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Nancy Joseph Sawaya for Master of Science
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Title: Extracting War Incidents from News Articles via Deep Sequence Tagging

An important natural language processing (NLP) task is to extract structured
information from free text. In this thesis, we focus on the problem of extracting
war incidents from news articles. A war incident is a tuple consisting of a location
of the incident, the actor, the cause of death, and the number of casualties. We
employ OpenTag [1], a deep sequence-tagging approach, followed by a series of
flat classifiers to achieve this task. To train our sequence tagging model and the
flat classifiers, we utilize a dataset of news articles surrounding the Syrian war.
Our approach, which utilizes sequence tagging, outperforms baseline classifiers
that rely solely on the text of the news articles.
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Chapter 1

Introduction

1.1 Motivation

Throughout the years, technology has left a huge impact on people’s lives, con-

necting North to South, East to West making the whole world like a spider

network. In other words, every tiny information covering any topic including

celebrity news, war incidents, new recipes, etc... is shared with the universe. One

of the ways to stay up-to-date is social media platforms where individuals spend

more than 50% of their time checking and reading the latest news. However, there

are times when humans spend a lot more time on the internet and mostly when

they hear about a war incident or a natural disaster that has led to casualties.

Twitter is one of the most used social media platforms where news about such

incidents is tweeted sharing details about the accidents. In this project, we aim

to extract information from tweets posted during the Joplin 2011 tornado and
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from a set of news articles called FA-KES that report about the Syrian War. The

data extracted from the articles and tweets are mainly related to the location of

the incident, the number of dead humans, the damaged infrastructure, etc. For

instance, if we have the following sentence “15 were dead in Aleppo”, we want to

be able to extract “Aleppo” as the location of the incident and “15” as the number

of dead people. This could be seen as a Named Entity Recognition (NER) task

whose role is to identify and tag the name entities for a given sequence of words.

We implemented a deep learning model that takes as input a sequence of tokens

and retrieves specific information by tagging the words with the appropriate at-

tribute label. The extracted information would be aggregated to perform some

fact-checking that sparkle our motivation. Fact-checking consists of comparing

the output of the model to ground-truth values that construct the actual value

that should be detected by our system. For that to happen, we considered the an-

swers of CrowdFlower [3] workers as ground-truth values. This will be elaborated

in Chapters 4 and 5.

1.2 Sequence Tagging

The first step towards our goal is to label each word in the dataset with the

appropriate tag. Thus, we implemented a parser that would automatically tag

each word in an input sequence of tokens. This is called Sequence Tagging.

Sequence Tagging can label multiple words for the same target attribute not to
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mention its capability of discovering values for several attributes at the same

time [1]. We will see in the remaining parts of this thesis how the advantages

offered by Sequence Tagging fulfill our goal. There are many sequence tagging

strategies but we used the most popular one which is the BIOE where ‘B’ stands

for beginning, ‘I’ for inside, ‘O’ for outside, and ‘E’ for end of an attribute. For

instance, if we had the following sequence of tokens “the incident took place in

Aleppo”, and we already know that the location is Aleppo, then “Aleppo” should

be tagged as ‘B-LOC’ (beginning of location) and all the other words as ‘O’. We

have developed a recurrent neural network model that predicts the tags for a

given sequence of words.

1.3 Recurrent Neural Networks

“Recurrent neural networks (RNN) capture long range dependencies between to-

kens in a sequence” [1] and since we’re dealing with sequential data, RNNs make

the best solution. However, recurrent neural networks are known for the van-

ishing gradient issue which was solved by introducing Long Short Term Memory

Networks [1]. Therefore, we implemented our model with the following layers:

Word Embedding, Bidirectional Long Short Term Memory (BiLSTM), Attention,

and Conditional Random Field (CRF). We will discuss this further in section 5.4.
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1.4 Classifiers

For the FA-KES dataset, we were interested in identifying the actor who is be-

hind the war incident, the location where the incident took place, the cause of

death of people during the war, and the number of civilians who died during the

incident. To note that we had a list of categories for actors, location, and cause

of death. Therefore, we created Logistic Regression, Random Forest Classifier,

and LinearSVC classifiers for each one of the mentioned attributes, picked the

one that returned the highest F1-score when evaluated on the output of our deep

learning model and compared its result to the result of a baseline classifier tested

on the same data excluding the occurrence of tags. We will present more insight

into this under section 5.5.

1.5 Objectives and Contributions

In this project, our goal is to retrieve values from a given sequence of tokens

that correspond to the attributes that we are interested in collecting, such as the

location, the number of casualties, the cause of death, etc. Several studies have

been done to retrieve the answers to many questions and one of them is OpenTag

[1]. We implemented the same algorithm proposed by OpenTag, trained it and

tested it on Joplin and FA-KES datasets. Additionally, we created classifiers for

a list of attributes seen in FA-KES articles.

Below is a summary of the contributions that have been done in this thesis:

4



1. A deep learning model built upon sequence tagging was developed, trained

and evaluated on Joplin and FA-KES datasets.

2. A baseline model was created, trained and tested on the same Joplin and

FA-KES subsets to see how well our recurrent neural network is performing.

3. Fact-checking has been done to evaluate the performance of the paradigms.

4. Classifiers were developed, trained, and examined on the output of our deep

learning model.

5. Baseline classifiers were implemented, trained, and evaluated on the same

FA-KES testing dataset without taking into consideration the labels.

1.6 Thesis Plan

The thesis is divided as follows: Chapter 2 presents the challenges that we have

encountered with Joplin and FA-KES datasets, Chapter 3 gives a quick sum-

mary of previous works that have been done for information extraction, Chapter

4 gives a close look to the Joplin and FA-KES datasets, Chapter 5 describes

how the majority vote approach was applied on Joplin subsets, how the answers

were retrieved for the FA-KES dataset, how the sequence tagging approach was

applied on both datasets, how we developed our deep learning model, how we

implemented the classifiers for the FA-KES dataset, Chapter 6 gives a brief de-

scription of all the metrics that have been calculated in this study, Chapter 7

5



explains the evaluations of our neural network on Joplin and FA-KES subsets

and the evaluations of FA-KES classifiers, and Chapter 8 ends our work with a

conclusion.
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Chapter 2

Joplin and FA-KES Challenges

Machine learning problems are built upon datasets. The more structured reliable

the data is, the better the performance of deep learning systems would be. In

this thesis, we encountered several challenges related to data collection, cleanup,

and extraction.

To begin, we used the “Joplin” which consists of tweets collected during the

tornado that struck Joplin in 2011 [4]. One of the challenges is dealing with un-

structured text which would harden the extraction of target values correctly by

our model. The “Joplin” subsets that we are going to see in the following sections

are composed of tweets with specific information retrieved by CrowdFlower [3]

workers like the location of the incident, where for each tweet, we have several

answers for the same information to be collected. Therefore, we agreed on se-

lecting one answer from the list of answers provided by the workers and this was

done manually by selecting the answer that has more votes among the others.

7



As for the “FA-KES” dataset, it presented a lot more challenges than “Joplin”.

“FA-KES” is composed of news articles collected from 15 different sources. We

wanted to do experiments that cover 3 different dimensions of these articles. One

of them is based on the titles and first paragraphs aggregated. However, we didn’t

have the first paragraph of each article separated from its content. So, we had

to collect first the URL of each article using googlesearch python library. After

doing so, we went through the template of each of the 15 news sources to study

the HTML template structure to indicate to our parser under which HTML tag

the first paragraph is written. An additional challenge faced with FA-KES is

having multiple HTML templates per source, thus we had to acquire them all.

Additionally, more than 100 articles were collected from Al-Alam website and

those articles don’t exist anymore. Therefore, we had to retrieve manually from

the available content that we had the first 3-4 sentences assuming that they con-

struct the first paragraph. Moreover, CrowdFlower [3] workers extracted values

from the articles that were meant for instance to reflect the cause of death but

they corresponded to the location of the event. Despite that, more than 50%

of the answers didn’t exist in the articles but since we had for each information

extracted the sentence from which the information was retrieved by the workers,

we started to manually collect the answer from the copied sentences. Lastly, hav-

ing more than 500 words in each article imposed a big challenge to our recurrent

neural network model where, for instance, the location of the incident could be

found in the title of the article, whereas the number of people who died at the

8



end of the article.
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Chapter 3

Literature Review

We review previous works on information extraction with natural language pro-

cessing and open attribute value extraction.

3.1 Natural Language Processing

In [4], they worked on creating an automatic system that can extract disaster-

related information from tweets which would be helpful for humanitarian orga-

nizations. For the training phase, they used the “Joplin” dataset that contains

tweets posted during the Joplin 2011 tornado. As for the implementation phase,

two main components were required by the system: tweets classification and ex-

traction from tweets. First, manual classification and extraction of data were

done with crowdsourcing. Workers on CrowdFlower [3] had to first annotate

tweets as Personal, Informative (direct, indirect, or direct/indirect), or other.
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After getting the informative messages, workers classified informative tweets into

one of these five categories: Caution and advice, Casualties and damages, Dona-

tions (money, goods or services), People (missing, found, or seen), and Informa-

tion source. Since no tweet was classified as People, this category was removed

[4]. After that, they automated tweets classification as Personal, Informative

(direct, indirect, or direct/indirect), or other and information extraction using

Multi-label Naïve Bayesian classifiers that were trained on the data classified

by CrowdFlower [3] workers. So after filtering the informative tweets, a classi-

fier was trained with the same features of the previous classifier and using the

obtained data from crowdsourcing to identify whether an informative message

is direct or indirect. Another classifier was trained to classify the informative

tweets into one of the following four categories: “Caution/Advice”, “Donation”,

“Casualty/Damage”, and “Information Source”. For each of the above categories,

different types of information were extracted such as location references, time

references, source, type, etc. and a classifier was trained for each category to

automatically classify a tweet of the corresponding type into one of its sub-types.

For instance, an “Advice and Caution tweet” would be classified into Warning

issues or lifted, Siren heard, Shelter open or available, etc. To evaluate the qual-

ity of the information extractors, hit-ratio was measured by asking CrowdFlower

[3] workers to extract manually information from a set of training tweets and

extracting the same information from the same set of tweets automatically with

the trained extractors. Results showed a high hit-ratio (close to 1) for “Source”
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and “Number of Casualties” extractors. However, the performance of the other

extractors was poor which enlighten the necessity of using more sophisticated

algorithms for the extraction process [4].

Their future work [5] was focused on developing more sophisticated extrac-

tors that use complex Natural Language Processing techniques. They worked

on extracting disaster-relevant information from tweets with NLP. The first step

was collecting tweets that are relevant to disasters. “Joplin 2011” and “Sandy

2012” datasets were collected through Twitter’s API using hashtags “#joplin”

and “#sandy” respectively. The next step was classifying tweets, whether a tweet

is personal or informative. Once an informative tweet is detected, they classify it

as one of the following classes: “caution and advice”, “casualties and damage”, “do-

nations”, “people”, “information sources”, “other” using the multi-label classifiers

from their previous work [4]. And now after classifying tweets, they were able to

extract relevant information. So, they used the conditional random field (CRF)

which is a probabilistic model that predicts the relevant words to the disaster in a

tweet, marks them with a ‘+’ symbol and labels the remaining with a ‘-’ symbol.

They used ArkNLP which is “an implementation of CRFs and a set of features

known to be effective for NLP tasks on Twitter” [5]. During the extraction phase,

the workers were given the tweet with its type (caution or advice, people, etc.),

its instruction (a description of the type), and an empty text field where they had

to copy/paste words from the corresponding tweet that verify the given instruc-

tion. Next, they trained their system on a part of the human-provided labels
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and tested it on the remaining part. Two metrics were taken into consideration:

detection rate (fraction of examples in which humans and system found some-

thing relevant besides if it’s correct or not), hit ratio (fraction of examples in

which system found something relevant which is considered correct by humans)

[5]. These two metrics were measured to evaluate the performance of the informa-

tion extraction phase for several configurations of training and testing set on both

datasets, Joplin and Sandy. The experiments took place on the largest classes

detected in those two datasets: “caution and advice”, “casualties and damage”,

“infrastructure”, and “donations”. It was observed that a high hit ratio is usually

associated with a lower detection rate and vice versa. Results showed that the

system was able to detect relevant information from 40% to 80% (detection rate)

and generate correct output 80% to 90% (hit ratio) of the time which means that

this developed system can extract reliable high-level information [5].

3.2 Open Attribute Value Extraction

A deep learning model named OpenTag was introduced in [1] and applied on

product profiles retrieved from Amazon.com public pages. The goal of this model

is to extract values for a set of pre-defined target attributes that might be missing

from the list of a product’s attributes. OpenTag maintains the Sequence Tagging

approach which by itself models the dependency between attribute values. Thus,

OpenTag could be categorized as NER (Named Entity Recognition) task that
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aims to tag each word in a given sequence of tokens using the Sequence Tagging

approach. There are many sequence tagging strategies, and the most popular

one is used in this study which is BIOE where ‘B’ stands for the beginning of an

attribute, ‘I’ stands for inside of an attribute, ‘O’ stands for outside of an attribute

and ‘E’ stands for end of an attribute. Sequence tagging allows the extraction

of multi-word attribute values, the extraction of multiple attribute values at the

same time, and tagging all tokens whether they are attribute values or not. The

main advantages of Sequence tagging consist of: discovering values for several

attributes at the same time, labeling multiple words for the same attribute [1].

OpenTag doesn’t rely on a dictionary of words. This model consists of the

following layers: word embedding, Bi-LSTM, attention, and CRF. Word embed-

dings generate a vector for each token. The output of the first layer would be

passed as input to a bidirectional long short-term memory (Bi-LSTM) layer. At-

tention mechanism is applied to the output of Bi-LSTM. To ensure coherency

between attribute tags during prediction, Conditional Random Fields is used as

the last layer of the OpenTag model. OpenTag was implemented using Tensor-

flow and experiments were performed on three types of product profiles: dog

food, detergents, and cameras. They compared Bi-LSTM, Bi-LSTM-CRF and

OpenTag models’ results on the three product domains. OpenTag outperformed

all models on all different datasets used for single and multiple attributes values

extraction with an overall 82.8% F-score. This end-to-end tagging model could

be applied to any text with high performance [1].
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Chapter 4

Dataset

4.1 Joplin Dataset

In our project, we will use the “Joplin” dataset which consists of tweets posted

during the Joplin 2011 tornado. We are going to tackle four subsets of the

Joplin dataset: Caution and Advice, Casualties and Damages, Donations, and

Information Source. These subsets are taken from previous works [4, 5] where

CrowdFlower [3] workers had to extract specific information from a list of tweets.

