
AMERICAN UNIVERSITY OF BEIRUT

MACHINE LEARNING FOR NETWORK
RESILIENCE

by

ALI HUSSEIN

A Dissertation
submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy of Engineering
to the Department of Electrical and Computer Engineering

of the Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
January 2020

Acknowledgements

First, I want to convey my honor to have worked under the supervision of my ad-

visor Prof. Ali Chehab and my co-advisors Prof. Ayman Kayssi and Prof. Imad

Elhajj throughout these years. Thus, I would like to express my sincere gratitude

for their continuous support and motivation, their patience, and offering their

tremendous knowledge. Their guidance have helped during my studies and will

forever be a key motivation for me to move forward. Having them as my mentors

is the key factor for being the person I am today.

I would also like to thank the rest of my committee: Prof. Muhammad Imran

and Prof. Kassem Fawaz, for their insightful comments and experienced knowl-

edge which led me to inspect my research topic from many perspectives.

To my friends, thank you for supporting me along the way, listening and of-

fering me advice, which had a good impact on my work. Having faith-full and

honest friends is a great motivation one can have in any part of our lives.

Finally, I would like to thank my family especially my parents and my wife

for supporting me in any way they could throughout these long years of study

and research to have reached this point. A special appreciation for my wife for

v

always believing in me and inspiring me to always be better.

An Abstract of the Dissertation

of

Ali Imad Hussein for Doctor of Philosophy
Major: Electrical and Computer Engineering

Title: Machine Learning for Network Resilience

Resilience is taking networks a step further beyond security. Security is one
of the main concerns facing the improvement of new networking and communica-
tions systems. Another important challenge is verifying whether or not a system
is working exactly as specified, hence ensuring its consistency. We argue that a
resilient network is both a secure and consistent one. It is from this point that we
start our thesis research. On the other hand, advances in Artificial Intelligence
(AI) technology have opened up new markets and opportunities for progress in
critical areas such as network resiliency, health, education, energy, economic in-
clusion, social welfare, and the environment. AI is expected to play an increasing
role in defensive and offensive measures to provide a rapid response to react to
the landscape of evolving threats. Software Defined Networking (SDN), being
centralized by nature, provides a global view of the network. It is the flexibility
and robustness offered by programmable networking that lead us to consider the
integration of these two concepts, SDN and AI. Inspired by the fascinating tactics
of the human immunity system, we aim to design a general hybrid Artificial Intel-
ligence Resiliency System (ARS) that strikes a good balance between centralized
and distributed security solutions that may be applicable to different network
environments. Another objective is to investigate and leverage the state-of-the-
art AI techniques to enhance network performance in general and resiliency in
particular.

Being able to describe a specific network as consistent is a large step towards
resiliency. Next to the importance of security lies the necessity of consistency

vii

verification. Attackers are currently focusing on targeting small and crucial goals
such as network configurations or flow tables. These types of attacks would defy
the whole purpose of a security system when built on top of an inconsistent
network. Another important goal of our work is to propose a new AI-based
consistency verification system, which will be part of the overall ARS solution.

Throughout this work, we discuss a new architecture that integrates both,
a double layer security system alongside a consistency establishment technique,
while preserving data privacy. We show results related, on one hand, to the archi-
tecture tests including the accuracy of multiple AI techniques for both security
layers, and on the other hand, to the attack mitigation and consistency tests.
Finally, we present a new distributed AI-based security enforcement technique as
part of the ARS system.

Our results showed our centralized security ensemble, which is formed from the
random forest (RF) technique for anomaly detection and the deep neural network
(DNN) for attack identification, providing a 99% and 98% accuracy respectively.
Our distributed neural network overlay for anomaly detection provided a 94.8%
accuracy, while our consistency verification convolutional neural network (CNN)
system provided a 96% accuracy. Also, both our systems passed the unknown
attack detection tests when integrated with our AI optimization module. Our
system managed to ensure network security and consistency maintaining data
privacy and decent processing and traffic overhead, as discussed in the results.

Contents

Acknowledgements v

Abstract vii

1 Introduction 1

1.1 Motivation . 3

1.2 Introduction to Software Defined Networking 4

1.2.1 SDN Overview . 4

1.2.2 SDN Architecture and Components 8

1.2.3 Communication Protocols 9

1.3 History of programmable networking 12

1.3.1 Programmable Networking 12

1.3.2 OpenFlow History . 14

1.4 Introduction to Artificial Intelligence 15

1.4.1 Machine Learning . 16

1.4.2 Artificial Neural Network 17

1.4.3 Multilayer Perceptron . 18

1.4.4 Radial Basis function . 19

1.4.5 Self-organizing Map . 20

1.4.6 Adaptive Resonance Theorem 20

ix

1.4.7 Genetic Algorithm . 20

1.4.8 Fuzzy Logic . 21

1.4.9 K-nearest Neighbors . 22

1.4.10 K-means . 22

1.4.11 K-medoids . 22

1.4.12 Naive Bayes . 23

1.4.13 Decision tree . 24

1.4.14 Support Vector Machine 24

1.4.15 Random forest . 24

1.4.16 Deep Learning . 25

1.4.17 Overall Summary . 26

2 Literature Review 28

2.1 SDN Security Overview . 28

2.2 SDN Security and vulnerabilities 29

2.2.1 SDN Communication Security 30

2.2.2 SDN General Vulnerabilities 32

2.3 Attacks on SDN . 35

2.3.1 Physical attacks . 36

2.3.2 Plane Based Attacks . 37

2.3.3 OpenFlow Security Problems 45

2.3.4 SDN Specific Security Challenges 49

2.4 SDN security Solutions . 50

2.4.1 Application Layer Solutions 51

2.4.2 Control Layer Solutions 63

2.4.3 Hybrid Controller Architecture Solutions 64

2.4.4 Data Layer Solutions . 74

2.4.5 OpenFlow Proposed Solutions 81

2.4.6 General Solutions . 82

2.5 SDN Network security enhancements 88

2.5.1 DISCO (Distributed Control Plane) 89

2.5.2 Parelo-based Optimal Controller Placement (POCO) . . . 89

2.5.3 Network Security Architectures 90

2.5.4 Control-Data Plane Intelligence Tradeoff 91

2.6 Security Discussion and Future Directions 97

2.6.1 SDN Security Summary 100

2.7 Artificial Intelligence for network security 102

2.7.1 AI for Network Security 104

2.8 Tables . 112

2.8.1 Intelligent Network Applications 113

2.9 AI for Network Quality . 115

2.9.1 Time Line Overview . 120

2.9.2 Machine Learning Hybrid techniques 120

2.9.3 Intrusion Detection Selected Summary 122

2.10 Consistency and verification for network resilience and quality . . 123

3 Previous Work 135

3.1 SDN Security Plane . 135

3.2 SDN Verification plane . 136

3.3 SDN and MPTCP . 137

3.4 SDN and VANET Security . 137

3.5 SDN and QUIC . 138

3.6 SDN Security review . 139

3.7 SDN and 5G . 139

3.8 Diameter Security . 141

3.9 Machine Learning for network Resilience 142

4 ARS Introduction 143

4.1 The Road Towards ARS . 143

4.2 SDN Security Plane . 144

4.2.1 DDoS Prevention Technique 148

4.2.2 Testing and Simulation . 151

4.3 SDN Verification Plane . 153

4.3.1 SDN Verification Tool . 156

4.3.2 Testing and Simulation . 159

4.4 ARS Architecture . 163

5 ARS Security System 165

5.1 System Overview . 166

5.2 AI for Network Security . 167

5.2.1 Applying Artificial Neural Networks for anomaly detection 167

5.2.2 Designing a two-step process for anomaly detection and

attack identification . 168

5.2.3 Designing an Ensemble of AI techniques 169

5.3 ARS Architecture OverView . 169

5.3.1 The D∼ C2 architecture can be described as follows: . . . 170

5.3.2 The D2 ∼C architecture can be described as follows: . . . 170

5.4 ARS System discussion . 173

6 ARS Consistency System 176

6.1 General ARS Architecture Overview 177

6.2 Research Investigation Phases . 178

6.3 Proposed Consistency System . 179

6.4 Consistency system analysis . 181

7 ARS AI Optimization 184

7.1 AI Optimization . 184

7.1.1 Binary classifiers . 186

7.1.2 Probabilistic classifiers . 187

7.1.3 Class Calibration (CC) . 187

7.1.4 Probabilistic Calibration (PC) 187

7.2 General Discussion . 188

7.2.1 Dropout . 188

7.2.2 Overfitting . 194

7.3 ARS Optimization using stochastic regularization techniques (SRT)199

7.3.1 Classification . 200

7.3.2 Uncertainty estimate discussion 202

8 System Simulation and results 204

8.1 System Security Simulation and Results 204

8.1.1 System Datasets . 205

8.1.2 System Simulation . 206

8.1.3 System Training . 209

8.1.4 Tests and Results . 211

8.2 System Consistency Simulation and Results 218

8.2.1 Data collection . 218

8.2.2 Data Preprocessing . 219

8.2.3 Classification Results . 222

8.2.4 System Consistency Tests 223

9 Conclusion 228

10 Future Work 230

A Abbreviations 231

List of Figures

1.1 Conceptual Architecture of Software-Defined Networking 7

1.2 SDN Architecture Planes . 9

1.3 Programmable Networking Timeline 12

1.4 Three layer Neural Network . 18

1.5 Radial Basis Function Architecture 19

1.6 Machine Learning Overall Summary 27

2.1 Research Projects Regarding SDN Security Solutions At Different

Layers/Interfaces . 51

2.2 SDN Based DDoS Detection and Mitigation Solutions 65

2.3 Intrusion Detection Techniques Overall Summary 103

2.4 AI and ML Publications Since 2010 121

2.5 IDS Publications for Different AI Techniques 121

4.1 SDN Security Plane Architecture 145

4.2 Security Module – Controller REST Connection 147

4.3 Overall Procedure Scheme . 149

4.4 Attack Detection FlowChart . 150

4.5 SDN Verification Architecture . 155

4.6 Verification Module – Controller REST Connection 156

xv

4.7 Overall Verification Scheme . 158

4.8 SDN Topology State Machine in UPPAAL 160

4.9 Switch States in UPPAAL . 161

4.10 SDN Topology View of the Verification Tool 163

5.1 Proposed D2 ∼C Architecture . 171

5.2 Proposed D2 ∼C Architecture . 171

5.3 Simple Neural Network Architecture 172

5.4 Distributed NN Overlay Architecture 172

6.1 System architecture Distribution 177

6.2 System Consistency Establishment Architecture 178

6.3 Data extraction and processing phases 182

7.1 Applying dropout to a simple Neural Network (Hidden Layers) . . 189

7.2 dropout interval distribution at d=0.5 190

7.3 dropout interval plot for different dropout values 191

7.4 dropout interval distribution at d=0.375 192

7.5 Recommended method of dividing the data set 196

7.6 Change of accuracy values in subsequent epochs during neural net-

work learning . 198

7.7 Graphical analysis of the top 3 classifications of the CNN model

for each input . 202

8.1 Attack/Detection Test Scenario 213

8.2 RandomForest Confusion Matrix for Unbalanced Data 214

8.3 RandomForest Confusion Matrix for Balanced Data 214

8.4 Attack Mitigation Process . 216

8.5 Consistency Results Visual Data Representation 221

8.6 Consistency Verification Test Scenario 225

8.7 S1-S5 Graphical Consistency Comparison 225

List of Tables

1.1 SDN Security Advantages Over Traditional Networks 6

1.2 Main SDN Interfaces . 11

2.1 SDN Security Issues At the Communication Level 33

2.2 Main SDN Security Research Timeline Summary 37

2.3 Main SDN Security Research Timeline Summary (continued) . . . 38

2.4 Security Threats in SDN Networks (1) 46

2.5 Security Threats in SDN Networks (2) 47

2.6 Classification of SDN Security Attacks 50

2.7 Classification of The-State-of-The-Art Security Solutions on Dif-

ferent SDN Layers/Interfaces (1) 52

2.8 Classification of The-State-of-the-Art Security Solutions on Differ-

ent SDN Layers/Interfaces (2) . 53

2.9 Classification of The-State-of-the-Art Security Solutions on Differ-

ent SDN Layers/Interfaces (3) . 54

2.10 Summary List of Recent Deep Learning Based IDSs 112

2.11 IDS Accuracy of Detection and Data Set Used 122

2.12 Summary Table of Selected Reviewed Papers 124

2.13 SDN Verification for Network Quality (1) 129

2.14 SDN Verification for Network Quality (2) 130

xviii

2.15 SDN Verification for Network Quality (3) 131

2.16 SDN Solutions for Network Quality (1) 132

2.17 SDN Solutions For Network Quality (2) 133

2.18 SDN Solutions for Network Quality (3) 134

4.1 Selected Policies . 147

4.2 Query Policies . 148

4.3 Sample of Invariant Verification 151

4.4 Sample of Default Policies Being Checked 151

4.5 UPPAAL Parameter Samples . 157

8.1 Attack Names Included in Attack Categories 205

8.2 Numbers of Class Records in NSL-KDD Dataset 205

8.3 Attack Types and Related Features 207

8.4 Attack Types and Related Features Continued 208

8.5 Test Results Summary Based on NSL-KDD 213

8.6 Test Results Summary Based on CICIDS2017 214

8.7 Consistency Attack Classes . 219

8.8 Deep Learning Consistency Verification Results 223

8.9 Switch and Corresponding Attack Classes Scenario 224

8.10 Consistency Test Scenario Results 226

Chapter 1

Introduction

Future network technologies are on a fast track towards finding solutions to the

ever-increasing challenges resulting from the exponential increase in connected de-

vices and network traffic. The lack of seamless scalability, programmability, and

remote management led to the rise of new networking paradigms such as SDN,

which promises to offer the above three features, in addition to other advan-

tages as well. It provides flexible control of computer networks by orchestrating

switches in the network data-plane through a centralized controller. Neverthe-

less, the progress is still slow towards achieving a reliable and consistent network

security solution. Alongside the evolution of networks is the evolution of net-

work attacks, and the major concern is that traditional security protocols are

failing at providing proper protection to these future networks. Recent advances

in artificial intelligence, machine learning, deep learning, and big data are pro-

viding opportunities to address fundamentally the concerns about the security of

networks and their correct behavior.

Even though networks started the transition to SDN, it is anticipated that

SDN would co-exist with traditional networks for a certain time period. Accord-

1

ingly, our work discusses the integration of AI and SDN to provide security as

well as consistency and correctness of hybrid networks. Our solution consists

of a multilevel distributed security architecture with a Central Artificial Intelli-

gence (CAI) based controller. This is possible through featuring multiple levels of

security and consistency measures throughout different nodes over the network.

Network administrators handle various applications on the control side to per-

form different management tasks such as firewall, monitoring, routing, and others.

Most of these applications have complex interactions among each other, creating

difficult challenge when reasoning about their behaviors. We argue that there

is no security without consistency, and enforcing security policies to a network

without the ability to verify any misbehavior is a challenge by itself.

Our fundamental motivation was the fascinating tactics of the human im-

munity system, which is based on a double layer of defense. The first layer is

responsible for the deflection of unfamiliar attackers at various exterior contact

points in the body without the necessity of identifying their type. The second

layer is responsible for the identification of the attacks that were flagged by the

first layer, by distributing watchers throughout the blood stream, keeping an

eye on any abnormalities. This system earned its efficiency from one layer using

minimum energy, and a second layer requiring distributed techniques and more

processing.

Another inspiration was our brain functioning as a single control unit which,

aside from its millions of functions, controls the consistency of our body by keep-

ing in touch with all our organs to make sure that they are functioning correctly.

In simple words, our brain handles this task by knowing ahead the correct function

of each organ, then alerts our awareness if any part of the body is malfunctioning

after comparing the intended function and the actual one.

2

The rest of our introduction focuses on introducing both software defined

networking and artificial intelligence. Both these essential developments form the

foundation of our research and thus, it is important to discuss them in details.

1.1 Motivation

The introduction of cloud services, financial technologies, and server virtualiza-

tion are among the factors driving the networking industry to reassess the de-

sign of traditional networks. One such approach is Software Defined Networking

(SDN) [1].

Software Defined Networking (SDN) has opened a new horizon in the field

of networking by introducing a separation between the control and data planes.

This separation allows the centralization of network logic and decision making in

the Network Operating System (NOS) or the control plane, which lowers OPEX

and on the other hand, it allows for the simplification of the network forwarding

devices into network switches, which lowers CAPEX. Although the introduction

of NOS provides a programming abstraction that is leveraged by network ap-

plication developers to control the network data plane devices, it has serious

implications at the level of network security [2]. For example, the centralization

of the controller introduces a new concern because it provides the attackers with

the ability to control the entire network and with a single point of failure.

In the past few years, SDN/NFV deployment has grown significantly. Ac-

cording to Arbor Network, 11% of respondents reported that they are already

implementing SDN/NFV in 2016. However, 39% indicated that they are now

testing the technologies, with only 28% having no plans to implement SDN or

NFV in the next few years [3].

3

In terms of the domains where these technologies are having the most impact,

data centers are the clear leaders. 75% of respondents deployed these technologies

in their data centers, with 42% respondents using SDN or NFV in value-added

services infrastructure. Besides, about one-third of respondents deployed it within

their fixed-line infrastructure [3].

Regarding the barriers that prevent the deployment of SDN and NFV, half of

respondents indicated that both interoperability and operational/business sup-

port system integration are key barriers. Around 33% cited security and vendor

support as top concerns, and less than one-quarter mentioned scalability [3].

The amount of investment contributed to knowledge discovery for Software

Defined Networking (SDN) and Network Functions Virtualization (NFV) by 2020

is estimated to be $21 billion [4]. However, the area of security requires further

attention.

1.2 Introduction to Software Defined Network-

ing

1.2.1 SDN Overview

SDN is an emerging networking paradigm supported by several big names like

Google [5] and Cisco Systems [6]. It is based on physically decoupling the intel-

ligence of a network (i.e. Control Plane) from network forwarding devices (i.e.

Data Plane) such as switches, hubs, routers etc. Specifically, the control plane

is implemented on a dedicated central controller to abstract it from all the un-

derlying structures of the network. Consequently, the controller keeps a global

view of the network and dictates the entire network behavior [7]. The data plane

4

remains located on network devices, which forward traffic based on forwarding

rules in flow tables. If there is no corresponding rule for a network packet, the

packet is forwarded to the controller as a PacketIn message. Forwarding rules are

defined by applications running on top of the controller or modules within the

controller itself. As a result, SDN offers an application-programming interface

(API) where the data plane can be modified by external applications. SDN net-

works have increased control capabilities over traditional networks. This is due

to the implementation of the flow-based structure in SDN, where several header

fields delineate how packets should move in the network rather than depending

only on the destination address, like in traditional networks. Therefore, the SDN

controller can perform better traffic differentiation based on several header fields.

Another characteristic that differentiates SDN from traditional networks is the

fact that it is provided with self-healing techniques. For example, conditional

rules can be installed on switches by the controller and activated if a certain

condition is satisfied. These conditional rules are related to statistics gathered

by switches and state how the switch should react when the specified condition

is encountered. The reaction could be to drop packets or redirect them, provid-

ing automatic resiliency against attacks. These security pros are summarized in

Table 1.1.

The advantages of SDN have been demonstrated in many cases such as in

data centers [5]. First, the SDN model makes the modifications of the network

policies less prone to errors since it is software based. Second, the control program

can react automatically to any change in the state of the network. Third, the

development of sophisticated network functions is simplified.

However, a number of challenges exist [8]; one fundamental area is security.

The SDN model provides both opportunities and concerns when it comes to secu-

5

Table 1.1: SDN Security Advantages Over Traditional Networks

SDN characteris-
tic

Attributed to Security Usage

Global view of the
network

Centralization
Traffic statistics collection

Network-wide intrusion de-
tection
Network forensics

Better control ca-
pabilities

Flow-based forwarding
structure

Access control

Self-healing tech-
niques

Conditional rules
Switch’s collected statistics

Reactive packet dropping
Reactive packet redirection

rity. On the positive side, the SDN architecture can be used to improve network

security with the delivery of reactive security monitoring, analysis and response

system. Well-known network security mechanisms have been implemented in

order to realize network security by leveraging SDN [9, 10, 11, 12, 13, 14, 15, 16].

The first aspect of SDN that comes up in the context of security is the central-

ized controller. Although the single point of failure is troubling to any security

professional, this centralization can be an enabler for some security mechanisms.

Anomaly-detection methods and traffic analysis can benefit from a global view

and control of the network. Nodes in the network can generate security-related

data, which can be regularly transmitted to the central controller. Controller ap-

plications can then analyze this feedback from the whole network enabling better

intrusion detection whereby intrusion prevention can be executed at a granularity,

not possible pre-SDN.

On the negative side, SDN networks inherit most, if not all, vulnerabilities

of traditional networks. Furthermore, SDN has introduced new vulnerabilities

through its unique architecture and southbound/northbound protocol implemen-

tations. Examples of vulnerabilities include those related to the OS running the

controller, spoofing of open flow rules [17], [18] in the absence of IPSec [18], and

6

Figure 1.1: Conceptual Architecture of Software-Defined Networking

DoS / spoofing / hijacking of controllers. In addition, the northbound API is a

risk, if not secured properly. All this is compounded by the lack of experienced

developers and users in this domain, which will also increase the likelihood of

misconfigurations.

Moreover, SDN lends itself to new attack vectors as compared to a traditional

network topology due to the centralized control and programmability, limited

physical security, and threats from compromised nodes inside the network. The

primary focus of this work is to provide a survey on different types of security

concerns and opportunities.

The architectural design of SDN (Figure 1.1) shows the different layers and

communication protocols that are the base of any SDN network. As discussed

earlier, each of the planes (data and control) are responsible of a separate task

and are controlled by several application modules on the centralized controller.

There could be more than one controller, especially in large networks. These

controllers synchronize their tasks via east/west-bound APIs. The data plane

interconnects via the south-bound API to the control plane.

7

1.2.2 SDN Architecture and Components

As per ONF [19], the SDN architecture comprises two planes with their respective

interfaces as shown in Figure 1.2. The Application layer contains the diverse

applications and services such as load balancers, deep packet inspection (DPI),

access controls, intrusion detection system (IDS) and intrusion prevention system

(IPS). This layer interconnects with the control layer through an application

programming interface API (Northbound communication) [1].

The control layer, also known as the central layer, consists of the controllers

and it is considered the brain of SDN and is responsible for creating and ter-

minating flows, monitoring the network, and programming the behavior of the

physical equipment.

The data plane layer, also known as infrastructure layer, contains the forward-

ing equipment (switches, routers, etc.). It implements the management operation

of the controller through SDN-enabled switches to forward the data, collect the

network information, and send it to the controller. The data layer connects to

the controller layer through the southbound interface [1].

It is worth noting that the southbound communication can be deployed in

two different scenarios:

1. In-band : The communication between the controller and the physical in-

terface depends on the flow rules like all other traffic.

2. Out-of-band : The southbound communication is implemented through a

path that is not affected by SDN flow rules, but via VLAN configuration

that separates the networking devices without OpenFlow rules, as shown

in Figure 1.2.

The adoption of this layered architecture offers many advantages: First the

8

Figure 1.2: SDN Architecture Planes

separation of the planes provides the desired flexibility to combine the benefits

of system virtualization and cloud computing. Second, the centralization of the

intelligence allows a total view of the network, which helps in decision making

and improves network management. Consequently, SDN could be a solution for

security services that protect the information system.

1.2.3 Communication Protocols

Southbound Interface

OpenFlow and OpFlex are the first SDN protocols that defined the communica-

tion between the control layer and architecture layer. The key variance between

the two protocols is that OpenFlow is agent-less compared to OpFlex which re-

quires agents to be installed. OpenFlow defines the communication between one

or more control servers with switches.

OpenFlow is the de facto standard for SDN; it was standardized by the Open

Networking Foundation (ONF) [18], and it is the leading south-bound API. The

controller connects to the applications (e.g. SDN management applications) via a

north-bound API. The ONF has started a Northbound Interface Working Group

but there is no actual standardized northbound API.

Rules installed on the OpenFlow switch by a controller application define the

9

behavior of the switch as a switch, router, network address translator, firewall,

etc. An OpenFlow switch has one or more tables of packet handling rules. Each

rule has a pattern, a list of actions (e.g. dropping, flooding, forwarding, modi-

fying a header field, or sending the packet to the controller), and a priority to

distinguish between rules with overlapping patterns. When an OpenFlow switch

receives a packet, it identifies the highest-priority matching rule, makes the cor-

responding actions and increments the counters.

The OpenFlow protocol comprises three different types of messages:

1. Messages sent by the controller to the switch (handshake, flow table con-

figuration, switch configuration, etc.)

2. Asynchronous messages sent by the switch to the controller (packet-in mes-

sage, port status message, flow removed message, etc.)

3. Symmetric messages can be sent by both the controller or the switch (Echo

Request, Echo Reply, Hello, Experimenter)

Another alternative for the southbound interface is the Forwarding and Con-

trol Element Separation (ForCES) [20], [21] which was standardized by IETF.

ForCES defines separate control and data plane functionalities. It is more pow-

erful and more flexible than OpenFlow since it can handle complex forwarding

mechanisms.

The SoftRouter [22] can also fulfill the role of the southbound interface. It also

separates the data plane and the control plane and provides dynamic bindings

between data elements and control plane elements.

Other standards include the Network Configuration Protocol (NetConf), the

Locator/ID Separation Protocol (LISP) promoted by ONF [23], and the Path

Computation Element (PCE) [24].

10

Table 1.2: Main SDN Interfaces

Interface Description Examples

Northbound
APIs

These APIs enable programmability
and are used to communicate between
the SDN Controller and the applications
layer.

Floodlight Rest
API [25, 26, 27],
Openstack , Vy-
atta

Southbound
APIs

These API are used to communicate be-
tween the control layer and the infras-
tructure layer. They can be open or pro-
prietary

Openflow,
ForCES)
[20, 21, 22],
SoftRouter ,
NetConf, LISP ,
and PCE

Eastbound
APIs

These APIs are used to integrate tradi-
tional IP networks with SDN networks.

ALTO [28]

Westbound
APIs

These APIs enable management of dis-
tributed SDN Architecture, and are
used to send information between var-
ious SDN controllers in different do-
mains.

Hyperflow [29]

Northbound Interface

A standardized universal Northbound API between the controller and the busi-

ness applications does not exist. The form and frequency of exchanged informa-

tion depends on the network and applications and therefore universal APIs would

not be useful. Table 1.2 summarizes the main SDN interfaces.

The rest of this review is divided as follows: The history of programmable net-

working is presented in section II. Then, a discussion on SDN security including

the different vulnerabilities is given in section III. Section IV provides a review

of the main attacks that exploit SDN vulnerabilities. Section V discusses known

SDN security solutions. A presentation of network security enhancements that

make use of SDN is included in section VI. In section VII, we present a discussion

and analysis of SDN security. Finally, we conclude in VIII.

11

Figure 1.3: Programmable Networking Timeline

1.3 History of programmable networking

1.3.1 Programmable Networking

Programmable networks laid down the foundation path towards SDN [30]. It

took its origin in Active Networks when the Internet was just being introduced.

The aim of active networking, from mid 1990s to early 2000s, was to introduce a

networking API that allows network managers to control the resources available at

network devices such as switches and routers. Initial attempts were to introduce

functionalities that would apply to a set of packets that pass through network

nodes. Active networking evolved into two programming models:

1. Programmable router/switch model where the program to be executed on

the network nodes was achieved through out-of-band mechanisms [31].

2. Capsule mode where the network nodes’ executable code was carried out

through packets of data [32].

What motivated the rise of active networks was the proliferation of middle-

boxes, which were deployed separately and programmed differently based on each

vendor. The issue also arose due, and not limited to, the large-scale experimen-

tation, time consuming deployment of new devices, and complex management.

12

Active networks addressed the difficulty of introducing innovation in networking

by introducing data plane programmability (ex: NFV) and leading to software

programs that depend on the header of observed packets.

The second milestone towards the development of SDN was the era of sepa-

ration of control and data planes between 2001 and 2007. This was motivated

by the fact that network operators had difficulties in network management and

administration, particularly traffic engineering, where choosing a particular rout-

ing path over another and controlling it was very complicated in terms of the

available tools. These led to the introduction of:

1. Open interface between control and data planes such as ForCES and Netlink

2. Logically centralized controller such as RCP and PCE

This separation addressed the barriers in network management by having the

centralized controller use an open interface with the data plane, and distributing

the management of the network state between multiple controllers to prevent

single point of failure.

OpenFlow and the Network Operating System (NOS) were the latest inno-

vations that led to the birth of SDN, which lasted from 2007 to 2010. It started

with the 4D project [33] that consists of the following four layers: data plane

which forwards traffic based on forwarding rules; discovery plane to gather net-

work traffic statistics and network topology information; dissemination plane to

install traffic-handling rules; and decision plane which represents the centralized

controller of the network. SANE [34] and Ethane [35] took a step further towards

the introduction of OpenFlow API and switches by taking the high-level archi-

tecture introduced by the 4D project and applying it to functionalities other than

routing such as access control. An immediate impact of the introduction of OF

13

was the innovation of centralized controllers called Network Operating Systems

(NOS), which allowed for the development of control applications. OpenFlow

simplified switch deployment, which lead to its adoption in academic research

and industry due to the programmable nature of switches as compared to com-

modity switches.

Nowadays, SDN technology has been deployed in a number of networks [36],

[37], which raises the concern about its security. Security of SDN networks is not

well explored yet and presents many challenges.

Several working groups have recognized the importance of SDN security and

they were established since the beginning of 2013. In the Open Networking Foun-

dation (ONF), some groups were dedicated specifically to promote security in

SDN. In the International Telecommunication Union - Telecommunication Stan-

dardization Sector (ITU-T) and the Internet Research Task Force (IRTF), general

SDN study groups have investigated the security issues in SDN. It is essential to

increase the focus on security in order for SDN to support the emerging related

capabilities such as Network Functions Virtualization (NFV) [38].

Figure 1.3 shows the programmable networking history timeline from 1995 till

2010.

1.3.2 OpenFlow History

SDN is part of a long history of efforts to make networks programmable. Open-

Flow was the first released SDN standard and it has gone through several revi-

sions before becoming broadly deployed by networking vendors. In this section,

we explain briefly the history of programmable networks prior to OpenFlow.

From the mid-1990s to the early 2000s, active networks were presented to in-

clude programmable functions in the network to support better innovation. From

14

2001 to 2007, various efforts were introduced to separate the data and control

planes by creating an open interface between them. In the mid-2000s, network

experimentation at scale emerged to deploy data-control plane separation by in-

troducing the OpenFlow API and network operating systems. In March 2008,

the original concept for OpenFlow was presented in a white paper by the research

team Cleanstate of Stanford University. One month later, the paper appeared as

an editorial note in ACM SIGCOMM Computer Communication Review, given

the importance of the work. The design of the OpenFlow API [39] was followed

by the creation of controller platforms like NOX [7], which allowed the introduc-

tion of several control applications. Directly after the introduction of the first

OpenFlow switch specification in December 2009, there was greater interest in

the networking market. In April 2009, NEC was the first to present a commercial

switch with built-in OpenFlow support. Also, companies like Big Switch, Vello,

Plexxi and Pica8 started to offer SDN-ready solutions. In 2011, Google declared

the adoption of SDN inside their data centers backbones. In the same year, The

Open Networking Foundation (ONF) [18] was established by Deutsche Telekom,

Microsoft, Google, Facebook, Verizon, and Yahoo to promote the concept and op-

eration of SDN and OpenFlow -based networks by standardizing OpenFlow. Now,

ONF has more than 95 members including numerous major vendors.

1.4 Introduction to Artificial Intelligence

By definition, AI is “the study of mental faculties through the use of compu-

tational models” [40]. Main fields of AI research include reasoning, knowledge

representation, automated planning and scheduling, Machine Learning (ML), nat-

ural language processing, computer vision, robotics and general intelligence.

15

1.4.1 Machine Learning

ML deals with the construction and generalization of algorithms (i.e. learn) from

limited sets of data. Such algorithms operate by building models based on input

and using those models to make predictions or decisions, rather than following

only explicitly programmed instructions. Having such characteristics makes them

ideal candidates for network security. There are three common problems that

ML tries to solve: classification, regression and clustering. Classification involves

identifying group membership, with its output labels being class labels. While

clustering involves a set of inputs that are divided into groups where members

have similar characteristics, with its output labels being subsets (i.e. clusters).

Regression, on the other hand, involves estimating or predicting a response, with

its output labels being continuous numerical values. Thus, regression is applicable

for prediction type of problems as opposed to classification and clustering. De-

pending on ways of learning, ML can be further split into three main categories:

supervised, unsupervised and reinforcement learning. Supervised learning is com-

monly used in classification problems where the goal is to get the computer to

learn a classification system that we have created. Unsupervised learning seems

much harder; the goal is to have the computer learn how to do something that we

do not explicitly teach it how to do. Unsupervised learning is a powerful tool for

identifying structure in unlabeled data, thus reflecting the statistical properties

of the overall collection of input patterns. Reinforcement learning is performed

by interacting with an environment where the learning agent learns from the

consequences of its actions through trial and error, rather than from being ex-

plicitly being taught. There is no single AI algorithm that can achieve the best

accuracy for all situations. Hence, one way to improve results is the fusion of

multiple algorithms to obtain a better quality of reasoning rather than using

16

a single algorithm. There are generally two approaches: ensemble and hybrid

[41]. In case of ensemble classifiers, multiple but homogeneous weak models are

combined, typically at the level of their individual output, using various merg-

ing algorithms (e.g. majority voting). Hybrid algorithms, on the other hand,

combine completely different, heterogeneous, AI approaches (e.g. through cas-

cading). In the following section, we discuss some machine learning algorithms,

each falling under a different category from the ones mentioned above [42].

1.4.2 Artificial Neural Network

Artificial Neural Network (ANN) [43] is an algorithm in machine learning. It

is inspired by biological neural networks in the brain. ANN is presented as a

system of forward computation of “neurons” in multi layers where each pair

of neighboring layers is connected. The “neurons” in the same layer have no

associations with each other. Solving an ANN involves optimizing the weight

parameters between two neighboring layers and a bias parameter, and then using

the model with optimal parameters for the real data [44].

Supervised learning

In supervised learning, the neural network learns the mapping process from inputs

x to outputs y given a labelled set of inputs-output pairs:

We refer to d as the training set and N the number of training examples. It is

assumed that yi is a categorical variable from some infinite set; yi ¿ 1. . . C [45].

Unsupervised learning

In unsupervised learning, the neural network is only provided with input data

without conceptualizing the output: it discovers patterns within the data au-

17

Figure 1.4: Three layer Neural Network

tonomously. The data yet to be discovered is called unlabeled data [45]. Two

typical unsupervised learning are Self-Organization Maps (SOMs) and Adaptive

Resonance theory (ART).

1.4.3 Multilayer Perceptron

When used without qualification, the terms “neural network” (NN) and “artificial

neural network” (ANN) usually refer to a multi-layer perceptron (MLP). MLP is

a supervised learning algorithm based on the feed-forward neural network with

one or more layers between the input and output layers. Feed-forward means that

data flows in one direction from input to the output layer (i.e. forward). This

type of network is trained with the error back-propagation learning algorithm.

18

Figure 1.5: Radial Basis Function Architecture

The true power and advantage of MLP lies in its ability to represent both linear

and non-linear relationships, and in its ability to learn these relationships directly

from the data being modeled. Traditional linear models are simply inadequate

when it comes to modeling data that contains non-linear characteristics [46], [47].

1.4.4 Radial Basis function

Radial Basis function (RBF) is another feed forward neural network. It classifies

by taking a measurement of the distance between the inputs and the center of

hidden neurons [48]. Figure 1.5 is an RBF architecture showing the input nodes,

hidden nodes and an output node. Each RBF has different parameters with

an input vector. The network output is thus a linear combination of the radial

basis function’s output. The input and hidden nodes’ weights are always 1 since

the transfer function of the network is a Radial basic function. This allows an

adjustment on the weight between the hidden nodes and the output [49].

19

1.4.5 Self-organizing Map

Kohonen’s self-organizing map (SOM) is an unsupervised learning algorithm pro-

ducing a low dimensional (typically two-dimensional), discretized representation

of the training samples’ input space, simply called a map. It consists of compo-

nents called nodes or neurons. Each node is associated with a weight vector of

the same dimension as the input data vectors and a position in the map space.

Nodes in a 2-D layer learn to represent different regions of the input space where

input vectors occur. In addition, neighboring neurons learn to respond to similar

inputs, thus each layer learns the topology of the presented input space. SOM

provides a way of representing multidimensional data in much lower dimensional

spaces, where this process of reducing the dimensionality of vectors is essentially

a data compression technique known as the vector quantization [46], [50].

1.4.6 Adaptive Resonance Theorem

ART is an unsupervised learning model but, as a hybrid, it performs supervised

learning. It functions as a pattern recognition and prediction tool. The unsuper-

vised learning models consist of ART-1, ART-2, ART-3 and fuzzy Art. The su-

pervised models consist of ARTMAP, Fuzzy ARTMAP and Gaussian ARTMAP

[48]. In general, the models compare each input vector to a single neuron’s weight

(weight vector) [48], [51].

1.4.7 Genetic Algorithm

Genetic algorithm (GA) is a search algorithm that works similar to the process

of natural selection. It begins with a sample set of potential solutions which

then evolves toward a set of better solutions. The algorithm repeatedly modifies

20

a population of individual solutions. At each step, the genetic algorithm ran-

domly selects individuals from the current population and uses them as parents

to produce the children for the next generation. Over successive generations,

the population “evolves” toward an optimal solution. Within the sample set,

solutions that are poor tend to die out while better solutions integrate and prop-

agate their advantageous traits, thus introducing more solutions into the set that

boast greater potential (the total set size remains constant; for each new solution

added, an old one is removed). A little random mutation helps guarantee that a

set won’t stagnate and simply fill up with numerous copies of the same solution

[46].

1.4.8 Fuzzy Logic

Fuzzy logic (FL) is a form of many-valued logic, where one deals with reasoning

that is approximate rather than fixed and exact. Compared to traditional binary

sets where variables may take on true or false values, FL variables may have a

truth value that ranges in degree between 0 and 1. FL proponents claim this

generality allows greater flexibility, freedom, accuracy and compactness when

representing real world situations. All the usual properties of Boolean algebra

can be extended to FL, and probability’s degree of belief in a Boolean variable

becomes a fuzzy variable’s degree of truth. FL provides a principled way to encode

expert knowledge or heuristics into algorithms that mimic a human’s approach

to solving challenging problems by weighing different sources of information and

making judgments based on a preponderance of the evidence [46], [52].

21

1.4.9 K-nearest Neighbors

K-nearest neighbors (kNN) [53] is a traditional non-parametric supervised learn-

ing algorithm. It stores all available cases and classifies new ones based on a

similarity measure (e.g. distance function) calculated between feature vectors.

Classification is made by a majority vote of object’s k nearest neighbors, where

k is typically chosen to be a small positive integer (e.g. 3). For example, if k

is chosen to have a value 1, then object is assigned to the class of its nearest

neighbor. It has to be noted that if k is chosen to be considerably large, it will

result in additional classification time [46].

1.4.10 K-means

K-means [54] aims to partition n observations into k clusters in which each ob-

servation belongs to the cluster with the nearest mean which serves as the pro-

totype of the cluster. Given a set of data (x1, x2, . . . xn), where each data is a

d-dimensional real vector, K-means clustering [55] aims to partition the n obser-

vations into (k!=n) clusters C = C1, C2, . . . , Ck to minimize the within-cluster

sum of squares (WCSS) (sum of distance functions of each point in the cluster

to the K center). In other words, its objective is to find:

K∑
i=1

∑
x∈Ci

||x− Ci||2 (1.1)

1.4.11 K-medoids

K-medoids algorithm [56] shares the properties of the K-means algorithm. Instead

of calculating the mean of items within the cluster, a representative item or

22

medoid is selected from each cluster at each iteration. Medoids for each cluster

are calculated by finding object i within the cluster that minimizes the following

equation:

∑
j∈Ci

d(i, j) (1.2)

Where Ci is the cluster containing object i and d(i, j) is the distance between

objects i and j

1.4.12 Naive Bayes

Naive Bayes (NB) [57] is a supervised learning algorithm based on Bayesian

theorem with the “naive” assumption of independence between every pair of

features. Classification is made by combining prior probabilities and likelihood,

to form a posterior probability using the so-called Bayes’ rule.

P (Ck|x) =
P (Ck)P (x|Ck)∑k
i=1 P (x|Ci)P (Ci)

, P (Ck|x1, . . . , xn) (1.3)

Despite its simplicity, NB can often outperform more sophisticated classifi-

cation algorithms in both speed and accuracy [57]. Since it uses probability the

accuracy of classification is increased; however, it takes a longer time for classi-

fication as the training data increases. Also, NB is particularly suited when the

dimensionality of the input is high, and when the attributes are independent of

each other [46], [58] .

23

1.4.13 Decision tree

Decision tree (DT) is a supervised learning algorithm based on flowchart-like

structure in which internal nodes represent a “test” on an attribute (e.g. whether

a coin flip comes up heads or tails), each branch represents the outcome of the

test and each leaf node represents a class label. Decision is taken after computing

all attributes. The paths from root to leaf represent classification rules. The goal

is to create a model that predicts the value of a target variable by learning simple

decision rules inferred from the data features (i.e. attribute). DT is simple to

understand and to visualize, making its explanation for the resulting value easily

explainable by Boolean logic [46].

1.4.14 Support Vector Machine

Support vector machine (SVM) is a supervised learning algorithm based on the

concept of decision planes that define decision boundaries. An SVM constructs

the hyperplane, or a set of hyperplanes in a high-dimensional space, that separates

all data points of one class from those of the other class. The best hyperplane

for an SVM is the one with the largest margin between the two classes. It often

happens that classes can’t be linearly separated. For this reason, the original

finite-dimensional space can be mapped into a much higher-dimensional space,

using what is called the “kernel trick”, presumably making the separation easier

[46], [59] .

1.4.15 Random forest

Random forest (RF) is a supervised learning algorithm that is based on a collec-

tion (ensemble) of tree predictors, rather than a single classification tree, where

24

to grow each tree a random selection is made from the examples in the training

set. Each tree gives a classification and we say that the tree “votes” for that

class. The forest chooses the classification having the most votes (over all the

trees in the forest), with basic principle that a group of “weak learners” can come

together to form a “strong learner” [46].

1.4.16 Deep Learning

Deep learning (DL) is a branch of machine learning based on a set of algorithms.

Some of the most successful deep learning methods involve artificial neural net-

works, such as Deep Neural Networks (DNN), Convolutional Neural Networks

(CNN), Deep Belief Networks (DBN) and Stacked Auto Encoder (SAE) [60]. In

recent years, DL has gained popularity and it was applied to computer vision

[61], speech recognition [62], and natural language processing [63]. Studies show

that deep learning completely surpasses traditional methods in most areas. Sur-

prisingly, the error rate fell from 26% to 15% in ImageNet Challenge 2012 [64].

The most important advantage of deep learning is replacing handcrafted features

with efficient algorithms for unsupervised or semi-supervised feature learning and

hierarchical feature extraction; where auto encoder is a perfect example. It aims

to learn an efficient, compressed representation for a set of data [65]. The state-

of-the-art on machine learning breakthrough comes from deep learning which has

been predicted to cause a powerful improvement in artificial intelligence field.

