.

6.2.4 Scenario 4: Effect of Local Delay

In this scenario, we force the delay to controller to change suddenly for switches

8 and 9 at iterations 2 and 3, as shown in Figure 6.21.

215

Figure 6.20: Latency with respect to rate of unknown traffic for the different
network designs in semi-log scale

Figure 6.21: Delay between switches and controller

216

Figure 6.22: Switches states for DO with threshold t1

We also tested the effect of the choice of the ḋ vector when used with GO; we

considered it to be the maximum of the vector d (GO-d(dmax)), and the mean

of d (GO-d(dmean)). We also consider DO with threshold t1, DO with threshold

t2, and GO with decision based on the results of DO. Figures 6.22 to 6.26 show

the states of the HS’s for the 5 optimization methods. As expected, the DO

algorithm with threshold t1 detected the increase in delay and forced HS8 and

HS9 to move to the distributed states for both iterations 2 and 3 (Figure 6.22).

On the other hand, DO with threshold t2 forced HS9 to go to the distributed

states for both iteration, but only forced HS8 to go distributed for iteration 2

(Figure 6.23). This is because of the effect of t2 on centralization.

When it come to the GO algorithm, we notice different behaviors for the GO-

d(dmax) (Figure 6.24) and the GO-d(dmean) (Figure 6.25). In fact, GO-d(dmean)

did not detect the sudden increase in delay for the 2 switches, whereas GO-

d(dmax) did. This results show that GO algorithms in general are not sensitive

to local issues such as a delay increase for 1 or 2 switches, and taking the average

of the delays to controller attenuates the effect of the local sudden increase of

the delay switches. This justifies and reinforces our 3rd design alternative which

separates issues into local vs. global and assigns them to DO vs. GO respectively.

Figure 6.27 shows the latency of the network for each optimization technique

217

Figure 6.23: Switches states for DO with threshold t2

Figure 6.24: HS states for GO with decision based on maximum delay

Figure 6.25: HS states for GO with decision based on mean delay

Figure 6.26: Switches states for GO with decision based on results of DO

218

Figure 6.27: Latency for the different network designs in semi-log scale

for the values of the delay shown in Figure 6.21. We observe in this figure that all

the optimizations that detected the delay increase for both iterations and for both

switches have similar performance, and they perform better than full SDN and

GO-d(dmean). In fact, in the case of GO-d(dmean), the network remained full

SDN, and switches HS8 and HS9 were stuck waiting for a slow controller, which

affected the performance of the algorithm at the second and third iteration as

shown in Figure 6.27 (orange curve); this method incurred latency comparable to

that of SDN. We notice that the latency of DO-t2 slightly increased in the third

iteration, due to the fact that this method forced HS8 to go centralised when it’s

delay to controller was still high, which caused some extra latency in the network

as compared to the other techniques that detected the delay for both iterations.

The above graphs (Figures 6.6 to 6.27) show the behavior of the optimizations

systems and their effect on the network in comparison with SDN and OSPF.

Tables 6.4 to 6.6 summarize the findings of the above graphs at two major points:

219

Delay to Controller at 50% at 100%
DO-t1 62.44% 89.13%
DO-t2 62.20% 88.93%
GO-d 59.15% 89.33%
GO-r 59.15% 89.13%

Table 6.4: Percentage improvement of proposed methods compared to baseline
SDN at 50% and 100% of maximum delay to controller

they show in %, the improvement between the proposed methods and the baseline

SDN/OSPF when the network condition under test in the given scenario is at

50% and 100% of its maximum allowed value.

Table 6.4 shows the percentage of improvement of each of the DOt1, DOt2,

GO-d, and GO-r, with respect to SDN for scenario 1. In this case, we compare the

latency of the 4 optimizations to SDN, since this latter is directly affected by the

increase in delay to controller. Results showed that the proposed optimisations

performed from 59% to 62% better that baseline SDN when the delay to controller

is at 50% of its maximum allowed value, and they perform up to 89% better than

SDN when the delay is at 100% of its max allowed value.

Additionally, table 6.5 shows the percentage of improvement of each of the

DOt1, DOt2, GO-d, and GO-r, with respect to OSPF for scenario 2. In this

case, OSPF is the technology that is directly affected by the increase in the rate

of topology change, consequently we compare the latency of the 4 optimizations

to OSPF. Results showed that the proposed optimisations also performed better

than OSPF; at 50% of maximum rate of topology change, the proposed systems

showed 5% increase in performance, whereas they showed an increase in perfor-

mance of up to 29% for 100% of maximum rate of topology change.

Finally, table 6.6 shows the percentage of improvement of each of the DOt1,

DOt2, GO-d, and GO-r, with respect to OSPF for scenario 3. Similarly to Table

220

Topology Change at 50% at 100%
DO-t1 3.47% 29.35%
DO-t2 5.56% 28.26%
GO-d 3.47% 21.74%
GO-r 3.47% 19.57%

Table 6.5: Percentage improvement of proposed methods compared to baseline
OSPF at 50% and 100% of maximum rate of topology change

Traffic Corruption at 50% at 100%
DO-t1 37.50% 86.43%
DO-t2 50.00% 95.01%
GO-d 38.63% 94.29%
GO-r 41.63% 95.49%

Table 6.6: Percentage improvement of proposed methods compared to baseline
OSPF at 50% and 100% of maximum rate of traffic corruption

6.6, we compare the latency of the 4 optimizations to OSPF because traffic cor-

ruption affects the control plane of OSPF and degrades it’s performance. Results

showed that the proposed optimisations performed from 37% to 50% better that

baseline OSPF when the rate of traffic corruption is at 50% of its maximum al-

lowed value, and up to 95% better than OSPF when the rate of traffic corruption

is at 100% of its max allowed value.

221

Chapter 7

Summary of Results and Analysis

7.1 Overall Results and Analysis

The introduction of centralized control to network introduce a new form of net-

work that we were not used to before: a hybrid network that combines the

centralized SDN paradigm and the existing distributed legacy network model.