In some cases, workers wrote “N/A” or “n/a” which both stand for “not available”.

Casualties and Damages dataset is composed of 138 tweets. Each tweet in this

dataset presents information about losses caused by an incident. Crowdsource

workers had to extract from a set of tweets the number of people who died or

were injured during the incident, and the infrastructure that was damaged. While

checking the answers of the workers, we could see that more than one answer was
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provided per tweet as can be seen in Table 4.1. For instance, in the first tweet,

each worker responded to the question of ‘How many injured or dead people’ as

either “house”, or “n/a”.

Tweet How many injured or
dead people

Damaged
Infrastructure

My house was blown
away by a tornado,
but a famous person
just‘d something

about my town. Who
needs a house?

house
house
n/a
n/a
n/a

house
house
n/a
n/a
n/a
house

@BBCWorld: US
authorities confirm at
least 89 killed after
massive tornado hits
Joplin, southwest

Missouri

89
89
89

n/a

Tornado is gone and
woman is assessing
the damage to her
house and still can
barely stand because

of the wind.

n/a
house
n/a
house

Table 4.1: Sample of Casualties and Damages’ tweets

The Caution and Advice dataset consists of 438 tweets that warn or advise

about an incident that may happen. The workers had to extract information

about the incident itself, the location where the incident took place, and the

time of the incident. In this case, also, multiple answers were provided for each

question as can be seen in Table 4.2. For example, the location for the first tweet

was filled as either “CT”, or “N/A”.
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Tweet Incident Location Time

@Juss2Live:
News was goin
crazy about
tornado

warnings n it
didn even rain !
-__- - shit was
wild over in CT
. 4 ppl died

tornado warnings
tornado warnings
tornado warnings

CT
N/A
CT

n/a

@spann:
Everybody on
the campus of
the University
of Oklahoma
should be in a
tornado safe
place now.
#okwx

should be in a
tornado safe place

—
should be in a

tornado safe plac
—

tornado safe place

Oklahoma
—

campus of the
University of
Oklahoma

—
campus of the
University of
Oklahoma

Almyra
Arkansas

tornado about
to hit the
ground

tornado
—

tornado about to
hit the ground

—
tornado about to
hit the ground

Almyra Arkansas
Almyra Arkansas
Almyra Arkansas

Table 4.2: Sample of Caution and Advice tweets

As for the Donations dataset, it consists of 204 tweets where each tweet speaks

about fundraising, donations offered or asked by the victims of an incident. Work-

ers retrieved from the tweets the donation offer, the location of the donation and

the authority responsible of this donation or asking for a donation. In Table 4.3,
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several answers for the donation offer were extracted for the third tweet: “water”,

“collect water”, “water”.

Tweet Donation Location Authority

@caryrandolph:
It’s official:

Margaritas for
#Joplin next
Wednesday

@losFeliz_NYC
on Ludlow St.

100% of
proceeds go to
OzarksRed-

Cross.

100% of
proceeds

—
100% of

proceeds go
to

@OzarksRedCross.

Ludlow St.
Ludlow St.

@losFeliz_NYC
on Ludlow St.

—
@losFeliz_NYC

@SLMPD: 60 of
our officers are
on their way to
Joplin, Mo to

assist as the city
recovers from
the May 22
tornado.

http://twitpic.com
...

assist
assist

Joplin, Mo
Joplin, Mo

60 of our officers
—

officers

@GabeCarimi:
At West Town
Mall helping out

93.1 Jamz
collect water for
the tornado
victims in

Joplin. They’re
here till 6, stop

by a ...

water
collect water

water

West Town Mall
—

At West Town Mall
—

West Town Mall

93.1 Jamz
93.1 Jamz
93.1 Jamz

Table 4.3: Sample of Donations’ tweets

Lastly, the Information Source dataset contains 280 tweets where each tweet
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carries a photo or video related to an incident. The workers’ job was to take out of

the tweet the incident that happened and its information source. Table 4.4 shows

two different answers for the incident concerning the second tweet: “Tornado”,

“Tornado sucks up a river”.

4.2 FA-KES Dataset

In our study, we will also use “a fake news dataset around the Syrian war”, called

FA-KES which is presented in [6]. This dataset consists of news articles that

announce Syrian war incidents. FA-KES is composed of 804 English articles that

were retrieved from “several media outlets representing mobilisation press, loyalist

press, and diverse print media” [6].

In Table 4.5, we present a sample of FA-KES’ articles for which CrowdFlower

[3] workers had to answer the list of questions below after reading its content:

1. How many civilians died in the incident?

2. How many children were targeted in the incident?

3. How many adult women were targeted in the incident ?

4. How many non-civilians died in the incident?

5. What is the cause of death?

6. Who does the article blame for the casualties?
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Tweet Incident Information Source

@lifechurchtv: See an
update of how
LifeChurch.tv is
partnering with
Tornado Relief in
Joplin, Oklahoma

City and
Birmingham.
http://y ...

@lifechurchtv: See an
update of how
LifeChurch.tv

is partnering with
Tornado Relief in

Joplin, Oklahoma City
and

Birmingham.
—

@lifechurchtv: See an
update of how
LifeChurch.tv

is partnering with
Tornado Relief in Joplin,

Oklahoma City and
Birmingham.

—
See a

LifeChurch.tv
—

http://y
—

http://y/
—

http://y .

Tornado sucks up a
river.

http://is.gd/tutjk0

Tornado
—

Tornado sucks up a river

http://www.bbc.co.uk/
news/world-us-canada

-13627044
—

http://is.gd/tutjk0

Joliet councilman
organizes tornado
relief collection -
Herald News

http://t.co/PqMTvXw
via @AddThis

Joliet councilman
organizes tornado
relief collection
- Herald News

—
tornado relief collection

http://t.co/PqMTvXw
—

http://t.co/PqMTvXw

Table 4.4: Sample of Information Source tweets
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7. Where does the article claim the deaths happened?

8. When did the incident happen (Day/Month/Year)?

To begin with our experiments, we created two subsets of the news articles

dataset. The first one consists of the articles’ titles with the workers’ answers and

the second one of the articles’ titles concatenated with their contents accompanied

by the workers’ answers. At some point, we wanted to extend our experiments

to the first paragraph of each article; however, we didn’t have the first paragraph

separately and for many articles, we didn’t have the URL from which the article

was originally collected. Thus, we worked on extracting the URL of each article

using googlesearch python library which takes as input the article title and source.

One thing to note here that we have 15 different article sources. After collecting

the hyperlinks, we started learning the structure of the HTML template of each

web source so we could tell our system where the first paragraph is located,

under which HTML tag specifically, to be able to retrieve it. Also, more than

one HTML template was used per news source which hardened our work and

made us go through all the available templates. Plus, while checking the articles

online, we couldn’t find the ones retrieved from the Al-Alam website (around 200

articles). Thus, from the available content that we had initially, we retrieved the

first 3-4 sentences which we assumed would construct the first paragraph. In this

case, the third subset created is composed of the articles’ titles concatenated with

the first paragraphs along with the workers’ answers.
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Article Air raids kill 11 civilians in east Syria Monitor

AFP Friday 15 Jul 2016 "At least 11 civilians –

among them four women and four children – were

killed in Syrian or Russian air raids on the Al-

Boulil region that is controlled by the Islamic State

group in the eastern province of Deir Ezzor" the

Britain-based monitor said. ...

Cause of death warplane shelling

Actor syrian government and affiliated militias

Number of dead civilians 11

Number of dead non-

civilians

0

Number of dead children 4

Number of dead women 4

Place of death deir Ezzor

Date of incident 7/15/2016

Table 4.5: Sample of FA-KES articles
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Chapter 5

Proposed Approach

5.1 Joplin Dataset

5.1.1 Majority Vote

As seen in Tables 4.1, 4.2, 4.3, and 4.4, multiple answers were given by the workers

for each question which may cause inconsistency in our dataset. To avoid it, we

selected only one answer from the list of answers provided.

The selection of responses is achieved by the concept of “Majority Vote”. The

answer that has more occurrences would be selected and in case there are different

answers or the number of votes for each suggested answer are equal, we would

have to select the most suitable answer.

In Table 4.1, we could see for the first tweet, that five answers are present for

question ‘How many injured or dead people’: three answers ‘n/a’ vs two answers
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‘house’, so in this case ‘n/a’ wins and the answer selected is ‘n/a’. However, for

the second question, there are six answers for “Damaged Infrastructure”: three

answers ‘n/a’ vs three answers ‘house’. In such cases, we had to select the most

convenient answer which would be here ‘house’ of course.

5.2 FA-KES Dataset

5.2.1 Answer Retrieval

As seen in Table 4.5, the information extracted by the workers for attribute actor,

for example, doesn’t exist as it is in the article’s content because CrowdFlower

[3] workers were given a list of values to pick from for each question restricting

their choice. Also, these lists were actually given by the Syrian Violations Docu-

mentation Center. What was helpful in this case, is having for each information

extracted by the workers, the sentence that reflects their answer.

Therefore, we started to retrieve manually the attributes’ values from the

copied sentences. For instance, in Table 4.5, workers picked “syrian government

and affiliated militias” as actor for that particular article and this series of tokens

was not found in the text. With the help of the sentence copied from which

this information was retrieved “At least 11 civilians – among them four women

and four children – were killed in Syrian or Russian air raids on the Al-Boulil

region that is controlled by the Islamic State group in the eastern province of Deir
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Ezzor” [7], we retrieved the authority responsible of the incident which should be

“Syrian or Russian” in this case as is shown in Table 5.1. Besides, we noticed that

the value for the date attribute was extracted by the workers in the following

format month/day/year. However, each article contains the date in a specific

format. While checking the articles, we were able to identify 15 different date

representation. Therefore, we worked on converting the dates retrieved by the

workers to those 15 different representations which will help the parser in the

sequence tagging step to automatically check if one of those formats exists in the

article to be able to tag them with the appropriate date labels. For instance, one

of the formats of the date retrieved in Table 4.5 is Friday 15 Jul 2016 which

actually exists in the article.

5.3 Sequence Tagging

After getting fully cleaned data, we used the BIOE Sequence Tagging’s strategy

which was utilized in OpenTag [1] in the aim of getting every word in the dataset

associated to a label called ‘tag’. A tag consists of one of these letters B, I,

O, or E, that stand respectively for beginning, inside, outside, or end of an

attribute, followed by a ‘-’ sign, followed by three letters that represent the type

of information that was initially extracted by the CrowdFlower [3] workers. In

other words, if the information extracted for the location of the incident from a

particular tweet or article is for example ‘inside the pizza shop’, the first word
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Attribute Workers’
Answer Copied From Final

Answer

Cause of death warplane
shelling

At least 11 civilians
– among them four
women and four
children – were
killed in Syrian
or Russian air

raids on the Al-Boulil

air raids

Actor

syrian gov-
ernment
and

affiliated
militias

At least 11 civilians
– among them four
women and four
children – were
killed in Syrian
or Russian air

raids on the Al-Boulil

Syrian or
Russian

Number of dead
civilians 11

At least 11 civilians
– among them four
women and four
children – were
killed in Syrian
or Russian air

raids on the Al-Boulil

11 civilians

Number of dead
non-civilians 0

Number of dead
children 4

At least 11 civilians
– among them four
women and four
children – were
killed in Syrian
or Russian air

raids on the Al-Boulil

four
children

Number of deadwomen 4

At least 11 civilians
– among them four
women and four
children – were
killed in Syrian
or Russian air

raids on the Al-Boulil

fourwomen

Place of death deir Ezzor
controlled by the

Islamic State group
in the eastern

province of Deir Ezzor
Deir Ezzor

Date of incident 7/15/2016 Friday 15
Jul 2016

Table 5.1: Answers extracted from FA-KES’ article shown in Table 4.5
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of the location which is here ‘inside’, would be tagged as beginning of location

‘B-LOC’, the last word ‘shop’ would be labeled as ‘E-LOC’ which stands for end

of location, and any word in between these two words would be marked as ‘I-

LOC’ which stands for inside of location; in this example, ‘the’, and ‘pizza’, are

both tagged as ‘I-LOC’. If the remaining words of the tweets or articles were not

retrieved by the workers, each token would be tagged as ‘O’ which designates

outside of an attribute (words that are outside the scope of information that we

are interested in). To automate this work, we implemented a parser for the four

subsets of the Joplin dataset and the three subsets of the FA-KES dataset.

For the Casualties and Damages dataset, our parser would take as input the

list of tweets with the information extracted for every question, in this case,

the number of people who were dead or injured and the infrastructure that was

damaged during the incident. According to BIOE strategy, we would have the

following labels: ‘B-PEO’, ‘I-PEO’, ‘E-PEO’, ‘B-INF’, ‘I-INF’, ‘E-INF’, and ‘O’

(where O stands for words outside the scope, PEO stands for the injured or dead

people, and INF for the damaged infrastructure). In Table 5.2, we present the

sequence of words of the third tweet shown in Table 4.1 with their appropriate

tags.
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Word Tag

Tornado
is

gone
and

woman
is

assessing
the

damage
to
her

house
and
still
can

barely
stand
because

of
the
wind.

O
O
O
O
O
O
O
O
O
O
O

B-INF
O
O
O
O
O
O
O
O
O

Table 5.2: Example of Casualties and Damages’ tweet

BIOE was applied to the three other Joplin datasets. Words in Caution and

Advice tweets ended up tagged with the following tags: ‘B-INC’, ‘I-INC’, ‘E-

INC’, ‘B-LOC’, ‘I-LOC’, ‘E-LOC’, ‘B-TIM’, ‘I-TIM’, ‘E-TIM’, and ‘O’ (where O

stands for words outside the scope, INC for incident, LOC for location of incident,

TIM for time of incident). Table 5.3 shows the tags for the series of terms that

occurred in the third tweet of Table 4.2.
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Word Tag

Almyra
Arkansas
tornado
about
to
hit
the

ground

B-LOC
E-LOC
B-INC
I-INC
I-INC
I-INC
I-INC
E-INC

Table 5.3: Example of Caution and Advice tweet

As for the Donations’ tweets, the series of words were marked as either ‘B-

DON’, ‘I-DON’, ‘E-DON’, ‘B-LOC’, ‘I-LOC’, ‘E-LOC’, ‘B-REP’, ‘I-REP’, ‘E-

REP’, or ‘O’ (where ‘O’ stands for words outside the scope, ‘DON’ for the do-

nation event, ‘LOC’ for the location of the donation event, and ‘REP’ for the

authority responsible of the donation event or asking for a donation). Table 5.4

presents the output of the parser for the second tweet presented in Table 4.3.
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Word Tag

@SLMPD:
60
of
our

officers
are
on
their
way
to

Joplin,
Mo
to

assist
as
the
city

recovers
from
the
May
22

tornado.
http://twitpic.com

...