Numerous complex applications have been accomplished by deep learning. One

of the distinguished applications is AlphaGo from Google that uses Convolutional

Neural Network. AlphaGo beat the Korean world champion in the “Go” game

recently by showing superman-like capabilities in remote machine learning. The

advancements on this learning algorithms may improve IDS ability to reach high

25

detection rate and low false alarm rate [66]. Deep learning methods such as deep

belief network, restricted Boltzmann machine, deep Boltzmann machine, deep

neural network, auto encoder, etc., are highly recommended for IDSs.

1.4.17 Overall Summary

26

Figure 1.6: Machine Learning Overall Summary

27

Chapter 2

Literature Review

Network security and consistency have taken a part of the research domain for

their necessity and importance. Different solutions, techniques, and propositions

have been presented and discussed for different purposes in the network domain

and others. We will discuss and comment on the literature in these domains

through the years, thus maintaining a solid information background on these

topics that would benefit our work.

2.1 SDN Security Overview

SDN is likely to replace current traditional networks with several innovative fea-

tures. However, SDN adoption is still hindered by many security-related concerns.

In this paper, we analyzed the security vulnerabilities, attacks and solutions of

the current SDN stage. SDN features expose the network to a number of new

attacks. Therefore, it is essential to make them more robust and secure to adapt

to the requirements of these networks. This leaves SDN open to research to meet

the security challenges. The research on SDN security is still in its early stages;

28

current proposals are typically attack-oriented, that is, they first recognize some

security threats and improve on the existing protocol or propose a new protocol

to impede such dangers. Because the solutions are intended explicitly for certain

attack scenarios, they work well in the presence of such attacks but may fail under

unanticipated attacks.

Although the amount of investment and research is increasing in the SDN

domain, the security community is slow in embracing and deploying the SDN

technology. It is hard to find studies that examine the practicability, feasibil-

ity, effectiveness and efficiency of network security applications based on SDN

technology.

Therefore, a more ambitious objective for SDN security is to develop a multi-

fence protection solution that is embedded into every element of the network,

resulting in depth security that deals with multiple lines of defense against both

known and unknown security threats.

2.2 SDN Security and vulnerabilities

SDN security is the main concern facing the future of SDN deployment. Re-

searchers such as [67, 68, 69, 70] focused on reviewing SDN security in terms of

network attack detection and defense, challenges and opportunities.

Tao discussed how the repositioning of the control plane as an external entity

in SDN would redefine the security weaknesses. Although they found similar

exposures in both architectures, yet they indicated that SDN cannot depend on

edge-based filtering to protect its control plane, which is the primary defense in

conventional networks. Their analysis was based on different network properties

such as basic forwarding, loop-free forwarding, link redundancy, device redun-

29

dancy and scalability. They discussed control functions, attacks and defenses

for both types of networks for these different properties. Their security analysis

suggests that a distributed SDN architecture that supports fault tolerance and

consistency checks is important for the SDN control plane security [71].

A security analysis of SDN was made including integrity challenges, weak-

nesses and vulnerabilities on plane-specific bases [72]. The research highlighted

the control plane, control channel, and data plane specific attack points. A review

on the proposed security models in an SDN environment was also discussed at dif-

ferent levels including Identification and authentication, state table management,

conflict resolution, use of TLS and Flow checking.

SDN security can be divided into different sections that include communica-

tion security and general vulnerabilities which are reviewed below.

2.2.1 SDN Communication Security

The communication channel between the controller and switches is supported over

a TCP connection that can optionally be secured by TLS with mutual authenti-

cation [73]. It is important to note that TLS encryption affects the performance

of the controller due to extra processing and delays. Based on the experiments

performed in [74], the authors deduced that a large delay is added by the switches

on the first packet-in message, where it differs from one vendor to another based

on CPU power.

Linyan et al. analyzed the trust boundaries between the different SDN layers

and endpoints i.e. terminal-switch, switch-switch, switch-controller and controller-

administrator [75]. They modeled and analyzed the layered SDN architecture

using attack trees and petri nets (AAMPA). The model divided the SDN ar-

chitecture into user access, data transmission, and control command distribu-

30

tion; it constructs the Petri net of each structure and the attack tree, and this

showed the possible vulnerabilities that may occur between Petri net locations

and transitions, which represent the vulnerabilities of different entities and their

corresponding connections in SDN.

Others have worked on a trust management framework for network applica-

tions within and SDN environment. The research focused on the authentication

and authorization of network applications that control network behavior (unlike

the traditional network where network devices like routers and switches are au-

tonomous and run proprietary software and protocols to control the network).

The paper proposed a mechanism to help the control layer authenticate network

applications and set authorization permissions that constrict manipulation of

network resources [76]. The main security weaknesses at the different levels are:

At the northbound communication level:

1. The weak authentication at this level may allow spoofing attacks and spoofed

northbound communications.

2. Incorrect authorization that may lead to malicious access on the applica-

tions.

At the southbound communication level:

1. The lack of encryption of traffic between switches and the controller may

cause eavesdropping and spoofing of southbound messages.

2. The weak authentication between the controller and switches may allow

spoofing and Man-In-The-Middle attacks, which allows the attacker to

eavesdrop and analyze traffic.

31

3. Incorrect authorization that may lead to unapproved access. For instance,

if a user demands a service that causes the controller to make a route and

cause packets to follow that route, it must be verified that the user is allowed

to do so.

4. The Southbound communication is vulnerable to attacks on flow rules es-

pecially in In-band placements.

2.2.2 SDN General Vulnerabilities

Originally, security gaps were found throughout traditional networks, and most

of them have not been resolved yet. As the SDN era began and the transition

process is on the correct path, some security issues have been solved, others have

been introduced, and the rest were inherited from traditional networks. Different

research works have been done on the security analysis of SDN including SDN

specific and non-specific vulnerabilities such as [77], which focused on the security

of stateful SDN data planes. Others, such as [78], took part of identifying the

general security issues that SDN is facing on the road of evolvement. The main

vulnerabilities of SDNs include:

Centralized control

The centralized control of SDN denotes a single point of failure and makes SDN

vulnerable to attacks and disruptions [79]. In fact, the centralization of man-

agement makes the controller an attractive target for an intruder. Anyone with

access to the controller is able to manipulate directly each flow and as such con-

trols the whole network. Also, if the controller is not available due to an attack

(e.g. DoS attack), or to a misconfiguration, switches become blocked since they

32

Table 2.1: SDN Security Issues At the Communication Level

Communication
Level

Malicious Behavior Reason

Northbound Spoofing attack Weak authentication
Malicious access on the applications Incorrect authoriza-

tion
Southbound Eavesdropping

Spoofing
Lack of encryption

Eavesdropping
Spoofing
Man-In-The-Middle attacks

Weak authentication

Unapproved access Incorrect authoriza-
tion

are only able to apply predefined rules and cannot handle correctly new packets

that do not match any existing flow entry. Being the focus of SDN security, a

solid solution is still being researched to protect the controller from such events.

Along side multiple backup controllers waiting as a last fallback in case of a major

breakdown.

Programmability

Since SDN networks are mainly programmable, they are vulnerable to targeted

attacks. A malware targeting specific network architectures, could compromise

the operation of the network devices by modifying their configurations, which

will have dramatic consequences on the network.

Open Source Standards

SDN is implemented through open standards such as OpenFlow, which has open

source implementations, and hence, attackers have the advantage of identifying

vulnerabilities.

33

Flow Table Security Risk

A flow table can be managed through the main controller and a Backup controller.

The latter should be subject to lower security levels, and therefore it is important

that the flow table entries remain consistent and protected from a malicious

update emanating from a compromised controller. Currently, OpenFlow does

not account for such consistency unlike FlowVisor [80].

Lack of Important Functionalities

Important security functionalities are not inherently defined within the SDN ar-

chitecture such as firewalls or Network Address Translation (NAT). In currently

operating networks, many of these functionalities are realized in the form of added

devices (middle boxes). However, the implementation of some functions is not

easy and has some limitations such as deep packet inspection in the OpenFlow

protocol.

Dynamic Reaction Design

As mentioned earlier, the data plane forwards incoming packets based on flow

rules in its flow tables. When it receives new packets with no defined flows, these

packets are forwarded to the controller that generates new forwarding rules to

deal with them dynamically and not pro-actively. An attacker could benefit from

this dynamic reaction design of the controller to get information about network

states.

Lack of TLS Requirement in OpenFlow

Current OpenFlow specifications (v1.5.0) propose that Transport Layer Security

(TLS) protocol may be established to secure communication channel between

34

switches and controllers. However, these specifications make TLS optional [81],

leaving an opportunity for adversaries to infiltrate OpenFlow networks.

Lisa et al. showed in [82] that the security benefits of SDN overweigh the

threats that are either SDN specific or inherited. They assessed and compared

information security of SDN and conventional networks with respect to the im-

pact on the network from the perspective of authenticity, integrity, confidentiality,

availability and consistency. Furthermore, they evaluated the information secu-

rity or network characteristics provided by SDN and conventional networks from

the perspective of network management, costs, and attack detection and preven-

tion. As a result of these performed evaluations, the authors concluded that SDN

is a step forward for network security since the advantages exceed the available

threats.

2.3 Attacks on SDN

The security Analysis section addresses the different type of security issues and

attacks that threaten SDN security and some related countermeasures. First,

we discuss attacks that physically affect the controllers and switches. Then, we

discuss the attacks that affect the different SDN planes, Application, Control,

and Data planes.

Tables 4 and 5 present a time-line based summary of the Main SDN Security

research, including both SDN solutions and attacks. Also, a general view of the

physical and plane based attacks is provided in tables 6.

35

2.3.1 Physical attacks

Universal Plug & Play (UPnP) security Drawback

The authors of [83] presented an SDN-based solution to overcome the vulnera-

bilities due to physical attacks. In particular, universal plug and play (UPnP)

plays a crucial role in connecting heterogeneous devices to enable information

exchange between them. UPnP has inherent security-related drawbacks because

it is operated using simple service discovery protocol and user datagram protocol

(UDP). UPnP is a protocol in which users can be automatically allocated an

address without network settings being inserted.

This study proposed a method of automatically detecting illegal traffic using

an SDN-based switch by inserting rules to prevent DDoS attacks in an UPnP

environment. Upon receiving an alert, the alert is matched for a specific attack

based on the alerts (rules) that have been matched previously.

Controller hijacking

The controller is prone to Controller Hijacking attack disturbing the overall se-

curity of SDN and leading to the compromise the entire network. An attacker

taking over the controller would have full control over SDN defined policies, and

could easily gather sensitive information such as communication data, passwords,

etc. This would allow the adversary to tamper with the data and redirect traffic.

In practice, controller hijacking is a result of malicious applications that leverage

the vulnerabilities of northbound API to take control of the network controller.

Hong et al. discussed an attack called host location hijacking, where the identity

of a target host is spoofed to hijack its location information inside OpenFlow

controllers [84].

36

Table 2.2: Main SDN Security Research Timeline Summary

Type 2009 2010 2011 2012 2013

Solutions [85]
Flow Visor
[24]

[86, 87, 88]
FlowChecker
[89]

[90] FortNox [91]
VeriFlow [92]
LiveSec
[93], [94]

POCO
[95]
NSV [96]
Fresco
[97]
Avant-
Guard

Attacks FortNox [91] [80],
[98, 99,
100, 101]

The Malicious Administrator Problem

A network administrator can mis-configure controllers, intentionally or not, and

ultimately damage forwarding, routing, or network availability.

2.3.2 Plane Based Attacks

Application Plane

The application plane in SDN is vulnerable to different types of attacks primarily

due to the lack of authentication and authorization. Since different modules and

applications are installed on the controller, with a different function assigned

to each, all applications are able to install flows into the switches without flow

authentication. Another problem is the absence of verifications or consistency

checks of the installed updates, which may lead to unwanted behavior that could

affect the security of the network. Moreover, no access control mechanisms are

installed on the controller to restrict the interaction between the applications or

prevent applications from accessing or altering the controller’s resources.

Another issue in the SDN Application layer is the lack of global standards

37

Table 2.3: Main SDN Security Research Timeline Summary (continued)

Type 2014 2015 2016 2017

SolutionsFlow [102]
Payless [103]
Rosemary [104]
DBA [105]
OrchSec [106]
FlowGuard
[107]
[105],
[108, 109, 110]
Firewell [111]

SPINX [112]
DaMask-D
[113]
IB-AKA [114]
Operetta [115]
Mynah [116]
BigTap [117]
EnforSDN
[118]
FlowMon [119]
CINDAM [120]
SDSNM [121]
SN-Security
DDoS De-
tection
[122, 123, 124]
[96], [113], [125,
126, 127, 128,
129, 130, 131,
132, 133, 134,
135, 136, 137,
138, 139, 140,
141, 142, 143]
OFX [144]

HoneyMix
[145]
BGPSEX [146]
SHIELD [147]
UNISAFE
[148]
CPP [149]
DDoS
Detection[150]
OpenSec [151]
NFG [152]
SD-anti-DDoS
[153]
DHC [154]
BroFlow [155]
CIPA [156]
HogMap [157]
PBS [3], [83],
[141], [158, 159,
160, 161, 162,
163, 164, 165]

DELTA [166]
DaaS [167]
SODM [143]
Distributed-
SOM [168]
SLICOTS [70]
WedgeTail [169]
[67], [141],
[170, 171, 172,
173, 174, 175]
Perm-Guard
[176]

Attacks [80], [109] [81], [84], [116],
[122], [177, 178,
179]

[75], [159],
[180], [181]

[182], [183]

38

or open specifications to facilitate open APIs for applications to control network

services and functions; this can pose serious security threats to network resources,

services, and functions.

Since SDN is an open project, different vendors and third-party applications

are developed in different environments and in different programing modules and

languages leading to interoperability issues and security policy collisions.

Control Plane

Spoofing Attack: OpenFlow networks are subject to spoofing [184], which is

not specific to SDNs, however, it can have a larger impact on it. For example,

the attacker could have control over the whole network by simply spoofing the

address of the controller. A spoofing attack on the controller could last for few

seconds just the time needed to program rules that are dedicated for malicious

purposes.

In the absence of TLS or switch authentication, a State-Spoofing attack is

possible where a compromised OF switch spoofs its state to the controller i.e.

statistics information, interfaces, and flow table. Furthermore, a compromised

switch can create virtual switches or links in the network and thus change the

topology view of the network at the controller, which can change the paths taken

to route traffic, create congestion or reserve bandwidth for the attacker himself

[109].

Man-in-the-middle Attack: The channel between the controller and the

switches is established over a TCP connection that is vulnerable. As indicated

by the OpenFlow specification, Transport Layer Security (TLS) with mutual au-

thentication can be used optionally to secure the communication. Hence, it is

39

possible for the controller and switches to communicate using plain text. TLS re-

quires mutually authenticated certificates signed by a private key corresponding

to a mutually trusted public key. However, TLS requires many steps to be config-

ured. Also, many switches and controllers lack the support of TLS. As such, TLS

is most of the times left off allowing adversaries to penetrate OpenFlow networks

and insert fraudulent rules or modify existing ones [99].

Brooks et al. aimed to exploit two SDN specific vulnerabilities; non-secure

communication channel between SDN switches and controller, and controlling

the network by compromising the controller [178]. They were successful in ex-

ploiting these vulnerabilities by performing MITM attack using ettercap through

ARP cache poisoning on the controller, traffic sniffing, and capturing the login

credentials of Open Daylight (ODL) web interface.

Denial-of-service attack: The authors of [185] indicated that a challenging

issue of SDN is the bigger potential of denial of service (DoS) attacks due to

centralized controllers and flow tables limitation. DoS attacks can target the

routing information and therefore disrupt the entire operation of SDN networks.

Basically, since the data plane is separated from the control plane, the data plane

will normally ask the control plane to find flow rules when the data plane gets new

packets. An attacker could specifically produce fake flow requests from the data

plane, which has two consequences: 1) it can make it difficult for the centralized

control plane to handle all requests (control plane resource consumption) and 2)

the crafted flow requests can yield too many unusable flow rules that need to be

stored by the data plane (data plane resource consumption) [186].

40

Data Plane

Scanning Attack: An adversary can remotely scan SDN networks by sending

probes to random IP addresses in the network. When a target replies, it can

then be identified or attacked. If no one responds, the probed IP addresses are

considered unused.

Fingerprint SDN networks: The authors of [98] proposed a method for an

attacker to identify whether or not a particular network is SDN. Almost all tra-

ditional networks have a pre-configured forwarding table and hence they do not

need extra time to process and generate a flow entry for a newly received packet.

In contrast, the SDN controller takes some time to create a new flow entry for a

new incoming packet. Based on this information, attackers can recognize whether

a network is SDN or not by testing the difference between the response times of

the first and subsequent packets.

A different approach was taken by the authors of [128] where active and

passive fingerprinting was performed through RTT and packet-pair dispersion

features to identify whether an interaction is occurring between a switch and a

controller. When a new packet arrives at an OF switch, a PacketIn message

is sent to the controller which installs the corresponding rules on the switches,

however, when a flow rule already exists, the packets are simply forwarded. The

delay that is added due to the communication with the controller is an evidence

of this interaction that is exploited by the authors. To measure the accuracy of

their procedure, they used the Equal Error Rate Metric (EER), which is the rate

at which False Match Rate (FMR) and False Non-Match Rate (FNR) are equal.

As EER decreases it can be clearly distinguished whether a rule installation has

been triggered or not. The packet-pair dispersion is a stable feature and is not

41

affected by changes in network configuration, whereas RRT leads to an increase

in EER when network size and configuration changes, if measured over a long

period of time.

Information Disclosure: An attack scenario is described in [184] where the

attacker derives information about active flow rules. This is achieved by timing

the TCP setup of two connection attempts. If the second connection attempt is

considerably faster than the first one, the attacker may conclude that a new flow

rule has just been installed and did not exist before the connection attempt. On

the contrary, if there is no substantial variance, then a flow rule existed previously.

Hence, the attacker exploits the flow aggregation to discover the content of flow

tables by observing differences in controller response times.

By injecting fake flow rules into switches via malicious applications on con-

trollers, hackers can bypass the firewall, and invade the network system. This is

called Dynamic Flow Tunneling.

Tampering Attacks: An important type of tampering attacks in SDN is Fraud

flow rules due to the lack of verification and consistency checks. A concrete exam-

ple of tampering is dynamic flow tunneling: an attacker might try to orchestrate

several rules, where no single flow violates any firewall rules but they can indeed

violate firewall rules in a collaborative way. The authors of [91] designed such an

attack and indicated that OpenFlow controller can generate optimal flow routing

rules from remote clients to virtually spawned computing resources.

TCP Level Attacks: Forwarding devices connect to the remote controller over

TCP. Consequently, an attacker could launch known TCP-level attacks to break

into the network. Regardless of the use of SSL over TCP, there are many TCP-

42

level attacks threatening the security of SDN. These attacks could be in the form

of ICMP attack, reset attack, SYN attack, sequence prediction attack and DoS

attack.

However, OpenFlow specification indicates the applicability of user datagram

protocol (UDP) with datagram transport layer security (DTLS), but there are

no full considerations of how it could be implemented and used[101].

Cache poisoning on flow tables and controller state: This type of attack

refers to unauthorized modification of rules in flow tables. Attackers can add

fraudulent flow rules that may cause network misbehavior. Hong presented an

attack of Fake LLDP Injection, in which an attacker produces forged LLDP

packets into an OpenFlow network to declare bogus internal links between two

switches. By observing the traffic from OpenFlow switches, the attacker can get

the real LLDP packet [84].

Lack of Authentication: Kang discovered a new SDN specific attack that

occurs due to the lack of authentication of the data plane [143]. Particularly, the

absence of data plane identifier (DPID) authentication causes network insecurity

and instability. The reaction against DPID duplicates is based on the implemen-

tation of the controller where some send packets to all switches that have the

same DPID while others replace an existing connection with another having the

same DPID.

A study was made of the vulnerabilities in ONOS, Floodlight and ODL through

developing a network topology sniffer masquerading itself as a load balancer by

leveraging the lack of authentication between controller and applications [180].

A malicious application modifies Floodlight PacketIn listener component to

make itself the first to receive PacketIn messages, removes the payload and passes

43

the message to the next interested application, which raises an exception once

no payload is found and thus the Floodlight controller disconnects itself from the

switch. In ONOS and ODL, the malicious application changes the parameters of

the properties/services configured for a certain target application thus disallowing

it to install flow rules on the switch, which leads to a PacketIn message generation

for every received packet thus overwhelming the controller.

Control Channel Hijacking: This occurs when a compromised OF switch

detaches itself from an authentic controller and attaches to a malicious one, and

through flow table modification, it redirects control channel traffic to this mali-

cious controller, which in itself spoofs messages to the honest controller [109].

Saturation Attack: The authors of [141] proposed an approach to defend

against switch saturation attacks. First, they added a miss-matched packet cache

module in the OpenFlow switch, which can temporarily cache the packets that

don’t match in the flow table. Then, they applied the mechanism of separating

the header and payload of packets in the cache queue once the switch detects

the volume of cache queue exceeding the threshold of the cache size. In addition,

the switch can classify the packets headers and send it in an alert message to the

SDN controller for further processing.

Freeloading: Park et al introduce a new SDN specific attack called Freeloading

where an attacker intercepts the traffic and spoofs its IP/MAC address to one of

the hosts of an already established communication link, sends malicious packets

and avoids detection by the controller by making use of existing flow rules [159].

44

Eavesdropping: Other work is addressing the issue of how to cope with eaves-

dropping attacks in the SDN data plane by using multiple routing paths to reduce

the severity of data leakage. While this existing approach appears to be consid-

erably effective, their analysis discussed that without a proper strategy of data

communication, it can still lead to total data exposure [182].

2.3.3 OpenFlow Security Problems

Several SDN security advantages are exploited in OpenFlow as the standard

implement the flow-based forwarding scheme and necessitate switches to collect

traffic statistics. However, the protocol presents several security concerns which

are examined in the following.

The lack of TLS adoption makes OpenFlow vulnerable to man-in-the-middle

attack whereby attackers can penetrate OpenFlow networks and remain unde-

tected. Once an attacker places a device between the controller and the switch to

capture OpenFlow traffic, he could insert fake additional rules into the switch or

modify the existing ones. The authors of [80] discussed the possibility for the con-

troller and OpenFlow switches to use plain text traffic. Even worse, if the traffic

is encrypted, the man-in-the-middle attack is still feasible between switches and

controller [99]. In this case, an attacker can intercept the traffic to compromise

the security and privacy of an SDN network. The threat of these types of attacks

is greatly worsened if a switch is left configured with a passive listening port.

In this mode, the switch will accept unauthenticated connections from any net-

work source and simply accepts all commands. This mode of operation is used

to write rules to switches and read information from them for easy debugging

purposes. However, it presents a main vulnerability since it has no integrated

authentication. The attacker can modify or delete flows without conducting the

45

Table 2.4: Security Threats in SDN Networks (1)

Targeted
Level

Threats type Caused by SDN
spe-
cific

Physical
attack

DDoS attack in
UpnP environment
[122]

Illegal traffic generating when con-
necting heterogeneous devices for
IoT services to enable information
exchange between them.

Yes

Control
plane

Controller hijacking
[84]

Malicious application leveraging
vulnerabilities of northbound API

Yes

Application
plane

Threats from appli-
cations

Lack of authentication and autho-
rization
Absence of verifications or consis-
tency checks of the installed up-
dates

Yes

Control
plane

Spoofing [184] Compromised switch due to ab-
sence of TLS or switch authentica-
tion

No

Control
plane

Man-in-the-middle
attack between con-
troller and switches
[80, 99, 178]

The communication channel is not
secured without TLS

No

Control
plane

Denial of service at-
tack to saturate flow
table [100, 186]

Centralized controllers
Flow tables limitation

Yes

Data
plane

Fingerprinting SDN
networks [98, 128]

Difference in time to process pack-
ets between traditional and SDN

Yes

Data
plane

Information disclo-
sure [184]

Difference in time to process pack-
ets which reveals information about
the content of flow rules.

Yes

46

Table 2.5: Security Threats in SDN Networks (2)

Targeted
Level

Threats type Caused by SDN
spe-
cific

Data
plane

Tampering attack us-
ing fraud flow rules
[91]

lack of verification and consistency
checks

Yes

Data
plane

ICMP attacks, re-
set attack, SYN at-
tacks, sequence pre-
diction attack and
DoS attacks.

Inheritance of TCP level attacks
from traditional networks.

No

Data
plane

Cache poisoning at-
tack against the flow
table and controller
state [84]

Inserting forged packets Yes

Data
plane

Control Channel hi-
jacking [109]

Compromised OF switch Yes

Data
plane

Freeloading [159] Spoofing IP/MAC address to one of
the hosts of an already established
communication link.

No

47

initial man-in-the-middle attack [99].

OpenFlow protocol is analyzed using the STRIDE [18] threat analysis method-

ology [187]. The authors successfully executed Information Disclosure and DoS

attacks.

On the other hand, although OpenFlow supports controller replication, the

standards do not specify where to replicate controllers or how to select the master

controller [81]. Without security standards for such replications, different security

issues would arise as a result of this process.

Also, there are no OpenFlow security applications that can manage, secure,

and authenticate the traffic between the controller and switches. Therefore, there

are no mechanisms to detect malicious or malformed packets exchange.

Finally, another shortcoming of OpenFlow is that it supports proactive in-

stead of reactive rule caching. Yet, the standard totally disregards how the

incoming packets should be dealt with when some of their headers are hidden

due to encryption.

The authors of [179] discussed the security, or rather lack of security, of the

current SDN topology discovery mechanism, and its vulnerability to link spoof-

ing attacks. While there is no official standard for the SDN topology discovery

mechanism, there is a de-facto standard, which is sometimes informally referred

to as Open Flow Discovery Protocol (OFDP). The basic security problem with

OFDP is the lack of authentication of LLDP control messages. Any LLDP packet

received by the controller is accepted and link information contained in it is used

to update the controller’s topology view. They presented and evaluated a flaw

based on HMAC authentication and proposed a solution by adding a crypto-

graphic Message Authentication Code (MAC) to each LLDP packet, providing

both authentication and packet integrity.

48

The authors of [183] investigated the vulnerability of link discovery service in

SDN controller. They also discussed the potential attacks on link discovery ser-

vice. They took into consideration both the service (LDS) and protocol (LLDP)

using Packet In and Packet Out. The vulnerabilities they tackled include fab-

ricated LLDP injection and LLDP replay. Also, they researched the proposed

defenses and tested them.

Another work on topology discovery and the associated security implications

in SDN is presented in [188]. The authors discussed the possible threats relevant

to each layer of the SDN architecture, and highlighted the role of the topology

discovery in the traditional network and SDN. Also, they presented a thematic

taxonomy of topology discovery in SDN, and provided insights into the potential

threats to the topology discovery along with its state-of-the-art solutions.

2.3.4 SDN Specific Security Challenges

We present in Table 7 our classification of SDN attacks and the corresponding

vulnerability exploited to realize it. A connection is drawn between the type

of attack and its categorization as SDN-specific (second column) or inherited.

We abbreviate the lack of TLS requirement in OpenFlow by L-TLS-RO. We

can see that SDN has brought new threats that were not present in traditional

networks. Moreover, the impact of threats that already existed may be higher

and consequently may need to be dealt with differently. Considering the vast

potential of security attacks identified in this Table, it is crucial to increase the

efforts in order to find prominent solutions to these threats. Also, there is a gap

between the challenges and the existing solutions. Research in SDN security has

been focused on using SDN features to enhance security of networks. Little work

has been carried out on exploring SDN security challenges and finding solutions to

49

Table 2.6: Classification of SDN Security Attacks

Security Attack SDN InheritedVulnerability exploited

Scanning X L-TLS-RO
Spoofing X L-TLS-RO
MITM X L-TLS-RO
Fingerprint X Dynamic reaction design
DoS X Centralized Controller

Flow tables limitation
Information Disclosure X Dynamic reaction design
Malicious Administrator X Auth.
Data Plane ID Duplication X Auth.
Control Channel Hijacking X Auth.
Freeloading X Auth. and Integrity
universal plug and play
(UPnP)

X Address allocation using
UDP and without auth.

Tampering (fake rules &
LLDP)

X Lack of Auth.

these threats. There is additional potential in this area to analyze SDN standards,

identify their flaws and correct their limitations. This needs to be applied between

the different SDN layers.

2.4 SDN security Solutions

Different SDN security reviews have been published aiming to shed light on the

amount of work done in this domain. Different security issues lead to different

solutions which we discuss next. Tables 8 and 9 provides a general summary of

the SDN security solution section.

Veena et al. analyzed security in SDN and included a comprehensive study

on different security architectures such as CloudWatcher, FRESCO, Procera,

FlowSec and others regarding used mechanisms, advantages and disadvantages

[189]. The SDN security solutions are divided between application, control, and

50

Figure 2.1: Research Projects Regarding SDN Security Solutions At Different
Layers/Interfaces

data layer solution, as shown in the figure.

2.4.1 Application Layer Solutions

There are different security applications that aim to handle access control and to

verify and debug SDN applications to stay consistent with updates and changes:

Payless [103], a low cost and efficient network statistics collection framework,

is a flexible and extendable monitoring framework for SDN. The efficiency of Pay-

less is due to its proposed scheduling algorithm for the collection of flow statistics.

The algorithm uses a variable frequency flow statistics collection technique that

maintains a low polling frequency for flows that do not have a high utilization

of the link and a high polling frequency for flows that have a high utilization

of the link. This approach maintains a balance between network overhead and

the accuracy of the collected network statistics. The results showed that the

algorithm achieved high statistics collection accuracy compared to the existing

applications and the resulting overhead was 50% of the periodic polling strategy

51

Table 2.7: Classification of The-State-of-The-Art Security Solutions on Different
SDN Layers/Interfaces (1)

layer/interface Technique Threats addressed

Application
layer

Payless [190] Unbalanced network overhead

Application
layer

FRESCO [97] Secure application development and inte-
grated structure of Detection and mitiga-
tion security modules

Application
layer

PemOf Policy enforcement of access control

Application
layer

VeriFlow [191] Verification of network-wide correctness
using forwarding graphs

Application
layer

The state-
less firewall
application
[126]

Enforcing ACl on Openflow enabled
switches

Application
layer

NIPS applica-
tion

Accommodate SDN to IPS/IDS applica-
tions

Application
layer

FlowGuard
[107]

Verification of Security Policy

Application
layer

PERM-
GUARD[176]

Flow rule production-permission authenti-
cation scheme

Application
layer

SD-Anti-DDoS
[153]

Act against DDoS attacks

Application
layer

Double hop-
ping comm.
(DHC) [192]

Solve the problem of sniffing attacks

Application
layer

BroFlow[155] Intrusion Detection and Prevention Sys-
tem based on Bro traffic analyzer and on
the global network view of the software-
defined networks (SDN)

Application
layer

[130] Anomaly detection through traffic analysis
Deep packet inspection for attack signa-
ture recognition.

Application
layer

CIPA[156] Intrusion detection solution

Application
layer

ReflectorNet Module for threat detection

Application
layer

OFX [144] Balance between performance and deploy-
ment of OF switches

Application
layer

SHIELD [147] Suspect malicious applications

52

Table 2.8: Classification of The-State-of-the-Art Security Solutions on Different
SDN Layers/Interfaces (2)

layer/interface Technique Threats addressed

Control Layer SE floodlight Implementing a North-bound API between
Application and data levels
Providing a Module for flow verification
Inserting security policies on Packet In and
Packet Out

Control Layer [122] Detect DDoS attacks based on the en-
tropy variation of the destination IP address
and probability calculation between differ-
ent hosts

Control Layer [123] Zombie hosts detection, by keeping ingress
port (source IP) mapping to detect spoofed
IP addresses.

Control Layer [150] Distributed DDoS detection
Control Layer [124] DoS attacks detection using packet sniffing
Control Layer [90] Spoofing prevention by validating the source

address of all arriving packets to the switch
Control Layer SPHINX [112] Security attack detection and prevention

module in SDN. It is based on mapping
(host: switch: port) in order to detect fake
edges and trusting only messages from the
controller to the switches.

Control Layer [193] Attack detection based on Graph model
Control Layer Flow [193] Verification of security policy
Control Layer [85, 129, 194,

195, 196]
DoS and DDoS attacks detected using flow-
based techniques

Control Layer Avant-Guard
(AG) [186]

The problem of DoS attack. It Integrates
connection migration to stop the threats of
the saturation attacks, and actuating trigger
that introduced condition-triggered statis-
tics information push capability in the SDN
switches.

Control Layer Rosemary
[104]

Malicious applications that corrupt the OF
controller

Control Layer OPERETTA,
[115]

Verification of legacy of a host

Control Layer Mynah con-
troller [116]

DPID problem mitigation

Control Layer [127] Provide trusted domain authentication be-
tween SDN controllers

53

Table 2.9: Classification of The-State-of-the-Art Security Solutions on Different
SDN Layers/Interfaces (3)

layer/interface Technique Threats addressed

Data Layer FortNox [91] The problem of rule conflict and provision-
ing of role-based authorization

Data Layer [108] detect malicious application activities that
are enforcing false rules into the switches

Data Layer Flow checker
[89]

Detection of inconsistencies in OpenFlow
flow rules within the switches of the SDN
network

Data Layer DaMask-D
[193]

Attack detection module based on anomaly
detection

Data Layer [158] Adaptive anomaly detection based on the
mechanism of flow counting to maintain the
balance between performance and efficient
detection.

Data Layer [93] Protection from scanning attacks
Data Layer [197] Scanning attacks identification
Data Layer [109] Control channel hijacking detection
Data Layer [198] Fingerprinting of SDN networks prevention
Data Layer FlowMon

[119]
Detection of compromised switches

Data Layer [159] A watermarking-based encoding technique
to mitigate Freeloading

54

that was being used.

FRESCO [97] is an OpenFlow security application development framework

with a primary target to facilitate the quick design and modular composition of

OpenFlow enabled security services. The motivation for its design comes from

the challenges in information deficiency, security service composition and threat

response translation. Its strength is due to its ability to reprogram the underly-

ing network infrastructure by efficient usage of OpenFlow to protect the network

from emerging attacks. FRESCO currently supports sixteen modules, which form

its basic processing units that can be joined together to form complex network

security applications in comparison to applications that support simple halting

or forwarding flows. It has a scripting API that allows application developers

to write intrusion monitoring and detection algorithms as libraries, which can be

joined with other modules to produce more complex and capable security applica-

tions. As a response to any intrusion detection, FRESCO based applications can

reconfigure the network switches by changing their flow tables rules. Different

applications, e.g. reflector net and cooperating with legacy security applications,

have been developed and tested by the authors using FRESCO which provided

promising results in terms of minimal overhead introduction when deployed in

real networks.

PermOF is a permission system that introduces 18 different permissions be-

longing to different categories to control the privileges of SDN applications. They

introduce an isolation mechanism by providing access control through a shim

layer and separating applications from the kernel of the controller to prevent

applications’ direct access to the resources of the controller (resource isolation).

Khurshid proposed VeriFlow, which is a layer between the controller and the

switch that checks network-wide correctness with low latency [92]. This layer

55

consists of a graph of the whole network, and as an update is inserted, it queries

the graph for inconsistencies. Although this scheme showed low delays and good

performance; however, traversing the whole graph each time introduces extra

processing delays.

Other general security measures would be securing the applications them-

selves, through defending them from outside attacks and unauthorized access in

addition to authenticating all connections with other applications. On the other

hand, since an SDN controller allows access from third party applications through

the REST interface, security measures and protocols should be established to dif-

ferentiate between third party and user applications in terms of access control,

resource sharing, and trust.

Similar to access control policies between applications, policies should be im-

plemented to monitor the privileges given to each application to alter the switches

data and install flows. Also, policies should control the application access to the

data received from the switches to the controller to specify which applications

can read this information.

Some projects have researched SDN from a firewall point of view. The firewall

rules are maintained in a table in memory at time of initialization. A stateless

firewall application [126], which is capable of enforcing ACL on OF switches,

captures the packets and compares the header of each packet against the rule

table and if a match is found, it stores the matching rule action and sends it to

the forwarding module, which uses PACKET OUT messages to allow or deny the

forwarding of the packets. Besides the stateless firewall, the authors implement a

stateful firewall which dynamically tracks the state of all valid TCP connections

and passes any derived connections.

In a different approach, the switches act as a firewall based on firewall rules

56

installed by the controller. They improve on distributed firewall approaches by

introducing the following two concepts: Selective Firewall Rule which removes

redundancy by installing firewall rules for a directly connected host, and Reverse

Flow rules on the source and destination such that when a traffic is dropped

from a certain source to a destination, it is useless for that destination to send

any traffic to a source which cannot respond, hence similar firewall rule is also

installed on switches connected to the destination [139].

The authors pinpoint that the separation between data and control planes

through SDN becomes inefficient in IPS/IDS applications because only packet

header information can be sent to the control plane whereas IDS and IPS require

the whole packet for analysis. They have designed a NIPS application that is

the combination of three modules, Forwarding, Packet Inspection and Packet

Handler. When a new packet arrives, the forwarding module captures it, creates

flow rules and installs them on the switch to forward the traffic (whole packets

and not only header) through a second dedicated network interface to the NIPS

application. The NIPS application obtains the packets, analyzes and detects any

maliciousness. If there is a match, an alert is raised and sent to the host, and if

no match occurs the packets are returned to the network via the dedicated second

network interface.

Seeber et al. created an IDS that has low false positive rate and correct

flow rules installations to countermeasure malicious traffic [199]. Based on the

user required flow rules, the SDN switches act as lightweight IDS systems by

collecting traffic information and reporting it to the controller. The latter uses

a white list, a black list, and a geolocation database, to compute a score called

CVSS indicating the probability of malicious traffic and accordingly updates the

flow rules. To protect users’ privacy, suspicious traffic is forwarded to the user for

57

further analysis and the results dictate the update of the switches flow rules. For

example, malicious traffic such as DDoS is redirected to a DDoS washing machine

that can handle large data. Another approach is proposed in [200] where self-

organized maps of Neural Networks classification method are used, which depend

on 11 features extracted from the statistics of the flows that are collected from

the OVS switches. A third approach on IDS was the work of Nguyen in [201],

which proposed an anomaly-based Intrusion Detection architecture integrated as

an OpenFlow switch.

The authors of [167] introduced detection as a service (DaaS), benefiting from

network function virtualization (NFV) and cloud computing. They worked on

two approaches to implement their architecture. The first (or any consequent)

packet that arrives to a switch would be mirrored into a clustering system and

will be forwarded normally towards the destination. The mirrored packet will be

forwarded for analysis to a corresponding DaaS node, which decides whether the

traffic is malicious or normal. If it tags the traffic as malicious, it will inform

the SDN application running on top of SDN controller that the flow should be

blocked. The two approaches differ in the cluster processing where the second

one is distributed to multiple components for load balancing. Another cloud

based solution for DDoS detection is [202], which discussed both auto correlation

and alert generation methods. In addition to a countermeasure based on a se-

lection mechanism which is built on analytical models and reconfigurable virtual

network-based countermeasures.

The authors of [143] discussed the importance of SDN in network security as

it brings new opportunities to defeat DDoS attacks in cloud computing environ-

ments. They reviewed the DDoS attacks on SDN and the various methods to

guard against them. The research focused of the different types of DDoS attacks:

58

Application, control, and infrastructure layers.

The authors of [203] proposed a solution to overcome the limitations of ro-

bust firewalls since in OpenFlow-based networks, the network states and traffic

frequently change. They introduce FLOWGUARD, a comprehensive framework

that checks network flow path spaces to detect firewall policy violations when

network states are updated. The firewall checks violations at the ingress switch

of each flow, it also tracks the flow path and then clearly identify both the origi-

nal source and final destination of each flow in the network. The authors of [176]

proposed a solution to manage and authenticate flow rules between the appli-

cation layer and the control layer. They presented PERM-GUARD, a flow rule

production-permission authentication scheme that introduces an identity-based

signature scheme to ensure that the controller can verify the validity of flow

rules. Their technique was possible by enabling each application to digitally sign

its flows, and an application on the controller can validate each flow.

The authors of [153] proposed SD-Anti-DDoS, a mechanism consisting of four

modules, attack detection, attack trigger, attack trace back and attack mitigation.

The attack trigger is used to quickly act against DDoS attacks and reduce the

overload on the controller and switches. The DDoS attack detection method is

based on Back Propagation neural network that extracts features from packet

flows, while the trace back modules aims to find the path taken by the attack

through querying the switches over the whole topology. Furthermore, the attack

mitigation includes attack blocking through inserting blocking rules with high

priority on the source switch to stop the attack traffic. Another DDoS mitigation

approach is [204], which proposed SDN One-packet DDoS Mitigation (SODM)

scheme with an OpenFlow switch functioning as a gateway to protect the inner

server infrastructure. This mechanism is an anomaly mitigation method that

59

analyzes traffic statistics over a given observation duration to retrieve attack

indicators. SODM checks if there is DDoS attack among a bundle of incoming

flows.

The authors of [154] presented an SDN-based double hopping communication

(DHC) approach to solve the problem of sniffing attacks. In this technique, the

packets as well as the routing paths are changed dynamically. The traffic will be

distributed to multiple flows and transmitted over different paths, and moreover,

the data from multiple users is mixed. Although controller bottlenecks can occur

in large scale networks, but it makes it difficult for attackers to obtain and recover

the communication data.

The authors of [155] indicated that internal users in any network are the main

causes of anomalous and suspicious behaviors that lead to network outages or

leakage of sensitive information. The proposed BroFlow, an Intrusion Detection

and Prevention System, is based on Bro traffic analyzer and on the global network

view of software-defined networks:

1. Dynamic resource provisioning and traffic analysis mechanisms.

2. Real-time detection of DoS attacks through simple algorithms implemented

in a policy language on top of the SDN controller.

3. Immediate reaction to DoS attacks, dropping malicious flows close of their

sources.

4. One drawback is the lack of consideration for the switches rules establish-

ment in the detection mechanism.

The authors in [130] presented an approach that integrates distributed net-

work traffic Monitors and Attack Correlators supported by Open Virtual Switches

60

(OVS). These Monitors perform anomaly detection through traffic analysis, while

the Correlators perform deep packet inspection for attack signature recognition.

They both take advantage of the topology overview and information availability

on both the data and control planes in SDN. These modules concentrate on net-

work flooding attack signatures such as the TCP flood attack. Other work on

handling flooding attacks is Distributed-SOM in [205], a bottleneck handler in

large scale SDN networks. The approach integrates Distributed Self-Organizing

Map (DSOM) system to OpenFlow Switches instead of using a standalone SOM.

The authors of [156] proposed CIPA, an intrusion detection solution which

is deployed as a virtual network of an artificial neural net over the substrate of

networks. Using low computational power, each programmable switch virtualizes

one to several neurons. The whole neural net functions like an integrated IDS /

IPS. This allows CIPA to detect distributed attacks on a global view. The same

technique was tested over OpenFlow based SDN switches to create a complete

neural network for intrusion detection and it was tested with different types of

attacks

The authors of [111] presented a firewall detection and prevention technique

FireWell, which is integrated as a module on top of an SDN controller, and

it models firewall policies as formal predicates to validate, detect and prevent

conflicts in firewall policies.

A ReflectorNet Module consists of two modules: Threat detection and For-

warding module. Reflector Module captures any newly arriving packets at the

switch and sends the packet for analysis to the threat detection module which is

a blacklist-based detector. When no threat is detected, the forwarding module

generates rules to allow the forwarding of the flow to the target host. However,

if a threat is detected, the forwarding module changes the source-to-destination

61

and destination-to-source flows to redirect the traffic to the honeynet [97].

