
AMERICAN UNIVERSITY OF BEIRUT

Machine Learning for Internet Traffic
Classification

by

OLA SALMAN

A dissertation
submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy of Engineering
to the Department of Electrical and Computer Engineering

of the Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
February 2020

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof. Imad
Elhajj for his continuous support of my PhD study and related research. His
guidance helped me in all the time of research and writing of this thesis. I would
like also to thank Prof. Ali Chehab and Prof. Ayman Kayssi for their continuous
support during the last five years.

I would like to thank the rest of my thesis committee: Prof. Georges Sakr
and Prof. Ghassan ElRegib, for their insightful comments and encouragement.

I would like also to thank AUB University Research Board, the Lebanese
National Council for Scientific Research, and TELUS Corp., Canada for funding
this research. Especially, I would like to thank Mr. Marc Kneppers from TELUS
for his support.

Last but not the least, I would like to thank my friends and my family: my
parents, my brothers and sister for their continuous support throughout my life.

v

An Abstract of the Dissertation
of

Ola Salman for Doctor of Philosophy
Major: Electrical and Computer Engineering

Title: Machine Learning for Internet Traffic Classification

Traffic classification acquired the interest of the Internet community early on.
Different approaches have been proposed to classify Internet traffic to manage
both security and Quality of Service (QoS). However, traditional classification
approaches consisting of modifying the Transmission Control Protocol/Internet
Protocol (TCP/IP) scheme have not been adopted due to their complex man-
agement. In addition, port-based methods and deep packet inspection have lim-
itations in dealing with new traffic characteristics (e.g., dynamic port allocation,
tunneling, encryption). Conversely, Machine Learning (ML) solutions effectively
classify traffic down to the device type and specific user action. Different ML
based methods have been applied for this aim. However, traditional ML methods
rely on hand crafted features, limiting the model ability to learn. Deep learning
(DL), a branch of ML, is characterized by its representation learning ability. on
the other hand, intrusion detection systems (IDSes) have been proposed to de-
tect and/or prevent security attacks by inspecting and detecting attacks patterns.
However, traditional IDSes are rule based and present high management complex-
ity. Alternatively, ML-based IDSes have emerged to overcome the management
complexity issue. However, many of the proposed solutions are based on hand
crafted features and considered datasets are outdated. In this thesis, we propose
a new data representation method to apply DL for traffic classification and intru-
sion detection. For traffic classification, a hierarchical classification framework is
proposed to classify the traffic based on different granularity levels. The defined
classes reflect the different QoS and security needs. We analyse two methods of
data representation for DL-based classification: a raw packet representation and
a flow-based representation. Different tests are performed to evaluate the robust-
ness of the considered data representation methods. These tests include features

vi

importance, model robustness, and anonymization tests. The results show that
raw data representation suffers from traffic anonymization and the fact that many
packet fields are data dependent. On the other hand, the flow-based represen-
tation is sensitive to the number of packets used for classification. Moreover,
the statistical features are prone to modification if the main flow characteristics
(packets sizes and inter-arrival times) are manipulated. In this context, another
research direction is emerging in the aim to anonymize Internet traffic and thwart
classification to maintain user privacy. Traffic mutation is one such obfuscation
technique, that consists of modifying the flow’s statistical characteristics to mis-
lead the traffic classifier. In fact, this same technique can also be used to hide
normal traffic characteristics for the sake of privacy. However, the concern is its
use by attackers to bypass intrusion detection systems by modifying the attack
traffic characteristics. To tackle this problem, we propose an unsupervised DL-
based model to detect mutated traffic. This model is based on generative DL
architectures, namely Autoencoders (AE) and Generative Adversarial Network
(GAN). This model consists of a denoising AE to de-anonymize the mutated
traffic and a discriminator to detect it. The implementation results show that
the traffic can be denoised when different mutation techniques are applied with
a low reconstruction error and high detection rate. Another obfuscation tech-
nique that aims at imitating traffic characteristics to make one traffic look like
another one. In this thesis, we propose also a Generative Adversarial DL-based
method to detect morphed traffic. The proposed method consists of a combina-
tion of Variational Autoencoder (VAE) and GAN. The VAE aims at inferring the
probability distribution of the original traffic and morphing it, while the GAN’s
discriminator is trained to detect the fake (morphed) traffic. The testing results
show that we can generate fake traffic that is very similar to the original one, and
that the discriminator is able to detect the morphed traffic, with a high detection
rate. Deciding on the number of packets that should be considered per flow is
not a straightforward task. While considering a subset of packets or a window of
time per flow was considered in previous work for real-time classification without
defining a stopping criteria, in our case, we treat the flows as time series and we
aim to define a criteria guaranteeing good accuracy and low response time. To
do so, we consider the mutual information between the flows features and the
class labels, while increasing n. Different than the traditional mutual informa-
tion based features reduction methods, in our case, the traffic nature (streaming
data) calls for new features selection and reduction method. In this context, a
confidence measure is proposed based on the training accuracy and the mutual
information between the data and the class vector. The obtained results show
that our proposed measure results in choosing n that meets the balance between
real time traffic classification, high accuracy, and less training overhead. Finally,
we propose a classification model where a consecutive set of classifiers of different
dimensions is considered as an ensemble classifier. The implementation results
show that the ensemble method is able to enhance the accuracy of the individual

classifiers to reach better classification performance at early stages.

Contents

Acknowledgements v

Abstract vi

1 Introduction 1
1.1 Contributions . 3
1.2 List of Publications . 4
1.3 Organization . 5

2 Background and Related Work 7
2.1 Internet Traffic Data Challenges 7

2.1.1 Data Size . 9
2.1.2 Data Labeling . 10
2.1.3 Data Timeliness . 10

2.2 Data Representation . 11
2.2.1 Behavioral-based . 11
2.2.2 Vectors . 12
2.2.3 Time series . 14
2.2.4 Word embeddings . 14
2.2.5 Images . 15

2.3 Machine Learning Methods . 16
2.3.1 Supervised . 17
2.3.2 Unsupervised . 21
2.3.3 Semi-Supervised . 25

2.4 Traffic Classification Classes . 28
2.4.1 Protocols Classification . 28
2.4.2 Applications Classification 30
2.4.3 Actions Classification . 31
2.4.4 Categories Classification 31
2.4.5 Devices Classification . 33

2.5 Thwarting Internet Traffic Classification 35
2.5.1 Encryption . 35
2.5.2 Steganography . 36

ix

2.5.3 Tunneling . 37

2.5.4 Anonymization . 38

2.5.5 Mutation . 38

2.5.6 Morphing . 40

2.5.7 Physical Layer Obfuscation 41

2.6 Key Findings, Limitations, and Recommendations 42

2.6.1 Key findings . 42

2.6.2 Limitations . 43

2.7 Conclusion . 45

3 Data Representation 46

3.1 Classification Framework . 46

3.1.1 Hierarchical Classification 47

3.1.2 Data Collection, Preprocessing and Representation 48

3.1.3 Classifier Model . 50

3.2 Comparison Criteria and Methodology 51

3.2.1 Performance Test . 54

3.2.2 Features Importance Test 55

3.2.3 Model Robustness Test . 57

3.2.4 Features Robustness Test 58

3.3 Experimentation Results . 59

3.3.1 Performance Test Results 59

3.3.2 Features Importance Test Results 60

3.3.3 Model Robustness Test Results 62

3.3.4 Features Robustness Test Results 64

3.4 Discussions . 65

3.5 Conclusion . 67

4 Detecting Mutation 69

4.1 Proposed Abnormal Traffic Detection 69

4.1.1 Attack Model . 70

4.1.2 Deep Learning Model . 71

4.1.3 Proposed Model Workflow 72

4.1.4 Data Representation . 73

4.2 Implementation . 73

4.2.1 Data Collection and Preprocessing 74

4.2.2 Model Implementation and Training 75

4.2.3 Evaluation and Results . 75

4.3 Discussions . 77

4.4 Conclusion . 78

5 Detecting Morphing 80
5.1 Proposed Morphing Detection Solution 80

5.1.1 Attacker-Defender Model 81
5.1.2 Generative Deep Learning Model 83
5.1.3 Data Representation . 85

5.2 Experimental Analysis . 86
5.2.1 Data Collection . 86
5.2.2 Model Implementation . 88
5.2.3 Testing Results . 88

5.3 Discussions . 89
5.4 Conclusion . 90

6 Real-time Traffic Classifier 91
6.1 Data Visualization . 91
6.2 Confidence Measure . 92
6.3 Ensemble Classifier Model . 96
6.4 Experimentation Results . 97

6.4.1 Confidence Measure Results 97
6.4.2 Ensemble Classifier Results 97
6.4.3 Optimal n Results . 97

6.5 Formal Description and Discussions 106
6.5.1 Problem Description . 106
6.5.2 Proposed Solution . 106

6.6 Conclusion . 110

7 Conclusion 111

List of Figures

1.1 Proposed classification framework 3

2.1 Internet traffic classification process 8
2.2 Data representation method . 13
2.3 ML method approaches . 17
2.4 Trends of supervised ML methods used for traffic classification . . 18
2.5 Trends of unsupervised ML methods used for traffic classification 22
2.6 Trends of unsupervised ML methods used for traffic classification 27
2.7 Internet Traffic classification objectives 28
2.8 Internet traffic obfuscation techniques 36

3.1 Hierarchical Internet Traffic Classification 47
3.2 Data Collection Setup . 48
3.3 Data Representation: (a) Gray images and (b) RGBA images . . 51
3.4 Data visualization (at left: RGBA method, and at right: Gray

method) . 52
3.5 The used CNN architecture. 54
3.6 Performance test results (Level 1) 60
3.7 Performance test results in terms of accuracy: (a) for Level 2 and

(b) for Level 3 . 60
3.8 Performance test results in terms of accuracy (Level 4) 61
3.9 Gray method features importance results in terms of accuracy: (a),

(c), and (e) for anonymization at training and testing phases using
our data, TOR , and VPN data-sets respectively; (b), (d), and (f)
for anonymization at the testing phase using our data, Tor, and
VPN data-sets respectively. 62

3.10 RGBA method features importance results in terms of accuracy . 63
3.11 Robustness test results in terms of accuracy (Level 1) 63
3.12 Robustness test results in terms of accuracy (Level 2) 64
3.13 Anonymization results in terms of accuracy considering the TOR

and VPN data-sets . 65
3.14 Features robustness test results in terms of accuracy for all levels

considering the RGBA28x28, RGBA4x4, RF28x28, and RF4x4: a)
level 1, b) level 2, c) level 3, and d) level 4. 66

xii

4.1 Attack model . 70
4.2 Proposed model . 72
4.3 Proposed scheme workflow . 73
4.4 Data Representation . 74
4.5 Visualized images representing network traffic 76

5.1 Attacker-Defender Model . 81
5.2 Generative Adversarial Deep Learning Model 82
5.3 4x4 obtained images . 86
5.4 8x8 obtained images . 86
5.5 28x28 obtained images . 87

6.1 t-SNE visualization of Level 1 data for different values of n: (a) n
= 2, (b) n = 4, (c) n = 6, (d) n = 8, (e) n = 10, (f) n = 12, (g) n
= 14, (h) n = 16, (i) n = 18, (j) n = 20, (k) n = 22, (l) n = 24. . 93

6.2 Image Representation . 94
6.3 Classifier Model . 96
6.4 Confidence Measure Results . 99

List of Tables

2.1 Previous survey summary . 8
2.2 Internet traffic data providers . 9
2.3 Comparison of ML methods used for Internet traffic classification 26
2.4 ML based Internet traffic classification objectives 29
2.5 Traffic obfuscation techniques . 34
2.6 Obfuscation techniques . 42

3.1 Collected Data (Number of Flows) 50
3.2 Feature Set for statistical classification 53
3.3 Packet fields . 56
3.4 Accuracy Results (in%) with the TOR and VPN data-sets 65

4.1 Testing evaluation results . 77
4.2 Classification Results . 78

5.1 Summary of notations . 81
5.2 Classification Results . 87
5.3 Morphing Loss . 87
5.4 Detection Rate . 87

6.1 Ensemble Accuracy Results . 98
6.2 Best Choice of n . 101
6.3 Effect of choosing optimal n based on the MI measure 102
6.4 Effect of choosing optimal n based on the training accuracy 103
6.5 Effect of choosing optimal n based on the proposed confidence

measure . 104
6.6 Enhancement in terms of time . 105
6.7 Voice Results . 106

xiv

Chapter 1

Introduction

From the first application of the Internet (i.e., electronic mail in 1972 [1]) to
present day, Internet traffic has undergone a tremendous evolution. With the
emergence of the Internet of Things (IoT), there is a shift in the types of con-
nected devices and supported applications. Future large-scale networks present
increased management complexity in terms of Quality of Service (QoS) and secu-
rity [2]. The goal of Internet traffic classification is to facilitate network manage-
ment. Traffic classification has a key role in QoS provisioning, network planning,
intrusion detection, network monitoring, traffic trends analysis, and firewalling.
First, packet marking was proposed to differentiate traffic based on its QoS class.
Examples of packet fields used for packet marking are Type of Service (ToS),
Differentiated Services Code Point (DSCP), and Explicit Congestion Notifica-
tion (ECN). Indeed, several protocols have been proposed for traffic differenti-
ation including Differentiated Services (DiffServ), Integrated Services (IntServ),
and Multiprotocol Label Switching (MPLS). However, these protocols were not
widely deployed and adopted due to their complexity and compatibility issues. A
more practical solution is to classify the traffic without modifying the Transmis-
sion Control Protocol/Internet Protocol (TCP/IP) mechanism. In this context,
Deep Packet Inspection (DPI) was proposed for classification based on the packet
header and application signature. However, this method burdens the network
with its high processing overhead. Furthermore, DPI cannot deal with encrypted
traffic [3, 4]. Alternatively, port-based classification was proposed, given that
well-known port numbers have been assigned by the Internet Assigned Numbers
Authority (IANA) for certain application and protocols. Though, nowadays, the
applications are using dynamic port allocation. Additionally, some network ser-
vices, like tunneling and anonymization, hide the port numbers information [1, 5].
Furthermore, in the mobile domain, most of the applications traffic is tunneled
through Hyper Text Transfer Protocol Secure (HTTPS) traffic. In this context,
Machine Learning (ML) based methods were proposed for traffic classification
and intrusion detection. Many supervised and unsupervised methods have been
employed accordingly. While supervised methods are devoted to classifying the

1

(attack) traffic based on known class labels, the unsupervised ones allow the de-
tection of unknown traffic. The traditional ML methods rely on well-structured
and hand-designed features. These features are extracted using statistical traffic
measures (e.g. maximum, minimum, standard deviation, etc. of the packet sizes,
and packets inter-arrival times). However, these features are hand-crafted and the
defined classes do not reflect the network needs in terms of QoS and security. In
this thesis, we rely on Deep Learning to be applied on quasi-raw traffic features.
In addition, we define a hierarchical classification framework to classify traffic
based on its required QoS and security levels. However, recently, the security
of ML based methods have been questioned. New adversarial attacks have been
employed to manipulate the input data in the aim of forgery or misclassification.
In the traffic classification domain, many obfuscation techniques have been pro-
posed towards hiding or modifying the flow characteristics to confuse the classifier
and prevent any detection. From these obfuscation techniques, two well-known
techniques are considered in this thesis: mutation and morphing. Even though
in many cases, the recovery of the original traffic is impossible, the detection
of manipulated traffic is essential to prevent misclassification. In this context,
adversarial DL networks have been proposed to generate and detect adversarial
attacks. In this thesis, the combination of denoising autoencoder and Generative
Adversarial Network (GAN)’s discriminator are used to detect mutated traffic
and denoise it. Moreover, the combination between variational autoencoder and
GAN’s discriminator are employed for generating morphed traffic and detecting
it. Detecting mutation and morphing is not enough to avoid misclassification. In
our case, the choice of n affects the classification accuracy. Choosing large value
of n does not always guarantee better accuracy in addition to real time appli-
cation constraints. Consequently, the choice of n should meet the compromise
between real-time classification constraints and classification performance. Based
on that, we propose a model confidence measure that reflects the confidence in
the model to give good testing accuracy. Moreover, giving the time series type
of traffic, we propose an ensemble method of the successive classifiers to enhance
the individual classification results.

As shown in Figure 1.1, our proposed classification framework consists of
several modules:

• The first module aims at extracting quasi-raw statistical features from
the first n× n packets of a flow. At this stage, the flow is transformed into
an image to be passed to a CNN classifier.

• The second module aims at detecting mutated traffic. While statistical
features can be used for mutation detection, our data representation has the
benefit of mutated traffic recovery by applying image denoising techniques.

• The third module has the role of morphing detection. In this case, sta-
tistical features are useless for detection. However, our data representation

2

Figure 1.1: Proposed classification framework

can be used for detection. While traditional morphing techniques rely on
analysing the probability distributions of packets sizes and inter-arrival time
in a complex manner, GAN can be naturally used to infer the probability
distributions of these features by applying VAE with our data representa-
tion.

• Finally, the fourth module aims at building a confidence in the model
considering the traffic as time series data to optimize the choice of n meet-
ing the compromise between the accuracy, training overhead, and testing
response time. In this case, a confidence measure is proposed based on the
training accuracy and the mutual information between the packets features
and the class vector. Moreover, to enhance the accuracy at the chosen n,
we propose an ensemble method of the successive classifiers by taking the
average of the classes probabilities to get the ensemble decision.

1.1 Contributions

The contributions of this thesis can be summarized as follows:

1. Proposing a new data representation method to transform traffic flows into
images and apply CNN for classification.

2. Conducting a comparative study between raw and quasi-raw representation
for DL-based traffic classification.

3. Proposing a DL-based architecture for defending traffic mutation, by recov-
ering and detecting mutated traffic.

3

4. Defending traffic morphing by employing generative DL-based model to
generate and detect fake traffic.

5. Proposing a new confidence measure based on the training accuracy and
the mutual information.

6. Optimizing the number of packets sufficiently required for accurate classi-
fication based on a proposed confidence measure.

7. Proposing an ensemble based classification method by aggregating succes-
sive classification results for successive values of n to enhance the classifi-
cation accuracy.

1.2 List of Publications

My thesis work has resulted in a number of publications as listed:

1. Hussein, O. Salman, S. Abdallah, I. H. Elhajj, A. Chehab, A. Kayssi, SDN
& Edge Computing: Key Enablers towards the 5G Evolution, Institution of
Engineering and Technology (IET), Titled: Access, Fronthaul and Backhaul
Networks for 5G & Beyond, chapter 19, London, UK, 2017.

2. O. Salman, I. H. Elhajj, A. Chehab and A. Kayssi, A machine learning
based framework for IoT device identification and abnormal traffic detec-
tion, Trans Emerging Tel Tech. 2019; e3743.

3. O. Salman, I. H. Elhajj, A. Chehab and A. Kayssi, IoT survey: An SDN
and fog computing perspective, Computer Networks, 2018, 143, 221-246.

4. O. Salman, I. Elhajj, A. Kayssi and A. Chehab, ”An architecture for the
Internet of Things with decentralized data and centralized control,” 2015
IEEE/ACS 12th International Conference of Computer Systems and Ap-
plications (AICCSA), Marrakech, 2015, pp. 1-8.

5. O. Salman, I. Elhajj, A. Kayssi and A. Chehab, ”Edge computing enabling
the Internet of Things,” 2015 IEEE 2nd World Forum on Internet of Things
(WF-IoT), Milan, 2015, pp. 603-608.

6. O. Salman, I. H. Elhajj, A. Kayssi and A. Chehab, ”SDN controllers: A
comparative study,” 2016 18th Mediterranean Electrotechnical Conference
(MELECON), Lemesos, 2016, pp. 1-6.

7. O. Salman, S. Abdallah, I. H. Elhajj, A. Chehab and A. Kayssi, ”Identity-
based authentication scheme for the Internet of Things,” 2016 IEEE Sympo-
sium on Computers and Communication (ISCC), Messina, 2016, pp. 1109-
1111.

4

8. O. Salman, R. Morcel, O. Al Zoubi, I. Elhajj, A. Kayssi and A. Chehab,
”Analysis of topology-based routing protocols for VANETs in different en-
vironments,” 2016 IEEE International Multidisciplinary Conference on En-
gineering Technology (IMCET), Beirut, 2016, pp. 27-31.

9. O. Salman, M. Awad, F. Saab, I. Elhajj, A. Chehab and A. Kayssi, ”A
game-theoretic approach to resource allocation in the cloud,” 2016 IEEE
International Multidisciplinary Conference on Engineering Technology (IM-
CET), Beirut, 2016, pp. 132-137.

10. O. Salman, I. H. Elhajj, A. Kayssi and A. Chehab, ”Software Defined IoT
Security Framework,” 2017 The Fourth International Conference on Soft-
ware Defined Systems (SDS-2017), Valencia, May 8-11, 2017.

11. O. Salman, A. Kayssi, A. Chehab, and I. H. Elhajj, ” Multi-Level Security
for the 5G/IoT Ubiquitous Network,” 2017 The 2nd International Confer-
ence on Fog and Mobile Edge Computing (FMEC 2017), Valencia, May
8-11, 2017.

12. O. Salman, I. H. Elhajj, A. Chehab, and A. Kayssi, ”QoS Guarantee over
Hybrid SDN/non-SDN Networks,” The 8th International Conference on
Network of the Future (NoF2017), London, Nov. 22-24, 2017.

13. O. Salman, L. Chaddad, I. H. Elhajj, A. Chehab and A. Kayssi, ”Pushing
intelligence to the network edge,” 2018 Fifth International Conference on
Software Defined Systems (SDS), Barcelona, 2018, pp. 87-92.

14. O. Salman, I. H. Elhajj, A. Chehab and A. Kayssi, ”A Multi-level Internet
Traffic Classifier Using Deep Learning,” 2018 9th International Conference
on the Network of the Future (NOF), Poznan, 2018, pp. 68-75.

15. A. Hussein, O. Salman, A. Chehab, I. H. Elhajj and A. Kayssi, Machine
Learning for Network Resiliency and Consistency, 2019 Sixth International
Conference on Software Defined Systems (SDS), Rome, 2019.

16. O. Salman, I. H. Elhajj, A. Chehab and A. Kayssi, ” Denoising Adver-
sarial Autoencoder for Obfuscated Traffic Detection and Recovery,” 2019
2nd International Conference on the 2nd IFIP International Conference on
Machine Learning for Networking (MLN’2019), Paris, 3-5 December 2019.