O
B-REP
I-REP
I-REP
E-REP

O
O
O
O
O

B-LOC
E-LOC

O
B-DON

O
O
O
O
O
O
O
O
O
O
O

Table 5.4: Example of Donations’ tweet

Concerning Information Source tweets, each token was tagged with one of

these labels: ‘B-INC’, ‘I-INC’, ‘E-INC’, ‘B-SRC’, ‘I-SRC’, ‘E-SRC’, or ‘O’ (where

O stands for words outside the scope, INC for incident, and SRC for information

source). In Table 5.5, we present the labels for each word in the first tweet of

Table 4.4.
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Word Tag

@lifechurchtv:
See
an

update
of
how

LifeChurch.tv
is

partnering
with

Tornado
Relief
in

Joplin,
Oklahoma

City
and

Birmingham.
http://y

...

B-INC
I-INC
I-INC
I-INC
I-INC
I-INC
I-INC
I-INC
I-INC
I-INC
I-INC
I-INC
I-INC
I-INC
I-INC
I-INC
I-INC
E-INC
B-SRC

O

Table 5.5: Example of Information Source tweet

Finally, tokens in FA-KES’ articles were labeled with one of the following

tags: ‘B-LOC’, ‘I-LOC’, ‘E-LOC’, ‘B-CIV’, ‘I-CIV’, ‘E-CIV’, ‘B-NCV’, ‘I-NCV’,

‘E-NCV’, ‘B-WMN’, ‘I-WMN’, ‘E-WMN’, ‘B-CHD’, ‘I-CHD’, ‘E-CHD’, ‘B-ACT’,

‘I-ACT’,‘E-ACT’, ‘B-COD’, ‘I-COD’, ‘E-COD’, ‘B-DAT’, ‘I-DAT’, ‘E-DAT’, or

‘O’ (where O stands for words outside the scope, LOC for location of incident,

CIV for number of civilians dead, NCV for number of non-civilians dead, WMN

for number of women targeted, CHD for number of children killed, ACT for

actor/authority responsible of incident, COD for cause of death, and DAT for

date of incident). Table 5.6 shows the appropriate tag for each word in the ‘Final
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Answer’ column seen in Table 5.1.

Word Tag

Friday
15
Jul
2016
11

civilians
four

women
four

children
Syrian
or

Russian
air
raids
Deir
Ezzor

B-DAT
I-DAT
I-DAT
E-DAT
B-CIV
E-CIV
B-WMN
E-WMN
B-CHD
E-CHD
B-ACT
I-ACT
E-ACT
B-COD
E-COD
B-LOC
E-LOC

Table 5.6: Example of FA-KES’ articles

5.4 Deep Learning Model

Our proposed model is inspired by the OpenTag [1] approach. We used Word

Embedding as a first layer, where each token is represented by an integer number

leading to having the whole sentence represented by a vector of integer numbers.

The output of the embedding layer represents the input to our Bi-LSTM layer.

Long Short Term Memory Networks (LSTM) is a sub-category of Recurrent

Neural Networks (RNN). LSTM cell’s job consists of generating a hidden vector

ht for each token xt represented by its embedding et which is passed as input
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to the LSTM cell. That way the generated vector would be passed as input to

the next layer. In our approach, since we are using sequence tagging which by

itself needs to look up to previous and future contexts, we considered applying

a Bidirectional-LSTM instead of LSTM where now we have two hidden vectors

one for backward, and one for forward which are concatenated to form the final

output as a new hidden vector ht [1]. From [1], we will recall the representation

of ht:

ht = σ([
−→
h t,
−←
h t]) (5.1)

However, BiLSTM is not enough for our sequence tagging approach. BiLSTM

lacks in measuring the coherency of tags given as input a sequence of words. For

instance, if we have the following sequence of words “Starbucks coffee shop”, we

might get as labels ‘B-LOC’, ‘E-LOC’, and ‘I-LOC’, respectively; whereas, the

‘E-LOC’ shouldn’t appear before ‘I-LOC’. This could only be fixed by adding

a Conditional Random Field (CRF) layer which focuses on predicting the label

sequence jointly. In this example, CRF would predict ‘B-LOC I-LOC E-LOC’

for “Starbucks coffee shop”. As is shown in [1], CRF function can be written as

follows:

Pr(y|x; Ψ) ∝
T∏
t=1

exp

(
K∑
k=1

Ψkfk(yt−1, yt, x)

)
(5.2)
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where “x = {x1, x2, ...xn} is the input sequence, y ={y1, y2, ...yn}

is the corresponding label sequence, fk(y,x) is the feature function, Ψk is the cor-

responding weight to be learned, K is the number of features, yt and yt−1 are

the neighboring tags at timesteps t and t-1, respectively” [1]. We also added an

attention layer on top of our model which would “highlight important concepts,

rather than focusing on all the information” [1]. Thus, we ended up having the

same algorithm as OpenTag. “The attention-focused hidden state representation

lt of a token at timestep t is given by the weighted summation of the hidden state

representation ht′ of all other tokens at timesteps t’, and their similarity αt,t′ to

the hidden state representation ht of the current token” [1]:

lt =
n∑

t′=1

αt,t′ .ht′ (5.3)

To avoid over-fitting, we applied the L2 regularization technique to our BiL-

STM layer using the regularizers from Keras [8]. We trained the model on 80% of

the data available in each dataset and tested on the remaining 20%. Besides, we

validated the paradigm on 20% of the training dataset. We will see in Chapter 7

how well our model performed on each of the datasets.

5.5 FA-KES Classifiers

In [6], CrowdFlower [3] workers were given a set of categories to pick from the

answers to a list of questions. These categories were provided by the Syrian
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Violations Documentation Center for the following questions: ‘Who does the

article blame for the casualties?’, ‘What is the cause of death?’ and ‘Where

does the article claim the deaths happened?’. So, now instead of looking at

an open-tag environment, we are looking at a closed-tag one since we already

know the list of answers for each one of the above-mentioned questions. We

wanted to see how well would a closed-tag problem perform on the output of

our OpenTag model. Therefore, we created Logistic Regression, Random Forest

Classifier, and LinearSVC classifiers for each of the following attributes: Actor,

Location, Cause of Death, and Civilians. “Logistic regression analysis is one of the

mostly preferred regression methods that can be implemented in modelling binary

dependent variables. Logistic regression is a mathematical modelling approach

used to define the relationship between such independent variables as X1, X2, . . . ,

Xn and Y binary dependent variable which is coded as 0 or 1 for two possible

categories. The independent variables may be continuous, discrete, binary or a

combination of them.” [9]. We applied the One-vs-Rest approach for the Logistic

Regression classifier which “takes one class as positive and rest all as negative and

trains the classifier. So for the data having n-classes it trains n classifiers. Now

in the classification phase the n-classifier predicts probability of particular class

and class with highest probability is selected.” [10]. “Random forest classifier

creates a set of decision trees from randomly selected subset of training set. It

then aggregates the votes from different decision trees to decide the final class of

the test object.” [11]. The last classifier is called LinearSVC. “The objective of a
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Linear SVC (Support Vector Classifier) is to fit to the data you provide, returning

a “best fit” hyperplane that divides, or categorizes, your data. From there, after

getting the hyperplane, you can then feed some features to your classifier to see

what the “predicted” class is. This makes this specific algorithm rather suitable

for our uses, though you can use this for many situations.” [12]. These classifiers

were evaluated on the output of our deep learning model.

5.5.1 Actor Classifier

CrowdFlower [3] workers had to select from the following list of actors the actor

who is behind the incident: Al-Nusra Front, Armed opposition groups, Interna-

tional coalition forces, Russian troops, Self administration forces, Syrian govern-

ment and affiliated militias, The organization of Islamic State in Iraq and the

Levant - ISIS, and Other. We noticed that the training dataset is imbalanced,

so we weighted it by giving the least occurring classes a higher example weight.

Then, we created a Logistic Regression, Random Forest Classifier classifiers, and

LinearSVC classifiers for actor classification that were trained respectively on the

three weighted subsets: the articles’ titles and their appropriate ground-truth

labels, the articles’ titles concatenated with first paragraphs and their corre-

sponding tags, and the articles’ titles concatenated with their contents and their

relative labels. These classifiers were then tested on the output of our deep

learning model for the 3 dimensions: titles, titles and first paragraphs, titles and
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contents. To see how well our classifiers are doing, the same classifiers were cre-

ated and trained on the same weighted datasets excluding the labels. Finally, we

examined these basic classifiers on the same testing dataset without taking into

consideration the occurrence of tags.

5.5.2 Location Classifier

In [6], workers had to pick the location of the incident from the following list:

Aleppo, Damas, Damascus, Damascus Suburbs, Daraa, Deir Ezzor, Hama, Hasakeh,

Homs, Idlib, Lattakia, Quneitra, Raqqa, Tartous, and Other. In this case, we

noticed that the training datasets are not balanced. Thus, we weighted all the

occurring classes in the training dataset by giving a higher weight to the least

occurring classes. Logistic Regression, Random Forest Classifier, and LinearSVC

classifiers were created for location classification and trained respectively on the

weighted datasets: the articles’ titles and their appropriate ground-truth labels,

the articles’ titles concatenated with first paragraphs and their corresponding

tags, and the articles’ titles concatenated with their contents and their relative

tags. We evaluated the performance of those classifiers on the output of our deep

learning model for the 3 dimensions: titles, titles and first paragraphs, titles and

contents. Baseline classifiers were implemented and trained on the same weighted

subsets disregarding the existence of labels. Lastly, we tested the baseline classi-

fiers on the testing data excluding labels.
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5.5.3 Cause of Death Classifier

The following list was presented to the workers to choose from the cause of death:

Chemical and toxic gases, Execution, Explosion, Kidnapping - Execution, Kid-

napping - Torture, Shelling, Shooting, Warplane shelling, and Other. We could

see that there are some repetitive categories, so we grouped “Execution” and

“Kidnapping - Execution” as “Execution”, and “Warplane shelling” and “Shelling”

as “Shelling”. We also removed the data that has “Kidnapping - Torture” as a

cause of death category from the training dataset. After that, we weighted our

imbalanced training dataset the same way we did it for the Location and Actor

classifiers. Logistic Regression, Random Forest Classifier, and LinearSVC classi-

fiers were created for cause of death classification and trained respectively on the

weighted datasets: the articles’ titles and their appropriate ground-truth labels,

the articles’ titles concatenated with the first paragraphs and their corresponding

tags, and the articles’ titles concatenated with their contents and their relative

tags. We evaluated the performance of those classifiers on the output of our deep

learning model for the three dimensions: titles, titles and first paragraphs, titles

and contents. Besides that, baseline classifiers were implemented and trained on

the same training datasets disregarding the existence of any labels. At last, we

examined the performance of those baseline classifiers on the similarly testing

subsets without tags.
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5.5.4 Civilians Classifier

As mentioned earlier, we had the copied sentence from which the workers ex-

tracted the number of dead civilians. We managed to round the digit numbers

extracted as value for the number of dead civilians for the three dimensions that

we are tackling: the articles’ titles, the articles’ titles concatenated with first para-

graphs, and the articles’ titles concatenated with their contents. After rounding

these values, we linked them to one of these groups that represent the number of

civilians who were dead during the war incident: ‘Less than 50’, ‘Greater than

50’, or ‘Greater than 100’. We noticed that also in this case the dataset is imbal-

anced. Therefore, we weighted all the occurring classes in the training dataset

by giving more weight to the least occurring classes. Logistic Regression and

LinearSVC classifiers were created for dead civilians classification and trained

respectively on the weighted datasets: the articles’ titles and their appropriate

ground-truth labels, the articles’ titles concatenated with first paragraphs and

their corresponding tags, and the articles’ titles concatenated with their contents

and their relative tags. We evaluated the performance of those classifiers on the

output of our deep learning model for the three dimensions: titles, titles and first

paragraphs, titles and contents. Baseline classifiers were implemented and trained

on the likewise weighted subsets neglecting the presence of any labels. Lastly, we

evaluated the baseline classifiers on the text solely of the testing subsets.
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Chapter 6

Metrics

In this chapter, we will present a set of metrics that we used to evaluate our

model. The range for these metrics is [0, 1]. Some of the metrics shown in this

chapter, use for their computation True Positive, True Negative, False Positive,

and False Negative, which are defined by [2] in Table 6.1. Our focus is mainly on

the values obtained for F1-score and Bleu-score.

The first metric is called Recall, which represents “the proportion of positive

data points that are correctly considered as positive, with respect to all positive

data points” [13]. The following formula illustrates the calculation of Recall which

is proved by [13]:

Recall =
True Positive

True Positive+ False Negative
(6.1)
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“While recall expresses the ability to find all relevant instances in a dataset,

precision expresses the proportion of the data points our model says was relevant

actually were relevant.” [2]. From [2], Precision could be calculated as follows:

Precision =
True Positive

True Positive+ False Positive
(6.2)

It is known that better performance is usually linked to higher F1-score. F1-

score constitutes “the harmonic mean of precision and recall” [2], which makes

them essential for its calculation, as can be seen in the below equation taken from

[2]:

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
(6.3)

A lot of studies use Accuracy as an essential metric to evaluate their models

because it measures the proportion of the number of correct predictions to the

total number of predictions made, and which is generally the main goal of new

proposed approaches. The below equation is taken from [14]:
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Accuracy =
True Positive + True Negative

True Positive + True Negative+ False Positive + False Negative

(6.4)

In [5], they defined Hit-ratio as “Hit-ratio measures the fraction of examples

for which our system found something, and that something could be considered

correct by humans. We consider the output correct if it overlaps in at least one

word with the given human label.”. The below formula is taken from [4], which

is a previous work of [5], where hit would be equal to 1 if one token per tweet

gets labeled correctly:

Hit− ratio =

∑|tweets|
i=1 hiti
|tweets|

(6.5)

Detection rate was also defined in [5] as “Detection rate measures the fraction

of examples in which humans found a relevant piece of information, and our

system also found something, even if that something is incorrect.”. Since there’s

no mathematical formula from previous works that present how it was computed,

we wrote equation 3.6 that shows how the Detection-rate is actually measured,

where detect would be equal to 1, whether a word gets predicted correctly or not.

