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 In order to embrace the integration of distributed energy resources in distribution 

networks, microgrids are formed. However, despite the significant performance microgrid 

had revealed, it still fails in providing a reliable source of energy especially when operating 

in islanded mode. Therefore, in an attempt to improve reliability and utilize the large 

amount of microgrids implemented, the idea of combining microgrids located in closed 

proximities, thus forming a microgrids community, became more attractive. 

  

 The basic idea behind community microgrid is to connect multiple distributed 

energy resources, owned by several owners, in order to satisfy the community’s energy 

demand in the most feasible and reliable manner. However, one of the major obstacles 

faced when forming a microgrid community is developing its market model. Each 

microgrid or distributed energy resource within a microgrid community is owned by a 

certain owner, thus implementing a microgrid community must be accompanied by 

developing a market model which governs the energy traded between its participants. 

  

 The following work illustrates a study made to test the potential of implementing 

community microgrid in distribution networks characterized by scheduled blackouts and 

heavy diesel reliance. Achieving such objective, two main steps are to be implemented. The 

first one aims to optimize each microgrid with an optimal energy resources configuration 

along with an optimal dispatch strategy that minimizes each microgrid’s daily operational 

cost. The second step aims to test the applicability and attractiveness of connecting these 

microgrids together through forming a suitable pool-based day-ahead energy market.   

 

 Assessing the attractiveness of the proposed market is to be demonstrated through 

checking each microgrid’s participation profile in the proposed market model, along with 

its new annual operational cost. 
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CHAPTER I 

INTRODUCTION 

 

 As the environmental awareness is being raised and knowing the fact that 

conventional power systems’ cost of energy is expected to increase, the need for a new, 

more environmentally friendly energy system is rising. Several countries are exhibiting 

transitions from fuel fired centralized electricity generation toward renewable based 

distributed power generations. 

 The continuous reduction in renewable system’s energy production costs, especially 

photovoltaic systems [1], made their integration more attractive. Through which their 

contribution among the total power generated capacity is expected to increase significantly 

as we reach 2050 [2]. 

 However, renewable sources are intermittent, thus their continuous fluctuations can 

greatly affect the network’s voltage and frequency, and therefore, reduce power quality and 

reliability. That is why energy storage systems were utilized to cope with such integration 

and reduce intermittency effects. 

 As the integration of such technologies, and combining them with the conventional 

ones, is getting wider, a new energy system was formed. This system is called a microgrid 

(MG). 

 

A. Defining Microgrids (MG) 
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 Microgrid can be defined as a group of distributed energy resources and 

interconnected loads with clearly stated electrical limits. Such group acts as a single and 

controllable entity with respect to the grid. It can operate in both off-grid and grid 

connected modes as to assure a reliable and economic power supply to its local prosumers. 

It ranges from two small generators supplying a certain load, to a group of generators 

supplying power to a university campus, small village, mall or a hospital. 

 Heavy research studies had been implemented on optimizing microgrids from a 

sizing, siting and energy dispatch point of view. Such research revealed the significant 

ability of microgrids to embrace distributed energy resources and improve network’s 

performance, affordability and reliability. 

 

B. Defining Microgrids Community (MGC) 

 Despite the improvements attained in cost, reliability and sustainability of energy 

sector, the performance of the microgrid is still hindered due to several limitations such as 

spatial, economic, technical, etc… Such limitations can be clearly observed when 

microgrids are operating in islanded mode. Thus, in an attempt to improve the network’s 

performance and making use of the wide integration of distributed energy resources, the 

idea of forming microgrids community (MGC) was suggested. 

 The basic principle behind MGC is to supply various loads through distributed 

energy resources owned by several owners. The objective of such cooperation is to increase 

the electric services’ reliability and resiliency such that optimal economic and societal goals 

are achieved while satisfying the demand. Similar to MG, MGC not only operate in grid 
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connected mode, but it can also detach from large grids and operate in islanded mode. In 

order to differentiate MGCs from MGs, MGC is characterized by the following: 

1. It must contain at least 2 MGs. 

2. MGs in MGC must be owned by different owners, thus each MG has its own 

operational goals. 

3. MGs in MGC must be in closed proximities. 

Since “MGs in MGC must be owned by different owners”, its implementation can’t be done 

without forming a suitable market model governing the exchanged energy among its 

participants. However, the market model shouldn’t only deal with exchanged energy from 

technical or economic perspective, but it should also account for each MG’s security. 

 The following study will be organized as follows: chapter II provides a literature 

review about the most recent studies involving microgrids and microgrids community, 

chapter III describes the problem that this work is tackling, modelling of the entire system 

is discussed in chapter IV, methodologies and algorithms utilized are discussed in chapter 

V, results are provided in chapter VI, and finally conclusions and future work are drawn in 

chapter VII. 
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CHAPTER II 

LITERATURE REVIEW 

 

A. Microgrids 

1. Literature Related to Impacts of Implementing Microgrids in Distribution Network 

 To strike a balance between the effect of intermittent sources and providing reliable 

form of energy, the need for cost effective energy storage (ES) and energy management 

systems (EMS) have been the focus of research. For instance, [3] suggested that the 

problems associated with the integration of non-dispatchable distributed generations can be 

eliminated by an appropriate battery energy storage system. The approach was based on 

finding the optimal planning of battery-coupled distributed PV generators (BCDPGs) based 

on finding its optimal size, location and battery’s dispatching strategy that yields minimum 

energy losses. Results of that study revealed that such implementation was cable of 

reducing network’s energy losses by approximately 41% and voltage deviations by almost 

36% while increasing clean energy penetration to approximately 50%. A further study 

about sizing and allocating of energy storage was conducted in [4], where the study 

revealed that the optimal storage system configuration achieved significant reduction in the 

daily cost of energy and in the network’s energy losses while accounting for the network’s 

voltage. Similarly, studies done in [5] - [8] discussed the advantages attained due to proper 

sizing, siting and dispatch strategy of a battery storage system that yields minimum 

operational cost and power losses while mitigating the impact of voltage fluctuations due to 

PV penetrations. 
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2. Literature Discussing Different Optimal Sizing, Siting and Dispatch Approaches 

 Integer variables, used to decide components’ locations or states, and non-convex 

power flow constraints make the optimal power flow (OPF) problem NP-hard, thus 

different approaches have been devised to solve such problem and alleviate the 

computational burdens. Although sizing and siting problems are mostly solved through 

heuristic approaches, OPF problem is observed to be solved through 2 different approaches: 

(1) convex approximations and (2) heuristic approach. 

 Several convex approximations have been made to the OPF problem, where 

different utilized programming algorithms, such as quadratic and quadratically constrained 

programming, 2nd order cone programming, semi definite programming etc…, were 

proven to be an applicable approach [9] – [16]. 

 Similarly speaking significant number of studies were based on utilizing heuristics, 

for instance, [17] proposed a dual loop optimization method combined with electron 

drifting algorithm for sizing and dispatching of battery energy storage system (BESS) in 

distribution grid with photovoltaic (PV) generation. Whereas, [18] and [19] discussed the 

use of particle swarm optimization (PSO) technique to converge to an optimal battery 

storage system siting, sizing and dispatch that would minimize energy losses while 

reaching the desired smoothing power level in distribution networks with renewable 

generations. Unlike the last-mentioned references, the utilization of PSO in [20], to 

converge to an optimal real time energy management battery control action of a known 

battery storage capacity, resulted in a 44.5% reduction in energy cost. [21] – [25] proposed 

the use of genetic algorithm (GA) optimization approach to converge to an optimal size, 

site and energy dispatch strategy of distributed energy resources that minimizes energy 
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losses, voltage fluctuations due to high renewable penetration levels, and operational cost in 

distribution networks. On the other hand, [26] and [27] demonstrated a multi-objective 

optimization approach, also solved through utilizing GA, for optimal sizing and siting of 

energy storage systems in distribution networks. The former study was aimed to reduce 

peak power and energy losses while minimizing the investment cost, whereas the latter 

accounted for energy losses, investment cost and carbon emissions. 

 All of the previously mentioned studies, plus plenty more, had revealed how 

“Microgrids” can effectively embrace distributed energy resources (DERs) in distribution 

networks (DNs) and address the associated energy economic issues by making electricity 

grid smarter through optimal DERs’ configurations and optimal energy management 

schemes. However, despite the great results observed, network’s reliability is still 

questioned. For instance, the study made in [28], showed that although the optimal 

operation strategy of a hybrid PV-Battery system resulted in energy cost reduction and 

improved reliability, it still fails to secure 100% demand coverage under grid blackouts. 

Therefore, it’s obvious that when a single MG operates in islanded mode, the reliability of 

satisfying its local demand is hindered due to financial, spatial and technical limitations on 

the DERs’ capacities installed. 

 

B. Microgrids Community (MGC) 

 As the number of microgrids is increasing and as a proposed solution to enhance the 

network’s reliability, the concept of “Microgrids Community” (MGC) was introduced. 

MGC is achieved through connecting MGs in close geographical proximity, leading to 
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further improvements in the network’s reliability, especially during islanded mode, through 

energy scheduling and reciprocity among these MGs. 

 The main difference between simulating a MG and an MGC is the need for an 

appropriate market model. Most of the MG’s optimization scenarios were based on DERs 

owned by a single party and the focus was on reducing the MG’s daily operational cost and 

maintaining a good quality electricity. However, MGC is a group of MGs and each one is 

owned by a different owner; thus, each prosumer seeks his/her own benefit. Therefore, the 

need for a market model that satisfies all MGs is essential for developing an active MGC. 

 Several studies focused on MGCs and different markets and dispatching criteria 

were discussed in the literature. For instance, [29] proposed the use of a game-theoretic 

model for a peer-to-peer (P2P) energy trading market between prosumers within a 

community. The authors separated such modelling into two separate competitions. The first 

one represents the price competition among the sellers which was modelled as a non-

cooperative game. While the second one represents the seller selection competitions among 

the buyers where evolutionary game theory was utilized. When comparing the results of the 

proposed market model to the results of a peer-to-grid model, significant reduction in cost 

was observed for all participating peers. Game theory was also adopted in [30] which 

proposed a 3-dimensional system architecture for the modelling of a P2P energy trading 

market through utilizing non-cooperative bidding. The 1st dimension was divided into 4 

layers containing the physical components layer, communication layer, control layer and 

the business layer. Whereas the 2nd and 3rd dimensions described the size of peers 

participated and the time sequence of the P2P energy trading process respectively. The 

implementation of the proposed approach yielded significant reduction: (1) in the 
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exchanged power between a microgrid and the utility grid and (2) in the peak demand 

observed by the utility grid, thus reducing grid dependency. Also utilizing game theory, 

reference [31] demonstrated the use of a hybrid multi-leader (sellers) multi-follower 

(buyers) Stackelberg game and a minimizing consumers’ bill and carbon emissions. 

Reference [32]-[33], on the other hand, proposed another P2P market model based on 

allowing surplus energy to be shared between prosumers in a neighborhood. The energy 

requirement of the community was performed through an aggregated small-scale battery 

control system. The objective of such energy management system was to maximize the 

community’s energy self-consumption, thus reducing grid’s dependency and minimizing 

the energy cost of the entire community. Upon comparing the proposed P2P model with the 

P2G model, results revealed the formers superiority over the latter through which energy 

self-consumption increased by approximately 30% with a 34% reduction in the 

community’s energy cost. A different market model illustrated in [34] utilized a two-step 

approach to develop an energy market operating in a grid. The first one utilized dynamic 

programming (DP) in order to perform an economic dispatch for each agent within the grid 

which were used to derive the bids. Whereas the second one dealt with the market behavior 

aiming to calculate the electricity spot price during each hour. Market clearing price was 

found by the market operator through achieving load generation balancing. Unlike others, 

reference [35] discussed the implementation of an open market business model among 

multiple stakeholders to develop the basics of a future flexible retail energy market in 

community microgrids. Different pricing strategies (Time of Use (ToU), Feed in Tariff 

(FIT), and Fixed Price (FP)) were combined in the market model such that each DER 

owner may sell power to the community microgrid either on FIT, FP or as per ToU. 
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Similarly, each customer is assumed to have an opportunity for a reliable and a cost-

effective supplier selection. Utilizing GA to decide on the hourly dispatch, the results 

revealed that all stakeholders had the advantage of participating in such market. Whereas 

the revenues attained by the grid decreased slightly, since that amount of power purchased 

from the grid is now supplied by one of the stakeholders. Authors in [36] suggested the use 

of blockchain-assisted distributed double auction trading platform to facilitate the P2P 

trading between prosumers in a LV network. The proposed methodology was tested on an 

unbalanced 3 phase European LV network, where results revealed that a moderate level of 

P2P trading doesn’t have a significant influence on the network’s performance, since upon 

implementing the proposed approach, insignificant variations were observed in phase 

voltage unbalance rate and active power losses as compared with the base scenario. The use 

of blockchain for decentralizing transactive energy management was also analyzed in [37] 

to guarantee a secure, scalable and efficient market. Authors in [37] had reached to a 

conclusion assuring that blockchain technologies embedded in transactive energy will play 

a vital role in the transition toward an active distribution network. Reference [38] proposed 

a timely discrete sealed double-sided auction to govern energy transactions between sellers 

and buyers in a distribution network. The implementation of the proposed approach 

resulted in: (1) an increase in self-consumption of the network and (2) a 23% reduced 

energy costs. Reference [39] investigated the impacts of optimizing rooftop photovoltaic 

distributed generations with battery storage under P2P energy trading platform. Mixed 

integer linear programming was utilized in order to minimize the net cost of the 

community, where the results revealed savings up to 28% for households equipped with 

large photovoltaic systems and battery storages. However, results also revealed that 
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households with photovoltaic systems have lower savings during excessive PV penetration, 

due to their low price and its impact on the lowering market clearing price. A two-stage 

stochastic bidding optimization strategy for microgrid energy market participation is 

proposed in [40]. The first stage dealt with optimizing the bidding strategy in the day-ahead 

market, whereas in the second stage, and according to the market clearing results, the MG 

re-optimizes its power generation plan in order to further reduce its daily cost. 