1.3 Organization

This thesis consists of 5 chapters, besides the introduction chapter. These chap-
ters are organized as follows:

5

• Chapter 2 presents a comprehensive literature review on the traffic classifi-
cation and obfuscation techniques. In this chapter, we review the different
methods, goals and proposed classification methods. In addition, we present
the traffic obfuscation techniques that can affect the accuracy of the classi-
fication methods. In addition, in this chapter, we include the main concepts
needed for understanding the rest of the chapters.

• In chapter 3, we present our proposed data representation methods. In ad-
dition, we conducted a comparative study between our method and previous
work.

• Chapter 4 presents our proposed method to detect traffic mutation consid-
ering several mutation techniques.

• In Chapter 5, we consider generative adversarial DL-based architecture to
generate and detect morphed traffic.

• Chapter 6 presents the proposed confidence measure to define the sufficient
number of packets n × n for achieving good accuracy while minimizing
the response time. Moreover, in this chapter, we present our ensemble
classifier model that aims at enhancing the accuracy of individual classifiers
at different values of n.

• Finally, we conclude in chapter 7, opening the floor for future research
perspectives.

6

Chapter 2

Background and Related Work

Classification using Machine Learning (ML) methods have been proposed to over-
come DPI and port-based limitations [6, 7, 8]. ML methods have shown their
effectiveness to classify even encrypted traffic [9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33].

In the literature, several works compare different ML classification meth-
ods. However, some of these publications do not consider new ML methods
used for traffic classification (e.g., deep learning, DL) or new traffic classifica-
tion approaches (e.g., action-based classification). Table 2.1 summarizes previous
surveys on Internet traffic classification. The work done in [34, 35, 36] does not
include new ML methods for traffic classification or new Internet applications
and traffic types. In [37], the authors only consider payload-based classification.
In [15], the methods proposed for encrypted traffic classification are reviewed.
The most recent work surveying ML-based traffic classification methods is in [38].
However, none of the existing surveys consider the main traffic classification lim-
itation represented by traffic obfuscation techniques.

In this chapter, we review ML-based Internet traffic classification including the
applied ML methods, available public data, different data representations (i.e.,
feature extraction), and classification objectives. Importantly, we also describe
the obfuscation methods proposed to thwart the Internet traffic classification.

The ML-based classification process consists mainly of four phases, as illus-
trated in Figure 2.1: data collection, data preprocessing and features extraction
(data representation), model training, and performance evaluation based on the
classification objectives.

2.1 Internet Traffic Data Challenges

ML learning consists of two phases: training and testing (or validation). In the
training phase, the classifier is fed with part of the collected data with the aim of
recognizing differentiating patterns. Cross-validation is used during this phase,

7

Table 2.1: Previous survey summary
Reference Year Summary
[36] 2008 Review of the different ML methods used for

traffic classification
[35] 2009 Review of the different ML methods used for

traffic classification and review of the different
techniques used

[34] 2012 Review of the main challenges and future re-
search directions

[37] 2014 Review of the payload-based traffic classification
[15] 2014 Review of the techniques used to classify en-

crypted traffic
[38] 2018 A systematic review of ML-based traffic classifi-

cation with its different stages: data collection,
features extraction, ML method selection, and
model evaluation

Figure 2.1: Internet traffic classification process

and model performance is evaluated at each fold to optimize the model param-
eters. In the testing phase, the model is tested on unseen data. Therefore, if
the model performance is not as good as expected, re-training the model with a
different set of parameters might enhance its performance. However, sometimes
model performance remains unsatisfactory, even after a grid search over all the
parameter values. In this case, there is a need to re-collect additional represen-
tative data. Indeed, data are the essential part of any ML classification problem.

8

Table 2.2: Internet traffic data providers
Source Dataset Year Type Used In Description
Canadian Insti-
tute for Cyber-
security (CIC)

ISCX VPN-non
VPN [39] ISCX
Tor-nonTor [40]

2016 Labeled [31, 41, 42] (3
papers)

These datasets consist of 7 cat-
egories: Web Browsing, Email,
Chat, Streaming, File Transfer,
Voice over IP (VoIP), and Peer
to Peer (P2P), collected by re-
searchers at the University of
New Brunswick (UNB)

University of
Cambridge
Computer
Laboratory Re-
search Group

Moore
Dataset [43]

2003 Labeled [1, 22, 42, 44,
45, 46, 47, 48,
49, 50, 51, 52,
53, 54, 55, 56,
57, 58] (18 pa-
pers)

This data was captured at the
University of Cambridge cam-
pus, where 1000 users are con-
nected to the Internet by a gi-
gabit Ethernet link. It con-
sists of 7 classes: attack, web,
bulk, mail, service, P2P, and
database

Research group
at the Uni-
versity of
Waikato Com-
puter Science
Department
(WAND)

Auckland (I, II,
III, and IV)[59]
University of
Auckland

I (July
1999),
II
(Novem-
ber
1999-
June
2000)
, III
(Au-
gust
2000),
IV
(Febru-
ary
2001 -
April
2001)

Unlabeled [60, 61, 62, 63,
64, 65] (6 pa-
pers)

This research group has set up
a bi-directional measurement
system on the OC3c ATM ac-
cess link that connects the Uni-
versity of Auckland to the In-
ternet

Measurement
& Operations
Analysis Team,
(NLANR)

Unlabeled [22, 66, 67, 68,
69, 70] (6 pa-
pers)

NLANR is an NSF-funded re-
search group at the San Diego
Supercomputer Center

Center for Ap-
plied Internet
Data Analysis
(CAIDA)

Unlabeled [71, 72, 73, 74]
(4 papers)

Founded in 1997, CAIDA con-
ducts network research and
builds research infrastructure
to support large-scale data col-
lection

MAWI Work-
ing Group
Traffic Archive

WIDE [75] 1999-
2019

Unlabeled [12, 22, 74, 76,
77, 78, 79, 80,
81, 82, 83, 84,
85] (14 papers)

WIDE is an updated dataset
collected at the US-Japan
Trans-Pacific backbone link. It
consists of several traces that
range in time from 1999-2019

In [86], the authors conducted a validation analysis of training and testing Inter-
net traffic datasets. Their aim was to show how model performance is affected
when the testing and training datasets are collected at different geographical lo-
cations. In the following, we discuss different issues encountered when classifying
Internet traffic data using ML methods.

2.1.1 Data Size

Imbalanced data are one of the main issues encountered by most ML meth-
ods. Most specifically, in the network domain, some protocols/applications traffic
dominate over other types [87]. Data balancing is proposed to overcome biasing
encountered when training a model with imbalanced data [88]. In this context,
resampling techniques have been employed to balance the data by under- or over-
sampling, which consist of augmenting the size of the minority classes or decreas-
ing the size of the majority classes, respectively. Compared to the original data
size, under-sampling produces a smaller data size and over-sampling results in a

9

larger data size. However, under-sampling is barely used, given that:1)there is no
large labeled Internet traffic, 2)and the larger the data, the better is the model
performance. Instead, the over-sampling technique, which consists of randomly
replicating the samples of the class presenting a smaller number of instances, is
widely adopted. However, data balancing might affect the accuracy of the trained
models when applied to real data. Another issue encountered, at the data col-
lection phase, is packet sampling . Packet sampling consists of capturing the
packets at fixed intervals [89]. In this case, not all the flow packets are captured
due to the large data size and real-time processing limitations when dealing with
the Internet backbone traffic. Consequently, this might affect the classification
performance given that the statistical features extracted from the full packets
flows are different from those extracted from sampled packets flows. In this case,
it is important to consider sampling at the training and testing phases.

2.1.2 Data Labeling

Data labeling is another issue in the Internet domain, where controlling the
applications traffic is not a straightforward task. Consequently, the collection
of labeled Internet traffic requires specific setup in a private network (e.g., lab),
to capture the traffic and filter it based on specific parameters (e.g., time inter-
val, IP addresses, Media Access Control (MAC) addresses, and port numbers).
Consequently, the burden of collecting and labeling Internet traffic pushes the
researchers to find a way to label the widely available unlabeled datasets (e.g.,
CAIDA datasets). Two methods are mainly employed to label Internet traf-
fic: DPI and port-based classification. Many DPI tools have been developed for
this aim, such as: PACE [90], OpenDPI [91], L7-filter [92], nDPI [93], Libpro-
toident [94], and NBAR [88]. These tools have been used to validate ML clas-
sification results and label unlabeled Internet traffic [95, 96, 97]; however, they
cannot be applied to label encrypted traffic. Similarly, port-based classification
tools such as CoralReef [98] have been also developed and used to label the unla-
beled Internet traffic datasets. These approaches have also been combined with
the statistical based ML approaches to ensure better performance [4, 99]. How-
ever, none of these labeling approaches ensure 100% correct labels, so the ground
truth will not be highly accurate. In this case, collecting labeled data remains
necessary.

2.1.3 Data Timeliness

As shown in Table 2.2, the Moore dataset was extensively used in the reviewed pa-
pers. This dataset consists of preprocessed data with 249 extracted features and
was captured in 2003. Since then, Internet traffic has changed noticeably with
the emergence of IoT. New traffic trends have emerged with new applications,
new kinds of traffic, and new types of connected devices. According to the last

10

Cisco VNI forecast [100], video traffic will dominate the Internet traffic by 2021.
In this context, new datasets, including new applications traffic, are needed. In
fact, the traffic characteristics depend on the device specifications (OS, memory
capacity, processing power, and supported protocols). Consequently, considering
traffic generated by new kinds of devices (IoT sensors, robots, drones, smart cars,
etc.) is key to be able to identify new traffic types (e.g., sensing and actuation
traffic) along with their generating devices. To summarize, collecting representa-
tive data is key for ML classification. In this context, data variety, accurate data
labeling, and updated classes definition are essential to ensure ML classification
effectiveness. After collecting data, a very important phase comes up, which is
features extraction or data representation. In the next section, we review the dif-
ferent data representation methods proposed in the traffic classification domain.

2.2 Data Representation

Data representation is an essential part of any ML classification process. To
recognize the discriminating patterns, the ML model needs to be based on well-
structured input. Traditional ML methods require hand-crafted features. Indeed,
after collecting data, a preprocessing phase follows to extract the features that
will be inputted to the ML model. Typically, traffic classification is assessed per
network flow, where a flow is defined as the ensemble of packets having the same
connection parameters, including the source and destination IP addresses, the
source and destination port numbers, and the transport protocol. Note that a
bidirectional flow is defined as the set of packets having the common 5-tuples
connection parameters in either direction. Two main flow features, with their
various statistical values (max, min, standard deviation, quartile, etc.), have
been considered extensively in the literature: the packet interarrival time and
packet size [28, 101, 102, 103, 104, 105]. Based on the reviewed work, we can
categorize the data representation methods employed in the traffic classification
domain, as follows: behavioral-based, vectors, time series, word embeddings, and
images.

2.2.1 Behavioral-based

In this category, traffic is the intercommunication patterns between the flow
source and destination [71, 106, 107, 108, 109, 110, 111, 112, 113, 114]. Kara-
giannis et al. in [107] proposed a multi-level behavioral analysis system, called
BLINC, based on the interaction between hosts, protocol usage, and per-flow
average packet size. The BLINC system represents the flow data as graphlets
that describe the normal usage patterns of network applications. These struc-
tures are then used in conjunction with the host information to predict the ap-
plication/protocol name. A graphlet, as shown in Figure 2.2-a, consists of the

11

communication patterns defined by the 4-tuple: source IP address, destination
IP address, source port number, and destination port number. Even though port
numbers are used, the classification is independent of their exact valueswhat
matters is the associated pattern.

More recently, a method to represent the users behavior and analyze the
dynamic characteristics of the host behaviors was proposed [108]. Hu et al. ex-
tracted the features that correlate with the target application from the traffic
traces [115]. For each application, they built a profile (ensemble of rules) that
defines the application behavior. Cao et al. presented an approach that com-
bines both host- and flow-level identifications to classify applications traffic by
statistical behavioral analysis [109]. In [116], the user-app bipartite method is
proposed. User-app bipartite, as shown in Figure 2.2-b, aims at illustrating the
communication between mobile users and application servers. Two types of nodes
are defined: the user and server nodes. The user node is characterized by the
phone number client section (i.e., the first three digits of the phone number),
mobile phone brand, and phone model. The server node is characterized by the
supported application categories and sub-categories. The edge is characterized
by the flow start and end times, packet size in bytes, direction (upstream, and
downstream), and application category label (determined by the server node). In
Figure 2.2-b, the color refers to the application category label. Because the user
might use different applications, one user node may have more than one colored
edge at the same time. The server node might have multiple colored edges at the
same time because a server might host different applications. In [77], graphlets
(macroscopic traffic characteristics) and packet size-based features (microscopic
traffic characteristics) are employed. However, the behavioral based flow repre-
sentation presents memory and processing overhead.

2.2.2 Vectors

A typical method to represent Internet traffic is by extracting flow-based statisti-
cal features. These features are calculated by extracting packet-related informa-
tion, as shown is Figure 2.2-c. Moore presented a comprehensive list consisting
of a total of 249 statistical features computed per network flow [117]. This com-
prehensive set includes different statistics (max, min, standard deviation, mean,
etc.) of the different flow packets attributes: packets interarrival time, packet
size, burst/flow volume, in addition to the IP and port numbers and TCP flags.
These statistics are computed for in and out flow directions. Another vector-based
representation is the discrete byte encoding proposed in [118]. In this method,
the first n-bytes of a flow are encoded by a feature vector v with 256 elements.
The components of v are initialized to 0. Then for each byte in the input stream,
the (i*256 + c(i)) ith component is set to 1, where i is the position of a byte with
value c[i] in the extracted flow. The resulted binary vector v is input to the ML
classifier. This data representation type is widely adopted because it is suitable

12

a) Graphlet (Behavorial-based)
b) User-App bipartite (Behavorial-

based)
c) Moore (Vector)

d) Time Series
e) Net2vec (Word embedding)

f) ProWord (Word embedding)

g) Hot Encoding (2D

representation)
h) RGBA Images i) Gray Images

-60

-40

-20

0

20

40

flow1 flow2

O
u

tg
o

in
g

 t
ra

ff
ic

 [
K

B
]

In
g

o
in

g
 t

ra
ff

ic
 [

K
B

]

Complete flow time series

Src IP Dst IP
Src
Port

Dst
Port

1

2

3

4

5

1

2

3

4

Mobile
Users

Servers

Interarrival Time

Packet Size

Feature
Extraction

F
1
 F

2
 F

3
 F

4
 F

5
 F

6
 F

7
 F

8
 F

n

TCP Flags IP Addresses

Port numbers Transport protocol

(10.20.3.90, amazon.com

(10.6.3.10, puma.com)

Queue [10.6.3.10] Queue [10.20.3.90,]

Capture

(kayak.com)

(wkipedia.com)

…

(puma.com)

(puma.com)

(google.com)

…

(amazon.com)

Representation

Splitter

kayak.com puma.com

amazon.com

HTTP packet

HTTP packet
“RCPT TO: Jones@BBN-VAX.ARPA>\r\n”

“250 OK\r\n”

“DATA\r\n”

“RCPT TO:<steven@pchome.com.tw>\r\n”

Total Vote Sequence (Partly)

V(x): 0 0 0 0 0 0 4 0 2 …
Input Voting

Decision rules: V(x) >= T

 V(x-1) < V(x) > V(x+1)

Decision Output

Vote from EI Vote from EB

“RCPT TO: Jones@BBN-VAX.ARPA>\r\n”
“250 OK\r\n”
“DATA\r\n”
“RCPT TO:<steven@pchome.com.tw>\r\n”

GET /google/

0066MkDOjwj3050050gl

g.jpg

HTTP/1.1

Host: www.google.com

User-Agent: …

HTTP header request

Hot Encoding

m = 95

l = 1114

S
1
 T

1
 D

1
 P

1
 S

2
 T2

 D
2
 P

2
 S

n*n
 T

n*n
 D

n*n
 Pn*n

���, �, �, ��	 ⋯ ��, �, �, ��� ⋮ ⋱ ⋮��, �, �, ���∗��	 ⋯ ��, �, �, ���∗�
�

n*n

��	 ⋯ �� ⋮ ⋱ ⋮��∗��	 ⋯ ��∗�
�

B1 B2 B3 B4 B5 B6 B7 B8 Bn*n

n*n

Figure 2.2: Data representation method

for most existing ML methods.

13

2.2.3 Time series

Another way to represent Internet traffic is through time series. Conti et al.
represented network flows by generating time series of the communicated pack-
ets/bytes [119]. Three time series are generated for each flow: 1) for the bytes
transmitted by incoming packets, 2) for the bytes transmitted by outgoing pack-
ets, and 3) for the bytes transmitted by both incoming and outgoing packets.
Additionally, a time series for the packet interarrival time is considered. The ob-
tained shapes, as illustrated in Figure 2.2-d, are used for classifying user actions.
Acar et al. proposed another time series-based traffic representation by consid-
ering the traffic data rate [120]. In fact, the following statistics are computed
for the obtained time series: absolute energy, length, mean, median, skewness,
entropy, standard deviation, variance, continuous wavelet transform coefficients,
Fast Fourier Transform coefficients, and coefficients of polynomial fitted to time
series. These computed statistics are then passed to the classifier. This data
representation is usually applied for Markov Model-based methods.

2.2.4 Word embeddings

Because HTTP protocol requests contain valuable information about the desti-
nation host, and inspired by the text recognition applications, word embeddings
have been applied to represent Internet traffic. In this context, FLOWR was pro-
posed in [24, 121] for extracting the app signature from the HTTP header. The
proposed method relies on key-values exchanged in HTTP queries (e.g., host-
name). By training the model by pre-computed key-value pairs for a known
application, the model can induce the key-values of new applications by means
of regression. Another method relying on grouping the HTTP User-Agent fields
is proposed in [122]. The common strings for certain applications are extracted
using the LCS algorithm. Then the classification of unknown applications can
be performed using the extracted header signature. By employing the Word2vec
unsupervised learning techniques, used mainly to generate word embeddings from
a word-based dataset, the work in [123] considers the domain names in the Do-
main Name Server (DNS) requests to classify Internet traffic flows associated with
these DNS queries. The results reveal a relationship between the domain names
and the type of traffic directed towards them. In a similar way, Net2vec is pro-
posed in [124] to classify the HTTP(s) requests. The captured HTTP(s) requests
are transformed into tuples of the form (IP address, hostname) representing the
requested server. The aim is to assign the user to certain product categories as
the case in web-based recommending systems which are based on the websites
visited by the user. However, net2vec is run on the network level. A queue of
the visited domain servers is constructed for each user by the splitter, and then
this user is associated with a certain user category (e.g., Education, Sports, and
Health & Fitness). In fact, each domain name is represented by a numerical data

14

point to be passed to the classifier.
Goo et al. proposed a signature extraction method consisting of three levels [125].
The first level consists of extracting common substrings from the traffic payload
forming the flow signature. Similarly, at level two, common substrings from the
packet content are extracted to form the content signature. At level three, the
packet signature is extracted.
Bag-of-Words (BoW) is a popular technique used in Natural-Language Pro-
cessing (NLP) for representing words as numeric vectors. In this context, a
BoW-based traffic representation is proposed in [126]. Numeric vectors are cre-
ated for representing the web pages Uniform Resource Locators (URLs) visited
by the user in one session. For URLs, special characters (i.e., :, /, ?, etc.) are
treated as a space between words; therefore, a URL is represented as a sequence
of words from the dictionary.
ProWord is proposed for extracting a set of words from the application re-
quest to identify the type of traffic flow in [127]. For extracting words from text,
boundaries are identified through segmentation, a well-known statistical method
used in NLP. Specifically, the Voting Experts (VE) algorithm, is used to identify
possible word boundaries using entropy. ProWord uses a ranking algorithm that
maps different dimensions of protocol feature heuristics (e.g., frequency, occur-
rence location, and length). ProWord consists of four phases: input processing,
segmentation voting, decision making, and output consisting of the key strings
of the protocol request header. The different obtained strings will be inputted to
a neural network classifier to extract the representative protocol features. More-
over, the identification of the mobile devices model (iPhone, Android, etc.) is
performed based on TTL and specific strings in the HTTP requests [128].

2.2.5 Images

Recently, DL has shown its power in enabling many computer vision applications
and especially in image recognition. Consequently, representing traffic as images
was considered to apply DL for traffic classification. DL methods have the repre-
sentation learning ability and do not require hand-crafted features as is the case
for the other traditional ML methods. Leroux et al. proposed representing flows
by 2D histograms [26]. The two considered spaces are: packet size-interarrival
time and burst time-burst size. The histogram reflects the relationship between
the considered features. Each histogram represents a window containing the first
1024 packets of an application session. The HTTP packet header is transformed
by hot encoding into m*l vectors, where m = 95 and l = 1114 [129]. Chen et
al. apply the reproducing kernel Hilbert space embedding to represent the flow
statistical features into 6 channels images [130]. Each feature is represented by
its static (marginal probability) and dynamic (conditional probability) informa-
tion. After applying convolution, a 28-feature vector representing the raw flow
features is passed to the fully connected layer. Representing the traffic raw data

15

as grayscale images was proposed in [21, 31, 42, 131, 132, 133, 134]. This method
consists of transforming the first n×n bytes of each flow or session into a grayscale
image of size n × n, as illustrated in Figure 2.2-e [31]. As shown in this figure,
the first n×n bytes ([B1, B2, , Bn]) form an n×n matrix. In [135], Salman et al.
proposed extracting four features (packet size (s), interarrival time (T), direction
(D), transport protocol(P)) for the first n × n packets of a traffic flow. Then,
each flow is represented by an RGBA image, as illustrated in Figure 2.2-f, to
apply a Convolutional Neural Network (CNN). In this case, each packets features
represent the RGBA components of a pixel in the obtained image.
A comparison of different data representations applied to DL for mobile traffic
classification was performed in [136]. Three sets of features are considered for
comparison: 1)the first N bytes of the payload, 2) the first N bytes of a bi-flow,
3) and a set of features extracted from the first 20 packets (20*6 features). In
addition, a statistical set of 40 features including port number information is con-
sidered to compare with a baseline method employing Random Forest (RF). The
results show that DL outperforms RF for classifying different apps. However,
when it comes to overlapping apps, using classification port-based information
in the RF-based method leads to better accuracy and precision. In [137], an-
other comparison was conducted between different data representation methods:
1) basic features [138, 139], 2) Moore features [117], 3) graph features [140],
4) joint features [105], 5) and service features [32]. The results show that the
proposed hybrid features set, which is a combination of basic feature sets with
in-flow behavior, distribution, and packet header features, presents the best re-
sults. After extracting and selecting the features that help differentiate between
classes, selecting the ML method is an important stage in the ML classification
process. In the next section, we review the different ML methods used in the
traffic classification domain.