To detect network anomalies, the authors have implemented an anomaly de-

tection module; it contains a thread that periodically requests network statistics

information from the switches and analyzes them using a detection algorithm to

raise alerts if any anomaly is detected. The scan detector algorithm is based on

an anomaly score algorithm which computes the anomaly score for each destina-

tion host whereas the DDoS algorithm keeps track of the number of packets and

bytes to calculate the packet and byte rates from the collected data and compares

them to a predefined threshold [206].

Current security functionalities in SDN networks suffer from performance is-

sues either due to their implementation on the controller, which adds latency, or

due to deployment issues on the switches, which requires redesign of the switches.

OFX, proposed in [113], is an OF extension that implements the security func-

tions as software by balancing between performance and deployment. An OFX

enabled controller application can dynamically install the security functions as

modules on the OFX software agents running on current SDN switches. But the

CPU usage of switches didn’t perform any better when under flood of pings.

An SDN security architecture was designed based on implementing policy-

based security applications on the controller side and the use of security agents

to enforce these policies in the switches in the data plane [164]. The approach

extended the OpenFlow protocol to enable the communication of the security

policies between the security applications at the controller.

A list of critical APIs was constructed in [147] that allows us to suspect

whether an application is malicious or not. To determine the maliciousness, they

analyze the order by which these APIs are called by the application. SHIELD

consists of:

62

1. Source Code Tracer that analyzes the source code of the application and

generates the control-flow graph (CFG).

2. Control Flow Analyzer that parses every node of CGI, sorts API calls, finds

the critical sequences (flows) based on the list of critical APIs, and stores

them in the SHIELD database.

3. Result Manager that generates the behavior graph based on the critical

flows stored in the database.

2.4.2 Control Layer Solutions

Securing the control plane starts by guarding against malicious or faulty apps.

Enhanced (SE floodlight) was implemented to secure the control layer. It imple-

ments a North-bound API between Application and data levels, provides a mod-

ule for flow verification, and inserts security policies on Packet In and Packet Out.

An effective security approach would implement a security monitoring appli-

cation that tracks security related events, and making them available to other

security modules to analyze them and take action accordingly. This approach

divides the security load among the controller applications and minimizes the

overhead by minimizing the number of applications that capture or request spe-

cific types of traffic. This provides a single security related database available to

different applications.

SLICOTS is proposed to mitigate TCP SYN flooding or what is known as

control plane saturation attack. SLICOTS takes advantage of the dynamic pro-

grammability nature of SDN to detect and prevent attacks. It is implemented on

the controller; it surveils ongoing TCP connection requests, and blocks malicious

hosts. Upon receiving a new TCP packet, it first checks the type of the packet;

63

if the packet is SYN, it extracts required information (source MAC, destination

MAC, source TCP port, and destination TCP port). This information is used

to track and analyze incoming TCP connections regardless of the source IP to

prevent IP spoofing. Nevertheless, SLICOTS is not applicable to networks in

which the SDN controller installs forwarding rules proactively. Moreover, SLI-

COTS does not consider flow rule aggregation and installs two paths between

the client and server for each individual TCP session, i.e., one for forward path

and the other for backward path.

Xiaofeng et al. presented a security controller-based software defined security

architecture in which a modularized security controller is placed in the control

plane and interacts with other components through APIs [170]. The security con-

troller completes the control function for security services together with the SDN

controller. The architecture is based on security information collection, security

policy resolution, security device management, security resource scheduling, ser-

vice chaining and others. The module was tested for these services under different

security situations.

Figure 5 summarizes the different DDoS detection and mitigation solution at

different SDN planes.

2.4.3 Hybrid Controller Architecture Solutions

Two general types of controllers exist: Proactive controllers which set rules before

the flow arrives and Reactive controllers which set the rules after the flow arrives.

Statistics show that DoS and DDoS attacks are the most used attacks to

easily strike active servers, and researches have shown that the SDN controller

is a perfect target for these types of attack and with drastic impact. Since an

SDN network cannot tolerate the failure of the controller, many researchers have

64

Figure 2.2: SDN Based DDoS Detection and Mitigation Solutions

65

designed different solutions to prevent DoS and DDoS attacks and mitigate their

effects.

Mohammad Mousavi at al. showed in [122] how DDoS attacks can exhaust

controller resources and provided a solution to detect such attacks based on the

entropy variation of the destination IP and probability calculation between dif-

ferent hosts. The approach assumed that all hosts in the network have relatively

equal traffic rates, and the solution was based on forwarding all traffic to the

controller for analysis. This introduces additional overhead on the controller and

hence makes it more vulnerable to future DoS attacks especially that no preven-

tion technique was proposed.

Hyo-Bin Bae et al. proposed in [123] a model for detecting zombie hosts used

for launching the DDoS attacks, by keeping ingress port (source IP) mapping to

detect spoofed IP addresses. Again, this approach is based on redirecting the

traffic to the controller to calculate the occurrence frequency of each packet, and

only targeting a small angle of such attacks.

Kostas Giotis et al. investigated in [150] the applicability of inserting an Open-

Flow middlebox to detect distributed DDoS attacks. The approach proposed a

module for flow-based monitoring statistics, harvested from the edge router and

a second module that analyzes the dataset, searching for abnormal traffic pat-

terns. As discussed before, neither redirecting all the traffic to the controller nor

depending on middleboxes alone is efficient enough to secure the network.

Attack mitigation is concerned with minimizing the impact of an attack rather

that preventing it completely. Sandeep Singh et al. proposed in [124] a packet

sniffing scenario to detect specific types of DoS attacks. The mitigation is based

on buffering the extra requests so the server is not overloaded, and if high traffic

still exists, the source IP is blocked. However, this approach inserts network

66

delays and doesn’t hold as a solution in case of IP spoofing.

The authors of [90] proposed a design to prevent users spoofing and to validate

the source address of all arriving packets to the switch. When an incoming packet

does not match any rule, it is forwarded to the controller to validate whether or

not that source address matches a valid flow. A rule is created to stop the traffic

if spoofing is identified.

S. Lim et al. proposed in [194] a detection tool based on analyzing request

traffic at the server and triggering a redirect order to another server when an

attack is detected. The redirect alert forces the server to change a specific service

to a different IP address and notifies the connected hosts. Such a tool will only

delay the attack and mitigate its effect, in addition to redirecting the packets to

the controller to keep track of the requests.

Sungheon Lim et al. suggested in [125] a scheme for modifying the controller

model such that the single request processing queue at the controller is subdivided

into k queues, each of which corresponds to a single switch. Then, the controller

serves these queues with a scheduling order. Here, the suggested scheme aims to

limit the effect of DDoS attacks by inserting a delay to the requests.

Attack prevention is a very interesting and useful feature in security, whereby

not only the attack effects are mitigated but also attacks are prevented from

taking place in the first place. Mohan Dhawan et al. proposed in [112] SPHINX,

a security attack detection and prevention module in SDN. It is based on mapping

(host: switch: port) in order to detect fake edges and trusting only massages

from the controller to the switches. Also, the number of packets/flows should be

consistent through a specific path. The number of packet flows/sec should not

exceed the normal limit of the network by more than a threshold. Although the

proposed scheme was secure enough, yet the prevention mechanism, which was

67

based on blocking the source IP, was not implemented and the detection still uses

the normal control plane.

Bing Wang et al. proposed in [193] an attack detection system that stores

known traffic patterns as a relational graph between patterns and their labels to

distinguish between normal and abnormal traffic. The prevention technique was

based on blocking the source IP of the attack. This model followed the same

strategy of sending all packets to the controller via a path based on the graph

model.

K. Giotis et al. proposed in [102] Flow, a technique to analyze flow statistics

in order to reveal anomalies triggered by large scale malicious events such DoS

attacks. The proposed module acts in three stages: data collection, anomaly

detection, and anomaly mitigation. The module is still based on forwarding all

traffic to the controller.

DoS and DDoS attacks are mostly detected using flow-based techniques [85],

[129], [194], [195], [196]. These techniques are based on extracting some traffic

flow features and analyzing them. The variation is in the number and type of

features chosen in the analysis. They use Self Organizing Maps (SOM) to catego-

rize the traffic as normal or malicious. However, detection tools installed on the

controller without proper collection of network traffic could overload the commu-

nication between the data and control planes. In [129], a hybrid of hard threshold

and Sugeno-type Fuzzy Inference system is used. Other possible countermeasures

propose redundancy to guard against DoS attacks. In [94], the authors discussed

the number and placement of redundant controllers. Their technique reduces the

timeout of flow table entries and drops infected packets. In [87], the authors

proposed a scheme that examines the traffic frequency; the controller recognizes

a DDoS attack if the frequency exceeds a specific threshold, and thus begins

68

dropping packets. In [149], Controller Protection Protocol (CPP) was proposed

to solve the imbalance of work between a host (simple packet transmission) and

controller (route calculation, flow rule insertion, processing. . .) that is leveraged

by attackers to perform DoS attacks. They introduce a pseudo-random proof-

of-work (POW) that must be computed by the host, sent with the first packet,

and verified by the controller to prevent the drop of traffic, thus increasing the

computational cost at the attacker, which makes DoS attacks computationally

expensive. Only few researchers took the work a step further to trace back the

attack to the original switch and proposed techniques to prevent the attack from

that source, hence minimizing the number of rule insertions into the network

switches. An example of such work is found in [131], which is a non SDN specific

puzzle based scheme that verifies the requester and identifies the true IP of the

source.

Avant-Guard (AG) [186] integrates connection migration to stop the threats

of the saturation attacks, and an actuating trigger that introduces into the SDN

switches the push capability of condition-triggered statistics information. Due to

the high OF messages that are exchanged between the data and control planes,

the control plane can be exploited by performing DDoS and scanner attacks. This

is possible because an external input stream is the one that initiates interaction

between the data and control planes, and hence an attacker may exploit this

situation by producing many new unique flow requests to quickly overwhelm the

control plane. To solve this problem, connection mitigation is introduced, which

is an extension of the OF data plane. Enabling the control plane to quickly de-

tect and respond to changing flow dynamics within the data plane is the second

challenge. So far, OF only allows applications to pull or poll statistics informa-

tion from every switch, which is not enough for monitoring applications that need

69

switch statistics to track, detect and respond to malicious attempts. Actuating

Trigger is added to the existing data plane services to address this challenge. The

control plane adds triggers into the data plane to register asynchronous call backs

and to insert conditional flow rules, which are activated when a trigger condition

is satisfied. Avant Guard’s actuating trigger module allows the delivery of packet

payload to the control plane. This is possible through its ability of defining con-

ditions that involve header fields that it suspects and wants to investigate; these

are passed from the control plane to the switch. The switch reports all condition

matching packets to the Avant-Guard application. This was not possible in the

absence of this application because the data plane sends only network header

information to the control plane.

Rosemary [104] is a new NOS that creates an independent sandbox for each

application. Its aim is to prevent applications from performing malicious op-

erations that can corrupt the OF controller as is the case in many controllers.

Rosemary introduces the idea of micro-NOS, where each application is devel-

oped within an independent instance, where it is monitored and controlled with

resource utilization controls. The authors evaluated the absence of currently ex-

isting controllers’ robustness and security by using an application that silently

crashes the controller through an exit function, an application that leads to out of

memory error and an application that changes the internal data structures of the

controller instance. To mitigate these types of attacks, Rosemary’s architecture is

based on separation of applications from the NOS kernel, compartmentalization

of the NOS kernel modules, control of resource utilization by applications, access

control and authentication, monitoring the NOS, safely restarting the NOS and

performance considerations.

The authors of [137] proposed an adaptive technique to balance between com-

70

plexity of detection policies and monitoring overhead of the controller. They de-

fined a flow counting range that is based on a linear prediction formula. They

capture aggregates based on IP prefix, and then for each aggregate, they calculate

the flow counting value and check if it lies within the prediction range. If it is

less than the range, then they decrease the collection interval based on a header

space divider. If it is greater, then they decrease the number of samples collected

to reduce the monitoring overhead by ignoring less important entries. However,

they did not clearly define the header space divider and sampling rate.

Kim et al. described a framework to secure network resources through SDN-

based security services using Network Security Functions (I2NSF) with the aims

of providing fast reaction to new attacks, autonomous defense from network at-

tacks and network-load aware resource allocation [206]. They introduced a Se-

curity Controller that has an interface, called Capability Interface, (i.e. YANG)

within the SDN application layer to call the functions of security applications,

and another interface, called Service Layer Interface, (i.e. REST CONF) with

Clients & Application Gateways Layer (lying above Security Controller) to de-

fine high level security policies. They present the centralized firewall system and

the centralized DDoS-attack mitigation system that is based on their framework,

since traditional systems suffer from lack of flexibility and administration costs

and hence arises difficulties in autonomous operation, management and fast con-

figuration. However, the proposed framework has not been implemented yet and

the details of the algorithms were not provided.

In OPERETTA [115], the controller verifies whether a certain host is legiti-

mate or not. When a host wants to establish a TCP connection, it sends a SYN

packet. If a rule for that particular user does not exist in the SDN switch, it is

forwarded to the controller, which replies with a SYN-ACK and expect an ACK

71

from the source. If an ACK is received, a RST message is sent by the controller

and flow rules are installed on the switches, hence allowing a user to recover a

TCP connection by re-performing the TCP Three-Way handshake but now with

the destination. However, if the ACK is not received and the SYN packets are

sent multiple times exceeding a well-chosen counter threshold (tradeoff between

efficiency and performance), the MAC is blacklisted for a certain time interval

by deploying rules on the switches that drop any SYN packet received from the

matching blacklisted host. However, if MAC is spoofed along the IP address,

the algorithm will fail because it uses a counter of the number of SYN pack-

ets received from a certain MAC address and hence blocks it when it exceeds

a threshold. OPERETTA performs poorly when there are no ongoing attacks

compared to current controls with no SYN-Flooding mitigation (900% increase

in delay).

To mitigate the DPID problem, the Mynah controller was developed in [116]

and it consists of: Extended Vendor OF Library, Encryption modules to encrypt

and decrypt using public or symmetric algorithms, Mynah Controller module

and Mynah Switch Module. To perform data plane authentication and prevent

MITM and DoS attacks, they extended the switch-to-controller Echo Request

message to contain a session key that includes switch DPID, a timestamp and a

sequence number. Mynah handles DPID duplication by adding a modifier to the

same DPIDs to distinguish them from one another and maintain uniqueness. As

for preventing DPIDs, if a session key fails to pass validation, the correspond-

ing connection is rejected. However, if it is valid and another DPID is already

registered in the controller, then this connection is rejected. To handle DPID

duplication, apps using DPID should be aware of the changed notation in the

DPIDs.

72

Zhou et al. implemented in [127] a new protocol to provide trusted domain

authentication among SDN controllers through extending the controller with

Trusted Measurement Module (TMM) and Controller Communication Module

(CMM). Eight messages are exchanged between the two controllers to authenti-

cate them through controller platform certification and controller software certi-

fication. However, it is not clear how certain parameters are exchanged.

ATTAIN is an attack injection framework for OpenFlow -based SDN archi-

tectures [181]. ATTAIN consists of an attack model, an attack language, and

an attack injector. The attack model is defined for relating system components

to an attacker’s presumed capabilities to disrupt the control plane state. The

attack language is defined for writing control plane attacks, subject to the attack

model. The attacks are modeled in stages, called attack states, and represented

graphically. Each state consists of a set of rules governing conditions under which

actions are taken in an attack. Both the attack model and language are imple-

mented using an attack injector, which interposes OpenFlow control protocol

messages in the network’s control plane to affect attacks and allow practition-

ers to understand how such attacks manifest in controller, switch, and end host

behavior.

The authors of [207] introduces a new approach to identify attacks on SDNs

that uses: 1) similarity with existing attacks that target traditional networks,

2) an inference mechanism to avoid false positives and negatives during the pre-

diction process, and 3) a packet aggregation technique which aims at creating

attack signatures and use them to predict attacks on SDNs. Their approach used

regular labeled flows to analyze different samples of incoming OpenFlow -based

flows that are generated by SDNs.

DELTA is a security Assessment framework for SDN [166]. It focuses on au-

73

tomating and standardizing the vulnerability identification process in SDNs. The

authors developed a security assessment framework, DELTA, that re-instantiates

published SDN attacks in diverse test environments. Then, they enhanced their

tool with a protocol-aware fuzzing module to automatically discover new vul-

nerabilities. Their evaluation successfully reproduced 20 known attack scenarios

across diverse SDN controller environments and discovered seven novel SDN ap-

plication mislead attacks.

2.4.4 Data Layer Solutions

FortNox [91] is a security enforcement kernel which is an extension of the NOX

OF controller providing role-based authorization and security constraint enforce-

ment. It has a live rule conflict detection engine, which intervenes with any OF

rule insertion request and analyzes the conflict before enforcing it. The rule con-

flict analysis is performed by an Alias Set Rule Reduction algorithm that can

detect rule contradictions even if the set action, which can rewrite a packets

header, is used. The authorization of an OF application is determined by the

role-based authentication and to ensure the integrity of the mediation process,

it uses the principle of least privilege. To resolve rule conflicts, every applica-

tion signs its flow rule insertion request by using digital signatures representing

its authorization role. When a conflict is detected, FortNOX decides to accept

or reject the new rule based on the authorization level (administrator, security

application or non-security application) of the new rule. The results of the ex-

periments performed by the authors show that the conflict evaluation overhead

is in the worst case linear with respect to the number of rules.

To mitigate fake rule injection, FortNox [91] prevents dynamic flow tunneling

by comparing the newly inserted candidate flow rule and the existing one to detect

74

conflict between them. The rules are converted into a representation called alias

reduction rules (ARR) and the analysis for conflict is performed on these ARRs.

After obtaining the alias set rules, validity checks are performed between the

candidate ARR cRule and the active flow ARR fRule.

For dynamic flow detection, the authors in [108] proposed the creation of an

adjacency matrix according to the topology of the network, hence containing the

connections that are available between any two nodes in the network. To detect

malicious application activities that are enforcing false rules into the switches,

the authors have developed an algorithm that checks if the information saved in

the adjacency matrix matches the policies of the firewall. If there is a match, then

there is no malicious activity, however if there is no exact match, then an attack

alert is raised. The authors do not mention the location where the adjacency

matrix is stored, which cannot be on the controller because it is assumed to be

running a malicious application that modifies switch flow rules. Additionally, the

size of the adjacency matrix increases in the order of O(n2) as the number of

nodes in the network increases thus adding delays and degrading performance.

FlowChecker [89] is a configuration verification tool that aims to detect and

identify inconsistencies in OpenFlow flow rules within the switches of the SDN

network. FlowChecker can function as an OpenFlow application or a standalone

master controller in order to analyze, validate, and enforce OpenFlow end-to-end

policies at run-time.

In [208], a framework is presented to enhance security in SDN datacenters

through the integration of security middle boxes such as IPS of FW to block

attackers. The authors depended on third party security agents known as middle

boxes to inject into the controller relevant security analyses of the network to

enable taking different security measures. This method showed good security

75

results, however, it has been proven to underperform when dealing with delay

sensitive issues.

DaMask-D is an attack detection module based on anomaly detection, which

has graphical probabilistic inference model as its core. The detection uses this

graph system to differentiate between malicious and normal traffic. What makes

DaMask-D an advanced anomaly detector compared to existing systems is the

presence of automatic feature selection that allows the data to decide the relevant

features based on a large set of candidates and efficient model update, which

copes with the problem of dataset shifting. When a packet arrives at a switch,

it is checked to which virtual network it belongs to. If it is an existing flow,

the flow statistics is updated. If it is a new packet, then PACKET IN message

is sent to the corresponding controller, which generates a new flow rule and

sends the flow statistics information to the anomaly detection module for further

processing and analysis. If DaMask-D detects the packet as malicious, an alert is

generated signifying a DDoS attack and is sent with necessary packet information

to the reaction module for DDoS protection rule generation. DaMask-M is an

attack reaction system that consists of a mapping table matching alerts with

corresponding countermeasure to be taken. It provides an API that allows the

application users to define their own countermeasures to different DDoS attacks.

The three operations that are supported for defense are drop, modify and forward.

Once the mapping between the attack and the corresponding countermeasure

is done, the controller generates policies according to that decision, which are

accordingly enforced on the switches to mitigate the DDoS attack. The flow table

in a network entity has limitations. The authors of [186] described a mechanism

where some minimal intelligence is added to the data plane devices to resolve

DDOS issues.

76

Furukawa et al. proposed a new SDN architecture to prevent MITM attacks

by implementing a new address translation method that does not require end-

host security procedures and does not notify the receiving host of the address

information of the sending host. The new architecture proposes a change in SDN

switches by adding security related functions such as fragmentation, duplication

and shuffling, and an application that allows the users to choose these param-

eters to control the level of security that they require. The address translation

method, based on shared key negotiation, allows the SDN switches to shuffle and

fragment the encrypted packets and transmits them on different routes to prevent

eavesdroppers from collecting the data and reassembling them [136].

A virtual SDN network is modeled as a graph in [209], where the nodes are the

components and edges represent data flows. They presented two functions where

the first provides the risk level of the component, while the second represents the

level of support of confidentiality, integrity and availability. A system is called

secure when there are no interactions among nodes that have high risk and nodes

that have low level of security (confidentiality, integrity and availability), else the

need of an interface called SecS (Security Server) is required. But they did not

indicate how to calculate these functions.

A method to detect disobedient forwarding in the flow table by compromising

a switch was designed in [210]. To enhance detection efficiency and minimize

additional network traffic, the authors reduced the number of necessary detection

packets by aggregating the flow entries. This method selects the flow entries

whose match fields can compose a valid packet from multiple switches. The

switches, on which the entries are, form a path that allows the packet to travel

through for rapid detection.

Garg proposed an adaptive anomaly detector that is based on the mechanism

77

of flow counting by maintaining balance between performance and efficient de-

tection. The traffic obtained from the network is initially aggregated based on

network prefix, and then divided into smaller chunks based on network require-

ments. A linear prediction formula is then used to calculate the prediction value

of the aggregates (i.e. based on packet size). For incoming traffic, the aggre-

gate value is calculated and compared with the predicted value, if it is greater

than the predicted value, then more aggregates are needed with smaller chunks

to be calculated to detect anomalies correctly. However, if it is less than the

predicted value, then there are no anomalies and hence size of aggregates will be

increased. This mechanism allows a balance between overhead and performance

of the detector [158].

Dmitry et al. focused on the confidentiality in SDN security [142]. They pro-

posed a model that makes reason about confidentiality and checks if confidential

information flows do not interfere with non-confidential ones. The model is based

on mapping the network host addresses into low and high security groups and

includes the security type in the matching process before taking any action. This

is to insure the separation between different security levels of traffic.

The authors of [93] proposed a random host mutation method to protect

from scanning attacks. A virtual IP address is assigned to each host for data

transmission and is randomly mutated, which hides the real IP addresses from

intruders and defeat their scanning threats. In [197], the authors developed an

SDN application for identifying network scanning attacks. First, the algorithm

keeps a queue of new connection initiations that do not receive a response. Every

time one of these connections times out with no reply or gets a TCP RST, the

algorithm removes it from the queue and increases a certain probability ratio of

the host that started the connection. Otherwise, when a successful response is

78

obtained, this probability ratio is decreased. When the probability ratio for a

host surpasses a certain threshold, it is declared as infected.

One solution for information disclosure attacks, is to implement randomiza-

tion in the OpenFlow protocol. Randomizing the timeouts of the established flow

rules would prevent the attacker from creating a clear view of the network state.

Another possible solution could be to establish proactive flow rules rather than

installing rules in response to a new request.

To detect control channel hijacking, the authors of [109] proposed a detailed

analysis of the network through latency measurement and active traffic shap-

ing. Additionally, if an honest controller suspects the presence of a compromised

switch, it can start delaying classes of data-layer traffic and analyze the effect on

the latency of messages that reach the compromised switch to verify that it has

been compromised.

To prevent fingerprinting of SDN networks, the authors of [198] proposed the

addition of delay on the first couple of packets of old flows by modifying the

selection logic of the SDN switches’ group table. This increases the difficulty of

fingerprinting through measuring packet-pair dispersion and RTT features be-

cause the attacker cannot identify if this delay is introduced naturally when new

flow packets are sent to the controller or by a countermeasure against finger-

printing. More näıve and costly countermeasures delay every received packet or

delete flow rules and reinstall them through the controller every time a PacketIn

message is received.

FlowMon [119] detects switches that have been compromised and are acting

maliciously, by analyzing the port statistics and actual forwarding paths that are

obtained periodically from the switches. It identifies a switch as malicious when

it intentionally drops packets and/or routes flows to wrong ports. To detect if

79

packets are intentionally dropped on switches and/or links, it computes the drop

rate based on the packets sent and received on a port and/or packets transmit-

ted from the first switch and received by the second simultaneously and then

compares the values with predefined thresholds. To detect packet swappers, they

compared the expected output port obtained from the controller with the actual

output port obtained from the statistics information.

To mitigate Freeloading, a watermarking-based encoding technique is pro-

posed in [159], which provides signature of ownership of flow rules and the origin

of packets, thus providing integrity between two communicating parties, where

the secret configuration information can be provided by the controller during

flow-rule establishment. The receiver verifies every packet by decoding it and

dropping any packet that does not contain the required established watermark.

The authors of [211] proposed to add a mismatched packet cache module into

the OpenFlow switch which can temporarily cache the packets that do not match

the flow table. Also, they applied a mechanism for separating the header and

payload of packets in the cache queue once the switch detects that the volume

of cache queue exceeds the threshold of the cache size. In addition, the proposed

technique could classify the packets’ headers and sends it in an alert message to

the SDN controller for further processing. The authors of [162] took advantage of

software defined networking for security policies enforcement. They introduced

a 2-layer open flow switch architecture to implement security rules, considering

the flow table size limitation and load balancing between switches. Also, they

proposed a safe way to configure these switches and proposed an update scheme

in a tree model.

Detecting and mitigating DoS attacks against the Data plane was the topic of

the research in [172]. The authors discussed DoS attacks against the data plane

80

and their impact. They proposed a tailored statistical detection approach as well

as a lightweight countermeasure. The detection process depends on localizing the

fixed header fields of the attacking flow. The approach uses a table of counters

with the different header fields as columns. The table is regularly inspected and

the maximum entry would be large in case of an attack. The counter measure

is based on installing low prioritized dropping rules on the switches along the

attack path.

2.4.5 OpenFlow Proposed Solutions

Securing networks using OpenFlow is an active area of research. FortNOX [91]

was developed to deal with malicious or incompatible OpenFlow applications. It

is as an extension to the NOX OpenFlow controller where role based authoriza-

tion and constraints are added to rules sent to switches. In a similar context,

FlowVisor [212] acts as a transparent proxy between controllers and switches to

put restrictions on the rules created by controllers. It rewrites the rules to limit

their influence to a specific “slice” of the network. Both, FortNOX and FlowVisor

focus on limiting untrusted controllers or applications running on controllers.

Another approach is aggregating flow rules to decrease the flow table size and

hence reduce the possibility of information disclosure and DoS attacks.

The authors of [213] argued that knowing reactive rules, attackers can launch

DoS attacks by sending numerous rule-matched packets which trigger packet-in

packets to overburden the controller. They presented a novel method (INSPIRE)

that discovers the flow rules in SDN from probing packets. The approach was

based on evaluating the time delay from probing packets, classifying them into

defined classes, and inferring the rules. This method involves three relevant steps:

probing, clustering, and rule inference. First, forged packets with various header

81

fields are sent to measure processing and propagation times in the path. Second,

it classifies the packets into multiple classes using k-means clustering based on

packet time delay. Finally, the algorithm finds common header fields in the classes

to infer the rules.

2.4.6 General Solutions

Information disclosure is one of the attacks that was inherited from traditional

networking. In SDN, the solution becomes easier due to flexible programmability

of the switches and their actions. Some proactive strategies suggested proactive

flow rule establishment to randomize the actions of the flows in order to alter

the statistical sequence for the attacker. Another method is the randomization

or increase in the variance of measurable response times which can increase the

statistical uncertainty for the attacker. A third method is attack detection; since

any attack that is based on timing analysis is likely to exhibit a distinctive,

repetitive pattern, the controller security applications can use these patterns to

detect such attacks.

The aim of Network Security Virtualization (NSV) [214] is to benefit from the

pre-existing middle boxes by maximally utilizing these resources and to use these

security resources to provide dynamic and on-demand security services to the

users, without the user’s knowledge about the actual location of the devices. With

NSV, tenants do not need to be security experts and do not need to worry about

information, operating security functions and underlying network architecture.

The solution provided by the authors does not require the re-architecture of the

middle-boxes.

There are two techniques to fulfill the availability of a NSV:

82

1. Transparently and automatically redirecting flows to the desirable security

middle-boxes when needed, regardless of the actual location of the middle-

box.

2. Enable network security response functions on a network device.

To test the feasibility of NSV, the authors implemented a prototype for cloud

networks calling it NetSecVisor which benefits from the cloud operators pre-

installed security devices to provide dynamic, transparent, and on-demand se-

curity services to cloud network tenants. In addition, it enables basic response

functions such as network isolation for network devices.

The proposed framework in [132] is based on the assumption that collabora-

tion exists between the ISP and the customer, in addition to a controller at the

customer, besides the one at the ISP. Every flow that enters the ISP network is

tagged by a tag generation algorithm running on the access switches generated by

the authors to reduce overhead on the controller and impose end-to-end policy.

OF switches update the controller with traffic statistics information, hence any

suspicious behavior is alerted by the detection engine at the customer controller.

This leads to the generation of new OF rules to be inserted at customer routers.

Furthermore, the customer controller passes this alert and mitigation requests to

the ISP controller, which redirects the suspicious flow to a specialized middle-box

for further processing by a mitigation algorithm developed by the authors, which

if detected as malicious, will be redirected to a sink.

Identity-based Authenticated Key Agreement (IB-AKA) protocol has been

introduced in [114] to secure the southbound and east/west bound communica-

tion channels in distributed SDN rather than TLS because it is simpler, better in

performance and requires less memory for public key storage. IB-AKA is used to

83

create the symmetric session key that secures SDN communications. For south-

bound communication, the PKI is implemented by the controllers and hence for

large networks, it requires large memory to store the keys that are periodically

renewed.

Current distributed management approaches suffer from latency, appliance

and network overload due to the implementation of policy configuration on con-

trollers and policy resolution and enforcement on middle-boxes (FW, IDS, IPS).

To solve these issues, the authors implemented EnforSDN in [118]; a new man-

agement design that separates policy resolution from enforcement by centralizing

resolution in the middle-boxes while the enforcement at the controller. Initially,

the controller installs the flow rules on the switches to forward new flows to

middle-boxes. The middle-box analyzes the first couple of packets and then

takes a resolution decision taht is sent to the controller, which in turn enforces

new policy rules on the switches to either drop or forward the packet to the desti-

nation. This mechanism removes the responsibility of this flow from the firewall

compared to distributed management where the firewall is responsible for enforc-

ing the rules on each packet after processing it. It is important to note that

an authentication scheme is required between firewall and controller because a

MITM attack could lead to installing wrong rules and diverting traffic from the

required destination.

Shin et al. proposed the utilization of middle-boxes found in traditional net-

works to provide virtualized security functions to cloud networks through SDN

[214]. Based on the security policies demanded by the cloud tenant, the network

traffic is forwarded by installing correct flows rules, through an optimal path

containing SDN switches to the corresponding middle-box (IDS, IPS, Firewall).

This allows the dynamic detection of any malicious traffic and thus the isolation

84

of any infected nodes by installing the appropriate rules onto the switches con-

nected to the infected machine. They implemented NetSecVisor, a prototype that

provides these functionalities through 5 modules: 1) Device and Policy Manager

that consists of available registered security device information and translates

the security requests of tenants to security policies; 2) Response Manager that

generates the corresponding flow rules based on the input of security devices; 3)

Routing Rule generator that generates the optimal route, 4 different algorithms,

to the security devices based on the security policies required by the user; 4) Flow

Rule Enforcer that installs the flow rules generated by response manager on SDN

switches; 5) Data Manager that temporarily holds the packets of an ongoing flow

until the security middle-box outputs the result. However, the proposed routing

algorithms add relatively high overhead for small size networks.

The authors of [140] proposed a controller independent web-based northbound

interface that provides TLS certificate-based authentic, confidential and account-

able secure communication link between the controller and applications. The ap-

plications use the REST-like interface that uses standard HTTP to connect and

register with the web-based controller service and thus use its resources according

to the agreed-upon access policies, where permission sets are mapped to allowed

resources. Based on the acquired permission, an application can register for the

appropriate event listeners to receive the required information.

BGPSecX [146] is an SDN based architecture that provides secure BGP.

Different IXPs can use BGPSecX to create a secure communication channel.

BGPSecS consists of ROA verification using RPKI, prefix filtering of malicious

announcements, and it validates routing information by queries between IXPs.

However, RPKI coverage is small and prefix filtering does not protect an AS

itself.

85

A solution for the malicious administrator problem, presented in [110], consists

of leveraging a threshold voting protocol to confirm that the network has one

configuration. Another approach could be to allow the selection among many

configurations created independently by each of the administrators.

UNISAFE [148] is software switch architecture that leverages the programmable

nature of switches and extends them by implementing flexible security services.

The proposed architecture is extensible because the identifiers of security func-

tions are saved in a table, which can be extended by any developer who wants to

implement a new function. When a certain security function/action is desired by

an application, the identifier corresponding to that action is set in the action field

of the flow rule. Hence, every security action has its own detection logic and data

structures to analyze and detect a specific attack, and alert the user. Flow rules

that require the same security function are differentiated by cluster ID, which is

used as a key to a hash table to refer to a separate data structure in the detection

logic. Multiple security actions can also be clustered as a single action in a single

flow rule, where any flow rules that have the same security action and cluster ID

share the same data structure (resources and statistics information/data status).

As for processing and delay due to copying lengthy rule arguments during

packet arrival, they implemented a direct private connection between the user-

space daemon and UNISAFE module in kernel-space through a UNISAFE pri-

vate channel to copy the arguments directly rather than waiting for the arrival

of a matching flow packet to trigger the copying process.

CINDAM [120] is a deception and attack mitigation mechanism that uses the

SDN architecture and deceives attackers by periodically changing and eluding the

topological view of the network for each host. Only CINDAM itself will always

be aware of the real topology of the network and thus will provide DHCP, DNS,

86

NAT, ARP and MPLS services to have a normal functional network (receive

and transmit packets) noting that each host has a different view of the network.

Adding and/or removing resources (topological change), constantly changing IP

addresses and adding honeypots, can invalidate network history, that is highly

used by the attackers, and thus preventing them from detecting honeypots in the

network.

OpenSec [151] is a security framework that simplifies policy enforcement

for network operators by abstracting the configurations and description of the

network policies (through OF rules) by providing a user-friendly interface and

human-readable description language. To prevent the controller from overloading,

the user security services are performed by processing units (specialized security

middle-boxes) that analyze the automatically redirected traffic obtained through

the OF rules specified on the switches. Furthermore, OpenSec provides auto-

mated reactions, alert or quarantine or drop through new OF rule installation,

to any detected suspicious traffic.

The authors of [160] proposed an intrusion prevention system for SDN cloud

networking. It works on mechanisms such as botnet/malware blocking, scan

filtering and honeypot. Malicious traffic is isolated because bot-infected VMs are

removed efficiently from the private cloud. The scanning behavior can be filtered

at a very early stage of prevention, making the VMs less exploitable. A honeypot

mechanism is also deployed to trap attackers by creating a VM to pretend to be

a victim, then when attacked, it alerts the controller.

The authors of [157] proposed HogMap a software-defined infrastructure for

the purpose of measuring and monitoring of cyber-threat activities. The cyber

monitoring landscape was created by integrating some SDN-enabled capabilities:

1. Intelligent in-place filtering of malicious traffic

87

2. Dynamic migration of interesting and extraordinary traffic

3. Software-defined marketplace where various parties can opportunistically

subscribe to and publish cyber-threat intelligence services in a flexible man-

ner.

hey are based on a traffic filtering scheme and rule flow analyzer that checks

incoming packets and allows rule insertion accordingly.

The authors of [173] presented a dynamic policy enforcement mechanism that

allows ISPs to specify security policies to mitigate the impact of network at-

tacks by taking into account the specific requirements of their customers. This

mechanism depends on: Monitoring Component (MC), Policy Database (PDB),

Policy Decision Point (PDP), and a Policy Orchestrator and Implementer (POI).

Another policy based approach is the work of [215], which implements Policy

Based SDN application for attack mitigation. The authors implemented a policy

manager application that communicates with the controller over the northbound

interface. The manager includes a policy creator, handler, and evaluation engine,

and repositories to map AS domains.

The authors of [177] proposed SN-SECurity Architecture (SN-SECA) to en-

sure effective security evaluation and integration on the SDN/NVF designs and

implementations. Their technique uses symbolic analysis to preview traffic pro-

cess flow behavior across an infrastructure with SDN and NFV frameworks.

2.5 SDN Network security enhancements

Different solutions have been proposed to enhance SDN network security. The fol-

lowing solutions were based on either SDN security applications or SDN security

architectures, that gave a boost to the SDN security domain.

88

2.5.1 DISCO (Distributed Control Plane)

A security monitoring application implemented on top of floodlight. It uses ad-

vanced message queuing protocol AMQP to monitor data traffic at two levels:

Intra-domain: Monitor and manage flow prioritization and dynamically re-

acting to network issues

Inter-domain: Manage communication between controllers which is composed

of a messenger and agent, where the messenger discovers controllers and the agent

exchanges data.

One approach to minimize the effect of security attacks is Reliable Controller

placement. Research was done in this domain using the Simulated Annealing (SA)

algorithm; this generic probabilistic algorithm has been favored as the most opti-

mal algorithm for controller placement. The aim of this approach is to maximize

the network resilience through efficient controller placement. Another algorithm

is based on a minimum-cut based graph partitioning, which acts on minimiz-

ing the expected percentage of control path loss, but this approach introduced a

tradeoff between reliability and latency.

2.5.2 Parelo-based Optimal Controller Placement (POCO)

SDN architectures have raised questions regarding reliability, scalability and per-

formance when compared to traditional networks. Consequently, the controller

placement problem has gained a lot of attention from the research community

to estimate the optimal number and locations of distributed control elements in-

side SDN networks. Hock et al. discussed a resilient algorithm to optimize the

placement of controllers with regard to failure tolerance [95]. They considered la-

tency between controllers and traffic load balancing to get the optimal number of

89

controllers and their corresponding locations. The proposed algorithm took into

account different failure events such as node failures including controller failure.

2.5.3 Network Security Architectures

LiveSec [216] is an OpenFlow-based architecture for network security manage-

ment; it implements a new access switching layer besides the LiveSec controller

and legacy switches to ensure distributed load balancing, end-to-end traffic con-

trol, and application monitoring through historical traffic replay and live traffic

monitoring.

OrchSec [106] is an orchestrator-based architecture that uses SDN Control

functions and Network Monitoring to enhance network security. The architec-

ture separates the application development procedure from the SDN controller in

order to mitigate different types of attacks such as cache poisoning/ARP spoofing

and DoS attacks. In OrchSec, the controllers are only distributing control mes-

sages (e.g., flow rules), while network monitors examine traffic. Also, to enable

independence among applications from controllers, applications are implemented

as northbound applications and are not developed inside the controller.

Furthermore, in [217], an SDN application is proposed to mitigate ARP re-

quest and reply spoofing attacks by checking certain conditions on IP and MAC

addresses based on the IPs leased by the DHCP server running on the con-

troller, and ARP DoS attacks by port monitoring through statistics collection

from switches. If an attack is detected by the controller, the corresponding flow

rules are installed on the switches to drop these packets.

90

2.5.4 Control-Data Plane Intelligence Tradeoff

Total dependency on the controller has proven not to be practical. There-

fore, some researches introduced intelligent tradeoff between the controller and

switches aiming to increase availability, and reduce controller overhead.

Devoflow is one such approach that modifies the OpenFlow module in order to

minimize controller-data planes interaction. It uses wild carded OpenFlow rules

and the switches can take local routing decisions where per-flow vetting by the

controller might not be necessary.

Netcore divides packet-processing responsibilities among controller and switches

with the help of compilation algorithm coupled with the run-time system.

An SDN Security plane was designed and implemented for the purpose of

detecting security attacks, and introduced a mechanism for attack source trace

back in order to efficiently block the attack from the source. The security plane

is designed to exchange security-related data between a third-party agent on the

switch and a third-party software module alongside the controller in order to col-

lect and analyze security related traffic and inform the controller to install a new

flow to block the attack. The testing showed the capability of the proposed sys-

tem to enforce different levels of real-time user-defined security with low overhead

and minimal configuration [218].

The authors in [133] are extending the actuating trigger concept that was

introduced in [186] by adding the handling of UDP packets besides TCP. To

mitigate UDP DDoS attacks, they proposed traffic percentage trigger and ampli-

fication rate trigger. The traffic percentage trigger is fired when the amount of

outgoing UDP packets relative to overall traffic (from a certain source) exceeds a

predefined threshold in a certain window of time. Whereas the amplification rate

trigger is fired when a large number of incoming UDP packets relative to outgo-

91

ing traffic exceeds a predefined threshold in a very short period of time. When a

condition is triggered, predefined flow rules that are registered by the controller

are installed onto the switches to prevent DDoS attacks or further analysis is

performed at the control plane through forwarding the packet payload. However,

traffic percentage trigger might not be enough to evaluate whether a DDoS is ac-

tually occurring or not. It might be that a server is generating a lot of legitimate

requests at that particular time period. Additionally, traffic percentage trigger

will not be fired when the attacker is spoofing its IP address.

The algorithm in [134] is run as an application on the controller and decides

whether the received ARP packet is malicious or not. Additionally, the authors

claim that it can be used to prevent similar threats such as MIM, eavesdropping,

DoS and MAC Flood. The algorithm works in both dynamic and static IP

assignment scenarios. When the dynamic DHCP IP assignment is used, the

controller creates the IP-MAC matching table by obtaining the information from

the option field of the DHCP reply messages. Similarly, when the static IP

assignment is used, the IP-MAC pairs of all hosts connected to the switch are

recorded in the table. When an ARP reply is received at the switch, the IP-MAC

carried is checked against the table in the controller. If both MAC and IP match,

it is forwarded to the destination, else the ARP packet is dropped. However,

if an ARP proxy is used, the algorithm might fail by detecting ARP requests

as malicious when it is not actually the case. Additionally, a large MAC-IP

matching table is needed at the controller as the size of the network increases.

In [96], SDN-based architecture of Ad-hoc networks, SDN-based architecture

for IoT networks and security functions to interconnect different domains is pro-

posed. They divide a network into multiple extended SDN domains where each

domain is an SDN-based IoT network, having a single border or root controller.

92

The different SDN domains connect to each other through the border controllers

and are responsible for the security and routing functions of their own domains.

To prevent attacks generated from inside or outside the network, the border con-

troller would handle the authentication of both end nodes each belonging to a

different domain. It is important to note that the border controllers, which are

heavily loaded are acting as routers by forwarding the traffic between different

domains, which is contradictory to the functionality of an SDN controller.