 Unlike the previously mentioned literature [41] provided a thorough description of 

MGCs, as well as a hierarchical energy management system controlling the MGC without 

diving into a detailed market model. The authors in [41] divided the energy management 

system controlling the MGC into a two-level hierarchical approach. The lower level, to be 

executed first, focuses on individual MGs, where it optimizes the power output of MGs’ 

dispatchable units and the exchanged power with the upper network. Whereas the upper 

level, takes the lower level’s results as constraints and decides on the microgrid community 

level devices’ (MCLDs) dispatch and the exchanged power between MGs. The proposed 

methodology was tested under 4 different operating scenarios, where results revealed the 

superiority of the scenarios during which the MGC was operating under interconnected 

mode. 

  



11 
 

CHAPTER III 

PROBLEM FORMULATION 

 

 The literature provided in chapter II reveals the ability of MGs to embrace 

distributed energy resources and significantly improve the network’s performance 

economically and technically. As can be observed from the provided literature, most studies 

were performed to deduce the benefits of optimizing a microgrid either operating under a 

reliable grid operation or in islanded operation. However, very few studies, as per the 

author’s knowledge, discussed the operation of a microgrid under grid blackouts, as the 

case in developing countries. Similarly, when MGC’s performance was studied and 

different market models were tested, none of the literature studies developed a market 

model suitable for developing countries were the grid is unreliable, and DERs might not be 

able to cover the entire network’s demand as the case in [28]. 

 The study performed in [28] had revealed an important limitation of a MG. Despite 

the significant reduction in the total daily hours of power loss, it wasn’t able to assure a 

continuous power supply due to several reasons (cost and available spaces). Needless to 

mention, such results were attained for a residential load, but what would be the case if it 

was a critical load such as hospitals, pharmacies, schools, university campuses, malls or 

other major loads that affect the society. Obviously, due to spatial, economic and 

environmental limitations, MGs might fail providing a reliable and a continuous power 

supply to such loads. 
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 Therefore, this study aims first to test the applicability and attractiveness of 

implementing DERs in distribution networks operating under unreliable grid. Then study 

the influence of building a suitable decision-based day ahead market mode on the 

distribution network’s performance. 

 An IEEE 123 bus test feeder is taken to be the platform for such implementation, 

where it will be divided into 24 light loads and 6 major MGs (3x residential microgrids 

(RMGs), a hospital, a mall and a university campus). Initially, the distribution network is 

assumed to be supplied by an unreliable grid and private sectors’ diesel generators (DG) 

with limited capacities. 

 The first task will deal with optimizing the performance of each of the 6 MGs 

through converging to an optimal photovoltaic (PV) and battery storage system (BSS) 

configurations (only for hospital, mall and university campus) along with a suitable energy 

management system that aims to supply 100% reliable source of energy with the least 

possible operating cost and diesel dependency. 

 The second step aims to develop a suitable decision-based day ahead market model 

that tests the attractiveness of allowing MGs to exchange energy among themselves. 

Comparison between both operations will be done based on discussing the technical, 

environmental and financial merits achieved in both operating scenarios. 
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CHAPTER IV 

SYSTEM MODELLING 

 

 Modelling the entire system is illustrated through a three-dimensional architecture 

as depicted in figure 1. The first dimension involves the key functions of the modelled 

distribution network and consists of 4 layers. The distribution network’s physical layer is 

the first layer. This layer contains all components found in the distribution network 

including feeders, loads, distributed energy resources, smart meters, etc… The second layer 

is the information and communication technology which consists of communication 

devices, protocols and information flow. The control layer is the third layer which mainly 

describes the strategies for preserving high-quality and reliable power supply while 

adjusting the actual exports to be the same as the scheduled ones. Such layer contains load 

control, frequency control, voltage control etc... The fourth and last layer is the energy 

market layer. This layer defines the energy market participants and illustrates the trading 

strategy process among them. The second dimension, in the proposed system’s architecture, 

categorizes loads and distributed energy resources in the distribution network based on their 

size. While, the third and last dimension, organizes the time sequence of the proposed 

energy trading market model. This layer organizes bidding process, energy trading 

agreements, energy exchanging and settlement processes. 
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Fig. 1: System's architecture 

 

 

A. 1st Dimension 

1. Physical Components Layer 

a. IEEE 123 Bus Distribution Network 

 The IEEE 123 distribution network is selected to be the platform of the suggested 

study. However, to serve the paper’s objective and for simplicity, few modifications were 

made to the original IEEE 123 test feeder such that switches, transformers and capacitor 

banks were removed and a main switch was added to the distribution network to represent 

the fact that such network is supplied by an unreliable grid characterized by blackouts as 
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shown in figure 2. Also, for simplification, the network is assumed to be perfectly balanced 

and connected through underground cables having the characteristics shown in table 1. 

 

 
Fig. 2: Modified IEEE 123 distribution network 

 

Table 1: Distribution network's cables characteristics 

r (Ω/mile) x (Ω/mile) b (μs/mile) 

1.521 0.752 67.22 
 

 

b. Grid Modelling 

 The distribution network is assumed to operate under an unreliable grid 

characterized by scheduled daily blackouts. The grid’s assigned energy outage is set to 3 

hours a day. Daily scheduled outage occurs at certain periods as shown in table 2. 
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Table 2: Scheduled daily grid's outage 

Blackout Timing # 1 07:00 am to 10:00 am 

Blackout Timing # 2 10:00 am to 13:00 pm 

Blackout Timing # 3 13:00 pm to 04:00 pm 

Blackout Timing # 4 04:00 pm to 07:00 pm 

 

 

 However, although blackouts are assumed to be scheduled, there still exist the 

possibility of unpredicted daily blackouts or even no blackouts to occur. A pie chart 

depicting the frequency of grid’s outage based on its daily duration is provided in figure 3. 

 

 

Fig. 3: Grid's daily blackout frequency based on its daily duration 

 

Two different grid tariff rating schemes are adopted in this study. Loads representing 

university campus, mall and hospital are subjected to a triple tariff rate scheme. Whereas, 
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light and residential loads are subjected to a fixed grid tariff rate. Both tariff rate schemes 

adopted are shown in table 3.  

 

Table 3: Grid's tariff rates schemes 

 Triple Tariff Rates Fixed Tariff Rate 

Night Tariff 0.053 $/kWh 

0.133 $/kWh Mid-day Tariff 0.073 $/kWh 

Peak Tariff 0.213 $/kWh 

 

 

In order to model grid blackouts, a binary operator (Λ) will be assigned to the power 

supplied by the grid, such that when Λ is high (1), the grid is ON and when Λ is low (0), 

the grid is OFF. Therefore, the grid output power will be represented using the following 

equation: 

 

𝑃𝐺𝑟𝑖𝑑(𝑡) = Λ(𝑡) × 𝑃𝐺(𝑡) = {  
𝑃𝐺(𝑡)                         𝑓𝑜𝑟 Λ = 1
0                                𝑓𝑜𝑟 Λ = 0

 (1) 

 

Where PGrid (t) is the power supplied (in kW) by the grid at any time t and Λ(t) is a binary 

operator that represents the grid state at any time t. 

 

c. Diesel Generator Modelling 
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 The presence of a reliable and dispatchable electric power source, in the absence of 

reliable grid, is essential in any hybrid power system. Since the grid under study, is 

characterized by scheduled blackouts, diesel engine generators are considered to be 

available to enhance the network’s ability to compensate for energy outage.  

 Modelling diesel generators requires the following information: diesel generator’s 

capital cost, diesel fuel price, diesel generator’s rated power, diesel generator’s fuel 

consumption and its operation and maintenance cost [42] [43] [44]. Once obtaining such 

info, the following set of equations can be used to model the diesel generator set: 

 

𝐹𝐶(𝑡) =  𝛼 𝑃𝐷𝑔(𝑡) +  𝛽𝑃𝐷𝑔,𝑟𝑎𝑡𝑒𝑑 (2) 

𝐶𝐹(𝑡) =  𝐹𝐶(𝑡) × 𝜓(𝑡) 
(3) 

𝐶𝐶𝐷𝐺 = 𝑓(𝑃𝐷𝑔,𝑟𝑎𝑡𝑒𝑑) 
(4) 

𝑂𝑀𝐷𝐺 = 𝑓 (∑ 𝑃𝐷𝑔(𝑡)

𝑇

𝑡=𝑡1

) 
(5) 

𝐶𝑅𝐹(𝑖, 𝑁) =
𝑖 × (1 + 𝑖)𝑁

(1 + 𝑖)𝑁 − 1
 

(6) 

𝐴𝑃𝐷𝐺 = 𝐶𝐶𝐷𝐺 × 𝐶𝑅𝐹(𝑖, 𝑁) + 𝑂𝑀𝐷𝐺  
(7) 

𝐶𝑂𝐸𝐷𝐺 =
𝐴𝑃𝐷𝐺

∑ 𝑃𝐷𝑔(𝑡)
𝑇
𝑡=𝑡1

 
(8) 
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 Where, FC is the fuel consumption (in L) at time t, PDg and PDg,rated are the actual 

output power and rated power of the diesel generator respectively (in kW), α and β are fuel 

consumption coefficients, CF is the diesel fuel cost of the diesel generator (in $) at time t 

and \psi is the diesel cost (in $/L) at time t. CCDG and OMDG are diesel generator’s capital 

cost and operation and maintenance cost (in $). CRF is the capital recovery factor at an 

interest rate “i” for an “N” period loan, APDG is the annual payment (assuming that capital 

cost is fully covered through a bank loan) and COEDG is the diesel generator’s cost of 

energy (in $/kWh). 

 

d. Photovoltaic Modelling 

 PV output can be modelled using the following equations 9 to 22  [45] [46] 

[47][48]: 

 

𝑃𝑃𝑉,𝐴𝐶(𝑡) = 𝑃𝑉𝑜𝑢𝑡(𝑡)  × 𝜂𝑖𝑛𝑣 
(9) 

𝑃𝑉𝑜𝑢𝑡(𝑡) = 𝐹𝐹(𝑡) × 𝐼𝑠𝑐(𝑡) × 𝑉𝑜𝑐(𝑡) 
(10) 

𝐼𝑠𝑐(𝑡) =  
𝑠

𝑠𝑆𝑇𝐶
 [ 𝐼𝑠𝑐,𝑆𝑇𝐶 + 𝐾𝑖(𝑇𝑐(𝑡) − 25)] 

(11) 

𝑉𝑜𝑐(𝑡) =  𝑉𝑜𝑐,𝑆𝑇𝐶 − 𝐾𝑣  × (𝑇𝑐(𝑡) − 25) 
(12) 

𝐹𝐹(𝑡) = 𝐹𝐹0(𝑡)  × [ 1 − 𝑟𝑠(𝑡)] 
(13) 

𝐹𝐹0(𝑡) =  
𝑉𝑜𝑐,0(𝑡) − ln[ 𝑉𝑜𝑐,0(𝑡) + 0.72] 

𝑉𝑜𝑐,0(𝑡) + 1
 (14) 
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𝑉𝑜𝑐,0(𝑡) =  𝑉𝑜𝑐(𝑡)  ×  
𝑞

𝑛𝑘[𝑇𝑐(𝑡) + 273.15]
 (15) 

𝑟𝑠(𝑡) = 𝑅𝑠
𝐼𝑠𝑐(𝑡)

𝑉𝑜𝑐(𝑡)
 

(16) 

𝑇𝑐(𝑡) = 𝑇𝑎(𝑡) + 𝑠
𝑁𝑂𝐶𝑇 − 20

0.8
 

(17) 

𝑅𝑠 = 𝑅𝑠,𝑆𝑇𝐶 = 𝑟𝑠,𝑆𝑇𝐶  
𝑉𝑜𝑐,𝑆𝑇𝐶
𝐼𝑠𝑐,𝑆𝑇𝐶

 (18) 

𝑟𝑠,𝑆𝑇𝐶 = 1 − 
𝐹𝐹𝑆𝑇𝐶

𝐹𝐹0,𝑆𝑇𝐶
  (19) 

𝐹𝐹𝑆𝑇𝐶 = 
𝑉𝑚𝑝𝑝𝑡,𝑆𝑇𝐶  ×  𝐼𝑚𝑝𝑝𝑡,𝑆𝑇𝐶

𝑉𝑜𝑐,𝑆𝑇𝐶  ×  𝐼𝑠𝑐,𝑆𝑇𝐶
 (20) 

𝐹𝐹0,𝑆𝑇𝐶 = 
𝑉𝑜𝑐,0,𝑆𝑇𝐶 − ln[ 𝑉𝑜𝑐,0,𝑆𝑇𝐶 + 0.72] 

𝑉𝑜𝑐,0,𝑆𝑇𝐶 + 1
 

(21) 

𝑉𝑜𝑐,0,𝑆𝑇𝐶 = 𝑉𝑜𝑐,𝑆𝑇𝐶  ×  
𝑞

𝑛𝑘[𝑇𝑐𝑆𝑇𝐶 + 273.15]
 (22) 

 

 Where, PPV,AC is the AC output power (in kW), PVout(t) is the maximum output 

power (in kW) at any time t, ηinv is inverter efficiency, Isc(t) and Voc(t) are the short circuit 

current (in Amps) and open circuit voltage (in Volts) under operating conditions, s is the 

solar irradiance (kW/m2) at any time t, FF and FF0 are the actual and ideal fill factor of the 

module, Voc,0(t) is the normalized open circuit voltage at any time t, q is the charge of an 

electron, n is the ideality factor assumed equal to 1, k is Boltzmann’s constant, Tc(t) is the 

module’s temperature at any time t (in ˚C), Rs is the module series resistance, rs(t) is the 

normalized module series resistance at any time t, Ta(t) is the module ambient temperature 

(in ˚C) and NOCT is the nominal operating cell temperature (in ˚C) provided by the 
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manufacturer. “rs,STC” is the normalized series resistance under standard test conditions 

(STC), FFSTC and FF0,STC are the actual and ideal fill factor under STC respectively and 

Voc,0,STC is the normalized open circuit voltage under STC. 