2.3 Machine Learning Methods

In this section, we review the different types of ML algorithms used for traffic
classification. A classification problem is a decision-making problem, in which the
aim is to decide if data corresponds to a specific class given different hypotheses.
Consequently, the classification problem can be formulized as an optimization
problem, in which the aim is to choose a class label (hypothesis) that minimizes
a certain cost function. In this context, the classification methods can be cat-
egorized into two types: parametric and non-parametric. For the parametric
category, the aim is to define a function f, such that Y = f(X), where Y is the
output (label) and X is the features vector. Examples of parametric classifica-
tion methods are Nave Bayes, linear regression, etc. However, non-parametric
methods aim to minimize the classification error without inferring the mapping
between the input and output. Furthermore, the ML methods are based on the

16

training approach, as illustrated in Figure 2.3. In the following, we review the
ML methods used for traffic classification, including supervised, unsupervised,
and semi-supervised. Note that a new training method is emerging in the ML
domain, which is reinforcement learning. However, based on the reviewed work,
reinforcement learning has not been applied in the traffic classification domain,
given the lack of the reward notion, which is an essential part of this type of
learning. However, in the future, the application of reinforcement learning might
be employed based on an innovative business model including a feedback about
the user satisfaction or Quality of Experience (QoE).

Figure 2.3: ML method approaches

2.3.1 Supervised

Supervised ML methods rely on labeled data, as illustrated in Figure 2.3-a.
During the training phase, the classifier infers the rules (e.g., decision tree) or
the model parameters (e.g., support vector machine, SVM) to optimize the cost
function. After training the model, at the testing phase, the classifier automat-
ically assigns the testing data to one of the learned classes. Supervised learning
is usually preceded by a features selection/reduction phase. This phase aims
at selecting the relevant features to the classification by computing the mutual
information or covariance between the features and class labels. Different super-
vised methods have been considered in the literature to classify Internet traffic.
Figure 2.4 illustrates the evolution of the supervised methods used in the traffic
classification domain. Bayesian-based methods have been constantly considered
over the years. Moreover, the graph shows that DL was recently applied (in 2017
and 2018) for traffic classification.

17

Figure 2.4: Trends of supervised ML methods used for traffic classification

Decision Tree

The Decision Tree (DT) classification method is a rule-based method. It
mainly consists of answering a sequence of questions at the tree edges towards
a leaf representing the predicted label. DT-based methods are fast and can be
applied for large datasets. However, they are prone to overfitting. DT-based
methods have been considered to classify traffic [141, 142]. Given a set of flow
features, to build a decision tree, the feature of high differentiation power is
chosen to be at the root of this tree. The feature importance can be measured
by different means such as Gini index, entropy, mutual information, etc. The
tree depth defines the maximum number of branches to reach a leaf. Limiting
the maximum depth of the DT helps minimize the overfitting issue. C4.5, an
algorithm used for generating DTs, is one of the best performing methods used
in traffic classification domain. The DT-based methods give the best results in
11 out of 17 comparisons.

Bayesian

Nave Bayes (NB) is another ML method that was used for traffic classifica-
tion [44]. Nave Bayes is a probabilistic method that relies on the Bayes theorem
stating that: P(Y/X)=(P(X/Y)P(Y))/(p(X)), where Y is the output (class la-
bel), and X is the input (features vector). Nave Bayes is the simplest method in
the Bayesian methods family. Other Bayesian-based methods exist to model more
complex situations, where there is dependence between the different features, the

18

output and input, along with different constraints related to their probability
density distributions. In this context, different Bayesian-based methods have
been proposed for traffic classification [80, 81]. In addition, Bayesian methods
have been combined with other ML methods such as neural networks to classify
traffic [48]. Furthermore, a cascade of nave Bayes classifiers was proposed in [143]
for fine-grained traffic classification.

K-Nearest Neighbor

K-Nearest Neighbor (K-NN) is a non-parametric ML method [50]. As a lazy
algorithm, K-NN does not include a training phase. However, the classification
time is dependent on data size. At the classification phase, the algorithm consists
of measuring the distance between the testing instance with all the labeled in-
stances. Consequently, the testing instance is assigned to the class of its K nearest
neighbors. In case the k nearest neighbors do not belong to the same class, the
majority rule is applied. Typically, the distance between two data instances is
the (Euclidean) distance between their features vectors.

Support Vector Machine

SVM, a well-known ML method, has been widely used for traffic classification [1,
46, 47, 52, 55, 71, 79, 144, 145, 146]. SVM consists of solving for the hyperplane
that optimally separates the points representing the instances from two different
classes. This is the simplest case in which the feature vectors can be represented in
a two-dimensional space. However, the problem becomes more challenging when
there are multi-dimensional feature vectors with multiple classes. In this case,
kernel-based methods are considered to build multi-SVM models. Accordingly,
the high computational complexity is the main drawback. Other limitations
of the SVM method are the high training time when the training data size is
large and the high re-training time when new training data are added. In this
context, incremented SVM has been proposed [55] to decrease the time needed
to retrain a model on new data. SVM also presents many advantages, such
as its high generalization performance and its applicability to different types of
classification problems. However, SVM might not offer the best performance
when compared with other models. In this context, K-NN was compared to
SVM in [105], and the results show that K-NN achieves better results in terms
of classification accuracy. Despite the effectiveness of SVM, its accuracy is very
sensitive to the data scale, used features, and model parameters because it is a
sparse classification technique [47].

Neural Network

Neural Network (NN) is a well-established ML method inspired by the human
neural system. The primary component of a neural network is the neuron. During

19

the training phase, the neural network algorithm aims at finding the function Y
= f(X) = W * X, where Y is the output, X is the input, and W is the weights
matrix. The minimization of the difference between the expected output and the
actual one, results in calculating the weight matrix W and thus determining the
mapping function f. NN was applied by Moore et al. to classify traffic [48, 147].
In [148], an improved back propagation NN method was proposed for traffic
classification.

Deep Learning

DL is a branch of ML that has been applied to different fields including computer
vision, speech recognition, and natural language processing. A DL model consists
of a NN with several layers, as signified by the deep in its name. DL recently
emerged in the communications domain and more specifically in the traffic classi-
fication domain [25, 31, 131, 130, 132, 149, 150, 151, 152, 153, 154, 155]. In fact,
there are different types of DL architectures: CNN is a type of DL architecture,
designed specifically for image-based applications. From these architectures, one
can mention: LeNet-5 [156], AlexNet [157], ConvNet [158], and GoogleNet [159].
Residual Neural Network (ResNet) is a CNN architecture with skip connec-
tions to avoid the vanishing gradients problem. Moreover, Recurrent Neural
Networks (RNNs) are DL architectures capable of handling sequential inputs.
Accordingly, different DL architectures have been proposed to classify traffic.
Wang in [133] used the Stacked Auto Encoder (SAE) DL architecture to clas-
sify traffic, considering the first 1000 bytes of each flow. Wang et al. [31, 134]
propose to apply CNN for traffic classification. Wang et al. employed CNN for
malware detection using the Le-Net5 architecture [134]. CNN is compared to the
C4.5 method. Other results show that CNN outperforms C4.5 [31]. One study
proposes a scheme called Deep Packet for traffic categorization and application
identification [21]. This work is similar to that done in [31]. However, the authors
in [21] work at the packet level. In [160], the authors proposed a CNN model that
takes time series-based features as input. A combination of CNN and Recurrent
Neural Network (RNN) layers is proposed in [161] to classify traffic by consider-
ing statistical based features. A cascade forest is proposed in [150] to classify the
mobile traces into different applications. The work in [135] compared different
DL architectures: LeNet-5 [156], AlexNet [157], ConvNet [158], GoogleNet [159],
Residual Neural Network (ResNet) [162], RNN [163], and Deep Neural Network
(DNN) [156].

Hidden Markov Model

The Markov Model consists of a chain of states where the transition probability
determines the probability of transitioning from one state to another. Each state
is linked to a certain output. In the case where the states are unobservable, the

20

Markov model is called hidden (HMM). The HMM has been applied to traffic
classification by presenting traffic flows as time series [164, 165, 166].

Ensemble Learning

Ensemble ML methods consist of training sequentially or in parallel a set of
(weak) classifiers and then aggregating the results by voting or averaging. Two
main methods are employed for ensemble learning: aggregation (bootstrapping)
and boosting. Different ensemble methods have been proposed in the traffic
classification domain [54, 82, 167].

Random Forest (RF) is an ensemble method belonging to the bootstrap-
ping ensemble type. It reduces bias and variance by training several DTs on
different data and feature subsets. RF is one of the methods that presented high
performance in traffic classification [84, 168]. Adaboost is an ensemble method
belonging to the boosting ensemble type. It consists of sequentially training a set
of weak classifiers to enhance the classification accuracy by penalizing the mis-
classified instances. In [169], an Adaboost model is proposed to classify traffic.
In addition, transfer learning was applied to alleviate the scarcity of labeled data.

A comparison of supervised learning methods: NB, Bayesian Network, RF,
DT, NB Tree and, Multilayer Perceptron (MLP), is performed in [60], with RF
and DT achieving the best results. Another comparison of supervised learning
methods is done in [170], and the findings show that C4.5 presents the best results.
NN and C4.5 are compared in [171]. The authors state that traffic classification is
not a complex task that needs the application of NN; rather, DT-based methods
are more suitable in this case. A comparison between the C4.5 decision tree, SVM,
NB, and RF is performed in [17]. In [172], the comparison considered clean and
unclean data, where unclean data includes background traffic. The results show
that C4.5, BN, RF and K-NN present better performance on clean network traffic
than NB. However, on unclean data, NB presents better performance than the
other algorithms. In [173], a comparison of 11 methods is performed, where RF
and C4.5 yield the best results.

2.3.2 Unsupervised

Unsupervised learning is a class of ML methods applied mainly to unlabeled data,
as illustrated in Figure 2.3-b. In this case, the classifier extracts the patterns from
the training data without being able to evaluate classification result correctness.
However, these methods could detect unknown classes. Given the abundance
of unlabeled Internet traffic, different unsupervised ML methods have been ap-
plied [174]. Figure 2.5 illustrates the unsupervised learning methods trends in
the traffic classification domain and shows that K-Means and clustering are the
most employed methods. Moreover, the graph shows that DL was recently ap-
plied (in 2017 and 2018) for unsupervised traffic classification. In the following,

21

we detailed the different unsupervised ML approaches employed in the traffic
classification domain.

Figure 2.5: Trends of unsupervised ML methods used for traffic classification

Clustering

Hierarchical clustering is one of the unsupervised ML methods, consisting of
grouping near data points into clusters. Two main approaches are adopted for
clustering: bottom-up (agglomerative), and top-down (divisive). The bottom-
up approach considers each instance as a cluster and then merges the nearest
ones until convergence. However, the top-down approach consists of starting by
one cluster for all the data instances and then dividing it until convergence [66].
In [175], an agglomerative hierarchical clustering method is proposed for traf-
fic classification into different applications protocols. In [176], an unsupervised
classification of host behaviors is proposed by considering connection patterns.
Erman et al. differentiate between web and Peer-to-Peer (P2P) traffic by cluster-
ing their generated traffic [177]. Moreover, in [178], an entropy-based clustering
method was proposed for traffic classification into different application types.
Density-based spatial clustering of applications with noise (DBSCAN)
is another clustering technique that groups points based on their density with the
ability of detecting noise, by isolating the points lying alone in low-density re-
gions [179]. A comparison of the DBSCAN, K-means, and AutoClass (clustering)
methods in [62] shows that DBSCAN can detect noise flows, while the other meth-
ods cannot. OLDBSC, a modified DBSCAN, is proposed in [180].
K-means is another unsupervised classification technique in which initially, k
means are randomly created, then, the data points are clustered into k clusters

22

based on the points distance to these means. Afterward, the means are selected to
be the centroid of the clusters, and the clustering process is repeated until conver-
gence. This method was applied in the traffic classification domain [62, 181, 182].
An improved K-means clustering method is proposed in [183]. Given that the
K-means concept is very similar to the K-NN approach, the authors in [184] pro-
posed a classification of Internet traffic flows into QoS classes by unsupervised
K-NN clustering. Similarly, RF was also applied for clustering in [185].

Deep Learning

As in the case of supervised learning, DL presents different architectures for unsu-
pervised learning. In this context, generative algorithms such as Autoencoders
(AE), are DL methods applied for unsupervised learning. As its name indicates,
AE aims at encoding the training data by extracting a compressed representation.
At the decoding phase, the decoder regenerates the initial image using the ex-
tracted code. The comparison between the input and output permits evaluation
of the efficiency of the extracted code. Recently, this method has been applied
to unsupervised traffic classification [184, 185].

• Generative Adversarial Network: Introduced by Goodfellow et al. in [186],
GAN consists of two parts: the generator (G) and the discriminator (D).
From a game theoretic perspective, GAN can be interpreted as a zero-sum
or min-max game between the generator and the discriminator. The gen-
erator tries to learn the input data representation to generate data samples
very similar to the real ones. The discriminator tries to maximize the prob-
ability of distinguishing between fake and real input. The GAN objective
function can be presented as follows: V (G,D) = Ex∼pdata(x)(log(D(x)) +
Ez∼pz(z)(log(1−D(G(z))))) where x is the input data, pdata(x) is the data
distribution, D(x) is the discriminator output, pz(z) is the fake data distri-
bution, z is a sample from pz(z), and G(z) is the generator output. The gen-
erator aims at minimizing the probability of fake data detection by the dis-
criminator, which means that the G objective is to find min

G
(Ez∼p(z)(log(1−

D(G(z))))). The discriminator aims at maximizing the probability of de-
tecting real data as real and fake data as fake, which means that the D
objective is to find max

D
(Ex∼pdata(x)(log(D(x)))+Ez∼p(z)(log(1−D(G(z))))).

Thus, the GAN objective is to find min
G

max
D

(V (G,D)) . Primarily, GAN is
applied for synthetic data generation. GAN has been applied also for image
anomaly detection [187, 188, 189]. In fact, the adversarial learning permits
the discriminator to detect abnormal input data. Furthermore, the gener-
ative learning permits the generator to learn the real data representation,
which makes GAN suitable for image denoising [190, 191].

• Autoencoders: Being a generative model, AE is a type of DL networks that
is specialized in extracting the input data representation. The AE consists

23

of two parts: an encoder and a decoder. The encoder extracts a compressed
data code by estimating a function f , in such a way z = f(x), where x is
the input data, and z is the extracted representation or latent variable. The
decoder aims at reconstructing the input data by relying on the extracted
representation. In other terms, the decoder tries to infer the inverse func-
tion g, in such a way that y = g(f(x)) = g(z). The AE objective function
can be represented at the minimization of the difference between g(f(x))
and x. In other terms, the AE aims at minimizing the reconstruction error.
A type of AEs is the probabilistic autoencoder, which aims to infer the dis-
tribution of x, pθ(x) by means of another distribution qφ(z/x) (probability
of the latent variable z knowing the input x). A well-known type of prob-
abilistic AEs is the Variational Autoencoder (VAE), which imposes a prior
restriction on p(z) to be a normal distribution. In this case, the problem re-
duces to maximizing the Evidence Lower Bound (ELBO) or maximizing the
KullbackLeibler (KL) divergence between qφ(z) and pθ(z/x), represented by
KL(qφ(z/x)||p(z)). Having the ability to extract the real data distribution,
VAEs have been applied for anomaly detection. Indeed, when the recon-
struction error is large, anomaly is detected in the input data. Borrowing
the adversarial concept from GAN, Adversarial AEs (AAE) were introduced
by Makhzani et al. in [192]. Similar to the GAN, AAE includes a discrim-
inator that tries to differentiate between the data sampled from the latent
variable prior p(z) and the real data. In this case, the discriminator aims
to minimize Ldis = −1/N

∑N−1
i=0 log(dx(zi)) +

∑2N
j=N log(1 − dx(zj)), and

the generator tries to minimize Lprior = 1/N
∑N−1

i=0 (log(1 − dx(zi)), where
N is the number of samples, and dx(zi) is the discriminator output of the
latent space variable. In this case, if the total loss function is optimized,
qφ(z/x) will be very similar to p(z), or in other terms, KL(qφ(z/x)||p(z))
will be minimized, and thus the log likelihood of the original data distribu-
tion will be maximized. AAEs were applied also for anomaly detection in
images [193, 194, 195, 196]. Furthermore, a recent work has considered to
add the denoising function to the AAEs for image denoising [197]. In this
case, the corrupted data x̃ is considered as input and two methods were
proposed for model representation. The first consists of matching q̃φ(z/x)
to p(z), and the second consists of matching qφ(z/x̃) to p(z). However, in
our work, we use a sparse AE that aims to minimize the Mean Square Er-
ror (MSE) between the reconstructed data and original data. In addition,
applying the adversarial concept, we choose to train a discriminator to de-
tect abnormal traffic when the reconstruction error is high. Thus, unlike
previous work, the generator part of GAN is omitted [198].

24

Expectation Maximization

Expectation maximization (EM) is a statistical method that aims at finding
the maximum likelihood estimate of a parameter. In the ML domain, expectation
maximization can be used to induce the probability distribution of the output.
Consequently, the extracted model can be applied to predict the output of any
input.
EM was applied for unsupervised traffic classification in [68, 199]. AutoClass,
an EM-based method, is applied with an unsupervised Bayesian classifier in [70].
Moreover, Gaussian Mixture Model (GMM) was also employed to classify
traffic based on observed data probability distributions [200, 201].
In [202, 203], it was shown that supervised classification performs better than
unsupervised classification of the training data; however, the unsupervised clas-
sification is more robust when applied to unseen data. In this case, a smaller
decrease in accuracy is perceived compared to the supervised case. Another
comparison between supervised and unsupervised methods is conducted in [16],
concluding that C4.5 (supervised method), presents better performance than the
Multi-Objective Genetic Algorithm (MOGA) (unsupervised method) for en-
crypted traffic, when the training and test data are collected from different net-
works. However, MOGA presents better performance, if the training and test
data are from the same network, since the unsupervised method does not suffer
from the overfitting problem.

2.3.3 Semi-Supervised

While supervised learning methods are effective when fine granularity is needed,
and unsupervised methods have the ability of detecting unknown classes, the
semi-supervised approach offers the best of both methods. Having a plethora
of unlabeled data, semi-supervised methods were envisioned to label unlabeled
traffic by means of limited labeled data. This process is often called label propa-
gation or label induction, as illustrated in Figure 2.3-c. New applications and new
types of traffic are emerging constantly. Therefore, this zero-day traffic identifi-
cation requires semi-supervised ML methods [204, 205, 206, 207]. In Figure 2.6,
the timeline illustrates the evolution of the proposed semi-supervised methods
for traffic classification.

Erman et al. were the first to propose a semi-supervised method consisting
of clustering the labeled and unlabeled data [216]. Here, the clusters are mapped
to the application types based on the labeled instances contained in each clus-
ter; however, to detect unknown traffic, the clusters that do not contain labeled
instances or those that contain labeled instances of multiple classes are left unla-
beled. Subsequently, Zhang et al. proposed another traffic classification method
based on label propagation with Bag-of-Flows (BoF) [209]. The authors com-

25

Table 2.3: Comparison of ML methods used for Internet traffic classification
References Year ML Category Compared Method Results
[118] 2005 Supervised NB, Adaboost, Regularized Maximum Entropy Adaboost
[62] 2006 Unsupervised DBSCAN, K-means, AutoClass AutoClass
[63] 2006 Supervised,

Unsupervised
NB and AutoClass AutoClass

[67] 2006 Supervised Bayesian Network, C4.5, NB, NB Tree C4.5
[208] 2007 Supervised C4.5, AdaBoost+C4.5, Logitboost, JRip, NB Tree, Bayesian

Neural Network
C4.5

[17] 2011 Supervised C4.5, SVM, NB, and RF C4.5
[16] 2011 Supervised.

Unsuper-
vised. Semi-
Supervised

Supervised: C4.5, unsupervised: K-means, semi-supervised:
MOGA

MOGA (semi-
supervised)

[203] 2012 Supervised,
Unsuper-
vised, Semi-
Supervised

Supervised: SVM, Logistic Regression, NB, NB simple, RF,
MLP, C4.5, Bayes Net; unsupervised: EM, K-Means, Cobweb
hierarchic clustering, Shared Nearest Neighbor Clustering, Au-
toclass, Constrained clustering; semi-supervised: SVM + con-
strained clustering

SVM + con-
strained clus-
tering (semi-
supervised)

[209] 2013 Supervised,
Semi-
Supervised

Supervised: NB, C4.5, Bayes Network, kNN; semi-supervised:
Proposed label propagation, AutoClass

Proposed la-
bel propaga-
tion (semi-
supervised)

[210] 2013 Supervised,
Unsupervised

Supervised: C4.5, k-NN, SVM, NB, NN, Bayes Nets; unsuper-
vised: K-means with BoW

K-means with
BoW (Unsu-
pervised)

[202] 2014 Supervised,
Unsupervised

Supervised: J48, NB, SVM; unsupervised: K-means, EM, DB-
SCAN

Features de-
pendent

[13] 2015 Supervised C4.5, Adaboost, Genetic Programming C5.0
[81] 2016 Supervised NBD, NBTree, BayesNet, HNB (Bayesian) and IBL, IBK,

KStar (Lazy)
HNB
(Bayesian),
Kstar (Lazy)

[172] 2016 Supervised C4.5, BN, RF, SVM, K-NN C4.5
[211] 2016 Supervised,

Semi-
Supervised

Supervised: J48/C4.5 decision tree, k-NN, Best-first decision
tree, Regression tree representative, Two-phased, Sequential
minimal optimization, DT and NB, Bayesian Network, NB;
semi-supervised: K-means + C5.0

K-means +
C5.0 (Semi-
Supervised)

[212] 2016 Unsupervised
Semi-
Supervised

Unsupervised: Fussy clustering; semi-supervised: label propa-
gation (Zhang et al.) and the proposed method

Semi-
Supervised pro-
posed method

[28] 2016 Supervised RF, SVM RF
[64] 2016 Supervised NB, Bayesian Network, AdaBoost, Bagging, OneR, PART, k-

NN, J48, NB Tree, RF
Features de-
pendent

[213] 2016 Supervised RF, stochastic gradient boosting, extreme gradient boosting RF
[60] 2017 Supervised Nave Bayes, Bayesian Network, RF, DT, NB Tree, MLP RF and DT
[33] 2017 Supervised K-NN, SVM, Nave Bayes, WFNP (C4.5 based) WFNP (C4.5

based)
[45] 2017 Supervised ELM, GA-ELM, GA-WK-ELM GA-WK-ELM
[49] 2017 Semi-

Supervised
Ermans method, Zhang et al. method, proposed SSTCS SSTCS

[167] 2017 Supervised DT, RF RF
[130] 2017 Supervised NB, DT SVM, MLP, CNN CNN
[31] 2017 Supervised CNN, C4.5 CNN
[80] 2018 Supervised TAN, ATAN, t-Cherry, LDLMCS LDLMCS
[150] 2018 Supervised Cascade forest (DL), RF, SVM, Bayesian Network, C4.5 Cascade forest

(DL)
[170] 2018 Supervised ANN, SVM, C4.5 C4.5
[173] 2018 Supervised Bayesian Network, NB, SMO, Adaboost, Bagging, OneR,

PART, Hoeffding, C4.5, RF, Random tree
RF and C4.5

[214] 2019 Semi-
Supervised

Probabilistic graphical model [215], Offline/real-time semi-
supervised classification [216], Bipartite graph-based maxi-
mization [217], Various-Widths Clustering [218], Semtra [214]

Semtra

26

Figure 2.6: Trends of unsupervised ML methods used for traffic classification

pared their proposed method to Ermans method. The results showed that label
propagation performs better than Erman’s semi-supervised method. In [212],
the authors combine the unsupervised and supervised methods to perform semi-
supervised classification. At the first stage, k-means is used for clustering Internet
traffic. Then, the learned clusters are passed to a supervised decision tree-based
classifier to label them based on few labeled instances [219]. Similarly, in [49], k-
means is used to cluster the unlabeled data, and the supervised K-NN method is
applied for labeling the unlabeled data. Likewise, a semi-supervised SVM-based
method is proposed in [220].