STRIDE was proposed to evaluate the security level of sFlow, an SDN net-

work monitoring and measurement tool, and BigTap, a commercial monitoring

controller [117]. STRIDE is used to evaluate only whether a system is vulner-

able to a certain threat or not. sFlow consists of an agent and collector, where

an agent is installed on a switch and sends statistical information to the collec-

tor installed on a monitoring host for analysis. The authors stated that if the

monitoring and measurement network is not in the same network as the produc-

tion network, and if TLS is used to secure the communication between agent

and collector, sFlow agent can be considered secure, else it is vulnerable to var-

ious attacks such as tampering and information disclosure. sFlow is inherently

not secure and its security depends on its deployment in a secure environment.

Whereas BigTap is a SDN monitoring controller that applies routing policies

and filtering for the incoming traffic from the production network through the

switches. BigTap provides RBAC and TACACS+ security mechanisms which

mitigate tampering, spoofing and information disclosure. Its only vulnerability is

the unencrypted communication channel between the controller and the switches

which can be secured using TLS; else it can be subject to tampering and informa-

tion disclosure. However, TLS is not the only solution and it is cryptographically

very involved.

93

The authors of [145] proposed the utilization of SDN in to solve the weak-

nesses in current honeynet architectures suffering from fingerprinting attacks and

lack of fine-grained data control because only a single service can run at any

given time. To solve these problems, HoneyMix -enabled controller was intro-

duced which keeps a map of all available services on each honeypot at each host;

it multicasts the incoming traffic to different honeypots based on the service be-

ing used by the attacker. If multiple honeypots offer the same service, connection

weights are calculated and the one with the highest weight is selected to respond

to the attacker. If a honeypot response includes indicators that can be used by

attackers to detect the existence of honeynet, Response Scrubber, which is part

of Honeymix, will remove these indicators.

Lim et al. proposed a mechanism to mitigate botnet based HTTP Flood DDoS

attacks on servers by implementing an SDN based DDoS blocking application

(DBA) [194]. When the server detects that it is under a DDoS attack, it alerts

the DBA, which in turn provides the server with a new IP address. The server

uses the new IP, by creating a new socket, to serve the client requests by sending a

redirect message, where the information carried by the redirect message is costly

to be computed by the bot (i.e. CAPTCHA). The procedure hence prevents

botnets from flooding the new address and accordingly new flow rules are installed

on SDN switches to forward the traffic to the server. Additionally, switches

collect the counter for new flows that are being directed to the old address. If the

counter exceeds a certain threshold, the flow generator is classified as a bot and its

corresponding packets are dropped. However, they do not mention which API is

used for DBA and server interaction and whether it is secure. Additionally, SDN

is only being used to install the flow rules, and not for any security mechanism.

It is the server that is acting as the DDoS detector.

94

The authors of [138] proposed the detection of port scan and fingerprinting

attacks by installing specific flow rules. The proposed mechanism creates fake

hosts alongside the authentic hosts. When the attacker scans the network, and

tries to perform OS fingerprinting, based on a threshold on the number of packets

sent to a specific number of fake host, flow rules are installed to prevent the

attack. As for port scanning, fake ports are inserted into real hosts, and when

the attacker scans a certain number of fake ports in a specific period of time,

corresponding flow rules are installed to prevent the port scan attack. However,

the source IP and MAC of the attacker is assumed to be always the same, and

the attacker can study the behavior of the defense mechanism and can change

certain parameters to bypass and perform the attack by spoofing its IP and/or

MAC.

Network Flow Guard (NFG) [152] is a security application that detects rogue

DHCP servers found in the network by analyzing every DHCP offer that is re-

ceived at the switches, comparing it against a predetermined whitelist of DHCP

servers and deciding either to drop or to forward the packet by installing the

corresponding flow rules on the switches.

The authors of [219] proposed a software-defined networking (SDN) policy-

based scheme for an efficient security architecture. The proposed scheme consid-

ers four policy functions: separating, chaining, merging, and reordering.

1. Separating: this divides the virtual services and decreases the size of the

attack flows using the load balancer.

2. Chaining: this links many VNFs to prevent various attack flows and con-

structs big security systems.

3. Merging: this combines unnecessary VNFs to optimize the security system

95

and the system’s resources.

4. Reordering: this reorders current VNFs depending on the type and strength

of the current attack flows.

The authors claim that if SDN network functions virtualization (NFV) system

managers use these policy functions to deploy a security architecture, they only

submit some of the requirement documents to the SDN policy-based architecture.

After that, the entire security network can be easily built.

Another security approach to detect rogue controllers was proposed in [165].

The authors argued that SDN security can be polished via the applications of

pre-existing network security solutions. These solutions include: public key cryp-

tography, secured sessions (single sign-on services), firewalls, honeypots, and mit-

igation of DDoS attacks via the use of various algorithmic methodologies. The

authors pointed out that the implementation of a central authority controller

(network orchestrator), with exceeding administrative authority over a cluster of

slave controllers, can exhume threats and block a hazardous slave controller.

SDSNM is proposed in [121] to mitigate DDoS attacks by utilizing SDN archi-

tecture at the edge points of the networks where the core network is traditional

IPsec network. The SDN architecture is leveraged at the edges to provide ac-

cess control, registration and authentication services (applications) through the

controller to install appropriate flow rules, provide authentic communication and

forward non-malicious traffic to the core network. Furthermore, it detects and

reacts to any attempt of DDoS attack by first dropping the packets through in-

stalling updated flow rules and then executing a trace-back mechanism to find

the attackers and analyze the malicious traffic by using the recorded flows, which

are stored in the cloud.

96

WedgeTail was presented in [169] as an intrusion prevention system (IPS)

designed to secure the SDN data plane. WedgeTail maps forwarding devices

as points within a geometric space and stores the path taken by packets when

traversing the network as trajectories. It prioritizes forwarding devices before in-

spection using an unsupervised trajectory-based sampling mechanism. For each

of the forwarding device, WedgeTail computes the expected and actual trajecto-

ries of packets and “hunts” for any forwarding device not processing packets as

expected.

The authors in [161] are utilizing the concept and architecture of SDN to

construct a Programmable BYOD Security (PBS) system to provide access pol-

icy and network management in BYOD networks. The PBS controller provides

fine-grained application-level security policy control over the BYOD devices, the

BYOD devices that run PBS-DROID (PBS client system on Android) mimic

SDN switches and the application on the devices represent the hosts connected

to the devices. Thus, PBS provides application-level access policy to BYOD

networks with minimal performance overhead and battery consumption.

2.6 Security Discussion and Future Directions

After examining many research works done in different directions, we have devel-

oped a list of security items that should be addressed when considering SDNs.

From one point of view, intrusion detection and prevention became more com-

plex through the introduction of SDN because the switches communicate only

packet header information to the controller, which is not sufficient for intrusion

analysis and detection. As routers were vulnerable in non-SDN topologies to

different types of attacks due to protocol specifications such as source IP, BGP

97

protocol, wormhole, black-hole, etc., OF switches have similar vulnerabilities

where an attacker can impersonate a legitimate controller and hence inserts his

own flow rules to bypass middle-boxes or firewalls in the network. Interest about

the potential impact of DDoS has started recently, because unlike in traditional

networks where the functions were implemented in individual routers, these are

centralized in SDN in the controller. Hence any success of DDoS attempt will

eventually make the entire network dysfunctional because switches will not be

able to communicate with the controller and thus fail to update their flow tables.

Some efforts are exerted through academic research activities; however, compa-

nies are spending considerable time and money to make these networks as secure

as possible by investigating on one hand the protocol- and design-related vulner-

abilities, and by preventing huge financial losses as in traditional networks on the

other.

We believe that the benefits of SDN security outweigh the risks. In fact, due to

the intrinsic centralization of the control plane, SDN provides security by design

and it allows for end-to-end view and control of the entire network topology.

This simplifies the development of complex networking applications and offers

the ability to detect and react quickly to fake variations of the network state.

In fact, the community already came up with several applications that identify

and mitigate threats by accessing information at the packet level, analyzing it,

updating rules and then reprogramming the network.

In SDN, security policy alteration is done easily; SDN permits the definition

of new security rules on all of the network devices, which reduces the frequency of

errors and misconfiguration, and decreases inconsistent rules in the infrastructure.

Transport layer security (TLS) with mutual authentication at the control-

switch interface can alleviate several security risks. A full specification of TLS

98

between the controllers and their switches is mandatory to secure the link and

data transmitted.

Integrity checks on software applications can ensure that harmful software is

prevented from being launched in the network. In addition to integrity checks,

specific malware detection schemes need to be developed for SDN. A malicious

network application is a significant security risk. Therefore, all third-party soft-

ware applications should be scanned for vulnerabilities and malicious code.

We believe that major threats of SDN already exist in traditional networks.

A first step towards securing SDN would be to apply well known concepts such

as the addition of public key infrastructures to encrypt communication channels

between different modules of SDN and to ensure authenticity.

We have seen in the literature that most of the problems, vulnerabilities and

attacks have been address through the long era of SDN security researches. Nev-

ertheless, the main limitation remains in the durability and adaptations of the

proposed solution with respect to the threat revolution. In other word, the lack

of completeness and intelligence of these solutions kept the floor open for more

advanced in the area of SDN security architectures. Another important limita-

tion facing most of the proposed solutions is relying on only security to defend

the system, while failing to ensure consistency and correctness of the targeted

system before applying security measures. In our opinion that this last point will

provide a large step towards a solid and secure network.

It is true that we have an increase in awareness and importance of security due

to realization of SDN paradigms in real networks, it still remains slow compared

to the increase in the intrusions and the sophistication of the attacks performed.

According to the categorization, we can observe that different techniques have

been proposed to mitigate attacks only as a reaction to the attacks. Although

99

the proposed frameworks can reduce the possibility of attacks, however, they

are mainly prototypes and only lately did we see further drives towards real

implementations.

2.6.1 SDN Security Summary

From our point of view, a complete security system needs to be established. The

solution lies in an independent security architecture that has access to available

data to be analyzed and investigated with assigned computational power.

In a previous work [218], we proposed a security plane alongside the control

plane, and above the data plane. The security was based on a security module on

the controller receiving security-related traffic from a security agent implemented

on the SDN switch. In turn, the security module forwards these packet headers to

a third-party security engine to be analyzed and clustered. To achieve resource

separation, the security plane is connected to separate ports and the security

engine would run on a separate machine.

Our module was initially designed to block DDoS attacks on the controller,

switches, or hosts. Also, it can trace back the attack to its source to be blocked

from the initial ingress port without affecting the network. The trace back was

successful through inserting specific rules on the SDN switches to trace the origin

of the packets.

Since our design is a foundation for a security architecture, such a design could

act as a base for any of the previously discussed security designs. Each solution

could be independently implemented on the security engine and benefit from the

high processing resources. Since we have control over the security module at the

controller and the security agent on each switch, it is possible to provide each

security solution with the type and amount of data it needs to finish its work.

100

Moreover, it is possible for security functions to be implemented on the security

module and requested by a security solution to further minimize the delay and

response time.

The security engine could communicate with the controller through the REST

interface to alert the security module or other modules of a possible attack before

the effect of the attack increases, and hence, mitigating the damage of an attack

before blocking it completely. Blocking an attack is a process of inserting a

blocking rule through a request from the security engine targeting a specific port

and source.

Another important point that affects security and needs to be taken into con-

sideration is consistency and verification. As previously discussed, different types

of attacks act on altering flow rules or modifying them to infiltrate the controller

or take control over the switches. Other attacks work on adding flow rules in

order to redirect traffic for monitoring purposes or creating black holes or loops.

Either way, flow rule consistency checks and update verification is an important

feature that needs to be implemented in any future security SDN design. As do

security checks, verification checks need to collect data traffic, intercept update

action, and monitor topology changes. For these reasons, we have proposed a sim-

ilar architecture for consistency verification to maintain a resilient network [220].

The architecture is based on a verification plane that enables the exchange of

the necessary packet headers between the verification agent on the SDN switches

and the verification module on the controller. The proposed system uses state

machine illustration on a third-party verification engine to design a tree-based

prototype of the network in order to verify each new update and monitor the

network. This engine is able to communicate through REST interface with the

controller to request approval or block a specific update. Through verifying the

101

existing rules in the network, the possibility of such attacks would decrease, and

if possible, will be blocked as soon as possible.

This last point is possible through the interoperability and interaction of these

two systems, which is a crucial feature to form a complete base system for any

design to be able to contribute in increasing the security of the SDN network.

2.7 Artificial Intelligence for network security

Recently, the soft computing and artificial intelligence methods have started to

play a significant role in most of modern systems such as intelligent networking.

That gives us the chance to improve the performance of current computer net-

works. The integration between the abstraction concept in SDN paradigm and

AI techniques can lead to more adaptive behavior of network elements. Also, it

will introduce new mechanisms for dealing with both traditional network issues

and new SDN related ones [221]. This section highlights the attempts of applying

artificial intelligence for SDN security. Although results show significant improve-

ment, yet, this remains an open topic. However, in our opinion, hybrid intelligent

techniques could be the key for achieving more advanced behavior in SDN-based

networks. Motivation statistics show that Ant Colony algorithms were successful

in increasing the maximal Quality of Experience (QoE) by 24.1% compared with

the shortest path routing approach. Neural network based intrusion prevention

systems have shown a scalable performance with low false positive rate. Apply-

ing reinforcement learning based technique in adaptive video streaming system

compared with the shortest path routing and greedy-based approaches has shown

a decrease in the frame loss rate by 89% and 70%, respectively [221].

102

Figure 2.3: Intrusion Detection Techniques Overall Summary

103

2.7.1 AI for Network Security

New security threats in the networking and communication domains require rapid

provisioning of security solutions capable of identifying and blocking known and

unknown attacks. Different artificial intelligence-based techniques have been ap-

plied to enhance network security, quality, and intelligent network applications

within SDN. The SDN approach introduces a set of new security challenges and

it seems to be one of the biggest issues in SDNs. The potential threats include

targeting the controller by programming vulnerabilities, error configurations and

DDoS attacks on the secure channel [222]. Artificial intelligence and data min-

ing techniques, which have been used before for solving routing problems and

optimizing the performance of packet filters in conventional networks [223] [224]

[225]seem to play a significant role in SDN-based networks after adding the pro-

gramming ability, as the authors of [226]proposed an information security man-

agement system based on combination of fuzzy inference system and both of

TRW-CB [227] and Rate Limiting [228] algorithms in SDN environment. The

TRW-CB algorithm which detects the SYN Flooding, caused by a host based on

the idea that the benign host will obtain a higher successful connection proba-

bility than a malicious one [9]. The input for the fuzzy logic module obtained

by the mentioned algorithms and the degree of attack obtained as output. The

decision-making system is implemented as an application for the SDN controller

with short-term learning module. The proposed system has shown improved re-

sults compared with a non-fuzzy logic approach. The authors of [229] presented a

classification of intrusion detection systems (IDS). Moreover, a taxonomy and sur-

vey of shallow and deep networks intrusion detection systems is discussed based

on previous and current works. They reviewed machine learning techniques and

their performance in detecting anomalies. Feature selection, which influences the

104

effectiveness of machine learning (ML) IDS was discussed to explain its role in the

classification and training phase of ML IDS. At the end, the authors included a

review of the false and true positive alarm rates to help researchers model reliable

and efficient machine learning based intrusion detection systems.

Self-Organized Maps

A Self-Organized Maps (SOM) approach for DDoS attack detection has been

proposed in [230]. SOM is a variant of artificial neural networks based on un-

supervised learning. It can be used as a classification mechanism [231] when

handling an unlabeled input vector. The training is based on a set of desired

features from flow entries of the Open vSwitches. The detection loop consists

of three stages: 1) Flow collection, which requests flow entries from all Open

vSwitches; 2) Feature extraction, which takes the output of the flow collection

module and extracts the most important features that forms a potential DDoS

attack. These features include: Average of Packets per flow (APf), Average of

Bytes per flow (ABf), Average of Duration per flow (ADf), Percentage of Pair-

flows (PPf), Growth of Single-flows (GSf), and Growth of Different Ports (GDP)

and 3) SOM classification, which is used as a classification method. These stages

implemented as application-level modules in SDN controller. The proposed ap-

proach compared by different methods conducted on the well-known KDD-99

data set has shown a lower overhead [230], [232]. Srinivasan et al. [233] pro-

posed an agent-based SOM IDS called SAPID, designed especially for wireless

networks. They achieved an average DR of 97% on an undeclared dataset. Li-

chodzijewski et al. [234] achieved DR of 94% on DARPA 1998 dataset with a

conclusion that hierarchically built unsupervised neural network approach is able

to produce encouraging results. Rhodes et al. [235] analyzed SOM’s potential

105

for intrusion detection. Their experiments showed that even a single SOM, when

trained on normal data, will detect anomalous behaviors. Also, the ratio by which

normal and intrusive packets differ has been greater by an order of magnitude.

Their conclusion showed that IDS based on SOM should be particularly powerful

because it never needs to be told what intrusive behaviors look like [46].

Multi-Layer Perceptron

MLP for anomaly detection was proposed as a single hidden layer neural net-

work model [236]. The performance of this model tested on the DARPA 1998

dataset was a DR of 77% with 2.2% FP. Lippmann et al. [237] used selected

generic keywords to detect the attack preparations and actions after the break-

ing. Results were used to train the MLP using backpropagation algorithm. This

approach ensured a DR of 80% when it has been tested on the DARPA 1998

dataset. Debar et al. [206] stated that NNs are very slow in converging, they

suffer from dimensioning and stability problems, training takes a lot of time to

achieve a reasonable level of performance, and their adaptability is low because

a partial retraining can lead to a network that forgets everything it has learned

before [46].

Genetic algorithm

Li [238] proposed IDS with 57 genes in chromosomes, where each gene represents

single connection feature, like: source IP address, destination IP address, source

port, destination port, duration, protocol, number of bytes sent by originator,

number of bytes sent by responder, etc. Due to the effectiveness of the evaluation

function, the succeeding populations are biased toward rules that match intrusive

connection. Mukkamala et al. [239] achieved 97.04% OA on DARPA 1998 dataset

106

for their implementation of IDS based on linear genetic programming (LGP).

However, Teodoro et al. [240] concluded that main disadvantage of this kind of

IDS is the high resource consumption involved [46].

Fuzzy Logic

Chimphlee et al. [241] proposed IDS based on rough sets theory and fuzzy c-

means. The proposed system achieved a total of 93.45% OA on KDD’99 dataset,

while reduced number of features resulted with enhanced performance. Dickerson

et al. [242] developed FIRE IDS which uses simple data mining techniques to

process the network input data and expose metrics that are particularly signif-

icant to anomaly detection. These metrics are then evaluated as fuzzy set for

every observed feature and later used to detect network attacks [46].

K nearest means

Ma et al. [243] proposed kNN IDS based on similarity as a quantitative measure

for distance and achieved DR of 90.28% (k=1) on KDD’99 dataset. Liao et al.

[244] achieved DR of 91.70% (k=5) on DARPA 1998 dataset with their imple-

mentation of IDS based on kNN. They also concluded that kNN works well in

dynamic environments where frequent updates of the training data are required,

which makes it attractive for intrusion detection tasks [46]. The authors of [245]

discussed the importance of network flow classification to network management

and network security. Hey also emphasized on the challenge to classify network

flows at very high line rates while simultaneously preserving user privacy. Ma-

chine learning based classification techniques utilize only meta-information of flow

and have been shown to be effective in identifying network flows. In this work

they analyzed a group of widely used machine learning classifiers, and observed

107

that the effectiveness of different classification models depends highly upon the

protocol types as well as the flow features collected from network data. The pro-

posed was vTC, a design of virtual network functions to select and apply the best

suitable machine learning classifiers at run time. In their work they focused on

K-nearest neighbor, SVM, Decision Tree, Adaptive boosting, Näıve Bayes, and

MLP. The selected features were flag, logged in, count, rerror rate, diff srv rate,

srv diff host rate, dst host count. Their experimental results showed that the

proposed NFV for flow classification can improve the accuracy of classification

by up to 13

Naive Bayes

Panda et al. [246] proposed NB based IDS and achieved OA of 94.90% on KDD’99

dataset. Amor et al. [247] made a similar proposition and achieved 91.52%

OA. DDoS attack detection technique was discussed through the traces of the

traffic flow [189]. The authors used different machine learning algorithms such

as Naive Bayes, K-Nearest neighbor, K-means and K-medoids to classify the

traffic as normal and abnormal. They tested how DDoS attacks can be detected

by classifying the incoming requests using these techniques Machine Learning

Algorithm.

Decision tree

Abbes et al. [248] compared DR of rule-based Snort and IDS based on DT on

a custom dataset based on collected RPC protocol traffic. Snort detected only

three, while proposed IDS detected all 46 different forms of attacks. Bouzida et

al. [249] made comparison of DT with and without principal component analysis

(PCA), a mathematical procedure that transforms a number of (possibly) corre-

108

lated variables into a (smaller) number of uncorrelated variables called principal

components. They reduced computation time on dataset KDD’99 by a factor of

approximately thirty, with slight loss of OA from 92.60% to 92.05% [46].

Support vector machine

Laskov et al. [250] concluded that the best performance is achieved by the

non-linear methods, such as SVM, MLP and rule-based methods. Khan et al.

[251] presented results where their solution, utilizing dynamically growing self-

organizing tree (DGSOT), enhanced the training time of SVM on DARPA 1998

dataset from 17.34h to 13.18h and improved the accuracy from 57.6% to 69.8%.

Chen et al. [252] achieved accuracy of 86.79% on KDD’99 dataset by using rough

set theory (RST) to preprocess data and reduce the number of dimensions before

forwarding it to SVM for intrusion detection. Mulay et al. [253] concluded that

the integration of DT and SVM model gives better results than the individual

models [46].

Random forest

Kim et al. [254] concluded that their approach based on RF has been able to show

high DR, and figure out stable output of important features. Also, they stated

that performance of RF based IDS turns out to be comparable to that of SVM.

Zhang et al. [255] achieved average DR of 92.58% on original KDD’99 dataset

and 99.86% on balanced dataset, where minority classes have been over-sampled

and majority classes down-sampled to increase the DR of minority intrusions [46].

109

Deep Learning

The authors propose a deep learning based approach to implement such an effec-

tive and flexible Network Intrusion Detection System (NIDS) [256]. They used

Self-taught Learning (STL), a deep learning based technique, on NSL-KDD. Self-

taught Learning (STL) is a deep learning approach that consists of two stages for

the classification. First, a good feature representation is learnt from a large col-

lection of unlabeled data, xu, termed as Unsupervised Feature Learning (UFL).

In the second stage, this learnt representation is applied to labeled data, xl, and

used for the classification task. The authors discussed that the performance can

be further enhanced by applying techniques such as Stacked Auto-Encoder, an

extension of sparse auto-encoder in deep belief nets, for unsupervised feature

learning and NB-Tree, Random Tree, or J48 for further classification.

The authors of [257] presented a survey on deep learning techniques for In-

trusion detection systems. They examined the different DL categories:

• Unsupervised Learning: Auto Encoder (AE) and Boltzmann Machine (BM).

• Supervised Learning: Convolutional Neural Network (CNN).

• Hybrid: Deep Neural Network (DNN) and Deep Belief Network (DBN).

They claimed that deep learning is useful in IDS, especially for feature extrac-

tion and selection. The authors presented a new taxonomy of traffic classification

from an artificial intelligence perspective, and then proposed a malware traffic

classification method using convolutional neural network by taking traffic data as

images [258]. The authors discussed that the method needed no hand-designed

features but directly took raw traffic as input data of classifier. They claimed

that this was the first time of applying representation learning approach to mal-

ware traffic classification using raw traffic data. The work discussed that trying to

transform raw data into images and applying CNN to the results shows high clas-

110

sification results compared to other techniques. At the end the author included

the need to test different ANN types for future work.

The authors introduced Deep Belief Networks to the field of intrusion detec-

tion, and proposed an intrusion detection model based on Deep Belief Networks,

to apply in intrusion recognition domain [259]. The deep hierarchical model

is a deep neural network classifier of a combination of multilayer unsupervised

learning networks, which is called as Restricted Boltzmann Machine, and a super-

vised learning network, which is called as Backpropagation network. The authors

showed that the experimental results on KDD CUP 1999 dataset demonstrated

that the performance of Deep Belief Networks model is better than that of SVM

and ANN.

A deep learning based multi-vector DDoS detection system in a software-

defined network (SDN) environment was presented [260]. The authors imple-

mented the system as a network application on top of an SDN controller. They

used deep learning for feature reduction of a large set of features derived from

network traffic headers. The detection system consists of three modules: i) Traffic

Collector and Flow installer (TCFI), ii) Feature Extractor (FE), and iii) Traf-

fic Classifier (TC). The authors emphasized that to minimize false-positives, the

system relies on every packet for ow computation and attack detection instead of

sampling flows. They claimed to achieve a detection accuracy of 99.82% with f-

measure values as 99.85% and 99.75% for normal and attack classes, respectively,

derived from the confusion matrix.

Below is a summary list of recent deep learning based IDSs:

111

Table 2.10: Summary List of Recent Deep Learning Based IDSs

Publication Feature Extraction Classification
[229] Normalized Manually DNN+Bayesian Calibration
[48] Stacked Auto Encoder (SAE) SAE/ Artificial Neural Net-

work (ANN)
[230] Auto Encoder (AE) DBN
[231] Stacked Auto Encoder (SAE) Extreme Learning Machine

(ELM)
[227] Normalized Manually DBN
[232] Normalized Manually Deep Neural Network (DNN),

Recurrent Neural Network
(RNN)

[233] Monte Carlo Tree Search,
MCTS

Convolutional Neural Net-
work (CNN)

[234] Normalized Manually Restricted Boltzmann Ma-
chine (RBM)

[235], [236] Normalized Manually DBN
[237] Stacked Denoising Auto En-

coder
Logistic Regression

[238] Deep Belief Network (DBN) Support Vector MAchine
(SVM)

[239] Normalized Manually CNN

2.8 Tables

Commercial Products

Radware DefenseFlow, by cooperatively operating with software defined networks

and leveraging the programmable and dynamic nature of SDN, presented a dy-

namic attack mitigation solution that mitigate network DDoS, Application DDoS

and Advanced Persistent Threats. The solution operates using a continuous 4

stage service lifecycle [261]:

• Provision Security detection throughout the network by programming coun-

ters throughout the SDN nodes, by provisioning L4-7 Application Intelligence

(AI) engines & by mirroring traffic to the L4-7 AI engines [261].

112

• Collect information from the entire set of provisioned information sources

[261].

• Analyze network and application information in order to categorize behav-

ioral patterns, maintain an ongoing behavioral baseline and identify any steep

deviations from the baseline [261].

• Control traffic and service elements by blocking traffic, diverting traffic to

dedicated attack mitigation engines and optimizing security policies [261].

2.8.1 Intelligent Network Applications

The integration between SDN and AI field opens the door for building more in-

telligent network applications. A reinforcement learning approach for adaptive

video streaming in SDN paradigm was discussed in [262]. The controller repre-

sents a periodically decision maker that determines the time of selecting a new

path and when the server needs to change the quality of the video. Markov

decision process is used for modelling the actions of the decision making. The

Q-learning technique is used in the case of unknown rewards for moving between

the current and next state. The percentage of packet losses and the number of

quality changes represent the most significant parameters to define the reward.

The Q-values are updated and stored in Q-table where gamma and eta represent

the discount factor and learning factor respectively [263].

The softmax function below represents the probability of selecting an action

in state s time t.

Where T represents a random move already used in simulated annealing

method to escape from the local optima problem. The controller can change

the current path and/or adaptively extract/add the selected layers based on the

available bandwidth to increase the QoE of the video streaming service. The

113

mentioned approach compared with the shortest path routing and greedy-based

approaches has shown a decreasing of the frame loss rate by 89% and 70% re-

spectively [263].

Q̂(st, at) = Q̂(st, at) + η(rt+1 + γmaxat+1Q̂(st+1, at+1)−Q(st, at)) (2.1)

P (a|s) =
exp[Q(s,a)

T
]∑

b∈A exp[
Q(s,b)

T
]

(2.2)

The authors presented a management framework to perform anomaly de-

tection, classification, and mitigation [264]. The proposed framework is called

ATLANTIC (Anomaly deTection and machine LeArNing Traffic classifICation

for software-defined networking), it combines the use of information theory to

calculate deviations in the entropy of flow tables and a range of machine learn-

ing algorithms to classify traffic flows. Their results show that ATLANTIC was

capable of categorizing traffic anomalies and using the information collected to

handle each traffic profile in a specific manner, e.g., blocking malicious flows. The

basic components of their work are the Statistical Layer that is responsible for

collecting traffic flow statistics and comprises the following components: Statis-

tics Manager, Features Selector and Network Driver. The information generated

by the Statistical Layer is delivered to the Classification Layer, which comprises

the following components: Anomaly Monitor, Flow Classifier, and Flow Manager

[264].

An analyst-in-the-loop security system was presented in [265], where ana-

lyst intuition is put together with state of- the-art machine learning to build

114

an end-to-end active learning system. The system has four key features: a big

data behavioral analytics platform, an ensemble of outlier detection methods, a

mechanism to obtain feedback from security analysts, and a supervised learning

module. The authors discussed that when these four components are run in con-

junction on a daily basis and are compared to an unsupervised outlier detection

method, detection rate improves by an average of 3.41x, and false positives are

reduced fivefold.

• Big data processing system: A platform that can quantify the behaviors

(features) of different entities, and compute them from raw data.

• Outlier detection system: This system learns a descriptive model of those

features extracted from the data via unsupervised learning, using one of three

methods: density, matrix decomposition, or replicator neural networks.

• Feedback mechanism and continuous learning: This component incorporates

analyst input through a user interface. It shows the top k outlier events or entities,

and asks the analyst to deduce whether or not they are malicious.

• Supervised learning module: Given the analyst’s feedback, the supervised

learning module learns a model that predicts whether a new incoming event is

normal or malicious.

2.9 AI for Network Quality

Network Consistency is initiated by maintaining a balanced and congestion free

network before loading the verification phase. Load balance functions are a re-

quirement for minimizing the latency and maximizing the throughput in com-

puter networks that support multiple routing approaches. Load balancing also

considered as a defense technique against some types of networks attacks such as

115

DDoS attack [266], [267].

The abstraction in SDN approach provides an important advantage which is

the global view and discovering of topology of the network. A Back Propagation

Neural Network was used for achieving real time dynamic load balance, which

decreased latency by 19.3% compared to DLB and static Round Robin meth-

ods [268]. The input vector for the neural network contains path information

such as: bandwidth utilization ratio, packet loss rate, transmission latency, and

transmission hops [268].

A BPNN based approach for load balancing in data centers was also presented

[269]. The BPNN applied internally inside the Open vSwitch in a way that reduce

the time consumed for sending routing decision from the controller to the Open

vSwitch. The input vector consists of: available bandwidth, and packet loss.

The authors of [270], proposed a genetic algorithm in SDN based client server

architecture. The fitness function defined by the Formula:

min

√
(
∑K

j=1 X[j]2)−
(∑K

j=1
X[j]

K

)2

K∑K
j=1 X[j]

K

(2.3)

Where K represents the servers and each one has X set of workloads. The

performance in 33 has been compared with random and round robin methods

and shows better performance. Another genetic algorithm was proposed for flow

routing optimization in SDN based audio over IP network has been introduced

[271]. The network described as a connected graph. The problem is to show that

the graph meets the demand which is bandwidth and latency requirements of

the source and destination. The fitness function given by the formula shown in

116

Equation.

max

∑
Embedded demands∑

demands
(2.4)

The population size and non-allocation probability were the most important

parameters to the algorithm. The advantage to use the genetic algorithm ap-

proach is to get a partial solution of the problem through the solving stage while

this is not possible in linear program; this partial solution helps in evaluating

other algorithms [271].

In another context, an Ant Colony Optimization (ACO) approach for QoE-

aware flow routing is presented in [272]. ACO is a swarm intelligence method

that uses metaheuristic optimization 36. In computer networks the Quality of

Experience (QoE) indicates requirements for the customers to measure the value

of provided service from customer’s perspective. In [272] the SDN applications

deliver user session parameters to the controller which in turn runs the ACO

algorithm on a weighted graph, where the weights between vertices are delay

and loss rate for each network device. The fitness function depends on the flow

type and estimated value of corresponds QoE model (i.e., audio, video or data).

ACO has achieved 24.1% increasing for the maximal QoE value obtained by the

shortest path routing approach. Other Kmeans and crossover based modified

ACO algorithm was discussed in [263].

Another AI technique was developed for SDN QoE enhancement which pro-

posed a machine learning approach combined with adaptive coding in order to

provide a better QoE for video streaming services [273]. They discussed the ben-

efits of a centralized architecture, where the totality of the network is known, to

117

predict its status. The solution calculates approximately the quality needed for

a video to be streamed. Next the quality found by the ML-based algorithm will

be combined with the network situation to choose the right coding. Their work

is based on the measurement or prediction of image quality, based on calculat-

ing the structural similarities between two images, rather that the pixel to pixel

difference.

In general, the total work done on AI techniques to enhance network quality

in terms of verification, consistency, reachability, and correctness is far less than

the effort done in the security domain. This integration in a remote management

based network such as SDN is still a new trend with a promising future.

Cognitive learning based techniques have been proposed to enable dynamic

network control and real-time management to future communication technologies

[274]. Techniques such as self-organizing networks and autonomic network man-

agements were discussed in addition to SDN in the context of solving network

problems. The authors also emphasized the role on these techniques in support-

ing centralized traffic engineering and facing DoS attacks in SDN networks. A

similar approach was discussed in [275] for applying cognition tools for reinforc-

ing SDN both on the security and management domains. A new approach was

considered to ensure network reachability over the best route. This technique

was the Ant Colony Optimization (ACO) that was discussed earlier [276]. This

method studied the ant’s method of traveling for food and applied the concept

for packet routing.

Other work on network quality was using Atoms to detect violations of network-

wide reachability invariants on the data plane [277]. The authors proposed

an amortized quasi-linear algorithm to do the job. Delta-net was a real-time

data plane checker that incrementally maintains a compact representation about

118

packet flows of all packet in the network to support a broader class of scenarios

and queries. Still these approaches require inspecting each packet in the network

through forwarding them to the controller, and therefore introducing additional

load.

A verified network can be achieved only if it is based on a verified system.

A verified AI technique is essential to maintain a verified and secured network.

Verifying any AI system is an important issue that is becoming an interest in

the research domain. The authors of [278] discussed verified artificial intelligence

that are provably correct with respect to mathematically-specified requirements.

They described 5 challenges and 5 corresponding principles for achieving verified

AI.

Challenges:

Environment Modeling, Formal Specification, Modeling Systems that Learn, Gen-

erating Training Data, Scalability of Verification Engine.

Principles for Verified AI:

a. Introspect on the system to model the environment.

b. Formally specify end-to-end behavior of the AI-based system.

c. Develop abstractions for and explanations from ML components.

d. Create a new class of randomized formal methods for systematically gen-

erating training/test data.

e. Develop computational engines for run-time, quantitative, and learning-

based verification. Other discussed and proposed different Verification and vali-

dation tools for AI software. The authors of [279] argued regarding the complexity

and nature of AI techniques that makes them hard to be verified. In addition to

119

the different complex features, AI system can be nondeterministic which should

be taken into consideration when trying to verify and validate such systems.

2.9.1 Time Line Overview

The evolution of the terms “artificial intelligence” and “machine learning” are

shown for period 2010 till 2016 in the form of the number of intrusion detection

related publications for each particular year. From given results it is visible

that the usage of AI, and ML as its most prominent sub-field, has an increasing

tendency. Greater values for ML can be explained by lack of references to AI in

related studies [46]. A time line for different AI algorithms is shown for period

2010-2016. It is clear that NN is the most popular AI algorithm used for intrusion

detection compared to other algorithms, but with slight decrease in popularity

over the last couple of years. Then there are GA and SVM, where SVM is

constantly increasing in popularity. Out of the rest, SOM seems to be the least

popular, which could be explained by the lack of an intuitive approach to solution

of intrusion detection problem. It is clear from observed trends that AI composes

a significant part of the intrusion detection study, becoming more and more

popular tool of choice [46].

2.9.2 Machine Learning Hybrid techniques

ML Intrusion detection systems have generally been used to detect attacks but

in recent years, using two or more different techniques to form a hybrid system

has improved the overall performance. The following table shows the accuracy of

detection and data set used for selected reviewed ML/IDS papers from 2011 till

2016.

120

Figure 2.4: AI and ML Publications Since 2010

Figure 2.5: IDS Publications for Different AI Techniques

121

Table 2.11: IDS Accuracy of Detection and Data Set Used

Reference ML Tech-
nique

Attack Type Data set Accuracy

[31] K-means
+KNN+DT

R2L, U2R, DoS
and probe

KDDCup99 96.5%

[32] FL+GA Dos and Probe Real Life 97%

[33] GA+SVM

Dos
Probe
U2R
R2L

KDDCup99

99.1%
99.1%
97%

96.5%
[34] SVM R2L KDDCup99 96.1%
[35] SVM+BAT Al-

gorithm
Malicious NL-KDD 99.4%

[36] GA DoS, R2L, U2R
and Probe

KDDCup99 92.6%

[37] DT
Dos

Probe
NSL-KDD

82%
64%

[38] Cluster cen-
tre+ K-NN

Probe
Dos

KDDCup99
(6 dimension)

99.9%
99.9%

[39] SVM+K-NN DoS,R2L,U2R
and Probe

KDDCup99 87.4-91.7%

[40] SVM + hi-
erarchical
clustering
algorithm

DoS, R2L, U2R
and Probe

KDDCup99 95.7%

[41] ANN DDoS/Dos Real Life 99.4%

2.9.3 Intrusion Detection Selected Summary

The authors of [256] proposed a deep learning approach based on Self-taught

Learning (STL) to implement a Network IDS. They tested their work on the

NSL-KDD dataset.

The authors of [66] proposed a new method that illustrates network traffic as

images using convolutional neural network for malware traffic classification. The

authors argued that applying CNN on images rather than raw data results in

higher classification accuracy.

122

Deep learning techniques showed much improvements in the DDoS detection

domain. The authors of [260] proposed a deep learning multi-vector-based DDoS

detection system in an SDN environment. They discussed feature reduction de-

rived from network traffic headers. Their results show an accuracy of 99.75%

between normal and attack classes.

A list of ML-based proposed techniques is presented in the following table. As

shown, AI-based techniques are being used, offering high results. Thus, the prob-

lem remains in systemizing these techniques, making such solutions inflexible,

and vulnerable. The main issue is that these solutions are focusing on increasing

accuracy regardless of the other feature of a network that may be affected. First,

through redirecting traffic to a fixed point for processing and analysis, such as the

Controller, introducing high traffic overhead and security risks. Second, through

redirecting only packet headers, which decrease the overhead, but still inherits

similar weaknesses

A summary table of intrusion techniques and data used in selected reviewed

papers between 2014 and 2016:

2.10 Consistency and verification for network

resilience and quality

Ensuring consistency in a network is essential for any security system. To the

best of our knowledge, this is the first attempt towards an AI-based consistency

verification solution, in a privacy preserving architecture, aiming for more re-

silient networks. The following section describes the various consistency check

techniques that were proposed in the literature for different purposes.

Maintaining a current view of the whole network and being able to handle a

123

Table 2.12: Summary Table of Selected Reviewed Papers

Reference Year
Pub-
lished

Intrusion
Technique

Application Data set

[270] 2014 Anomaly Cloud Comput-
ing

Real life

[271] 2016 Anomaly Transport Real life
[272] 2014 Anomaly Substation Real life
[273] 2015 Signature Cloud Comput-

ing
Real life

[274] 2015 Anomaly /
Signature

Computer sys-
tems

Real life

[275] 2015 Anomaly Cloud Comput-
ing

ADFA-LD
and KDD98

[276] 2015 Signature Cloud Comput-
ing

Real life

[277] 2015 Signature Internet of
Things (IoT)

Real life

[278] 2015 Anomaly Information sys-
tems

KDD99 Cup

[279] 2015 Anomaly Cyber space KDD98 and
UNM

[280] 2015 Anomaly Computer sys-
tems

KDD99

[281] 2015 Signature Cloud Comput-
ing

Real life

[282] 2015 Signature Transport Real life
[283] 2016 Signature /

Anomaly
Computer sys-
tems

Real life

[284] 2016 Anomaly TelecommunicationReal life

large number of switches requires a significant amount of data exchange between

the SDN controller and the switches. In addition, all unmatched traffic on each

switch may get forwarded directly to the controller for it to analyze and insert

corresponding rules. In return, the controller offers the ability to incubate a set

of modules each having a different functionality. Each module is responsible for

inserting flow updates onto the switches, for the module to fulfill its purpose.

124

Each SDN switch, and after the network has converged, will have a set of flows

that control the packet exchange between switches. The flow updates process

and the flow table created at each switch raises a consistency flag. How can one

verify the update process and ensure the consistency of flows within and between

switches?

SDN consistency entails several domains that need to be addressed to be able

to answer the above question:

• Inter network consistency: The issue here stems from an update that affects

several switches in the network at the same time. The inconsistency may occur

if a switch is updated before another, leading in some cases to loops or other

failures. Another issue is how to ensure that a newly received packet would be

matched to the set of new rules only, when the packet passes during the update

process [280].

• Another consistency issue is how to preserve the benefit of centralization

when the model needs to decentralize in order to scale. How can one ensure

that a set of controllers over a large SDN network, each having a set of different

modules, would keep the network consistent and guarantee that each entering

packet would exit from the correct switch port or reach its intended destination?

In such a scenario, rules and policies are being installed from different controllers

and different modules.

• Verification of the consistency of a flow table in the same switch is needed.

This may be achieved by traversing the flow table to verify that no overlapping

rules exist and no contradicting rules are installed. After the current state of the

flow table is verified, the verification process will be limited to checking all new

incoming rules.

• The domain of formal consistency verification includes translating the flow

125

tables from all switches in the network to a formal language to be fed to one of the

real-time network verification tools. These tools work on querying the network

to verify a set of preconfigured properties. After modeling the network into

the verification scheme and configuring the desired properties, the verification

becomes a reachability analysis such that the system is free of inconsistencies,

there are no dead locks, and all required properties are satisfied.

The consistency related work in the literature focused on several main aspects.

The authors of [281] worked on state synchronization to ensure that redundant

controllers have the same sate information. While, the authors of [280] focused

on inter-flow consistency by proposing a scheduling process for multiple network

updates to be checked for overlaps or contradictions that may cause network

failure or even security threats.

The work of [282] proposed a third-party consistency verification check mod-

ule that includes route correctness and network security isolations in a single

domain. Other researches, such as [283], handled tunable consistency models to

enable controllers to tune their own configurations to enhance the performance

of applications running on top of them.

Several network verification tools, such as [284], [285], [286], have been devel-

oped to check for network inconsistencies such as: loops, dead ends and network

unreachability alerts. The main drawback of most of these techniques lies in the

security concerns of the solutions themselves, and their security side effects on

the network, in addition to the additional network traffic being exchanged and

redirected from one party to another.

The authors of [287] proposed employing online clustering techniques (se-

quential and incremental k-means), for the purpose of applying consistency and

performance in a large scale SDN network governed by multiple simultaneous

126

controllers. Their results show that when using adaptive controllers, they can se-

lect a feasible value between consistency and performance according to network

conditions.

The objective of SDN flow consistency verification is to ensure that a new

updated rule inserted in the system will affect the system as intended, and no

side effects will occur. Different techniques have been introduced into different

parts of an SDN network to solve the different issues that inconsistencies may

produce. Kang et al in [288] showed how UPPAAL can be used in formal modeling

and analysis of SDN OpenFlow. Podymov and Popesko in [289] showed that by

dividing the system into a set of all packet headers, a controller, a collection of

switches, and a group of network channels, we can translate the SDN network to

UPPAAL for verification. They also worked on verifying behavior scenarios using

this tool, although such a tool was not initially designed to verify SDN networks.