 To calculate the hourly output of the PV system, hourly measurements of solar 

irradiance and ambient temperature must be provided. Figures 4 and 5 illustrate the annual 

temperature and irradiance profiles respectively. Using the PV module characteristics, 

provided in table 4, and the set of equation (9)-(22), the output power of the PV module 

selected is shown in figure 6. 

 

 

Fig. 4: Ambient temperature annual profile 
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Fig. 5: Solar irradiance annual profile 

 

Table 4: PV module characteristics [49] 

LG365Q1C-A5 

Voc,STC (V) 42.8 V 

Isc,STC (A) 10.8 A 

Vmppt, STC (V) 36.7 V 

Imppt, STC (A) 9.95 A 

NOCT (˚C) 44 ˚C 

Kv (V/˚C) -0.10272 V/˚C 

Ki (A/˚C) 4.00E-03 A/˚C 

Dimensions (mm3) 1700 x 1016 x 40 
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Fig. 6: PV module annual output power profile 

 

PV’s financial modelling is illustrated in the following set of equations (23)-(26): 

 

𝐶𝐶𝑃𝑉 = 𝑓(𝑃𝑟𝑎𝑡𝑒𝑑
𝑃𝑉 ) (23) 

𝑂𝑀𝑃𝑉 = 𝑓(𝑃𝑟𝑎𝑡𝑒𝑑
𝑃𝑉 ) (24) 

𝐴𝑃𝑃𝑉 = 𝐶𝐶𝑃𝑉 × 𝐶𝑅𝐹(𝑖, 𝑁) + 𝑂𝑀𝑃𝑉 (25) 

𝐶𝑂𝐸𝑃𝑉 =
𝐴𝑃𝑃𝑉

∑ 𝑃𝑃𝑉(𝑡)𝑇
𝑡=𝑡1

 (26) 
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 Where, PPV
rated, CCPV, OMPV, APPV, and COEPV are PV system’s rated capacity (in 

kW), capital cost (in $), operation and maintenance cost (in $), annual loan payment (in $) 

and cost of energy (in $/kWh) respectively. 

e. Battery Storage System Modelling 

 Equations 27 to 33 are used to model the battery storage system [52]. 

 

P𝐴𝐶
BSS(t) =   {

𝑃𝐷𝐶
𝐵𝑆𝑆(𝑡)

η𝐵𝑆𝑆
                                               𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔

𝑃𝐷𝐶
𝐵𝑆𝑆(𝑡) × 𝜂𝐵𝑆𝑆                               𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

 (27) 

𝑃𝐷𝐶(𝑡)
𝐵𝑆𝑆 =

𝐸𝐵𝑆𝑆(𝑡) − 𝐸𝐵𝑆𝑆(𝑡 − ∆𝑡)

∆𝑡
 (28) 

𝑆𝑂𝐶(𝑡) =

{
 
 

 
 𝑆𝑂𝐶(𝑡 − ∆𝑡) × (1 − 𝑎) + η𝐵𝑆𝑆

𝑃𝐴𝐶
𝐵𝑆𝑆(𝑡)

𝐶𝐵𝑆𝑆 × 𝑉 × 𝑆𝑂𝐻(𝑡)
∆𝑡                      𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔

𝑆𝑂𝐶(𝑡 − ∆𝑡) × (1 − 𝑎) +
𝑃𝐴𝐶
𝐵𝑆𝑆(𝑡)

η𝐵𝑆𝑆 × 𝐶𝐵𝑆𝑆 × 𝑉 × 𝑆𝑂𝐻(𝑡)
∆𝑡            𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

 (29) 

𝐶𝐶𝐵𝑆𝑆 = 𝑓(𝑃𝑟𝑎𝑡𝑒𝑑
𝐵𝑆𝑆 ) (30) 

𝑂𝑀𝐵𝑆𝑆 = 𝑓(𝑃𝑟𝑎𝑡𝑒𝑑
𝐵𝑆𝑆 ) (31) 

𝐴𝑃𝐵𝑆𝑆 = 𝐶𝐶𝐵𝑆𝑆 × 𝐶𝑅𝐹(𝑖, 𝑁) + 𝑂𝑀𝐵𝑆𝑆 (32) 

𝐶𝑂𝐸𝐵𝑆𝑆 =
𝐴𝑃𝐵𝑆𝑆  + ∑ 𝑃𝑐ℎ𝑎𝑟

𝐵𝑆𝑆 (𝑡)𝑇
𝑡=𝑡1 × 𝜑

∑ 𝑃𝑑𝑖𝑠𝑐ℎ
𝐵𝑆𝑆 (𝑡)𝑇

𝑡=𝑡1

 (33) 

 

 Where, Ebatt is the battery energy (in kWh), PDC
BSS(t) is the DC charging-

discharging rate of the battery (in kW) in an interval ∆t. PAC
BSS(t) is the AC power to 

charge or discharge from the battery (in kW) with a battery-inverter efficiency ηBSS. SOC(t) 
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is the state of charge of the battery, CBSS is the nominal battery capacity (in Ah), V is the 

battery nominal voltage (Volts), “a” is the self-discharging factor, SOH is the batteries state 

of health. Whereas, PBSS
rated, CCBSS, OMBSS, APBSS, and COEBSS are battery’s capacity (in 

kW), capital cost (in $), operation and maintenance cost (in $), annual loan payment (in $) 

and cost of energy (in $/kWh) respectively. Whereas, PBSS
char, P

BSS
disch and φ are the 

charging power, discharging power and charging cost rate respectively. 

 The data in table 5 provides the state of health relation as a function of discharged 

energy. In order to account for the impact of energy discharge on the batteries’ capacity, a 

segmented linear function representing SOH as a function of discharged energy is used to 

describe the batteries’ energy retention during the first 10 years. 

 

Table 5: Battery's annual retention regime 

Year 

Aggregated 

Discharge 

(kWh/year/kWh) 

Minimum 

Retention 

Yearly Energy 

Output 

1 348 95% 348 

2 679 91% 331 

3 996 88% 317 

4 1302 83% 306 

5 1599 79% 297 

6 1889 77% 290 

7 2173 75% 284 

8 2451 73% 278 

9 2725 71% 274 

10 2994 70% 269 

 

 

2. Information Communication Layer 
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 A reliable and decent communication system is essential for building a complete 

system architecture. The implementation and associated technology of such system is 

beyond the scope of this study. However, this study is based on assuming the presence of a 

fair communication system, where all prosumers have equal chances to participate in a fair 

energy market without actually worrying about providing any credential information thus 

risking the prosumer’s security. A detailed description on how the proposed approach tries 

minimizing the risks on participants’ security is provided in energy market layer. 

 

3. Control Layer 

 Building the control layer algorithm is also beyond the scope of this paper. 

However, the success of the proposed system architecture cannot be achieved without a 

reliable control system. The control system is a vital block in the proposed system’s 

architecture since it is responsible of: 

1. Controlling the dispatchable units to oblige to the dispatch strategy decided. 

2. Providing ancillary services in the distribution network, such as regulating the 

network’s frequency, mitigating voltage fluctuations and restricting them to the 

normal operating band. 

3. Guaranteeing appropriate operation of all physical components under its 

supervision. 
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4. Energy Market Layer 

 Countless studies employed a peer to peer energy market model, where each 

participant has the choice to select a suitable energy supplier. As demonstrated in the 

literature review, peer to peer energy market showed great potential in enhancing the 

distribution network’s reliability and increasing the participants’ profits through 

exchanging energy with other peers. However, and as per author’s personal opinion and for 

several reasons, peer to peer energy market isn’t suitable for developing countries yet. First 

of all, most of the literature reviews, who utilized peer to peer market model, based their 

studies on the presence of reliable supplier(s). However, this study is based on their 

absence. Second of all, energy pricing was made based on knowing the external energy 

market price. However, as is the case in many developing countries, there is one party that 

is responsible for supplying energy, and it is unreliable, thus there is no external market. 

Last but not least, most of the market models aimed to find the optimal dispatch strategy 

and energy pricings that maximize the parties’ profits and minimize the consumers’ 

expenses. However, this paper mainly focuses on developing a suitable energy market that 

enhances the network’s reliability and reduces its diesel and grid’s peak energy dependency 

in first place, while accounting for parties’ profits in second place. Hence, to avoid the 

above-mentioned obstacles, this paper suggests the utilization of a decision-based day-

ahead pool-based energy market. 

 Pool energy market is a centralized marketplace where participants submit their bids 

and offers for the amount of energy, they are willing to buy or sell. Although each 

participant may set his/her own unique energy price, energy is exchanged, during a certain 
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interval, at a single spot price called “market clearing price” assigned by a 3rd party 

member. Then, the proposed market model consists of three unique market participants 

interacting in the pool energy market as depicted in figure 7. These three participants are: 

(1) distributed system operator (DSO) representing the unreliable grid, (2) microgrid 

community agent (MGCA) acting as an auctioneer and a community optimizer and (3) 

microgrid/load agent (MG/LA) acting as prosumers (producers and consumers of energy). 

 

 
Fig. 7: Market model architecture 
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a. Distributed System Operator (DSO) Role 

 The DSO is the first player in the proposed energy market model. He is the 

gatekeeper responsible of maintaining decent operation of the entire distribution network 

through accepting or declining the energy transaction scheme, provided by the MGCA, 

such that none of the distribution network’s technical constraints are violated. 

 DSO participates on behalf of the grid in the wholesale market, thus he plays a vital 

role in striking balance between generation and demand and in providing the MGCA with 

the upcoming grid’s daily blackout schedule, such that the MGCA will have full knowledge 

of the grid’s state for the upcoming day.  

 Another task to be fulfilled by the DSO is reaching an acceptable agreement with 

MGCA regarding the charges (in $/kWh) assigned on using the distribution network as an 

energy pool among different parties. However, for problem cost simplification, this task 

was not considered in this work. 

 

b. Microgrid Community Agent (MGCA) Role 

 The MGCA is the second and most important player in the proposed market model. 

He is the link between MG/LAs and the DSO and he is considered to be the brain of the 

entire community.  

 In the proposed market model, MGCA is a non-profit entity with no generating 

capacities nor load requirements. Thus, MGCA acts as an independent participant, that is 

capable of deploying a collusion free energy market, providing all players with equal 
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opportunities to benefit from market participation. Unlike a regular auctioneer responsible 

only of clearing the market through calculating energy spot prices, MGCA, in the proposed 

market, is responsible of using the generation capacities with its assigned bidding prices 

and load requirement profiles provided by MG/LAs along with the information provided by 

the DSO for the upcoming day, to come up with an optimal dispatch strategy that 

minimizes the distribution network’s operational cost while focusing on diesel dependency 

and grid’s peak hours purchased energy reduction.  

 After configuring the optimal dispatch strategy for the upcoming day market 

window, the MGCA sends it to the DSO for validity test. Once DSO’s approval is granted, 

the MGCA announces the hourly spot market price profile, sends each MG/LA its own 

private dispatch profile and then wait to receive all MG/LAs participation decisions. If all 

approved, the market for the upcoming day is closed and participants wait for the 

exchanging process to start. 