Detection− rate =

∑|tweets|
i=1 detecti
|tweets|

(6.6)
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Finally, the Bilingual Evaluation Understudy Score, known as BLEU, was pro-

posed in [15] for evaluating a generated sentence to a reference sentence. Having

candidate translations and reference sentences, the approach counts the match-

ing n-grams between the candidate sentence and the reference sentences provided,

where for instance a bi-gram consists of comparing every pair of words. We mea-

sured it using sentence_bleu() function provided by NLTK [16]. In the following

lines, we present the computation of BLEU proved by [15]:

BP =


1 if c > r

e(1−r/c) if c ≤ r

(6.7)

BLEU = BP. exp

(
N∑

n=1

wn log pn

)
(6.8)

where “BP is the brevity penalty, c the length of the candidate translation,

r the effective reference corpus, N length of the grams, pn n-gram precision, and

wn positive weights” [15]. In our study, we used the default 4-grams BLEU score.
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True Positive
data points labeled as positive that are

actually positive

False Positive
data points labeled as positive that are

actually negative

True Negative
data points labeled as negative that are

actually negative

False Negative
data points labeled as negative that are

actually positive

Table 6.1: “Four Outcomes of Binary Classification” taken from [2]
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Chapter 7

Evaluations

7.1 Evaluation of Deep Learning on Joplin Dataset

To recognize how well our deep learning model is doing, we created a baseline

model to be examined on the same testing data. One thing to note here that our

OpenTag model didn’t return good results when trained on the Joplin dataset;

however, when we removed the attention layer, it produced better results. Thus,

the deep learning model that is trained and tested on the Joplin subsets is a

BiLSTM-CRF. The baseline model consists of the same layers of our BiLSTM-

CRF model excluding the Bi-LSTM layer, so we ended up having a baseline model

composed of a Word Embedding layer followed by a CRF layer. We agreed on

calling the baseline model CRF.

As we know, there are four subsets in the Joplin dataset. Accordingly, we

created a BiLSTM-CRF model and CRF model for each of these subsets. Both
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models were trained on the respective training data and tested on the correspond-

ing data of each subset. All of this was done to compare the results of our deep

learning model to the ones obtained by the baseline model and see if our deep

learning model will outperform the CRF model. We trained the models for 200

epochs with a batch of size 32 and used RMSProp as an optimizer. We measured

the metrics listed in Chapter 6 for the CRF and BiLSTM-CRF models and com-

pared the values. Also, we drew the learning curve of the loss of the training and

validation datasets for each of the evaluated models.

7.1.1 Casualties and Damages Dataset

We split the Casualties and Damages dataset into 60% for training, 20% for

validating, and 20% for testing the model. We trained the CRF and BiLSTM-

CRF models on the learning data and tested them on the testing dataset. Table

7.1 shows the values of the calculated metrics for both models. Tables 7.2 and

7.3 present the classification report of our evaluated models CRF and BiLSTM-

CRF, respectively. Figures 7.1 and 7.2 show the learning curve of the loss of both

models on the training and validation datasets.
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Metric CRF BiLSTM-CRF

F1-score 0.625 0.40

Accuracy 0.988 0.985

Hit-ratio 0.178 0.107

Detection Rate 0.178 0.143

Bleu-Score 0.977 0.971

Table 7.1: Results of CRF and BiLSTM-CRF on Casualties and Damages
testing dataset

Class Precision Recall F1-score Support

PEO 1 0.40 0.57 10

INF 1 1 1 1

Average/Total 1 0.45 0.61 11

Table 7.2: Classification report of CRF model on Casualties and Damages
testing dataset

Class Precision Recall F1-score Support

PEO 0.75 0.3 0.43 10

INF 0 0 0 1

Average/Total 0.68 0.27 0.39 11

Table 7.3: Classification report of BiLSTM-CRF on Casualties and Damages
testing dataset
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Figure 7.1: CRF loss on Casualties and
Damages Training and Validation Datasets

Figure 7.2: BiLSTM-CRF loss on
Casualties and Damages Training and

Validation Datasets

7.1.2 Caution and Advice Dataset

Caution and Advice dataset was also divided into 60% for training, 20% for

validating, and 20% for testing the model. CRF and BiLSTM-CRF were trained

on the training dataset and evaluated on the testing dataset. Table 7.4 shows

the metrics values for both models. Tables 7.5 and 7.6 present the classification

report of our tested models CRF and BiLSTM-CRF, respectively. The loss of

both models on the training and validation datasets can be seen in Figures 7.3

and 7.4.

48



Metric CRF BiLSTM-CRF

F1-score 0.49 0.537

Accuracy 0.887 0.895

Hit-ratio 0.91 0.863

Detection Rate 0.977 0.966

Bleu-Score 0.851 0.873

Table 7.4: Results of CRF and BiLSTM-CRF on Caution and Advice testing
dataset

Figure 7.3: CRF loss on Caution and
Advice Training and Validation Datasets

Figure 7.4: BiLSTM-CRF loss on Caution
and Advice Training and Validation

Datasets
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Class Precision Recall F1-score Support

INC 0.63 0.69 0.66 85

LOC 0.31 0.28 0.29 58

TIM 0.31 0.33 0.32 27

Average/Total 0.47 0.49 0.48 170

Table 7.5: Classification report of the CRF model on Caution and Advice
testing dataset

Class Precision Recall F1-score Support

INC 0.66 0.66 0.66 85

LOC 0.42 0.36 0.39 58

TIM 0.53 0.37 0.43 27

Average/Total 0.56 0.51 0.53 170

Table 7.6: Classification report of BiLSTM-CRF on Caution and Advice testing
dataset

7.1.3 Donations Dataset

60% of Donations dataset was used for training CRF and BiLSTM-CRF models,

20% for validating them, and the remaining 20% were used to appraise both

models. Table 7.7 shows the values of the computed metrics for both models.

The classification reports of our evaluated models CRF and BiLSTM-CRF can
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Figure 7.5: CRF loss on Donations
Training and Validation Datasets

Figure 7.6: BiLSTM-CRF loss on
Donations Training and Validation

Datasets

be seen in Tables 7.8 and 7.9. Figures 7.5 and 7.6 show the learning curve of the

loss of both models on the training and validation datasets.

Metric CRF BiLSTM-CRF

F1-score 0.336 0.255

Accuracy 0.865 0.85

Hit-ratio 0.61 0.536

Detection Rate 0.731 0.78

Bleu-Score 0.792 0.796

Table 7.7: Results of CRF and BiLSTM-CRF on Donations testing dataset
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Class Precision Recall F1-score Support

DON 0.36 0.12 0.18 33

LOC 0.71 0.53 0.61 32

REP 0.25 0.1 0.14 31

Average/Total 0.44 0.25 0.31 96

Table 7.8: Classification report of the CRF model on Donations testing dataset

Class Precision Recall F1-score Support

DON 0 0 0 33

LOC 0.71 0.47 0.57 32

REP 0.27 0.13 0.17 31

Average/Total 0.32 0.2 0.24 96

Table 7.9: Classification report of BiLSTM-CRF on Donations testing dataset

7.1.4 Information Source

Information Source dataset was also split into 60% for training, 20% for vali-

dating, and 20% for testing the CRF and our deep learning models. Table 7.10

shows the results of both models. Tables 7.11 and 7.12 present the classification

report of the tested models. Figures 7.7 and 7.8 show the learning curve of the

loss of both models on the training and validation datasets.
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Metric CRF BiLSTM-CRF

F1-score 0.113 0.423

Accuracy 0.766 0.759

Hit-ratio 0.821 0.893

Detection Rate 0.928 0.982

Bleu-Score 0.767 0.78

Table 7.10: Results of CRF and BiLSTM-CRF on Information Source testing
dataset

Figure 7.7: CRF loss on Information
Source Training and Validation Datasets

Figure 7.8: BiLSTM-CRF loss on
Information Source Training and

Validation Datasets

Class Precision Recall F1-score Support

INC 0.12 0.17 0.14 53

SRC 0.50 0.02 0.04 50

Average/Total 0.31 0.10 0.09 103

Table 7.11: Classification report of the CRF model on Information Source
testing dataset
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Class Precision Recall F1-score Support

INC 0.18 0.19 0.18 53

SRC 0.65 0.70 0.67 50

Average/Total 0.41 0.44 0.42 103

Table 7.12: Classification report of BiLSTM-CRF on Information Source testing
dataset

7.1.5 Discussion

In Table 7.1, we can see from the results that our deep learning model didn’t

perform better than the baseline model for Casualties and Damages dataset. The

CRF model got a 0.625 for F1-score, whereas the BiLSTM-CRF scored a lower

value of 0.4. Plus, the Bleu-score decreased slightly from 0.977 in the CRF model

to 0.971 in the BiLSTM-CRF model. However, the values obtained for Bleu-score

are considered high, and this is due to the matching process exercised by BLEU,

where BLEU compares the sequence of predicted labels to the original ones for

every tweet, and in the testing dataset, 98% of the words are originally tagged as

‘O’ and predicted correctly 825 words/840 words≈ 0.98. In the testing dataset,

there are only 14 tokens out of 840 initially tagged with one of the subclasses of

PEO and 1 token is tagged as ‘B-INF’. And, if we take a look at the classification

report of the BiLSTM-CRF model in Table 7.3, the F1-score for INF class is 0

which simply means that our model didn’t predict correctly the label for the word
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that stands for infrastructure. This is due to having a tiny dataset which contains

138 tweets in total which are split into 110 tweets for training the model and 28 to

evaluate it, wherein the 110 learning tweets we only have 23 tokens tagged with

INF label. In addition to that, the accuracy also decreased from 0.988 to 0.985,

and this is expected since the number of correct predictions decreased. We could

also see from Table 7.1 that the hit-ratio and detection rate are alternatively low

0.178 and decreased to 0.107 and 0.143, respectively, due to having originally

only 14 words in 10 different tweets to be tagged correctly as subclasses of PEO

and 1 word in a separate tweet to be tagged as ‘B-INF’. Now, we have in total

11 out of 28 tweets where we could get a good hit-ratio. Thus, if we assume

that we hit a correct prediction in all those 11 tweets, we would get a maximum

hit-ratio equal to 11/28 ≈ 0.39 which isn’t the case here. Moreover, if we want

to calculate the ratio of words marked as one of the subclasses of PEO over the

number of predicted words, we would get 14/840 ≈ 0.017 which means that it is

logical to have the hit ratio low and the detection rate low as well. Indeed, in

the case of Casualties and Damages dataset, the baseline outperformed our deep

learning model.

As for the Caution and Advice results, we could see that the F1-score value

increased by our model from 0.49 to 0.537. Our concern as always is the Bleu-

score which in this case got to 0.873 compared to 0.851 value calculated by the

baseline model. We could also see a slight increase in the value of Accuracy from

0.887 to 0.895. The Hit-ratio decreased from 0.91 to 0.863 and the Detection rate
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also decreased from 0.977 to 0.966. If we want to see what’s behind the increase

of values in F1-score, we could see in Table 7.5, that the F1-score for class ‘LOC’

is 0.29 which was improved by our model and got to 0.39. As for the ‘TIM’ class,

F1-score increased from 0.32 to 0.43. There’s nothing to say in this case other

than our model in this dataset made a good improvement. This could be seen in

Figures 7.3 and 7.4. For the baseline curves, they have the same behavior they

decreased suddenly until epoch 20, after that, they started decreasing slowly until

they got to fixed values 0.4 and 0.07 respectively at epoch 80. The gap between

the two curves is high and both curves are parallel at that stage. However, in

Figure 7.4, the training curve decreases gradually with the increase of the number

of epochs, and the validation curve faces some tiny ups and downs in the error

value while decreasing. The gap between the two learning curves in our model is

very tight compared to the one we got by the baseline model. At epoch 200, we

could see that the difference between the validation error and the training error

is equal to 0.4 - 0.05 = 0.35 for the baseline model, whereas, it is equivalent to

0.3 - 0.1 = 0.2 for our BiLSTM-CRF model. This shows that our deep learning

model indeed outperformed the baseline model.

Moving to the Donations dataset, we can see in Table 7.7 that our model

gave a Bleu-score value of 0.796, somewhat higher than the one obtained by the

baseline model which is 0.792. The detection rate also increased from 0.731 to

0.78 by the BiLSTM-CRF model. However, the F1-score decreased from 0.336

to 0.255. Plus, the Accuracy value dropped from 0.865 to 0.85 and the Hit-
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ratio went down to 0.536 by our deep learning model. This implies that the

tokens are not being marked properly by our system. Additionally, Table 7.9

displays 0 value for the F1-score of the DON class, which is the root cause of

the reduction faced in the final F1-score computed by our model. For the other

classes, our model’s calculated F1-score for REP class improved slightly from

0.14 to 0.17 and decreased a little bit in value for LOC class from 0.61 to 0.57.

Checking the information extracted for each tweet in Table 4.3, we could see

that there’s a diversity in the answers provided, where for instance, the value

for “Donation” extracted is either a word like “assist” or a sequence of words like

“100% of proceeds”, not to mention the place of the extracted information in the

original tweet, which made it hard for our BiLSTM-CRF model to retrieve the

information related to donation, since it’s learning different approaches compared

to the small training dataset. Furthermore, while examining the 163 training

tweets, we could see that there is duplication of some tweets, but with different

tags linked to the words in each duplicate tweet. In this case, our system would be

confused when it is being evaluated on the testing dataset. This will be clarified

more in the following Error Analysis section. Lastly, we could say that the CRF

model performed better than the BiLSTM-CRF model because it got a better

value for F1-score (0.336 > 0.255), although we have approximately the same

Bleu-score for both models.

Finally, concerning the testing dataset of Information Source, we could see in

Table 7.10 a remarkable improvement for the F1-score where it got to 0.423 by
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our BiLSTM-CRF model compared to the value reached by the baseline model

which is 0.113. This improvement could also be seen in the value of Hit-ratio

where the Hit-ratio achieved by our model is of 0.893, whereas it reached 0.821

by the CRF model. Additionally, the Detection rate obtained by our model is

relatively high 0.982 compared to the value calculated by the baseline model

which is 0.928. Moreover, the Bleu-score which is the most important metric

in our study increased from 0.767 to 0.78. Table 7.12 implies that we have 50

vectors or 50 sequence of words that are tagged with sub-classes of ‘SRC’ for

which the F1-score got to 0.67 by our model for the SRC class, whereas, we

only got a value of 0.04 by the baseline model for this class. This is the reason

behind the great improvement in the final F1-score computed by our model.