SLIC [83], a Self-Learning Intelligent Classifier, is a classification system that
self-learns by inducting the labels of unlabeled data from a small set of labeled
data. Upon labeling new data, it retrains the classification model. A comparison
with the BoF-based k-NN semi-supervised method on two real-world traffic
traces shows the effectiveness of the proposed SLIC method. Another semi-
supervised method using a Gaussian mixture model is proposed in [221]. More
recently, Semtra, a self-training flow labeling method, was proposed in [214]. A
comparison with state-of-the-art semi-supervised methods (probabilistic graph-
ical model [215], offline/real-time semi-supervised classification [216], bipartite
graph-based maximization [217], and k-NN various-widths clustering [218]) shows
that the proposed method presents an improvement in terms of classification ac-
curacy.
Comparisons between different ML-based methods are summarized in Table 2.3.
It can be noticed that the supervised methods are more considered than other
types of ML methods. Moreover, C4.5 seems to be the ML method that gives
the best results in most of the cases. Another insight is that DT is the best
suitable supervised ML method for traffic classification when statistical features
are considered. After selecting the ML method, classifier accuracy is evaluated
based on the defined classes. In this context, classified output is dependent on
the defined classes, which vary in the literature. In the next section, the different
traffic classifications are reviewed.

27

2.4 Traffic Classification Classes

In this section, we review the different objectives behind classifying Internet traf-
fic, as illustrated in Figure 2.7, which shows the evolution in the Internet classi-
fication objectives. Some work considers classifying traffic based on application
protocols. In this case, most of the reviewed work considers port number informa-
tion. Another direction is to classify traffic into different categories. A new trend
recently emerged in the classification domain, especially in the mobile network
domain. It consists of classifying traffic based on the application name. Other
approaches focused on classifying the actions carried out in a given application.
With the emergence of IoT, there is a new classification direction consisting of
identifying the IoT devices generating the traffic. In the following, we review the
work related to each type of classification, as summarized in Table 2.4.

Figure 2.7: Internet Traffic classification objectives

2.4.1 Protocols Classification

Protocols classification is a traditional traffic classification approach that relies
mainly on port number information; however, different researchers have consid-
ered traffic protocols differentiation based on statistical features. Bernaille et al.
considered the classification of traffic into different application protocols: Post
Office Protocol (POP3), Simple Mail Transfer Protocol (SMTP), Secure Shell
(SSH), HTTPS, POP3S, HTTP, File Transfer Protocol (FTP), Edonkey, and
Kazaa, using the start-of-flow [180, 182]. Crotti et al. introduced the protocol
fingerprinting notion based mainly on statistical traffic characteristics (packet

28

Table 2.4: ML based Internet traffic classification objectives
Objectives References Description
Protocols [14, 16, 33, 45, 60,

62, 64, 67, 69, 71,
76, 80, 81, 118, 181,
203, 209, 210, 219,
222, 223, 115, 224,
225, 226, 227]

The objective is to classify Internet
traffic into different protocols such as:
HTTP, FTP, etc.

Categories [44, 46, 51, 53, 61,
74, 79, 107, 139,
144, 208, 220, 228,
229, 230, 231, 232,
233, 234, 235]

The aim is to categorize Internet traffic
into classes reflecting the different traf-
fic category, for example: VoIP, Video
streaming, Web browsing, etc.

Applications [13, 17, 18, 24, 28,
41, 103, 121, 129,
130, 150, 211, 213,
236, 237, 238, 239,
240, 241, 242, 243,
244, 245, 246]

The aim is to identify the name of the
application generating the considered
Internet traffic.

Actions [19, 20, 27, 119,
175, 247, 248]

Knowing the application, the aim is to
know the exact action performed by
the user, for example: share, comment,
like, etc.

Devices [108, 120, 128, 249,
250, 251, 252]

The goal is to identify device mod-
els/types.

size and interarrival time) to classify traffic based on the used protocols: POP3,
HTTP, and SMTP [222]. In [253], an active learning framework is proposed to ex-
tract features from unknown protocols using a small number of labeled instances.
Williams et al. [67] compared five widely utilized ML algorithms to classify traf-
fic into different protocols: FTP, Telnet, SMTP, DNS, and HTTP. Este et al.
propose classifying traffic into different protocols: SMTP, HTTP, MSN, POP3,
FTP, and BitTorrent using a one-vs-all classifier for each application protocol [71].
In [76], the authors apply a stream-based technique to deal with the dynamic In-
ternet traffic nature. Zhanyi Wang [133] considered the first 1000 bytes of the
payload of each TCP session to classify traffic into different application protocols.
The Stacked Auto Encoder (SAE) DL architecture is used, and the results show
that the accuracy can reach 99% for certain protocols.
Only known classes can be learned when applying supervised classification. How-
ever, Internet traffic is very dynamic, and there is need to detect new traffic
classes. Accordingly, unsupervised ML methods have been employed to detect

29

unknown data and adapt to network dynamicity. To address the problem of
unknown protocols, the authors in [210] propose a novel unsupervised approach
based on clustering traffic flows according to their application protocol. A BoW
model, to represent the content of the obtained clusters, is constructed using flow
statistical features. Moreover, the Latent Semantic Analysis (LSA) is applied
to aggregate similar traffic clusters based on their payload content. Erman et
al. [62, 63] apply unsupervised ML algorithms to classify traffic into four classes:
HTTP, P2P, POP3, and SMTP.
In [205, 219], a combination of unsupervised and supervised methods to clas-
sify traffic into different application protocols is proposed. Sun et al. combined
signature-and statistical based approaches to classify traffic based on the used
protocols [223]. First, they identified SSL/TLS traffic, then they applied statis-
tical based classification to know the application protocol. The main limitation
for this type of classification is traffic tunneling. In fact, mobile network traffic is
mostly carried over HTTPS traffic. Moreover, traffic classification into protocols
does not reflect the specifics of the classified traffic; therefore, this classification
mainly serves protocol trends analysis and traffic abnormality detection.

2.4.2 Applications Classification

This type of classification aims at identifying the specific application that gener-
ate the considered flow of packets. This is challenging given that the same type
of traffic (e.g., video call traffic) can be generated by two different applications
(e.g., messenger, WhatsApp, etc.). Consequently, knowing the exact application
requires extracting features specific to the application implementation and be-
havior. In this context, an identification of popular end-user applications (e.g.,
Facebook, Twitter, and Skype) was proposed [41]. The UNB ISCX network traf-
fic dataset and an internal dataset consisting of well-known applications were
used for testing. Lotfollahi et al. classified traffic at the packet level [21]. To do
so, they used the IP header of the first packet and the first 1480 bytes of this
packets payload (in total 1500 bytes per flow). Additionally, the authors choose
to classify VPN vs. non-VPN traffic first and then identify the application name.
AppScanner is proposed in [28], where 110 apps were chosen at random from the
top free apps in the Google Play Store in July 2015. In [29], an extension of
AppScanner is presented. In [254], 160 applications are considered for classifi-
cation using a three-layer classifier. Wang et al. proposed an app identification
scheme based on the side-channel information [23]. Frame size and interarrival
time, with their derivate statistics, are used as classification features.
This type of classification serves QoS management and traffic trends analysis, as
well as network security functions (e.g., firewall). However, the applications are
becoming more and more similar implementing the same options (chatting, video
call, voice call, etc.). Therefore, knowing only the application name might not

30

infer the exact QoS or security requirements.

2.4.3 Actions Classification

This type of classification aims at knowing the action performed by the user
within the application (e.g., video call, voice call, comment, like, etc.). In [119,
175], Conti et al. classify traffic based on user actions. For each application,
they considered a set of actions, for example, the following actions are considered
for Facebook: send message, post user status, open user profile, open message,
status button, post on wall, and open Facebook. In [27], the authors propose
a way to inspect user specific actions through IP packet header analysis. The
main used features are the interarrival time, send/receive packet sizes, and count
ratios. K-Means is used for behavioral models extraction, and an SVM is applied
for specific user activities within mobile application detection. In [20], an online
mobile application traffic analyzer is proposed for classifying mobile applications
traffic into different types of actions. Three experiments are performed consider-
ing three applications: WeChat, WhatsApp, and Facebook. The authors in [211]
proposed a two-phase method to classify flow-based traffic based on the user ac-
tions. In the unsupervised phase, approximately 6.8 million bidirectional flows
for all applications were collected and clustered into 12 unique flow classes. In the
supervised phase, they used four different feature sets of NetFlow attributes from
the derived flow classes. The C5.0 ML classifier was used. An average prediction
accuracy of 92.37% was achieved with one of the feature sets comprising 14 Net-
Flow attributes, and this increased to 96.67% with adaptive boosting. However,
this type of classification presents privacy concerns, since it reveals user activi-
ties. Moreover, many applications share common functionalities, so classification
accuracy might be affected when considering traffic containing the same actions
from different applications.

2.4.4 Categories Classification

The aim of this type of classification is to divide traffic into categories presenting
different QoS or security requirements. In fact, the different traffic categories
might be generated by the same application and carried over the same protocols.
In this context, Roughan et al. define four categorical traffic classes: interactive,
streaming, bulk data transfer, and transaction [61, 255]. They linked each class
to certain application protocols: interactive to telnet, streaming to Realmedia,
bulk data transfer to FTP, Kazaa, and transaction to HTTPS and DNS. In [6],
Qin et al. investigate the possibility of using ML algorithms to classify traffic into
different QoS-based classes: bulk data transfer, interactive, services, and multi-
media. In [208], Wei Li et al. proposed a real-time classification approach. The
considered data consists of a set of TCP flows representing essential Internet ap-

31

plications classes: web-browsing, mail, bulk (FTP), attack, P2P, database, multi-
media services, and interactive. In [230], Jiang et al. investigate the possibility of
achieving good classification accuracy using only the NetFlow records. Karagian-
nis et al. [107] studied multi-level traffic behavior such as analyzing interactions
between hosts, protocol usage, and per-flow average packet size. Their aim was
to classify traffic into attack, web, games, chat, P2P, DNS, FTP, streaming, and
mail. In their recent work [108], they presented an interesting investigation to
profile users activity and behaviors and to analyze the dynamic characteristics of
the host behaviors. Moore and Zuev in [44] presented a statistical approach to
classify traffic into different types of services: bulk, database, interactive, email,
services, WWW, P2P, attack, games, and multimedia. A Nave Bayes classifier
combined with kernel estimation and a correlation-based filtering algorithm was
used to classify traffic flows in an offline mode. In [46], Zhu et al. applied SVM
to identify 7 classes of applications: www, mail, FTP-control, FTP-pasv, at-
tack, P2P, database, FTP-data, multimedia, services, and multi-class. In [229],
Wang et al. classify traffic into QoS-based classes (voice: GoogleVoice; video
conference: Skype, GoogleTalk; Streaming: USstream, Sopcast; bulk data trans-
fer: FTP, Mega; interactive data: SSH, Telnet; and best-effort trafc: default
class). The presented framework consists of two parts: detection of large flows
at the software-defined switches level and QoS labeling done at the controller
level. In [231], an unsupervised ML method is proposed to classify traffic into
QoS-based classes. The classification is performed in two phases. In the first
off-line phase, unsupervised Self-Organizing Map (SOM) and K-means clustering
algorithms are used. In the second classification phase, the K-NN classifier is used
for supervised data classification. In [234], the down-/upstream video streaming
rates are considered to classify video traffic into broadcast video, Web video trade
style video, barter style video, and interactive video. In [256], classification of
video content based on the byte code distribution is proposed. Two classes of
videos are considered: action and romance. Another work considers the classi-
fication of multimedia traffic into five categories based on their criticality level:
non-critical, low critical, some critical, critical, and very critical [257]. In [31],
Wang et al. consider categorical classes for VPN and non-VPN data using the
ISCX VPN-non-VPN dataset [39]. These classes are: chat, file transfer, mail,
streaming, torrent, and VoIP.
The importance of this type of classification lies in its independence of the pro-
tocols and port-based information. Consequently, it is possible to classify the
traffic based on the statistical characteristics even if some obfuscation techniques
are employed. Moreover, this type of classification is key to manage QoS and in
some cases, might be used for abnormal traffic detection.

32

2.4.5 Devices Classification

With the IoT emergence, a new type of classification appeared to identify IoT
devices based on their generated traffic. This type of classification can be also
called device fingerprinting. In [249], Miettinen et al. proposed a method to iden-
tify the type of a device based on the packets generated during the setup phase.
A set of 26 devices is considered. The presented method consists of extracting a
fingerprint composed of a number of unique packets from the setup phase. Clas-
sification is done in two steps. First, the device fingerprint is classified using
the trained classifiers. In a second phase, if a device is classified as belonging to
several classes, the Damerau-Levenshtein edit distance is computed to identify
the most probable class. In [258], the authors propose a self-learning identifica-
tion approach to overcome the one-time identification issue. The new approach
consists of extracting a signature based on the device type without knowing the
exact device model. In [259], a technique to detect unauthorized IoT devices is
proposed. B collecting data from 17 devices pertaining to 8 types of IoT devices,
the authors build a multi-class classifier to detect unauthorized devices. In [260],
Siby et al. consider the physical layer communication patterns to identify devices
connected to a certain network. In [261], the identification of 9 IoT devices was
presented by using a total of 180 traffic features, based on the packet size and
interarrival time for three types of directions (client to server, server to client,
and bidirectional). In [251], a multi-stage classification method is presented. In
the first stage, classification is done using the BoW method applied to the port
numbers, domain names, and cipher suites. At the second stage, an RF classifier
is used with statistical features including the flow volume, flow rate, flow dura-
tion, sleep time, DNS interval, and NTP interval. In [262], Lei et al. propose
an automatic classification of new IoT devices based on network traffic flows.
A Long Short-Term Memory with Convolutional Neural Network (LSTM-CNN)
cascade model is used after preprocessing the data and extracting the feature.
In [263], physical layer fingerprinting is proposed by leaking the physical channel
information, including signal power, attenuation, interference, etc. A DL-based
IoT authentication framework is proposed in [264]. The authors apply LSTM
to detect imperfections in the transmitters signals of low-power devices. The
proposed method differentiates between legitimate and illegitimate devices, in-
cluding high-power devices that try to imitate legitimate low-power devices. User
profiling, by monitoring IoT devices network activity in a smart home, is pro-
posed in [120, 252]. However, devices might generate different types of traffic, so
knowing the device type does not necessarily imply specific traffic characteristics.

Due to variable traffic classification goals, different approaches have been pro-
posed. Classifying the traffic based on the different protocols, applications, cate-
gories, actions, or devices might serve many network applications including traf-
fic analysis, QoS management, intrusion detection, and device authentications,

33

among others. Consequently, having a hierarchical classification framework with
dynamic granularity is key to meet the diverse network management require-
ments. In fact, the correlation between the results of the different classification
outputs decreases the probability of error. For example, knowing the type of traf-
fic along with the types of devices generating traffic makes it possible to link the
different classification results and ensure improved classification accuracy (e.g., a
streaming traffic is not expected to be generated by a printer).
However, traffic classification encounters a real challenge when traffic obfuscation
techniques are employed. These techniques aim at modifying traffic characteris-
tics to preserve user privacy or avoid censorship. Being aware of these techniques
helps design classifiers in a way that avoids performance degradation when obfus-
cation is used. To avoid misclassification, the classifier might use rigid features
that cannot be modified by obfuscation or it can simply detect the obfuscated
traffic by means of unsupervised learning. In the next section, we review the
obfuscation techniques used to thwart traffic classification.

Table 2.5: Traffic obfuscation techniques
Technique Year Approach Summary
Infranet [265] 2002 Morphing Modulate sequence of HTTP requests to send

data
eMule [266] 2007 Encryption Encrypted stream socket
Dust [267] 2011 Encryption Using stream cipher
CensorSpoofer [268]2012 Morphing HTTP traffic is morphed to VoIP traffic
StegoTorus [269] 2012 Morphing TOR plugin: hide TOR traffic to appear like

Skype traffic
SkypeMorph [270] 2012 Morphing TOR plugin: hide TOR traffic to appear like

Skype traffic
BuFLO [271] 2012 Mutation Traffic shaper that outputs fixed size packets at

fixed times
Obfs2 [272] 2012 Encryption TOR plugin: Full encryption of messages
Flash Prox-
ies [273]

2013 Tunneling Plaintext tunnel using web sockets through
browser-based proxies

ScrambleSuit [274] 2013 Mutation TOR plugin: Uniform key exchange, full en-
cryption of messages

Freewave [275] 2013 Morphing Transfer data over VoIP connections
Obfs3 [276] 2013 Encryption TOR plugin: add flow signature
FTE [277] 2013 Morphing Format-Transforming Encryption
Meek [278] 2014 Tunneling Utilizing different domain names
Blindspot [279] 2014 Steganography Hiding traffic into social network data
Deepflow [280] 2014 Steganography Hiding Internet traffic in P2P traffic
Facet [281] 2014 Steganography Hiding video streaming traffic into Skype video

call
Obfs4 [282] 2014 Encryption TOR plugin: providing protocol obfuscation

based on SSH or TLS
psOBJ [283] 2014 Mutation Inserting pseudo-objects with different number

and different sizes
coOBJ [284] 2014 Mutation Combined objects are inserted into the HTTP

traffic
CPSMorph [285] 2014 Morphing Mimicking the delay time distribution
Muffler [286] 2015 Morphing Extracting Super distribution to which streams

can be morphed
SkypeLine [287] 2016 Morphing Direct-Sequence Spread Spectrum (DSSS)

based steganography to hide information in
VoIP communication

CovertCast [288] 2016 Steganography Hiding the content of web pages into images
DeltaShaper [289] 2017 Steganography Hiding data in the form of images into Skype

video call
Liberate [290] 2017 Mutation A suite of classifier-evasion techniques: packet

insertion, payload splitting, packet reordering,
classification flushing

Tamaraw [291] 2014 Morphing Different time intervals for uplink and downlink
packets in the open-world setting

34

2.5 Thwarting Internet Traffic Classification

Known as traffic watermarking techniques or traffic obfuscation techniques, this
section reviews the techniques proposed in the aim to thwart traffic classifica-
tion [292, 293, 294]. In this case, traffic classification is considered as an attack
that compromises the user privacy. Conversely, traffic classification thwarting
techniques can be employed maliciously by attackers to perform their attacks
without being detected by the ML-based Intrusion Detection System (IDS). The
debate continues among the defenders of the legality of classification and thwart-
ing. In this chapter, we focus on the technical aspect of both techniques.
In either case, a deep understanding of the anonymization techniques helps in
designing a robust classifier. In [238], Iwai et al. propose an adaptive identi-
fication based on flow statistical features. In the evaluation part, the proposed
method was tested against existing classification-thwarting approaches like Tama-
raw [291], Pad to the Maximum Transmission Unit (MTU) [271], Direct Target
Sampling (DTS), and Traffic Morphing (TM) [295].
While for traffic classification, we reviewed the ML-based methods, for traffic
obfuscation, we review all the methods that affect the traffic statistical charac-
teristics. Note that a new direction is emerging in the ML domain, which is the
adversarial learning, which can be employed for traffic obfuscation in the future.
In the following, we categorized the classification-thwarting techniques into six
types: encryption, steganography, tunneling, anonymization, mutation, morph-
ing, and physical layer obfuscation. We classify the reviewed work in Table 2.5.

2.5.1 Encryption

Some Internet applications rely on private information that needs to be protected
against theft, disclosure, copying, use, or modification. Consequently, traffic en-
cryption was proposed to hide the private information carried over the Internet,
as illustrated in Figure 2.8-a. To this end, several application-layer security pro-
tocols have been proposed: HTTPS, FTPS, etc. Concerning traffic classification,
the encryption hides the application signature needed for deep packet inspection-
based classification methods. Additionally, some encryption algorithms require
fixed plaintext length, which might affect the packet size distribution of the con-
sidered application/protocol. This might impact the accuracy of the ML classi-
fiers that rely on packet size-related features. However, encryption does not hide
the information carried in other features such as the interarrival time. Numerous
ML methods have shown their effectiveness to classify encrypted Internet traffic
based on the packet size and interarrival time distributions [9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33].