This type of network ought to exist not by design, but due to the incremental

introduction of SDN islands in the old prevailing worldwide IP network. The first

contribution in this thesis was to study hybrid networks and look into how SDN

can support these hybrid networks, by looking into how the different network

services, including routing, are performed in the hybrid forms of network. Addi-

tionally, given that these networks are harder to manage, we looked into network

management with SDN. The design proposed and the results showed that even

though the SDN controller can perform management functions, a separate SDN

management layer in conjunction with the controller is essential to guarantee bet-

ter network management. In fact, as the controller is in charge of supervising the

network, running network applications, and instructing the switches, augment-

222

ing it with a management role risks overloading it, which would lead to network

interruption. Not to mention that in hybrid networks, the management func-

tionalities are much more complexes because the legacy appliances need special

integration within the SDN network.

The coexistence between the two types of network led us to the third contribution

of this work, which is a study of systems that exhibit the same characteristics

of two control planes, mainly the nervous system, and political administration

systems. We studied these systems and concluded the control rules adopted in

each to switch from centralization to decentralization and vice-versa. This study

constituted a road-map for designing a hybrid system that shifts between its cen-

tralized and distributed states as per the extracted control rules.

In order to understand how IP and SDN network behave under different con-

ditions, we consider one aspect of network performance - network convergence,

which we modeled for the two systems. This work constituted the next contri-

bution, as we set the mathematical model of convergence of both technologies in

general networks, in WAN, and data-centers. We also analyzed their behavior

both analytically and experimentally. Comparing analytical to experimental re-

sults allowed us to validate the general model. Essentially, experimental results

show that convergence of OSPF is affected by the network link delays whereas

SDN convergence is not, which matches the finding of the analytical testing. Also,

when it comes to fault location, experimental results show that OSPF is more

affected by the location of the fault than SDN, which is also in line with the an-

alytical finding. Results from the experiments of WAN and data-centers weren’t

always in accordance with the results from the general model, which justifies the

extension of the general convergence models, and validates our hypothesis that in

addition to network parameters and circumstances, the performance does depend

223

on the network type and architecture.

The first hybrid system proposed was an offline recommender system based on

fuzzy logic. This system takes as inputs parameters from the network, and pro-

poses the appropriate type of technology to use given the network parameters

along with the financial implications of the decision in terms of CAPEX and

OPEX. This tool is an offline tool that is used by the network operator before

deploying the network.

The next proposed designs aimed for online optimization tools that control the

state of the network elements according to the prevailing network conditions. In

this type of network, the network elements are hybrid switches that support cen-

tralized and distributed control planes and are allowed to change their control

state between the two planes depending on the results of the optimization. The

preliminary model developed a distributed optimization system, where each node

runs its own optimization function and decide whether its control plane will rely

on SDN or IP. Results showed the variations of the level of centralization vs.

distributedness of the system with respect to changing network conditions corre-

spond to the control model that we had specified based on guidelines in previous

sections.

The final design consisted in designing a hybrid adaptive optimization system

that controls the states of the hybrid network. The hybrid optimization system

is composed of distributed and global optimization systems, that can operate as

standalone systems but also together in a hybrid form as per the design alter-

natives specified earlier in this dissertation. Analytical results showed that the

optimization design alternatives are in line with the control rules specified.

The last contribution of this work is the implementation of the hybrid network

with all the related modules, and then running the final optimization design

224

alternatives to collect experimental results. The hybrid network was fully imple-

mented in python, and functional tests showed that the network is running and

responsive. Four optimization alternatives were tested on the hybrid network,

and results showed that the optimal design outperform each other depending on

some criteria. For example, at the boundaries, the DO system shows best perfor-

mance, whereas when the conditions as a whole favor centralization, then the DO

with threshold t2 shows better performance. The GO systems also perform well,

however, the testing is unfair because it does not take into consideration another

aspect of the cost, which is the cost of running DO on all the network nodes each

period, compared to running GO when the issues are global issues for example.

Besides, when we compare SDN and OSPF, the performance is not only related

to latency or packet loss, it is also related to the services made available with the

chosen technology. For example, when NFV is needed, then SDN is favored as a

technology, consequently having a non full OSPF network would be useful even if

network conditions do not favor SDN completely. Also, the optimal designs push

the network to adapt to the conditions and flip their states when SDN or OSPF

become bottlenecks.

225

Chapter 8

Conclusions and Future

Directions

SDN provides better network management and network visibility with centralized

control, whereas traditional distributed IP networks feature robustness and scal-

ability. However, those characteristics sometimes change depending on network

conditions. Controlled hybrid networks, as we define them, feature both types of

control and exploit the advantages of each by adaptively changing the state of the

network control plane to the most efficient control model given prevailing network

conditions. The problem is generalized and modeled as an optimization problem

that is designed according to rules extracted from different systems in political

systems and natural intelligence. Additionally, the general system can be applied

to other systems that exhibit the same kind of relationship between centralized

and distributed control. We summarize the conclusions of this dissertation below.

226

8.1 Conclusion Related to Network Services and

Management

After studying hybrid networks, we presented different network services and

showed their operation in a traditional network, in SDN, and hybrid networks.

Some services such as routing and switching have already been considered in

all three types of networks, whereas some services like MPLS and multicasting

are still being researched in SDN. We also analysed the services operation in

the three schemes and postulates recommendations. Also, We investigated SDN

management, and applied the FCAPS model to SDN and created a matrix of

management functions with regards to FCAPS and the SDN controller/manager

pair. Using this map, we classified management functions between controller and

manager, and created an architecture for the SDN management Framework. A

proof of concept was simulated to verify the performance gains of the proposed

design which reached 27.5%.