 However, if some parties denied such dispatch, the energy market enters phase 2, 

where the MGCA strives to divide market participants into groups based on several 

considerations, for instance, size of the entity, its characteristics and/or its influence on the 

welfare of the entire community. Thus, the distribution network is divided into several 

market pools each having its own market spot price. In a similar manner, MGCA looks for 

the optimal dispatch strategy, utilizing the provided capacities by each pool, that minimize 

its corresponding pool market operational cost, sends it to the DSO for approval and then 

sends it back to each pool participant along with announcing the energy spot price profiles 

of each. 
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 If all parties within the same pool agreed, then the market negotiations combining 

these parties for the upcoming day closes waiting energy exchange period to start. Whereas, 

for market rejecting parties, the MGCA sends a “No-Market” sign to that pool parties, 

informing them to operate solely during the upcoming day. 

 Focusing on the bases of the proposed market model and the interaction schemes 

among its members, it reveals that none of the DERs’ owners is actually forced to provide 

any highly secure information regarding their own microgrids’ generating capacities and 

their actual costs of energy. In the suggested market, even the MGCA will not be provided 

by the actual generating capability of each owner nor his/her actual generation cost. On the 

contrary, MGCA will base his/her optimization on the bidding prices and generation 

capacity that each DERs owner is willing to submit. Hence, not even the DERs’ owners 

have access to such information concerning other owners.  

 On the other hand, the way the market is configured, none of the suppliers have the 

upper hand in controlling the market. Since submitting high selling prices will 

automatically lead to other buyers’ loss of interest in market participation, thus failing to 

sell any of that energy. While reducing the energy selling price might actually increase 

other parties’ interest, since the energy selling price is lower than their actual generation 

cost of energy.  

 In addition, an extra role played by the MGCA is a demand side management role. 

MGCA must also organize the charging process of the batteries without allowing for new 

peaks to be observed by the grid during charging times. To do so, agreements must be 

signed between MGCA and MG/LAs. Such agreement illustrates that MG/LAs are willing 
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to restrict their charging process (time and charging power) to the profile assigned by the 

MGCA. Whereas, MGCA must ensure that each MG/LAs will receive its required charging 

energy before its next usage. Otherwise, MGCA must declare uncontrollable charging 

process during the upcoming day, thus allowing each MG/LA to act on its own. 

 Moreover, MGCA is also expected to guarantee the network’s stability and 

reliability during grid-off times, through ensuring the presence of a party capable of 

providing the network’s ancillary services. Thus, based on the day ahead generating 

capacities provided by each MG/LA, MGCA must assign the party with the highest 

dispatch capability and minimum cost of energy to play the role of the backup or the slack 

thus providing the network with its ancillary services (frequency regulation, voltage 

regulation, etc…). 

 

c. Microgrid/Load Agent (MG/LA) Role 

 Microgrid/Load agents (MG/LA) are the third and last players in the proposed 

market model. They are the ones controlling the local dispatch of their distributed energy 

resources and the ones to decide whether to cooperate among themselves or operate on their 

own. As any prosumer, the main interest of such party is to make profit and reduce its daily 

energy cost. Therefore, unlike MGCA, each MG/LAs know the exact cost of generation of 

each unit its locally dispatching. Thus, after receiving the suggested dispatch profile from 

the MGCA, each MG/LA will calculate the exact daily energy cost, and then reply with 

approval or rejection.  
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 In the proposed market, each MG/LA must provide the amount of energy its willing 

to put under the MGCA’s disposal, its associated offer and its hourly forecasted load profile 

during the upcoming day. However, when submitting the energy capacities to the MGCA, 

each MG/LA must differentiate between the clean energy share and the diesel generator 

energy share along with their respective selling costs. Through following such approach, 

each MG/LA can guarantee that none of the confidential information regarding his own 

unit is at risk of exposure, since no one, not even MGCA, knows the actual financial and 

technical data of his own dispatchable units. A summary of the proposed market energy 

trading process is presented in figure 8. 
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Fig. 8: Cooperation processes 
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d. Computing Market Clearing Price (MCP) 

 As discussed previously, the proposed market model is pool based, thus none of the 

participants have the right to sell to/ by from another participant directly except through the 

MGCA. Furthermore, all energy transactions are priced based on the market clearing price 

(MCP) calculated by the MGCA.  

 After receiving each MG/LA bid, generation capacity and demand profile for the 

upcoming day, MGCA will make use of the provided generation capacities and strike a 

balance between generation and demand while minimizing distribution network’s daily 

operational cost, diesel dependency and peak hour grid’s energy. After configuring the 

dispatch strategy, MGCA will arrange generating units required to meet the hourly demand 

and select the operating unit with the highest cost of energy to be the market clearing price. 

Figure 9 depicts the market clearing price calculation process. The blue curve represents the 

aggregated generating capacities based on increasing cost of energy, whereas the red curve 

represents the load demand profile during such hour. The intersection point between the 

generation and load curve represents the equilibrium point hence the market clearing price. 
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Fig. 9: Supply-demand curves during a certain time "t" 

 

B. 2nd Dimension: Participating Entities 

 In the case study simulated, different entities were assumed to exist in the 

distribution network. Each entity has its own characteristics (unique DERs configuration, 

demand, grid’s tariff system), however they all share the same feeder. Thus, all exhibits the 

same cutoff hours. 

1. University Campus 

 A university campus, subjected to grid’s triple tariff rate scheme, is assumed to exist 

in the distribution network. The campus is assumed to contain 18 buildings. One of these 
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buildings contain the already existing diesel power plant (marked in red) whereas the rest 

(marked in blue) are loads. 

 Initially, the campus is assumed to supply its demand from 2 sources of energy: (1) 

the unreliable grid and (2) the diesel power plant. The university campus’s single line local 

distribution network diagram and characteristics are shown in figure 10 and table 6 

respectively. 

 

 

Fig. 10: University campus single line diagram 
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Table 6: University campus distribution network characteristics 

Bus No Bus No Length (m) 

1 2 91 

2 3 76 

3 4 99 

2 5 198 

5 6 76 

6 7 99 

6 8 76 

8 18 152 

8 9 61 

9 10 61 

10 11 91 

9 12 76 

12 13 46 

12 14 76 

14 15 76 

15 16 76 

16 17 152 

19 (Grid) 5 114 

 

 

2. Mall 

 A mall is the second critical load assumed to exist within the distribution network. 

Similarly, the mall is assumed to be subjected to the triple tariff scheme illustrated in table 

3, and it is assumed to be supplied initially by the unreliable grid and its privately installed 

diesel power plant. However, unlike the university campus, the mall is assumed to be a 

large single building  (one node). 

 

3. Hospital 
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 The third critical load, consisting of one node and subjected to the triple tariff rate 

scheme, is assumed to be a hospital. The hospital is also assumed to be initially supplying 

its demand from unreliable grid’s purchased energy and its privately installed diesel 

generators plant. 

 

4. Residential Microgrids (RMGs) 

 The distribution network is assumed to contain 3 residential microgrids (RMGs). 

Each one of them relies on the unreliable grid and a central generation plant consisting of 

diesel generators and a battery storage system. However, some of the customers within the 

residential grids are assumed to have a 2kW rooftop PV system installed for private use. 

The 3 residential microgrids along with each distribution network characteristics are 

depicted in figure 11 and table 7 respectively. Unlike the previous loads, the residential 

microgrids are assumed to be subjected to the fixed tariff scheme illustrated in table 3. The 

assumed generation capacity of each residential microgrid is illustrated in table 8. 

 



40 
 

 

Fig. 11: Residential microgrids' single line diagram 
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Table 7: Residential microgrids' distribution network characteristics 

Residential MG (a) Residential MG (b) Residential MG (c) 

Bus No Bus No 
Length 

(m) 
Bus No Bus No 

Length 

(m) 
Bus No Bus No 

Length 

(m) 

1 6 61 1 2 160 1 2 84 

6 11 84 1 3 76 2 3 107 

11 17 99 3 4 168 3 4 122 

17 21 84 3 5 84 1 5 61 

1 2 76 5 6 107 5 6 122 

2 7 84 6 7 84 6 7 30 

7 12 168 5 8 61 7 8 69 

12 18 91 8 9 91 7 9 145 

18 22 244 0 10 107 9 10 145 

2 3 76 6 11 69 10 11 76 

3 8 69 11 12 91 11 12 76 

8 13 99 7 13 152 10 13 206 

13 19 213 1 Grid 91 13 14 145 

3 4 84 - - - 5 15 213 

4 9 69 - - - 15 16 137 

9 14 175 - - - 16 17 53 

4 5 99 - - - 16 18 84 

5 10 137 - - - 18 19 69 

10 15 91 - - - 18 20 69 

15 16 175 - - - 20 21 91 

15 20 38 - - - 20 22 69 

20 23 160 - - - 22 23 84 

23 24 99 - - - 22 24 91 

1 Grid 107 - - - 24 25 61 

- - - - - - 1 Grid 84 

 

 

Table 8: Residential microgrids' generating capacity 

Residential MG (a) Residential MG (b) Residential MG (c) 

BSS 

Capacity 

DG 

Capacity 

BSS 

Capacity 

DG 

Capacity 

BSS 

Capacity 

DG 

Capacity 

50kW 

125kWh 
60kW 

35kW 

100kWh 
38.4kW 

50kW 

125kWh 
70kW 
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5. Light Loads 

 The distribution network is assumed to also contain 24 different light loads which 

depend solely on power purchased from the unreliable grid under fixed tariff rate scheme. 

Thus, suffering from total blackouts during grid’s cutoff hours. 

Embedding all assumed existing entities, the distribution network is configured as depicted 

in figure 12. 

 

 

Fig. 12: Reconfigured distribution network 

 

C. 3rd Dimension: Time Sequence 
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 The third dimension governing the proposed market model illustrates the time 

sequence of the energy trading process. An important feature of the proposed market model 

is that it doesn’t last for the entire next day. It has a certain starting and ending hours that 

are decided on a daily basis based on the upcoming day’s cutoff hour to peak tariff rate 

hours relation provided by DSO to MGCA. A detailed illustration of how these hours are 

selected is provided in chapter V. 

 As depicted from figure 13, the day ahead energy exchange process starts by the 

MGCA announcing that the gate for each microgrid willing to participate in the upcoming-

day-energy-market opens. Submitting bids, forecasted load profiles and generation capacity 

placed under the MGCA’s disposal lasts for a 2-hour period, after which the gate closes. 

Following that, the MGCA have a 2-hour period to come up with a suitable dispatch 

strategy (that satisfies his objective) and then provide that strategy to the DSO to check its 

viability. After the DSO’s approval, the MGCA is expected to send each participant its 

corresponding dispatch profile as well as announcing the cost of energy (MCP) profile 

during the upcoming day open market hours. 

 Each participant is provided with a 2-hour period to submit its decision to the 

MGCA regarding its participation state. If all parties approve, the MGCA sends a 

successful market sign to all parties, announcing that the energy exchange process starts the 

next day at an announced hour. However, if the first attempt fails to satisfy all joining 

parties, the MGCA reconfigures the network into 2 separate pools. The first pool combines 

critical loads (university, mall, hospital) along with the light loads while the second pool 

combines residential microgrids together. Then, MGCA repeat his attempt to come up with 
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a suitable dispatch strategy however under 2 separate market clearing price profiles. 

Similarly, the MGCA has a 2-hour period to re-send the new dispatch strategies along with 

the hourly market clearing prices (after the DSO’s approval) to each corresponding 

participant. If all parties within a certain pool approve, MGCA sends the participants of that 

pool the successful market sign. However, failing to do so, the MGCA send the 

unsuccessful market sign, informing the pool participants to operate solely during the 

upcoming day 

 

 

Fig. 13: Energy market exchange process 
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CHAPTER V 

METHODOLOGIES 

 

A. Introduction 

 The main objective of this study is to test the technical and financial attractiveness 

of implementing a suitable energy market model combining several participants operating 

in a distribution network characterized by an unreliable grid and heavy diesel dependency. 

Thus, in order to clearly test such potential, the problem at hand is divided into 2 main 

tasks.  

 The first task is a microgrid level optimization. In this level, the university campus, 

mall and hospital are assumed to invest in clean energy. Thus, optimizations are performed 

for each one of them in order to get the optimal configuration (size and site) of a hybrid 

rooftop-photovoltaic (PV) and battery storage system (BSS) accompanied by an optimal 

dispatch strategy that satisfies each party’s interest. On the other hand, a suitable energy 

management system is developed for each residential microgrid. The benefits of such 

optimizations are then provided through comparing the technical and financial merits of the 

proposed system with the assumed existing one.  

 The second task is the microgrid community level optimization which represents the 

platform of the proposed energy market model. In this level, the MGCA is assumed to 

make use of the provided generation capacities and load profiles to come up with a dispatch 
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strategy that strikes balance between generation and demand at lowest possible network’s 

daily operational cost while focusing on reducing diesel dependency in first place and 

grid’s peak purchased energy in second place.  

 Note that market participation decision made by each MG/LA, is based on 

comparing the daily operational cost attained when following the dispatch provided by the 

MGCA to that attained under optimal independent operation. Thus, computing the daily 

operating cost under independent operation for each microgrid is an important task in the 

proposed market model. 