35

Figure 2.8: Internet traffic obfuscation techniques

2.5.2 Steganography

Steganography is a method consisting of hiding secret data in multimedia docu-
ments, as illustrated in Figure 2.8-b. In the network domain, steganography aims
at hiding application data into other application packets. Unlike encryption, the
goals of steganography are to hide the secret data as well as the fact that these
data were sent over the network (i.e., unobservability).
To ensure undetectability of certain protocols, steganography-based methods
have been proposed in the literature [296, 297, 298, 299, 300]. One of these meth-
ods is Blindspot proposed in [279], which is designed to use the current social
network to provide the following properties: indistinguishability between anony-
mous and non-anonymous traffic, unlinkability between sender and receiver, and
low delay.
Similarly, Deepflow [280] aims at hiding TOR traffic in P2P traffic. Given

36

the fact that even anonymous communication traffic (i.e., TOR traffic) presents
specific patterns and can be detected by censors, Deepflow aims at hiding anony-
mous communication traffic in the P2P streaming networks (e.g., PPStream)
using steganography. To do so, the Deepflow nodes connect to the PPStream
network and behave as normal PPStream clients watching video, but they in-
clude their data into the communicated video packets by steganography. These
packets are transmitted through the normal PPStream nodes to reach the desti-
nation.
Facet , another steganography-based obfuscation method [281], aims at hiding
the video traffic in Skype video call traffic. To this end, the Facet client sends a
message to the Facet server containing the URL of the video it wants to watch.
Then, the Facet server downloads the requested video. The video content is
passed to a microphone and camera emulators to be transmitted over a Skype
video call to the Facet client. The audio sampling frequency and frame density
are adjusted to mimic a normal Skype video call and avoid abnormality detec-
tion.
CovertCast , proposed in [288], hides the content of web pages into colored
matrix images transmitted in a live streaming session (e.g., YouTube). Thus,
the transmitted data can be received by multiple clients simultaneously. The
clients demodulate the colored matrix images to extract the desired web content.
In [289], DeltaShaper is proposed to hide the application data into images
transmitted through a bi-directional Skype video call, similar to CovertCast. In
addition, similar to Facet, a colored matrix carrying the wanted data, is inserted
in the video call running in the background. In [301], an experimental study
was conducted to evaluate the above mentioned systems: Facet [281], Covert-
Cast [288], and DeltaShaper [289]. The results show that existing ML techniques,
specifically decision trees, can detect these methods.

2.5.3 Tunneling

While traffic encryption aims at securing the communicated data during the ap-
plication sessions, it does not ensure complete privacy protection. In fact, the
session metadata (i.e., IP addresses, port numbers etc.) can be disclosed by the
attackers, compromising both user privacy and anonymity. Tunneling protocols
intend to hide the connection metadata and ensure user privacy.
One famous tunneling service is the Virtual Private Network (VPN). VPN
relies on a set of security protocols (e.g., IPSec, IKE, SSL, etc.) to extend the
local private network to the public one. As shown in Figure 2.8-c, VPN consists
of establishing a tunnel between the VPN client and server, and then the server
forwards the client packets to the corresponding destination. The source IP ad-
dress that appears at the destination is the VPN server IP address. Additionally,
the VPN client encrypts data before sending it. However, recent research work
in the traffic classification domain has shown the capability of classifying VPN

37

traffic based on the application name and traffic type [31].

2.5.4 Anonymization

The TCP/IP networking scheme requires well-defined mechanisms providing use-
ful information for traffic classification. One of these mechanisms is the routing
process that relies on the IP addresses, port numbers, MAC addresses; hiding
this information is key for anonymizing the communicated traffic. In this con-
text, multi-path routing [279, 302, 303] and NATing [304] are among the network
functions that affect the accuracy of traffic classification methods, especially those
ones relying on the IP and port information.
In this context, The Onion Router (TOR) was proposed to provide traffic anonymity
by means of a list of onion routers [305]. The name onion refers to the fact that
the TOR packet (called cell) consists of several security layers, and at each node
(relay), the cell is decapsulated by the corresponding key. The decapsulated
packet is sent to the next TOR. Consequently, the full path is anonymous to the
TOR nodes. The TOR network consists of a list of TOR nodes, as shown in Fig-
ure 2.8-d. To communicate over TOR, the client has to use a TOR browser. The
TOR client will have a predefined list of TOR nodes. To start a session, the TOR
client browser contacts a random set of TOR routers and establishes a secret key
with each one. These keys are used by the TOR client to encapsulate the TOR
packet with different security layers and by the TOR nodes to decapsulate the
received packets.
In the VPN case, client anonymity is lost if the VPN node is compromised. How-
ever, in the TOR case, client identity is anonymous even to the TOR nodes,
given that the full routing path is anonymous. However, many attacks have suc-
ceeded in identifying TOR traffic in the aim to block it [306]. These attacks
mainly rely on tracking the list of known TOR nodes and trying to detect and
compromise TOR node entry and exit. Several traffic classification methods have
demonstrated abilities to classify TOR traffic [143, 307, 308, 309]. Recently, many
efforts have been made to enhance TOR security by means of TOR bridges and
Pluggable Transport Protocols [310, 311].

2.5.5 Mutation

Traffic encryption/tunneling can hide information carried in the packet payload
and connection identifiers. However, classification is still possible using statistical
flow features, mainly the interarrival time and packet size. To thwart traffic
classification, traffic mutation aims at modifying these statistical features, as
shown in Figure 2.8-e.
In this context, Padding is a technique used to hide packet size information. On
the other hand, traffic shaping aims to hide the interarrival time information. A
classification of these techniques is included in [312, 313]. For the packet padding

38

techniques, five methods are described below, where l is the packet original size
and m(l) is the size after mutation.

• Padding to the Maximum Transmission Unit (MTU): this con-
sists of padding the packets to the same size, which is the MTU. In this case,
the transformation function can be written as: m(l) = MTU. This method
completely hides packet size information but with a very high bandwidth
overhead.

• Linear padding: this technique consists of padding the packets based on
the following equation: m(l) = l/c * c, where c is a system parameter
and l/c is the ceiling of l/c. In this case, the obtained packet lengths are
multiples of c.

• Exponential padding: this technique consists of padding the packets
exponentially following the equation: m(l) = min 2log2, MTU. In this case,
the transformation graph will have a plateau after a certain value of l.

• Elephants and mice padding: this technique consists of padding the
packets to a certain value c, if their size is less than c, if not, they are
padded to the MTU.

• Random padding: this method consists of randomly padding the current
packet size to a size randomly chosen to be between l and MTU, such that:
m(l) = RAND ([l, MTU]).

The interarrival time-based mutation, listed in [314], can be summarized as
follows:

• Constant Interarrival Time (CIT): this technique consists of send-
ing the packets at a fixed interarrival time. Like the padding to MTU,
this method hides the information carried in the packet interarrival time.
However, it presents a very high overhead in terms of latency.

• Variable Interarrival Time (VIT): this method consists of sending
the packets at random time intervals. These intervals are chosen randomly
from a uniform distribution between two values I1 and I2.

The trade-offs between overhead, performance, and privacy/information-leakage
were considered in [315, 316, 317, 318, 319]. In [315, 316, 317, 318, 319], Lacovazzi
et al. formulated traffic masking as an optimization problem to ensure minimal
overhead in terms of packet length and interarrival time.

39

2.5.6 Morphing

Mutation techniques aim at thwarting classification and confusing the classifier.
However, morphing techniques aim at confusing the classifier into classifying the
target protocol/application traffic as another type, as illustrated in Figure 2.8-
f. This is used mostly to avoid censorship of certain protocols/applications and
make them look like legal protocols/applications.
Wright et al. proposed a morphing technique to thwart statistical traffic anal-
ysis [295]. The proposed solution aims at morphing one class of traffic to look
like another class by applying convex optimization techniques. Compared to the
padding technique, their proposed method reduces the accuracy of the traffic
classifiers with much less overhead. They evaluate their method against two traf-
fic classifiers for VoIP [29] and web traffic [14].
In [320], Wang et al. show that TOR traffic can be detected even after obfusca-
tion with two variants of obfsproxy , Format-Transforming Encryption (FTE),
and two variants of meek. Different proposals for securing TOR traffic have been
suggested to counter this [269, 270, 274]. StegoTorus [269]is a TOR plugin
that aims at providing: undetectability and unblockability to the TOR traffic.
StegoTorus uses steganography to make TOR traffic look like traffic produced by
another software. In addition, the fixed-size cells are transformed into variable-
length packets, and a novel cryptosystem is applied to make the cyphertext look
like random data. The obtained traffic looks like encrypted P2P or HTTP traffic.
SkypeMorph [270] is another TOR plugin to hide TOR traffic inside Skype traf-
fic. First, a Skype texting session is initiated with a selected out-of-band bridge
to exchange public key material. To do so, the client needs to have the bridges
Skype ID. After sharing the secret, a video call is initiated between the client and
TOR bridge. The data are shaped to look like the audio and video content of a
normal Skype call and sent over the instantiated Skype video call session.
ScrambleSuit [274] aims at avoiding TOR blocking by means of two added
features: authentication by a secret key shared out-of-band and avoiding traffic
analysis by morphing the traffic to resemble whitelisted protocols. To this end,
ScrambleSuit determines the shapes of whitelisted protocols by analyzing their
packet lengths and interarrival time distributions.
However, the authors in [321] demonstrated that SkypeMorph, StegoTorus, and
ScrambleSuit are vulnerable to detection. In fact, the morphed protocols have
specific behaviors when certain network actions or conditions occur. Mimicking
the reaction to network errors and to specific network conditions is key to avoid
detection. In addition, the sessions of mimicked protocols are usually initiated
with other protocol sessions, known as Side Protocols (e.g., VoIP session involves
three protocols: SIP for signaling the session, RTP for streaming the media, and
RTCP). This includes the intra- and interdependence between these protocols.
The de-anonymization attacks check the initiated sessions and reactions against
network errors to detect the anonymized/morphed protocols [322].

40

In [323], using Generative Adversarial Network (GAN), Rigaki et al. propose a
morphing method for generating network traffic that mimics legal types of traffic.
The aim was to avoid malware detection by shaping the malware traffic to look
like Facebook chat traffic. In the experimentation phase, a Stratosphere behav-
ioral IPS was installed in a router, while the malware and the GAN were deployed
in the local network. The results show that the malware traffic modified by GAN
is successfully undetectable. However, the network obfuscation techniques are
detectable by statistical characteristics [324]. For example, traffic morphing is
only effective when the classifier considers the same feature(s) targeted by the
morphing routine [271]. Consequently, traffic classification is still possible con-
sidering the existence of unmorphed features.
In this context, in [271], a comparison is conducted between three classifiers on
nine obfuscation techniques including tunneling, padding, and mutation. The
results show that all considered methods are prone to detection by statistical
analysis. Consequently, the authors propose Buffered Fixed-Length Obfuscator
(BuFLO), which consists of sending fixed size packets at fixed time intervals, to
hide all the statistical information. However, BuFLO provides traffic anonymity
at the cost of latency and bandwidth overheads.
Mimic Hunter is another proposal to detect protocol mimicry. This is per-
formed by studying the protocol structure, syntax inspection, protocol state,
transmit verification, protocol behavior, anomaly detection, network traffic de-
cision making, and protocol profile library [325]. By analyzing the IP traffic
statistical features (i.e., packet sizes, interarrival time, and packet order), tun-
nel hunter can successfully identify protocols tunneled inside other protocols
such as HTTP, DNS, and SSH [326].

2.5.7 Physical Layer Obfuscation

Traffic classification in the wireless network domain can be performed using
side-channel information leak and signal-related patterns. Therefore, thwart-
ing traffic classification employs the same techniques used for wired networks:
padding [327, 328, 329, 330], morphing [295], and other approaches specified to
the wireless domain: pseudonym [331, 332], identifier-free [333, 334, 335], fre-
quency hopping [336], and jamming [337, 338, 339]. For example, in [340], a
traffic-shaping method is proposed that creates multiple virtual Media Access
Control (MAC) interfaces over a single wireless card, dynamically scheduling the
packets over these interfaces, and reshaping the packet features over each virtual
interface.
To summarize, the security goals and detection methods for the different traffic
obfuscation techniques are highlighted in Table 2.6.

41

Table 2.6: Obfuscation techniques
Obfuscation Goal Detection Method
Encryption Confidentiality Statistical based ML
Steganography Unobservability Behavioral based ML
Tunneling Unlinkability Statistical based ML
Anonymization Unlinkability &

Undetectability
Statistical based ML

Mutation Undetectability Behavioral based ML
Morphing Unobservability &

Undetectability
Behavioral based ML

Physical Layer
Obfuscation

Unobservability &
Undetectability

Behavioral and statisti-
cal based ML

2.6 Key Findings, Limitations, and Recommen-

dations

Internet traffic classification is a well-established research domain with several
remaining limitations and issues [34, 341]. In the following, we present our key
findings after reviewing the most relevant work related to applying machine learn-
ing for traffic classification.

2.6.1 Key findings

• Data collection: the data used for traffic classification in many of the
reviewed works is outdated. Internet traffic is continually evolving with
the emergence of new kinds of traffic, devices, and applications. Therefore,
collecting labeled Internet traffic considering new trends is required. In
addition, most of the available public datasets are unlabeled or were labeled
using unreliable methods such as using deep packet inspection that fails
with encrypted traffic or port-based labeling that fails with dynamic port
allocation.

• Data representation: different methods have been used for represent-
ing traffic. In [117], Moore et al. provide a comprehensive set of features
based on the packet size and interarrival time, TCP flags, port numbers,
and IP addresses. Other methods consider the domain names and proto-
col request contents. Time series-based features are used for fine granular
classification. Another proposed approach is to represent communication
patterns between the invoked entities using non-traditional formats. Traffic
flows have recently been represented as images. In fact, data representa-
tion is chosen according to the classification method. For example, the time

42

series presentation is used for Markov Model-based classification and the
image-based representation is used for DL-based classification, etc.

• Method selection: different ML methods exist, and each has advantages
and disadvantages. However, not all methods are suitable for traffic classi-
fication. DT-based methods have shown their effectiveness in traffic classi-
fication [342]. Traffic classification objectives: Internet traffic classification
is key to managing both QoS and security in the network. In the litera-
ture, different views of the traffic have been considered including protocols,
applications, categories, actions, and devices classification.

• Obfuscation methods: different obfuscation techniques have been pro-
posed to preserve user privacy by thwarting traffic classification. Some
obfuscation methods like the fixed size and fixed interarrival time mutation
technique and steganography can avoid any statistical classification. How-
ever, the detection of the mutated traffic in these cases can be done using
behavioral classification.

2.6.2 Limitations

• Networking functions: asymmetric routing, NATing, and tunneling are
network functions that influence traffic classifier performance [343]. There-
fore, these network processes must be taken into consideration when de-
signing a traffic classifier. The features must be chosen to not be affected
by any of these network functions.

• : the classification process needs to be lightweight, especially when applied
in real-time processing mode [344]. Data preprocessing, data representa-
tion or features computation, and the classification computation overhead
must be carefully analyzed from time and processing complexity perspec-
tives. In this context, three main measures are essential: memory space,
computational complexity, and processing time. Designing a robust yet ac-
curate classifier is key, but overhead is vital in several cases, especially for
real-time network services (e.g., intrusion detection).

• Real implementation: Although ML traffic classification has been exten-
sively considered in the literature, few classification frameworks/tools are
available [246, 345]. Practically, DPI is still being extensively deployed
although it presents privacy concerns. Relying on ML-based classifica-
tion is still in its infancy; but big names like Cisco [346], Huawei [347],
Paloalto [348], and IBM [349], are actively working on combining ML and
network functions.

• Obfuscation: the legitimacy of classification and obfuscation is controver-
sial. From a privacy perspective, classification is considered as an attack

43

that compromises user privacy. However, from a network management per-
spective, obfuscation can be used by the attackers to avoid detection of their
attacks. In this context, security and QoS applications favor classification
while privacy favors obfuscation.

• Traffic Sampling: One of the challenges that hinders traffic classification
application is the high speed required at the core network. Extracting fea-
tures from the packets at the very high speed is not feasible, and therefore
traffic sampling becomes an alternative. This can modify traffic charac-
teristics and statistical features and might have a negative impact on the
classification accuracy.

• Data Collection: data are very important for any ML classification frame-
work. Training the model with representative data is key to ensure the
extraction of meaningful patterns that help classify unseen data with high
accuracy. Data needs to be collected from different network environments
and points (edge, core). Moreover, data labeling should be performed ac-
curately. Data variety is also important; having data from different ap-
plications and devices would enable innovative classification applications.
Finally, public data availability is key to empower research in this domain.

• Model Generalization: if an ML model is generalizable, it means that
its application to unseen data presents low bias and variance. To ensure
generalization, the model should be tested on data collected from different
network environments, which requires operator involvement.

• Unknown traffic detection: traffic classification aims at knowing the
specific traffic type, application name, or even device type. However, these
classes are not static. New applications, devices, and traffic types emerge
constantly in the network domain. Consequently, detecting new traffic or
attack traffic is key to avoid misclassification. In this case, classification
model uncertainty needs to be evaluated relative to future traffic types,
and techniques must be further developed for anomaly detection (malicious
versus non-malicious anomalies).

• Robustness: making the classifier robust to obfuscation or to detect ob-
fuscated traffic is key to avoid misclassification. In this case, unsupervised
learning is needed to detect unknown traffic classes. Classifiers should be
tested against the different obfuscation techniques, and the features should
be chosen to be minimally affected by obfuscation.

• Model update: as mentioned before, new traffic types are emerging dy-
namically in the network domain, especially with the connection of new
kinds of devices in the IoT era. This requires re-training the model with

44

emerging traffic types. Developing ML methods for online training is key
to keeping the traffic classifiers updated.

• Hierarchical classification: as the classification objectives might differ
based on the targeted network function (e.g., QoS management, firewall,
intrusion detection, application banning, etc.), providing a hierarchical clas-
sification with dynamic granularity level is important to avoid developing
several classification modules and thus training several classifiers [350].

2.7 Conclusion

Applying ML in the network domain is one aspect of the future networks, where
intelligence will enable innovative network functions including intelligent routing,
traffic prediction, and intelligent traffic management. Within this context, traffic
classification through ML is essential to enable the intelligent network functions
of the future. In this chapter, we reviewed traffic classification through its work-
flow, including data collection, data representation, ML method selection, and
class definitions. In addition, we reviewed obfuscation methods designed to evade
traffic classification. After reviewing the literature, the question becomes how to
design a robust classification framework that is able to give real-time classifica-
tion, while accounting for adversarial attacks.

45

Chapter 3

Data Representation

Convolutional Neural Network (CNN) is a DL architecture that is initially used
for image recognition. Being inspired by the visual cortex, CNN has presented
very high accuracy when applied on raw images. Inspired by this, the rep-
resentation of network traffic as images is considered as input to CNN used
for traffic classification. A recent work has applied CNN for traffic classifica-
tion, by transforming the first packet of a network flow to an n × n gray im-
age [351, 132, 21, 42, 133, 352, 134]. In our work, we considered a Red Green
Blue Alpha (RGBA) image-based representation of a network flow by extracting
four features (size, inter-arrival time, protocol, direction) from the first n × n
packets [353]. In this chapter, we analyze and compare these two data repre-
sentations for CNN based traffic classification: the packet representation (gray
images), and the flow representation (RGBA images). For this aim, we consider
a hierarchical classification framework of the traffic into different categories, ap-
plications, user actions, and device types. The performed tests aim at evaluating,
for each method: the model robustness, the features importance, and the features
immunity towards anonymization. The results show that the performance of the
packet data representation method is dependent on some dynamic connection
parameters (i.e. Internet Protocol (IP), and Media Access Control (MAC) ad-
dresses). On the other hand, the flow data representation performance might be
affected by traffic obfuscation techniques.

3.1 Classification Framework

In this section, the classification framework is detailed. This includes the pro-
posed hierarchical classification model, the classes definition, the data represen-
tation, and the classifier architecture.

46

Figure 3.1: Hierarchical Internet Traffic Classification

3.1.1 Hierarchical Classification

As shown in (see Figure 3.1), our classification framework consists of four levels.
At level 1, the traffic is classified in one of the four classes: interactive, bulk data
transfer, streaming, and transaction. Below is the definition of these classes:

• Interactive: this class of traffic is generated by the applications that involve
two or multiple users interacting with each other. In this type of traffic,
time is of high importance; low latency and jitter are essential requirements.

• Streaming: in this type of traffic, time is important, having a user waiting
for a media file (audio, video, etc.). However, the constraint in terms of
jitter is less firm.

• Bulk data transfer: this type of traffic is very demanding in terms of band-
width. It is characterized by the large size of the communicated data.

• Transaction: this type of traffic is characterized by a small size of commu-
nicated data. It requires high network availability and security.

At level 2, the classes are related to specific actions of each level 1 category.
For example, for the interactive traffic, four classes are defined: voice call, video
call, texting, and gaming. For bulk data transfer, five sub-classes are defined:

47

Figure 3.2: Data Collection Setup

file download, file upload, backup, download app, and system update. For the
streaming traffic, two classes are considered: video, and audio. Finally, for the
transaction traffic, three types of actions can be considered: sensing, actuation,
and payment.
At level 3, the classification aims at identifying the application name. Four
applications are considered for generating the texting, video call, and voice call
traffic, including: Messenger, Skype, Hangout, and WhatsApp. For Gaming, we
consider the Ball Pool application. Three applications are considered for the file
download and upload traffic types, including: One Drive, My Drive, and Dropbox.
The differentiation between iOS, Android, and Windows is considered for system
update and download app. Moreover, YouTube is considered for video streaming.
For audio streaming, TuneIn radio and Anghami are considered.
At level 4, we aim at identifying the device type. In fact, different types of
devices are considered. For the interactive and bulk data transfer, mobile phones
and laptops are used. Moreover, for sensing and actuation, a set of sensors and
actuators are installed to collect IoT traffic.

3.1.2 Data Collection, Preprocessing and Representation

To train the classification model, data was collected from different types of de-
vices and applications. In order to collect data from the Wi-Fi enabled devices
(D-Link Water Sensor, D-Link Camera, D-Link Siren, D-Link Plug, Laptop, and
Mobile Phone), a Linux machine was configured as an access point (as shown in
Figure 3.2a)). A hotspot network was added, and forwarding was enabled on this
device. An entry to the iptables was added that allowed the forwarding of traffic
arriving from the WLan interface (WLan0) to the Ethernet interface (eth0) con-
nected to the home router. To collect data from the Samsung home kit devices

48

connected to a hub, the hub was connected to the Ethernet interface(eth0) of
the Linux machine (as shown in Figure 3.2b)). Similarly, forwarding was enabled
and an entry to the iptables was added to forward all incoming traffic from the
eth0 interface to the wlan0 interface connected wirelessly to the home network.
One hour of traffic for each type of traffic per device using Wireshark launched
on the Linux machine was collected. Table 3.1 summarizes the collected traffic
per device and per application. The collection was performed for one hour for
each device and application.

In addition, we consider two online data-sets to analyze the effect of tunneling
and anonymization. The first data-set is the VPN and non-VPN data-set [354],
and the other one is a TOR and non-TOR data-set [355]. These data-sets consist
of six classes each, including: chat, file transfer, mail, streaming, torrent, and
Voice over IP (VoIP).