8.2 Conclusion Related to Modeling Network

Convergence

When it comes to convergence models, we modeled convergence in OSPF net-

works and SDN, and simulated the model in MATLAB. We then experimentally

tested convergence delays of OSPF and SDN using Mininext. We obtained an-

alytical results that match the theoretical expectations of both schemes. These

results showed that SDN does provide convergence benefits under certain net-

work conditions such as high network link delays, whereas the OSPF convergence

benefits prevail under other conditions, for example when the SDN controller is

227

overloaded. The experimental study verified the validity of the theoretical model,

with some irregularities due to the implementation details of the controller, the

efficiency of its modules, and the emulation of the switches [121], that are not

apparent to operators and users. This model was then extended to account for

control plane delays, and compare the two for important network types, namely

datacenters and WANs, in order to study the effect of the network type and pa-

rameters on the performance of the protocols. Results showed that OSPF and

SDN behave differently in datacenters and WANs, and that SDN and OSPF

have varying convergence speeds within the same network type. In other words,

in datacenters like in WANs, the two protocols outperform each other for differ-

ent values of network variables. Although one can prefer a technology over the

other, it all comes down to the network design and characteristics which actually

affect the performance of the protocols and deliver better convergence speeds.

8.3 Conclusion Related to the Proposed Designs

and the Adaptive Optimization System

The first system we proposed was based on the fact that nowadays we face three

forms of networks, with the techniques for operating each form. Based on the dif-

ferent network alternatives, a fuzzy system that guides network operators in their

choice of network deployment schemes was presented. We recognize that every

network deployment has several other constraints to consider in the design, in-

cluding other types of inputs and additional inferences rules, which can be added

to enhance the model and refine results. As described, the Fuzzy System provides

insights to operators which facilitate the choice of networks to deploy. The finan-

cial implications were analyzed to allow management to assess the impact of the

228

decision on the CAPEX and OPEX. Subsequently, we designed an optimization

system that adaptively decides on the control state of the network node (Hybrid

Switches-HS), based on network conditions. The cost functions used are based

on comparative performance results from the literature and our previous work.

Results verified that the designed optimization provides the expected behavior

of the model for the different conditions that we tested. The final design that

we proposed introduces the notion of centralization and decentralization to the

optimization formulation itself. It combines both Global Optimization (GO) and

Distributed Optimization (DO), which act as stand-alone systems, fall-back sys-

tems, or complementary systems. The complete final design including the HSs,

the controller module, the optimization systems, and the HS state monitoring

and control systems were implemented on a variation of Mininet and the OSHI

simulator. Results showed that the hybrid networks do provide good perfor-

mance especially at the boundaries where the network parameters are critical to

the correct operation of the network.

8.4 Future Directions

This works opens up to many future developments.

First of all, the implementation system can be improved by designing a merged

flow table, that groups control information from both control planes. The merged

flow table is a more efficient technique that will use rule translation to merge the

rules from both control plane in one table and using the same syntax, as described

in section 5.3.1. This enhancement will reduce delays further, by eliminating the

need of switching from one flow table to the other and mapping physical to vir-

tual ports on the HS. This will also reduce the incurred overhead due to packets

229

traversing the switch twice before being forwarded on the data path.

Also, the results can be improved by deploying the design on a real test-bed.

In fact, the virtual machine and the implementation of the HS’s in software incurs

delays that wouldn’t exist in real deployments. Consequently, latency measures

in the results become more accurate.

When it comes to the hybrid design, the designed framework can also be

used for service segregation: for example, instead of having nodes that are either

centralized or distributed, the nodes can be centralized or distributed according

to services, based on traffic tagging. In other words, a node can be configured

to operate in legacy mode for one type of service such as normal routing, but

go centralized for other types of services such as MPLS, based on the favorable

control plane for each service (refer to section 3.2). In this case, the HS will route

normal packets following any IP routing protocol, but rely on the controller’s

rules when it receives an MPLS encapsulated packet.

The decision making system can be improved. On one hand, the optimization

can be extended to use a non-linear model by redefining the h(s) functions that

are currently used. On the other hand, introducing machine learning for decision

making instead of optimization can yield a more dynamic and accurate response

to network conditions and consequently better results. Employing machine learn-

ing also allows us to take advantage of the programmability feature of the SDN

controller for the training of the algorithms in a centralized fashion.

Finally, the model can be applied to different areas. In fact, with the current

230

Figure 8.1: IOT network

increased need in scalability, performance, standardization, and virtualization,

we are witnessing the introduction of centralized and decentralized instances of

systems to cater for these requirement. In this context, the designed general

model with its variables and parameters, can be applied to these systems.

An example of such systems would be IOT. In fact, in IOT, one can take

advantage of fog computing to move the intelligence closer to the devices in a

distributed fashion. A high-level architecture of an IOT network is shown in

Figure

In analogy with our general model, network parameters can be mapped to:

• d is the delay between the Cloud and the Fog.

• t is the rate of the availability of the links between the two layers.

• p is the heterogeneity of the IOT devices.

• and n is the number of IOT devices in the network.

Another example outside of the telecom area would be the DCS-PLC control

systems in plants [154], (refer to Figure 8.2). The DCS, or distributed control

system, is composed of many distributed controllers that work autonomously.

231

Figure 8.2: PLC-DCS system

The data is exchanged between the controllers but the system usually doesn’t

have overall central control. Alternatively, a PLC system, or the programmable

logical controller system, is a centralized control system. In general, PLC’s are

more reliable in terms of availability and robustness, but DCS systems can scale

for large systems, and implement more complex control loops. Consequently,

both systems have their advantages; thus a hybrid design can be envisioned to

deliver the best performance of both, and ensure availability in critical applica-

tions (for example in nuclear plants). In analogy with our general model, network

parameters can be mapped to:

• d is the delay to compute control loops between the I/Os and the PLC.

• t is the rate of the availability of the links between the controllers.

• p is the I/O values integrity.

• and n is the number of I/Os in the system.