After the introduction of SDN, several researchers have proposed different

methods to verify the consistency of the entire network at once during the update

process. Khurshid et al proposed VeriFlow in [290], which is a layer between the

controller and the switch that checks network-wide correctness with low latency.

This layer consists of a graph of the whole network, and as an update is inserted,

it queries the graph for inconsistencies. Although this scheme showed low delays

and good performance; however, traversing the whole graph each time introduces

extra processing delays.

Ball et al presented in [285] VeriCon, a system for verifying that an SDN

program is correct for different topologies and network events. The verification is

done through expressing network-wide invariants as first-order logic formulas. Liu

et al in [280] proposed an abstraction layer for inter-flow consistency to verify two

relationships, spatial isolation and version isolation. They discussed an update

127

scheduling algorithm based on a dependency graph. The presented module still

depends on traversing the whole graph and verifying only these two relationships.

Moshref et al in [291] discussed FAST (flow-level state transition), whereby

the controller preinstalls a state machine, and switches can record flow state

transitions by matching incoming packets to installed filters. This system enables

the switches to take dynamic actions based on local information. Although it

was not mentioned in this paper, but such a system can introduce inconsistency

issues in terms of end to end verification, since it can only be used for flow table

verification in a single switch.

Skowyra et al. proposed Verificare in [286], a verification platform to enable

formal verification of SDN networks as components of a larger domain specific

system. The purpose of this platform was to provide safety, security, and perfor-

mance to SDN applications through formal verification. Mahajan and Watten-

hofer in [292] presented an architecture for consistent updates in SDN. They pro-

posed minimal algorithms to ensure a loop-free network after the update process.

Depending on parent/child relationships, nodes could be updated in a consistent

manner. Although this work showed promise, but it was limited to testing loop

inconsistencies.

Sethi et al presented in [293] an abstraction for model checking controllers for

a large number of packets exchanged in the network. They validated the utility

of these abstractions through two applications: a learning switch and a stateful

firewall.

Only few researchers took the work a step further toward designing a con-

troller module that is the main gateway of all updates to be downloaded onto the

switches. Such a module is presented in this paper, and it collects the necessary

information to verify the consistency of each flow update using a third party for-

128

mal verification tool. Centralizing the update process makes it easier to verify

the consistency of the flows in a single switch and in the entire network.

The following table summarizes the recent SDN solution for maintaining net-

work quality by either debugging or verifying network consistency or correctness:

Table 2.13: SDN Verification for Network Quality (1)

Group Solution Main Purpose Description

Debugging

ndb [137] gdb alike SDN
debugging

Basic debugging primitives that
help developers to debug their net-
works.

NetSight [138] multi-purpose
packet history

Allows to build flexible debugging,
monitoring and profiling applica-
tions.

OFRewind
[139]

tracing and re-
play

OFRewind allows operators to do
a fine-grained tracing of the net-
work behavior. Operators can de-
cide which subsets of the network
will be recorded

PathletTracer
[140]

inspect layer 2
paths

Allows inspecting low-level for-
warding behavior through on-
demand packet tracing capabilities

SDN tracer-
oute [141]

query OpenFlow
paths

Allows users to discover the for-
warding behavior of any Ethernet
packet and debug problems regard-
ing both forwarding devices and ap-
plications.

Other SDN solutions aim to improve network quality through enforcing mea-

surement and monitoring applications or introducing different traffic engineering

modules. Recent works in this domain are summarized in the following table:

129

Table 2.14: SDN Verification for Network Quality (2)

Group Solution Main Purpose Description

Verification

Assertion lan-
guage [142]

debug SDN apps Enables assertions about the data
plane on the apps with support to
dynamic changing verification con-
ditions

Cbench [143] evaluate Open-
Flow controllers

The Cbench framework can be
used to emulate OpenFlow switches
which are configured to generate
workload to the controller

FLOVER
[144]

model checking
for security poli-
cies

FLOVER provides a provably cor-
rect and automatic method for ver-
ifying security properties with re-
spect to a set of flow rules commit-
ted by an OF controller

FlowChecker
[123]

flow table config
verification

A tool used to verify generic prop-
erties of global behaviors based on
flow tables

FLOWGUARD
[99]

verify security
policy

Provides mechanisms for accurate
detection and resolution of fire-
wall policy violations in OpenFlow-
based networks

FlowTest
[145]

verify network
policies

Provides the means for testing
stateful and dynamic network poli-
cies by systematically exploring the
state space of the network data
plane

NetPlumber
[146]

real time policy
checking

NetPlumber uses a set of poli-
cies and invariants to do real time
checking. It leverages header space
analysis and keeps a dependency
graph between rules

130

Table 2.15: SDN Verification for Network Quality (3)

Group Solution Main Purpose Description

Verification

NICE [147] remove bugs in
controllers

Its main goal is to test controller
programs without requiring any
type of modification or extra work
for application programmers

OFCBenchmark
[148]

evaluate Open-
Flow controllers

Creates independent virtual
switches, making is possible to
emulate different scenarios. Each
switch has its how configuration
and statistics

OFTEN [149] catch correct-
ness property
violations

A framework designed to check
SDN systems, analyzing controller
and switch interaction, looking for
correctness condition violation

OFLOPS
[150]

evaluate Open-
Flow switches

A framework with a rich set of tests
for OpenFlow protocol, enabling to
measure capabilities of both switch
and applications

OFLOPS-
Turbo [151],
[152]

evaluate Open-
Flow switches

Framework that integrates
OFLOPS with OSNT [152], a
10GbE traffic generation and mon-
itoring system based on NetFPGA

PktBlaster
[153]

emulation /
benchmarking

Integrated test and benchmarking
solution that emulates large scale
software defined networks

SDLoad [154] evaluate Open-
Flow controllers

A traffic generation framework with
customizable workloads to realisti-
cally represent different types of ap-
plications

VeriCon [155] verify SDN apps A tool for verifying the correctness
of SDN applications on large range
of topologies and sequences of net-
work events

VeriFlow [98] online invariant
verification

It provides real time verification ca-
pabilities, while the network state is
still evolving

131

Table 2.16: SDN Solutions for Network Quality (1)

Group Solution /
Application

Main Purpose Controller Southbound
API

Measurement & Monitoring

BISmark
[156]

active and
passive measure-
ments

Procera
framework

OpenFlow

DCM [157] distributed and
coactive traffic
monitoring

DCM con-
troller

OpenFlow

FleXam [158] flexible sampling
extension for
OpenFlow

FlowSense
[159]

measure link uti-
lization in OF
networks

OpenFlow

Measurement
model [160]

model for OF
switch measure-
ment tasks

OpenFlow

OpenNetMon
[161]

monitoring of
QoS parameters
to improve TE

POX OpenFlow

OpenSample
[162]

low-latency
sampling-based
measurements

Floodlight modified
sFlow

OpenSketch
[163]

separated mea-
surement data
plane

OpenSketch “OpenSketch
sketches”

OpenTM
[164]

traffic matrix es-
timation tool

NOX OpenFlow

PaFloMon
[165]

passive monitor-
ing tools defined
by users

FlowVisor OpenFlow

PayLess [166] query-based
real-time mon-
itoring frame-
work

Floodlight OpenFlow

132

Table 2.17: SDN Solutions For Network Quality (2)

Group Solution /
Application

Main Purpose Controller Southbound
API

Traffic Engineering

ALTO VPN
[167]

on-demand VPNs NMS [270],
[271]

SNMP

Aster*x [168] load balancing NOX OpenFlow
ElasticTree
[169]

energy aware routing NOX OpenFlow

FlowQoS
[170]

QoS for broadband
access networks

POX OpenFlow

Hedera [171] scheduling / opti-
mization

—- OpenFlow

In-packet
Bloom filter
[172]

load balancing NOX OpenFlow

MicroTE
[173]

traffic engineer-
ing with minimal
overhead

NOX OpenFlow

Middlepipes
[174]

Middleboxes as a
PaaS

middlepipe
controller

OpenQoS
[175]

dynamic QoS routing
for multimedia apps

Floodlight OpenFlow

OSP [176] fast recovery through
fast-failover groups

NOX OpenFlow

PolicyCop
[177]

QoS policy manage-
ment framework

Floodlight OpenFlow

ProCel [178] Efficient traffic han-
dling for software
EPC

ProCel con-
troller

—-

Pronto [179],
[180]

Efficient queries on
distributed data
stores

Beacon OpenFlow

133

Table 2.18: SDN Solutions for Network Quality (3)

Group Solution /
Application

Main Purpose Controller Southbound
API

Traffic Engineering

Plug-n-Serve
[181]

load balancing NOX OpenFlow

QNOX [182] QoS enforcement NOX Generalized
OpenFlow

QoS for SDN
[183]

QoS over heteroge-
neous networks

Floodlight OpenFlow

QoS frame-
work [184]

QoS enforcement NOX OF with QoS
extensions

QoSFlow
[185]

multiple packet
schedulers to im-
prove QoS

—- OpenFlow

QueuePusher
[186]

Queue management
for QoS enforcement

Floodlight OpenFlow

SIMPLE [187] middlebox-specific
“traffic steering”

Extended
POX

OpenFlow

ViAggre SDN
[188]

divide and spread
forwarding tables

NOX OpenFlow

134

Chapter 3

Previous Work

The road towards integrating AI with SDN efficiently, and via new techniques,

was motivated by our previous work on SDN security, verification, consistency,

and the application of SDN in different fields such as VANET, MPTCP, and

QUIC, aiming to enhance both security and network quality. The results of these

studies were published in various articles as discussed below.

3.1 SDN Security Plane

SDN Security Plane: An Architecture for Resilient Security Services:

We proposed an SDN security design approach, which strikes a good balance

between network performance and security features. We showed how such an

approach can be used to prevent DDoS attacks targeting either the controller or

the hosts in the network, and how to trace back the source of the attack. The

solution was based on introducing a third plane, the security plane, in addition

to the data and control planes. The security plane was designed to exchange

security-related data between a third-party agent on the switch and a third-party

135

software module alongside the controller. Our evaluation showed the capability of

the proposed system to enforce different levels of real-time user-defined security

with low overhead and minimal configuration [294].

3.2 SDN Verification plane

SDN Verification Plane for Consistency Establishment:

We proposed an SDN verification layer based on formal techniques to establish

flow consistency between SDN switches before the flow insertion process takes

place. We showed how such an approach can be used to prevent loopbacks,

deadlocks, security domain breaches, and to verify the time delay for a controller

to update a switch versus the switch to forward a packet. This last point ensured

that the update process is synchronized, and no packet would be checked against

old rules during the update process. The solution was based on introducing a

verification plane enabling our verification module to interact with a third-party

verification tool (UPPAAL) translating the controller’s view of the network to a

state machine and verifying each flow before being installed. The verification tool

checks each flow against a predefined set of rules by applying the new flow to the

scheme and testing if a packet can pass from point A to B without violating these

rules. Our evaluation showed the capability of the proposed system to enforce

different levels of consistency verification in case of flow update and topology

change in an SDN network [282].

136

3.3 SDN and MPTCP

SDN for MPTCP: An Enhanced Architecture for Large Data Transfers in Data-

center Layer-2 Networks:

Multi-Path TCP (MPTCP) boosts network performance by aggregating band-

width over multiple paths using sub-flows of the same TCP connection. However,

MPTCP suffers from three limitations: 1) it is an end-to-end protocol with no

control over the network routes, and sub-flows might end up traversing the same

links, 2) it has no dynamic control over choosing the optimal number of sub-flows

to achieve maximum throughput, and 3) its performance may degrade due to the

large number of out-of-order caused by the heterogeneous paths traversed. Soft-

ware Defined Networking (SDN), being centralized by nature, provides a global

view of the network. When integrated with MPTCP, SDN improves resource

utilization. We proposed an SDN-enhanced MPTCP that achieves higher data

rates while transferring big-data in large-scale L2 networks such as those found

in datacenters. Test results showed a 20% to 30% increase in the throughput over

regular MPTCP [295].

3.4 SDN and VANET Security

SDN VANETs in 5G: An Architecture for Resilient Security Services:

Vehicular ad Hoc Networks (VANETs) have been promoted as a key tech-

nology that can provide a wide variety of services such as traffic management,

passenger safety, as well as travel convenience and comfort. VANETs are now

proposed to be part of the upcoming Fifth Generation (5G) technology, integrated

with Software Defined Networking (SDN), as key enabler of 5G. The technology

of fog computing in 5G turned out to be the perfect solution for faster processing

137

in delay sensitive application, such as VANETs, being a hybrid solution between

fully centralized and fully distributed networks. We proposed a three-way inte-

gration between VANETs, SDN, and 5G for a resilient VANET security design

approach, which strikes a good balance between network performance and secu-

rity features. We show how such an approach can secure VANETs from different

types of attacks such as Distributed Denial of Service (DDoS) targeting either

the controllers or the vehicles in the network, and how to trace back the source of

the attack. High mobility in VANETs poses a major challenge in the face of fast

processing and low delay, which was made possible by the integration of SDN

and fog computing represented by the Road-Side-Controllers (RSC) architecture

and the introduction of the security plan, alongside the data and control planes

of SDN. Our evaluation shows the capability of the proposed system to enforce

different levels of real-time user-defined security, while maintaining low overhead

and minimal configuration [296].

3.5 SDN and QUIC

SDN for QUIC: An Enhanced Architecture with Improved Connection Establish-

ment:

Quick UDP Internet Connection (QUIC) boosts web traffic performance by

solving a number of transport-layer and application-layer problems experienced

by modern web applications, while requiring little or no change to applications.

QUIC provides key advantages to HTTP/2 such as reduced connection estab-

lishment latency, improved congestion control, multiplexing without head-of-line

blocking, forward error correction, and connection migration. However, QUIC

suffers from three limitations: (1) it performs poorly under high bandwidth and

138

large traffic conditions, (2) it suffers from some security issues, (3) it implements

static Forwarding Error Correction (FEC) XOR “group” mechanism, which per-

forms poorly under variable network conditions, influencing utilized bandwidth.

Software Defined Networking (SDN), being centralized by nature, provides a

global view of the network. When integrated with QUIC, SDN improves re-

source utilization and network security. We propose an SDN-enhanced QUIC

that achieves higher bandwidth utilization and secure resiliency while transfer-

ring large amounts of traffic over the internet [297].

3.6 SDN Security review

Software-Dened Networking (SDN): The Security Review:

SDN provides network operators with significant visibility and granularity of

their networks leading to more flexibility in programming these networks. With

every new technology paradigm, two concerns would typically arise regarding se-

curity and resilience of the network. We provided a comprehensive SDN security

review including the different vulnerabilities and attacks that SDN suffers from.

The objective was to entice the SDN community to address such issues inherently

and not as an afterthought. The paper also reviewed the different security pro-

posals that have been presented or implemented for SDN and by SDN. A general

discussion was included to shed light on the pending security issues and some

proposed solutions were presented [298].

3.7 SDN and 5G

SDN & Edge Computing: Key Enablers towards the 5G Evolution:

139

“2020 and Beyond” was announced by the ITU to be the era of the next mobile

network generation. After (LTE)/4G, 5G is promising to be a major evolution

in the communication domain, not simply because of the acceleration of the data

rate, but rather due to the new applications. The challenging objectives such as

minimum user-plane latency, uninterruptable connectivity, high Quality of Ser-

vice (QoS), high data rate communications and network capacity, while dealing

with ubiquitous and heterogeneous network access call for a major overhaul of the

whole mobile network architecture. The limitations of today’s mobile systems,

derived from their dependency on hardware-based designs, led to inflexible and

limited architectures. It is essential to have dynamic and flexible management

systems at several levels, starting from the Radio Access Network (RAN), pass-

ing by the Evolved Packet Core (EPC), up to the application interfaces. These

future demands and the requirement for a self-adaptive system can be realized by

adopting the SDN paradigm, which leads to the integration of SDN in the net-

work components of the upcoming 5G technology. SDN has its positive impact in

the communication world from several aspects; it will provide 5G with a smooth

transition and unified management among various wireless standards and among

different RANs and wired core networks. Furthermore, SDN can optimally or-

chestrate the interference between cells, handovers, roaming process, routing, and

signaling between access and core networks, management of the gateways, and

even the management of user data. Furthermore, the new bandwidth and latency

requirements, and the ability to support the innovative 5G applications, cannot

be satisfied by centralizing the data in the cloud. Pushing the data to the user’s

proximity will be vital for some time-critical applications, which is a requirement

supported by edge computing. Therefore, the geo-distribution of data requires

an optimal networking design for these edges. On top of this distributed data

140

layer, the Network Function Virtualization (NFV) coupled with SDN, promises

easier management of such an infrastructure. We investigated how SDN can be

integrated into the 5G network architecture at different levels (RAN, EPC, secu-

rity, etc.), and highlighted the solutions, challenges and benefits resulting from

such integration. Also, we presented the mobile edge computing concept, its in-

tegration with SDN, and its implications on 5G. We reviewed the designs and

architectures that have been proposed in this area, and others that are under

development, including the innovative applications and use cases that will be en-

abled by the SDN-5G combination. Our work was concluded by proposing an

architecture for SDN-5G for telecom operators [299].

3.8 Diameter Security

Securing Diameter: Comparing TLS, DTLS, and IPSec:

The Diameter signaling protocol plays a critical role in mobile networks. Di-

ameter manages a crucial function in mobile systems since it is designed for

activity coordination between Internet Protocol (IP) network elements such as

online charging systems, policy servers, mobility gateways, among others. As op-

erators migrate their networks to LTE, Diameter provides new services and im-

plements more sophisticated policy use cases through new signaling techniques.

All this confirms the importance of securing Diameter. We performed a com-

parative study on three security protocols used to secure Diameter (TLS/TCP,

DTLS/SCTP, and IPSec). The comparative analysis focused on three main as-

pects: transmission (header), connection establishment, and processing overhead.

Each aspect in each protocol was investigated in details and the results showed

that securing Diameter using TLS introduces fewer RTTs compared to DTLS,

141

with IPSec introducing the highest number of RTTs. On the other hand, DTLS

requires the minimum processing overhead, TLS comes in second place with a rel-

atively small difference, and IPSec introduces the highest processing delay [300].

3.9 Machine Learning for network Resilience

After all this work, we started our work on the final goal: Machine learning for

Network resilience. From that day we have managed to publish a series of 4

papers on this topic. Each paper is an extension of its predecessor with a new

contribution towards our ARS system. All the work and research in these papers

and more will be discussed in details throughout this report. The papers were as

follow:

A- Machine Learning for network Resilience: A start of a journey [301].

B- Machine Learning for network Resilience: A second Step towards ARS.

C- Machine Learning for network Resilience: Midway towards ARS.

D- Machine Learning for network Resilience and Consistency [302].

142

Chapter 4

ARS Introduction

Our vision towards a more resilient network was inspired by our initial work on

the security and consistency of programmable networking. The following section

shows the road map towards ARS.

4.1 The Road Towards ARS

Our work started with SDN and its features. We have researched, analyzed and

contributed to the SDN community throughout the years. Our interest in SDN

have grown, but with time our focus shifted from SDN itself to the contributions

that SDN would offer as a programmable network architecture to other domains.

Thus we started working on the security features that SDN can provide to other

networking technologies. It is from this point, that we contributed in multiple

of articles involving the integration of SDN with VANETs, QUIC, MPTCP, 5G.

The goal was to provide new architectures for these technologies to overcome

their security issues or create a more secure environment for them to deploy.

At this point, we were started arguing about the necessity of a new security

143

solution that is general enough to serve different networking technologies with

minimal changes. Also, a solution that is specific enough to target a single or

multiple attacks, regardless of the signature or features of that attack being large

or small. With time we argued the necessity of network verification and maintain-

ing consistent network. We researched and contributed in both these domains,

where we contributed in the first SDN Security and Verification Planes. These

publications were the inspiration of different researches in the future.

After that point, we knew that reaching our goal would require more that

standard techniques. So, we started investigating Machine Learning and AI to

fulfill our goal. We researched and tested multiple AI techniques for the role of

intrusion detection and mitigation. We also used both supervised and unsuper-

vised techniques to detect both know and unknown attacks. We also worked on

the integration between SDN and AI to create a resilient network that would

stand strong on both security and consistency basis. The following sections will

briefly discuss our work on the SDN Security plane and SDN Verification Plane

that lead us to the ARS architecture.

4.2 SDN Security Plane

The need for security became more critical after the introduction of SDN due to

the centralized control and the different vulnerabilities that arise with any new

network architecture and associated protocols. Our contribution in this paper is

summarized as follows:

1. The proposal of a general scheme to be used as a third party for different

exhaustive processing services in an SDN network.

2. The proposal of SDN real-time DDoS prevention technique based on the

144

Figure 4.1: SDN Security Plane Architecture

previous scheme.

3. The proposal of trace back technique to identify the origin of an attack in

case of IP spoofing and to block it from the source.

4. The implementation and test of the proposals in different environments.

Our proposal stems from the idea that security analysis requires both a pro-

cessing engine and additional resources. Benefiting from what SDN has to offer

in the area of software networking, we introduce a third plane in SDN relative

to the data and control planes. The Security Plane, shown in Figure 1, provides

a connection between the switches and the controller. An SDN software agent

resides alongside the software switch, such as Open vSwitch (OVS), which con-

nects to the agent using a virtual port, and a rule is inserted on each switch to

forward traffic to the agent independent of the whole network. The agent on the

other hand, establishes a connection to the controller via a port different than

the control-plane listening port and from a unique source port. At the other end

of this connection, a third party software module runs next to the SDN controller

software, and possibly on a different computing platform.

Each agent holds a specific ID and is connected to only one OVS bridge

145

through a virtual port. The agent can either use the same physical port as

the control plane or a different one, although the second choice is recommended

for total separation. A different connection (from a different source port) is

created for the security plane connection. The agent should be capable of running

lightweight scripts to analyze part of the traffic locally before uploading it to the

centralized security module. In this case, the processing load is balanced between

the agent module and the security module thus less overhead is placed on the

controller.

The most important part of the architecture is the security module at the

controller side. It is responsible for collecting and analyzing all data traffic coming

from all agents to detect abnormal events and to trigger alarms to the controller

to take necessary prevention actions. For this last point, a connection with the

controller is required to exchange rules and detection-related data. The security

module communicates with the controller, which in our case is POX, through

the REST API. The security module includes from one side as an interface with

the downstream agents on the switch for the purpose of accepting connections

and from the other side an interface for the detection engine to read incoming

packets.

The detection engine is designed and written in Pyretic, an open-source pro-

gramming language that enables programmers to specify network policies at a

high-level of abstraction. The framework that runs the detection mechanism is

Resonance, an SDN network management framework where operators define a

network policy as a Finite State Machine (FSM). The transition between states

is triggered by different types of dynamic events in the network. Samples of

the states that we used are: Allow and Block. The term used for a Resonance

platform implemented in Pyretic is PyResonance. The Pyretic monitoring and

146

Figure 4.2: Security Module – Controller REST Connection

detection services are based on selected policies and query policies, as shown in

the following tables, to calculate some predefined events. Here, any policy script

can be implemented to perform an output action after analyzing the received

data. The detection engine, upon a state change, triggers an alarm to the con-

troller through REST and sends the appropriate rule for the controller to insert

into the switches to block the attack. Another feature is the ability to send a

trigger to the controller, which can then run a script to communicate with the

switches through OVSDB to change, as an example, network interfaces or policy

to start an IPsec session over a certain link.

Table 4.1: Selected Policies

Syntax Description
identity Returns original packet
none Returns empty set
Match(f1=f2) Identify if field f1 matches field f2 / None

otherwise
Modify(f1=f2) Returns packet with field f1 set to f2
Fwd(p) Modify output port equal p
Flood() Returns one packet for each local port on

the network spanning tree

147

Table 4.2: Query Policies

Syntax Description
Packets(limit=n,
group by=(f1,f2,))

Callback on every packet received
for up to n packets identical on
fields f1, f2,

Count packets(interval=t,
group by=(f1,f2,))

Count every packet received Call-
back every t seconds providing
count for each group

Count bytes(interval=t,
group by=(f1,f2,))

Count bytes received Callback ev-
ery t seconds providing count for
each group

4.2.1 DDoS Prevention Technique

Malicious hosts and switches can launch DDoS attacks by flooding the network

with traffic to arbitrary hosts or to the controller itself in order to exhaust re-

sources or to change the total view of the network at the controller, thereby

affecting the forwarding process in the data plane or denying the controller its

services. IP spoofing is one of the most used techniques in these kinds of attacks

that enable the real source to remain anonymous during the attack.

Our proposed technique aims at detecting DDoS attacks from malicious hosts

or bots aimed at other hosts or at the controller. The proposed scheme is sum-

marized as follows:

a. Analyzing collected packets targeting a specific IP address and tracking its

packet count/sec in order to compare it to a threshold.

b. Keeping a database for mapping MAC-IP-Switch-Port binding for the

purpose of detecting spoofed IPs and packets.

c. Upon detection, an alert is sent along with the source IP of the attacker in

order to be blocked.

d. A trace back procedure is used to identify the origin of the attack Switch-

Port so it can be blocked from its origin in case of IP spoofing.

148

Figure 4.3: Overall Procedure Scheme

The overall procedure is described in the following steps:

At the switch level:

a. The preconfigured MAC-IP-Switch-Port binding allows the controller to

track each host in the network. An unauthorized (spoofed) packet coming from

a certain port would trigger an alarm when unmatched to the binding rules on

the switch and then sent to the security module at the server side.

b. The security agent on the switch forwards all packet headers to the security

module including unmatched spoofed packets through the security plane.

c. The attack trace back policy is applied at the switch level by setting

the source IP of the IP spoofed packets, that don’t match the binding rules, to

signature IP for only that ingress port. Only the modified packets will be sent to

the security module.

At the server level: a. The security module listens for incoming packets from

the agent; a sample flow chart is shown in Flow Chart 1. Upon receiving modified

149

Figure 4.4: Attack Detection FlowChart

packets, it groups them according to signed IP addresses. This modification will

allow the controller to identify the source port of the attack upon receiving such

signed packets. These packets are considered as a DDoS attack packets only if

their count exceeds the DoS threshold, else they will be treated as unauthorized

packets and will be blocked. In both cases, the prevention method will be applied

on that source port only.

b. After the detection process sees a state change, it forwards a command

through the REST API to the controller to insert an IP blocking rule on all

switches or on a single port in case of an IP spoofing DoS attack.

c. As mentioned in the previous sections and based on the sample in the

following tables, Packet In messages are being checked for invariances that would

trigger an alert when a certain policy is violated by a group of packets.

Our proposed scheme is designed in such a way that it can detect an attack

150

Table 4.3: Sample of Invariant Verification

Data Target Invariant
Packet Packet Spoofing MAC-IP-Switch-Port

PACKET IN

Table 4.4: Sample of Default Policies Being Checked

Trigger Policy
PACKET IN Authorized MAC-IP-Switch-Port

Binding ONLY

in real-time using minimal controller resources and with minimum configuration.

Not only it proved to detect DDoS attacks, but to prevent malicious hosts from

corrupting the controller’s view of the whole network by spoofing their IP ad-

dresses.

4.2.2 Testing and Simulation

We implemented and tested each module separately to verify its correctness. The

next step was to test the connectivity layers between the switch and the agent

from one side, and the security module and the controller from the other. The

setup was done initially using a single Linux (Ubuntu 14.04.2) virtual machine

using VirtualBox (3.2.10). We installed Mininet as a network emulator and used

both POX and OVS version 2.4.0 as the controller and software switch, respec-

tively.

At the switch level, we implemented the software agent that receives pack-

ets from one virtual port and sends them through another. At the server level,

PyResonance was used to write the connectivity protocol with the controller

through REST. After the initial connectivity is established, the agent opens a

second connection to TCP port 6454 which is the security module port on the

server. The security module listens for incoming connections on this port and

151

accepts connections coming from agents with authorized IDs registered in a pre-

defined database. At this stage, the setup is completed and a rule is inserted, via

POX, on all switches in order to additionally forward the incoming packets to

the agent’s port. Then, the packets are verified to have successfully reached the

security module through the security plane. We tested triggering the blocking

rule insertion on the controller by matching specific types of messages received

from agents, and the tests proved to be successful.

In order to test DDoS prevention, we inserted POX code that binds the secu-

rity key (MAC-IP-Switch-Port) together for every new incoming host, and that

only accepts authorized connections after the first connection. We considered a

number of ports to be host-only ports and applied the policy on these ports. An-

other feature that the controller provides is attack trace-back, which was achieved

by creating a set of rules to check the authenticity of each packet coming from

host-only ports, and if none of the rules matched, the default rule is to sign the

packet by setting a signature IP, specific for each port, in the source IP field and

then to forward the packet to the agent. A third feature of the POX controller is

that it was extended to receive commands through the REST interface from the

security module, and to insert flows in switches accordingly. These steps were

successfully tested on a single and double switch networks.

Next, we test the DDoS analysis and detection in the security module. The

code is based on receiving incoming packets from the agent and grouping them

according to destination IP. A counter for each group was created to keep track

of the frequency of these groups. The threshold of a DoS attack depends on the

network environment. In our case, and for testing purposes, we used a threshold

of 100 packets per second. When the threshold is exceeded, an alarm with the

source IP is sent to the controller. In case of IP spoofing and upon receiving a

152

signed packet, the controller is informed of the presence of an unauthorized host

to block the source host-only port. Each of the three stages showed successful

responses in real-time and in the early stages of an attack.

We launched attacks in two different ways; first, we used ICMP flooding from

different hosts within Mininet, with OVS connected to a local controller using

the loopback IP 127.0.0.1 and destination port 6633. The second approach was

to use three virtual machines, two of which are Ubuntu and the third was kali

Linux in order to demonstrate different types of DoS attacks. The first Ubuntu

machine was running Mininet and OVS, and it was connected to a remote POX

controller on the second Ubuntu machine. We installed OVS on the kali Linux

machine and it was successfully connected to the remote POX controller. Attacks

using hping3 and hulk were demonstrated assuming that one of the hosts acts as

a web server in the network. The testing of each of the stages over this setup

was successful and the attacks were dropped as was shown using tcpdump on

the hosts and represented in Figure 5. Blocking the attack in its early stages to

enable real time protection is a matter of assigning a threshold relative to the

maximum tolerance of the controller or the host under attack. The tests have

shown an average response time 3s from the start of an attack till total blockage,

while the controller kept functioning normally. The compromise between setting

a low threshold or keeping a gap between the threshold and the victim’s tolerance

is an environment-dependent issue.

4.3 SDN Verification Plane

The need for flow consistency verification becomes more critical with SDN due

to the centralized control, the various modules that run on the controller, the

153

network architecture, and the fact that the switches are unable to make dynamic

decisions and should strictly apply the flow table rules. Our contribution in this

paper is summarized as follows:

1. The introduction of a verification module to be used as a gateway for flow

insertion from the controller downstream to all SDN switches.

2. The introduction of a verification plane linking the verification module to

a third party formal verification tool.

3. A scheme to apply consistency verification on all new updates, including

flow insertion and topology updates.

4. The implementation and testing of the proposals in different environments.

Our solution stems from the idea that consistency analysis requires both a full

view of the network topology and intercepting each new update being installed.

Benefiting from what SDN has to offer, we introduce a third plane in SDN rel-

ative to the data and control planes. The Verification Plane, shown in Figure

1, provides a link between the verification module and a third party verification

tool. The verification module at first sends all necessary information to the verifi-

cation tool, in our case UPPAAL, so a state machine representation of the whole

topology could be sketched using this tool. This scheme will be divided into sub

networks representing the security domains in our topology where a packet from

one domain should not pass to the other. After the initialization stage is com-

pleted, the verification module acts by receiving all flow requests from all modules

in the controller. The module will send each update to UPPAAL to be verified

for consistency with the switch flow tables and to verify that no violations would

occur if this update is installed.

The verification module will install the updates onto the destination switches

after receiving a verified signature from UPPAAL. At the same time, the topolo-

154

Figure 4.5: SDN Verification Architecture

gies at the verification tool are also accordingly updated.

The most important part of the architecture is the verification module on

the controller side. It is responsible for analyzing all topology changes, bene-

fiting from the controller’s view of the network, and sending them to UPPAAL

to update its own topologies and hence to maintain a synchronized view. The

verification module communicates with the controller, which in our prototype

implementation is POX, through a REST API, as shown in Figure 2. The veri-

fication module consists of two main sub-modules:

a. A verification sub-module which is part of the controller, responsible for

collecting and sending data to the second sub-module.

b. A verification layer that communicates with controller through a REST

API accepting data from the first sub-module and forwarding them to the veri-

fication tool. This sub-module translates the data to UPPAAL format.

The verification module, upon receiving an inconsistency alarm from the ver-

ification tool, sends an alert to the controller along with the unverified update

and discards the flow in question.

155

Figure 4.6: Verification Module – Controller REST Connection

4.3.1 SDN Verification Tool

UPPAAL is a model-checking tool that we used to verify real-time properties of

an SDN network. The update verification is based on translating SDN topologies

to a network of timed automata. UPPAAL illustrates networks of finite timed

automata [26] as an input model. The modeling is based on state machines

and is done according to the currently installed rules. Each node (switch) is

guarding a matching rule on the incoming packet port and executes some updates

on the network parameters according to the output decision. Different system

parameters are shown in following table.

Our proposed approach aims to install the new update into the state machine

topology and query this topology to verify that no predefined rules are violated.

The proposed rules are summarized as follows:

a. Verifying a loop-free network through setting a time limit for this packet

to reach its destination.

b. Checking deadlocks by checking that each node knows how to forward this

packet, and that this packet eventually reaches its destination.

c. Checking for security breach attempts on our security domains through set-

156

Table 4.5: UPPAAL Parameter Samples

Parameter Description
sendingPacket? A function triggering packet for-

warding between nodes
CurrentPosition A parameter that is set to next

position when a certain rule is
matched

packetRule The rule being matched
RequestToController A new flow being requested from

the controller upon receiving a new
unmatched packet

repltFromController Flow update being verified
Finish! Returning from HostB to HostA

state upon receiving the packet to
the final destination

ting fixed waypoints on the gateways between the security domains and verifying

that no packet passes through these waypoints.

d. Verifying the update time delay by checking that the delay time for an

update to reach a switch coming from the controller is always less that the time

needed for the packet to be forwarded from the upstream switch to that same

switch.

The most useful technique to verify network properties is to sketch a model of

the entire network using the controller’s view, and then run queries on the model

to verify these properties. However, checking the entire network’s graph every

time a new flow is installed fails to provide real-time response and introduces extra

processing overhead. Instead, and since most forwarding rule updates affect only

a small portion of the overall topology, we could divide our topology into sub

networks and query the relevant parts each time an update is to be checked. In

our case, we choose to divide the network into security domains to further verify

that our technique can also check the update for security misconfiguration.

157

Figure 4.7: Overall Verification Scheme

The overall procedure is described in the following steps:

At the modules level

a. The first verification module is inserted between the controller’s modules

and the SDN switches and it is responsible for receiving all flow insertion and

modification requests and sending them for verification.

b. When a single flow is verified, it forwards the flow down the control plane

to the destination switches.

c. If the flow is not verified, the module drops it and sends an alert back to

the origin.

d. The second verification module accepts the “to be verified” flows from the

first module through a REST API. Then, this module forwards the flows to the

verification tool through the verification plane.

e. To construct an SDN topology description using UPPAAL we need to

translate the data into UML where each switch is represented as a box containing

158

an ID, flow table, and physical characteristics. Each flow table entry has an input

port, matching header entry, lifetime, and output port. Different tools were

considered for this purpose including the cross-platform diagram editor DIA.

At the UPPAAL level

a. The verification tool listens for incoming updates and changes its view of

the network accordingly. After that, the graph is queried using the preconfigured

properties.

b. The verification graph is composed of state machines representing the

switches and another graph representing the controller’s different states.

c. Each node is guarding a matching rule on the incoming packet port and

changes certain system variable when this rule is invoked.

d. If all the properties are verified, a notification will be sent to the verification

module. In this case, the new topologies are saved. If an inconsistency flag

is captured, the module is also notified and new changes to the topologies are

discarded and the old view is restored.

Our proposed scheme is designed in such a way that it can detect an incon-

sistency or verify a flow in real-time using minimal controller resources and with

minimum configuration. Not only does it verify the consistency of the inserted

rules, but it can also track the physical topology changes, again benefiting from

the controller’s view, and query them against unexpected or unwanted behaviors.

4.3.2 Testing and Simulation

We implemented and tested each module separately to verify its correctness; more

work is in progress to reach a complete dynamic system. The setup was done

initially using a single Linux (Ubuntu 14.04.2) virtual machine using VirtualBox

(3.2.10). We used Mininet as a network emulator, and POX and OVS version

159

Figure 4.8: SDN Topology State Machine in UPPAAL

2.4.0 as the controller and software switch, respectively.

At the verification tool level, we implemented the SDN topologies in UPPAAL

(shown in the Figure) and defined all system parameters and characteristics.

Our proposed test topology is composed of two hosts, four switches and a single

controller. Each node in the topology is identified by a currentPosition and

guarding a rule that controls the packet’s next position. Each time a packetRule

is to be checked, a certain path is followed and the set of predefined rules are

checked each time for any violation. The switch in UPPAAL (shown in the

Figure) has two states: an idle state where the switch is in listening mode and

a state that is reached when a packet is forwarded and to the idle state after

that. When a single packet is forwarded, the TopologytotalTime variable is

incremented. The time delay for a packet to exit switch A and reach switch

B is defined by sendingTime.

The verification properties are written in UPPAAL code as follows:

a. Loop detection: “A [] Topology.totalTime ¡= 15”. In our case we are

testing the topology against a maximum of 15 counts before a loop flag is raised.

160

Figure 4.9: Switch States in UPPAAL

b. Deadlock (will the destination be reached): “A ¡¿ Topology.HostB imply

(packetRule == 1 or packetRule == 2) imply ((packetRule == 1 imply Topol-

ogy.totalTime ¡= 9) or (packetRule == 2 imply Topology.totalTime ¡= 15))”.

Deadlocks are tested according to the PacketRule being invoked. If a packet

doesn’t reach a destination after a specific number of counts then a deadlock flag

is raised.

c. Waypointing (security domains): A [] (Topology.S3 imply packetRule ==

2) and (Topology.S4 imply packetRule == 2). If a certain rule leads to a packet

crossing a security domain edge switch then a security flag is raised.

d. Update delay time verification (delay between controller & switch B) vs.

(delay between switch A and switch B): “A [] (Topology.S3 imply packetRule ==

2) and (Topology.S4 imply packetRule == 2) and Delay ¡ sendingTime”. Here

this property is verifying that it is always true that an update from the controller

can reach a specific switch before a packet can reach the same switch from the

upstream switch. This specific property is mainly uses with sensitive security

related data, that when installed all packets should be processed according to

these rules starting from the gateway of the network. This property is topology

related and a network simulator could be used to estimate the switch/controller

delay times for the verification tool to test.

161

Figure 4.10 shows the verification process in an SDN topology view. Each

switch has its own flow-table with a different set of matching rules. As a new

rule is requested to be installed on a specific switch, this triggers the verification

system to test this rule. UPPAAL works on installing the rule on its view of the

network and queries the network as follows:

a. The verification starts by injecting a packet from Host A destined to Host

B carrying a packet P1 header PH=1. The packet is sent to S1 which checks if

a rule matching P1 exists. If so, the packet is forwarded to S2 according to the

output of the matching rule. In return S2 runs the rule matching mechanism

similar to S1. Then, it forwards P1 to S4 which applies the same mechanism and

sends the packet to Host B. In this first scenario, the verification tool will return

verified since none of the rules were violated.

b. In scenario two, a certain controller module requests to install a rule on S1

to forward the same packet PH=1 to S3 instead of S2 and this rule having higher

priority than the previous one. After the request for verification reaches the

verification tool, it will install the new rule over its state machine network view

and begins the testing procedure. Packet P2 is injected from Host A destined

to Host B and sent to S1. S1 matches PH=1 and this time sends it to S3.

S3 undergoes rule matching and sends P2 to S2. After that, S2 will forward

the Packet to S4. Each time a packet reaches a certain switch, the installed

consistency rules are being checked. As soon as the packet reaches S4, a flag

will be raised detecting a security breach since in our case we have defined a rule

stating that no packet can pass through S3 and S4 at the same time.

Different tests were done using different set of rules leading the packet to take

different paths from Host A to Host B. One test was done on a topology path

Host A to S1 to S2 to Host B where a manual flow request was sent to be verified,

162

Figure 4.10: SDN Topology View of the Verification Tool

which forwards incoming packets from S1 to S2 back to S1. While testing this

new flow, a loop inconsistency was flagged.

Another test was done on our topology where we manually deleted from S2 the

rule that forwards incoming packets to Host B. Upon testing this case, the packet

wasn’t received at Host B and rule matching was done for a certain time, so the

system identified that the packet is not traversing the network anymore and a

deadlock violation occurred. Other violations were also captured throughout our

tests done on the verification tool UPPAAL.

4.4 ARS Architecture

We have progressed a long way since the security and verification planes. Our

work have advanced throughout five years of research and development in this

area. Thus, the next few chapters are a summary of our final goal.

The ARS architecture consists of two main components: The ARS Security

module and the ARS Consistency module. It adopted multiple features that both

modules use in their data collection and processing techniques. Our architecture

is based on multiple AI layers that are structured according to each module and

the environment in hand. We argued that using dumb switches in a network

163

facing the world of developing attacks and threats is putting the security of SDN

and programmable networking a step behind. Thus we discussed introducing

an ARS agent, that uses low processing to achieve the necessary intelligence a

switch needs to collaborate with its controller safely and face the different network

threats. The details of the ARS features and architecture specific to each module

are discussed and analyzed in the following chapters.

164

Chapter 5

ARS Security System

A resilient network takes its strength from the robustness of its security system.

We will discuss throughout this chapter the different features and techniques that

builds up our proposed security system.

The major impact and significance of AI-based techniques in the different

domains of networking lead us to focus our work towards enhancing network se-

curity and resilience through the integration of AI techniques and programmable

networks such as SDN. As such, we are trying to investigate the different AI

techniques for our double layer security system and find the best combination

for each. Another significant aspect in our work is handling the data efficiently

in order to provide our system with the necessary data while keeping the over-

head and processing load as low as possible. Our contribution is summarized as

follows:

1. The proposal of a General solution for Network resiliency in a Software-

based network.

2. Such a design could be adopted in different networking and communications

environment regardless of the AI technique being used.

165

3. The proposal of a multi-layer AI-based security solution adopting new

techniques with higher efficiency.

4. The proposal of an efficient technique to provide our system with the

necessary data with low processing overhead.

5. Implementation and testing of the proposed designs.

5.1 System Overview

Our investigation will be carried out in three phases:

1. Edge feature extraction to ensure real-time detection, less overhead and

computations, robustness, scalability and to avoid redirecting traffic to the con-

troller to minimize the security risks at the controller level. We shall consider

an edge node to be any relevant node in the network, which is specified by the

environment and the case at hand. Feature extraction includes only the necessary

features that are forwarded as a vector to the next destination, every time cycle.

2. A multi-layer detection technique to enable anomaly detection in one phase

and attack specification in the second. This technique would allow us to detect

anomalies and unknown attacks faster and at a lower processing rate.