Before preprocessing the obtained PCAP files, we filtered them to have only
the TCP and UDP sessions. Using the dpkt python library, the flows are extracted
per network flow. For each 16 packets of each flow, the features (packet size, the
inter-arrival time, the direction, and the transport protocol) are extracted to
form a 4 × 4 × 4 vector. To do so, all the flow packets features are recorded in
a flow list. The extracted features are normalized within the range [0, 1]. The
inter-arrival time is computed by subtracting the packet timestamp from the
previous packet timestamp. If the computed time delta is greater than 1 second,
the inter-arrival time is set to 1, otherwise, the time delta is divided by 1,000
milliseconds. Similarly, the packet size is checked and if it is greater than 1,500
bytes, the packet size is set to 1. Otherwise, the packet size is normalized by
dividing it by 1,500. The packet direction is set to 0 or 1 based on the first flow
packet direction determined by the source IP and destination IP addresses. The
protocol is set to 0 if it is a UDP packet, and to 1 if it is a TCP packet. The
flows extraction algorithm is sketched in Figure 4. After the normalization, the
flows are subdivided into M sub-flows of n× n packets each, as shown in Figure
5. The initial flow is composed of n packets [p1, p2, .., pn]. Each packet Pi is
represented by 4 features [Si, Ti, Di, Pi], where Si stands for the packet size, Ti
stands for inter-arrival time, Di stands for direction, and Pi stands for transport
protocol. This resulted in a n×n×4 vector for each sub-flow. At the same time,
we saved each feature values independently (i.e. packet size for each 16 packets
of the flow, inter-arrival time for each n× n packets of the flow, the protocol for
each 16 packets of the flow and the direction for each n× n packets of the flow).
In this case, the obtained vectors are n× n for each sub-flow.

Two data representation methods are considered for comparison. The first
method is a previous work method considering the first packet of each flow as
gray image, as shown in (see Figure 3.3a). Thus, we refer to this method as the
gray method in the rest of this chapter. The gray method presents each byte

49

Level 1 Level 2 Level 3 Level 4
Messenger Whats

App
Hangout Skype Mobile Laptop

Inter-
active

1061

Voice
Call

338
54 76

130 128 80 108 28 52
59 49

Video
Call

330
63 84

147 24 82 77 37 45
33 34

Texting 379
57 3

60 151 168 145 116 52
17 128

Gaming 14 10 4
Dropbox MyDrive OneDrive Mobile Laptop

Bulk
Data
Trans-
fer

2135

File
upload

619
20 103

123 227 269 34 193
186 83

File
Down-
load

332
40 80

120 77 135 14 63
46 89

System
Update

184 93 91

Apps
Down-
load

1018 706 312

Mobile Laptop Camera
Stream-
ing

134
Video 69 56 17 4
Audio 65 55 10

D-Link
Plug

D-Link
Siren

Samsung
Smart
Plug

Trans-
action

282
Actuation 200 86 180 12

D-Link
Water
Sensor

Samsung
Motion
Sensor

Samsung
Multi
Purpose
Sensor

Sensing 82 60 12 13

Table 3.1: Collected Data (Number of Flows)

of the first 784 bytes of each flow. The second method is our proposed method
that extracts four features of the first n×n packets of each flow, as shown in (see
Figure 3.3b). These features are: the packet size, the packet direction, the packet
inter-arrival time, and the packet transport protocol. Each packet is represented
by an RGBA entry in the obtained image. We refer to the second method as the
RGBA method in the rest of this chapter. The obtained images are shown in
(see Figure 3.6). It is obvious that, visually, the RGBA images present different
patterns for the different types of traffic. However, for the gray images, the
differentiation between the different classes is not obvious.

3.1.3 Classifier Model

The aim of this chapter is to compare our data representation method to a pre-
vious work method with CNN based classification. CNN is a DL architecture
that presents a specific architecture for image recognition. CNN consists mainly
of four types of layers: convolution layer, pooling layer, dropout layer, and fully
connected layer. The convolution layer applies a set of ”sliding windows” across
the input image. These sliding windows or filters detect the different primitive
shapes or patterns. The pooling layer reduces the number of parameters by re-
ducing the obtained image size. It consists of specific operations applied on each
feature map independently. One of the most used pooling functions is max pool-
ing. The dropout layer consists of dropping parts of the input with a defined

50

(a) (b)

Figure 3.3: Data Representation: (a) Gray images and (b) RGBA images

probability to avoid model over-fitting. The fully connected layer consists of a
set of neurons connected to all previous layer neurons. The architecture, that
we used, consists of 3x3 convolutional filters applied at stride 1. We used 2x2
sub-sampling (pooling) layers applied at stride 2. The whole architecture consists
of three convolution layers, two pooling layers, two fully connected layers, and
one dropout layer, as shown in Figure 3.5.

3.2 Comparison Criteria and Methodology

To compare two data representation methods for ML based classification, different
aspects have to be considered:

• First, the classification performance of the considered representation
methods is evaluated at the different levels.

• Second, features importance should be analyzed. For traditional ML,
many methods exist to evaluate the features importance, including entropy
based (mutual information), correlation based, and accuracy based (fea-
tures ranking) methods. However, in the DL case, and more specifically

51

Figure 3.4: Data visualization (at left: RGBA method, and at right: Gray
method)

for CNN, the features importance analysis is not tightly related to these
measures.

• Third, model robustness is key when comparing different data repre-
sentation methods. The model robustness is related to its capability of
classifying unseen data.

• Fourth, the features robustness is another factor that should be examined
in traffic classification domain. Anonymization is a technique to thwart clas-
sification by hiding data (encryption), connection metadata (IPs and port
numbers), and some traffic characteristics (e.g. packet size, and packets
inter-arrival time).

In the following, we present our proposed tests corresponding to the above
listed criteria. It should be noted that a subset of Moore features, shown in
Table 3.2, are considered with an RF classifier for comparison with a state-of-
the-art method.

52

Feature Description
total fwd pkt Total packets in the forward direction
total fwd bytes Total bytes in the forward direction
total bck pkt Total packets in the backward direction
total bck bytes Total bytes in the backward direction
min pckt size fwd The min packet size in the forward direction
mean pckt size fwd The mean packet size in the forward direction
max pckt size fwd The max packet size in the forward direction
std pckt size fwd The standard deviation packet size in the forward direc-

tion
min pckt size bck The min packet size in the backward direction
mean pckt size bck The mean size of packets in the backward direction
max pckt size bck The max packet size in the backward direction
std pckt size bck The standard deviation packet size in the backward di-

rection
total size The total flow size
min pckt size The min packet size in either direction
mean pckt size The mean size of packets in either direction
max pckt size The max packet size in either direction
std pckt size The standard deviation packet size in either direction
min iat fwd The minimum interarrival time in the forward direction
mean iat fwd The mean interarrival time in the forward direction
max iat fwd The maximum interarrival time in the forward direction
std iat fwd The standard deviation interarrival time in the forward

direction
min iat bck The minimum interarrival time in the backward direc-

tion
mean iat bck The mean interarrival time in the backward direction
max iat bck The maximum interarrival time in the backward direc-

tion
std iat bck The standard deviation interarrival time in the back-

ward direction
total time The duration of the flow
min iat The minimum interarrival time in either direction
mean iat The mean interarrival time in either direction
max iat The maximum interarrival time in either direction
std iat The standard deviation interarrival time in either direc-

tion
avg pckt fwd The average number of packets in the forward direction
avg bytes fwd The average number of bytes in the forward direction
avg pckt bck The average number of packets in the backward direc-

tion
avg bytes bck The average number of bytes in the backward direction
avg iat fwd The proportion of flow time in the forward direction to

the total flow time
avg iat bck The proportion of flow time in the backward direction

to the total flow time

Table 3.2: Feature Set for statistical classification

53

Figure 3.5: The used CNN architecture.

Algorithm 1 Performance test

1: procedure Performance Test
2: for nodei ∈ parent nodes do
3: train model on train datai
4: test model on test datai
5: end for
6: end procedure

3.2.1 Performance Test

As shown in Algorithm 1, this test is performed at each parent node (nodei) for
the different levels. A parent node is a node that has leafs. In fact, this type of
hierarchical classification is called Local Per Parent Node (LPPN) classification,
where a classifier is trained for each non-leaf node. In our case, the classifier
is trained with the data corresponding to the direct sub-nodes types (datai).
Considering our data-set, at level 1, the classifier is trained to classify traffic
into four classes: interactive, bulk data transfer, streaming, and transaction. At
level 2, a classifier for each level 1 category is trained to classify the traffic into
sub-categories. For example, the interactive classifier is trained to classify traffic
into four classes: voice call, video call, texting, and gaming. At level 3, for each
level 2 class, a classifier is trained to differentiate traffic based on the different
applications. For example, the voice call classifier is trained to classify traffic
into four classes: Messenger, Skype, WhatsApp, Hangout. At level 4, a classifier
is trained for each class 3 traffic based on the different types of generating devices.

54

For example, for the voice call Skype traffic, a classifier is trained to differentiate
between mobile and laptop traffic.

3.2.2 Features Importance Test

In this section, we detailed the features importance tests realized for the packet
level and flow level representations. In this test, we consider: our data-set, the
VPN data-set, and the TOR data-set.

Packet Level Representation:

Algorithm 2 Packet level features importance training

1: procedure Anonymize Fields Training
2: while length of packet fields > 0 do
3: for field ∈ fields to anonymize do
4: anonymize field in train data
5: anonymize field in test data
6: end for
7: for field ∈ packet fields do
8: train model on train data
9: test model on test data
10: if current test accuracy < min accuracy then
11: save field
12: end if
13: end for
14: add field to fields to anonymize
15: remove field from packet fields
16: end while
17: end procedure

The Transmission Control Protocol/Internet Protocol (TCP/IP) packet con-
sists of 25 fields as shown in Table 3.3. For the packet level representation, to an-
alyze the importance of the packet fields, we run an experiment that anonymizes
the fields sequentially. At each round, the field presenting the minimum accuracy
when anonymized is chosen to be anonymized at the next rounds. This is done
until anonymizing all the packet fields. The aim is to know what are the most
important fields influencing the classification accuracy. Two cases are considered.
The case when the same feature is anonymized for training and testing, as shown
in Algorithm 2, and the case where the anonymization is performed only on the
testing data, as shown in Algorithm 3. We apply these tests on our data, the
TOR data, and the VPN data.

55

Table 3.3: Packet fields
1 Source MAC Address
2 Destination MAC Address
3 Type IP
4 Version
5 Diff Serv
6 Total Length
7 Identifier
8 Do not Fragment (DF)
9 Fragment Offset
10 Time To Live (TTL)
11 Transport Protocol
12 Header Checksum
13 Source IP Address
14 Destination IP Address
15 Source Port Number
16 Destination Port Number
17 Sequence Number
18 Acknowledgement Number
19 Packet Offset
20 Flags
21 Window Size
22 Checksum
23 Urgent Pointer
24 Options
25 Data

56

Algorithm 3 Packet level features importance testing

1: procedure Anonymize Fields Testing
2: train model on train data
3: while length of packet fields > 0 do
4: for field ∈ fields to anonymize do
5: anonymize field in test data
6: end for
7: for field ∈ packet fields do
8: test model on test data
9: if current test accuracy < min accuracy then
10: save field
11: end if
12: end for
13: add field to fields to anonymize
14: remove field from packet fields
15: end while
16: end procedure

Flow Level Representation:

Algorithm 4 Flow level features importance test

1: procedure Training
2: for feature ∈ flow features do
3: train model on feature vector
4: test model on feature vector
5: end for
6: end procedure

For the flow level representation, we have four main features: packet size,
inter-arrival time, protocol, and direction. Thus, to analyze the importance of
each of these features, we performed the classification for each feature vector,
as shown in Algorithm 4, by representing it by a n×n gray image applied to two
images sizes 28x28 and 4x4.

3.2.3 Model Robustness Test

Based on the hierarchical architecture defined in section 2, we design the model
robustness test. This test consists of removing one of the sub-classes traffic
dataj from the parent traffic datai and train the classifier model on the obtained
data datai−j. Then, the trained model is applied on the removed traffic dataj,
as presented in Algorithm 5. At level 1, four classes are defined, including:

57

Algorithm 5 Model robustness test

1: procedure Training
2: for i ∈ nb of parent nodes do
3: for j ∈ nb sub classes do
4: datai−j ←dataj from datai
5: train model on datai−j
6: test model on dataj
7: end for
8: end for
9: end procedure

interactive, bulk data transfer, streaming, and transaction. Consequently, the
robustness test aims at removing at a time one level 2 class and see if the level 1
classifier is able to classify it correctly. For example, removing the texting class,
the level 1 classifier, trained on all the remaining data without texting, is tested
to see if it can classify the texting traffic as interactive.

3.2.4 Features Robustness Test

In this section, we investigate the robustness of the features towards traffic
anonymization. To do so, we considered the TOR, and VPN data-sets. We
compared the Gray and RGBA methods, by training and testing a model on
each of these data-sets consisting of six classes. In doing so, we aim at investi-
gating the effect of traffic encapsulation by VPN which present traffic encryption
and meta-data modification such as the port numbers, IP addresses, etc. On
the other hand, we aim to investigate the anonymization effect on both meth-
ods, given that TOR affects also the statistical features; for example, the packet
length. In addition, we consider mutation techniques that aim at anonymizing
the main traffic characteristics like packets sizes and/or inter-arrival times. These
mutation techniques rely on traffic shaping and padding to manipulate the traffic
characteristics in the aim to confuse the classifier. This test consists of training
the model on the original traffic and test it on the anonymized traffic, where
three cases are considered: packets sizes are anonymized, packets inter-arrival-
times are anonymized, and packets sizes and inter-arrival times are anonymized.
We mean by packet size anonymization to pad all the packet sizes to the Max-
imum Transmission Unit (MTU) and to set the packets inter-arrival time to a
fixed time interval (i.e. one second).

58

3.3 Experimentation Results

In this section, we present the comparison tests results. Note that these tests
were performed on a Linux machine (Ubuntu 14.04 LTS) with 16 GB RAM and
Intel core i7 processor. TFLearn [356] was used as a high-level API for the
tensorflow [357] Python library for DL implementation. It should be noted that
in all tests cross validation is applied with 4 folds and data is divided into 60%
for training, 20% for validation, and 20% for testing. For the CNN classifier, the
convolutional layers were optimized using the Adam optimizer, and the Rectifier
Linear Unit (ReLU) function is used for activation. Dropout probability is chosen
to be 0.5. The fully connected layer is also optimized using the Adam optimizer,
and cross-entropy is used as output function. The learning rate is 0.001, the
weights are initialized by the truncated normal distribution, and the biases are
initialized to 0. The RF classifier was implemented using the scikit-learn python
library [358], with grid search to optimize the number of trees with [1,100] as the
range for search.

3.3.1 Performance Test Results

To test the performance of the considered data representation methods, the Con-
vNet architecture was applied for multi-level classification. The accuracy re-
sults are shown in Figure 3.6, 3.7, and 3.8. It is clear from the results that
the RGBA28x28 representation method achieves overall better results at the
different classification levels. At level 1, as shown in Figure 3.6, RGBA28x28
and RGBA4x4 present better results than the Gray method. RGBA8x8 and
RGBA4x4 present better performance in terms of accuracy, precision, recall. In
terms of accuracy, RGBA28x28 presents the highest value with 95.84%, followed
by RGBA4x4 with 93.49%, and then Gray with 92.18%. It can be noticed also
that RGBA4x4 presents better results than RGBA28x28 in some cases. For
example, at level 3, RGBA4x4 gives better accuracy (82.72%) than both the
RGBA28x28 and Gray methods (79.59% and 70.4%). To summarize, the Gray
method failed to surpass the RGBA method at the different classification levels,
even though it relies on important information in the packet header. This indi-
cates that this method cannot be generalized on testing data due to the difference
in the connection parameters between training and testing data presenting dif-
ferent flows from different devices. Furthermore, the results show that the RF
method presents better accuracy at the different levels when considering the first
28x28 packets (RF28x28) or the first 4x4 packets (RF4x4).

59

Figure 3.6: Performance test results (Level 1)

(a) (b)

Figure 3.7: Performance test results in terms of accuracy: (a) for Level 2 and (b)
for Level 3

3.3.2 Features Importance Test Results

Packet Level Representation:

For the Gray method, the features importance test results are illustrated in Fig-
ure 3.9. Figure 3.9a presents the results of the features importance test, when
features are anonymized in the training and testing phases using our data. It
can be noticed that source IP address, source MAC address, and the destination
MAC address are the three most important fields. Anonymizing these fields in
training and testing makes the accuracy drop by more than 10%. In the testing
case, the drop of accuracy is more pronounced, and thus, as shown in (see Fig-
ure 3.9b), anonymizing only the data makes the accuracy drop by 10%. Moreover,
anonymizing data, source MAC address, and ACK number makes the accuracy
drop noticeably to 10%. For the TOR data, the accuracy is already low com-
pared to the flow level representation. In the first case, where anonymization
is applied on the training and testing data, the destination port was the most

60

Figure 3.8: Performance test results in terms of accuracy (Level 4)

important feature, as shown in (see Figure 3.9c). However, in the second case,
the anonymization of the source MAC and destination MAC addresses makes the
accuracy drop noticeably to 15%, as shown in (see Figure 3.9d). Finally, for the
VPN data, anonymizing the IP addresses makes the accuracy drop to 60% in the
first case. However, in the testing case, the accuracy drop was more pronounced
for the same features.

Flow Level Representation:

For the RGBA method, The features importance test results are included in
Figure 3.10a and 3.10b. For the 28x28 images, it can be noticed that packet size
is the most important feature. This can be observed given that the accuracy, when
using the packet sizes of the first 28x28 packets of a flow, is the highest relative
to the other features. Similarly, for the RGBA4x4 representation, the packet size
is the most important feature for our data and the TOR data. However, for the
VPN data, the packets inter-arrival time is the most important feature.
It can be noticed that the RGBA method, including statistical features, makes
the trained model generalizable when the data is collected from different network
setups. Moreover, the accuracy results obtained for VPN and TOR data show the
immunity toward traffic anonymization. Moreover, the direction feature reflecting
a behavioral pattern of the traffic can serve for classification if some mutation
techniques, modifying the packet size or inter-arrival time, are applied. However,
for the gray method, anonymizing some connection/session variables make the
accuracy drop noticeably. This indicates that the learned model is data and

61

(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Gray method features importance results in terms of accuracy: (a),
(c), and (e) for anonymization at training and testing phases using our data,
TOR , and VPN data-sets respectively; (b), (d), and (f) for anonymization at
the testing phase using our data, Tor, and VPN data-sets respectively.

network dependent and cannot be generalized.

3.3.3 Model Robustness Test Results

The features robustness test results, shown in Figure 3.11, present the accuracy
results of the robustness test for the level 1 classes. It is clear that RGBA28x28
and sometimes RGBA4x4 present better results than the Gray method. Similarly,
in Figure 3.12, the results of level 2 robustness tests are included. In these tests,
for each level 2 class, we remove one of its sub-classes to see if the level 2 classifier

62

(a) (b)

Figure 3.10: RGBA method features importance results in terms of accuracy

Figure 3.11: Robustness test results in terms of accuracy (Level 1)

is able to classify it correctly. For example, for texting, we remove one of the
texting applications (e.g. hangout) and we test the classifier trained on the
interactive type of traffic (texting, voice call, video call, and gaming) to check
if it will classify the hangout traffic correctly. The results show that RGBA is
better than Gray method in more than 70% of the cases. moreover, if we consider
the RF method, the results show that the RGBA method is more robust than

63

Figure 3.12: Robustness test results in terms of accuracy (Level 2)

the RF method with statistical features in most cases.

3.3.4 Features Robustness Test Results

For TOR and VPN traffic, the results presented in Table3.4 show that, for both
types of traffic, the RGBA method gives better results than the gray one. It can
be noted that the Gray method performance degrades noticeably when traffic is
encrypted (78% as accuracy on VPN data-set). Moreover, the RGBA method
gives promising results on TOR traffic (94% as accuracy). Moreover, it can be no-
ticed that RF method with statistical features gives better results than the CNN
based classification with flow-based or packet based representation when consid-
ering the first 4x4 packets or 28x28 packets. However, as shown in Figure3.13, it is
clear that the RF based method performance degrades noticeably when the sizes
and/or inter-arrival times of the packets are mutated. This indicates that the
statistical features are prone the adversarial attacks making the statistical based
classification performance prone to degradation. The CNN based classification,
considering behavioral features (i.e. packets directions), can give better results
when one or more channels (size and inter-arrival time) are mutated. Similarly,

64

RGBA28x28 RGBA4x4 Gray RF28x28 RF4x4
VPN 86.26% 84.16% 78.68% 93.96% 88.34%
TOR 94.28% 74.7% 64.78% 97.92% 88.13%

Table 3.4: Accuracy Results (in%) with the TOR and VPN data-sets

the anonymization of the packets sizes and/or inter-arrival times test is performed
to our data-set at all levels. The results for the different levels are included in
Figure3.14. It can be noticed that the drop in accuracy for all levels is more
pronounced for the RF based method than the RGBA one. Thus, the RGBA
method is more robust when one or more features are anonymized. This can be
explained by the fact that the behavioral pattern of the packets reflected by the
direction map can rescue the loss of information in other channels. Moreover, the
anonymization can be compared to a noise added to an image and thus, in this
case, image recognition is still possible using CNN.

(a) (b)

Figure 3.13: Anonymization results in terms of accuracy considering the TOR
and VPN data-sets

3.4 Discussions

Image recognition is a well-established CNN application. Thus, applying CNN for
traffic classification calls for new representation methods of the traffic as images.

65

(a) (b)

(c) (d)

Figure 3.14: Features robustness test results in terms of accuracy for all levels
considering the RGBA28x28, RGBA4x4, RF28x28, and RF4x4: a) level 1, b)
level 2, c) level 3, and d) level 4.

66

In this chapter, we compared two state of the art methods. The first considers
the first packet of the flow as raw data n × n image, and the second considers
four features from the first n × n packets of the flow to form an RGBA n × n
image. The results show the dependency of the raw packet data representation on
some dynamic connection parameters (e.g. MAC, IP addresses), which hinders
the generalization of the obtained model when applied on data collected from
different network setups. On the other hand, the second method needs tuning for
the number of packets needed for classification. In addition, relying on statistical
flow features makes this method prone to accuracy drop in case of obfuscated
traffic.
Considering a variety of classes in a hierarchical type of classification permits us
to design new tests that aim for evaluating the similarity of the traffic images
belonging to the same class. Thus, quantitatively (robustness test) and qual-
itatively (data visualization), the RGBA images present common patterns for
traffic pertaining to the same class. This is clearly noticeable for the high-level
classes (level 1 and 2). However, when it comes down to more granular classes,
the accuracy and the visual differentiation is not obvious. On the other hand,
the gray method does not present visually discernable patterns, but the achieved
accuracy at different levels are comparable to those obtained with the RGBA
method. However, the features importance test show that the anonymization of
certain packet fields, that are network connection dependent, result in signifi-
cantly altering the classification accuracy.
Finally, the anonymization test results show that the RGBA method presents bet-
ter accuracy than the Gray one, when trained on tunneled (VPN) or anonymized
traffic (TOR). This gives a clear indication that statistical features can present
distinctive patterns when the packets content or metadata are anonymized. Con-
sequently, this presents a new security challenge, where user privacy is the aim.
In this case, privacy preserving methods such as mutation and morphing could
be employed.