Furthermore, the F1-score for class INC increased from 0.14 to 0.18. If we take a

look at Figures 7.7, 7.8, we could see that the loss curve for the training dataset

in Figure 7.8 decreases gradually with the increase of the number of epochs and

gets to a fixed value of approximately 0.1 when the number of epochs gets to

200, whereas in Figure 7.7, it decreases very fast and gets to 0.4 on epoch 30,

and then starts decreasing slowly. We could see that the loss on the validation

set has the same behavior as the one on the training set and the gap between

these two is considered high. However, in Figure 7.8, the learning curve of the

validation set shows a few ups and downs in the loss value while decreasing in

general. The same behavior is seen for the learning curve of the training set, and

the gap between these two is thinner than the one of the baseline. In Figure 7.8,
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the validation curve is converging towards the training curve, in contrast to what

is shown in Figure 7.7. Therefore, our deep learning model surpassed the baseline

model for the Information Source dataset.

7.1.6 Error Analysis

As mentioned earlier, the baseline CRF model outperformed our BiLSTM-CRF

model on the Casualties and Damages dataset. While checking the predicted

labels by our deep learning model, we could see that it has mistaken in predicting

some words as “O” instead of a sub-class of “PEO”. We captured the foreseen tags

by both models in Tables 7.13 and 7.14 where only 2 differences appeared. These

differences explain the reduction in the F1-score of the BiLSTM-CRF model,

where the value of True Positive decreased by 1 due to labeling “122” as “O” (see

Table 7.14), and the value of False Positive increased by 1 since “church” got

tagged as “B-PEO” by our model (check Table 7.13). We also checked in parallel

the training dataset, and we identified the reason behind predicting “122” as “O”

instead of “B-PEO”. The BiLSTM layer obliges our model to learn from sequence

of words provided in the learning data, where it was taught for instance to label

the word that comes strictly before “in Joplin, Missouri,” as “O” and the second

word that comes after “that” to be tagged as “O”. Those mistakes are related

to the limited learning dataset (110 tweets, where only 23 out of 3300 words are

tagged with sub-classes of INF, and 52 out of 3300 words are labeled as one of the
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sub-classes of PEO). We can conclude that BiLSTM-CRF would have performed

better if we had a training dataset rich in words tagged with sub-classes of PEO

and INF.

Word Ground Truth CRF BiLSTM-CRF

@andersoncooper: O O O

I O O O

took O O O

this O O O

earlier. O O O

Cross O O O

still O O O

stands O O O

above O O O

destroyed O O O

church B-INF B-INF B-PEO

#Joplin O O O

http://yfrog.com/h2d7rgrj O O O

Table 7.13: Ground Truth vs Predicted Value by CRF and BiLSTM-CRF for
the Casualties and Damages testing dataset
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Word Ground Truth CRF BiLSTM-CRF

@iamjonathancook: O O O

Prayersforjoplin O O O

@cnnbrk: O O O

#Tornado O O O

that O O O

killed O O O

122 B-PEO B-PEO O

in O O O

Joplin, O O O

Missouri, O O O

was O O O

EF-5 O O O

with O O O

top O O O

winds O O O

of O O O

200+ O O O

mph O O O

htt O O O

Table 7.14: Ground Truth vs Predicted Value by CRF and BiLSTM-CRF for
the Casualties and Damages testing dataset
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In the Caution and Advice testing dataset, we could see some words that

should be tagged as ‘I-LOC’, got predicted as either ‘O’, ‘B-LOC’, or ‘E-LOC’

by our model. Plus, some words that refer to the time of the incident that

should be labeled as ‘B-TIM’, ’I-TIM’, or ‘E-TIM’ were predicted as ‘O’. In

addition, we can see only a few mistakes when predicting the words that refer to

an incident as ‘O’. Moreover, most of the words that should be predicted as ‘O’

got associated with one of the three-class labels. Table 7.15 shows the differences

between the predictions of the baseline and our model on the testing dataset for

one of the evaluated tweets. The table explains that ‘from’ should be tagged

as ‘B-TIM’; however, our model predicted it as ‘O’. We checked in parallel the

training dataset, and we could see that for the sequence of word that occurs in

this example, the model learned from the training dataset that ‘from’ should be

tagged ‘O’, according to the following sequence of words ‘Tornado Watch from

5/24/2011 9:12 PM to 10:00 PM EDT’ that is present in the training dataset,

where each token was joined to the corresponding tag in the subsequent series of

terms ‘B-INC E-INC B-TIM I-TIM I-TIM I-TIM I-TIM I-TIM I-TIM E-TIM’.

Therefore, we could see when our model was tested on the testing dataset, the

Bi-LSTM layer helped in recognizing the same structure of words and predicted

the tags according to what it has learned previously. However, when it got to

predicting the location, for the sequence of words ‘for Ray County,’, we thought

that the model learned from the training dataset to tag the first word after ‘for’

as ‘B-LOC’ in case it was followed by a comma. In this example, ‘Ray’ occurred
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in the training dataset with an ‘O’ tag. Thus, we concluded that ‘County,’ got

predicted as ‘B-LOC’ instead of ‘I-LOC’ from what it has previously learned.

In this case, we could only say that if we had more training dataset, our model

would have even performed better and got a Bleu-score higher than 0.873.
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Word Ground Truth CRF BiLSTM-CRF

New O O O

event. O O O

Tornado B-INC B-INC B-INC

Warning E-INC E-INC E-INC

from B-TIM O O

5/25/2011 I-TIM O B-TIM

1:28 I-TIM B-TIM I-TIM

PM I-TIM I-TIM I-TIM

to I-TIM I-TIM I-TIM

2:00 I-TIM I-TIM I-TIM

PM I-TIM I-TIM I-TIM

CDT E-TIM E-TIM E-TIM

for O O O

Ray B-LOC O O

County, I-LOC I-LOC B-LOC

Carroll I-LOC I-LOC I-LOC

County E-LOC E-LOC E-LOC

. O O O

More O O O

information.... O O O

http://fb.me/Ix0gvwIa O O O

Table 7.15: Ground Truth vs Predicted Value by CRF and BiLSTM-CRF for
the Caution and Advice testing dataset
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Now let’s move to Donations’ error analysis. We could see that for some

words that should be marked as one of the subclasses of ‘REP’, they got labeled

as ‘O’, other words that are truly labeled with ‘O’, got a prediction of one of

the subclasses of ‘DON’ or ‘REP’, and words that are truly linked to one of the

subclasses of ‘DON’ got predicted as ‘O’. One of these tweets is shown in table

7.16 which shows the difference between the labels predicted by our model and the

baseline model for the same tweet. Both models are predicting either different

or the same label as the Ground Truth, where Ground Truth stands for the

expected prediction. We checked in parallel the training dataset just to compare

why some words are being predicted as ‘O’, and we could see that for instance in

Table 7.16, ‘Circus elephants’ should be tagged as ‘B-REP E-REP’, however, it

was labeled by our both model as ‘O O’. It looks like our BiLSTM-CRF model

learned from the training dataset to tag the words that appear before the series

of tokens ‘help with Tornado’ as ‘O’. ‘help’ was linked to ‘B-DON’ because the

occurrence of this word followed by ‘with Tornado’ was learned in the training

dataset to be labeled as ‘B-DON’, but the baseline model labeled it correctly as

‘O’ because CRF doesn’t check previous and next tokens as the BiLSTM does.

For the rest of the tweet, we could see that the sequence ‘Tornado Clean Up’

should be predicted as ‘B-DON I-DON E-DON’, though they were all tagged as

‘O’ by our model since it marked ‘help’ with ‘B-DON’, then the following words

should be tagged as ‘O’ as it has learned from the training dataset. In addition

to all of this, we noticed some duplicate tweets in the training dataset where the
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tags associated with words of the duplicate tweets are different. For instance, for

the same series of tokens ‘Txt REDCROSS to’ for the same tweet in the training

dataset, we have 3 different tag sequences ‘O B-REP O’, ‘O O O’, and ‘B-DON

I-DON I-DON’. When running our system on the testing dataset, we faced the

same sequence of words that should have been predicted as ‘B-DON I-DON I-

DON’, but it was unfortunately predicted by our model as ‘O B-REP O’. This

variety of answers and limited training dataset has led to confusion in our model

and made it hard for our system to get better results compared to the baseline

model.
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Word Ground Truth CRF BiLSTM-CRF

Ugh, O O O

deplorable. O O O

@majornelson: O O O

Circus B-REP O O

elephants E-REP O O

help O O B-DON

with O O O

Tornado B-DON O O

Clean I-DON O O

Up E-DON O O

in O O O

Joplin, B-LOC B-LOC B-LOC

MO E-LOC E-LOC E-LOC

http://t.co/01qIMuM O O O

Table 7.16: Ground Truth vs Predicted Value by CRF and BiLSTM-CRF for
the Donations testing dataset

Lastly, for the testing dataset of Information Source, we could see that most of

the words that should be tagged as ‘B-INC’, got predicted by our system as either

‘O’ or ‘I-INC’. In addition, some words labeled as ‘O’ got predicted by our model

as either ‘B-SRC’, ‘B-INC’, or ‘I-INC’. However, for most of the words that are
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labeled as ‘B-SRC’, they were predicted correctly by our model, just in few cases

we got a prediction of ‘O’ for some tokens labeled as ‘B-SRC’. We show a sample

of a tweet that presents such cases in table 7.17. We can see that ‘cutting across

the Connecticut’ was predicted by both models as ‘I-INC I-INC I-INC I-INC E-

INC’, whereas they should have been predicted as ‘E-INC O O O O’. For our

BiLSTM-CRF model, it checks the previous and next words to tag the current

tokens correctly based on what it has learned from the training dataset. Checking

the training dataset, our analysis for this example would be that it has learned

that ‘across’ in such cases should be preceded and succeeded by words that are

tagged as ‘I-INC’, so ‘cutting’ got tagged as ‘I-INC’ and ‘the’ as well, and since it

has acquired the following tags ‘I-INC I-INC I-INC I-INC I-INC’ for this sequence

of words ‘video of a tornado hitting’, our series of words ‘video of a tornado’ was

marked as ‘I-INC I-INC I-INC I-INC’, and ‘River’ was learned to be tagged as ‘O’

in this sequence of words, thus ‘Connecticut’ got labeled as ‘E-INC’. In addition,

while checking the information extracted of the tweets, we could see that 90% of

the tweets’ incident extracted is a copy-paste of the whole tweet excluding the

URLs that usually refer to the information source. This made it hard for our

both models to tag the incident words correctly since we only have 224 tweets for

training and the patterns to be learned from these tweets are various compared

to the limited number of learning tweets. In Table 7.18, we can see that the

incident extracted from the second tweet is a copy of it. In addition, the incidents

extracted for the first and last tweet are a copy of the same tweet excluding the
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last token which is ‘#despicable.’ and ‘http://vimeo.com/24290944’, respectively.

Therefore, the first word of the extracted information for the incident would be

tagged as ‘B-INC’, the last word as ‘E-INC’, and all the words that fall in-between

would be tagged as ‘I-INC’. This diversity in patterns hardened the evaluation

for the CRF and BiLSTM-CRF to predict correctly the tokens that are truly

tagged as sub-classes of ‘INC’.

Word Ground Truth CRF BiLSTM-CRF

Close-up B-INC B-INC B-INC

video I-INC I-INC I-INC

of I-INC I-INC I-INC

a I-INC I-INC I-INC

tornado E-INC I-INC I-INC

cutting O I-INC I-INC

across O I-INC I-INC

the O I-INC I-INC

Connecticut O E-INC E-INC

River O O O

http://itv.co/kb1LLS B-SRC O B-SRC

Table 7.17: Ground Truth vs Predicted Value by CRF and BiLSTM-CRF for
the Information Source testing dataset
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Tweet Incident

My cop friend volunteered in #Joplin
last wknd; she said people are driving
there from Ark., Ill. & Cal. to loot!

#despicable.

My cop friend volunteered in #Joplin
last wknd; she said people are driving
there from Ark., Ill. & Cal. to loot!

Back at my desk after the tornado
warning. That was fun. #sarcasm

#thingsyoudontsayinNYC

Back at my desk after the tornado
warning. That was fun. #sarcasm

#thingsyoudontsayinNYC

I just uploaded "VIOLENT
Dibble/Washington/Goldsby Tornado!

May 24, 2011" on Vimeo:
http://vimeo.com/24290944

I just uploaded "VIOLENT
Dibble/Washington/Goldsby Tornado!

May 24, 2011" on Vimeo:

Table 7.18: Sample of Information Source tweets Extracted Information

7.2 Evaluation of Deep Learning on FA-KES Dataset

The same procedure was applied to the FA-KES dataset. However, the BiLSTM-

CRF model with an attention layer on top of it (i.e. OpenTag) performed better

than BiLSTM-CRF. To check how well our deep learning model is doing, we cre-

ated the same baseline (CRF) model which was used in our previous experiments

on the Joplin dataset. Both models CRF and OpenTag were trained and tested

on the same data.

As for the experiments, we created three subsets of data from the FA-KES

articles: articles’ titles, articles’ titles and contents, and articles’ titles and first

paragraphs. CRF and OpenTag were trained on the training data and tested on

the corresponding data of each subset. Both models were trained for 200 epochs

with a batch of size 32 and used RMSProp as an optimizer. We measured F1-

score and compared the results obtained on the subsets. Additionally, we drew
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the learning curve of the loss of the training and validation datasets for each of

the evaluated models.

7.2.1 FA-KES Titles Dataset

We split the titles in the FA-KES dataset into 60% for training, 20% for validating,

and 20% for testing the models. We trained the CRF and OpenTag models on the

learning data and experimented them on the testing dataset. Tables 7.23 and 7.24

present the classification report of our evaluated models. Figures 7.9 and 7.10

show the learning curve of the loss of both models on the training and validation

datasets. Figures 7.11, 7.12, 7.13, and 7.14 present the attention executed by

OpenTag on some examples of the FA-KES titles testing data.