 

B. Microgrid Level Optimizations 

1. University Campus, Mall and Hospital Optimizations 

 In an attempt to reduce their  diesel dependency and grid’s peak-hours purchased 

energy, a PV-BSS investment is proposed. Therefore, the problem at hand is an 

optimization problem seeking to find the optimal PV-BSS configurations (sizing and siting 

for university campus, whereas sizing only for mall and hospital) along with deploying an 

optimal power flow (OPF) energy management system controlling the dispatch of each. 

 Performing the sizing and siting optimization along with optimal power flow 

considering the entire yearly data is not a valid approach since it requires a lot of 

computational time. Thus, a new methodology for sizing and siting was formulated.  

 The main idea of this methodology is based on characterizing each day by a window 

of active hours that are determined either by the grid cut-off hour or grid’s peak tariff. 
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Being subjected to a triple tariff scheme, and since the night hours are assigned with low 

tariffs, such hours are reserved for charging the BSS. Moreover, since the grid is 

characterized by a daily scheduled 3 hours cutoff period occurring at the times illustrated in 

table 2, a 4-day period within each month is selected to perform the sizing and siting 

optimization. Then, after converging to the optimal monthly PV-BSS configurations, the 

most frequent configuration is selected. Through following such approach, we are able to 

account for the daily and seasonal variations of the demand, the seasonal climate profile 

and the daily variations and scheduling of grid blackout hours.  

 In order to reach the desired objectives, the problem is modelled as a weighted cost 

minimization function as shown in equation 34. 

 

min ∑ (∑( γ𝑃𝑔𝑟𝑖𝑑(𝑡) CO𝐸𝑔𝑟𝑖𝑑(𝑡) + δ𝑃𝐷𝐺(𝑡) CO𝐸𝐷𝐺 + ε𝑃𝑃𝑉(𝑡) CO𝐸𝑃𝑉
ℎ2

𝑡=ℎ1

4

𝑑𝑎𝑦=1

+ ζ𝑃𝑑𝑖𝑠𝑐ℎ
𝐵𝑆𝑆 (𝑡) CO𝐸𝐵𝑆𝑆 ) +

γφ(1 − 𝑆𝑂𝐶) × 𝑆𝑂𝐻

η𝐵𝑆𝑆
𝐸𝐵𝑆𝑆,𝑟𝑎𝑡𝑒𝑑) 

(34) 

 

 Where, γ, δ, ε, and ζ are the grid, DG, PV and BSS cost weights respectively, φ is 

the BSS charging cost ($/kWh) and EBSS,rated is the BSS nominal capacity (kWh). 

 As illustrated in equation 34, the objective function is divided into 4 periods (4 

days), each period is bounded by a unique active hour window starting at h1 and ending at 

h2. The active hour is denoted by the time intervals during which either the grid is off and 

DGs are forced to operate or when the purchasing energy from the grid is under peak tariff 
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rate. During such interval the EMS must decide whether to dispatch the BSS or not. On the 

other hand, when the grid is ON during other time intervals, (passive hours) grid’s tariff is 

much lower than the BSS cost of energy, hence, discharging them is not an option and so 

computation time shouldn’t be wasted. However, during such hours, an alternative rule-

based EMS is deployed to ensure that the demand is supplied by the grid’s purchased 

energy and PV output (if exists) and charges the BSS during night tariff hours. 

 Equation 34 reveals two weighted cost mechanisms. The first one describes the 

overall weighted cost during the active hours considered within each day. Whereas the 

second one corresponds to the weighted cost associated to the charging energy purchased 

from the grid. The former one helps in converging to a suitable and rational dispatch 

strategy, whereas the latter acts as a penalty for oversizing the BSS. 

 The concept of cost weights is due to the fact that the loads under consideration are 

subjected to a triple tariff (day, night and peak). Thus, the rational approach is to charge the 

BSS during night tariff (φ) only. Moreover, the EMS aims to minimize diesel dependency 

and grid’s purchased energy during peak tariff hours. Whereas, during day tariff hours and 

while grid is ON, the demand is supplied from the grid’s purchased energy and PV output. 

Therefore, weights selection is based on the following: (1) there is no penalty on using the 

PV output power, (2) DGs are the most penalized energy sources, and (3) during day and 

night tariffs, the demand will be supplied from the PV and grid, whereas BSS will 

discharge during peak tariff hours after having replaced the DGs during the time when the 

grid was off.  
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 In order to properly select the weights of the cost function, one must have a high 

accuracy cost of energy (COE) model suitable to each possible BSS capacity. Unlike the 

case with PV, BSS is a dispatchable system. Hence, its COE is strongly influenced by its 

capacity and dispatch strategy. Therefore, in order to have a high accuracy BSS COE 

model, a rule-based algorithm was deployed on several BSS capacities.  

 The rule-based algorithm illustrated in figure 14, tries to mimic the desired EMS 

approach during a whole year period. The built algorithm tries to reduce diesel dependency 

and grid’s peak tariff purchased energy as much as possible while charging the BSS during 

night tariffs only. 

 

 

Fig. 14: Rule-based power flow algorithm 
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Then after knowing the annual discharged energy and the annual charging energy for 

several BSS capacities, the COE for each capacity is computed. Then these values are used 

to form a BSS COE equation as a function of installed capacity.  

 Modelling the configuration and the dispatching optimization problem is governed 

by equations 35 to 52. 

 

xUniv = [ x(1), x(2), x(3), … , x(18), x(19)] (35) 

𝑥𝑀𝑎𝑙𝑙 = [𝑥(1),  𝑥(2)] (36) 

𝑥𝐻𝑜𝑠𝑝 = [𝑥(1),  𝑥(2)] (37) 

𝐿𝐵𝑈𝑛𝑖𝑣 = [𝐿𝐵(1), 𝐿𝐵(2), 𝐿𝐵(3), … , 𝐿𝐵(18), 𝐿𝐵(19)] (38) 

𝑈𝐵𝑈𝑛𝑖𝑣 = [𝑈𝐵(1), 𝑈𝐵(2), 𝑈𝐵(3), … , 𝑈𝐵(18), 𝑈𝐵(19)] (39) 

𝐿𝐵𝑀𝑎𝑙𝑙/𝐻𝑜𝑠𝑝 = [ 𝐿𝐵(1), 𝐿𝐵(2)] (40) 

𝑈𝐵𝑀𝑎𝑙𝑙/𝐻𝑜𝑠𝑝 = [𝑈𝐵(1), 𝑈𝐵(2)] (41) 

𝑃𝐵𝑆𝑆,𝑟𝑎𝑡𝑒𝑑
𝑈𝑛𝑖𝑣 = 𝑥(18) (42) 

𝑃𝐵𝑆𝑆,𝑟𝑎𝑡𝑒𝑑
𝑀𝑎𝑙𝑙/𝐻𝑜𝑠𝑝

= 𝑥(2) (43) 

𝐸𝐵𝑆𝑆,𝑟𝑎𝑡𝑒𝑑
𝑈𝑛𝑖𝑣 = 𝑥(18) × 3 (44) 

𝐸𝐵𝑆𝑆,𝑟𝑎𝑡𝑒𝑑
𝑀𝑎𝑙𝑙/𝐻𝑜𝑠𝑝

= 𝑥(2) × 3 (45) 

0 ≤ 𝑆𝑂𝐶(𝑡) ≤ 1 (46) 

∑ 𝑃𝐵𝑆𝑆(𝑡)

𝑡=24

𝑡=1

≤ 𝐸𝐵𝑆𝑆,𝑟𝑎𝑡𝑒𝑑 × 𝑆𝑂𝐻(𝑡)  × 𝑆𝑂𝐶
𝑝𝑟𝑒𝑣 (47) 

0 ≤ 𝑃𝐵𝑆𝑆(𝑡) ≤ 𝑃𝐵𝑆𝑆,𝑟𝑎𝑡𝑒𝑑 (48) 

𝑃𝑃𝑉
(𝑖)
(𝑡) = 𝑥(1→𝑖)

𝑃𝑃𝑉,𝐴𝐶(𝑡)

𝑃𝑉𝑟𝑎𝑡𝑒𝑑
𝑀  (49) 

0 ≤ 𝑃𝐷𝐺(𝑡) ≤ 𝑃𝐷𝐺,𝑟𝑎𝑡𝑒𝑑 (50) 
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0 ≤ 𝑃𝐺𝑟𝑖𝑑(𝑡) ≤ ∞ (51) 

𝑃𝐺𝑟𝑖𝑑(𝑡) + 𝑃𝐷𝐺(𝑡) + 𝑃𝑃𝑉(𝑡) + 𝑃𝐵𝑆𝑆(𝑡) = 𝑃𝐷𝑒𝑚𝑎𝑛𝑑(𝑡) + 𝑃𝐿𝑜𝑠𝑠(𝑡) (52) 

  

 Where, “x” represents the optimization vector holding the configuration details. As 

mentioned earlier, the university campus contains 18 buildings. Thus, excluding the DG 

power plant building, the sizing and siting optimization vector is as shown in equation 35. 

The first 17 indexes represent the installed PV capacity at each building. Whereas the 18th 

and 19th indexes characterizes the BSS’s installed capacity (kW) and its location 

respectively. On the other hand, the mall and hospital are assumed to be a single node, thus 

their associated configuration optimization problem is limited to sizing only. Hence, their 

optimization vector is as shown in equations 36 and 37 where the first index holds the 

installed PV capacity and the 2nd index describes installed BSS capacity (kW). The lower 

and upper bound for each optimization vector are selected based on spatial and financial 

limitations. Note, that in the optimization problem formulated, all values in the 

optimization vector are assumed to be integer variables.  

 As observed from equations 44 and 45, the BSS system is designed to provide its 

rated power for a 3-hour period, where its dispatch strategy is restricted to equations 46, 47 

and 48. The instantaneous output power of the installed PV capacity is calculated through 

multiplying the installed capacity (kW) with the module’s expected output to module’s 

rated capacity ratio 
𝑃𝑃𝑉,𝐴𝐶(𝑡)

𝑃𝑉𝑟𝑎𝑡𝑒𝑑
𝑀  as shown in equation 49. Equations 50 and 51 illustrates the 

modelled DG and grid’s limits (when grid is ON) respectively. Finally, the last equation 

used in the optimization modelling is the power balance relation illustrated in equation 52. 
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2. Residential Microgrids Optimizations 

 Unlike the scenario assumed with the critical loads (university, mall and hospital), 

the residential microgrids’ configurations are assumed to be known and not optimally 

selected. Then, the problem at hand deals only with formulating an EMS that benefits each 

residential microgrid.  

 The previously proposed EMS will not be suitable in this case, since RMGs are 

subjected to a fixed grid tariff rate. Hence, a suitable EMS that governs the BSS charging 

discharging strategy must be formulated. Following a similar concept, RMGs are assumed 

to operate in a way that reduce diesel dependency without causing excessively higher peaks 

due to BSS charging. For that case, a suitable rule-based EMS that controls the dispatch of 

each RMG is proposed. 

 

C. Microgrid Community Level Optimization: Energy Market 

 All of the previous work done was just to prepare a solid platform for this 

optimization level. In this level, an energy market is modelled. As previously discussed, the 

energy market is a combination of several agreements and decisions to be performed by 

three main participants: (1) the DSO, (2) the MGCA and (3) MG/LAs.  

 As illustrated in chapter 4, the energy trading process starts by opening the info 

submission window where MG/LAs submit their generation capacity, their bids and their 

forecasted load profile for the upcoming day active market window hours. Based on the 

MGCA’s provided information, his objective in this level is to minimize the entire 
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distribution network’s operating cost while stressing on reducing diesel dependency in first 

place and grid’s peak purchased energy in second place. Therefore, the problem is 

formulated as a weighted cost function shown in equation 53. 

 

𝑚𝑖𝑛 ∑ 𝑀𝐶𝑃(𝑡) × (𝑃𝐷𝑒𝑚𝑎𝑛𝑑(𝑡) − 𝑃𝑃𝑉(𝑡)) + 𝜅𝑃𝐺𝑟𝑖𝑑(𝑡)𝜆

𝑡=ℎ2

𝑡=ℎ1

(𝑡) + 𝜉𝑃𝐷𝐺(𝑡) 

𝑠. 𝑡                        λ =  {
1 → 𝑑𝑢𝑟𝑖𝑛𝑔 𝑝𝑒𝑎𝑘 𝑡𝑎𝑟𝑖𝑓𝑓 ℎ𝑜𝑢𝑟𝑠
0                                      𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

(53) 

 

 

Where MCP is the market clearing price ($/kWh), κ, ξ are grid’s and diesel generator’s 

weights respectively, whereas λ is a binary variable describing grid’s peak tariff hours. 

Optimization performed by the MGCA is governed by equations 54 to 57. 