3. Feature marking: this is where the extracted features are being marked

by the ingress points. This new feature will be included in the training and

decision making so that any small change in the randomness or global flow of the

network would trigger a change in the output of the AI system. Feature marking

would increase the efficiency, especially when dealing with DDoS and also related

sequence of events that could possibly lead to an attack.

166

5.2 AI for Network Security

5.2.1 Applying Artificial Neural Networks for anomaly

detection

Different solutions have been investigated prior to our work. The main obstacles

found in these solutions was the load that the processing node should handle

and the excessive traffic overhead, which might be due to packet cloning, port

mirroring, or even header extraction. These duplicated data being uploaded to

the controller, open the door for vulnerabilities and security issues. Another

drawback of the prior work is the lack of robustness and scalability.

A new technique needs to be established in order to build a solid ground

for a general security solution. Thus, we propose applying feature extraction

at the data plane level, where selected input nodes in the network are assigned

the task of extracting the necessary features from the packets that are passing

through, and forwarding a single vector, each time cycle, to the next destination.

At this point, two techniques will be proposed: 1) enabling the input nodes

to send a single vector to the remote management node (i.e. the controller in

SDN networks) each time cycle, containing the necessary information about the

extracted features. 2) overlaying the AI technique used (e.g. artificial neural

networks) over the control plane such that each node in the network handles a

part of the processing load, in other words, each node handles the work of a

single or multiple layers. The input layer neurons would extract the features in

real-time and forward the extracted data as a vector to the next hidden layer,

which performs the necessary processing and then, after passing through multiple

hidden layers, the output vectors are sent to the output layer for decision making.

The extraction phase ensures low overhead and real-time extraction while

167

tagging the extracted features according to the input gateway (i.e. from where

they entered the network). This feature marking will helps in analyzing the traffic

flow and studying its randomness. This process enables the security module to

detect distributed attacks such as DDoS and multi-stage attacks where a sequence

of events would trigger a specific attack alert.

The first technique uses the remote management processing power to apply

the AI system after receiving the necessary input data from the network. Such a

solution provides faster processing and quick mitigation after the detection stage.

The second technique applies an independent overlay solution that is managed

by the controller; it can act independently throughout the feature extraction and

the detection stage. Only a minimal processing load is given to each node in

the network and no traffic is being duplicated or forwarded, which classifies this

process as a safe environment on any programmable network.

Both techniques were studied and tested for advantages and disadvantages

and then compared in different environments. The goal is to use these general

techniques and modify the top AI methods so that they can be applied in the

proposed context for anomaly detection and attack identification and mitigation.

5.2.2 Designing a two-step process for anomaly detection

and attack identification

As discussed earlier, we intend to design a security solution as a two-step process.

We aim to identify anomalies within the network traffic, which may be triggered

by a network architectural change, a network administrative change, or a security

issue. As investigated in the literature, anomaly detection requires less processing

and fewer features to be tested, and in our case, it would be more efficient since

168

not only the traffic flow is being studied but also its randomness. As such, we

propose to apply the anomaly detection as an initial stage, followed by the attack

identification process, only if an anomaly trigger is set.

Other advantages of such an architecture is the ability to detect unknown

attacks. This is possible when a trigger is set in the first stage, and the second

stage is not able to identify the attack type. At this point, an independent layer

with new techniques would be used to teach the system of the new attack type

to be able to label such flows in the future according to its features. Another

advantage is the fact that there is no need to retrain the whole system in case of

new attacks; we only need to train the second layer offline while the first layer

remains working online.

5.2.3 Designing an Ensemble of AI techniques

Reaching a satisfactory solution requires integrating the intelligence of differ-

ent multipurpose AI techniques to create a self-learning system that is capable

of dealing with unexpected situations on its own. The literature and our tests

showed that different techniques tend to perform better in different environments,

under different circumstances, and for different goals. We aim to reach a suitable

solution that strikes a good balance among our goals. Different sets of AI tech-

niques would be used for different environment, thus providing robustness and

effectiveness for our system.

5.3 ARS Architecture OverView

The two proposed architectures are based on either: Distributed Extraction,

Centralized Processing, and Centralized management (D∼ C2), or Distributed

169

Extraction, Distributed processing, and Centralized management (D2 ∼C).

Figure 5.1 shows an overview of the D∼ C2 design where, on one hand, the

Artificial Intelligence Resiliency System (ARS) agent resides on the edge nodes

for feature extraction and marking. On the other hand, the ARS security and

consistency solution sits on the remote management side, which also handles the

management and monitoring part. Figure 5.2 shows the D2 ∼C design with the

ARS AI agent residing on the edge nodes for feature extraction and marking,

also handling the processing of part of the AI-based technique and exchanging

relevant data. In this design, the remote management handles the monitoring

and management part, including optimizing the distribution of the processing

and exchange tasks in the overlay network.

5.3.1 The D∼ C2 architecture can be described as follows:

1. The remote management handles the control and monitoring part including

choosing the edge nodes.

2. The edge nodes handle the distributed extraction and marking.

3. The remote management handles the centralized processing.

5.3.2 The D2 ∼C architecture can be described as follows:

1. The remote management handles the control and management part including

choosing the edge nodes and identifying the ARS AI agents that will handle the

distributed processing.

2. The edge nodes will handle the distributed extraction and marking.

3. The distributed processing is in the form of an AI-based overlay network

(example neural network) as illustrated in Figure 2. Each node would handle

170

Figure 5.1: Proposed D2 ∼C Architecture

Figure 5.2: Proposed D2 ∼C Architecture

a portion (eg.layer) of the processing that may be the work of a single layer or

more depending on the environment and different parameters.

4. The remote node will handle the monitoring of the entire process along the

way.

Figure 5.3 shows a simple neural network architecture that include 3 inputs,

1 hidden layers, and a single output layer. This scenario is overlaid over our D2

∼C architecture (Figure 5.4) using 3 edge and 2 internal nodes such that each

edge ARS AI agent will play the roles of an input node and internal agent for

171

Figure 5.3: Simple Neural Network Architecture

Figure 5.4: Distributed NN Overlay Architecture

the hidden layer, and another one for the output layer. The distribution would

vary according to the available resources. Thus we managed to overlay 3 NN

networks over our SDN network using 5 nodes. Such technique allows scalability

such that we are able to implement a large Neural Network with multiple layers

and multiple neurons in each layer over a small network. The number of NN

overlays depend on the number of edge nodes in the network. The distributed

NN overlay is clearly illustrated in figure 5.4.

172

5.4 ARS System discussion

The ARS system aims to benefit from the advantages from both centralized and

distributed security techniques. As discussed, ARS runs in two modes. The first

mode integrated a double layer of defense such as:

Distributing NN overlays to secure the ingress points of the network, thus

securing the network from both external attacks on the network and leaking

specific information from certain servers in the network through these points.

This layer of security handles detecting anomalies in the network. We defined

anomalies as unfamiliar traffic flows that were not taught to the NNs during the

idle phase (training phase of the network). As traffic is entering the network the

extraction phase is processing the packets in real time. The extracted features

are structured in vectors till the next time cycle. In this mode the vectors are

processed as input features at the edge agents before being forwarded to the

designated internal agent for the hidden layer processing. After that the results

are forwarded to the next internal agents for the output processing. The output

is either disregarded if the traffic is normal or pushed to the controller if the

output is abnormal.

At this stage, and as an abnormal output is triggered, a predefined packet

is sent to the edge agent carrying the vector ID responsible for the alarm. As a

pre-mitigation technique, the edge agents will install a predefined rule to block

the corresponding source-destination IP pair. The same packet is sent from the

output agent to the controller to sync the matching table of the corresponding

edge switch.

Functioning in a centralized fashion is the next layer of this mode, which

starts after an alarm is triggered. After the pre-mitigation process id complete,

173

the edge agent will send the corresponding vectors to the controller. Before

this stage, the AI system at the controller level trained to detect specific types

of attack, that may vary from one environment to another. Our chosen set is

discussed in the final chapter. So, as the set of vectors reach the controller to

the security module, they as treated as input vectors for the AI system. After

that the system will try to identify the attack type. If the identification stage is

successful, the security module can either keep the pre-mitigation rules or insert

new ones from a predefined set. Else, if the AI system could not identify the

attack with a high confidence score; such that the attack has similar features

to multiple attack types but not identical to any; then the system will treat it

as an unknown attack and add its symptoms to the database. At this point

the administrator could intervene, such that the new behavior could be a new

normal behavior that was recently introduced to the network. If this is the case

the administrator can label it as normal, else it would be given as ID and added

as an new attack. In either cases the new features will be trained offline to the

system and the new weights will be aggregated with the old ones to include the

new behavior. During this phase the network will stay secured by the first layer,

while the second layer will only become offline during the aggregation phase at

a specific time chosen by the administrator or chosen randomly from an interval

for more security.

The second mode of our system is advised for environments will less processing

power at the switch side, or networks that require security systems with a large

AI processing requirements that are over the tolerance of the network devices.

Other reasons could be considered also. This mode works over the same ARS

architecture till the point where the features are extracted at the edge node and

structures in vectors. At this point, and after a time cycle ends the vectors are

174

uploaded to the controller for the necessary security processing. In this mode both

AI layers are centralized at the controller level. Same as the previous mode, the

first AI layer is responsible for anomaly detection and the second for the attack

specification stage. The second layer is only functional after an alarm is triggered

from the first layer, and undergo the same data exchange as the first mode. As

does the first mode, the second mode benefits from the double layer technique

to detect unknown or new behaviors (attacks) in the network. Both modes, and

due to the common ARS architecture in general and the edge feature extraction

and vector structure in specific, ensure data privacy along with security in a near

realtime detection system. All the necessary tests and results are discussed in

the final chapter.

175

Chapter 6

ARS Consistency System

We strongly argue that the necessity of network verification and consistency es-

tablishment equals the importance of enforcing security measures in a vision for

a resilient network. As attackers and attack strategies are developing, their fo-

cus deviated from volume-based attacks to low-profile specific target attacks that

have more impact on the network.

Our goal to enhance network resiliency drove us to direct the influence of AI-

based systems towards the network consistency domain. Therefore, we researched

the diverse AI techniques alongside an efficient data management system. We fo-

cused on preserving data privacy while supplying our system with the required

information while maintaining the processing load and overhead as low as possi-

ble. Our proposals and contribution are summarized as follow: 1. An AI-based

multi-layer consistency solution adopting new techniques with higher efficiency.

2. An effective technique aiming to provide our systems with the required data

while preserving data privacy and maintaining an acceptable processing overhead.

The proposed designs were implemented and tested, as discussed later, with the

results presented in the following chapters. Our proposed system relies on a hy-

176

Figure 6.1: System architecture Distribution

brid architecture that includes both centralized processing at the controller level

and distributed processing at the nodes level over the data plane.

6.1 General ARS Architecture Overview

The proposed architecture is based on:

Distributed Extraction, Centralized Processing, and Centralized management

(D C2).

The ARS agent resides on the network nodes for feature extraction. The

ARS consistency module resides on the controller level, where the monitoring

and management processing is handled as shown in Figure 2.

The D C2 architecture can be described as follows: a) The controller handles

the monitoring and management of the network including the ARS agents. b) The

nodes handle the distributed extraction and data hashing phase, including vector

assembly and forwarding. c) The controller performs the centralized verification

processing and analysis.

177

Figure 6.2: System Consistency Establishment Architecture

6.2 Research Investigation Phases

Our research towards an efficient consistency establishment system focused on

overcoming the main security issues in the techniques that were proposed in

the literature. These issues mainly concern privacy due do sensitive data being

exchanged for processing in a remote location, or the lack of authentication of

the output of such checks. In addition to the processing overhead and latency

associated with these solutions.

Our research investigations focused on three phases:

1. Distributed feature extraction to preserve data privacy and limit traffic up-

loaded to the controller, minimizing security risks. We are considering distributed

extraction from the node’s flow table itself. The extracted features will undergo

a hash process, and the output is then forwarded in a vector to the destination,

every time cycle, tc.

2. The multi-layer verification technique provides consistency verification us-

ing two layers: the information vectors from the data plane are uploaded to the

controller to be verified against the controllers view of the network using a fast

178

processing technique. Any inconsistency in the first stage would trigger a second

layer to try to identify the class of the flow-based attack that triggered this event.

A third layer is available in case of detecting an unknown consistency attacks.

3. Feature granularity allows us to relate any inconsistency triggered by the

output of the AI system to a specific node in the network and in particular to

the exact flow in that node, in addition to relating the attack to specific features

being altered in that corresponding flow.

6.3 Proposed Consistency System

Inspired by the brain-awareness human consistency techniques, that is also part

of the total human security system, we are proposing a network consistency es-

tablishment system that relies on the controller’s complete view of the network to

check for any misbehavior in the network nodes. Such technique would increase

our confidence regarding the correctness of the network nodes, before starting an

external network security analysis.

For the controller to check for inconsistencies every time cycle, tc, it should

be able to know what each node should be doing at every time t. The consistency

module at the controller would enable the controller to save an updated image

of the matching (flow) table of each node. Before any consistency check, the

module should make sure that no updates are being injected at this time. At

tc, the module would probe the security agent at the node level for a hash of

the extracted features from the local matching (flow) table. This process ensures

the security and privacy of this sensitive data not being exchanged through the

network. At the same tc, the module would calculate its own local hash outputs.

Since no updates are done at this time, the output of each network node (actual

179

behavior) should match the output of its corresponding image at the controller

(intended behavior).

Each agent will send a single vector belonging to a single node containing the

hashed features each tc. The extracted features from each node are divided into

three classes:

1. Constant features: these are features that do not change with time: Source

Ip address, Destination Ip address, Source Mac address, Destination Mac address,

Input port, Action.

2. Time features: these are features that show the age of each flow and the

duration since the last update: Duration, hard age.

3. Statistical features: these are features that are not extracted directly from

the flow table but calculated by the ARS agent during a tc. Features such as the

update rate of each flow during a tc and a flow overlap check on each flow. These

features are: Update rate, Check overlap.

We have enabled our ARS agent to extract the necessary features from the

local flow table and keep count of the flow updates each tc. Another task was

to query the OVS node using the Check overlap command, which was added to

OpenFlow 1.4 [81]. A third and important task was to perform a hash function on

the three classes of extracted features. Such a technique preserves both security

and privacy, since no sensitive data is being exchanged in the clear throughout the

network. The goal is to provide the system with the necessary data while keeping

a good balance between a secure hash and the required processing overhead.

Furthermore, to secure the node from physical attacks and to prevent an attacker

from generating his own fake hashes, we propose to pre-install a key in a tamper

proof device on each node. This device will be accessed explicitly by our ARS

agent and a set of these keys would be also stored on the controller to complete

180

the consistency checks.

At this stage, the ARS agent is able to feed the hash function with a string

input of the features at each predefined time cycle, tc, and extracting a fixed

output and forwarding it to the controller. At the same time, the controller

would calculate the same hash output using each key and the same features of

each node. Next, the consistency module will consider each flow of each node in

the network as a set of three binary matrices representing the three class features

described earlier. Here, the module would compare each class matrix with its

corresponding actual class from the network nodes in order to prepare the input

data for our AI system.

Another key feature in our technique is applying a flow-based verification,

such that any small inconsistency or attack on a single flow in any network node

would trigger a clear alarm in the output of the AI system due to the double layer

of hash and compare techniques applied on the extracted features of each flow.

The data preprocessing stage is shown figure 6.3 and detailed in the following

chapters.

6.4 Consistency system analysis

Our research towards an efficient consistency establishment system focused on

overcoming the main security issues in the techniques that were proposed in

the literature. These issues mainly concern privacy due do sensitive data being

exchanged for processing in a remote location, or the lack of authentication of

the output of such checks. In addition to processing overhead and some latency

introduced by these solutions.

We have relied on the existing structure of our security system, in particular

181

Figure 6.3: Data extraction and processing phases

182

our ARS agent, and equipped it with the ability to perform an authenticated hash

function of the local flow table. In order to ensure both security, authentication,

and also preserve privacy, we have chosen the HMAC-SHA2 to perform this task.

Such a choice provides a good balance between a secure hash and the required

processing overhead. The SHA-2 (SHA-256) function accepts variable size inputs

and produces a fixed 256 bits (32 bytes) size output, which can be carried out

in our security vector to the controller, in order to minimize the required traffic

overhead. Another import feature of HMAC is providing authentication of the

delivered hash, therefore protecting against reply and man in the middle attacks.

This feature was possible through generating two key pads from the original key

for both the authentication and hashing processes. Finally, to secure the node

from physical attacks and to prevent an attacker from generating her own fake

hashes, we propose to pre-install each key in a tamper proof device on each node.

This device will be accessed explicitly by our ARS agent and a set of these keys

would be also stored on the controller to complete the consistency checks.

At this stage, the ARS agent is able to feed the HMAC-SHA2 function with a

binary input of the flow table at each predefined time cycle, tc’, and extracting a

32-byte output and forwarding it in our security vector to the controller. At the

same time, the controller would calculate the same hash output using each key and

the flow table image of each node. After this stage, the consistency module would

compare each hash with its corresponding actual hash from the network nodes

in order to check for any inconsistencies between them. The security module will

be informed of the output of each check to act accordingly.

183

Chapter 7

ARS AI Optimization

7.1 AI Optimization

In the machine learning based security community we should have more work with

probabilistic models and uncertainty, for there importance in decision making,

especially when dealing sensitive or classified networks or data. This probabilistic

view of machine learning offers confidence bounds for data analysis and decision

making, information that a security network administrator for example would

rely on to analyze his/her data, or, for a more sensitive issue, an autonomous

car would use to decide whether to brake or not. In analyzing data or making

decisions, it is often necessary to be able to tell whether a model is certain about

its output, being able to ask “maybe I need to use more diverse data? or change

the model? or perhaps be careful when making a decision?”. Such questions are

of fundamental concern in machine learning.

When using deep learning models, we generally only have point estimates of

parameters and predictions at hand. The use of such models forces us to sacri-

fice our tools for answering the questions above, potentially leading to situations

184

where we can’t tell whether a model is making sensible predictions or just guess-

ing at random. Most deep learning models are often viewed as deterministic

functions, and as a result viewed as operating in a very different setting to the

probabilistic models which possess uncertainty information. Perhaps for this rea-

son it is quite surprising to see how close modern deep learning is to probabilistic

modeling. In fact, we shall see that we can get uncertainty information from

existing deep learning models for free—without changing a thing. The main goal

of this chapter is to work on such practical tools to reason about uncertainty in

deep learning.

AI optimization starts from Evaluating and calibrating an AI model after

testing it. Evaluating a model is just as important as creating the model in the

first place. Calibration is a post-processing technique to improve error distribu-

tion of a predictive model. The evaluation of machine learning (ML) models is

a crucial step before deployment. It is essential to assess how well a model will

behave for every single case. In many real applications, along with mean error

of the model, it is also important to know how this error is distributed and how

well probability estimations are made. Many current ML techniques are good in

overall results but have a bad distribution assessment of the error.

From the scientific context, the primary goal of ML methods is to build a

hypothesis (model) from a given data set. After the learning process, the quality

of the hypothesis must be evaluated as precisely as possible.

Our ARS system implements both Binary classifiers, such as the anomaly

detection techniques where the output is each normal or abnormal, and proba-

bilistic techniques, such as the attack identification techniques where we need the

output to be a more probabilistic vote between the given attack classes, rather

than a point estimate. A summary of such classifiers is discussed in the following

185

sections.

7.1.1 Binary classifiers

When dealing with two class classification problems we can always label one class

as a positive and the other one as a negative class. The test set consists of P

positive and N negative examples. A classifier assigns a class to each of them,

but some of the assignments are wrong. To assess the classification results we

count the number of true positive (TP), true negative (TN), false positive (FP)

(actually negative, but classified as positive) and false negative (FN) (actually

positive, but classified as negative).

- TP + FN = P and

- TN + FP = N

The classifier assigned TP + FP examples to the positive class and TN + FN

examples to the negative class. Let us define a few well-known and widely used

measures:

- FPrate = FP /N

- TPrate = TP /P = Recall

- Yrate = (TP + FP) /(P + N)

- Precision = TP/ (TP + FP)

- Accuracy = (TP + TN)/ (P + N).

Precision and Accuracy are often used to measure the classification quality of

binary classifiers.

186

7.1.2 Probabilistic classifiers

A probabilistic classifier is a function f : X → [0, 1] that maps each example x

to a real number f(x). Normally, a threshold t is selected for which the examples

where f(x) ≥ t are considered positive and the others are considered negative.

This implies that each pair of a probabilistic classifier and threshold t defines

a binary classifier. Measures defined in the section above can therefore also be

used for probabilistic classifiers, but they are always a function of the threshold

t. Note that TP(t) and FP(t) are always monotonic descending functions. For

a finite example set, they are step-wise, not continuous. By varying t we get a

family of binary classifiers.

A summary of some calibration techniques is discussed in the following sec-

tions:

7.1.3 Class Calibration (CC)

CC is the degree of approximation of the true class distribution with the estimated

class distribution. The standard way to calibrate a model in this way is by

changing the threshold that determines when the model predicts “A” or “B”,

making this threshold stricter with class “A” and milder with class “B” to balance

the proportion.

7.1.4 Probabilistic Calibration (PC)

PC is a classifier which accompanies each prediction with a probability estimation.

If we predict that we are 99% sure, and if we are only right 50% of the time, this is

not calibrated because our estimation was too optimistic. Similarly, if we predict

that we are only 60

187

7.2 General Discussion

Neural Networks are commonly used in classification and decision tasks. In this

chapter, we focus on the problem of the confidence of their results. We will

present an overview of the existing confidence measures and finally discuss a

simple measure which combines the benefits of the probabilistic interpretation of

network outputs and the estimation of the quality of the model. Our test results

done on our modules are discussed and show that the simplest measure behaves

often better than more sophisticated ones.

Unlike for classification problems, where machine learning models usually re-

turn the probability for each class, regression models typically return only the

predicted value. In order to calculate the model’s confidence, we need to re-

engineer our models to return a set of (differing) predictions each time we perform

inference. We can then use the distribution of these predictions to calculate the

model’s confidence intervals. we’ll show you how we can do this for any neural

network, including those you’ve already trained. Our implementation will be in

Keras — a popular library for prototyping deep learning models.

7.2.1 Dropout

A very popular method of regularization of neural networks is dropout. This idea

is actually very simple - every unit of our neural network (except those belonging

to the output layer) is given the probability p of being temporarily ignored in

calculations. Hyper parameter p is called dropout rate and very often its default

value is set to 0.5. Then, in each iteration, we randomly select the neurons that

we drop according to the assigned probability. As a result, each time we work

with a smaller neural network. The figure below shows an example of a neural

188

network subjected to a dropout.

Figure 7.1: Applying dropout to a simple Neural Network (Hidden Layers)

The effectiveness of this method is quite surprising and counter-intuitive. Let

us look at this problem from the perspective of a single neuron. Since in each

iteration, any input value can be randomly eliminated, the neuron tries to balance

the risk and not to favour any of the features. As a result, the values in the weight

matrix become more evenly distributed. The model wants to avoid a situation

in which the solution it proposes, will no longer make sense, because it no longer

has information flowing from an inactive feature.

To turn our single-valued regression model into one capable of returning mul-

tiple (different) predictions, we will re-purpose a technique we usually use only

during training — dropout. When we apply dropout we “turn off” a randomly

chosen fraction of the units of the model (or certain layers of the model). When

training this helps prevent overfitting, by reducing co-adaptation between units

and so forcing all units to generalize well to unseen data.

By applying dropout when performing inference, we are therefore sampling

one of these “thinned” networks to generate our predictions. By sampling enough

times, we can build up a distribution of predictions from our single trained model,

and use this distribution to calculate the confidence intervals of the original (un-

189

“thinned”) model’s predictions.

Choosing the right dropout

In the beginning of our tests we set dropout = 0.5, however we have no idea if

this is the correct amount of dropout to use. If the dropout is too large then

the predictions generated will be very diverse, and so the confidence intervals

estimated from them will be too large. Conversely if the dropout is too small

then the predictions generated will be too similar, and so the confidence intervals

will be too small. We can judge the suitability of the dropout by looking at the

distribution of its predictions around the median. For a dropout of 0.5 if the

distribution of predictions is much broader than the errors, so the amount of

dropout needs to be reduced. An example is shown in the figure 7.1:

Figure 7.2: dropout interval distribution at d=0.5

To determine the optimal dropout to use, we can look at the percentage

of actual values which fall within each calculated confidence interval. For the

optimal dropout we would expect 10% of actual values to fall within the 10%

confidence interval, 20% within the 20% and so on. To choose the optimal dropout

value, we calculate the percentage of actual values within the various predicted

confidence intervals for a range of different dropout values.

190

Figure 7.3: dropout interval plot for different dropout values

When the dropout is too large the confidence intervals are overestimated: for

a dropout of 0.5, 40% of actual values fall within the 20% confidence interval.

When the dropout is too small the confidence intervals are underestimated: for

a dropout of 0.2, 20% of actual values fall within the 50% confidence interval.

However, when the dropout value is just right, the confidence interval matches

the distribution of actual values almost perfectly, in this case for a dropout value

of 0.375.

Plotting the distribution of predictions for the optimal dropout of 0.375, we

see it matches the prediction error pretty well:

Working with dropouts in testing mode

We have modified a function in Keras (dropout predict) to take the configuration

and weights from our pretrained model, and use them to create a new model with

191

Figure 7.4: dropout interval distribution at d=0.375

the specified amount of dropout applied to all layers. This is done by looking for

the layers which contain dropout and setting the dropout to the desired value.

However, Keras turns off dropout by default when performing inference, so we

cannot simply use this new model to generate our predictions. Instead we have

to trick Keras into thinking we are still training the model, and so still using the

dropout. This is done by setting the learning phase to 1. Therefore, we create

a separate predict function (predict with dropout), which takes both the model

inputs and learning phase, and returns the model outputs.

Creating confidence intervals

We predict with dropout 20 times, giving us 20 different predictions for each

sample in the input data. With more predictions the confidence interval estimates

will become more accurate, however the prediction process will last longer. The

use of 20 predictions therefore seems a fair compromise. From these predictions

it is then trivial to calculate the upper and lower limits for a given confidence

interval.

Such a technique can be done offline on all our AI NN models (NN, DNN,

CNN). Therefore, we created an optimization module that works on evaluating

192

and calibrating the AI system through retesting the modules using the incoming

data in dropout mode to calculate our confidence measures and then compare

the results with the original ones and logs them for future calibrations.

After our test we have seen that without enabling our third layer module,

that is now responsible for unknown attack detection and confidence estimation,

different types of new attacks were classified as one of the four attack classes.

This provides us with a conclusion that high accuracy rates in an AI system

doesn’t always mean that we are dealing with a good system regarding security

or any other domain. We divided our module into three parts. The first would

analyze the distribution of the confidence vector in order to classify new attacks.

The second would retrain the system offline with the data of the new attack

and integrate the new weights. The third part is responsible for calculating all

dropout estimates and logging all confidence vectors with two class estimates less

that a threshold for future administrative analysis and interventions.

Our system was also tested using dropouts after being trained using both the

presented datatsets. Both the DNN network of the second security layer (attack

specification), and the CNN network of the second consistency layer (consistency

class specification) were optimized using the dropout technique implemented in

the third layer of each system. The dropout technique was further optimized

through celebrating the parameters that best fit our test network and data. The

parameters calibrated were the precision τ (10, 20, 50), dropout probability p

(0.3 0.5 0.7), test repetitions (10 13 16 20). The tests was made to find a suitable

compromise between the best accuracy, converged confidence interval and pro-

cessing overhead. First the tests were repeated fixing p and varying τ to increase

the output accuracy in the testing stage. The best accuracy was obtained with

p=0.5 and τ=20 for the security system and p=0.6 and τ=20 for the consistency

193

system. Regarding the processing overhead (we inserted a new security attack

that contains feature from both a DoS attack and a port scanning attack) (we

also inserted a new consistency attack containing features from both DoU class

and the deadlock class). A compromise was done between the overhead from

the (10 13 16 20) repetitions and the convergence of the output probabilities be-

tween the two related classes in each test (security and consistency). Regarding

the probabilities in the confidence interval of the security test, they varied be-

tween 15% and converged at 7%, after 13 repetitions, difference between the two

classes. Regarding the consistency test the probabilities varied between 12% and

5%, after 16 repetitions. These tests will control the threshold decision that will

be set to check each confidence interval for decision confidence, such that if the

probabilities of two classes are less than a threshold then a warning will be set

showing that the confidence of this decision id low. In the cases of the normal

class being one of these classes then an alert will be set providing a probability

of having a false positive or true negative.

7.2.2 Overfitting

Thanks to a huge number of parameters (thousands and sometimes even mil-

lions) neural networks have a lot of freedom and can fit a variety of complex

datasets. This unique ability has allowed them to take over many areas in which

it has been difficult to make any progress in the ‘traditional’ machine learning

era. Sometimes, however, their greatest advantage becomes a potential weakness.

Lack of control over the learning process of our model may lead to overfitting -

situation when our neural network is so closely fitted to the training set that it

is difficult to generalize and make predictions for new data. Understanding the

origins of this problem and ways of preventing it from happening, is essential for

194

a successful design of NN.

In practice, detecting that our model is overfitting is difficult. It’s not uncom-

mon that our trained model is already in production and then we start to realize

that something is wrong. In fact, it is only by confronting new data that you can

make sure that everything is working properly. However, during the training we

should try to reproduce the real conditions as much as possible. For this reason,

it is good practice to divide our dataset into three parts - training set, dev set

(also known as cross-validation or hold-out) and test set. Our model learns by

seeing only the first of these parts. Hold-out is used to track our progress and

draw conclusions to optimise the model. While, we use a test set at the end of

the training process to evaluate the performance of our model. Using completely

new data allows us to get an unbiased opinion on how well our algorithm works.

It is very important to make sure that your cross-validation and test set come

from the same distribution as well as that they accurately reflect data that we

expect to receive in the future. Only then we can be sure that the decisions we

make during the learning process bring us closer to a better solution. I know what

you are thinking about. . . “How should I divide my dataset?” Until recently, one

of the most frequently recommended splits was 60/20/20, but in the era of big

data, when our dataset can count millions of entries, those fixed proportions are

no longer appropriate. In short, everything depends on the size of the dataset

we work with. If we have millions of entries at our disposal, perhaps it would

be better idea to divide them in 98/1/1 ratio. Our dev and test sets should be

simply large enough to give us high confidence in the performance of our model.

Recommended methods of dividing the dataset according to its size are illustrated

in figure 7.5.

195

Figure 7.5: Recommended method of dividing the data set

Ways to prevent Overfitting

There are many methods that can help when our neural network has a high

variance. Some of them, such as obtaining more data, are quite universal and

work well every time. Others, such as regularization, require a lot of finesse

and experience. Imposing too many restrictions on our NN may compromise its

ability to learn effectively. We will present some of the most popular methods of

reducing overfitting and discuss the reasons they work. Dropouts is one of the

methods used, in the training phase, to prevent overfitting.

L1 and L2 Regularizations One of the first methods we should try when we

need to reduce overfitting is regularization. It involves adding an extra element

to the loss function, which punishes our model for being too complex or, in simple

words, for using too high values in the weight matrix. This way we try to limit

its flexibility, but also encourage it to build solutions based on multiple features.

Two popular versions of this method are L1 - Least Absolute Deviations (LAD)

and L2 - Least Square Errors (LS). Equations describing these regularizations are

given below.

196

In most cases the use of L1 is preferable, because it reduces the weight values of

less important features to zero, very often eliminating them completely from the

calculations. In a way, it is a built-in mechanism for automatic feature selection.

Moreover, L2 does not perform very well on datasets with a large number of

outliers. The use of value squares results in the model minimizing the impact of

outliers at the expense of more popular examples.

JL1(W, b) =
1

m

m∑
i=1

L(ŷ(i), y(i)) + λ||W ||1 ||W ||1 =

nX∑
j=1

|Wj| (7.1)

JL2(W, b) =
1

m

m∑
i=1

L(ŷ(i), y(i)) + λ||W ||2 ||W ||2 =

nX∑
j=1

W 2
j (7.2)

Lambda factor and its effect In the previously mentioned formulas for reg-

ularization in both versions of L1 and L2, the hyper-parameter λ was introduced

— also called regularization rate. When choosing its value we try to hit the

threshold between simplicity of our model and fitting it to the training data.

Increasing the λ value also increases the regularization effect.

Early Stopping The graph below shows the change in accuracy values calcu-

lated on the test and cross-validation sets during subsequent iterations of learning

process. We see right away that the model we get at the end is not the best we

could have possibly create. To be honest, it is much worse than what we have had

after 150 epochs. Why not interrupt the learning process before the model starts

overfitting? This observation inspired one of the popular overfitting reduction

method, namely early stopping.

197

Figure 7.6: Change of accuracy values in subsequent epochs during neural net-
work learning

In practice, it is very convenient to sample our model every few iterations

and check how well it works with our validation set. Every model that performs

better than all the previous models is saved. We also set a limit, i.e. the maximum

number of iterations during which no progress will be recorded. When this value is

exceeded, the learning is stopped. Although early stopping allows for a significant

improvement in the performance of our model, in practice, its application greatly

complicates the process of optimization of our model. It is simply difficult to

combine with other regular techniques.

198

7.3 ARS Optimization using stochastic regular-

ization techniques (SRT)

One requirement of tools for AI uncertainty estimations would be to scale well

to large data, and scale well to complex models (such as CNNs and RNNs).

Much more important perhaps, it would be impractical to change existing model

architectures that have been well studied, and it is often impractical to work

with complex and cumbersome techniques which are difficult to explain to non-

experts. Existing approaches to obtain model confidence often do not scale to

complex models or large amounts of data, and require us to develop new models

for existing tasks for which we already have well performing tools. We will thus

concentrate on the integration of practical techniques to obtain model confidence

in deep learning, techniques which are also well rooted within the theoretical

foundations of probability theory and Bayesian modeling. Specifically, we will

make use of stochastic regularization techniques (SRTs). Stochastic regulariza-

tion techniques are techniques used to regularize deep learning models through

the injection of stochastic noise into the model. SRTs are developed techniques for

model regularization that have been tremendously successful within deep learn-

ing, and are used in almost all modern deep learning models. These techniques

adapt the model output stochastically as a way of model regularization (hence the

name stochastic regularization). This results in the loss becoming a random quan-

tity, which is optimized using tools from the stochastic non-convex optimization

literature. Popular SRTs include dropout, multiplicative Gaussian noise (MGN,

also referred to as Gaussian dropout), dropConnect, and other recent techniques.

As we will see below, we can take almost any trained network, and given

some input x* obtain a predictive mean E[y*] (the expected model output given

199

our input), and predictive variance Var[y*] (how much the model is confident

in its prediction). To obtain these, we simulate a network output with input

x*, treating the SRT as if we were using the model during training (i.e. obtain

a random output through a stochastic forward pass). We repeat this process

several times (for T repetitions), sampling outputs {by*1(x*), ..., by*T(x*)}.

As will be explained below, these are empirical samples from an approximate

predictive distribution. We can get an empirical estimator for the predictive mean

of our approximate predictive distribution as well as the predictive variance (our

uncertainty) from these samples:

E[y∗] ≈ 1

T

T∑
t=1

ŷt
∗(x∗) (7.3)

V ar[y∗] ≈ τ−1ID +
1

T

T∑
t=1

ŷ∗t (x∗)T ŷ∗t (x∗)− E[y∗]TE[y∗] (7.4)

The previous equations result in uncertainty estimates which are practical

with large models and big data, and that can be applied in image based models,

sequence based models, and many different settings such as reinforcement learning

and active learning.

7.3.1 Classification

We did some standalone tests to proof our arguments. In order to assess our

model’s confidence in classification we tested our CNN network trained on the

MNIST dataset [303]. We trained the CNN model with dropout applied before

the last fully connected inner-product layer (the usual way dropout is used in

200

CNNs). We used dropout probability of 0.5. We trained the model for 106

iterations.

The model was evaluated using a continuously rotated image of the digit 1

(shown on the X axis in the figure 7.7). We scatter 100 stochastic forward passes

of the softmax input (the output from the last fully connected layer (left side)),

as well as of the softmax output for each of the top classes (right side). The

plots show the softmax input value and softmax output value for the 3 digits

with the largest values for each corresponding input. When the softmax input

for a class is larger than that of all other classes (class 1 for the first 5 images,

class 5 for the next 2 images, and class 7 for the rest), the model predicts the

corresponding class. For the 12 images, the model predicts classes [1 1 1 1 1 5 5

7 7 7 7 7]. Looking at the softmax input values, if the range of high uncertainty

of a class is far from that of other classes (for example the left most image) then

the input is classified with high confidence. On the other hand, if the range

of high uncertainty intersects that of other classes (such as in the case of the

middle input image), then even though the softmax output can be arbitrarily

high (as far as 1 if the mean is far from the means of the other classes), the

softmax output uncertainty can be as large as the entire space. This signifies

the model’s uncertainty in its softmax output value. In this scenario it would

not be reasonable to use argmax to return class 5 for the middle image when

its uncertainty is so high. We will use such a technique in our security models

to return alarms of uncertainty, if any. Therefore, our third layer model would

intervene to declare the input vector as a new attacks or even to calculate the

weight variation to increase the precision of our system.

We also show that by using dropout’s uncertainty we can obtain a considerable

improvement in predictive log-likelihood and root mean square error (RMSE)

201

Figure 7.7: Graphical analysis of the top 3 classifications of the CNN model for
each input

compared to the original tests. Predictive log-likelihood captures how well a

model fits the data, with larger values indicating better model fit. Uncertainty

quality can be determined from this quantity as well. We need to define a prior

length-scale, and find an optimal model precision parameter τ which will allow

us to evaluate the predictive log-likelihood. We used Bayesian optimization (BO)

to find the optimal τ , and set the prior length-scale to 102. Note that this is a

standard dropout NN, where the prior length-scale l and model precision τ are

simply used to define the model’s weight decay through the following equation.

τ =
(1− p)li2

2Nλi
(7.5)

7.3.2 Uncertainty estimate discussion

We will discuss some measurments to get good predictive uncertainty estimates.

First, it seems that “over-parametrised” models result in better uncertainty es-

timates than smaller models. Models with a large number of parameters can

capture a larger class of functions, leading to more ways of explaining the data,

and as a result larger uncertainty estimates further from the data. Similar be-

202

havior was noted with regard to model size. In the dropout case, this conforms

with the observation that better RMSE can be obtained when a large number

of parameters is used (larger than when dropout is not used as discussed). The

dropout probability is important as well, with larger models requiring a larger

dropout probability: varying the dropout probability p (through either grid-

search or Bayesian optimization) we have that large models (large K) push p

towards 0.5, since the weight of the entropy w.r.t. p is scaled by K. For a fixed

model size K, smaller probabilities p result in decreasing predictive uncertainty.

Further, short model length-scale results in more erratic functions drawn from

the posterior hence higher uncertainty values. Intuitively, high model precision

(large τ) and large amounts of data (large N) give the expected log likelihood a

higher weight than the prior KL, resulting in models that can fit the data well

but might overfit. On the other hand, long prior length-scale (large l) gives the

prior KL a higher weight than the expected log likelihood, resulting in heavily

regularized models that might not fit the data as well. The prior length-scale,

model precision, and dropout probability can be optimized using Bayesian op-

timization and cross validation over test log likelihood. Finally, it seems that

model structure affects predictive uncertainty considerably. Many existing mod-

els were designed and developed in order to obtain good RMSE, but the same

model structure might not be ideal to get good uncertainty estimates. Adapting

model structure to result in good uncertainty estimates as well as RMSE might

be helpful in improving test log likelihood.

203

Chapter 8

System Simulation and results

In this chapter we will discuss all simulations, implementations, and different

scenario results of both our security and consistency systems. Different system

architectures where implemented and tested. Different AI techniques trained

with multiple data-sets representing the multiple layers of our system were im-

plemented and tested. Finally, we have implemented and tested our proposed

optimization module to reinforce our AI systems to further enhance the confi-

dence in our systems results.

8.1 System Security Simulation and Results

Since our solution considers AI-based techniques, the first stage of our work

consists of finding multiple, efficient, ensemble of AI techniques that achieves a

high accuracy rate. These techniques are to be, afterwards, integrated as part of

our architecture.

204

8.1.1 System Datasets

The first stage of working with AI is choosing the data. We considered two

datasets. The first being the benchmark NSL-KDD dataset, a modified real

dataset proposed to solve a number of the existing problems of the older KDD’99

data set mentioned in [304][305]. The second being the Intrusion Detection Eval-

uation Dataset (CICIDS2017) [50], a more recent dataset published by the Cana-

dian Institute for Cybersecurity (CIC), providing a more reliable dataset that

covers the variety of recent attacks [306].

The NSL-KDD dataset contains around 150,000 records including normal traf-

fic as well as anomaly traffic categorized into 4 attack classes: 1. Denial of Service

(Dos), e.g. SYN flood. 2. User to Root (U2R), unauthorized access to local super-

user (root) privileges, e.g., various “buffer overflow” attacks. 3. Remote to Local

(R2L), unauthorized access from a remote machine, e.g. guessing password. 4.

Probing (Probe), surveillance and other probing, e.g., port scanning. 5. Normal.

Table 8.1 shows some attacks that fall under each class in the dataset. For

our training and testing stages we divided the dataset such that 60% extracted

for training and 40% between testing and validation as presented in Table 5.

Table 8.1: Attack Names Included in Attack Categories

Attack class Attack name
DoS Smurf, Land, Pod, Teardrop, Neptune, Back
U2R Perl, buffer overflow, Rootket, Loadmodule
R2L Ftp write, Gess pass, Imap, Multihope, phf, spy
Probe Ipsweep, nmap, portsweep

Table 8.2: Numbers of Class Records in NSL-KDD Dataset

Dataset Normal DoS U2R R2L Probe Total
Training 67,343 45,927 993 54 11,656 125,973
Testing 9,711 7,458 2,421 533 2,421 22,544

205

Our tests are performed on the following 41 features that are included in the

literature for network security. The features are classified as follows:

• 9 basic features extracted from individual tcp connections (e.g. duration,

wrong fragment)

• 9 features extracted from a 2-second time window (e.g. number of connec-

tions to the same host and percentage of syn error)

• 10 features extracted from a window of 100 connections (e.g. count for

destination host and percentage of rej error)

• 13 features extracted within a connection suggested by domain knowledge

(e.g. number of shell prompt and number of failed login attempt)

The CICIDS2017 dataset contains 350,000 records including normal traffic as

well as anomaly traffic classified as attack types rather that attack classes, which

leads to a more accurate result regarding our second security layer that aims

towards identifying specific attack types. The attack types include Brute Force

FTP, Brute Force SSH, DoS, Heartbleed, Web Attack, SQL Injection, Port scan-

ning, Infiltration, Botnet and DDoS. In addition, the data set offers 80 network

features, and traffic is categorized according to time stamps, which allows us to

extract more statistical features that would enhance the reliability of the system.

Table 8.3 presents a sample of attack types and the extracted set of features

for each attack detection process.