Figure 7.9: CRF loss on FA-KES Titles
Training and Validation Datasets

Figure 7.10: OpenTag loss on FA-KES
Titles Training and Validation Datasets
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Figure 7.11: Example of Attention
Visualization on FA-KES Titles testing

dataset

Figure 7.12: Example of Attention
Visualization on FA-KES Titles testing

dataset

Figure 7.13: Example of Attention
Visualization on FA-KES Titles testing

dataset

Figure 7.14: Example of Attention
Visualization on FA-KES Titles testing

dataset
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Word Ground Truth OpenTag

Dozens O O

of O O

casualties O O

in O O

Syrias O O

Aleppo B-LOC B-LOC

Bomb B-COD B-COD

Blast E-COD E-COD

Table 7.19: Ground Truth vs Predicted Value by OpenTag for the example
shown in Figure 7.11
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Word Ground Truth OpenTag

Missile B-COD B-COD

kills O O

18 B-CIV B-CIV

civilians E-CIV E-CIV

in O O

Syria’s O O

Aleppo B-LOC B-LOC

Monitor O O

Table 7.20: Ground Truth vs Predicted Value by OpenTag for the example
shown in Figure 7.12
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Word Ground Truth OpenTag

Syria O O

air B-COD B-COD

strikes E-COD E-COD

kill O O

42 O O

including O O

16 B-CHD B-CHD

children B-CHD E-CHD

Monitor O O

Table 7.21: Ground Truth vs Predicted Value by OpenTag for the example
shown in Figure 7.13
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Word Ground Truth OpenTag

12 B-CIV B-CIV

civilians E-CIV E-CIV

dead O O

in O O

Syrian O O

raid O O

on O O

IS-held O O

village O O

Monitor O O

Table 7.22: Ground Truth vs Predicted Value by OpenTag for the example
shown in Figure 7.14
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Class Precision Recall F1-score Support

ACT 0.53 0.57 0.55 61

COD 0.47 0.56 0.51 81

LOC 0.77 0.77 0.77 111

CIV 0.44 0.49 0.46 47

NCV 0.63 0.49 0.55 35

CHD 1.00 0.50 0.67 6

Average/Total 0.60 0.61 0.60 341

Table 7.23: Classification report of the CRF model on FA-KES Titles testing
dataset

Class Precision Recall F1-score Support

ACT 0.55 0.52 0.54 61

COD 0.49 0.56 0.52 81

LOC 0.73 0.70 0.72 111

CIV 0.44 0.60 0.50 47

NCV 0.38 0.43 0.41 35

CHD 0.80 0.67 0.73 6

Average/Total 0.57 0.59 0.58 341

Table 7.24: Classification report of OpenTag on FA-KES Titles testing dataset
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7.2.2 FA-KES Titles and First Paragraphs Dataset

After collecting the first paragraphs from the FA-KES articles dataset, we con-

catenated the title and first paragraph for every article in the news dataset. We

split this newly created subset into 60% for training, 20% for validation, and

20% for testing the models. We trained the CRF and OpenTag models on the

training dataset and evaluated them on the testing dataset. Tables 7.25 and 7.26

show the classification report of CRF and OpenTag, respectively. Figures 7.15

and 7.16 show the learning curve of the loss of both models on the training and

validation datasets.

Figure 7.15: CRF loss on FA-KES Titles
and First Paragraphs Training and

Validation Datasets

Figure 7.16: OpenTag loss on FA-KES
Titles and First Paragraphs Training and

Validation Datasets
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Class Precision Recall F1-score Support

ACT 0.52 0.34 0.41 147

COD 0.44 0.43 0.44 148

LOC 0.73 0.78 0.75 236

CIV 0.58 0.47 0.52 127

NCV 0.39 0.38 0.39 39

CHD 0.59 0.70 0.64 23

WMN 0.00 0.00 0.00 6

Average/Total 0.57 0.54 0.55 726

Table 7.25: Classification report of the CRF model on FA-KES Titles and First
Paragraphs testing dataset
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Class Precision Recall F1-score Support

ACT 0.41 0.38 0.40 147

COD 0.39 0.39 0.39 148

LOC 0.62 0.76 0.68 236

CIV 0.62 0.48 0.54 127

NCV 0.24 0.23 0.23 39

CHD 0.50 0.26 0.34 23

WMN 0.00 0.00 0.00 6

Average/Total 0.50 0.51 0.50 726

Table 7.26: Classification report of OpenTag on FA-KES Titles and First
Paragraphs testing dataset

7.2.3 FA-KES Titles and Contents Dataset

We noticed that the content of every article in the FA-KES dataset doesn’t include

the title of the article. Thus, we created a new subset that is composed of the

title and the content of each article. We split this newly created subset into 60%

for training, 20% for validation, and 20% for testing the models. We trained the

CRF and OpenTag models on the training dataset and examined them on the

testing dataset. Tables 7.27 and 7.28 display the classification report of CRF and

OpenTag, respectively. Figures 7.17 and 7.18 show the learning curve of the loss

of both models on the training and validation datasets.
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Figure 7.17: CRF loss on FA-KES Titles
and Contents Training and Validation

Datasets

Figure 7.18: OpenTag loss on FA-KES
Titles and Contents Training and

Validation Datasets

Class Precision Recall F1-score Support

ACT 0.37 0.08 0.14 289

COD 0.37 0.11 0.17 309

LOC 0.66 0.74 0.70 686

CIV 0.52 0.24 0.33 190

NCV 0.54 0.36 0.43 61

CHD 0.55 0.25 0.34 44

WMN 0.00 0.00 0.00 10

DAT 0.68 0.48 0.57 124

Average/Total 0.53 0.41 0.44 1713

Table 7.27: Classification report of the CRF model on FA-KES Titles and
Contents testing dataset
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Class Precision Recall F1-score Support

ACT 0.30 0.12 0.17 289

COD 0.22 0.01 0.02 309

LOC 0.63 0.66 0.65 686

CIV 0.40 0.12 0.18 190

NCV 0.00 0.00 0.00 61

CHD 0.00 0.00 0.00 44

WMN 0.00 0.00 0.00 10

DAT 0.48 0.37 0.42 124

Average/Total 0.42 0.33 0.34 1713

Table 7.28: Classification report of OpenTag on FA-KES Titles and Contents
testing dataset

7.2.4 Discussion

As a summary of our findings, CRF performed better than OpenTag and espe-

cially on the FA-KES Titles subset where it scored the highest value for F1-score

which is 0.60. In Table 7.23, we can see that the average F1-score is 0.6 whereas

the OpenTag model scored 0.58 as F1-score. This highlights the fact that the

baseline model CRF performed slightly better than our deep learning model. If

we want to take a closer look at the results, we can see that for LOC (i.e. location

of the incident), CRF returned 0.77 as F1-score and OpenTag gave a 0.72 score.
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Additionally, NCV (i.e. non-civilians who died in the incident) scored 0.55 as

F1-score by the baseline paradigm, whereas it scored only 0.41 by our model.

However, OpenTag returned better results than the CRF for CHD, CIV, and

COD. CRF and OpenTag models returned approximately the same results for

COD and ACT classes, but in general, CRF outperformed OpenTag since F1-

score is 0.60 which is greater than the one returned by OpenTag 0.58. This could

be seen also in Figures 7.9 and 7.10. The baseline curves decreased suddenly until

epoch 10, then started to decrease slowly until they got to stable values which

are 0.2 and 0.05 for the validation and training curves respectively. We can see

that the gap between the baseline curves is stable starting epoch 100 which is

equal to 0.2 - 0.05 = 0.15. Now, if we take a look at Figure 7.10, we can see

that there were some tiny ups in the loss score for the validation set while both

curves were generally decreasing gradually until epoch 40. The training curve

kept decreasing until epoch 200; however, there were some tiny ups and downs

in the validation curve until it reached epoch 200 where the gap between the

learning curves is equal also to 0.2 - 0.05 = 0.15. Although the same gap can be

seen in both Figures 7.9 and 7.10 but if we compile the model for more than 200

epochs, the gap will increase between the curves for OpenTag model because the

loss on the Validation dataset is increasing while the loss on the training dataset

is decreasing which is not the case in the baseline model. CRF performed bet-

ter than OpenTag on FA-KES Titles dataset. Furthermore, Figures 7.11, 7.12,

7.13, and 7.14 show the attention performed by our model on all the words that
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appeared in some of the titles in the testing dataset. Under each one of the

visualization graphs, the higher the probability value, the lighter is the color, in

other words, the color is brighter for the tokens that our model concentrated on.

The color bar seen under each one of the mentioned figures represents the color

map scaling. Table 7.19 presents the tags predicted by OpenTag for each word

that appears in the title. We could see for this first example the predicted values

match the Ground Truth column where ‘Aleppo’ was tagged as ‘B-LOC’, and

‘Bomb Blast’ as ‘B-COD E-COD’. This means that our model focused more on

these 3 words among all the other words that appeared in the title and this could

be seen from Figure 7.11 where the attention on ‘Aleppo’ is highlighted by Blue

light color, ‘Bomb’ and ‘Blast’ by color leaning to white. If we move to the next

example, Table 7.20 presents the labels predicted by our deep learning model

that also match the Ground Truth column values and the attention on these

words ‘Missile’, ‘18 civilians’ and ‘Aleppo’ is presented by a lighter color than

the other words in Figure 7.12. Moreover, the attention exercised by OpenTag

is highlighted by lighter colors for the sequence of words ‘air strikes’ (predicted

as the cause of death) and ‘16 children’ (predicted as number of dead children)

in Figure 7.13 for the example of title shown in Table 7.21. Lastly, ‘12 civilians’

which was predicted as number of dead civilians by our model in Table 7.22 got

the highest attention among all the words referring to Figure 7.14.

Moving to the FA-KES Titles and First Paragraphs subset, we can see in

Table 7.25 that the baseline model returned 0.55 as F1-score which is higher than
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the score of OpenTag which is 0.50 as it is shown in Table 7.26. A remarkable

improvement in the F1-score for CHD (i.e. the number of dead children) can

be viewed in Table 7.35 where it scored 0.64 compared to the result obtained

by OpenTag which is 0.34. For all the classes except the CIV (i.e. the number

of dead civilians), CRF performed better than the OpenTag model, returning a

higher score for F1-score on average. Plus, if we contemplate Figures 7.15 and

7.16, we can see the same behavior of both models like the one we saw earlier

for the FA-KES Titles dataset. The baseline curves decreased suddenly until

they reached epoch 10, then they started decreasing slowly until the two curves

became parallel maintaining the same value starting epoch 100 where the gap

between them remained the same (0.15 - 0.10 = 0.05). As for OpenTag loss on the

validation and training datasets, we can see that both curves decreased gradually

until they reached epoch 40, then the training curve continued decreasing slowly

whereas the validation continued increasing, to end up having the same gap

between both curves (0.15 - 0.10 = 0.05). Eventually, the gap will increase if we

continue training the model for more than 200 epochs which leaves the CRF as

the winner over the OpenTag model.

Finally, regarding the performance of CRF and OpenTag on FA-KES Titles

and Contents testing dataset, we could see from Tables 7.27 and 7.28 that CRF

scored better than OpenTag for F1-score (0.44 > 0.34). This is explained by hav-

ing higher F1-score value for several classes including COD, LOC, CIV. Moreover,

we can see that for NCV and CHD classes, the baseline returned 0.43 and 0.34

85



respectively as F1-score, whereas OpenTag scored 0 for both classes and this is

due to having 676 words out of 517600 labeled with ‘NCV’ tag and 324 tokens

out of 517600 marked with ‘CHD’ tag. Only for ACT class, OpenTag returned

better F1-score (0.17 > 0.14). Lastly, both Figures 7.17 and 7.18 show the same

behavior seen for FA-KES Titles and First Paragraphs subset. The gap between

the curves is very small; however, it tends to increase after epoch 200 for the

OpenTag model, whereas it remains the same for the CRF paradigm. Therefore,

CRF performed better than OpenTag on FA-KES Titles and Contents subset.

7.2.5 Error Analysis

As discussed, CRF performed better than the OpenTag model on the FA-KES

titles subset. If we take a look back at Tables 7.23 and 7.24 we could see that for

CIV class our model got a higher F1-score than the baseline (0.50 > 0.46) and this

is illustrated in Table 7.30 where CRF didn’t tag ‘15 Medics’ with the correct

labels whereas OpenTag has learned from the training dataset that the words

that come strictly before ‘Killed’ should be tagged as ‘B-CIV E-CIV’. This would

be credited to the fact that OpenTag has a BiLSTM layer in its architecture.

Additionally, we noticed that for NCV class, OpenTag didn’t perform as well as

it did for other classes. It only scored 0.41 while CRF got a 0.55 F1-score for

NCV class. Table 7.29 shows an example for one of the titles in the FA-KES

Titles testing dataset where ‘Nusra’ was labeled as ‘E-NCV’ instead of ‘I-NCV’
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by OpenTag and this could be explained by checking the training dataset where

the BiLSTM layer was taught to tag the words that come after ‘kills’ token as

‘B-NCV I-NCV E-NCV’ until it got to ‘Front’ which should be tagged as ‘O’

according to the training dataset especially that the ‘-’ sign should be preceded

and followed by words labeled as ‘O’. One thing to note here, the training dataset

only contains 257 words out of 19410 marked with NCV class which explains why

our neural network model wasn’t able to tag all the words related to that class

correctly scoring only 0.41 as F1-score for NCV.

As for the FA-KES Titles and First Paragraphs subset, we can see in Tables

7.25 and 7.26 that CRF gave better scores than the OpenTag for all classes. For

the number of women who were killed during the incidents, we can see that both

paradigms weren’t able to detect any word related to WMN class and this is

because of having only 27 words out of 129400 tagged with WMN in the training

dataset. A mini-example of the FA-KES Titles and First Paragraphs testing

dataset is shown in Table 7.31 where ‘4 children’ were tagged correctly by CRF

as ‘B-CHD E-CHD’ and weren’t detected by our deep learning model. Moreover,

there are only 155 words out of 129400 tagged with CHD in the learning dataset

which is not enough for our deep learning model to learn from. In this example,

the sequence of words ‘terrorist attack’ that represent the cause of death was

labeled correctly by our model because it has learned from the training dataset

that those two words should be marked as ‘B-COD’ and ‘E-COD’ respectively.

Having more than 100 words per article reduces the probability for our OpenTag

87



model to tag all the words correctly especially that we have diversity in patterns

compared to the small training dataset.