 

𝑥 =  (
𝑃1
𝐵𝑆𝑆(𝑡1) ⋯ 𝑃𝑁

𝐵𝑆𝑆(𝑡1)

⋮ ⋱ ⋮

𝑃1
𝐵𝑆𝑆(𝑡𝑚)

⋯ 𝑃𝑁
𝐵𝑆𝑆(𝑡𝑚)

) (54) 

∑𝑃𝑗
𝐵𝑆𝑆(𝑡)

𝑡=𝑚

𝑡=1

≤∑𝐸𝑗
𝐵𝑆𝑆

𝑁

𝑗=1

 (55) 

𝑃𝑗
𝐵𝑆𝑆(𝑡) ≤ 𝑃𝑗

𝐵𝑆𝑆,𝑀𝑎𝑥
 (56) 

𝑃𝐺𝑟𝑖𝑑(𝑡) + 𝑃𝐷𝐺(𝑡) + ∑ 𝑃𝑗=1
𝑁 𝐵𝑆𝑆(𝑡) = 𝑃𝐷𝑒𝑚𝑎𝑛𝑑(𝑡) + 𝑃𝐿𝑜𝑠𝑠(𝑡) (57) 
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 Where, the MGCA is required to find matrix “x” and strike a balance between 

generation and demand through utilizing the capacities provided by each participant “j” 

such that the BSS energy used during the market period don’t exceed the available 

capacities as depicted in equation 55 and the instantaneous discharged energy shouldn’t 

violate the maximum permissible limit provided by each participant as shown in equation 

56. 

 

D. Algorithms Utilized 

1. Genetic Algorithm (GA) 

 In order to tackle the above-mentioned problems, genetic algorithm (GA) is the first 

utilized algorithm where it is used to solve the sizing and siting task. GA is heuristic search 

technique [51] used in computing and in artificial intelligence. Such a technique is an 

evolutionary one, through which a generation of candidate solutions to an optimization 

problem is evolved towards better solutions.  

 The evolution tool is built over three main mechanisms: (1) elitism, (2) crossover, 

and (3) mutation. At first, the algorithm generates a random feasible population, where such 

population is then fed to a previously defined fitness function for evaluation. Elitism is 

performed through ranking individuals within a population based on their performance 

(fitness value). Where, only elite members (best individuals) are made to survive to the next 

generation. After selecting the elites of the current generation, a new population is 

generated consisting of the elite members of the previous one along with new individuals 
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which are generated through performing the second and third mechanisms (crossover and 

mutation) on the elites. Thus, a new population is generated having the same number of 

individuals as the previous one. This described mechanism is made to repeat itself until a 

stopping criterion is reached [52]. 

 

2. Dynamic Programing (DP) 

 The dispatching problem is a problem governed by a set of sequential decisions. 

Therefore, dealing with the optimal dispatch problem was conducted through utilizing 

dynamic programming (DP).  DP is a powerful tool used to examine the impacts of 

decisions taken over a certain horizon. It is frequently used in optimizing microgrid’s 

operation due to its ability to find the optimal feasible dispatch strategy. The algorithm is 

based on simulating all possible dispatching decision combinations taken during a certain 

period of time as depicted in figure 15. After building the hourly decision map, the 

algorithm searches the map for the path achieving the minimum objective function value 

attained at the end of the horizon. 
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Fig. 15: DP algorithm representation 

 

3. Interior Point Methods (IPM) 

 IPM is a method that utilizes certain class of algorithms that solve linear and non-

linear convex optimization problems. Interior point algorithm tries solving a constrained 

minimization problem by treating it as a sequence of approximated minimization problems 

[53]. In the proposed work, IPM was used to solve the problem illustrated by equation 53. 

IPM was utilized using the “fmincon” function in MATLAB. 

 

4. Gauss-Seidel Numerical Power Flow Analysis Algorithm 
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 As illustrated in equations 52 and 57, power balance is an equality constraint that 

should be always satisfied. In some studies, where power losses within the distribution 

network were neglected, power balance constraint was guaranteed through assigning a 

generation unit with a setpoint equal to the difference between the demand and generation. 

However, such approach cannot be adopted when accounting for the power losses within 

the network.  

 Power losses is a function of the actual nodes’ voltage and currents circulating in 

each link within the distribution network. Hence, involving network’s power losses in the 

equality constraint requires the use of power flow analysis. However, before starting power 

flow analysis, Y-bus matrix of the network under study must be created. Then, the 

problem’s governing equations can be formulated as follows: 

 

𝑌𝐵𝑢𝑠 = [
𝑌11 ⋯ 𝑌1𝑛
⋮ ⋱ ⋮
𝑌𝑛1 ⋯ 𝑌𝑛𝑛

] (58) 

𝑌𝑖𝑖 = ∑𝑦𝑖𝑗

𝑛

𝑗=0

 (59) 

𝑌𝑖𝑗 = − 𝑦𝑖𝑗 (60) 

𝑰𝒊 = 𝑽𝒊𝑌𝑖𝑖 + ∑ 𝑌𝑖𝑗𝑽𝒋
𝑛
𝑗=1 = 

𝑃𝑖− 𝑄𝑖

𝑽𝒊∗
       for i ≠ j (61) 

 

 As depicted in equation 61, power flow analysis consists of nonlinear equations, 

then solving such equations requires numerical techniques. Gauss Seidel numerical power 
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flow solution was adopted, and the equations can be rewritten as shown in equations 62-64, 

where iterations will be conducted until the difference between power calculated and 

demand is less than a certain tolerance. 

 

𝑽𝒊
𝒌+𝟏 = 

𝑃𝑖 − 𝑄𝑖
𝑽𝒊
 ∗𝒌 − ∑ 𝑌𝑖𝑗𝑽𝒋

 𝒌𝑛
𝑗=1  

𝑌𝑖𝑖
 (62) 

𝑃𝑖
𝑘+1 = 𝑅𝑒𝑎𝑙 𝑽𝒊

 ∗𝒌  [𝑽𝒊
 𝒌𝑌𝑖𝑖 + ∑𝑌𝑖𝑗𝑽𝒋

 𝒌

𝑛

𝑗=1

] (63) 

𝑄𝑖
𝑘+1 = −𝐼𝑚𝑔 𝑽𝒊

 ∗𝒌  [𝑽𝒊
 𝒌𝑌𝑖𝑖 + ∑𝑌𝑖𝑗𝑽𝒋

 𝒌

𝑛

𝑗=1

] (64) 

 

E. Optimization Algorithms Formulated 

1. Sizing and Siting Hybrid Algorithm 

 As mentioned in chapter 5.B.1, the PV-BSS configuration approach was utilized 

during the active hours (h1 and h2 in equation 34) which are selected based on grid’s peak 

tariff hours or grid’s cutoff hours. To be more precise, the active window starts either at the 

1st grid’s cutoff hour or 1st peak tariff rate hour (whatever comes first) and ends at the last 

grid’s cutoff hour or last grid’s peak hour (whatever comes last) during the same day. 

Whereas, the passive window for that day is  the remaining period, where BSS are 

supposed to charge during night tariff hours. 
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 The flow chart in figure 16 illustrates the exact sizing and siting hybrid approach 

assigned during the active hours window. As the flow chart reveals, sizing and siting 

approach was performed through utilizing 3 of the mentioned algorithms: (1) GA, (2) DP, 

and gauss-seidel based numerical power flow analysis. 

 The algorithm starts by generating a random feasible (within limits and satisfying 

constraints) population with a specified number of individuals, where each individual is 

represented by vector “x”. The population generated will be then fed to the GA’s fitness 

function which is illustrated on the right side of figure 16.  

 

 

Fig. 16: Sizing and siting hybrid GA-DP-optimal time domain power flow approach 
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 GA’s fitness function consists mainly of 2 stages. The first one utilizes DP to 

simulate all possible dispatch strategies that can be taken during the active hours window.  

With every passing hour, DP checks between 2 states, the first is “discharge BSS” and the 

second is “Not to discharge BSS”.  Since the BSS system is to be charged during night 

tariff hour which is outside the active hours window, restricting the number of decisions 

taken by the developed EMS to two states, without including the charging option, is a valid 

approach that will reduce the search space from 3t to 2t, where t corresponds to the hours of 

continuous simulations. 

 After running DP, and calculating equation 34 for all possible dispatch 

combinations, the dispatch strategy that leads to the minimum value of equation 1 is 

selected as the optimal BSS dispatch strategy to be followed for that individual (PV&BSS 

configuration).  

 However, in order to account for the power losses resulted from such PV-BSS 

configuration operating under optimal dispatch conditions, the optimal BSS dispatch 

strategy along with the output power of the selected PV capacity is fed to a time domain 

power flow analysis which represents the 2nd stage in the objective function. In this stage, 

the optimal dispatch strategy of the BSS along with the instantaneous output PV power of 

the selected PV capacity are treated as generation setpoints at their assigned locations, and 

numerical analysis illustrated in equations 58-64 are used to compute the slack unit’s (grid 

or DG during grid’s outage) output power. At the end of this period the adjusted grid’s and 

DG’s power profile are used to recompute equation 34, and that value is assigned as the 

individual’s fitness value. 
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 After repeating the same process for all individuals within the inserted population, a 

matrix containing the individuals’ characteristics (vector “x”) and their associated fitness 

values is returned to the main GA function for individuals’ evaluation. If the best individual 

fails to satisfy the stopping criteria, the top ranked individuals (elite members) are made to 

survive to the next generation while the others are discarded, and new generated members 

occupy their place, preparing for another round of simulations. 

 

2. DP-Rule-Based Optimal Power Flow (OPF) Algorithm 

 After selecting each MG’s (university, mall, hospital) configuration, an annual 

optimal power flow analysis must be performed in order to observe the microgrid’s 

technical and financial performance. Therefore, making use of the current loads’ operating 

conditions (triple grid’s tariff rates) a hybrid DP-Rule-Based optimal power flow algorithm 

is developed in order to simulate the optimal operation of the reconfigured MGs within a 

reasonable computational time.  

 The OPF hybrid algorithm is depicted in figure 17. As depicted from the figure, 

during each day, expected PV output profile, grid’s cutoff schedule, grid’s tariff rate profile 

and the demand profile must be inserted into the EMS. Using the inserted data, the EMS 

will decides between two modes of operation, (1) running DP to converge for optimal 

power dispatch strategy or (2) running the rule-based power flow algorithm which is 

responsible of charging the batteries during night tariffs and supplying the demand via PV 

power (if exists) and grid’s purchased energy. 
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Fig. 17: DP-rule-based optimal annual power flow algorithm 

 

 The EMS developed, starts by determining the active hours (Start and End) within 

the selected day, where during such hours DP mode of operation is selected. Whereas 

during the remaining day hours, the rule-based approach controlling the charging of the 

batteries and grid’s purchased power is selected. The “Start” hour for the selected day is 

either the first grid’s-outage hour or the first grid’s peak hour, whatever comes first. While 

the “End” is the last grid’s-outage hour or the last peak hour, whatever comes last. 

 Furthermore, if during a certain day, the “Start” hour occurs during the grid’s night 

tariff period, then the EMS system will operate using DP during the period where grid is 
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Off. Alternatively, when grid is ON again and its tariff is still at its minimum, the EMS will 

switch to the rule-based approach mode of operation. Rule-based mode of operation will be 

selected until the grid’s next power outage, where DP mode of operation will be conducted 

again until the last active hour “End” during that day.  

 Through following such approach and not allowing the DP mode of operation to run 

during unnecessary operating conditions, the computational time is reduced making it 

possible to run the EMS for an entire year with an hourly resolution.  

 Note that in order to account for power losses within the network, at the end of each 

day’s simulation, the BSS optimal dispatch strategy is then fed to the gauss seidel 

numerical power flow analysis. As previously mentioned, time domain power flow analysis 

is performed to compute the actual energy extracted from the grid or from the diesel 

generators (during grid outage) while considering the PV instantaneous output power and 

BSS dispatch strategy (during discharging) as generation setpoints and considering BSS 

charging power as an added load to the already forecasted one. Hence, the new adjusted 

values of the grid’s purchased energy and energy extracted from the DGs would account for 

the power losses within the network. 

 

3. Residential Microgrids’ Rule-Based Power Flow Algorithm 

 Since residential microgrids are subjected to a fixed grid tariff scheme, utilizing the 

above-mentioned power flow algorithm is not a valid option. Thus, for the case of 
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residential microgrids, a rule-based power flow algorithm governing the BSS dispatch 

strategy is proposed.  

 The proposed algorithm also seeks minimal diesel dependency. However, the BSS 

charging hours are made to occur in a way that doesn’t lead to higher peaks as observed by 

the grid.  

 

 

Fig. 18: RMGs' BSS  dispatch algorithm 
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 The proposed BSS dispatch algorithm is illustrated in figure 18. During each hour, 

the EMS tests the grid’s state (ON/Off). When the grid is off, the BSS installed capacity 

must discharge to reduce or completely remove the need of  DGs to supply the demand. On 

the other hand, if grid is on, the EMS controls the BSS charging decision based on the 

residential microgrid’s forecasted load. If peak hour, the EMS decides not to charge the 

BSS to avoid causing higher peaks to the grid. However, if off-peak hour, the EMS charges 

the BSS. 

 

4. Market Optimization Algorithm 

 As illustrated in figure 19, the market optimization utilizes 2 of the mentioned 

algorithms. IPM is used to converge to the optimal dispatch strategy that minimizes 

equation 53. However, failing to grab an MG/LA’s market participation interest, DP-rule-

based power flow analysis, discussed previously, is implemented to guarantee daily optimal 

operation continuity. 