The application of the model to IOT and the PLC-DCS systems can be de-

veloped and tested to verify if the model does provide the intended results; also

other areas can be identified to test the hybrid control model.

232

Bibliography

[1] R. Musschebroek, “Sdn and nfv facilitate network convergence,” 2017.

[2] G. Iannaccone, C.-N. Chuah, S. Bhattacharyya, and C. Diot, “Feasibility of

ip restoration in a tier 1 backbone,” Ieee Network, vol. 18, no. 2, pp. 13–19,

2004.

[3] A. S. Tanenbaum, Routing Algorithms, ch. 5.2. Computer Networks, Pear-

son Educación, 4th edition ed., 2003.

[4] J. Doyle and J. D. Carroll, Routing tcp/ip, vol. 1. Cisco press, 2005.

[5] C. Funakura, “Border gateway protocol best practices,” 2006.

[6] C. E. Spurgeon and J. O. Zimmerman, Basic Switch Operation, ch. 1. Eth-

ernet Switches, Charles E. Spurgeon and Joann Zimmerman, 2013.

[7] O. N. Foundation, “Software-defined networking: The new norm for net-

works,” tech. rep., ONF White Paper, 2012.

[8] D. Kreutz, F. M. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky,

and S. Uhlig, “Software-defined networking: A comprehensive survey,” Pro-

ceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[9] O. N. Foundation, “Sdn architecture overview - version 1.0,” 2013.

233

[10] D. Medhi and K. Ramasamy, Network routing: algorithms, protocols, and

architectures. Morgan Kaufmann, 2017.

[11] P. Lin, J. Bi, and H. Hu, “Asic: an architecture for scalable intra-domain

control in openflow,” in Proceedings of the 7th International Conference on

Future Internet Technologies, pp. 21–26, ACM, 2012.

[12] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “Balanceflow: con-

troller load balancing for openflow networks,” in Cloud Computing and

Intelligent Systems (CCIS), 2012 IEEE 2nd International Conference on,

vol. 2, pp. 780–785, IEEE, 2012.

[13] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,

R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, et al., “Onix: A distributed

control platform for large-scale production networks.,” in OSDI, vol. 10,

pp. 1–6, 2010.

[14] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane

for openflow,” in Proceedings of the 2010 internet network management

conference on Research on enterprise networking, vol. 3, 2010.

[15] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient

and scalable offloading of control applications,” in Proceedings of the first

workshop on Hot topics in software defined networks, pp. 19–24, ACM,

2012.

[16] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based net-

working with difane,” ACM SIGCOMM Computer Communication Review,

vol. 41, no. 4, pp. 351–362, 2011.

234

[17] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and

S. Banerjee, “Devoflow: Scaling flow management for high-performance

networks,” ACM SIGCOMM Computer Communication Review, vol. 41,

no. 4, pp. 254–265, 2011.

[18] S. Vissicchio, L. Vanbever, and J. Rexford, “Sweet little lies: Fake topolo-

gies for flexible routing,” in Proceedings of the 13th ACM Workshop on Hot

Topics in Networks, p. 3, ACM, 2014.

[19] D. Levin, M. Canini, S. Schmid, and A. Feldmann, “Incremental sdn de-

ployment in enterprise networks,” in ACM SIGCOMM Computer Commu-

nication Review, vol. 43, pp. 473–474, ACM, 2013.

[20] S. Huang, J. Zhao, and X. Wang, “Hybridflow: A lightweight control plane

for hybrid sdn in enterprise networks,” in 2016 IEEE/ACM 24th Interna-

tional Symposium on Quality of Service (IWQoS), pp. 1–2, IEEE, 2016.

[21] B. Kar, E. H.-K. Wu, and Y.-D. Lin, “The budgeted maximum coverage

problem in partially deployed software defined networks,” IEEE Transac-

tions on Network and Service Management, vol. 13, no. 3, pp. 394–406,

2016.

[22] F. N. Farias, J. J. Salvatti, E. C. Cerqueira, and A. J. Abelém, “A proposal

management of the legacy network environment using openflow control

plane,” in 2012 IEEE Network Operations and Management Symposium,

pp. 1143–1150, IEEE, 2012.

[23] C. Hall, D. Yu, Z. li Zhang, J. Stout, A. Odlyzko, A. W. Moore, J. Camp,

K. Benton, and R. Anderson, Collaborating with the enemy on network

management, pp. 154–162. Security Protocols XXII, Springer, 2014.

235

[24] M. Caria, A. Jukan, and M. Hoffmann, “Sdn partitioning: A centralized

control plane for distributed routing protocols,” IEEE Transactions on Net-

work and Service Management, vol. 13, no. 3, pp. 381–393, 2016.

[25] V. Kotronis, X. Dimitropoulos, and B. Ager, “Outsourcing the routing con-

trol logic: Better internet routing based on sdn principles,” in Proceedings

of the 11th ACM Workshop on Hot Topics in Networks, pp. 55–60, ACM,

2012.

[26] Y. Guo, Z. Wang, X. Yin, X. Shi, and J. Wu, “Traffic engineering in sd-

n/ospf hybrid network,” in Network Protocols (ICNP), 2014 IEEE 22nd

International Conference on, pp. 563–568, IEEE, 2014.

[27] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,

J. Wanderer, J. Zhou, M. Zhu, et al., “B4: Experience with a globally-

deployed software defined wan,” ACM SIGCOMM Computer Communica-

tion Review, vol. 43, no. 4, pp. 3–14, 2013.

[28] M. Karakus and A. Durresi, “A survey: Control plane scalability issues

and approaches in software-defined networking (sdn),” Computer Networks,

vol. 112, pp. 279–293, 2017.

[29] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann, “Log-

ically centralized?: state distribution trade-offs in software defined net-

works,” in Proceedings of the first workshop on Hot topics in software de-

fined networks, pp. 1–6, ACM, 2012.