3.5 Conclusion

An essential benefit of DL over the traditional Machine Learning methods is its
representation learning capability. More specifically, CNN were shown to be very
effective for images classification. Consequently, representing traffic as images
have been considered in the last two years. One direction was to represent the
first packet as gray image, and thus traffic raw data is considered for classification.
Another method consists of extracting four features from the first n× n packets
per flow. In this chapter, we compared these two representation methods. Three
types of tests were performed: features importance test, model robustness, and
anonymization test. The results show that features should be carefully selected
to not be altered by changing the network environment or by possible obfuscation

67

techniques. In this case, the inter-correlation of the results obtained from different
traffic characteristics (statistical: size and timestamp, and behavioral: direction)
could help in detecting obfuscated traffic and thus avoiding misclassification.

68

Chapter 4

Detecting Mutation

Mutation techniques alter the traffic statistical features, making it very challeng-
ing to know the original traffic type. Moreover, the mutation techniques might
change the packets characteristics while maintaining the flow statistical features
unchanged. In this case, the detection of abnormal traffic can be evaded. Re-
cently, Deep Learning (DL) has acquired a lot of attention due to its representa-
tion learning capabilities. Using our proposed data representation, we propose an
unsupervised DL model to detect abnormal traffic and de-anonymize the mutated
one. Generative DL architectures, namely Autoencoders (AE) and Generative
Adversarial Networks (GAN), have been applied mainly in the computer vision
domain to detect abnormality and to denoise images. AE is a DL architecture
for extracting data representation, and GAN has the capability to generate fake
data samples to enhance the discrimination between real and fake data. In this
chapter, we combine AE and GAN to detect abnormal traffic and de-anonymize
the mutated one. The proposed architecture consists of an encoder, a decoder,
and a discriminator. The encoder-decoder pair form a denoising AE responsible
for learning the original data representation and to denoise the mutated one. In
parallel, the discriminator is trained to differentiate between the mutated traf-
fic (abnormal) and the denoised traffic (normal). The training of the proposed
model relies on data collected from real IoT devices and IoT attacks. The testing
results show the robustness of the proposed method to detect mutated traffic and
to recover the original one. Note that the proposed model is not limited to IoT
traffic and can be applied to any type of network traffic.

4.1 Proposed Abnormal Traffic Detection

In this section, we detail our proposed DL model, the attack model, and the
traffic representation method.

69

4.1.1 Attack Model

Our attack model consists of an attacker trying to modify the packet size (padding)
and IAT (shaping), in such a way to hide any information that serves for at-
tack detection or traffic classification. The mutations are therefore of two types,
padding and shaping [28, 29], as shown in Figure 4.1. In the following, we sum-
marized the packet padding techniques listed in [359, 360, 361], with s being the
packet original size and m(s) being the packet size after mutation.

Figure 4.1: Attack model

1. Padding to the Maximum Transmission Unit (MTU): this technique
consists of padding all the flow packets to the same size, which is the MTU.
In this case, the mutation can be expressed by m(s) = MTU .

2. Linear padding: this technique consists of linearly padding the flow pack-
ets sizes. In this case, the mutation equation can be expressed as follows:
m(s) = ∗s/c ∗ c, where c is a parameter to choose, and ∗s/c is the ceiling
of s/c.

3. Exponential padding: this technique consists of padding the packet size
in an exponential manner. The mutation can be expressed by the following
equation: m(s) = min(2log2(s),MTU).

4. Elephants and mice padding: this technique consists of padding the
packet to a certain size c (mice), if the original packet size if less than c. If
not, the packet size is padded to the MTU (elephant).

70

5. Random padding: this technique consists of padding the packet randomly
to a size chosen randomly from the interval ([s,MTU]). In this case, the mu-
tation function can be expressed as following: m(s) = RAND([s,MTU]).

6. Probabilistic padding: this technique assumes that the packet sizes fol-
low a normal distribution. In this case, the mutated size is chosen randomly
based on a normal distribution, where the mean (µ) and standard deviation
(σ) are computed considering the original traffic packet sizes. In this case,
m(s) = GAUSS(µ, σ) [361].

For the IAT shaping techniques, we list in the following the ones included
in [362] in addition to a new technique proposed in [361]:

7. Constant IAT: this technique consists of sending the packets at a fixed
IAT.

8. Variable IAT: this technique consists of sending the packets at a variable
interval of time randomly chosen from the interval [I1, I2].

9. Probabilistic IAT shaping: this technique assumes that the IAT follows
a normal distribution. Thus, the packets are transmitted at an interval cho-
sen randomly based on a normal distribution, where the mean and standard
deviation are computed based on the original traffic packets IAT.

The last method, described in [363], combines shaping and padding.

10. Fixed size and fixed IAT: this method consists of padding the size of
all the flow packets to the MTU and sending all the packets at a fixed time
interval.

This model considers two types of adversaries, including:

• Malicious adversary: this type of attackers aims at mutating the attack
traffic to evade intrusion detection.

• Benign adversary: this type of attackers aims at hiding the traffic char-
acteristics to protect the user privacy.

4.1.2 Deep Learning Model

Our proposed model, illustrated in Figure 4.2, consists of two parts: a denoising
AE and a discriminator. The denoising AE consists of an encoder and a decoder.

71

Figure 4.2: Proposed model

The encoder aims at estimating the function f , that maps the input space of X to
the latent space of the latent variable Z, where Z is a compressed representation
of X. The denoising AE is fed with a dataset containing the mutated version x̃ of
the initial data X. The AE aims at minimizing the reconstruction error L(X, X̃).
In our case, the loss function is the MSE function, L(X, X̃) = (X − g(f(X̃)))2,
where X is the original data and g(f(X̃)) is the reconstructed data by considering
the mutated data as input. This MSE represents the difference between the
original and reconstructed flow vectors. The discriminator aims at differentiating
between normal and abnormal traffic. In fact, the discriminator will be trained
on classifying the mutated data (i.e. the mutated input data) as abnormal and
the reconstructed data (i.e. the decoder output) as normal. The output function

of the discriminator is a sigmoid function p(y = y(j)/x) = 1/(1 + e−y
(j)

), where
y(j) is the output class that can take the two values: 0 for j = 0 and 1 for j = 1,
and the loss function is a cross entropy function LD = 1/m

∑1
j=0 y

(j)log(y(j)) +

(1− y(j))log(1− y(j))).

4.1.3 Proposed Model Workflow

After training the model, the proposed scheme workflow, illustrated in Figure 4.3,
consists of: 1) passing the traffic to the discriminator; 2) if the traffic is normal,
it is passed to the classifier of normal traffic; 3) If not, it is passed to the denoiser.
4) After denoising, it is passed again to the discriminator. 5) If a normal traffic is
detected, it is passed to the classifier; 6) if not, the traffic is detected as abnormal,

72

so it might be obfuscated or attack traffic. The same workflow is repeated for the
abnormal traffic to know the attack type or detect an unknown attack traffic.
In fact, two cases are considered. First, when training the model on normal traffic,
the aim is to detect attack traffic and the mutated one as abnormal. In this case,
the denoising aims at recovering the normal traffic for classification. However,
when training the model with attack traffic, at the testing phase the aim is to
detect unknown attacks and to denoise the mutated attack traffic to know the
exact attack type. Note that the classifier will be trained in a supervised mode
to classify the traffic based on the IoT device type in the normal traffic case and
based on the attack type in the attack traffic case.

Figure 4.3: Proposed scheme workflow

4.1.4 Data Representation

In our case, the data consists of collected network traffic. This traffic is filtered
by flows, where a flow is defined as being the set of packets having the same:
source IP address, source port number, destination IP address, destination port
number, and protocol (TCP or UDP). For each packet, we extract three features:
size (s), IAT (t), and direction (d). For each flow, we consider the first 4 × 4
packets in either direction. In fact, as shown in Figure 4.3, the extracted features
can be visualized in 4× 4 RGB images, where the ith pixel RGB coordinates are
represented by the ith packet features [s, t, d]. Thus, every feature represents a
color channel. In our case, R is given for the size , G is given for the inter-arrival
time, and B is given for the direction. This data representation is explained in
detail in chapter 3 [353].

4.2 Implementation

In this section, we detail the data collection and preprocessing, the model imple-
mentation, and the evaluation results.

73

Figure 4.4: Data Representation

4.2.1 Data Collection and Preprocessing

For collecting normal IoT traffic, we used a set of IoT devices, including Wi-Fi-
enabled devices and hub-connected devices. The Wi-Fi devices are: D-Link HD
180-Degree Wi-Fi Camera DCS-8200LH, D-Link Wi-Fi Smart Plug DSP-W215,
D-Link Wi-Fi Siren DCH-S220, and D-Link Wi-Fi Water Sensor DCH-S160, while
the hub-connected devices are components of the Samsung SmartThings Home
Monitoring Kit, including a motion sensor, a multi-purpose sensor, and a smart
plug. These devices were installed in a home environment and were left to func-
tion normally. The Wi-Fi enabled devices are routed through a laptop to the
Internet. A bridge is created at this laptop to forward the incoming traffic to
the Ethernet interface connected to the home gateway. For the hub-connected
devices, the hub is connected to the laptop by Ethernet and this laptop is con-
figured to forward the incoming traffic to the wireless interface connected to the
home gateway. In both cases, the traffic is collected at the laptop. One day of
traffic for each device was considered for training and one day of traffic was used
for testing.
For IoT attack traffic training data, we consider the dataset collected in [364],
this dataset consists of multiple PCAP files for each type of attack. We choose
one file for each type of attack for training and one file for testing.
To preprocess the data and extract the flows, the dpkt Python library was
used [365]. In total, for training, we have 10320 flows of normal traffic and
3308 flows of attack traffic. For testing, we have 258 flows of normal traffic, 350
flows of attack traffic, and 2000 flows of (unknown) attack traffic. The normal
traffic is categorized into five classes based on the device model while the attack
traffic is categorized into three classes: data theft, denial of service and scanning.

74

4.2.2 Model Implementation and Training

The proposed model was implemented in Python using the tensorflow library [366].
The encoder, decoder and the discriminator consist of a 2-layer fully connected
neural network with 1000 neurons each. The output layer of the decoder and
the discriminator is a sigmoid layer, with the difference that the decoder output
is of the same dimension of the input; however, the discriminator output is of
dimension one. The model is trained with 100 epochs and a batch size of 1, the
learning rate is 10−3, and the momentum decay is 0.9 (beta1). The Rectified
Linear Unit (ReLU) was used as the activation function for all hidden layers, and
the weights are optimized using the Adam optimizer. For generating mutated
data, we implement the mutation techniques listed in section III-B ((1) (10)).
The training data is randomly mutated, where each data sample is uniformly
mutated to one of the 10 mutation techniques.
For testing the effectiveness of the denoising process on the classification accuracy,
we implement a CNN classifier with three convolutional layers, two max pooling
layers, and two fully connected layers with one dropout layer with 50% dropout
probability. Similarly, ReLU is applied for activation in the hidden layers, and
the Adam algorithm is used for optimization with a learning rate of 10−3. In
addition, we apply cross validation for the classifier training with 4 folds. The
performance metric used to evaluate the classifier is the accuracy, which is the
ratio of the correctly classified samples to the total number of samples.

4.2.3 Evaluation and Results

For each of the experiments (1) (10), the corresponding mutation technique is
applied to the testing data. First, the traffic is passed to the discriminator.
Then, it is passed to the denoising AE. Furthermore, the mutated and denoised
traffic are passed to a classifier, that classifies the flow based on the device model
for normal traffic and based on the attack type for attack traffic.
Samples of the mutated traffic and resulted images after denoising are included in
Table 4.5. It is visually clear from the included images that the most the denoiser
succeeds in learning the original data representation disregarding the mutation
level. The difference between the denoised images and the original ones shows
that the model does not overfit the data, however it learns the representation and
the noise pattern.

For the normal traffic, the denoiser succeeds in recovering flows very similar
to the original ones for most of the mutation techniques, except for the mutations
(8) and (9). Similarly, for the attack traffic, the denoiser recovers the main flow
representation, except for the mutation (2). In Table 4.1, the MSE between the
original data and the mutated one (mutation degradation), the reconstruction
loss, and the abnormality detection rate are reported for the normal traffic and
the attack traffic.

75

Figure 4.5: Visualized images representing network traffic

The results present a high detection rate for the different mutation techniques,
except for the mutation techniques (4), (6), and (9). This can be explained by
the fact that (6) and (9) are normal distribution based mutations. In these cases,
the main traffic characteristics will remain unchanged and this will harden the
differentiation between the original and mutated traffic. (4) is a mice-elephant
mutation of the packet sizes. However, in our case (i.e. IoT traffic), most of the
packets are of small size and therefore the mutation (4) will have limited affect
on the traffic characteristics. Moreover, it can be noticed that the MSE between
the recovered data and the original one (reconstruction loss) is lower than the
MSE between the mutated data and the original one (mutation degradation) in

76

Mutation
Tech-
nique

Autoencoder Loss Mutation Loss Discrimination Rate
Normal Attack Normal Attack Normal Attack

(1) 0.042 0.0357 0.2713 0.1698 100% 100%
(2) 0.03218 0.1569 0.0171 0.082 100% 100%
(3) 0.0149 0.1569 0.0009 0.0065 88.99% 83.13%
(4) 0.0543 0.0463 0.2704 0.1696 50% 49.94%
(5) 0.067 0.0519 0.0171 0.082 100% 100%
(6) 0.0621 0.0703 0.0129 0.0411 49% 49.88%
(7) 0.0378 0.1569 0.2974 0.3245 100% 100%
(8) 0.0595 0.0257 0.09878 0.1016 99.02% 100%
(9) 0.1728 0.0303 0.2825 0.0012 50% 41.59%
(10) 0.0369 0.0519 0.5687 0.4943 100% 100%

Table 4.1: Testing evaluation results

most of the cases. This means that the denoising process decreases the degrada-
tion effect by reconstructing a version of the data that is closer to the original one.

Table 4.2 presents the accuracy of the classification based on the traffic label:
device model for normal traffic and attack type for attack traffic. The mutation
techniques (1), (4), (7), and (10) affect the accuracy and misleads the classifica-
tion noticeably in the normal traffic case; however, after denoising, the accuracy
increases. However, for the techniques (5), (6), (8), and (9), the denoiser fails to
reconstruct the original traffic. This is due to the fact that the randomness will
create a denoised traffic of random type. Moreover, for the mutation technique
(2), the mutation is linear and this does not affect the CNN classifier accuracy,
being immune to the linear degradation of the image. However, for statistical
based machine learning methods, the mutation techniques (2), (5), and (6) affect
noticeably the classification accuracy. To see the effect of the mutation on the sta-
tistical based classification, we include the results of the mutated and denoised
traffic statistical based classification in Table 4.2. The statistical classification
uses a subset of the Moore features (see Table 3.2) and Random Forest (RF) as
classifier. It can be noticed that overall our representation method with CNN
classifier outperforms the RF method before and after denoising in the normal
traffic case. However, in the attack traffic case, our method gives better results
after denoising.

4.3 Discussions

The results show that unsupervised DL architectures are very powerful in learn-
ing the data representation. AE is a well-known DL generative model, that is
highly effective in extracting compressed representation from image-type data.

77

Mutation
Tech-
nique

Before Denoising After Denoising
Normal Attack Normal Attack

CNN RF CNN RF CNN RF CNN RF
(1) 30.14% 54.47% 51.55% 80.84% 65.19% 38.78% 53.1% 37.05%
(2) 93.13% 25% 36.27% 36.24% 79.16% 68.68% 33.41% 33.41%
(3) 99.01% 87.19% 76.25% 90.33% 87.99% 78.79% 33.41% 33.41%
(4) 29.9% 55.2% 51.55% 80.1% 67.4% 40.68% 43.79% 42.57%
(5) 93.13% 25.06% 36.99% 36.21% 20.09% 20.09% 63.12% 38.21%
(6) 95.09% 25.06% 56.55% 62.94% 56.12% 33.88% 36.99% 42.69%
(7) 75.49% 85.6% 33.17% 19.63% 77.69% 55.39% 33.41% 33.41%
(8) 78.18% 81.92% 33.15% 15.96% 62.99% 41.85% 62.05% 38.48%
(9) 80.14% 82.35% 34.24% 39.64% 20.09% 20.09% 62.76% 30.31%
(10) 19.6% 28.18% 33.17% 25.65% 78.43% 49.14% 60.6% 43.22%

Table 4.2: Classification Results

Consequently, after representing network traffic as images, we applied AE to ex-
tract the representation patterns from IoT traffic. Moreover, the capability of AE
to denoise images is used to overcome the mutation technique challenges. The
results show the effectiveness of the proposed method to recover the original traf-
fic representation for different levels of mutation, some of which are rather severe
(e.g. fixed packet size and IAT). In fact, the considered mutation techniques cause
any statistical classifier to fail. However, one limitation of this work is that we
assume that we know ahead of time the mutation technique used by the attacker,
so we can decide to choose to apply the classifier before or after denoising. To
address this limitation, we can train a classifier on classifying the different muta-
tion techniques. The implementation results show a high classification accuracy
(¿80%).

4.4 Conclusion

New traffic obfuscation techniques have been developed to thwart classification
and avoid detection in the sake of user privacy. These techniques have been
employed by attackers to mount their attacks without being detected. While
the obfuscation techniques might be detected by behavioral or statistical ML
techniques, the recovery of the initial traffic is unfeasible. In this chapter, inspired
from a promising DL application, which is image denoising, we transform the
traffic to images then combine two well-established DL architectures (AE and
GAN) to reconstruct the original traffic and detect abnormal one. The test results
show the effectiveness and robustness of the proposed model to detect abnormal
traffic in all its variants. After detecting mutated traffic, the challenge becomes
harder when morphing is employed to mislead the classifier. Even though the

78

recovery of morphed traffic is impossible, can generative adversarial DL be used
for morphing detection?

79

Chapter 5

Detecting Morphing

While mutation tries to manipulate the traffic characteristics to confuse the classi-
fier, morphing aims at making one traffic to look like another one. This technique
can be used by the attackers to avoid detection. Moreover, in case of ML based
device identification, this method can be used for spoofing. In other cases, mor-
phing can be used to guarantee better QoS, by copying time-critical applications
traffic. Deep Learning (DL)-based methods have been recently considered for
solving complex security tasks. More specifically, the detection of fake media
files (images, videos, news, etc.,) have attracted the attention of both academia
and industry [367]. In this context, generative adversarial DL architectures have
been developed to serve this aim. Inspired by these applications, we consider
in this chapter an image-based representation of the network traffic to detect
morphed traffic. The proposed solution consists of a generative adversarial DL
architecture, including two main parts: a generator and a discriminator .
The generator is a Variational Autoencoder (VAE), that has the role of gener-
ating morphed network traffic. Contrarily, the discriminator aims at detecting
morphed traffic by differentiating between the real traffic and the one generated
by the VAE. The experiments we conducted considered traffic generated by a set
of five different IoT devices. The results show the effectiveness of the proposed
solution in generating as well as in detecting morphed traffic.

5.1 Proposed Morphing Detection Solution

In this section, we present our attacker-defender model, the generative DL-based
model used for morphing and morphed traffic detection, and our data repre-
sentation method. For consistency, we list the used notations along with their
definitions in Table 5.1.

80

Table 5.1: Summary of notations
Notation Definition
Devi ith IoT device
N Number of IoT devices
n× n Number of packets considered per flow
Fi Flow characteristics of device Devi
F
′
i Morphed flow characteristics of device Devi
FSi Flow packet sizes vector
FTi Flow packet inter-arrival times vector
FDi Flow packet directions vector
Atti Attacker imitating device Devi
Def Defender
Enci Encoder training to morph Devi traffic
Geni Generator (decoder) training to morph Devi

traffic
Disi Discriminator used to detect Devi morphed

traffic

Figure 5.1: Attacker-Defender Model

5.1.1 Attacker-Defender Model

We consider the case where the identification of IoT devices is performed by in-
specting the generated traffic. Our network consists of N devices, where each
device Devi has its identity defined by its flow of packets Fi. At the network
edge, statistical features for each n×n packets of a flow Fi generated by Devi are
extracted. The features vector Fi consists of three sub-vectors FTi, FSi and FDi,
where FTi is sub-vector consisting of the flow packet inter-arrival times, FSi is a

81

Figure 5.2: Generative Adversarial Deep Learning Model

sub-vector consisting of the flow packet sizes, and FDi is a sub-vector of the flow
packet directions. Our attacker-defender model consists of two players, as shown
in Figure 5.1: an adversary Atti who tries to impersonate a legitimate IoT device
by imitating its traffic and generating a similar one F

′
i ; and a defender Def at

the network edge that tries to detect F
′
i as fake (morphed) traffic. Given that

the identification of the devices is performed using their generated traffic char-
acteristics, the impersonation attacks try to mimic the real traffic characteristics
by means of the following techniques:

1. Morphing of the packet sizes: this technique consists of studying the
distribution of the flow packet sizes. The adversary can use this distribution
to mimic a legitimate device traffic.

2. Morphing of the packets inter-arrival times: this technique is more
sophisticated than the packet size one, given that the rate of sending packets
can depend on the device network interface characteristics. This technique
consists of studying the distribution of the inter-arrival times and trying to
mimic it.

3. Morphing of the packet directions: this technique is the most com-
plicated one, given that the attacker has to control the sender and the
receiver. In this case, the attacker tries to inject dummy packets to imitate
the direction patterns of the target traffic.

4. Morphing of the packet sizes, inter-arrival times, and direc-
tions: in this case, the morphing considers all the traffic characteristics to

82

mimic the target traffic.

In our case, each attacker Atti wants to mimic Devi traffic Fi. We assume
that Atti is able to sniff this traffic. Then, it trains the VAE to generate similar
traffic F

′
i . The defender having traffic from the different devices aims at training

discriminators to detect morphed traffic for each type. In fact, morphing cannot
be easily performed by copying one of the device flow patterns, because network
traffic exhibits variability. Alternatively, one should imitate the legitimate device
behavior by extracting a general representative flow pattern.