Finally, Tables 7.27 and 7.28 show the classification report of CRF and Open-

Tag respectively on FA-KES Titles and Contents testing dataset for which CRF

performed better than OpenTag. We could see in Table 7.32 that ‘airstrike’ got

labeled as ‘E-ACT’ instead of ‘B-COD’ and this is due to the learning phase from

which it has learned that the word that comes strictly after ‘Russian’ should be

labeled as ‘E-ACT’ if the word that comes after ‘airstrike’ is ‘on’ which is the

case here. Furthermore, we could see that ‘8 civilians’ got predicted as ‘O O’

instead of ‘B-CIV E-CIV’ and this is because the model was trained to tag the

sequence of words that comes after ‘-’ sign as ‘O’. However, we could see for

instance that the location ‘Syria’ got predicted as ‘O’ by both models instead of

‘B-LOC’. This is due to the learning dataset where ‘Syria’ appeared 1117 times

in the learning dataset and most of them were tagged as ‘O’. Having more than

500 words per testing article hardened the extraction of words, in other words,

it made it hard for our model to tag all the words correctly especially that we

have several patterns to be learned on a limited subset which is composed of 482

articles.
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Word Ground Truth CRF OpenTag

Suicide B-COD O B-COD

bomb I-COD B-COD I-COD

attack E-COD E-COD E-COD

in O O O

Syria’s O O O

Idlib B-LOC B-LOC B-LOC

mosque O E-LOC B-COD

kills O O O

25 B-NCV B-NCV B-NCV

senior I-NCV I-NCV I-NCV

Nusra I-NCV I-NCV E-NCV

Front I-NCV I-NCV O

leader E-NCV E-NCV O

- O O O

Daily O O O

Sabah O O O

Table 7.29: Ground Truth vs Predicted Value by CRF and OpenTag for the
FA-KES Titles testing dataset
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Word Ground Truth CRF OpenTag

15 B-CIV O B-CIV

Medics E-CIV O E-CIV

Killed O O O

in O O O

Russian B-ACT B-ACT B-ACT

Airstrikes B-COD B-COD B-COD

on O O O

Hospital O O O

in O O O

Southern O O O

Aleppo B-LOC B-LOC B-LOC

Syrian O O B-COD

Coalition O O E-COD

Describes O O O

the O O O

Attack O O O

War O O O

Crime O O O

Table 7.30: Ground Truth vs Predicted Value by CRF and OpenTag for the
FA-KES Titles testing dataset
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Word Ground Truth CRF OpenTag

4 B-CHD B-CHD O

children E-CHD E-CHD O

and O O O

a B-WMN O O

woman E-WMN O O

, O O O

while O O O

eight O O O

persons O O O

were O O O

injured O O O

in O O O

terrorist B-COD O B-COD

attack E-COD O E-COD

Table 7.31: Ground Truth vs Predicted Value by CRF and OpenTag for the
FA-KES Titles and First Paragraphs testing dataset
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Word Ground Truth CRF OpenTag

Published O O O

June O O O

4 O O O

2016 O O O

- O O O

8 B-CIV B-CIV O

civilians E-CIV E-CIV O

killed O O O

by O O O

Russian B-ACT B-ACT O

airstrike B-COD B-COD O

in O O O

Syria B-LOC O O

- O O O

A O O O

Russian B-ACT B-ACT B-ACT

airstrike B-COD B-COD E-ACT

on O O O

Syrian B-LOC O B-ACT

city O O O

Aleppo O B-LOC B-LOC

Table 7.32: Ground Truth vs Predicted Value by CRF and OpenTag for the
FA-KES Titles and Contents testing dataset
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7.3 Evaluation of FA-KES Classifiers

To see how well the classifiers are doing, we created baseline classifiers that were

trained on the text solely of the training subsets and tested them on the same

testing dataset (excluding labels) on which the below classifiers were examined.

We will mainly focus on the value obtained for F1-score.

7.3.1 Actor Classifier

As mentioned before, we created three classifiers for attribute actor: Logistic Re-

gression, LinearSVC, and Random Forest Classifier. We will see in the following

subsections the results of the best performing one for each dimension.

7.3.1.1 FA-KES Titles Dataset

Logistic Regression gave the best results among the three actor classifiers. Tables

7.33 and 7.34 show the classification report of our classifier on the articles’ titles

(excluding tags) and on the articles’ titles with the labels predicted by our deep

learning model respectively.
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Class Precision Recall F1-score Support

Al-Nusra Front 0.00 0.00 0.00 3

Armed opposition groups 0.60 0.43 0.50 7

International coalition forces 0.58 0.78 0.67 9

Other 0.64 0.55 0.59 66

Russian troops 0.36 0.45 0.40 11

Self administration forces 0.67 0.67 0.67 3

Syrian government and
affiliated militias

0.66 0.77 0.71 53

The organization of the Islamic
State in Iraq and the Levant -
ISIS

0.57 0.40 0.47 10

Average/Total 0.61 0.60 0.60 162

Table 7.33: Classification report of the baseline Logistic Regression Actor
classifier on FA-KES Titles testing dataset

94



Class Precision Recall F1-score Support

Al-Nusra Front 0.00 0.00 0.00 3

Armed opposition groups 0.67 0.57 0.62 7

International coalition forces 0.50 0.78 0.61 9

Other 0.64 0.55 0.59 66

Russian troops 0.43 0.55 0.48 11

Self administration forces 1.00 0.67 0.80 3

Syrian government and
affiliated militias

0.63 0.72 0.67 53

The organization of the Islamic
State in Iraq and the Levant -
ISIS

0.67 0.60 0.63 10

Average/Total 0.61 0.61 0.61 162

Table 7.34: Classification report of Logistic Regression Actor classifier on
FA-KES Titles testing dataset with tags predicted by OpenTag

7.3.1.2 FA-KES Titles and First Paragraphs Dataset

In this case, Logistic Regression also performed better than the other actor clas-

sifiers. Tables 7.35 and 7.36 show the classification report of our classifier on the

articles’ titles and first paragraphs (excluding tags) and on the articles’ titles con-

catenated with first paragraphs and their labels predicted by our deep learning

model respectively.

95



Class Precision Recall F1-score Support

Al-Nusra Front 0.00 0.00 0.00 5

Armed opposition groups 0.75 0.33 0.46 9

International coalition forces 0.94 0.94 0.94 18

Other 0.73 0.82 0.77 39

Russian troops 0.75 0.79 0.77 19

Self administration forces 1.00 0.71 0.83 7

Syrian government and
affiliated militias

0.77 0.83 0.80 52

The organization of the Islamic
State in Iraq and the Levant -
ISIS

0.73 0.85 0.79 13

Average/Total 0.76 0.78 0.76 162

Table 7.35: Classification report of the baseline Logistic Regression Actor
classifier on FA-KES Titles and First Paragraphs testing dataset
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Class Precision Recall F1-score Support

Al-Nusra Front 0.00 0.00 0.00 5

Armed opposition groups 0.67 0.44 0.53 9

International coalition forces 0.94 0.94 0.94 18

Other 0.76 0.79 0.77 39

Russian troops 0.74 0.74 0.74 19

Self administration forces 1.00 0.71 0.83 7

Syrian government and
affiliated militias

0.78 0.87 0.82 52

The organization of the Islamic
State in Iraq and the Levant -
ISIS

0.73 0.85 0.79 13

Average/Total 0.76 0.78 0.77 162

Table 7.36: Classification report of Logistic Regression Actor classifier on
FA-KES Titles and First Paragraphs testing dataset with tags predicted by

OpenTag

7.3.1.3 FA-KES Titles and Contents Dataset

Logistic Regression performed better than the other actor classifiers. Tables

7.37 and 7.38 show the classification report of our classifier on the articles’ titles

and contents (excluding tags) and on the articles’ titles concatenated with their

content and the labels predicted by our deep learning model respectively.
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Class Precision Recall F1-score Support

Al-Nusra Front 0.00 0.00 0.00 1

Armed opposition groups 0.67 0.17 0.27 12

International coalition forces 0.70 0.64 0.67 11

Other 0.77 0.66 0.71 61

Russian troops 0.50 0.53 0.52 15

Self administration forces 0.33 0.33 0.33 3

Syrian government and
affiliated militias

0.57 0.65 0.61 46

The organization of the Islamic
State in Iraq and the Levant -
ISIS

0.32 0.54 0.40 13

Average/Total 0.63 0.59 0.59 162

Table 7.37: Classification report of the baseline Logistic Regression Actor
classifier on FA-KES Titles and Contents testing dataset
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Class Precision Recall F1-score Support

Al-Nusra Front 0.00 0.00 0.00 1

Armed opposition groups 0.60 0.25 0.35 12

International coalition forces 0.70 0.64 0.67 11

Other 0.75 0.72 0.73 61

Russian troops 0.53 0.53 0.53 15

Self administration forces 0.50 0.33 0.40 3

Syrian government and
affiliated militias

0.60 0.61 0.60 46

The organization of the Islamic
State in Iraq and the Levant -
ISIS

0.33 0.54 0.41 13

Average/Total 0.63 0.60 0.61 162

Table 7.38: Classification report of Logistic Regression Actor classifier on
FA-KES Titles and Contents testing dataset with tags predicted by OpenTag

7.3.2 Location Classifier

We implemented three classifiers for attribute location: Logistic Regression, Lin-

earSVC, and Random Forest Classifier. We will see in the following subsections

the results of the best performing one for each dimension.

99



7.3.2.1 FA-KES Titles Dataset

LinearSVC gave the best results among the three location classifiers. Tables

7.39 and 7.40 show the classification report of our classifier on the articles’ titles

(excluding tags) and on the articles’ titles with the labels predicted by our deep

learning model respectively.
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Class Precision Recall F1-score Support

Aleppo 0.73 0.81 0.77 43

Damascus 0.75 0.86 0.80 7

Damascus Suburbs 0.62 0.62 0.62 16

Daraa 0.40 0.40 0.40 5

Deir Ezzor 0.50 0.71 0.59 7

Hama 0.25 0.50 0.33 4

Hasakeh 0.17 0.50 0.25 4

Homs 0.67 0.67 0.67 9

Idlib 0.61 0.69 0.65 16

Lattakia 0.60 1.00 0.75 3

Other 0.71 0.15 0.25 33

Quneitra 0.00 0.00 0.00 1

Raqqa 0.62 0.71 0.67 14

Average/Total 0.64 0.60 0.58 162

Table 7.39: Classification report of the baseline LinearSVC Location classifier
on FA-KES Titles testing dataset
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Class Precision Recall F1-score Support

Aleppo 0.80 0.81 0.80 43

Damascus 0.75 0.86 0.80 7

Damascus Suburbs 0.71 0.62 0.67 16

Daraa 0.40 0.40 0.40 5

Deir Ezzor 0.45 0.71 0.56 7

Hama 0.29 0.50 0.36 4

Hasakeh 0.22 0.50 0.31 4

Homs 0.43 0.67 0.52 9

Idlib 0.58 0.69 0.63 16

Lattakia 0.60 1.00 0.75 3

Other 0.67 0.24 0.36 33

Quneitra 0.00 0.00 0.00 1

Raqqa 0.64 0.64 0.64 14

Average/Total 0.64 0.61 0.60 162

Table 7.40: Classification report of LinearSVC Location classifier on FA-KES
Titles testing dataset with tags predicted by OpenTag

7.3.2.2 FA-KES Titles and First Paragraphs Dataset

In this case, Logistic Regression also performed better than the other location

classifiers. Tables 7.41 and 7.42 show the classification report of our classifier
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on the articles’ titles and first paragraphs (excluding tags) and on the articles’

titles concatenated with first paragraphs and their labels predicted by our deep

learning model respectively.

Class Precision Recall F1-score Support

Aleppo 0.83 0.97 0.90 66

Damascus 0.67 0.50 0.57 4

Damascus Suburbs 0.53 0.80 0.64 10

Daraa 0.67 0.67 0.67 3

Deir Ezzor 0.81 0.76 0.79 17

Hama 1.00 0.60 0.75 5

Hasakeh 1.00 0.56 0.71 9

Homs 1.00 0.88 0.93 8

Idlib 0.92 0.71 0.80 17

Lattakia 1.00 0.50 0.67 4

Other 0.50 0.50 0.50 2

Quneitra 0.00 0.00 0.00 3

Raqqa 0.81 0.93 0.87 14

Average/Total 0.82 0.81 0.80 162

Table 7.41: Classification report of the baseline Logistic Regression Location
classifier on FA-KES Titles and First Paragraphs testing dataset
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Class Precision Recall F1-score Support

Aleppo 0.83 0.97 0.90 66

Damascus 0.67 0.50 0.57 4

Damascus Suburbs 0.53 0.80 0.64 10

Daraa 0.67 0.67 0.67 3

Deir Ezzor 0.81 0.76 0.79 17

Hama 1.00 0.60 0.75 5

Hasakeh 0.83 0.56 0.67 9

Homs 1.00 0.75 0.86 8

Idlib 0.86 0.71 0.77 17

Lattakia 1.00 0.50 0.67 4

Other 0.50 0.50 0.50 2

Quneitra 1.00 0.33 0.50 3

Raqqa 0.93 0.93 0.93 14

Average/Total 0.83 0.81 0.81 162

Table 7.42: Classification report of Logistic Regression Location classifier on
FA-KES Titles and First Paragraphs testing dataset with tags predicted by

OpenTag

7.3.2.3 FA-KES Titles and Contents Dataset

Logistic Regression performed better than the other location classifiers. Tables

7.43 and 7.44 show the classification report of our classifier on the articles’ titles
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and contents (excluding tags) and on the articles’ titles concatenated with their

content and the labels predicted by our deep learning model respectively.

Class Precision Recall F1-score Support

Aleppo 0.58 0.72 0.64 53

Damascus 0.25 0.20 22 5

Damascus Suburbs 0.62 0.62 0.62 8

Daraa 0.33 0.25 0.29 4

Deir Ezzor 0.47 0.64 0.54 11

Hama 1.00 0.25 0.40 4

Hasakeh 0.40 0.44 0.42 9

Homs 0.50 0.25 0.33 8

Idlib 0.80 0.52 0.63 23

Lattakia 0.00 0.00 0.00 2

Other 0.46 0.44 0.45 25

Quneitra 0.00 0.00 0.00 1

Raqqa 0.44 0.44 0.44 9

Average/Total 0.55 0.53 0.52 162

Table 7.43: Classification report of the baseline Logistic Regression Location
classifier on FA-KES Titles and Contents testing dataset
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Class Precision Recall F1-score Support

Aleppo 0.59 0.68 0.63 53

Damascus 0.25 0.20 0.22 5

Damascus Suburbs 0.50 0.88 0.64 8

Daraa 0.33 0.25 0.29 4

Deir Ezzor 0.55 0.55 0.55 11

Hama 1.00 0.25 0.40 4

Hasakeh 0.36 0.44 0.40 9

Homs 0.50 0.12 0.20 8

Idlib 0.88 0.61 0.72 23

Lattakia 0.00 0.00 0.00 2

Other 0.44 0.44 0.44 25

Quneitra 0.00 0.00 0.00 1

Raqqa 0.33 0.44 0.38 9

Average/Total 0.55 0.53 0.52 162

Table 7.44: Classification report of Logistic Regression Location classifier on
FA-KES Titles and Contents testing dataset with tags predicted by OpenTag

7.3.3 Cause of Death Classifier

We implemented three classifiers for attribute cause of death: Logistic Regres-

sion, LinearSVC, and Random Forest Classifier. We will see in the following
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subsections the results of the best performing one for each dimension.