[30] S. Vissicchio, L. Vanbever, L. Cittadini, G. G. Xie, and O. Bonaventure,

“Safe update of hybrid sdn networks,” IEEE/ACM Transactions on Net-

working (TON), vol. 25, no. 3, pp. 1649–1662, 2017.

236

[31] S. Vissicchio, L. Cittadini, O. Bonaventure, G. G. Xie, and L. Vanbever,

“On the co-existence of distributed and centralized routing control-planes,”

in 2015 IEEE Conference on Computer Communications (INFOCOM),

pp. 469–477, IEEE, 2015.

[32] Mukhtar, “Centralization & decentralization.”

http://management4best.blogspot.com/2010/02/centralization-

decentralization.html, February 2010.

[33] R. Garnaut, L. Song, and J. Golley, China: The next twenty years of reform

and development. ANU Press, 2010.

[34] R. A. Musgrave et al., “Theory of public finance; a study in public econ-

omy,” 1959.

[35] W. Oates, “Fiscal federalismharcourt brace jovanovich,” New York, 1972.

[36] R. J. D. Figueiredo and B. R. Weingast, “Self-enforcing federalism,” Jour-

nal of Law, Economics, and Organization, vol. 21, no. 1, pp. 103–135, 2005.

[37] B. R. Weingast, “The constitutional dilemma of economic liberty,” The

Journal of Economic Perspectives, vol. 19, no. 3, pp. 89–108, 2005.

[38] A. O. Bowman and R. C. Kearney, State and local government. Nelson

Education, 2015.

[39] W. F. Ganong and K. E. Barrett, Review of medical physiology. Appleton

—& Lange Norwalk, CT, 1995.

[40] E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. A. Siegelbaum, and A. Hud-

speth, Principles of neural science, vol. 4. McGraw-hill New York, 2000.

237

[41] M. Atzori, “Blockchain technology and decentralized governance: Is the

state still necessary?,” Available at SSRN 2709713, 2015.

[42] M. Crosby, P. Pattanayak, S. Verma, V. Kalyanaraman, et al., “Blockchain

technology: Beyond bitcoin,” Applied Innovation, vol. 2, no. 6-10, p. 71,

2016.

[43] C. Fromknecht, D. Velicanu, and S. Yakoubov, “A decentralized public key

infrastructure with identity retention.,” IACR Cryptology ePrint Archive,

vol. 2014, p. 803, 2014.

[44] S. Mumtaz and J. Rodriguez, Smart device to smart device communication.

Springer, 2014.

[45] M. N. Tehrani, M. Uysal, and H. Yanikomeroglu, “Device-to-device com-

munication in 5g cellular networks: challenges, solutions, and future direc-

tions,” IEEE Communications Magazine, vol. 52, no. 5, pp. 86–92, 2014.

[46] S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and re-

search challenges of hybrid software defined networks,” ACM SIGCOMM

Computer Communication Review, vol. 44, no. 2, pp. 70–75, 2014.

[47] C. Jin, C. Lumezanu, Q. Xu, Z.-L. Zhang, and G. Jiang, “Telekinesis:

controlling legacy switch routing with openflow in hybrid networks,” in

Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined

Networking Research, p. 20, ACM, 2015.

[48] V. Kotronis, X. Dimitropoulos, and B. Ager, “Outsourcing the routing con-

trol logic: Better internet routing based on sdn principles,” in Proceedings

of the 11th ACM Workshop on Hot Topics in Networks, pp. 55–60, ACM,

2012.

238

[49] S. Salsano, P. L. Ventre, L. Prete, G. Siracusano, M. Gerola, and E. Sal-

vadori, “Oshi-open source hybrid ip/sdn networking (and its emulation on

mininet and on distributed sdn testbeds),” in Software Defined Networks

(EWSDN), 2014 Third European Workshop on, pp. 13–18, IEEE, 2014.

[50] J. R. Vacca, Computer and information security handbook. Newnes, 2012.

[51] R. Oppliger, “Internet security: firewalls and beyond,” Communications of

the ACM, vol. 40, no. 5, pp. 92–102, 1997.

[52] S. Hogg, “Is an sdn switch a new form of a firewall?.”

http://www.networkworld.com/article/2905257/sdn/is-an-sdn-switch-

a-new-form-of-a-firewall.html, 2015.

[53] S. RAO, “Opendaylight is one of the best controllers for openstack —

here’s how to implement it.” http://thenewstack.io/opendaylight-is-one-of-

the-best-controllers-for-openstack-heres-how-to-implement-it/, 2015.

[54] P. Floodlight, “Floodlight.” www.projectfloodlight.org.

[55] R. project team, “Ryu sdn framework.” https://osrg.github.io/ryu-

book/en/html/index.html.

[56] M. Suh, S. H. Park, B. Lee, and S. Yang, “Building firewall over the

software-defined network controller,” in Advanced Communication Technol-

ogy (ICACT), 2014 16th International Conference on, pp. 744–748, IEEE,

2014.

[57] H. Hu, G.-J. Ahn, W. Han, and Z. Zhao, “Towards a reliable sdn firewall,”

Presented as part of the Open Networking Summit 2014 (ONS 2014), 2014.

239

[58] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul, “Extend-

ing sdn to handle dynamic middlebox actions via flowtags,” Presented as

part of the Open Networking Summit, vol. 2014, 2014.

[59] K. Thomas, ed., Beginning Ubuntu Linux: From Novice to Professional.

Apress, 2006.

[60] J. Anderson and J. Martin, “Towards a system for controlling client-server

traffic in virtual worlds using sdn,” in Proceedings of Annual Workshop on

Network and Systems Support for Games, pp. 1–2, IEEE Press, 2013.

[61] H. Cho, S. Kang, and Y. Lee, “Centralized arp proxy server over sdn con-

troller to cut down arp broadcast in large-scale data center networks,”

in Information Networking (ICOIN), 2015 International Conference on,

pp. 301–306, IEEE, 2015.