 On the other hand, during outside active market window, a rule-based algorithm is 

utilized to control the BSS’s charging process of market participants, if grid was available 

during entire night tariff period. 
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Fig. 19: MGC optimization algorithms 
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CHAPTER VI 

SIMULATION RESULTS 

 

A. Microgrid Optimization Level Results 

 

Table 9: Optimization common input data 

𝜓 Diesel Cost ($/L) 0.597 

γ Grid’s assigned weight 1 3 

δ DG’s assigned weight 1 4 

ε PV’s assigned weight 1 

ζ BSS’s assigned weight 2 

κ Grid’s assigned weight 2 4 

ξ DG’s assigned weight 2 2 

ηBSS BSS’s inverter efficiency (%) 95 

CCPV PV’s capital cost ($/kW) 874.3 

OMPV PV’s O&M cost ($/kW/year) 8.8 

CCBSS BSS’s capital cost ($/kW) 1227 

OMBSS BSS’s O&M cost ($/kW/year) 4.1 

Diesel 

Generators 

installed 

capacity 

University Campus (kW) 15,500 

Mall (kW) 14,900 

Hospital (kW) 4,600 

RMG (a) (kW) 60 

RMG (b) (kW) 38.4 

RMG (c) (kW) 70 

Diesel 

Generator’s 

Cost of 

energy 

University Campus  (₵/kWh) 26 

Mall (₵/kWh) 25 

Hospital (₵/kWh) 27 

RMG (a) (₵/kWh) 30 

RMG (b) (₵/kWh) 32 

RMG (c) (₵/kWh) 28 
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 The information provided in table 9 summarizes the common input data for each 

MG’s optimization. 

 

1. Sizing and Siting Optimization Results 

a. University Campus Microgrid 

  

Table 10: University campus optimization vector’s lower and upper bounds 

University Optimization Vector 

LB UB 

0 285 

0 180 

0 138 

0 65 

0 201 

0 177 

0 100 

0 117 

0 66 

0 95 

0 140 

0 70 

0 180 

0 134 

0 165 

0 136 

0 153 

6,000 18,000 

1 17 
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 Utilizing the PV-BSS configuration approach discussed in section 5.B.1, and 

restrained by the boundaries summarized in table 10, the optimal monthly PV-BSS 

configurations are illustrated in table 11. 

 

Table 11: University campus’s optimal PV-BSS configurations 

Month 
Total Optimal PV 

Cap (kW) 

Optimal BSS Cap 

(kW) 

BSS Optimal 

Location (Busbar #) 

January 2,400 9,000 5 

February 2,400 9,000 5 

March 2,400 8,900 5 

April 2,400 9,000 5 

May 2,400 9,000 5 

June 2,400 9,000 5 

July 2,400 10,100 5 

August 2,400 9,000 5 

September 2,400 9,000 5 

October 2,400 9,000 5 

November 2,400 9,000 5 

December 2,400 9,000 5 

 

 

 Analyzing the results provided in table XI reveals that the optimal PV capacity 

during all months is 2.4MW, which is the maximum possible installed PV capacity inserted 

to the optimization problem (sum of PV’s upper boundaries). On the other hand, 3 different 

BSS’s capacities were attained: 8.9MW, 9MW being the most frequent and 10.1MW. 

However, although simulations resulted in 3 distinct optimal BSS capacities, results 

revealed that busbar 5 in figure 10 is the optimal location of BSS installations. A summary 
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of the optimal energy share within the active hour window attained for the optimal 

configurations illustrated in table 11 is provided in table 12. 

 

Table 12: University’s energy share during active window of each optimal PV-BSS 

configuration 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Grid 50% 56% 51% 50% 49% 60% 69% 67% 70% 67% 64% 57% 

DG 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

PV 10% 12% 15% 17% 19% 16% 10% 11% 10% 10% 9% 9% 

BSS 40% 32% 34% 33% 32% 24% 21% 22% 20% 23% 27% 34% 

 

 

 

Fig. 20: University campus power flow profile during active hours (10:00 to 21:00) for a 

day in January 
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 Figure 20 provides a snapshot of the optimal power flow of the university campus 

with optimal PV-BSS configuration selected during January. Analyzing the figure reveals 

that no DG energy is used to supply the demand when grid was Off (10:00 pm till 12:00 

pm) where the demand is supplied by PV and BSS. In addition, observing the power flow 

during grid’s peak hours (16:00 pm till 21:00 pm), the EMS selects to further discharge the 

batteries and reduce grid’s purchased energy to zero until the last peak hour (21:00 pm).  

 As observed from table 12, the converged PV-BSS capacities were able to 

completely remove diesel dependency during the 4-day period of the sizing simulation. 

However, as suggested previously, the most frequent optimal configuration (2,400kW PV, 

and 9,000kW BSS) is selected to be the overall optimal configuration for the university 

campus. Therefore, the optimal PV-BSS technical and financial data for the university 

campus is as summarized in table 13. 

 

Table 13: University’s optimal PV-BSS technical and financial data 

Optimal PV Capacity (kW) 2,400 

Optimal BSS Capacity (kW – kWh) 9,000 – 27,000 

PV Capital Cost ($) 2,098,320 

BSS Capital Cost ($) 11,043,000 

PV Operational & Maintenance Cost ($/year) 21,120 

BSS Operational & Maintenance Cost ($/year) 36,900 

 

 

b. Mall Microgrid 
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Table 14: Mall optimization vector’s lower and upper boundaries 

Mall Optimization Vector 

LB UB 

0 3,200 

4,000 16,000 

 

 

Table 15: Mall’s optimal PV-BSS configurations 

Month Optimal PV Cap (kW) Optimal BSS Cap (kW) 

January 3,200 12,800 

February 3,200 12,000 

March 3,200 12,000 

April 3,200 12,000 

May 3,200 12,000 

June 3,200 11,900 

July 3,200 12,700 

August 3,200 12,000 

September 3,200 12,000 

October 3,200 12,000 

November 3,200 12,000 

December 3,200 12,000 

 

 

Table 16: Mall’s energy share during active window of each optimal PV-BSS configuration 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Grid 52% 51% 50% 46% 46% 45% 45% 49% 45% 44% 48% 48% 

DG 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

PV 9% 12% 12% 18% 19% 21% 20% 17% 18% 16% 12% 11% 

BSS 39% 37% 38% 36% 35% 34% 35% 34% 38% 40% 41% 41% 
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 Following similar approach, the monthly optimal PV-BSS configuration and their 

energy share during the active hours within the 4 simulated days for the mall microgrid, 

bounded by the values summarized in table 14, are shown in tables 15 and 16. 

 

 

Fig. 21: Mall power flow profile during active hours (10:00 to 21:00) for a day in January 

 

 Similarly, analyzing the power dispatch of the optimal PV-BSS configuration 

attained during January simulations, we observe that the EMS supplied the demand from 

PV and BSS when the grid was off, and then decided to use the BSS’s left energy to replace 

grid’s purchased energy during peak hours. 
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 In this case as well, optimization results revealed that the optimal capacity was the 

maximum PV system that can be installed within the MG. On the other hand, based on the 

most frequent optimal BSS capacity attained, a BSS capacity of 12MW-36MWh is selected 

to be the optimal BSS capacity. Table 17 summarizes the optimal PV-BSS technical and 

financial characteristics for the mall microgrid. 

 

Table 17: Mall’s optimal PV-BSS technical and financial data 

Optimal PV Capacity (kW) 3,200 

Optimal BSS Capacity (kW – kWh) 12,000 – 36,000 

PV Capital Cost ($) 2,797,760 

BSS Capital Cost ($) 14,724,000 

PV Operational & Maintenance Cost ($/year) 28,160 

BSS Operational & Maintenance Cost ($/year) 49,200 

 

 

c. Hospital Microgrid 

 The optimization vector in hospital microgrid optimization is bounded as illustrated 

in table 18. Monthly optimal PV-BSS capacities are provided in table 19. 

 

Table 18: Hospital's optimization vector’s lower and upper boundaries 

Hospital Optimization Vector 

LB UB 

0 790 

700 4,000 
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Table 19: Hospital’s optimal PV-BSS configurations 

Month Optimal PV Cap (kW) Optimal BSS Cap (kW) 

January 790 4,000 

February 790 4,000 

March 790 4,000 

April 790 4,000 

May 790 4,000 

June 790 4,000 

July 790 4,000 

August 790 4,000 

September 790 4,000 

October 790 4,000 

November 790 4,000 

December 790 4,000 

 

 

 As illustrated in table 19, we observe that both PV and BSS optimal capacities hit 

the upper limits. Thus, we can conclude that if the hospital was capable of installing larger 

capacities the algorithm might have converged to bigger configurations.  

Checking the optimal dispatch profile for each monthly optimal capacity within the 4 days 

simulation period, energy share percentages during each period is provided in table 20. As 

illustrated in table 20, the optimal PV-BSS capacity was capable of almost entirely 

eliminating diesel’s dependency, where only during the first month simulation, 0.1% of 

demand was supplied by the DGs, whereas diesel was completely eliminated during the 

other simulation periods. The technical and financial data of the hospital’s optimal PV-BSS 

capacity are provided in table 21. 

 



76 
 

Table 20: Hospital’s energy share during active window of each optimal PV-BSS 

configuration 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Grid 75% 70% 72% 71% 67% 64% 66% 68% 69% 70% 74% 72% 

DG 0.1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

PV 3.9% 6% 5% 7% 9% 11% 9% 8% 8% 7% 4% 5% 

BSS 21% 24% 23% 22% 24% 25% 25% 24% 23% 23% 22% 23% 

 

 

 

Fig. 22: Hospital power flow profile during active hours (10:00 to 21:00) for a day in 

January 

 

 

Power flow analysis for the optimal PV-BSS configuration during January is provided in 

figure 22. The power flow depicted in figure 22 provides a strong justification for the 
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optimization results summarized in table 19. For instance, during the hours between 10:00 

am to 12:00 pm, the EMS was using PV & BSS energy to supply the demand. However, 

unlike the previous cases (University Campus & Mall), the energy left within the BSS, after 

the grid’s outage, was only capable of delivering a small fraction of the demand during the 

1st peak tariff hour (16:00 pm), then the BSS was completely discharged. Therefore, one 

can conclude that any further increase in the possible BSS capacity installed, would 

actually lead to a better solution as it causes more decrease in the grid’s peak purchased 

energy. 

 

Table 21: Hospital’s optimal PV-BSS technical and financial data 

Optimal PV Capacity (kW) 790 

Optimal BSS Capacity (kW – kWh) 4,000 – 12,000 

PV Capital Cost ($) 690,697 

BSS Capital Cost ($) 4,908,000 

PV Operational & Maintenance Cost ($/year) 6,952 

BSS Operational & Maintenance Cost ($/year) 16,400 
 

 

2. Optimal Dispatch Strategies Outcomes 

 After converging to the university campus, mall and hospital MGs’ optimal PV-BSS 

configurations, an annual optimal power flow analysis using the algorithms discussed in 

5.E.2 and 5.E.3 are conducted in an hourly resolution to test each MG’s annual 

performance. 

a. University Campus Microgrid Annual Performance 
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 Upon comparing the outcomes of the initial and proposed system’s annual 

performance illustrated in table 22, results revealed that the optimal PV-BSS configuration 

controlled by the dispatch strategy performed by the proposed methodology, decreased 

DG’s dependency to 0.65%, reduced overall system’s COE by 27% and scored a net annual 

saving of $0.578M during the 1st year such system is placed into operation. 

 

Table 22: University campus's  initial vs proposed annual performance 

 Initial Power System Proposed Power System  

Grid (kWh) 39,978,733 43,534,090 

DG (kWh) 6,565,217 370,866  

BSS Disch (kWh) - 9,039,416  

BSS Char (kWh) - 10,009,807  

PV (kW) - 4,014,084  

Load (kW) 46,543,950 46,543,950  

Total Generation (kWh) - 56,958,457  

Total Demand (kWh) - 56,553,757 

DG Dependency (%) 16% 0.65% 

Grid’s Cost ($) 3,895,805 3,368,144  

DG’s Cost ($) 1,706,956 96,425  

BSS’s Annual Payment ($) - 1,298,660  

PV’s Annual Payment ($) - 260,871  

Total Cost ($) 5,602,761 5,024,100  

Cost of Energy (₵/kWh) 12 8.9  

Savings ($) 578,661 

 

 

b. Mall Microgrid Annual Performance 

 The optimization approach suggested appeared to be a valid one for the mall 

microgrid as well, as it decreased DG’s dependency to 0.22%, reduced overall system’s 
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COE from 13.2₵/kWh to 8.8₵/kWh  and resulted in a net annual saving of $0.649M during 

the 1st year such system is placed into operation as summarized in table 23. 