8.1.2 System Simulation

The setup was done using a single Linux (Ubuntu 14.04.2) server with MATLAB

2017 and Python installed. Initially, tests were done using MATLAB and then,

Python was used to shift to a more realistic environment for controllers to work

with. In the first study cases, we used Principle Component Analysis (PCA)

206

Table 8.3: Attack Types and Related Features

Attack Type Features

Benign

B.Packet Len Min
Subflow F.Bytes
Total Len F.Packets
F.Packet Len Mean

DoS GoldenEye

B.Packet Len Std
Flow IAT Min
Fwd IAT Min
Flow IAT Mean

Heartbleed

B.Packet Len Std
Subflow F.Bytes
Flow Duration
Total Len F.Packets

DoS Hulk

B.Packet Len Std
B.Packet Len Std
Flow Duration
Flow IAT Std

DoS Slowhttp

Flow Duration
Active Min
Active Mean
Flow IAT Std

DoS slowloris

Flow Duration
F.IAT Min
B.IAT Mean
F.IAT Mean

SSH-Patator

Init Win F.Bytes
Subflow F.Bytes
Total Len F.Packets
ACK Flag Count

FTP-Patator

Init Win F.Bytes
F.PSH Flags
SYN Flag Count
F.Packets/s

Web Attack

Init Win F.Bytes
Subflow F.Bytes
Init Win B.Bytes
Total Len F.Packets

207

Table 8.4: Attack Types and Related Features Continued

Attack Type Features

Infiltration

Subflow F.Bytes
Total Len F.Packets
Flow Duration
Active Mean

Bot

Subflow F.Bytes
Total Len F.Packets
F.Packet Len Mean
B.Packets/s

PortScan
Init Win F.Bytes
B.Packets/s
PSH Flag Count

DDoS

B.Packet Len Std
Avg Packet Size
Flow Duration
Flow IAT Std

for feature reduction. These tests implement PCA to reduce the entire set of

features into 4 features to be used as input for the different techniques. Each

technique is being tuned for the finest possible parameters to give the highest

possible accuracy for our test environment. Tests are done on both balanced and

unbalanced data. We are using unbalanced data in order to train our system

with a realistic traffic environment. The goal is to study the response of these

techniques in such environments.

The next step on our list was the edge node feature extraction. We assigned

an agent residing next to each edge node. The agent was programmed to ana-

lyze specific headers of each incoming packet and extract certain features. The

extraction was limited to only the participating interfaces. The agents are also

responsible for relating the extracted features to an individual connection in a

statistical manner. The future goal is to reach an efficient statistically-based set

of features that is resilient against attacker’s interventions and manipulations.

208

This technique helps our system to focus on the general functionality and ran-

domness of the network rather than on a specific entry point. Overall, allowing

better detection of unknown distributed behavior.

At the end, all agents would form a vector of extracted features and send it

securely to the ARS module at the controller. The feature marking techniques

allows a single server to handle and track the work of multiple clients. If any

further processing is required on the uploaded set of features, it would be handled

by the ARS module before preparing the features for the AI model.

8.1.3 System Training

Generally, every training algorithm for BP neural network includes two phases.

The first one is the forwarding phase during which the output of each layer is

calculated successively. The second one is the backward phase during which

the error is transited backward to fix the weights of all connections. After the

forwarding phase, an error function, i.e. the objective function, can be obtained.

Different training algorithms have their own schemes to utilize the error function

in the backward phase.

The BP net training algorithm used in our system is RPROP [304]. It is a

resilient backpropagation approach. It converges faster than the gradient-descent

[307] approach. In the used scheme, the objective function in batch learning mode

is:

E =
1

2

∑
p

∑
q

(yp,q − dp,q)2 (8.1)

Where: - p refers to the pth output.

209

- q refers to the qth training sample.

- yp,q is the real output.

- dp,q is the excepted output.

In gradient-descent, the size of weight update is directly proportional to the

learning rate η and the size of partial derivative dE/dW. The authors of [307]

believe that the benefit of carefully adapted learning rate can be upset by the

unforeseeable behavior of the partial derivative. Hence, in resilient backpropa-

gation, the derivative only determines the direction of weight update, δw. [307]

introduces an update-value δij. Its update follows the following rule:

∆ij(t) =



min(η+ ·∆ij,∆max), if ∂E(t)
∂ωij(t)

· ∂E(t−1)
∂ωij(t)

> 0

max(η− ·∆ij,∆min), if ∂E(t)
∂ωij(t)

· ∂E(t−1)
∂ωij(t)

< 0

∆ii(t− 1),

where 0 ≤ η- ≤ 1 ≤ η+.

If δE/δwij retains its sign, it can be increased by η+ to speed up the con-

vergence. If the partial derivative δE/δwij changes its sign, it means that the

last update of ωij is too large and the algorithm jumped over a minimum of the

error surface. So, the update-value Δij of the corresponding weight wij has to

be decreased with a factor η-. Next, comes the renew of weight-update. If the

partial derivative does not change its sign, the update of δw follows the following

rule:

210

∆ωij(t) =



−∆ij(t), if ∂E(t)
∂ωij(t)

> 0

+∆ij(t), if ∂E(t)
∂ωij(t)

< 0

0, else

If the partial derivative changes its sign, a method called backtracking [307]

would be used. The update of δw follows the rule:

∆ωij(t) = ∆ωij(t− 1) (8.2)

Then, set δE(t)/δwij (t) = 0. Thus, if the step of the algorithm is too big to

miss a minimum in error surface, it will go back to the previous position.

At last, the weight can be renewed by the following rule:

ωij(t+ 1) = ωij(t) + ∆ωij(t) (8.3)

w(t+1) is the new weight after the (t+1)th iteration, w(t) is the old weight

before the (t+1)th iteration.

8.1.4 Tests and Results

The following section presents a comparison between the different techniques

tested for both stages on both datasets, using balanced and unbalanced data,

211

BD and UBD, respectively. The results in Tables 8.5 and 8.6 show that random

forest achieves better results as compared to the other techniques tested at this

stage, followed by the neural network based technique. Figures 7 and 8 represent

the random forest test confusion matrix (CM) for both unbalanced (UBD) and

balanced (BD) data, respectively. We can notice an increase in the precision of

the DNN from the first dataset to the second. This reflects the strength of deep

AI techniques when handling different attack types and as the dataset increases

in size. Note that although the Random forest technique showed the higher

precision, yet the DNN showed faster processing with competitive precision. This

sheds light on part of our future work were our system should be equipped with

an algorithm aimed for chosen the best ensemble of AI techniques for the first

and second security layers for a prestored database according to different network

parameters and conditions.

Another test scenario that was done on the full system till this point aimed

to simulate both the security and consistency systems working together. The

simulation was based on Mininet [308], an SDN network emulator, and mini-

edit [309], an extension to Mininet for graphical network topologies, were we

constructed a fully connected tree network topology that consists of 20 OVS

switches and 14 virtual hosts. We manipulated the OVS code in order to connect

two physical servers on two different OVS switches as shown in the figure.

The purpose of this test was to launch different attacks at the same time from

each external physical server on the SDN controller. For this task we assigned

the edge nodes being the directly connected OVS switches as shown in the figure.

The tests were based on the D C2 architecture, were the edge nodes are respon-

sible for extracting the specified features and uploading them to the controller

during each time cycle. Since the network converged and no frequent updates

212

Figure 8.1: Attack/Detection Test Scenario

were needed, we activated the consistency client within the same time cycle as

the security client such that the consistency client would include the hash output

in the same vector sent each time cycle to the controller. The following tables

show the different AI techniques tested for both layer while trained by one of two

datasets.

Table 8.5: Test Results Summary Based on NSL-KDD

Tech. Anomaly
Detection
(BD)

Anomaly
Detection
(UBD)

Attack
identifica-
tion (BD)

Attack
identifica-
tion (UBD)

Random
Forest

99.2% 99.3% 98.3% 99.61%

SVM 96.74% 96.93% 90.64% 93.6%
KNN 94.5% 96.4% 90.19% 90.5%
DT 95.76% 96.4% 89.5% 90.89%
MLP 97.5% 97.0% 94.3% 92.73%
BPNN 98.7% 98.6% 77.2% 75.8%
DNN 96.11% 96.13% 95.03% 93.67%

213

Table 8.6: Test Results Summary Based on CICIDS2017

Tech. Anomaly
Detection
(BD)

Anomaly
Detection
(UBD)

Attack
identifica-
tion (BD)

Attack
identifica-
tion (UBD)

Random
Forest

98.1% 98.0% 97.3% 97.6%

SVM 95.4% 95.5% 89.1% 90.1%
KNN 94.0% 94.4% 88.2% 89.5%
DT 93.6% 94.0% 87.2% 88.0%
MLP 96.5% 96.0% 93.7% 92.1%
BPNN 97.9% 97.6% 77.9% 75.9%
DNN 97.8% 97.35% 97.11% 96.70%

Figure 8.2: RandomForest Confusion Matrix for Unbalanced Data

After the results on the initial tests were shown, another set of tests were

done on both the RF technique for the anomaly detection layer, and DNN for

the attack identification process. Both systems were trained by the CICIDS2017

dataset. After time t0 we initiated both a DoS attack from server-1 and port

scanning on the controller from server-2. It took around 6 secs from t0 for the

Figure 8.3: RandomForest Confusion Matrix for Balanced Data

214

first layer to detect a change in the network traffic; at this point the second layer

was activated due to the first alert, and the abnormal traffic were injected in the

second system. It took around 3 secs from t0 + 6 for the second layer to identify

both attacks. Even though the second layer requires more processing time, but

as the results show, it took less time. This is due to the double layered technique

since we are injecting the second system with a subset of the traffic that were

flagged by the first system. Therefore, resulting in a faster and more efficient

detection process.

We added an extra security feature to our system: during an attack, the

security module is able to block the attack source from the directly connected edge

node. This process was possible by injecting a new rule on the edge nodes forcing

them to block all traffic matching the attacker’s source-IP. Through monitoring

the attacker’s traffic on the egress ports of the edge node, we can see the specific

traffic being blocked as illustrated in Figure 8.4.

Figure 8.4 shows how the DoS attack intensity (packet numbers) increases

exponentially throughout the attack period while the port scanning traffic is

constant. The attack started at t = 0 secs and at t = 6 secs, the anomaly detection

flagged the incoming traffic before the attack identification system detected the

attack type at t = 9 secs and injected the attack mitigation rule to block the

attack before t = 10 secs.

After we have tested the centralized mode of our work, we started our tests

on the distributed NN overlay security layer. We selected the Neural Network AI

technique for this stage due to its high accuracy results in the anomaly detection

tests discussed earlier. Also due to its architecture that made it possible to

consider such a new distribution technique.

The security module in this case with run an algorithm to select the best

215

Figure 8.4: Attack Mitigation Process

suitable candidates to participate in the distribution process. The algorithm can

query the network for the number of physical connections of each node. If the

network is already running, the security module would query the ARS agent for

the CPU load percentage (e.g iostat -c). The other parameter should be inserted

by the administrator, which is the processing capability = CPU Speed (Mhz) x

Number of CPUs x Ram (Ghz). The node with the highest parameters would

be chosen as candidates. The edge node are excluded from this procedure since

they are included and adge nodes by default. The number of participating nodes

from the chosen candidates depends on the number of NN to be overlaid, which

also depends on the number of input points on the network. Another feature was

implemented was a database for manual selection by the administrator, which

would override this stage.

After the participating nodes are set, the ARS agent is enabled to play its new

role. The controller would send a packet to each ARS agent to let it know wich

part of its NN script to enable (hidden or output), along with other parameters

216

(number of layers, number of neurons in each layer, and the number of NN

network to participate with). After this stage, each edge agent will be informed

of the ID of the participating internal agents in its own NN. Each edge agent will

then send a packet to the corresponding internal agents to be linked as their next

hop in the AI processing phase. At this point all the NN networks are set, each

protecting a specific entry point of the network.

We tested the distributed system for abnormal traffic using the same test

done on the first layer of the centralized security mode. The test was done on

the network of figure 8.1, with 2 edge nodes. To protect the 2 ingress points we

create 2 NN overlays. The 2 edge nodes played the role of the input layers and

(s5,s8) along with (s18,s19) played the 2 hidden layers. while s6 and s17 where

the output layers. The same NN architecture was tested for the centralized test.

After the overlay was set, the weights were injected in the network. The weights

are calculated after training the same NN network offline using the 60% of the

CICIDS2017 dataset. We then injected the remaining 40% of the dataset as traffic

in the network from both external servers. The overall results of the 2 NNs was

around 94.8% accuracy. The same latency test was done as the centralized

mode, were a DDoS attack was launched from one server into s7 and a port scan

attack was launched into s20. The attack started at t=0 secs and at t=4 secs

the alarm was triggered detecting an abnormal traffic. The detection latency

will vary between the centralized and distributed security layer depending on the

network itself and the node capabilities. The higher the capabilities the more a

node can handle hidden layer, thus less processing time. On the other hand the

network congestion and the distance between the controller and the edge nodes

play a role in the latency of the centralized mode.

217

8.2 System Consistency Simulation and Results

This section discusses all the necessary simulations and results that provided our

consistency system with the proof of concept and effectiveness. The following

sections includes our data collection phase, which presents the flow-based attack

classes and data structure. Followed by the data preprocessing phase, which

also discusses the first consistency verification layer till the point where our sys-

tem is able to flag any inconsistent flow. Next, we present the classification

results, which include the second layer of the system where the AI module is

able to identify the class for each inconsistency flagged by the first layer. Also, a

third consistency layer is discussed, which is responsible for detecting unknown

consistency attacks in case an attack is triggered and not classified. The first

simulations where done on our dataset, followed by real time consistency check

test scenarios presented in the following sections.

8.2.1 Data collection

For the purpose of this work, we have generated our own real traffic to be able to

extract the necessary data from our simulated SDN network represented in the

figure 8.6. The network consists of 9 nodes with 3 border nodes, 3 core nodes,

and 3 edge nodes.

After the first traffic flow have ended and the network have converged, the

data extraction stage starts. The flow table of each node contained around 100

flows. At the same time t, the controller was keeping a database of each update

being inserted on each node for future checks.

At time tc, the first extraction took place from each node. This process was

repeated for 100 traffic flows with each traffic flow = tc giving a total of 100tc

218

data collection duration. Hence, the total data collected consists of 100 instances

of each node with each instance containing around 100 flows.

During each traffic flow, we performed multiple consistency-based attacks on

multiple flows on each node in the network. Our data was classified into 5 classes

as shown in the following Table.

Table 8.7: Consistency Attack Classes

Class Type Description
1 Consistent Flow is consistent
2 Traffic redirect Traffic changed its original path (e.g. Ac-

tion=New destination IP)
3 Dead Lock Traffic is deviated to a blocked destination

(e.g. Action=Virtual Port)
4 Loop Insertion Traffic have entered a network loo (e.g. Ac-

tion=InPort)
5 DoU Denial of Update (e.g. an overlap flow is

added by an attacker with higher priority but
different action, each time a specific update is
inserted)

8.2.2 Data Preprocessing

After collecting all necessary data from the network nodes and preparing the

controller’s data, the hashlib python library [310] is used to perform the chosen

SHA-2 [311] hash function. The SHA-2 (SHA-256) function accepts variable

size inputs and produces a fixed 256 bits (32 bytes) size output, which can be

carried out in our vector to the controller, in order to minimize the required traffic

overhead. At this point, the hash function is applied to the three feature classes.

The features pertaining to each class are concatenated in one string and thus,

the hash is applied to a string resulting in a 32-byte hexadecimal output.

After hashing the node and the controller data, the hexadecimal output ob-

219

tained for each features class is transformed to bits. Consequently, after concate-

nating the binary outputs of the three feature classes, we obtain a binary vector

containing 16*16*3 elements for each flow entry. An XOR operation is performed

between two corresponding vectors of each flow entry. The first vector is the one

obtained based on the controller data and the second vector is the one obtained

based on the node’s flow table. As a result, we obtain a 16*16*3 vector.

At this point, a simple check is sufficient to verify the consistency of each flow

in each matching table in the network. Hence, if the obtained vector contains all

zeros, then the corresponding flow entry is the same as the one at the controller,

thus it can be considered as consistent. Else, this means that some unauthorized

modifications were invoked at the node level.

In addition to flagging inconsistent flows, we have enabled our first consistency

verification layer to visually represent the output data for more clarity. In this

context, the visualization of the obtained XOR-ed data, as illustrated in the

figure 8.5, shows clearly how our technique, with low processing of bits detection,

helps in the differentiation between consistent and non-consistent flows. Thus,

to visualize these vectors, we transform them to RGB images of size 16*16, with

samples of the resulting images shown in the figure. It can be noticed that the

inconsistent flows present different RGB colors while the consistent flows present

black images. An important parameter extracted from these images, aside from

being colored or not, is the color itself. A RED image implies that the altered

flow belongs to the first class of features (constant class), while the GREEN color

implies that the altered flow belongs to the second class (time class), final the

BLUE color represents the third class (statistical class).

Once an inconsistency has been detected, a second layer in the system will

be triggered. This layer will take as input the vector of XOR-ed data that was

220

Figure 8.5: Consistency Results Visual Data Representation

responsible for triggering the inconsistency in order to specify the class of attack

that may have caused this issue. Furthermore, knowing the attack class and the

color of the image of this specific flow allows us to identify the features that were

modified within that corresponding flow.

Our human brain has a distinguished technique of learning new attacks (viruses

and others) through learning their symptoms. These attacks, that could affect

our body on their first attempt, would be recognized by our immunity system in

later attacks. Thus it could be treated or mitigated according to similar symp-

toms in the future. Inspired for this technique and benefiting from what AI has

to offer in the area on know and unknown attacks, we have modified our system

to detect unknown consistency attacks. A third layer was implemented with the

purpose of handling attacks that were flagged by the first layer but failed to be

recognized by the second. The third layer would detect such an attempt an un-

known new attack and integrate it with the set of altered featured to be taught,

offline, to our AI system. The new weights are integrated and updated to the

current system at a specific time chosen by the administrator as a network idle

time.

221

8.2.3 Classification Results

After the data preprocessing stage, we obtain our labeled data of the XOR-ed

output between the nodes and controller. The obtained 16*16*3 vectors are

passed to the classifier. The data was randomly over-sampled for balancing. In

our test, we compared Different deep learning architectures: LeNet5, AlexNet,

ConvNet, GoogleNet, ResNet, RNN, and DNN. Cross-validation was applied with

4 folds. At each fold, the different architectures were trained with 50 epochs and

50 as batch size. Moreover, the data was split into 60% for training, 20% for

validation, and 20% for testing. Moreover, at each fold, the following performance

measures were recorded and at the end, the average over the 4 folds was computed:

Accuracy: (TP+TN) / (TP+TN+FP+FN)

Precision: TP / (TP + FP)

Recall: TP / (TP + FN)

F1-score: 2*TP / (2*TP + FP + FN)

Where TP, the number of correctly classified instances to pertain to class X;

TN, the number of correctly classified instances not pertaining to X; FP, the

number of instances erroneously classified to pertain to X; and FN, the number

of instances erroneously classified as not pertaining to X.

The experiments were run on a Linux machine having an Intel R© CoreTM

i7-3630QM CPU @ 2.40GHZ x 8 (8 cores). 16 GB of memory were available.

Operating system was Ubuntu 14.04 LTS-64 bit.

The comparison results, presented in the following table, show that the Con-

vNet architecture gives the best results with 99.39% as accuracy, precision, recall

and f1-score. In fact, ConvNet was able to differentiate between different attack

classes even though the images resulting for the same attack, may be caused

by altering features from different classes and thus, resulting in images of dif-

222

ferent colors. As such, ConvNet has shown its ability to recognize the patterns

contained in the XOR-ed data of each type of attack.

Table 8.8: Deep Learning Consistency Verification Results

Accuracy Precision Recall F1-score
AlexNet 83.02% 85.5% 82.93% 82.79%
ConvNet 99.39% 99.39% 99.39% 99.39%
LENet5 72.9% 77.09% 72.9% 69.72%
GoogleNet 69.65% 58.48% 69.43% 62.45%
ResNet 95.96% 96.27% 95.98% 95.97%
RNN 83.56% 89.1% 83.53% 83.62%
DNN 83.78% 84.27% 83.69% 83.66%

8.2.4 System Consistency Tests

The following section describes a real-time consistency verification test of our

system. The setup consists of a Linux (Ubuntu 16.04) server with Python-3

installed. The simulation was based on Mininet [308], an SDN network emulator,

and mini-edit [309], an extension to Mininet for graphical network topologies,

where we constructed a fully connected tree network topology that consists of

20 OVS switches and 14 virtual hosts. We manipulated the OVS code in order

to connect two physical servers on two different OVS switches as shown in the

figure.

The purpose of this test was to lunch different configuration-based attacks

from the two external servers on different switches in the network. At this point,

our AI system is fully trained offline as discussed earlier. After we attacked the

flow table of 4 switches (s5, s12, s15, s17) in the network (12 flows in each switch),

we wait for tc = 10 sec, as programmed, for the consistency module to start the

next check. The altered 12 flows in each switch are based on multiples flow-based

attacks belonging to different attack classes. We attacked each switch with two

223

types of classes as shown in Table.

Table 8.9: Switch and Corresponding Attack Classes Scenario

Switch Attack Class 1 Attack Class 2

S5
Traffic Redirect

(Redirecting traffic for
sniffing purposes)

Traffic DeadLock
(Blocking all Controller

packets)

S12

Traffic Loop Insertion
(Inserting loops

through matching
egress to ingress port)

DoU of Security Updates
(Denial of update of
any new flow in the

security flow)

S15
Traffic Redirect

(Redirecting traffic
towards controller)

Traffic Loop Insertion
(Inserting loops through

matching egress to
ingress port)

S17

Traffic DeadLock
(Blocking all

incoming packets
exiting a specific port)

Traffic Redirect
(Redirecting traffic

randomly to disrupt the
functionality on the network)

The test was extended to include an unknown attack through altering a ran-

dom set of features. This attack was done on S4. This set was not taught or

included in any of the previously mentioned attacks. Such a test would show us

the precious and effectiveness of the third consistency check layer.

We have chosen the best three deep learning AI techniques to be tested for

this second scenario. The techniques are CNN, DNN, RNN.

The test started with feature extraction, followed by the first layer of con-

sistency verification after the first vector of hashed features was upload to the

controller at tc = 10 sec. After the first layer, the system was able to detect

the inconsistencies found in the targeted 4 switches while all other 16 switches

returned a consistent result. A sample of the graphical representation of incon-

sistencies, shown in figure 8.7, show a comparison between flows of switch S1 and

S5.

224

Figure 8.6: Consistency Verification Test Scenario

Figure 8.7: S1-S5 Graphical Consistency Comparison

225

As the work of the first layer is finished and an inconsistency is flagged, the

second layer starts taking as input the same binary matrices of the 4 switches

that flagged the inconsistency in the first layer. The results of the 3 chosen deep

learning techniques are shown in the following table.

Table 8.10: Consistency Test Scenario Results

Accuracy Precision Recall F1-score
ConvNet 96% 96% 93% 90%
RNN 96% 83.4% 78.3% 78.5%
DNN 95.5% 93% 81.6% 77.5%

At the end of the test we checked the database of the third layer that included

the new attack with its related set of altered features. Also we checked the

resulting new weights that resulted for the new training process. In order to

verify these results, we rerun the same test, but with including the new attack

in S17 instead of the deadlock attack. The new attack was given the name

”unknown1” with id=7. The results were the same as the previous one shown in

the previous table, and the updated system was able to classify the new attack

as a known rather than unknown attack.

The final results show that CNN have also given the highest accuracy and

precision values and was able to classify the attack class even in real-time scenarios

where only few flows were modified (6 flows per attack class).

Other test results are the processing times of the two layers. The attack

started at t = 0 sec and was finished at t = 7.5 sec, followed by feature extraction,

hash and vector composition, which was finished at tc = 10 sec. At the controller

side, the Processing time of the first verification layer for all switches, including

the graphical representations, was 3 sec. Regarding the second verification layer,

the processing time of the CNN system was 2.5 sec to verify a single switch in the

network (4 switches = 10 sec). Note that only the flagged switches are transferred

226

to the next layer, and hence, minimizing the processing load and time. Another

technique is the ability to perform multiple CNN modules in parallel for each

switch to further minimize the processing time.

227

Chapter 9

Conclusion

We presented a full system analysis including the general architectural design.

We discussed modifying and managing AI techniques to design a general system

solution to protect our network against different types of attacks based on a com-

bination of both centralized and distributed capabilities with the least possible

overhead. Our goal is to deploy a state-of-the-art adaptive security system over

a consistency verified network for better network resiliency.

We proposed and implemented a virtual ANN network overlay as a first layer

of security. It is from the simple and parallel computational capabilities of neu-

rons in an ANN, that it is possible to distribute the processing of a traditional

ANN over the network. The ARS agents played role of different layers in the neu-

ral network. Every node/agent contributes a free part of its storage and compu-

tational capacities to virtualize one or more NN layer. These agents will connect

to each other using logical links to exchange data and results; hence, leading to an

ANN-based overlay network. Such a design minimized traffic overhead through

enabling independent processing, achieving real-time detection. The second se-

curity layer consists of an ensemble of AI techniques centralized at the controller

228

with higher processing power for attack specification and mitigation.

We presented a new AI-based consistency verification system integrated with

our general ARS architectural design. We discussed how adopting distributing

data extraction techniques can provide the necessary information to any AI sys-

tem while keeping a low traffic overhead and preserving privacy.

The consistency solution provides a double layer consistency verification sys-

tem inspired by the human brain-immunity cooperation system. The first layer

works on comparing a hashed version of specific extracted features from the flow

table of each network node with its corresponding image at the controller. The

comparison is based on a simple XOR between the two hash vectors. We equipped

our system with a graphical representation of the consistency results.

In case of any inconsistency in any node, a second AI-based layer is triggered

to identify the attack class that triggered these inconsistencies on all the flagged

switches. Our results show that by adopting a double layer technique, we can

perform faster checks, and in-depth classification only when necessary, minimizing

processing time and overhead.

At the end of our research we have proof of concept of our work after pre-

senting our ARS system through both implementation and test results. We have

proven that with both multiple layers of security and consistency constructed in

efficient techniques, we can reach a well resilient network. Our work has pro-

vided network consistency with real-time protection, while preserving privacy

and minimizing traffic overhead.

229

Chapter 10

Future Work

The future work regarding our thesis can be divided into two sections: The future

work that can further develop our work, and how our work can contribute in other

domains.

As part of our system’s future work we propose a physical hardware imple-

mentation in real networks, especially involving our distributed security overlay.

Another important feature would be a graphical interface providing graphical

processing and data analysis. A third advancement would be enabling protection

from leak of sensitive information from specific nodes or servers in the network to

the outside. Along with enabling protection against attacks from host connected

on the network LAN. A final approach would be further system optimization in

terms of AI techniques and network parameters.

Future work could be done using our techniques in other domains such as

as IoT and VANETs. In addition to applying the same techniques for traffic

identification such as applications, and others. Other contributions could be

done through applying the similar techniques in large Data centers.

230

Appendix A

Abbreviations

SDN Software Define Networking

AI Artificial Intelligence

ARS Artificial Intelligence Resiliency System

ML Machine Learning

NN Neural Network

DNN Deep Neural Network

RNN Recurrent Neural Network

CNN Convolutional Neural Network

DBN Deep Belief Network

BM Boltzmann Machine

AE Auto Encoder

SVM Support Vector Machine

RF Random Forest

MPTCP Multi Path TCP

RMSE Root Mean Square Error

231

Bibliography

[1] O. N. fundation, “software-defined networking: the new norm for net-

works,” ONF white paper, vol. 2, pp. 1–6, 2012.

[2] OpenNetworkingFoundation, “Principles and practices for securing soft-

ware defined networks.” 2015.

[3] arbor network, “Worldwide infrastructure security report,” vol. 12,

pp. 2009–09, 2015.

[4] service provider nfv, “Sdn investments to reach 21b by 2020. available.”

2014.

[5] S. jain al, “b4: experience with a globally-deployed software defined wan,”

acm sigcomm computer communication review, vol. 43, pp. 3–14, 2013.

[6] Cisco, software-defined networking: why we like it and how we are building

on it. San jose, CA, USA: cisco systems, 2013.

[7] N. gude al, “Nox: towards an operating system for networks,” acm sigcomm

computer communication review, vol. 38, pp. 105–110, 2008.

[8] S. sezer al, “Are we ready for sdn? implementation challenges for software-

defined networks,” IEEE communications magazine, vol. 51, pp. 36–43,

2013.

232

[9] S. A. mehdi, J. khalid, and S. A. khayam, “Revisiting traffic anomaly de-

tection using software defined networking,” in international workshop on

recent advances in intrusion detection pp, pp. 161–180, 2011.

[10] C. chung al, “Nice: network intrusion detection and countermeasure se-

lection in virtual network systems,” IEEE transactions on dependable and

secure computing, vol. 10, pp. 198–211, 2013.

[11] G. gibb, H. zeng, and N. mckeown, “Outsourcing network functionality,” in

proceedings of the first workshop on hot topics in software defined networks

pp, pp. 73–78, 2012.

[12] G. lu al, “using cpu as a traffic co-processing unit in commodity switches,”

in proceedings of the first workshop on hot topics in software defined net-

works pp, pp. 31–36, 2012.

[13] G. huang al, “dynamic measurement-aware routing in practice,” IEEE net-

work, vol. 25, 2011.

[14] J. R. ballard, I. rae, and A. akella, extensible and scalable network moni-

toring using opensafe. in inm/wren, 2010.

[15] R. skowyra, S. bahargam, and A. bestavros, “software-defined ids for secur-

ing embedded mobile devices,” IEEE, in high performance extreme com-

puting conference (hpec), vol. 2013, pp. 1–7, 2013.

[16] C. jeong al, “scalable network intrusion detection on virtual sdn environ-

ment,” IEEE 3rd international conference on cloud networking (cloudnet),

vol. 2014, pp. 264–265, 2014.

233

[17] S. hogg, sdn security attack vectors and sdn hardening. artikkeli network,

2014.

[18] O. N. Foundation, “Open netwoking foundation.” 2017.

[19] B. S. al, “Onf sdn architecture overview,” open networking foundation,

vol. 8, p. 12, december 2013.

[20] A. doria al, “Forwarding and control element separation (forces) protocol

specification,” vol. 2010, 2010.

[21] L. yang al, “Forwarding and control element separation (forces) frame-

work,” vol. 2004, 2004.

[22] T. lakshman al, “The softrouter architecture,” in ProC. acm sigcomm work-

shop on hot topics in networking, 2004.

[23] A. rodriguez-natal al, software defined networking extensions for the loca-

tor/id separation protocol. IETF lisp working group internet-draft, 2014.

[24] H. zheng and X. zhang, Path computation element to support software-

defined transport networks control. march: internet draft, 2014.

[25] Floodlight, “Floodlight.” 2017.

[26] Openstack, “Openstack pike api reference documentation [openstack doc-

umentation].” 2017.

[27] Brocade, “Vyatta brocade documentation.” 2016.

[28] M. scharf al, “Dynamic vpn optimization by alto guidance,” second euro-

pean workshop on software defined networks (ewsdn), vol. 2013, pp. 13–18,

2013.

234

[29] A. tootoonchian and Y. ganjali, “hyperflow: a distributed control plane

for openflow,” in Proceedings of the 2010 internet network management

conference on research on enterprise networking, pp. 3–3, 2010.

[30] N. feamster, J. rexford, and E. zegura, “The road to sdn: an intellectual his-

tory of programmable networks,” acm sigcomm computer communication

review, vol. 44, pp. 87–98, 2014.

[31] D. J. wetherall, J. V. guttag, and D. L. tennenhouse, “Ants: a toolkit

for building and dynamically deploying network protocols,” IEEE, open

architectures and network programming, vol. 1998, pp. 117–129, 1998.

[32] S. Bhattacharjee, K. L. calvert, and E. w. zegura, “An architecture for

active networking,” in high performance networking viianonymous, pp. 265–

279, 1997.

[33] A. G. al, “A clean slate 4d approach to network control and management,”

acm sigcomm computer communication review, vol. 35, pp. 41–54, 2005.

[34] M. C. al, “Sane: a protection architecture for enterprise networks,” in

usenix security symposium pp, vol. 50, 2006.

[35] M. C. al, “ethane: taking control of the enterprise,” in acm sigcomm com-

puter communication review pp, pp. 1–12, 2007.

[36] S. Sorensen, security implications of software-defined networks. fierce tele-

com, 2012.

[37] S. M. Kerner, Is sdn secure. enterprise networking planet, 2013.

[38] N. N. function virtualization, Network functions virtualization - introduc-

tory white paper. october, 2012.

235

[39] N. M. al, “Openflow: enabling innovation in campus networks,” acm sig-

comm computer communication review, vol. 38, pp. 69–74, 2008.

[40] E. Charniak, Introduction to artificial intelligence. Pearson Education In-

dia, 1985.

[41] P. Kazienko, E. Lughofer, and B. Trawinski, “Hybrid and ensemble methods

in machine learning j. ucs special issue,” J Univers Comput Sci, vol. 19,

no. 4, pp. 457–461, 2013.

[42] S. Umarani and D. Sharmila, “Predicting application layer ddos attacks

using machine learning algorithms,” International Journal of Computer,

control Quantum and information Engineering, vol. 8, no. 10, 2014.

[43] Wikipedia, “Artificial neural network.”

[44] W. Zhanyi, “The applications of deep learning on traffic identification,”

tech. rep., Black Hat, 2015.

[45] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press,

2012.

[46] M. Stampar and K. Fertalj, “Artificial intelligence in network intrusion

detection,” in Information and Communication Technology, Electronics

and Microelectronics (MIPRO), 2015 38th International Convention on,

pp. 1318–1323, IEEE, 2015.

[47] C. Grosan and A. Abraham, “Intelligent systems—a modern approach,

volume 17 of intelligent systems reference library,” 2011.

236

[48] S. X. Wu and W. Banzhaf, “The use of computational intelligence in intru-

sion detection systems: A review,” Applied Soft Computing, vol. 10, no. 1,

pp. 1–35, 2010.

[49] J. Bi, K. Zhang, and X. Cheng, “Intrusion detection based on rbf neu-

ral network,” in Information Engineering and Electronic Commerce, 2009.

IEEC’09. International Symposium on, pp. 357–360, IEEE, 2009.

[50] T. Kohonen, J. Hynninen, J. Kangas, and J. Laaksonen, “Som pak: The

self-organizing map program package,” Report A31, Helsinki University of

Technology, Laboratory of Computer and Information Science, 1996.

[51] Y. Fu, Y. Zhu, and H. Yu, “Study of neural network technologies in intru-

sion detection systems,” in Wireless Communications, Networking and Mo-

bile Computing, 2009. WiCom’09. 5th International Conference on, pp. 1–

4, IEEE, 2009.

[52] J. K. Williams, J. Craig, A. Cotter, and J. K. Wolff, “A hybrid machine

learning and fuzzy logic approach to cit diagnostic development,” in AMS

Fifth Conference on Artificial Intelligence Applications to Environmental

Science, 2007.

[53] K. M. Leung, “k-nearest neighbor algorithm for classification,” Polytechnic

University Department of Computer Science/Finance and Risk Engineer-

ing, 2007.

[54] A. Ng, “Cs229 lecture notes,” CS229 Lecture notes, vol. 1, no. 1, pp. 1–3,

2000.

[55] H. Mark, “K-means algorithm - gi07/m012 - ucl computer science,” tech.

rep., University college London, 2014.

237

[56] A. Reynolds, G. Richards, and V. Rayward-Smith, “The application of k-

medoids and pam to the clustering of rules,” Intelligent Data Engineering

and Automated Learning–IDEAL 2004, pp. 173–178, 2004.

[57] K. P. Murphy, “Naive bayes classifiers,” University of British Columbia,

2006.

[58] F. Xhafa, S. Caballé, A. Abraham, T. Daradoumis, and A. A. J. Perez,

Computational intelligence for technology enhanced learning, vol. 273.

Springer, 2010.

[59] B. Schölkopf, “The kernel trick for distances,” in Advances in neural infor-

mation processing systems, pp. 301–307, 2001.

[60] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,

“Stacked denoising autoencoders: Learning useful representations in a deep

network with a local denoising criterion,” Journal of Machine Learning Re-

search, vol. 11, no. Dec, pp. 3371–3408, 2010.

[61] Q. V. Le, “Building high-level features using large scale unsupervised learn-

ing,” in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE

International Conference on, pp. 8595–8598, IEEE, 2013.

[62] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. V. Le,

P. Nguyen, A. Senior, V. Vanhoucke, and J. Dean, “On rectified linear

units for speech processing,” in Acoustics, Speech and Signal Processing

(ICASSP), 2013 IEEE International Conference on, pp. 3517–3521, IEEE,

2013.

[63] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning,

“Semi-supervised recursive autoencoders for predicting sentiment distribu-

238

tions,” in Proceedings of the conference on empirical methods in natural

language processing, pp. 151–161, Association for Computational Linguis-

tics, 2011.

[64] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in neural information

processing systems, pp. 1097–1105, 2012.

[65] Z. Wang, “The applications of deep learning on traffic identification,”

BlackHat USA, 2015.

[66] M. E. Aminantoa and K. Kimb, “Deep learning in intrusion detection sys-

tem: An overview,”

[67] M. C. dacier al, “Network attack detection and defense–security challenges

and opportunities of software-defined networking,” dagstuhl reports, vol. 6,

pp. 1–28, 2017.

[68] N. el moussaid, A. toumanari, and M. el azhari, “security analysis as

software-defined security for sdn environment,” fourth international con-

ference on software defined systems (sds), vol. 2017, pp. 87–92, 2017.

[69] M. C. dacier al, “security challenges and opportunities of software defined

networking,” IEEE security & privacy, vol. 15, pp. 96–100, 2017.

[70] D. B. rawat and S. R. reddy, “software defined networking architecture,

security and energy efficiency: a survey,” IEEE communications surveys &

tutorials, vol. 19, pp. 325–346, 2017.

239

[71] T. wan, A. abdou, and P. C. van oorschot, “A framework and comparative

analysis of control plane security of sdn and conventional networks.” arxiv

preprint, 2017.

[72] D. dave and A. nagaraju, “A pragmatic analysis of security and integrity in

software defined networks,” in Proceedings of international conference on

communication and networks, pp. 733–740, 2017.

[73] T. dierks, “The transport layer security (tls) protocol version 1.2.” 2008.

[74] R. durner and w. kellerer, The cost of security in the sdn control plane.

conext student workhop, 2015.

[75] L. yao al, “Network security analyzing and modeling based on petri net and

attack tree for sdn,” in computing, networking and communications (icnc),

vol. 2016, pp. 1–5, 2016.

[76] A. L. aliyu, P. bull, and A. abdallah, “A trust management framework for

network applications within an sdn environment,” International conference

on advanced information networking and applications workshops (waina),

vol. 2017, no. 31, pp. 93–98, 2017.

[77] T. dargahi al, A survey on the security of stateful sdn data planes. IEEE

communications surveys & tutorials, 2017.

[78] N. dayal al, “Research trends in security and ddos in sdn,” security and

communication networks, vol. 9, pp. 6386–6411, 2016.

[79] D. kreutz, F. ramos, and P. verissimo, “Towards secure and dependable

software-defined networks,” in proceedings of the second acm sigcomm work-

shop on hot topics in software defined networking pp, pp. 55–60, 2013.

240

[80] A. lara, A. kolasani, and B. ramamurthy, “Network innovation using open-

flow: a survey,” IEEE communications surveys & tutorials, vol. 16, pp. 493–

512, 2014.

[81] O. open networking foundation, “Openflow switch specification version

1.5.1 (protocol version 0x06),” march, vol. 26, p. 2015, 2015.

[82] L. schehlmann, S. abt, and H. baier, “blessing or curse? revisiting secu-

rity aspects of software-defined networking,” International conference on

network and service management (cnsm), vol. 2014, no. 10, pp. 382–387,

2014.

[83] D. lim, J. kang, and I. joe, “A sdn-based network intrusion detection system

to overcome upnp security drawbacks,” in mobile and wireless technologies

2016anonymous, pp. 117–126, 2016.

[84] S. hong al, Poisoning network visibility in software-defined networks: new

attacks and countermeasures. in ndss, 2015.

[85] Y. feng al, “Research on the active ddos filtering algorithm based on

ip flow,” icnc’09. fifth international conference on natural computation,

vol. 2009, pp. 628–632, 2009.

[86] R. braga, E. mota, and A. passito, “Lightweight ddos flooding attack detec-

tion using nox/openflow,” IEEE 35th conference on local computer networks

(lcn), vol. 2010, pp. 408–415, 2010.

[87] C. yuhunag al, “A novel design for future on-demand service and se-

curity,” the IEEE international conference on communication technology

(icct), vol. 2010, no. 12, pp. 385–388, 2010.

241

[88] Y. choi, Implementation of content-oriented networking architecture (cona):

a focus on ddos countermeasure. in proc of 1st european netfpga developers

workshop, 2010.

[89] E. al shaer and S. al haj, “Flowchecker: configuration analysis and veri-

fication of federated openflow infrastructures,” in proceedings of the acm

workshop on assurable and usable security configuration, vol. 3, pp. 37–44,

2010.

[90] G. yao, J. bi, and P. xiao, “source address validation solution with open-

flow/nox architecture,” IEEE international conference on network protocols

(icnp), vol. 2011, no. 19, pp. 7–12, 2011.

[91] P. porras al, “A security enforcement kernel for openflow networks,” in

proceedings of the first workshop on hot topics in software defined networks

pp, pp. 121–126, 2012.

[92] A. K. al, “Veriflow: Verifying network-wide invariants in real time,” ACM

SIGCOMM Computer Communication Review, vol. 42, pp. 467–472, 2012.

[93] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow random host muta-

tion: Transparent moving target defense using software defined network-

ing,” in Proceedings of the First Workshop on Hot Topics in Software De-

fined Networks pp, pp. 127–132, 2012.

[94] B. Heller, R. Sherwood, and N. McKeown, “The controller placement prob-

lem,” in Proceedings of the First Workshop on Hot Topics in Software De-

fined Networks pp, pp. 7–12, 2012.

[95] D. H. al, “Pareto-optimal resilient controller placement in sdn-based core

networks,” in Teletraffic Congress (ITC), vol. 2013, no. 25, pp. 1–9, 2013.

242

[96] S. Shin, H. Wang, and G. Gu, “A first step toward network security virtu-

alization: from concept to prototype,” IEEE Transactions on Information

Forensics and Security, vol. 10, pp. 2236–2249, 2015.

[97] S. S. al, FRESCO: Modular composable security services for software-

defined networks. in Ndss, 2013.

[98] S. Shin and G. Gu, “Attacking software-defined networks: A first feasibility

study,” in Proceedings of the Second ACM SIGCOMM Workshop on Hot

Topics in Software Defined Networking pp, pp. 165–166, 2013.

[99] K. Benton, L. J. Camp, and C. Small, “Openflow vulnerability assessment,”

in Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in

Software Defined Networking pp, pp. 151–152, 2013.

[100] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “Sdn security: A survey,”

2013 IEEE SDN For Future Networks and Services (SDN, vol. 4, pp. 1–7,

2013.

[101] S. N. al, “Enabling secure mobility with openflow,” 2013 IEEE SDN For

Future Networks and Services (SDN4NFS, vol. 4, pp. 1–5, 2013.

[102] K. G. al, “Combining openflow and sflow for an effective and scalable

anomaly detection and mitigation mechanism on sdn environments,” Com-

puter Networks, vol. 62, pp. 122–136, 2014.

[103] S. R. C. al, “Payless: A low cost network monitoring framework for software

defined networks,” in Network Operations and Management Symposium

(NOMS), vol. 2014, pp. 1–9, 2014.