[62] T. Porter, “The perils of deep packet inspection,” Security Focus, 2005.

[63] W. Stallings, “Software-defined networks and openflow,” The internet pro-

tocol Journal, vol. 16, no. 1, pp. 2–14, 2013.

[64] Y. Li and R. Fu, “An parallelized deep packet inspection design in soft-

ware defined network,” in Information Technology and Electronic Com-

merce (ICITEC), 2014 2nd International Conference on, pp. 6–10, IEEE,

2014.

[65] SANS-Institute, “Intrusion detection systems; definition, need and chal-

lenges,” 2001.

240

[66] A. G. P. Lobato, U. da Rocha Figueiredo, and O. Duarte, “An architec-

ture for intrusion prevention using software defined networks,” Universi-

dade Federal do Rio de Janeiro-GTA/COPPE-Rio de Janeiro, Brazil, 2013.

[67] O. Joldzic, Z. Djuric, and D. Vukovic, “Building a transparent intrusion de-

tection and prevention system on sdn,” Norsk informasjonssikkerhetskon-

feranse (NISK), vol. 7, no. 1, 2014.

[68] Z. A. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-fying

middlebox policy enforcement using sdn,” in ACM SIGCOMM Computer

Communication Review, vol. 43, pp. 27–38, ACM, 2013.

[69] Z. Qazi, C.-C. Tu, R. Miao, L. Chiang, V. Sekar, and M. Yu, “Practical

and incremental convergence between sdn and middleboxes,” Open Network

Summit, Santa Clara, CA, 2013.

[70] L. D. Ghein, MPLS Fundamentals. Indianapolis, USA: Cisco Press, 2006.

[71] pmoyer, “Openflow/sdn —& mpls, better together or mutually exclusive?,”

2012.

[72] O. N. Foundation, “Openflow switch specification- version 1.4.0,” 2013.

[73] J.-M. Goyeneche, “Multicast over tcp/ip howto.”

www.tldp.org/HOWTO/Multicast-HOWTO.html#toc2, 2015.

[74] W.-K. Jia and L.-C. Wang, “A unified unicast and multicast routing and

forwarding algorithm for software-defined datacenter networks,” Selected

Areas in Communications, IEEE Journal on, vol. 31, no. 12, pp. 2646–

2657, 2013.

241

[75] A. Iyer, P. Kumar, and V. Mann, “Avalanche: data center multicast using

software defined networking,” in Communication Systems and Networks

(COMSNETS), 2014 Sixth International Conference on, pp. 1–8, IEEE,

2014.

[76] L. Bondan, L. F. Müller, and M. Kist, “Multiflow: Multicast clean-slate

with anticipated route calculation on openflow programmable networks,”

Journal of Applied Computing Research, vol. 2, no. 2, pp. 68–74, 2013.

[77] M. Mahalingam, D. G. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar,

M. Bursell, and C. Wright, “Virtual extensible local area network (vxlan):

A framework for overlaying virtualized layer 2 networks over layer 3 net-

works.,” RFC, vol. 7348, pp. 1–22, 2014.

[78] K. Wanguhu, “Vxlan primer-part 1.” http://www.borgcube.com/blogs/2011/11/vxlan-

primer-part-1/, November 2011.

[79] B. Salisbury, “Configuring vxlan and gre tunnels on open-

vswitch.” http://networkstatic.net/configuring-vxlan-and-gre-tunnels-

on-openvswitch/, July 2, 2012 2012.

[80] D. Mahler, “Vxlan overlay networks with open vswitch.”

https://www.youtube.com/watch?v=tnSkHhsLqpM, 2014.

[81] A. S. Tanenbaum, Quality of Service, ch. 5.4. Computer Networks, Pearson

Educación, 4th edition ed., 2003.

[82] H. E. Egilmez and S. Civanlar, “An optimization framework for qos-

enabled adaptive video streaming over openflow networks,” Multimedia,

IEEE Transactions on, vol. 15, no. 3, pp. 710–715, 2013.

242

[83] A. Ishimori, F. Farias, E. Cerqueira, and A. Abelém, “Control of multiple

packet schedulers for improving qos on openflow/sdn networking,” in Soft-

ware Defined Networks (EWSDN), 2013 Second European Workshop on,

pp. 81–86, IEEE, 2013.

[84] K. Govindarajan, K. C. Meng, H. Ong, W. M. Tat, S. Sivanand, and L. S.

Leong, “Realizing the quality of service (qos) in software-defined network-

ing (sdn) based cloud infrastructure,” in Information and Communication

Technology (ICoICT), 2014 2nd International Conference on, pp. 505–510,

IEEE, 2014.

[85] ONF, “Open networking foundation.”

[86] O. N. Foundation, “Sdn architecture overview - version 1.1,” 2016.

[87] S. Schaller and D. Hood, “Software defined networking architecture stan-

dardization,” Computer Standards & Interfaces, vol. 54, pp. 197–202, 2017.

[88] C. Rotsos, D. King, A. Farshad, J. Bird, L. Fawcett, N. Georgalas,

M. Gunkel, K. Shiomoto, A. Wang, A. Mauthe, et al., “Network service

orchestration standardization: A technology survey,” Computer Standards

& Interfaces, vol. 54, pp. 203–215, 2017.

[89] J. A. Wickboldt, W. P. D. Jesus, P. H. Isolani, C. B. Both, J. Rochol, and

L. Z. Granville, “Software-defined networking: management requirements

and challenges,” Communications Magazine, IEEE, vol. 53, no. 1, pp. 278–

285, 2015.

[90] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story,

and D. Walker, “Frenetic: A network programming language,” in ACM

SIGPLAN Notices, vol. 46, pp. 279–291, ACM, 2011.

243

[91] A. Voellmy, H. Kim, and N. Feamster, “Procera: a language for high-level

reactive network control,” in Proceedings of the first workshop on Hot topics

in software defined networks, pp. 43–48, ACM, 2012.