 

Table 23: Mall’s initial vs proposed annual performance 

 Initial Power System Proposed Power System  

Grid (kWh) 33,235,111 36,049,438 

DG (kWh) 6,921,291 118,819  

BSS Disch (kWh) - 11,598,909  

BSS Char (kWh) - 12,838,082  

PV (kW) - 5,227,318  

Load (kW) 40,156,402 40,156,402  

Total Generation (kWh) - 52,994,484  

Total Demand (kWh) - 52,994,484 

DG Dependency (%) 17% 0.22% 

Grid’s Cost ($) 3,587,444 2,610,643  

DG’s Cost ($) 1,730,323 29,705  

BSS’s Annual Payment ($) - 1,688372  

PV’s Annual Payment ($) - 339625  

Total Cost ($) 5,317,767 4,668,344  

Cost of Energy (₵/kWh) 13.2 8.8 

Savings ($) 649,422 

 

 

c. Hospital Microgrid Annual Performance 

 Similarly, although the sizing optimizations for the hospital microgrid suggested 

that the optimal PV-BSS configuration was the maximum limits selected, such capacity 

was also capable of reducing diesel’s dependency to 1% only, while providing a net annual 

savings of $0.33M during the first year of placing such system into operation as depicted in 

table 24. 



80 
 

Table 24: Hospital's  initial vs proposed annual performance 

 Initial Power System Proposed Power System  

Grid (kWh) 22,241,527 24,794,316 

DG (kWh) 3,735,057 325,691 

BSS Disch (kWh) - 4,059,385 

BSS Char (kWh) - 4,493,302 

PV (kW) - 1,290,494 

Load (kW) 25,976,584 25,976,584 

Total Generation (kWh) - 30,469,886 

Total Demand (kWh) - 30,469,886 

DG Dependency (%) 13% 1% 

Grid’s Cost ($) 2,153,454 2,096,856 

DG’s Cost ($) 1,008,465 87,936 

BSS’s Annual Payment ($) - 562,791 

PV’s Annual Payment ($) - 83,845 

Total Cost ($) 3,161,919 2,831,428 

Cost of Energy (₵/kWh) 12.2 9.3 

Savings ($) 330,491 

 

 

d. Residential Microgrids Annual Performances 

 Figure 23 illustrates the power flow profile for RMG1 during the 1st day simulation. 

Analyzing the dispatch shown below, the BSS were discharged between the hours 10:00 am 

to 12:00 pm during grid’s outage.  On the other hand, the two spikes observed in grid’s 

energy occurring at 14:00 pm and 16:00 pm refers to the times when the EMS decided to 

charge the batteries (off peak hours). Therefore, it’s clear that the EMS depends on the BSS 

to supply the demand on first place, whereas DGs are to be used if needed, and charging 

process is to be done during off-peak hours. 
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Fig. 23: RMG-1 1st day power flow profile 

 

Table 25: RMG1’s technical and financial annual profile 

Grid (kWh) 206,720 

DG (kWh) 8,300 

PV (kWh) 43,528 

BSS (kWh) 13,660 

Demand (kWh) 257,052 

DG Dependency (%) 3.2% 

Grid’s Cost ($)  27,562 

DG’s Cost ($) 2490 

PV’s  Annual Payment ($) 3102 

BSS’s Annual Payment ($) 1191 

Total Operating Cost ($) 34,345 
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 Simulating the energy management system discussed in 5.E.3, the annual 

performance for the 3 residential microgrids are illustrated in tables 25-27. As noticed, 

DG’s dependency for the 3 RMGs is minimal, where the maximum annual DG’s energy 

share didn’t exceed 3.2% of the annual energy demand. 

 

Table 26: RMG2’s technical and financial annual profile 

Grid (kWh) 118,854 

DG (kWh) 1,608 

PV (kWh) 23,354 

BSS (kWh) 10,665 

Demand (kWh) 142,658 

DG Dependency (%) 1.1% 

Grid’s Cost ($)  15,847 

DG’s Cost ($) 515 

PV’s  Annual Payment ($) 1632 

BSS’s Annual Payment ($) 834 

Total Operating Cost ($) 18,828 

 

 

Table 27: RMG3’s technical and financial annual profile 

Grid (kWh) 242,525 

DG (kWh) 5,105 

PV (kWh) 43,429 

BSS (kWh) 20,830 

Demand (kWh) 289,234 

DG Dependency (%) 1.7% 

Grid’s Cost ($)  32,336 

DG’s Cost ($) 1,429 

PV’s  Annual Payment ($) 2,962 

BSS’s Annual Payment ($) 1191 

Total Operating Cost ($) 37,919 
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B. Community Microgrids Optimization Outcomes 

 Analyzing the difference between the generation and the demand recorded for the 

university campus and the residential microgrids, we observe that the annual loss energy is 

insignificant. Therefore, to reduce computational burden, optimizations related to MGC 

market is performed without accounting for power losses, thus excluding the use of 

numerical power flow analysis. 

 The day-ahead market model explained in section 5.E.4 is made to run for an entire 

year period. Where each microgrid, on a daily basis, has to decide whether to participate in 

the upcoming day energy market or not. Figure 24 reveals the annual decisions profile 

made by each of the 6 microgrids. Analyzing figure 24, we observe that the proposed 

market was considered an attractive alternative for a considerable number of days. Where 

the it ranges between 235 days (decided by RMG3) and 353 days (decided by hospital 

MG). Therefore, the market was considered attractive for a minimum percentage of 64% a 

year.  

 Recall that, in the hospital sizing optimization problem, all monthly optimal 

capacities were the upper permissible limits. Thus, we reached to a conclusion stating that 

the hospital’s performance might actually be improved if it has higher capacity limits. The 

fact that the hospital had the highest market participation decision justifies the previous 

conclusion, as the required extra capacity is now provided by other participants. 
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Fig. 24: Annual market participation profile 

 

 However, the successful market sign would be announced based on a certain 

criterion. The successful market is conditioned by either (1) all participant’s approval or (2) 

all participant’s approval within a certain pool. As discussed previously, the MGCA will 

attempt to include all participants in the same pool (phase 1) and if some participants 

rejected, the process enters phase 2, where 2 separate pools are considered. The first one 

contains the university campus, mall, hospital microgrids and light loads, while the second 

combines RMGs together. The bar chart in figure 25, illustrates the frequency of daily 

market participations received. Figure 25 reveals that during 174 days of the year, the 

proposed dispatch strategy provided by MGCA was approved by all distribution network 

participants. On the other hand, 5, 4, 3, 2 and 1 daily market participation decisions were 

sent to the MGCA 62, 56, 55, 15 and 3 times respectively. The information revealed by 

figure 25 provides important conclusion. The fact that only 18 days, with daily market 
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participation frequency less than 3, were recorded, illustrates that participants cooperation 

is significantly attractive and encouraged.  

 However, the above information still doesn’t provide the exact number of times 

where the MGCA sends a successful market sign to the MG/LAs. Therefore, to know 

precisely that number, decisions made by each possible pool is recorded in table 28. 

 

 

Fig. 25: Daily market participation decision frequency 

 

Table 28: Frequency of successful market sign by pool 

Frequency  of successful 

market participations 

Pool 1 Pool 2 

285 199 
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Combining the data provided by figure 25 and table 28, we conclude that the successful 

market flag was announced by the MGCA for 310 days within the entire year. A 

comparison between independent operation and the proposed market annual performance is 

illustrated in table 29. 

 

Table 29: Annual performance of both modes of operation 

 Independent Operation 

Performance 

Market Operation 

Performance 

Grid’s Energy (kWh) 105,291,762 104,972,274 

DG’s Energy (kWh) 830,389 863,109 

PV’s Energy (kWh) 10,642,207 10,642,207 

BSS’s Energy (kWh) 24,742,865 25,028,861 

Demand Energy (kWh) 113,797,744 113,797,744 

Demand Shortage (kWh) 86,044 - 

University Campus Annual Cost ($) 5,024,100  4,942,794  

Mall Annual Cost ($) 4,668,344  4,632,006  

Hospital Annual Cost ($) 2,831,428  2,807,332  

RMG1 Annual Cost ($) 34,345  33,722  

RMG2 Annual Cost ($) 18,828  18,538  

RMG3 Annual Cost ($) 37,919  37,382  

Total Cost ($) 12,614,964 12,471,774 

Savings ($) 143,190 

 

 

 At a first notice, the proposed market model seems to cause an increase in diesel 

generator’s dependency as illustrated in table 29. However, the effect is quite the opposite. 

Note that for independent operation, light loads were suffering from energy outage, such 

energy was supposed to be covered by diesel generators if existed, then taking that into 

consideration, the actual diesel energy needed to cover energy demand is 916,433kWh 
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(DG’s energy + shortage). Therefore, comparing that to the one obtained under market 

operation, we observe that diesel dependency actually decreased by 6%. Similarly, all 

distribution network participants exhibited a decrease in their annual operational cost 

causing the entire DN’s annual operational cost to be reduced by 143,190$. 

 A graph showing the market hours window for the 1st day is shown in figure 26, 

where RMGs’ BSS profile is shown to the left of the figure and other participants, 

including grid, is shown to the right.  As discussed previously, the MGCA will make use of 

the capacities provided by the MG/LA’s, along with their respective bids, to satisfy the 

network’s demand and announce the energy spot price profile as illustrated in table 30. 

 

 

Fig. 26: Power dispatch during 1st day market window 
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Table 30: Energy prices profile within market hour 

Grid University Mall Hospital RMG1 RMG2 RMG3 MCP 

0.000 0.2023 0.2038 0.1969 0.2350 0.2259 0.2049 0.235 

0.000 0.2023 0.2038 0.1969 0.2350 0.2259 0.2049 0.235 

0.000 0.2023 0.2038 0.1969 0.2350 0.2259 0.2049 0.235 

0.075 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.075 

0.075 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.075 

0.075 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.075 

0.213 0.0000 0.2038 0.0000 0.0000 0.0000 0.0000 0.213 

0.213 0.0000 0.2038 0.0000 0.0000 0.0000 0.0000 0.213 

0.213 0.0000 0.2038 0.0000 0.0000 0.0000 0.0000 0.213 

0.213 0.0000 0.2038 0.0000 0.0000 0.0000 0.0000 0.213 

0.213 0.0000 0.2038 0.0000 0.0000 0.0000 0.0000 0.213 

0.213 0.0000 0.2038 0.0000 0.0000 0.0000 0.0000 0.213 
 

 

 Analyzing table 30, we notice that the MGCA decided to discharge the RMGs’ BSS 

during grid’s outage although they provided higher bids, thus causing higher energy market 

clearing price. Being subjected to fixed grid’s tariff scheme, RMG are not allowed to 

dispatch while grid is ON, and since problem illustrated in equation 53 aims to minimize 

diesel dependency and grid’s peak hour purchased energy, the algorithm converged to a 

solution were it discharges the RMGs’ BSS causing an increase in energy spot market 

prices during grid’s outage and spare that required energy to be discharged during peak 

tariff hours by other possible participants (mall).  

 The MGCA, as previously mentioned, provides the DSO with a demand side 

management task during night tariffs when the grid is always ON. Figure 27 reveals the 

controlled charging scheme made as to prevent night tariff peaks and smooth the demand, 

during such hours, as much as possible. 
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Fig. 27: Controlled night tariff charging 
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK RECOMMENDATIONS 

 

 This work aimed to test the attractiveness of combining distributed energy resources 

owned by several owners and operating under the influence of an unreliable grid. To test 

such attractiveness, a two-step optimization process was performed.  

 The first optimization task dealt with optimizing several major loads with optimal 

PV-BSS capacities along with an optimal energy management system that minimizes the 

distribution network’s diesel and grid’s peak energy dependency. Optimal capacities and 

dispatch strategies showed significant reduction in the distribution network’s participants 

operational cost, through which annual savings between $0.33M and $0.58M were reached 

for major microgrid while reducing diesel dependency significantly to a maximum of 1% a 

year. 

 The second optimization aimed to upgrade the distribution network’s performance 

through creating a suitable market model that governs energy exchange between its 

participants. The proposed market model was a pool-based day ahead market managed by a 

microgrid community agent. Whereas, the success of energy trade was based on a daily 

decision to be taken by the distribution network’s participants (microgrid/load agents). The 

proposed energy market showed further improvements within the distribution network’s 

performance through which it: 

1. Covered the energy deficiency of light loads during grid’s outage. 
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2. Reduced annual operational cost by $0.143M.  

3. Reduced diesel dependency by 6%.  

 Improvements achieved in the distribution network’s performance, when compared 

with independent operation, might not be quite large. However, there are still several 

factors to be included for valid evaluation. For instance, during independent mode of 

operation spinning reserves’ cost was not considered, thus diesel generator’s cost was taken 

to be zero during ON grid times. However, for critical loads, this is not the case, especially 

that there is a probability of unpredicted grid’s outage, and diesel generators are expected to 

run when battery storage system’s state of charge reaches a critical value. Therefore, 

spinning reserve plays a vital role in correct assessment. Another factor that was not 

addressed in this study was the cost paid to the distributed system operator for using the 

grid’s distribution network cables and overhead lines as means for exchanged energy.  It 

would also be interesting to check the impact of increasing the available PV capacity on 

each participant’s annual saving. Moreover, for better understanding of proposed market 

dynamics, a sensitivity analysis can be performed to test the proposed model’s outcome in 

case of diesel fuel cost or grid’s tariffs escalations. A further important aspect, accounting 

for different market policies, can be conducted in order to deploy the best possible market 

policy for such operating conditions. 

 In conclusion, although the proposed market model showed slight improvement in 

the distribution network’s operation, further tests and scenarios are still needed for a 

reliable market evaluation.  
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