243

[104] S. S. al, “Rosemary: A robust, secure, and high-performance network op-

erating system,” in Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security, pp. 78–89, 2014.

[105] S. L. al, “A sdn-oriented ddos blocking scheme for botnet-based attacks,”

in Ubiquitous and Future Networks (ICUFN), vol. 2014, pp. 63–68, 2014.

[106] A. Z. al, “Orchsec: An orchestrator-based architecture for enhancing

network-security using network monitoring and sdn control functions,”

in Network Operations and Management Symposium (NOMS), vol. 2014,

pp. 1–9, 2014.

[107] H. H. al, “Flowguard: Building robust firewalls for software-defined net-

works,” in Proceedings of the Third Workshop on Hot Topics in Software

Defined Networking pp, pp. 97–102, 2014.

[108] W. Y. al, “Openflow security threat detection and defense services,” Inter-

national Journal of Advanced Networking and Applications, vol. 6, 2014.

[109] M. Antikainen, T. Aura, and M. S”arel”a, “Spook in your network: Attack-

ing an sdn with a compromised openflow switch,” in Nordic Conference on

Secure IT Systems, pp. 229–244, 2014.

[110] S. Matsumoto, S. Hitz, and A. Perrig, “Fleet: Defending sdns from mali-

cious administrators,” in Proceedings of the Third Workshop on Hot Topics

in Software Defined Networking pp, pp. 103–108, 2014.

[111] F. A. Maldonado-Lopez, E. Calle, and Y. Donoso, “Detection and preven-

tion of firewall-rule conflicts on software-defined networking,” in Reliable

Networks Design and Modeling (RNDM), vol. 2015, no. 7, pp. 259–265,

2015.

244

[112] M. D. al, SPHINX: Detecting security attacks in software-defined networks.

in Ndss, 2015.

[113] B. W. al, “Ddos attack protection in the era of cloud computing and

software-defined networking,” Computer Networks, vol. 81, pp. 308–319,

2015.

[114] J. L. al, “Securing distributed sdn with ibc,” Seventh International Confer-

ence On Ubiquitous and Future Networks (ICUFN), vol. 2015, pp. 921–925,

2015.

[115] S. F. al, “Operetta: An openflow-based remedy to mitigate tcp synflood

attacks against web servers,” Computer Networks, vol. 92, pp. 89–100, 2015.

[116] J. W. Kang, S. H. Park, and J. You, “Mynah: Enabling lightweight

data plane authentication for sdn controllers,” International Conference

On Computer Communication and Networks (ICCCN), vol. 2015, no. 24,

pp. 1–6, 2015.

[117] P. D. al, “Security analysis of software defined networking applications for

monitoring and measurement: sflow and bigtap,” in The 10th International

Conference on Future Internet, pp. 51–56, 2015.

[118] Y. B.-I. al, “Enforsdn: Network policies enforcement with sdn,” IFIP/IEEE

International Symposium On Integrated Network Management (IM),

vol. 2015, pp. 80–88, 2015.

[119] A. Kamisiński and C. Fung, “Flowmon: Detecting malicious switches in

software-defined networks,” in Proceedings of the Workshop on Automated

sion Making for Active Cyber Defense, vol. 2015, pp. 39–45, Dec. 2015.

245

[120] S. R. al, “Cindam: Customized information networks for deception and

attack mitigation,” IEEE International Conference On Self-Adaptive and

Self-Organizing Systems Workshops (SASOW), vol. 2015, pp. 114–119,

2015.

[121] X. Wang, M. Chen, and C. Xing, “Sdsnm: A software-defined security net-

working mechanism to defend against ddos attacks,” Ninth International

Conference On Frontier of Computer Science and Technology (FCST),

vol. 2015, pp. 115–121, 2015.

[122] S. M. Mousavi and M. St-Hilaire, “Early detection of ddos attacks against

sdn controllers,” International Conference On Computing, Networking and

Communications (ICNC), vol. 2015, pp. 77–81, 2015.

[123] H. B. al, “Zombie pc detection and treatment model on software-defined

network,” in Computer Science and its ApplicationsAnonymous, pp. 837–

843, 2015.

[124] S. Singh, R. Khan, and A. Agrawal, “Prevention mechanism for infrastruc-

ture based denial-of-service attack over software defined network,” Inter-

national Conference On Computing, Communication & Automation (IC-

CCA), vol. 2015, pp. 348–353, 2015.

[125] S. L. al, “Controller scheduling for continued sdn operation under ddos

attacks,” ElectroN. LetT., vol. 51, pp. 1259–1261, 2015.

[126] C. Y. al, “Enabling security functions with sdn: A feasibility study,” Com-

puter Networks, vol. 85, pp. 19–35, 2015.

[127] R. Z. al, “Study on authentication protocol of sdn trusted domain,” in

Autonomous Decentralized Systems (ISADS), vol. 2015, pp. 281–284, 2015.

246

[128] R. B. al, “Fingerprinting software-defined networks,” IEEE 23rd Interna-

tional Conference On Network Protocols (ICNP), vol. 2015, pp. 453–459,

2015.

[129] P. V. T. al, “A multi-criteria-based ddos-attack prevention solution using

software defined networking,” International Conference On Advanced Tech-

nologies for Communications (ATC), vol. 2015, pp. 308–313, 2015.

[130] T. C. al, “An sdn-supported collaborative approach for ddos flooding de-

tection and containment,” IEEE, Military Communications Conference,

MILCOM, vol. 2015, pp. 659–664, 2015.

[131] M. A. Saleh and A. A. Manaf, “A novel protective framework for defeating

denial of service and distributed denial of service attacks,” ScientificWorld-

Journal, vol. 2015, pp. 230–238, 2015.

[132] R. S. al, Towards autonomic DDoS mitigation using software defined net-

working. in SENT 2015: NDSS Workshop on Security of Emerging Net-

working Technologies pp, 2015.

[133] L. Mutu, R. Saleh, and A. Matrawy, “Improved sdn responsiveness to udp

flood attacks,” IEEE Conference On Communications and Network Secu-

rity (CNS), vol. 2015, pp. 715–716, 2015.

[134] M. Z. Masoud, Y. Jaradat, and I. Jannoud, “On preventing arp poisoning

attack utilizing software defined network (sdn) paradigm,” IEEE Jordan

Conference On Applied Electrical Engineering and Computing Technologies

(AEECT), vol. 2015, pp. 1–5, 2015.

247

[135] O. F. al, “Sdn based architecture for iot and improvement of the security,”

IEEE 29th International Conference On Advanced Information Networking

and Applications Workshops (WAINA), vol. 2015, pp. 688–693, 2015.

[136] M. F. al, “Highly secure communication service architecture using sdn

switch,” 10th Asia-Pacific Symposium On Information and Telecommu-

nication Technologies (APSITT), vol. 2015, pp. 1–3, 2015.

[137] G. Garg and R. Garg, “Detecting anomalies efficiently in sdn using adaptive

mechanism,” Fifth International Conference On Advanced Computing &

Communication Technologies (ACCT), vol. 2015, pp. 367–370, 2015.

[138] P. Chen and Y. Chen, “Implementation of sdn based network intrusion

detection and prevention system,” International Carnahan Conference On

Security Technology (ICCST), vol. 2015, pp. 141–146, 2015.

[139] T. V. Tran and H. Ahn, “A network topology-aware selectively distributed

firewall control in sdn,” International Conference On Information and

Communication Technology Convergence (ICTC), vol. 2015, pp. 89–94,

2015.

[140] C. Banse and S. Rangarajan, “A secure northbound interface for sdn ap-

plications,” IEEE, in Trustcom/BigDataSE/ISPA, vol. 2015, pp. 834–839,

2015.

[141] M. W. al, “An approach for protecting the openflow switch from the satura-

tion attack,” 4th National Conference on Electrical, Electronics and Com-

puter Engineering, 2016.

248

[142] D. Chalyy, E. Nikitin, and E. J. Antoshina, “A simple information flow

security model for software-defined networks,” 17th Conference of Open

Innovations Association FRUCT. Yaroslavl, Russia, pp. 276–282, 2015.

[143] V. K. Reddy and D. Sreenivasulu, “Software-defined networking with ddos

attacks in cloud computing,” International journal of innovative technolo-

gies, vol. 04, pp. 3779–3783, December 2016.

[144] J. S. al, “Poster: Ofx: Enabling openflow extensions for switch-level secu-

rity applications,” in Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security, pp. 1678–1680, 2015.

[145] W. H. al, “Honeymix: Toward sdn-based intelligent honeynet,” in Proceed-

ings of the ACM International Workshop on Security in Software Defined

Networks & Network Function Virtualization, vol. 2016, pp. 1–6, 2016.

[146] R. Costa and F. Ramos, “An sdn-based approach to enhance bgp security.”

arXiv Preprint, 2016.

[147] C. Lee and S. Shin, “Shield: An automated framework for static analysis of

sdn applications,” in Proceedings of the ACM International Workshop on

Security in Software Defined Networks & Network Function Virtualization,

vol. 2016, pp. 29–34, 2016.

[148] T. Park, Y. Kim, and S. Shin, “Unisafe: A union of security actions for

software switches,” in Proceedings of the ACM International Workshop on

Security in Software Defined Networks & Network Function Virtualization,

vol. 2016, pp. 13–18, 2016.

[149] J. Li and T. Wolf, “A one-way proof-of-work protocol to protect controllers

in software-defined networks,” ACM/IEEE Symposium On Architectures

249

for Networking and Communications Systems (ANCS), vol. 2016, pp. 123–

124, 2016.

[150] K. Giotis, G. Androulidakis, and V. Maglaris, “A scalable anomaly detec-

tion and mitigation architecture for legacy networks via an openflow mid-

dlebox,” Security and Communication Networks, vol. 13, pp. 1958–1970,

2016.

[151] A. Lara and B. Ramamurthy, “Opensec: Policy-based security using

software-defined networking,” IEEE Transactions on Network and Service

Management, vol. 13, pp. 30–42, 2016.

[152] J. H. C. Jr, R. J. Clark, and H. L. O. Iii, “Leveraging sdn to improve the

security of dhcp,” in Proceedings of the ACM International Workshop on

Security in Software Defined Networks & Network Function Virtualization,

vol. 2016, pp. 35–38, 2016.

[153] Y. C. al, “Sd-anti-ddos: Fast and efficient ddos defense in software-defined

networks,” Journal of Network and Computer Applications, vol. 68, pp. 65–

79, 2016.

[154] Z. Z. al, “Sdn-based double hopping communication against sniffer attack,”

Mathematical Problems in Engineering, vol. 2016, 2016.

[155] M. A. Lopez, D. M. F. Mattos, and O. C. M. Duarte, “An elastic intrusion

detection system for software networks,” Annals of Telecommunications,

vol. 71, pp. 595–605, 2016.

[156] X. Chen and S. Yu, “Cipa: A collaborative intrusion prevention architecture

for programmable network and sdn,” CompuT. SecuR., vol. 58, pp. 1–19,

2016.

250

[157] X. P. al, “Hogmap: Using sdns to incentivize collaborative security moni-

toring,” in Proceedings of the ACM International Workshop on Security in

Software Defined Networks & Network Function Virtualization, vol. 2016,

pp. 7–12, 2016.

[158] G. Garg and R. Garg, “Security of networks using efficient adaptive flow

counting for anomaly detection in sdn,” in Artificial Intelligence and Evo-

lutionary Computations in Engineering SystemsAnonymous, pp. 667–674,

2016.

[159] Y. Park, S. Chang, and L. M. Krishnamurthy, “Watermarking for detecting

freeloader misbehavior in software-defined networks,” International Confer-

ence On Computing, Networking and Communications (ICNC), vol. 2016,

pp. 1–6, 2016.

[160] H. Xu, C. Wang, and H. Chen, “An extension approach for threat detec-

tion and defense of software-defined networking,” International Journal of

Security and its Applications, vol. 10, pp. 365–374, 2016.

[161] S. H. al, Towards SDN-defined programmable BYOD (bring your own de-

vice) security. in Ndss, 2016.

[162] J. L. al, “Leveraging software-defined networking for security policy en-

forcement,” InF. Sci, vol. 327, pp. 288–299, 2016.

[163] M. A. al, “A framework for security enhancement in sdn-based datacen-

ters,” 8th IFIP International Conference On New Technologies, Mobility

and Security (NTMS), vol. 2016, pp. 1–4, 2016.

[164] K. K. Karmakar, V. Varadharajan, and U. Tupakula, “On the design and

implementation of a security architecture for software defined networks,”

251

in High Performance Computing and Communications; IEEE 14th Inter-

national Conference on Smart City; IEEE 2nd International Conference

on Data Science and Systems (HPCC/SmartCity/DSS), pp. 671–678, 2016

IEEE 18th International Conference On, 2016.

[165] F. I. K. al, “Securing software defined network against rogue controllers,”

International Conference on Cyber Security & Digital Forensics, 2016.

[166] S. L. al, DELTA: A security assessment framework for software-defined

networks. in Proceedings of NDSS, 2017.

[167] M. Monshizadeh, V. Khatri, and R. Kantola, “Detection as a service: An

sdn application,” 19th International Conference On Advanced Communi-

cation Technology (ICACT), vol. 2017, pp. 285–290, 2017.

[168] W. Lee and N. Kim, “Efficient service chaining framework based on software

defined network for domain independent,” International Journal of Applied

Engineering Research, vol. 12, pp. 2301–2305, 2017.

[169] A. Shaghaghi, M. A. Kaafar, and S. Jha, “Wedgetail: An intrusion preven-

tion system for the data plane of software defined networks,” in Proceedings

of the 2017 ACM on Asia Conference on Computer and Communications

Security, pp. 849–861, 2017.

[170] X. Q. al, “A security controller-based software defined security architec-

ture,” 20th Conference On Innovations in Clouds, Internet and Networks

(ICIN), vol. 2017, pp. 191–195, 2017.

[171] A. L. Aliyu, P. Bull, and A. Abdallah, “A trust management framework for

network applications within an sdn environment,” 1st International Con-

252

ference On Advanced Information Networking and Applications Workshops

(WAINA), vol. 2017, no. 31, pp. 93–98, 2017.

[172] R. D. al, “Detecting and mitigating denial of service attacks against the

data plane in software defined networks,” IEEE Conference On Network

Softwarization (NetSoft), vol. 2017, pp. 1–6, 2017.

[173] R. S. al, “Adaptive policy-driven attack mitigation in sdn,” Proceedings

of the 1st International Workshop on Security and Dependability of Multi-

Domain Infrastructures, vol. 1, 2017.

[174] K. W. al, “Sdn testbed for validation of cross-layer data-centric security

policies,” International Conference On Military Communications and In-

formation Systems (ICMCIS), vol. 2017, pp. 1–6, 2017.

[175] A. Basit and N. Ahmed, “Path diversity for inter-domain routing security,”

14th International Bhurban Conference On Applied Sciences and Technol-

ogy (IBCAST), vol. 2017, pp. 384–391, 2017.

[176] M. W. al, “Perm-guard: Authenticating the validity of flow rules in software

defined networking,” Journal of Signal Processing Systems, vol. 86, pp. 157–

173, 2017.

[177] D. V. Bernardo and B. B. Chua, “Introduction and analysis of sdn and

nfv security architecture (sn-seca),” IEEE 29th International Conference

On Advanced Information Networking and Applications (AINA), vol. 2015,

pp. 796–801, 2015.

[178] M. Brooks and B. Yang, “A man-in-the-middle attack against openday-

light sdn controller,” in Proceedings of the 4th Annual ACM Conference on

Research in Information Technology, pp. 45–49, 2015.

253

[179] T. Alharbi, M. Portmann, and F. Pakzad, “The (in) security of topology

discovery in software defined networks,” IEEE 40th Conference On Local

Computer Networks (LCN), vol. 2015, pp. 502–505, 2015.

[180] S. Lee, C. Yoon, and S. Shin, “The smaller, the shrewder: A simple mali-

cious application can kill an entire sdn environment,” in Proceedings of the

ACM International Workshop on Security in Software Defined Networks &

Network Function Virtualization, vol. 2016, pp. 23–28, 2016.

[181] B. E. Ujcich, U. Thakore, and W. H. Sanders, “Attain: An attack injec-

tion framework for software-defined networking,” 47th Annual IEEE/IFIP

International Conference On Dependable Systems and Networks (DSN),

vol. 2017, pp. 567–578, 2017.

[182] A. Aseeri, N. Netjinda, and R. Hewett, “Alleviating eavesdropping attacks

in software-defined networking data plane,” in Proceedings of the 12th An-

nual Conference on Cyber and Information Security Research pp, 1, 2017.

[183] T. Nguyen and M. Yoo, “Analysis of link discovery service attacks

in sdn controller,” International Conference On Information Networking

(ICOIN), vol. 2017, pp. 259–261, 2017.

[184] R. Kloti, V. Kotronis, and P. Smith, “Openflow: A security analysis,” 21st

IEEE International Conference On Network Protocols (ICNP), vol. 2013,

pp. 1–6, 2013.

[185] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “Sdn security: A survey,”

IEEE SDN For Future Networks and Services (SDNFNS), vol. 4, pp. 1–7,

2013.

254

[186] S. S. al, “Avant-guard: Scalable and vigilant switch flow management in

software-defined networks,” in Proceedings of the 2013 ACM SIGSAC Con-

ference on Computer & Communications Security, pp. 413–424, 2013.

[187] S. H. al, “Threat modeling-uncover security design flaws using the stride

approach,” MSDN Magazine-Louisville, pp, pp. 68–75, 2006.

[188] S. K. al, “Topology discovery in software defined networks: Threats, tax-

onomy, and state-of-the-art,” IEEE Communications Surveys & Tutorials,

vol. 19, pp. 303–324, 2017.

[189] S. Veena and R. Manju, “A novel approach to dynamic policy based se-

curity in sdn: A survey,” International Journal of Computer Science and

Engineering, vol. 5, pp. 1566–1573, 2017.

[190] S. R. C. al, “Payless: A low cost network monitoring framework for soft-

ware defined networks,” IEEE, Network Operations and Management Sym-

posium (NOMS), vol. 2014, pp. 1–9, 2014.

[191] A. K. al, “Veriflow: Verifying network-wide invariants in real time,” ACM

SIGCOMM Computer Communication Review, vol. 42, pp. 467–472, 2012.

[192] Z. Z. al, “Sdn-based double hopping communication against sniffer attack,”

Mathematical Problems in Engineering, vol. 2016, 2016.

[193] B. W. al, “Ddos attack protection in the era of cloud computing and

software-defined networking,” Computer Networks, vol. 81, pp. 308–319,

2015.

255

[194] S. L. al, “A sdn-oriented ddos blocking scheme for botnet-based attacks,”

Sixth International Conf On Ubiquitous and Future Networks (ICUFN),

vol. 2014, pp. 63–68, 2014.

[195] R. Braga, E. Mota, and A. Passito, “Lightweight ddos flooding attack de-

tection using nox/openflow,” IEEE 35th Conference On Local Computer

Networks (LCN), vol. 2010, pp. 408–415, 2010.

[196] Y. Choi, Implementation of content-oriented networking architecture

(CONA): A focus on DDoS countermeasure. in Proc of 1st European NetF-

PGA Developers Workshop, 2010.

[197] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traffic anomaly

detection using software defined networking,” in International Workshop

on Recent Advances in Intrusion Detection pp, pp. 161–180, 2011.

[198] R. B. al, “Fingerprinting software-defined networks,” IEEE 23rd Interna-

tional Conference On Network Protocols (ICNP), vol. 2015, pp. 453–459,

2015.

[199] S. Seeber, L. Stiemert, and G. D. Rodosek, “Towards an sdn-enabled ids en-

vironment,” IEEE Conference On Communications and Network Security

(CNS), vol. 2015, pp. 751–752, 2015.

[200] D. Jankowski and M. Amanowicz, Intrusion detection in software defined

networks with self-organized maps. Journal of Telecommunications and

Information Technology, 2015.

[201] N. T. Van, H. Bao, and T. N. Thinh, “An anomaly-based intrusion detec-

tion architecture integrated on openflow switch,” in Proceedings of the 6th

256

International Conference on Communication and Network Security, pp. 99–

103, 2016.

[202] J. A. al, “Dynamic network security protection on cloud computing,” In-

ternational Education and Research Journal, vol. 2, 2016.

[203] H. H. al, “Flowguard: Building robust firewalls for software-defined net-

works,” in Proceedings of the Third Workshop on Hot Topics in Software

Defined Networking pp, pp. 97–102, 2014.

[204] T. T. Huong and N. H. Thanh, “Software defined networking-based one-

packet ddos mitigation architecture,” in Proceedings of the 11th Interna-

tional Conference on Ubiquitous Information Management and Communi-

cation pp, 110, 2017.

[205] T. V. Phan, N. K. Bao, and M. Park, “Distributed-som: A novel perfor-

mance bottleneck handler for large-sized software-defined networks under

flooding attacks,” Journal of Network and Computer Applications, vol. 91,

pp. 14–25, 2017.

[206] J. K. al, “Sdn-based security services using interface to network security

functions,” International Conference On Information and Communication

Technology Convergence (ICTC), vol. 2015, pp. 526–529, 2015.

[207] A. AlEroud and I. Alsmadi, “Identifying cyber-attacks on software defined

networks: An inference-based intrusion detection approach,” Journal of

Network and Computer Applications, vol. 80, pp. 152–164, 2017.

[208] M. A. al, “A framework for security enhancement in sdn-based datacen-

ters,” 8th IFIP International Conference On New Technologies, Mobility

and Security (NTMS), vol. 2016, pp. 1–4, 2016.

257

[209] A. G. al, “Five sdn-oriented directions in information security,” First In-

ternational Science and Technology Conference (Modern Networking Tech-

nologies)(MoNeTeC), vol. 2014, pp. 1–4, 2014.

[210] Y. Chiu and P. Lin, “Rapid detection of disobedient forwarding on compro-

mised openflow switches,” International Conference On Computing, Net-

working and Communications (ICNC), vol. 2017, pp. 672–677, 2017.

[211] M. W. al, “An approach for protecting the openflow switch from the satura-

tion attack,” 4th National Conference on Electrical, Electronics and Com-

puter Engineering, 2016.

[212] R. S. al, “Flowvisor: A network virtualization layer,” OpenFlow Switch

Consortium, Tech, vol. 1, p. 132, 2009.

[213] P. Lin, P. Li, and V. L. Nguyen, “Inferring openflow rules by active probing

in software-defined networks,” 19th International Conference On Advanced

Communication Technology (ICACT), vol. 2017, pp. 415–420, 2017.

[214] S. Shin, H. Wang, and G. Gu, “A first step toward network security virtu-

alization: from concept to prototype,” IEEE Transactions on Information

Forensics and Security, vol. 10, pp. 2236–2249, 2015.

[215] K. K. Karmakar, V. Varadharajan, and U. Tupakula, “Mitigating attacks

in software defined network (sdn),” Fourth International Conference On

Software Defined Systems (SDS), vol. 2017, pp. 112–117, 2017.

[216] K. W. al, “Livesec: Towards effective security management in large-scale

production networks,” 32nd International Conference On Distributed Com-

puting Systems Workshops (ICDCSW), vol. 2012, pp. 451–460, 2012.

258

[217] A. M. AbdelSalam, A. B. El-Sisi, and V. Reddy, “Mitigating arp spoofing

attacks in software-defined networks,” International Conference on Com-

puter and Computing Technologies, 2015.

[218] A. H. al, “Sdn security plane: An architecture for resilient security ser-

vices,” in 2016 IEEE International Conference on Cloud Engineering Work-

shop (IC2EW), Germany, 2016.

[219] W. Lee and N. Kim, “Security policy scheme for an efficient security archi-

tecture in software-defined networking,” Information, vol. 8, p. 65, 2017.

[220] A. H. al, “Sdn verification plane for consistency establishment,” in

The Twenty-First IEEE Symposium on Computers and Communications,

Messina, Italy, 2016.

[221] L. Barki, A. Shidling, N. Meti, D. Narayan, and M. M. Mulla, “Detection

of distributed denial of service attacks in software defined networks,” in

Advances in Computing, Communications and Informatics (ICACCI), 2016

International Conference on, pp. 2576–2581, IEEE, 2016.

[222] A. Akhunzada, E. Ahmed, A. Gani, M. K. Khan, M. Imran, and S. Guizani,

“Securing software defined networks: taxonomy, requirements, and open

issues,” IEEE Communications Magazine, vol. 53, no. 4, pp. 36–44, 2015.

[223] H. Bai, “A survey on artificial intelligence for network routing problems,”

NM, USA: University of New Mexico, 2007.

[224] U. Mustafa, M. M. Masud, Z. Trabelsi, T. Wood, and Z. A. Harthi, “Fire-

wall performance optimization using data mining techniques,” in Wireless

Communications and Mobile Computing Conference (IWCMC), 2013 9th

International, pp. 934–940, IEEE, 2013.

259

[225] D. Mukherjee and S. Acharyya, “Ant colony optimization technique ap-

plied in network routing problem,” International journal of computer ap-

plications, vol. 1, no. 15, pp. 66–73, 2010.

[226] S. Dotcenko, A. Vladyko, and I. Letenko, “A fuzzy logic-based information

security management for software-defined networks,” in Advanced Com-

munication Technology (ICACT), 2014 16th International Conference on,

pp. 167–171, IEEE, 2014.

[227] J. Mikians, P. Barlet-Ros, J. Sanjuas-Cuxart, and J. Solé-Pareta, “A prac-

tical approach to portscan detection in very high-speed links,” in Interna-

tional Conference on Passive and Active Network Measurement, pp. 112–

121, Springer, 2011.

[228] M. M. Williamson, “Throttling viruses: Restricting propagation to defeat

malicious mobile code,” in Computer Security Applications Conference,

2002. Proceedings. 18th Annual, pp. 61–68, IEEE, 2002.

[229] E. Hodo, X. Bellekens, A. Hamilton, C. Tachtatzis, and R. Atkinson, “Shal-

low and deep networks intrusion detection system: A taxonomy and sur-

vey,” arXiv preprint arXiv:1701.02145, 2017.

[230] R. Braga, E. Mota, and A. Passito, “Lightweight ddos flooding attack de-

tection using nox/openflow,” in Local Computer Networks (LCN), 2010

IEEE 35th Conference on, pp. 408–415, IEEE, 2010.

[231] S. Deepa and B. A. Devi, “A survey on artificial intelligence approaches for

medical image classification,” Indian Journal of Science and Technology,

vol. 4, no. 11, pp. 1583–1595, 2011.

260

[232] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking (sdn)

and distributed denial of service (ddos) attacks in cloud computing envi-

ronments: A survey, some research issues, and challenges,” IEEE Commu-

nications Surveys and Tutorials, vol. 18, no. 1, pp. 602–622, 2016.

[233] T. Srinivasan, V. Vijaykumar, and R. Chandrasekar, “A self-organized

agent-based architecture for power-aware intrusion detection in wireless

ad-hoc networks,” in Computing & Informatics, 2006. ICOCI’06. Inter-

national Conference on, pp. 1–6, IEEE, 2006.

[234] P. Lichodzijewski, A. N. Zincir-Heywood, and M. I. Heywood, “Dynamic

intrusion detection using self-organizing maps,” in The 14th Annual Cana-

dian Information Technology Security Symposium (CITSS), 2002.

[235] B. C. Rhodes, J. A. Mahaffey, and J. D. Cannady, “Multiple self-organizing

maps for intrusion detection,” in Proceedings of the 23rd national informa-

tion systems security conference, pp. 16–19, 2000.

[236] A. K. Ghosh and A. Schwartzbard, “A study in using neural networks for

anomaly and misuse detection.,” in USENIX security symposium, vol. 99,

p. 12, 1999.

[237] R. P. Lippmann and R. K. Cunningham, “Improving intrusion detection

performance using keyword selection and neural networks,” Computer Net-

works, vol. 34, no. 4, pp. 597–603, 2000.

[238] W. Li, “Using genetic algorithm for network intrusion detection,” Pro-

ceedings of the United States Department of Energy Cyber Security Group,

vol. 1, pp. 1–8, 2004.

261

[239] S. Mukkamala, A. H. Sung, and A. Abraham, “Modeling intrusion detec-

tion systems using linear genetic programming approach,” in International

Conference on Industrial, Engineering and Other Applications of Applied

Intelligent Systems, pp. 633–642, Springer, 2004.

[240] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Maciá-Fernández, and E. Vázquez,

“Anomaly-based network intrusion detection: Techniques, systems and

challenges,” Computers & Security, vol. 28, no. 1, pp. 18–28, 2009.

[241] W. Chimphlee, A. H. Abdullah, M. N. M. Sap, S. Srinoy, and S. Chim-

phlee, “Anomaly-based intrusion detection using fuzzy rough clustering,”

in Hybrid Information Technology, 2006. ICHIT’06. International Confer-

ence on, vol. 1, pp. 329–334, IEEE, 2006.

[242] J. E. Dickerson and J. A. Dickerson, “Fuzzy network profiling for intrusion

detection,” in Fuzzy Information Processing Society, 2000. NAFIPS. 19th

International Conference of the North American, pp. 301–306, IEEE, 2000.

[243] Z. Ma and A. Kaban, “K-nearest-neighbours with a novel similarity mea-

sure for intrusion detection,” in Computational Intelligence (UKCI), 2013

13th UK Workshop on, pp. 266–271, IEEE, 2013.

[244] Y. Liao and V. R. Vemuri, “Use of k-nearest neighbor classifier for intrusion

detection,” Computers & Security, vol. 21, no. 5, pp. 439–448, 2002.

[245] L. He, C. Xu, and Y. Luo, “vtc: Machine learning based traffic classi-

fication as a virtual network function,” in Proceedings of the 2016 ACM

International Workshop on Security in Software Defined Networks & Net-

work Function Virtualization, pp. 53–56, ACM, 2016.

262

[246] M. Panda and M. R. Patra, “Network intrusion detection using naive

bayes,” International journal of computer science and network security,

vol. 7, no. 12, pp. 258–263, 2007.

[247] N. B. Amor, S. Benferhat, and Z. Elouedi, “Naive bayesian networks in

intrusion detection systems,” in Proc. Workshop on Probabilistic Graphical

Models for Classification, 14th European Conference on Machine Learn-

ing (ECML) and the 7th European Conference on Principles and Practice

of Knowledge Discovery in Databases (PKDD), 23rd September, in Cav-

tat–Dubrovnik, Croatia, p. 11, 2003.

[248] T. Abbes, A. Bouhoula, and M. Rusinowitch, “Protocol analysis in intru-

sion detection using decision tree,” in Information Technology: Coding and

Computing, 2004. Proceedings. ITCC 2004. International Conference on,

vol. 1, pp. 404–408, IEEE, 2004.

[249] Y. Bouzida, F. Cuppens, N. Cuppens-Boulahia, and S. Gombault, “Ef-

ficient intrusion detection using principal component analysis,” in 3éme

Conférence sur la Sécurité et Architectures Réseaux (SAR), La Londe,

France, pp. 381–395, 2004.

[250] P. Laskov, P. Düssel, C. Schäfer, and K. Rieck, “Learning intrusion detec-

tion: supervised or unsupervised?,” Image Analysis and Processing–ICIAP

2005, pp. 50–57, 2005.

[251] L. Khan, M. Awad, and B. Thuraisingham, “A new intrusion detection sys-

tem using support vector machines and hierarchical clustering,” The VLDB

Journal—The International Journal on Very Large Data Bases, vol. 16,

no. 4, pp. 507–521, 2007.

263

[252] R.-C. Chen, K.-F. Cheng, Y.-H. Chen, and C.-F. Hsieh, “Using rough set

and support vector machine for network intrusion detection system,” in

Intelligent Information and Database Systems, 2009. ACIIDS 2009. First

Asian Conference on, pp. 465–470, IEEE, 2009.

[253] S. A. Mulay, P. Devale, and G. Garje, “Intrusion detection system using

support vector machine and decision tree,” International Journal of Com-

puter Applications, vol. 3, no. 3, pp. 40–43, 2010.

[254] D. S. Kim, S. M. Lee, and J. S. Park, “Building lightweight intrusion de-

tection system based on random forest,” in International Symposium on

Neural Networks, pp. 224–230, Springer, 2006.

[255] J. Zhang and M. Zulkernine, “Network intrusion detection using random

forests.,” in PST, 2005.

[256] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning approach

for network intrusion detection system,” in Proceedings of the 9th EAI In-

ternational Conference on Bio-inspired Information and Communications

Technologies (formerly BIONETICS), pp. 21–26, ICST (Institute for Com-

puter Sciences, Social-Informatics and Telecommunications Engineering),

2016.

[257] M. E. Aminantoa and K. Kimb, “Deep learning in intrusion detection sys-

tem: An overview,”

[258] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware traffic clas-

sification using convolutional neural network for representation learning,”

in Information Networking (ICOIN), 2017 International Conference on,

pp. 712–717, IEEE, 2017.

264

[259] N. Gao, L. Gao, Q. Gao, and H. Wang, “An intrusion detection model

based on deep belief networks,” in Advanced Cloud and Big Data (CBD),

2014 Second International Conference on, pp. 247–252, IEEE, 2014.

[260] Q. Niyaz, W. Sun, and A. Y. Javaid, “A deep learning based ddos

detection system in software-defined networking (sdn),” arXiv preprint

arXiv:1611.07400, 2016.

[261] R. Inc., “Defenseflow – sdn based network ddos, application dos and apt

protection,” Tech. Rep. Solution Brief, Radware Inc., 2014.

[262] T. Uzakgider, C. Cetinkaya, and M. Sayit, “Learning-based approach for

layered adaptive video streaming over sdn,” Computer Networks, vol. 92,

pp. 357–368, 2015.

[263] M. Latah and L. Toker, “Application of artificial intelligence to software

defined networking: A survey,” Indian Journal of Science and Technology,

vol. 9, no. 44, 2016.

[264] A. S. da Silva, J. A. Wickboldt, L. Z. Granville, and A. Schaeffer-Filho,

“Atlantic: A framework for anomaly traffic detection, classification, and

mitigation in sdn,” in Network Operations and Management Symposium

(NOMS), 2016 IEEE/IFIP, pp. 27–35, IEEE, 2016.

[265] K. Veeramachaneni, I. Arnaldo, V. Korrapati, C. Bassias, and K. Li, “Ai 2:

training a big data machine to defend,” in Big Data Security on Cloud (Big-

DataSecurity), IEEE International Conference on High Performance and

Smart Computing (HPSC), and IEEE International Conference on Intel-

ligent Data and Security (IDS), 2016 IEEE 2nd International Conference

on, pp. 49–54, IEEE, 2016.

265

[266] B. Davis, “Leveraging the load balancer to fight ddos,” SANS GIAC Gold

Certification Report, 2009.

[267] A. Califano, E. Dincelli, and S. Goel, “Using features of cloud computing

to defend smart grid against ddos attacks,” in 10th Annual symposium on

information assurance (Asia 15), ALBANY, pp. 44–50, 2015.

[268] C. Chen-Xiao and X. Ya-Bin, “Research on load balance method in sdn,”

International Journal of Grid and Distributed Computing, vol. 9, no. 1,

pp. 25–36, 2016.

[269] A. M. Ruelas and C. E. Rothenberg, “Implementation of neural switch

using openflow as load balancing method in data center,” Campinas, Brasil:

University of Campinas, 2015.

[270] L.-D. Chou, Y.-T. Yang, Y.-M. Hong, J.-K. Hu, and B. Jean, A genetic-

based load balancing algorithm in openflow network, pp. 411–417. Advanced

Technologies, Embedded and Multimedia for Human-centric Computing,

Springer, 2014.

[271] R. Blaguer, “Flow embedding algorithms for software defined audio net-

works,” Master Thesis ETH, pp. 1–60, 2014.

[272] O. Dobrijevic, M. Santl, and M. Matijasevic, “Ant colony optimization

for qoe-centric flow routing in software-defined networks,” in Network and

Service Management (CNSM), 2015 11th International Conference on,

pp. 274–278, IEEE, 2015.

[273] A. B. Letaifa, G. Maher, and S. Mouna, “Ml based qoe enhancement in sdn

context: Video streaming case,” in Wireless Communications and Mobile

266

Computing Conference (IWCMC), 2017 13th International, pp. 103–108,

IEEE, 2017.

[274] S. Kuklinski, J. Wytrebowicz, K. T. Dinh, and E. Tantar, Application

of cognitive techniques to network management and control, pp. 79–93.

EVOLVE-A Bridge between Probability, Set Oriented Numerics, and Evo-

lutionary Computation V, Springer, 2014.

[275] E. Tantar, M. R. Palattella, T. Avanesov, M. Kantor, and T. Engel, Cogni-

tion: A tool for reinforcing security in software defined networks, pp. 61–78.

EVOLVE-A Bridge between Probability, Set Oriented Numerics, and Evo-

lutionary Computation V, Springer, 2014.

[276] M. Guidry, “Artificial intelligence in networking: Ant colony optimization,”

[277] A. Horn, A. Kheradmand, and M. R. Prasad, “Delta-net: Real-time net-

work verification using atoms.,” in NSDI, pp. 735–749, 2017.

[278] S. A. Seshia, D. Sadigh, and S. S. Sastry, “Towards verified artificial intel-

ligence,” arXiv preprint arXiv:1606.08514, 2016.

[279] T. Menzies and C. Pecheur, “Verification and validation and artificial in-

telligence,” Advances in computers, vol. 65, pp. 153–201, 2005.

[280] W. Liu, R. B. Bobba, S. Mohan, and R. H. Campbell, “Inter-flow con-

sistency: A novel sdn update abstraction for supporting inter-flow con-

straints,” in Communications and Network Security (CNS), 2015 IEEE

Conference on, pp. 469–478, IEEE, 2015.

267

[281] E. Sakic, F. Sardis, J. W. Guck, and W. Kellerer, “Towards adaptive state

consistency in distributed sdn control plane,” in 2017 IEEE International

Conference on Communications (ICC), 2017.

[282] A. Hussein, I. H. Elhajj, A. Chehab, and A. Kayssi, “Sdn verification plane

for consistency establishment,” in The Twenty-First IEEE Symposium on

Computers and Communications, 2016.

[283] M. Aslan and A. Matrawy, “Adaptive consistency for distributed sdn con-

trollers,” in IEEE, 2016 17th International Telecommunications Network

Strategy and Planning Symposium (Networks), 2016.

[284] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey, “Veriflow: Verifying

network-wide invariants in real time,” ACM SIGCOMM Computer Com-

munication Review, vol. 42, no. 4, pp. 467–472, 2012.

[285] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv,

M. Schapira, and A. Valadarsky, “Vericon: Towards verifying controller pro-

grams in software-defined networks,” in ACM SIGPLAN Notices, vol. 49,

pp. 282–293, ACM, 2014.

[286] R. Skowyra, A. Lapets, A. Bestavros, and A. Kfoury, “A verification plat-

form for sdn-enabled applications,” in Cloud Engineering (IC2E), 2014

IEEE International Conference on, pp. 337–342, IEEE, 2014.

[287] M. Aslan and A. Matrawy, “A clustering-based consistency adaptation

strategy for distributed sdn controllers,” in 2018 4th IEEE Conference on

Network Softwarization and Workshops (NetSoft), 2018.

[288] M. Kang, E.-Y. Kang, D.-Y. Hwang, B.-J. Kim, K.-H. Nam, M.-K. Shin,

and J.-Y. Choi, “Formal modeling and verification of sdn-openflow,” in

268

Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth

International Conference on, pp. 481–482, IEEE, 2013.

[289] V. Podymov and U. Popesko, “Uppaal-based software-defined network veri-

fication,” in Tools & Methods of Program Analysis (TMPA), 2013, pp. 9–14,

IEEE, 2013.

[290] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey, “Veriflow: Verifying

network-wide invariants in real time,” ACM SIGCOMM Computer Com-

munication Review, vol. 42, no. 4, pp. 467–472, 2012.

[291] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan, “Flow-level

state transition as a new switch primitive for sdn,” in Proceedings of the

third workshop on Hot topics in software defined networking, pp. 61–66,

ACM, 2014.

[292] R. Mahajan and R. Wattenhofer, “On consistent updates in software de-

fined networks,” in Proceedings of the Twelfth ACM Workshop on Hot Top-

ics in Networks, p. 20, ACM, 2013.

[293] D. Sethi, S. Narayana, and S. Malik, “Abstractions for model checking

sdn controllers,” in Formal Methods in Computer-Aided Design (FMCAD),

2013, pp. 145–148, IEEE, 2013.

[294] A. Hussein, I. H. Elhajj, A. Chehab, and A. Kayssi, “Sdn security plane:

An architecture for resilient security services,” in 2016 IEEE International

Conference on Cloud Engineering Workshop (IC2EW), 2016.

[295] A. Hussein, I. H. Elhajj, A. Chehab, and A. Kayssi, “Sdn for mptcp: An

enhanced architecture for large data transfers in datacenters,” in 2017 IEEE

International Conference on Communications (ICC), pp. 1–7, May 2017.

269

[296] A. Hussein, I. H. Elhajj, A. Chehab, and A. Kayssi, “Sdn vanets in 5g: An

architecture for resilient security services,” in 2017 Fourth International

Conference on Software Defined Systems (SDS), pp. 67–74, 2017.

[297] A. Hussein, A. Kayssi, I. Elhajj, and A. Chehab, “Sdn for quic: an enhanced

architecture with improved connection establishment,” pp. 2136–2139, 04

2018.

[298] A. Hussein, L. Chadad, N. Adalian, A. Chehab, I. H. Elhajj, and A. Kayssi,

“Software-defined networking (sdn): the security review,” Journal of Cyber

Security Technology, vol. 0, no. 0, pp. 1–66, 2019.

[299] H. Ali, , S. Ola, A. Sarah, E. Imad, C. Ali, and K. Ayman, SDN and edge

computing: key enablers toward the 5G evolution. Telecommunications,

Institution of Engineering and Technology, 2017.

[300] A. Hussein, I. Elhajj, A. Chehab, and A. Kayssi, “Securing diameter: Com-

paring tls, dtls, and ipsec,” pp. 1–8, 11 2016.

[301] A. Hussein, A. Chehab, A. Kayssi, and I. H. Elhajj, “Machine learning

for network resilience: The start of a journey,” in 2018 Fifth International

Conference on Software Defined Systems (SDS), pp. 59–66, April 2018.

[302] A. Hussein, O. Salman, A. Chehab, I. Elhajj, and A. Kayssi, “Machine

learning for network resiliency and consistency,” pp. 146–153, 06 2019.

[303] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.

[304] M. Riedmiller and H. Braun, “A direct adaptive method for faster back-

propagation learning: The rprop algorithm,” in Neural Networks, 1993.,

IEEE International Conference on, pp. 586–591, IEEE, 1993.

270

[305] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis

of the kdd cup 99 data set,” in Computational Intelligence for Security and

Defense Applications, 2009. CISDA 2009. IEEE Symposium on, pp. 1–6,

IEEE, 2009.

[306] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a

new intrusion detection dataset and intrusion traffic characterization,” in

th International Conference on Information Systems Security and Privacy

(ICISSP),, vol. 32, January 2018.

[307] D. Xu, Z. Li, W. Wu, X. Ding, and D. Qu, “Convergence of gradient descent

algorithm for a recurrent neuron,” Advances in Neural Networks–ISNN

2007, pp. 117–122, 2007.

[308] Mininet, “Mininet.”

[309] Mini-Edit, “Miniedit.”

[310] “hashlib.”

[311] Wikipedia, “Sha-2 (secure hash algorithm 2),” 3 February 2019, at 00:36

(UTC).

271