[92] S. Kuklinski, “Programmable management framework for evolved sdn,” in

Network Operations and Management Symposium (NOMS), 2014 IEEE,

pp. 1–8, IEEE, 2014.

[93] A. Devlic, W. John, and P. Skoldstrom, “A use-case based analysis of net-

work management functions in the onf sdn model,” in Software Defined

Networking (EWSDN), 2012 European Workshop on, pp. 85–90, IEEE,

2012.

[94] Y. Wang and I. Matta, “Sdn management layer: Design requirements and

future direction,” in Network Protocols (ICNP), 2014 IEEE 22nd Interna-

tional Conference on, pp. 555–562, IEEE, 2014.

[95] P. Smith, A. Schaeffer-Filho, D. Hutchison, and A. Mauthe, “Management

patterns: Sdn-enabled network resilience management,” in Network Oper-

ations and Management Symposium (NOMS), 2014 IEEE, pp. 1–9, IEEE,

2014.

[96] A. Schaeffer-Filho, P. Smith, A. Mauthe, D. Hutchison, Y. Yu, and M. Fry,

“A framework for the design and evaluation of network resilience manage-

ment,” in Network Operations and Management Symposium (NOMS), 2012

IEEE, pp. 401–408, IEEE, 2012.

[97] W. Han, H. Hu, and G.-J. Ahn, LPM: Layered Policy Management for

Software-Defined Networks, pp. 356–363. Data and Applications Security

and Privacy XXVIII, Springer, 2014.

244

[98] P. Kazemian, “Header space library.” https://bitbucket.org/peymank/hassel-

public/wiki/Home, July 2014.

[99] A. Shalimov, D. Morkovnik, S. Nizovtsev, and R. Smeliansky, “Easy-

way: simplifying and automating enterprise network management with

sdn/openflow,” in Proceedings of the 10th Central and Eastern European

Software Engineering Conference in Russia, p. 8, ACM, 2014.

[100] S. Kuklinski and P. Chemouil, “Network management challenges in

software-defined networks,” IEICE Transactions on Communications,

vol. 97, no. 1, pp. 2–9, 2014.

[101] S. Sasidharan and S. K. Chandra, “Defining future sdn based network man-

agement systems characterization and approach,” in Computing, Commu-

nication and Networking Technologies (ICCCNT), 2014 International Con-

ference on, pp. 1–5, IEEE, 2014.

[102] P. Patil, A. Gokhale, and A. Hakiri, “Bootstrapping software defined net-

work for flexible and dynamic control plane management,” in Proceedings of

the 2015 1st IEEE Conference on Network Softwarization (NetSoft), pp. 1–

5, IEEE, 2015.

[103] F. S. Systems, “Fcaps,” 2005.

[104] LinuxFoundation, “Opendaylight.” www.opendaylight.org.

[105] P. Song, Y. Liu, T. Liu, and D. Qian, “Controller-proxy: Scaling net-

work management for large-scale sdn networks,” Computer Communica-

tions, vol. 108, pp. 52–63, 2017.

245

[106] H. Zhang and J. Yan, “Performance of sdn routing in comparison with

legacy routing protocols,” in 2015 International Conference on Cyber-

Enabled Distributed Computing and Knowledge Discovery, pp. 491–494,

IEEE, 2015.

[107] D. Sankar and D. Lancaster, “Routing protocol convergence comparison

using simulation and real equipment,” Advances in Communications, Com-

puting, Networks and Security, vol. 10, pp. 186–194, 2013.

[108] M. Abdulkadhim, “Routing protocols convergence activity and protocols

related traffic simulation with it’s impact on the network,” International

Journal of Science, Engineering and Computer Technology, vol. 5, no. 3,

p. 40, 2015.

[109] D. Pei, B. Zhang, D. Massey, and L. Zhang, “An analysis of convergence

delay in path vector routing protocols,” Computer Networks, vol. 50, no. 3,

pp. 398–421, 2006.

[110] P. Lapukhov, “Ospf fast convergence, ine.”

http://blog.ine.com/2010/06/02/ospf-fast-convergenc/.

[111] D. Gopi, S. Cheng, and R. Huck, “Comparative analysis of sdn and con-

ventional networks using routing protocols,” in 2017 International Confer-

ence on Computer, Information and Telecommunication Systems (CITS),

pp. 108–112, IEEE, 2017.

[112] I. CNET Networks, “Understanding the protocols underlying dynamic rout-

ing.” https://www.techrepublic.com/article/understanding-the-protocols-

underlying-dynamic-routing/.

246

[113] Y. Tsegaye and T. Geberehana, “Ospf convergence times”,

master’s thesis, department of computer science and en-

gineering, chalmers university of technology, sweden.”

https://pdfs.semanticscholar.org/200f/c654519d0be791b5a4523fc0226043bb4dfa.pdf.

[114] Ruhann, “Ospf convergence.” https://routing-bits.com/2009/08/06/ospf-

convergence/.

[115] V. Balakrishnan, “Graph theory (schaum’s outline),” 1997.

[116] M. C. Golumbic, Algorithmic graph theory and perfect graphs, vol. 57. El-

sevier, 2004.

[117] D. A. Patterson and J. L. Hennessy, Computer organization and design

MIPS edition: the hardware/software interface. Newnes, 2013.

[118] S. Ghimire, R. Ghimire, and G. B. Thapa, “Mathematical models of

mb/m/1 bulk arrival queueing system,” Journal of the Institute of En-

gineering, vol. 10, no. 1, pp. 184–191, 2014.

[119] E. M. S. Springer Verlag GmbH, “Exponential distribution - encyclopedia

of mathematics.”

[120] U. o. S. C. Network System Lab, “Mininext.” https://github.com/USC-

NSL/miniNExT.