7.3.3.1 FA-KES Titles Dataset

LinearSVC gave the best results among the three classifiers of the cause of death.

Tables 7.45 and 7.46 show the classification report of our classifier on the articles’

titles (excluding tags) and on the articles’ titles with the labels predicted by our

deep learning model respectively.

Class Precision Recall F1-score Support

Chemical and toxic gases 0.67 0.83 0.74 12

Execution 1.00 0.80 0.89 5

Explosion 0.74 0.88 0.80 16

Other 0.67 0.35 0.46 52

Shelling 0.71 0.86 0.77 70

Shooting 0.27 0.50 0.35 6

Average/Total 0.69 0.68 0.66 161

Table 7.45: Classification report of the baseline LinearSVC Cause of Death
classifier on FA-KES Titles testing dataset
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Class Precision Recall F1-score Support

Chemical and toxic gases 0.65 0.92 0.76 12

Execution 1.00 0.80 0.89 5

Explosion 0.70 0.88 0.78 16

Other 0.68 0.33 0.44 52

Shelling 0.71 0.86 0.78 70

Shooting 0.27 0.50 0.35 6

Average/Total 0.69 0.68 0.66 161

Table 7.46: Classification report of LinearSVC Cause of Death classifier on
FA-KES Titles testing dataset with tags predicted by OpenTag

7.3.3.2 FA-KES Titles and First Paragraphs Dataset

In this case, LinearSVC also performed better than the other cause of death

classifiers. Tables 7.47 and 7.48 show the classification report of our classifier

on the articles’ titles and first paragraphs (excluding tags) and on the articles’

titles concatenated with first paragraphs and their labels predicted by our deep

learning model respectively.
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Class Precision Recall F1-score Support

Chemical and toxic gases 0.67 0.17 0.27 12

Execution 0.67 0.29 0.40 7

Explosion 0.40 0.09 0.15 22

Other 0.62 0.26 0.37 19

Shelling 0.63 0.96 0.76 93

Shooting 0.00 0.00 0.00 9

Average/Total 0.57 0.62 0.54 162

Table 7.47: Classification report of the baseline LinearSVC Cause of Death
classifier on FA-KES Titles and First Paragraphs testing dataset

Class Precision Recall F1-score Support

Chemical and toxic gases 0.67 0.17 0.27 12

Execution 1.00 0.29 0.44 7

Explosion 0.70 0.32 0.44 22

Other 0.47 0.37 0.41 19

Shelling 0.65 0.91 0.76 93

Shooting 0.50 0.11 0.18 9

Average/Total 0.65 0.64 0.59 162

Table 7.48: Classification report of LinearSVC Cause of Death classifier on
FA-KES Titles and First Paragraphs testing dataset with tags predicted by

OpenTag
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7.3.3.3 FA-KES Titles and Contents Dataset

LinearSVC performed better than the other cause of death classifiers. Tables

7.49 and 7.50 show the classification report of our classifier on the articles’ titles

and contents (excluding tags) and on the articles’ titles concatenated with their

content and the labels predicted by our deep learning model respectively.

Class Precision Recall F1-score Support

Chemical and toxic gases 0.80 0.50 0.62 8

Execution 0.57 0.80 0.67 5

Explosion 0.84 0.80 0.82 20

Other 0.64 0.53 0.58 40

Shelling 0.68 0.83 0.75 78

Shooting 0.67 0.18 0.29 11

Average/Total 0.69 0.69 0.68 162

Table 7.49: Classification report of the baseline LinearSVC Cause of Death
classifier on FA-KES Titles and Contents testing dataset
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Class Precision Recall F1-score Support

Chemical and toxic gases 0.80 0.50 0.62 8

Execution 0.50 0.80 0.62 5

Explosion 0.94 0.80 0.86 20

Other 0.65 0.60 0.62 40

Shelling 0.71 0.83 0.76 78

Shooting 0.67 0.18 0.29 11

Average/Total 0.72 0.71 0.70 162

Table 7.50: Classification report of LinearSVC Cause of Death classifier on
FA-KES Titles and Contents testing dataset with tags predicted by OpenTag

7.3.4 Civilians Classifier

We implemented three classifiers for attribute related to the number of dead

civilians: Logistic Regression, LinearSVC, and Random Forest Classifier. We

will see in the following subsections the results of the best performing one for

each dimension.

7.3.4.1 FA-KES Titles Dataset

Logistic Regression gave the best results among the three civilians classifiers.

Tables 7.51 and 7.52 show the classification report of our classifier on the articles’

titles (excluding tags) and on the articles’ titles with the labels predicted by our
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deep learning model respectively.

Class Precision Recall F1-score Support

Greater than 100 1.00 1.00 1.00 1

Greater than 50 0.67 0.40 0.50 5

Less than 50 0.98 0.99 0.99 156

Average/Total 0.97 0.98 0.97 162

Table 7.51: Classification report of the baseline Logistic Regression Civilians
classifier on FA-KES Titles testing dataset

Class Precision Recall F1-score Support

Greater than 100 0.00 0.00 0.00 1

Greater than 50 1.00 0.40 0.57 5

Less than 50 0.97 1.00 0.99 156

Average/Total 0.97 0.98 0.97 162

Table 7.52: Classification report of Logistic Regression Civilians classifier on
FA-KES Titles testing dataset with tags predicted by OpenTag

7.3.4.2 FA-KES Titles and First Paragraphs Dataset

In this case, LinearSVC performed better than the other civilians’ classifiers. Ta-

bles 7.53 and 7.54 show the classification report of our classifier on the articles’

titles and first paragraphs (excluding tags) and on the articles’ titles concatenated
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with first paragraphs and their labels predicted by our deep learning model re-

spectively.

Class Precision Recall F1-score Support

Greater than 100 0.67 0.57 0.62 7

Greater than 50 0.60 0.27 0.37 11

Less than 50 0.93 0.97 0.95 144

Average/Total 0.89 0.91 0.90 162

Table 7.53: Classification report of the baseline LinearSVC Civilians classifier
on FA-KES Titles and First Paragraphs testing dataset

Class Precision Recall F1-score Support

Greater than 100 0.67 0.57 0.62 7

Greater than 50 0.50 0.27 0.35 11

Less than 50 0.93 0.97 0.95 144

Average/Total 0.89 0.91 0.90 162

Table 7.54: Classification report of LinearSVC Civilians classifier on FA-KES
Titles and First Paragraphs testing dataset with tags predicted by OpenTag

7.3.4.3 FA-KES Titles and Contents Dataset

Logistic Regression performed better than the other civilians’ classifiers. Tables

7.55 and 7.56 show the classification report of our classifier on the articles’ titles
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and contents (excluding tags) and on the articles’ titles concatenated with their

content and the labels predicted by our deep learning model respectively.

Class Precision Recall F1-score Support

Greater than 100 0.50 0.29 0.36 14

Greater than 50 0.83 0.31 0.45 16

Less than 50 0.88 0.98 0.93 132

Average/Total 0.84 0.86 0.83 162

Table 7.55: Classification report of the baseline Logistic Regression Civilians
classifier on FA-KES Titles and Contents testing dataset

Class Precision Recall F1-score Support

Greater than 100 0.56 0.36 0.43 14

Greater than 50 1.00 0.31 0.48 16

Less than 50 0.88 0.98 0.93 132

Average/Total 0.86 0.86 0.84 162

Table 7.56: Classification report of Logistic Regression Civilians classifier on
FA-KES Titles and Contents testing dataset with tags predicted by OpenTag

7.4 Discussion

Logistic regression outperformed Random Forest Classifier and LinearSVC classi-

fiers for actor classification on the three FA-KES subsets: Titles, Titles and First
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Paragraphs, Titles and Contents. For the FA-KES Titles and First Paragraphs

subset, we could see in Table 7.36 that the actor classifier that was tested on

the output of OpenTag model scored 0.77 for F1-score which is greater than the

score 0.76 reached by the baseline actor classifier in Table 7.35. Table 7.36 shows

the result of classifying the articles in FA-KES Titles and Paragraphs testing

dataset taking into consideration the labels that were predicted for each word in

this dataset by our OpenTag model. We could see that “Al-Nusra Front” actor

wasn’t detected by the actor classifiers (F1-score is equal to 0) and this is due

to having only 6 articles categorized as “Al-Nusra Front” in the training FA-KES

Titles and First Paragraphs subset. Thus, it is expected to not have the actor

classifiers recognize the ones linked to “Al-Nusra Front”. Additionally, our actor

classifiers that were tested on the output of our deep learning model performed

better than the baseline classifiers on Titles and Titles and Contents subsets.

This could be seen in Table 7.34 where the average F1-score is 0.61 whereas it

scored 0.60 by the baseline actor classifier examined on Titles testing dataset.

Moreover, Table 7.38 shows an F1-score average of 0.61 on Titles and Contents

testing dataset though it scored 0.59 by the baseline actor classifier on the same

testing data excluding tags.

Here comes the Location Classifier’s turn. We noticed that in this case Lin-

earSVC performed better than Random Forest Classifier and Logistic Regression

classifiers when tested on Titles subset. Tables 7.39 and 7.40 show 0.58 and 0.60

for F1-score respectively, so for the Titles subset, the LinearSVC location classifier
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outperformed the baseline classifier. For the remaining FA-KES subsets, Logis-

tic Regression performed better than Random Forest Classifier and LinearSVC

classifiers. Tables 7.41 and 7.42 return 0.80 and 0.81 respectively as F1-score for

the Titles and First Paragraphs testing subsets. For Quneitra classification, the

location classifier that was trained on FA-KES Titles and First Paragraphs along

with the ground-truth tags, scored 0.50 for F1-score when tested on the output of

OpenTag model whereas the baseline Location classifier didn’t detect this class

(F1-score is equal to 0). This highlights the importance of tags that helped in

this case to get a more accurate result. Moreover, we could see that Tables 7.43

and 7.44 show the same F1-score on average 0.52 which means that both Logistic

Regression location classifiers that were trained on FA-KES Titles and Contents

with and without tags performed equally on the testing dataset.

LinearSVC classifiers for the cause of death performed the best among all the

other classifiers for all FA-KES subsets. We could see that the highest result is

scored for the Titles and Contents testing dataset where F1-score reached 0.70

(Table 7.50), whereas it got 0.68 by the baseline cause of death classifier (Table

7.45). If we check the results of the other cause of death classifiers, we could

see in Tables 7.45 and 7.46 that both classifiers performed on average the same

where F1-score reached 0.66. Also, the cause of death classifier that was trained

on FA-KES Titles and First Paragraphs along with ground-truth labels, scored

0.59 as F1-score (see Table 7.48) when tested on the output of our recurrent

neural network model, whereas the baseline classifier reached 0.54 for F1-score
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(see Table 7.47). We noticed that the “Shooting” class wasn’t detected by our

baseline classifier when tested on Titles and First Paragraphs testing subset since

it scored 0 for F1-score as is shown in Table 7.47. However, the cause of death

classifier that was tested on the output of the OpenTag model gave 0.18 as F1-

score for the “Shooting” class which highlights the importance of tags in this

case.

Lastly, Logistic regression classifiers for categorizing the number of dead civil-

ians got the highest F1-score which is 0.97 when examined on the Titles testing

dataset as can be seen in Tables 7.51 and 7.52. Now, for the Titles and First Para-

graphs testing subset, Tables 7.53 and 7.54 show the same F1-score on average

for both LinearSVC classifiers which is 0.90. Finally, Logistic regression civilians

classifier that was tested on the output of our OpenTag model for the Titles and

Contents testing dataset outperformed the baseline classifier by scoring 0.84 for

F1-score as is shown in Table 7.56 whereas the baseline classifier reached 0.83 for

F1-score as can be seen in Table 7.55. Civilians classifiers gave very good results

whether they were initially trained on the text only or with additional features.
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Chapter 8

Conclusion

In this study, we worked on incident extraction from crisis data that report inter-

esting information such as the number of casualties and location of the incident.

To reach this goal, we implemented OpenTag, a deep sequence-tagging approach

proposed in [1]. We trained our model on the training dataset of each subset of

Joplin and FA-KES datasets. Then, we evaluated our paradigm on the corre-

sponding testing dataset of Joplin and FA-KES subsets. Additionally, we created

a baseline model, trained it on the same learning datasets, and tested it on the

appropriate testing datasets to see how well our model is doing compared to

a baseline model. Moreover, for the FA-KES dataset, we created classifiers for

the following attributes: Actor, Civilians, Location, and Cause of death. Further-

more, we implemented baseline classifiers and tested them on the testing FA-KES

subsets.

Our OpenTag model outperformed the baseline model CRF for the Caution
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and Advice and Information Source subsets of the Joplin dataset. However, the

baseline CRF model returned better results than OpenTag when evaluated on the

testing datasets of the FA-KES subsets. As for the classifiers that were trained

on the FA-KES subsets along with ground-truth tags, they were evaluated on

the output of our OpenTag model. These classifiers either performed equally or

better than the baseline classifiers returning the following results: actor classifier

scored 0.77 as F1-score when tested on FA-KES Titles and First Paragraphs

subset, location classifier scored 0.81 as the highest value for F1-score for FA-

KES Titles and First Paragraphs testing dataset, cause of death classifier scored

the highest F1-score which is 0.70 for the FA-KES Titles and Contents testing

subset, and lastly, civilians classifier recorded 0.97 for F1-score when assessed on

the FA-KES Titles testing subset.
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Appendix A

Abbreviations

NER Named Entity Recognition

LSTM Long Short-Term Memory

BiLSTM Bidirectional Long Short-Term Memory

CRF Conditional Random Field

NLP Natural Language Processing

RNN Recurrent Neural Network

CIV Civilians

NCV Non-civilians

CHD Children

DAT Date

LOC Location

COD Cause of death
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PEO People

INF Infrastructure

TIM Time

INC Incident

DON Donation

REP Authority responsible

SRC Information source

WMN Women
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