[121] M. Kuźniar, P. Pereš́ıni, and D. Kostić, “What you need to know about sdn

flow tables,” in International Conference on Passive and Active Network

Measurement, pp. 347–359, Springer, 2015.

[122] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in

247

campus networks,” ACM SIGCOMM Computer Communication Review,

vol. 38, no. 2, pp. 69–74, 2008.

[123] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,

“A survey of software-defined networking: Past, present, and future of pro-

grammable networks,” IEEE Communications Surveys & Tutorials, vol. 16,

no. 3, pp. 1617–1634, 2014.

[124] Cisco, “Enterprise networks: Practical differences in lan and wan

sdn deployments.” https://blogs.cisco.com/enterprise/enterprise-networks-

practical-differences-in-lan-and-wan-sdn-deployments.

[125] A. Darabseh, M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa, M. Vouk, and

A. Rindos, “Sddc: A software defined datacenter experimental framework,”

in 2015 3rd International Conference on Future Internet of Things and

Cloud, pp. 189–194, IEEE, 2015.

[126] C. Buragohain and N. Medhi, “Flowtrapp: An sdn based architecture for

ddos attack detection and mitigation in data centers,” in 2016 3rd Inter-

national Conference on Signal Processing and Integrated Networks (SPIN),

pp. 519–524, IEEE, 2016.

[127] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G.

Rabbani, Q. Zhang, and M. F. Zhani, “Data center network virtualiza-

tion: A survey,” IEEE Communications Surveys & Tutorials, vol. 15, no. 2,

pp. 909–928, 2012.

[128] K. Golani, K. Goswami, K. Bhatt, and Y. Park, “Fault tolerant traffic engi-

neering in software-defined wan,” in 2018 IEEE Symposium on Computers

and Communications (ISCC), pp. 01205–01210, IEEE, 2018.

248

[129] O. Michel and E. Keller, “Sdn in wide-area networks: A survey,” in

2017 Fourth International Conference on Software Defined Systems (SDS),

pp. 37–42, IEEE, 2017.

[130] R. Ahmed and R. Boutaba, “Design considerations for managing wide

area software defined networks,” IEEE Communications Magazine, vol. 52,

no. 7, pp. 116–123, 2014.

[131] K. Phemius and M. B. Thales, “Openflow: Why latency does matter,” in

2013 IFIP/IEEE International Symposium on Integrated Network Manage-

ment (IM 2013), pp. 680–683, IEEE, 2013.

[132] L. A. Zadeh, G. J. Klir, and B. Yuan, Fuzzy sets, fuzzy logic, and fuzzy

systems: selected papers, vol. 6. World Scientific, 1996.

[133] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,

“On controller performance in software-defined networks,” in Presented as

part of the 2nd {USENIX} Workshop on Hot Topics in Management of

Internet, Cloud, and Enterprise Networks and Services, 2012.

[134] K. Benzekki, A. El Fergougui, and A. Elbelrhiti Elalaoui, “Software-defined

networking (sdn): a survey,” Security and communication networks, vol. 9,

no. 18, pp. 5803–5833, 2016.

[135] K. Casier, S. Verbrugge, R. Meersman, J. Van Ooteghem, D. Colle, M. Pick-

avet, and P. Demeester, “A fair cost allocation scheme for capex and opex

for a network service provider,” in Proceedings of CTTE2006, the 5th Con-

ference on Telecommunication Techno-Economics, 2006.

[136] M. Schmidt, “Capital expenditure (capex) explained.” //www.business-

case-analysis.com/capital-expenditure.html, Retrieved August 10, 2016.

249

[137] H. Levine, “The 2020 wan takes shape – sdn, virtualization, and

hybrid wans.” http://www.networkworld.com/article/2971214/wan-

optimization/the-2020-wan-takes-whape-sdn-virtualization-and-hybrid-

wans.html.

[138] B. Bouchon-Meunier, M. Dotoli, and B. Maione, “On the choice of mem-

bership functions in a mamdani-type fuzzy controller,” 1996.

[139] Flowgrammable, “How to process a packet-in message.”

[140] R. Pujar and I. Camelo, “Path protection and failover strategies in sdn

networks,” Inocybe Technologies”, Open Networking Summit, 2016.

[141] M. Casado, N. Foster, and A. Guha, “Abstractions for software-defined

networks,” Communications of the ACM, vol. 57, no. 10, pp. 86–95, 2014.

[142] R. Izard, “How to process a packet-in message.”

[143] E. Borcoci, “Control plane scalability in software defined networking,” in

InfoSys 2014 Conference, Chamonix, France, 2014.

[144] B. Xiong, X. Peng, and J. Zhao, “A concise queuing model for controller

performance in software-defined networks.,” JCP, vol. 11, no. 3, pp. 232–

237, 2016.

[145] E. [48] Modiano, “Introduction to queueing theory.”

[146] H. Pham, “System reliability concepts,” in System Software Reliability,

pp. 9–75, Springer, 2006.

[147] Y. Belyaev and C. E.V., “Weibull distribution - encyclopedia of mathemat-

ics.”

250

[148] A. Technologies, “Introduction to traffic planning.”

[149] M. Osman, J. Núñez-Mart́ınez, and J. Mangues-Bafalluy, “Hybrid sdn:

Evaluation of the impact of an unreliable control channel,” in 2017 IEEE

Conference on Network Function Virtualization and Software Defined Net-

works (NFV-SDN), pp. 242–246, IEEE, 2017.

[150] “netem.” https://wiki.linuxfoundation.org/networking/netem.

[151] “Floodlight rest api.” https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343539/Floodlight+REST+API.

[152] “ryu.app.ofctlrest.” https://ryu.readthedocs.io/en/latest/app/ofctl rest.html.

[153] “iperf - the ultimate speed test tool for tcp, udp and sctp.” https://iperf.fr.

[154] J. La Fauci, “Plc or dcs: selection and trends,” ISA transactions, vol. 36,

no. 1, pp. 21–28, 1997.

251