5.1.2 Generative Deep Learning Model

DL generative models can be used for inferring the distribution of the device
traffic, permitting attackers to mimic legitimate devices. On the other hand, the
discrimination power of the Generative Adversarial Network (GAN) can be used
to detect fake traffic. This scenario can be formulated as an adversarial learning
problem, where the attacker aims at mimicking victim devices traffic, and the
defender aims at detecting any deviations from the norm. In this context, the
employed DL generative model consists of three parts as shown in Figure 5.2: the
encoder that aims at inferring the distribution P (Fi) for each Devi by means of
the latent variable z. Applying the VAE concept, the encoder learns the prob-
ability distribution qφ(z/x), x being the input features vector Fi. The decoder
tries to generate a traffic feature vector similar to Fi. Finally, the discriminator
aims at differentiating between Fi and F

′
i . In the following, we present the loss

functions that we define to train our model, Where Dloss is the discriminator loss,
Gloss is the generator loss and AEloss is the autoencoder loss.

The discriminator loss, represented in the following equation, is the cross
entropy of the discriminator output probability, consisting of two parts: the first
part Dreal presents the real data detected as real and the second part Dfake

presents the fake (generated) data detected as fake.

Dreal = (1−D(x))log(1−D(x));

Dfake = D(G(x))log(D(G(x)));

Dloss = Dfake +Dreal

The generator loss, presented in the below equation, is the log loss of the
probability of detecting fake (generated) data as real.

Gloss = (1−D(G(x)))log(1−D(G(x)))

The autoencoder loss AEloss, presented below, is expressed in terms of the KL
loss and the reconstruction error expressed in terms of the Mean Squared Error
(MSE) between original and generated traffic.

83

KLloss = KL(N (µ, σ2)||N (0, 1) = −1

2
(1 + log(σ2)− µ2 − σ2)

AEloss = ||x−G(x)||2 +KLloss

Training Procedure

For training our model, we consider the traffic of five devices. For each Devi,
the attacker trains Geni to morph the real traffic flows Fi into F

′
i . In this case,

the discriminator Disi aims at enhancing the fake traffic generation. However, at
the defender side, the training aims at enabling the discriminator to differentiate
between fake (generated) traffic and the real one. As shown in Algorithm 6,
training data is passed to the encoder, which extracts the data representation
by means of the latent variable z. The decoder generates a flow imitating the
input one. The input of the encoder and the output of the decoder are passed
to the discriminator as real and fake, respectively. At each epoch, the weights
of the model are updated. At the end, one model is saved for the attacker and
another one is saved for the defender. The attacker will use the generator part to
generate morphed traffic while the defender uses the discriminator part to detect
morphed traffic.

Algorithm 6 Training

1: procedure Training(train data)
2: for i ∈ nb of devices do
3: for j ∈ nb batches do
4: pass Batch(train data)j to enci
5: pass Batch(z)j to geni
6: pass Batch(train data)j as real to Disi
7: pass gen(Batch(z)j) as fake to Disi
8: minimize loss Enci
9: minimize loss Geni
10: minimize loss Disi
11: update Wi

12: end for
13: save Enci, Geni, Disi
14: end for
15: end procedure

Testing Procedure

During the testing phase, we run tests between the attacker and defender trained
models, as shown in Algorithm 7. The generated data by the attacker, for mim-
icking Devi traffic, is tested against the defender discriminator. This is performed

84

for each type of morphing including: packet sizes, packet inter-arrival times, di-
rection, and all the above combined. In each case, the trained generator of the
attacker is tested against the defender’s discriminator. Although, to test the
efficacy of the morphing process, we add a classification phase where we assess
the similarity between morphed and original traffic. In each case, a classifier is
trained on original data, and then tested on the attacker generated traffic. For
example, for the morphing technique where all packet characteristics are mor-
phed, a classifier is trained to classify the morphed traffic flows F

′
i based on the

device type (five classes). The generated traffic for each device is passed to the
classifier to test if it will confuse the classifier. For the other cases, the morphed
features of one device Devi (sizes FS

′
i , inter-arrival times FT

′
i , and directions

FD
′
i) are merged with original flows of other devices and then F

′
i is passed to

the classifier.

Algorithm 7 Testing

1: procedure Testing(test data)
2: for i ∈ nb of devices do
3: load attacker trained modeli
4: load defender trained modeli
5: pass Gen(test data)atti to Disdefi
6: record loss Enci
7: record loss Geni
8: record Disi out
9: end for
10: end procedure

5.1.3 Data Representation

Using our proposed data representation described in chapter 2, we extract features
from the first n×n packets, omitting the transport protocol feature. In addition,
in this chapter, we consider a different scaling given that we are dealing with
IoT traffic having small-sized packets. Consequently, we choose to scale packets
sizes between 0 and 255, and inter-arrival times are scaled between 0 and 10 ms.
For each packet of the n× n packets per flow, if its size is greater than 255, the
extracted size is set to 255. Similarly, for inter-arrival time, if its is greater than
10 ms, it is set to 255, if not, it is divided by 10 and multiplied by 255. The
direction is set to 0, if the packet is outgoing, and to 255, if it is an incoming
packet. In the visualized images, R is given to the size, G is given to the inter-
arrival time, and B is given to the direction. Note that before passing the features
vectors to the DL network, they are all normalized between 0 and 1 (i.e. divided
by 255).

85

5.2 Experimental Analysis

In this section, we present the implementation of the proposed model along with
the testing results.

5.2.1 Data Collection

To collect traffic, we consider the set of IoT devices: D-Link HD 180-Degree Wi-Fi
Camera DCS-8200LH, D-Link Wi-Fi Smart Plug DSP-W215, D-Link Wi-Fi Siren
DCH-S220, D-Link Wi-Fi Water Sensor DCH-S160, and Samsung SmartThings
Home Monitoring Kit. Using the same setup described in chapter 3, one day of
traffic was collected for the attacker model training and one day was collected for
the defender model training. These devices were deployed in a home environment
and left to function normally.

Figure 5.3: 4x4 obtained images

Figure 5.4: 8x8 obtained images

86

Figure 5.5: 28x28 obtained images

Morphing Technique
Accuracy

4x4 8x8 28x28
CNN RF CNN RF CNN RF

(1) 68.04% 48.25% 46.67% 43.91% 31.56% 22.59%
(2) 52.42% 48.01% 73.27% 48.99% 38.92% 23.17%
(3) 37.63% 33.72% 36.34% 26.14% 25.04% 21.56%
(4) 87.68% 73.43% 89.97% 80.28% 51.56% 52.77%

Table 5.2: Classification Results

Device
4x4 8x8 28x28

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)
Dev1 0.30 0.38 0.21 0.10 0.36 8.53E-14 1.22E-11 0.22 0.09 0.21 0.04 0.15
Dev2 0.35 0.27 0.39 0.33 0.37 0.26 0.49 0.30 0.12 0.26 0.58 0.23
Dev3 0.03 0.41 0.49 0.32 0.03 0.38 0.46 0.33 0.03 0.40 0.41 0.29
Dev4 0.10 0.43 0.26 0.33 0.18 0.42 0.19 0.33 0.11 0.23 0.19 0.28
Dev5 0.33 0.41 0.43 0.39 0.33 0.41 0.46 0.38 0.09 0.22 0.30 0.20
Total 0.22 0.38 0.31 0.32 0.20 0.36 0.32 0.31 0.09 0.26 0.30 0.23

Table 5.3: Morphing Loss

Device
4x4 8x8 28x28

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)
Dev1 100% 100% 50% 65.97% 50% 60.82%50% 50% 54.12% 50% 100% 50%
Dev2 100% 88.65% 89.17% 96.90% 100% 97.93% 93.81% 69.07% 51.54% 100% 100% 80.92%
Dev3 97.42% 97.93% 81.44% 100% 50% 94.84%86.08% 90.20% 48.45% 90.72%60.30% 83.50%
Dev4 100% 68.55% 94.84% 97.42% 50.51% 94.84%91.75% 75.25% 46.90% 61.85% 93.29%80.92%
Dev5 93.81% 98.45%88.14% 94.32% 100% 90.2% 92.78% 66.49% 50.51% 51.03%51.03%35.56%
Total 95.97%92.98% 80.72% 90.92% 70.10% 87.73% 82.88%70.2% 50.30% 70.72% 80.92%66.18%

Table 5.4: Detection Rate

87

5.2.2 Model Implementation

We used the Tensorflow library to implement the proposed model in Python [368].
Each component of the model consists of a 2-layer fully connected neural network
with 1,000 neurons each. The encoder outputs two values z mean and z sigma.
The decoder output is a Sigmoid layer with same size as the input, the discrim-
inator output is of one dimension. Each model was trained with 10 epochs and
a batch size of 1, the learning rate is 10−3, and the momentum decay is 0.9
(beta1). We used the Rectified Linear Unit (ReLU) as the activation function
for all hidden layers, and the weights were optimized using the Adam optimizer.
To test the morphing correctness, we refer to classification to see if the morphed
traffic is classified correctly. To this aim, we use two classifiers, a CNN classifier
applied to our data representation and a Random Forest classifier applied to sta-
tistical features extracted per flow (see Table 3.2). The CNN classifier consists
of three convolutional layers, two max pooling layers, and two fully connected
layers with one dropout layer with 50% dropout probability. ReLU is used as
an activation function in the hidden layers, and the Adam algorithm is used for
optimization with a learning rate of 10−3. The RF classifier is implemented using
sickit-learn [358], search grid is used for parameters tuning with range of 1,000
trees. Cross validation with four folds is applied for training the classifiers. To
evaluate the considered classifiers, we refer to the accuracy metric, which consists
of the ratio of the correctly classified samples to the total number of samples.

5.2.3 Testing Results

In the following, we detailed the testing results of the morphing process performed
by the attacker, and the detection done at the defender side.

Morphing Results

The results are reported for each morphing technique and each device. In ad-
dition, different values of n are considered (4, 8, and 28). To visually asses the
morphing process, we visualize the original and morphed traffic, as shown in Fig-
ure 5.3, Figure 5.4, and Figure 5.5. These images show that the morphing process
succeeded in generating similar traffic characteristics considering different types
of morphing. Also we included the reconstruction loss, consisting of the MSE
between original and generated traffic in Table 5.3. The classification results
of both classifiers, CNN and RF, are included in Table 5.2. The results show
the effectiveness of morphing the traffic, especially when considering all features
(packet sizes, inter-arrival times, and directions). It is clear that the classification
results depend on the number of packets considered per flow n (see Table 5.2).The
best morphed traffic classification result is obtained with 8x8 packets, with the
morphing technique (4) and the CNN classifier, which is 87.68%. Considering the

88

morphing of a single feature (packet sizes, inter-arrival times, or directions), it can
be noticed also that morphing one feature is not sufficient to confuse noticeably
the classifier, and that morphing the packet sizes with 4x4 packets gives better
results than the other features (68.04%). For 8x8 and 28x28 packets, morphing
the inter-arrival times gives better results (73.27%, and 38.92% respectively).

Detection Results

Concerning the detection rate, the results shown in Table 5.4 reveal the defender
ability in detecting any kind of morphing with a detection rate up to 95%. It can
be noticed that overall single features morphing tests ((1), (2), and (3)) present
better detection rates than the all features morphing (4). Looking at the influence
of n on the detection rate of the single features morphing, we can remark that:
for n = 4, using packet sizes information, morphing can be detected with high
accuracy; for n = 8, inter-arrival times information give better insight to detect
morphing; finally, for n = 28, packet directions can be better used for morphing
detection.

Concerning the relation between morphing loss and morphed traffic detection
rate, they decrease when n increases (see Table 5.3 and Table 5.4). At small scale
(4x4), the variety of the patterns lead to high morphing loss (0.32 with morphing
(4)) and thus, a high discrimination rate (90.92% with morphing (4)). However,
with high scale (28x28), the morphing decreases (to 0.3 with morphing (4)), and
the discrimination rate decreases also (to 66.18% with morphing (4)).

5.3 Discussions

The results show that detection of morphed traffic is possible using adversarial
learning. In fact, the network traffic presents diversity even for the same device.
Morphing techniques try to extract the common patterns between the different
flows pertaining to a specific traffic type (per app or per device). In this work,
we show that the differentiation between fake and original traffic is possible by
means of a quasi-raw data representation, showing the packet characteristics. In
contrast, the detection was not possible when using pure statistical features.
The visualization of the original and morphed traffic, in Figure 5.3, Figure 5.4,
and Figure 5.5, show that the generative DL model is able to extract the original
traffic characteristics. This was also reported in the reconstruction loss between
the original traffic and the generated one. On the other hand, the adversarial
learning succeeded in detecting morphed traffic as shown in the recorded discrim-
ination rates (see Table 5.4).
This work paves the way towards a new direction in the intrusion detection do-
main, where new techniques can be applied for detecting abnormal traffic. In
fact, morphing can be used by attackers to hide attacks other than the ones con-

89

sidered in this work. Attackers can rely on real apps traffic (Facebook, Skype,
etc.) to shape their attacks flows and avoid detection by IDS. Applying the new
data representation method with adversarial learning are key for obfuscated traf-
fic detection. Actually, morphing is one of many other obfuscation techniques
that could be applied to thwart classification and intrusion detection. The pre-
sented solution could be applied for any type of obfuscation, including mutation.
In this chapter, different values of n were considered, and the results show that
for large n the morphing fails and that the characteristics of the traffic of the
different devices become similar, as shown in the classification results of the mor-
phed traffic (∼ 50%). The question then becomes how to optimize the choice of
n, which will be considered in the next chapter.

5.4 Conclusion

ML-based techniques have emerged in the network domain for traffic classifica-
tion, intrusion detection, and more recently for IoT device identification. How-
ever, these methods are prone to failure when traffic obfuscation techniques are
used. More specifically, morphing, which consists of imitating other traffic char-
acteristics, is a critical challenge for statistical based IDSes. In this chapter,
we present a generative adversarial DL-based method to detect morphed traffic,
where different morphing techniques were applied to IoT traffic. Even though
this was presented in the context of device identification/authentication, it can
be applied for other types of traffic and for other classification goals (e.g. QoS
management). The results show the effectiveness of the adversarial learning in
accounting for adversarial attacks and detecting intrusion.

90

Chapter 6

Real-time Traffic Classifier

In this chapter, we aim at finding the sufficient number of packets that guarantees
good classification accuracy while optimizing the response time. Before optimiz-
ing n, we first visualize data for different values of n. To do so, we consider
features reduction techniques. The traditional techniques like principal compo-
nent analysis (PCA), locality preserving projections (LPP), discriminative local-
ity alignment (DLA), linear discriminative analysis (LDA) present limitations,
when applied in the image domain. In addition, these techniques are limited to
linear models and do not preserve non-linearity. Thus, t-SNE (Stochastic Neigh-
bor Embedding) is proposed to reduce high-dimensional data (like images) while
reserving the data non-linearity. While traditional features selection and reduc-
tion techniques rely on the correlation or mutual information between the data
features and the label vector to select the best features, the problem to define the
sufficient number of instances for time series data calls for different approaches.
In this context, our aim is to have a measure that reflects the model performance
as a function of the number of considered packets. To do so, we propose a con-
fidence measure based on the variations in the model training accuracy and the
average mutual information between the packets features and the label vector.
This measure can help in finding a value of n that reduces the time overhead
while guaranteeing good classification accuracy. In addition, we propose a new
classifier model to enhance the classification accuracy by training successive mod-
els on the streaming traffic data. The proposed ensemble method is based on the
average of the individual classifiers predictions.

6.1 Data Visualization

To visualize high dimensional data, a method, called t-SNE, was proposed by
Laurens van der Maaten in [369]. t-SNE is a modified version of the Stochas-
tic Neighbor Embedding (SNE) algorithm. It consists of transforming high di-
mensional data into low dimensional components by minimizing the Kullback-

91

Leibler divergence between the probability distributions in the initial space of
picking neighbor points and the probability distribution in the transformed space
to pick these points as neighbors. The first step is to convert the euclidean
distances between data points in the high dimensional space into conditional
probabilities that reflect the similarity between these points. The conditional
probability pj|i expresses the probability of picking xj from the neighbors of
xi in proportion to the probability density of xi neighbors as a Gaussian cen-
tered distribution at xi. For nearby points, this probability is high; however,
for faraway points it is small. In this case, pi|i and pj|j are set to zero. pj|i is

expressed as following: pj|i =
exp(−‖xi−xj‖2/2σ2

i∑
k 6=i exp(−‖xi−xk‖2/2σ2

i)
; where σi is the variance of

the Gaussian distribution centered at xi. Furthermore, pij =
pj|i+pi|j

2N
The same is

represented in the low dimensional space with qj|i =
exp(−‖yi−yj‖2/2σ2

i∑
k 6=i exp(−‖yi−yxk‖2/2σ2

i)
and

qij =
(1+‖yi−yj‖2)−1∑
k 6=l(1+‖yi−yk‖2)−1 . Thus, the method relies on minimizing the KL between

pj|i and q − j|i, KL(P ||Q) =
∑

k 6=i pijlog(
pij
qij

). This minimization is solved by

using gradient descent. A very important attribute of t-SNE is the perplexity
perp(P) = 2H(Pi), where H(Pi) = −

∑
j pj|ilog2pj|i this value reflects the number

of neighbors as density based clustering.

In our work, we have images of dimensions n × n, to visualize the effect of
n on the data distribution, we applied t-SNE to visualize the data for different
values of n. In Figure 6.1, we include some of the obtained figures.

It is clear from the images, included in Figure 6.1, that the number of packets
affects the distributions and the separation between the different classes. This
indicates that the choice of n affects the classification accuracy and the differen-
tiation between the instances of the different classes.

6.2 Confidence Measure

Based on the results in previous chapters, the choice of n affects the classification
accuracy. Increasing n does not always guarantee better accuracy while increasing
the training overhead. Moreover, waiting for large number of packets to perform
the testing classification is not acceptable in real time applications like intrusion
detection. In this case, finding the optimal number of packets or the optimal
value of n that guarantees good testing accuracy while minimizing the required
number of packets is key. This applies to other cases of time series data where
for example being able to recognize the voice from the first samples is required
for real-time applications. While the problem can be approached as a traditional
problem of features selection or reduction techniques, these techniques are not
effective in the case of streaming data being unable to have the full vector of
features ahead of time. Thus, the features importance should be analysed as the
data comes in to reach a level where the considered data features are enough to

92

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.1: t-SNE visualization of Level 1 data for different values of n: (a) n =
2, (b) n = 4, (c) n = 6, (d) n = 8, (e) n = 10, (f) n = 12, (g) n = 14, (h) n = 16,
(i) n = 18, (j) n = 20, (k) n = 22, (l) n = 24.

guarantee good classification accuracy. In this section, we present our proposed
confidence measure based on the mutual information between the features and
the class labels vector and the training accuracy. Then, this measure is used to
choose an optimal n, meeting the compromise between the response time and the
test accuracy.

In chapter 2, we presented our data representation method that consists of
extracting basic packet characteristics: size, inter-arrival time, and direction from
the first n× n packets and transforming them into RGB images. The flows data
can be represented in three channels: R, G, B representing the size, timestamp,
and direction. As shown in 6.2, a sample flow can be represented by three matrices
XR, XG, and XB, where each matrix component, ri, gi, and bi represents a pixel
of the RGB image. Thus each component of these matrices is represented by a
random variable Ri, Gi, and Bi for R, G, and B channels.

To optimize the choice of n, we rely on computing the mutual information
between the image and the label vector, I(X, Y). The choice of the optimal value
of n is obtained when the mutual information between X and Y is maximized,
where X = (XR, XG, XB). The mutual information is the average sum of the in-
dividual mutual information between each color components and the label vector,
as shown in the following:

93

Figure 6.2: Image Representation

IR =
1

n× n
×

i=n×n∑
i=0

I(Ri, Y);

IG =
1

n× n
×

i=n×n∑
i=0

I(Gi, Y);

IB =
1

n× n
×

i=n×n∑
i=0

I(Bi, Y);

I =
IR + IG + IB

3

In Algorithm 8, we present our algorithm that aims at finding the best value
of n to meet the compromise between the accuracy and the classification per-
formance. To do so, we define a new confidence measure that is based on the
training accuracy and the mutual information between the data and the label
vector. The rate of change of this confidence measure is expressed in terms of
the rate of change in the accuracy and the mutual information, as follows:

δAcc(n) =
Acc(n)− Acc(n− 1)

Acc(n− 1)
;

δMI(n) =
MI(n)−MI(n− 1)

MI(n− 1)
;

δC(n) =
δAcc(n) + δMI(n)

2
;

(6.1)

where Acc(n) is the training accuracy when n × n packets are considered
and MI(n) is the average mutual information between the features vector of

94

the n × n packets features and the class labels vector, MI(n) =
∑n×n

0 MI(xi,Y)

n×n .
Consequently, the confidence C(n) can be expressed in terms of δC(n) as follows:

C(n) = C(n− 1)× (1 + δC(n)) (6.2)

It should be noticed here that a necessary condition should be met to have
0 < C(n) < 1, is that δC(n) < 1−C(n−1)

C(n−1) . In our case, we check if this condition is

correct, if not, δC(n) is set to 1−C(n−1)
C(n−1) . In fact, this bound is found based on the

fact that 0 < C(n) < 1, consequently, −C(n−1) < C(n)−C(n−1) < 1−C(n−1).
Thus, having 0 < C(n− 1) < 1, we can divide all the inequality’s sides by it. As

a result, we get −1 < δC(n) < 1−C(n−1)
C(n−1) .

Algorithm 8 Confidence Measure Based Choice of n

1: procedure Optimize n(Acc, MI)
2: n = Nmin

3: C(0)← (Acc(0) +MI(0))/2
4: while n < Nmax do
5: δAcc(n)← Acc(n)−Acc(n−1)

Acc(n)+Acc(n−1)

6: δMI(n)← MI(n)−MI(n−1)
MI(n)+MI(n−1)

7: C(n)← C(n) = C(n− 1)× (1 + δAcc(n)+δMI(n)
2

)
8: end while
9: maxC = C(0)
10: noptimal = 0
11: for n ∈ range(Nmin, Nmax) do
12: if C(n) > maxC then
13: noptimal = n
14: maxC = C(n)

return noptimal
15: end if
16: end for
17: end procedure

In Algorithm 8, we include the algorithm of optimizing the choice of n. At the
training phase, first, the features for the first Nmax×Nmax packets are extracted.
Nmax is chosen based on the application and the training data size. In our case, we
chooseNmax = 28. For getting the training accuracy, we trainNmax−Nmin models
by successively increasing n by 1. The training accuracy is computed based on
the validation data being 20% of the training one. Then, after computing the
training accuracy, the mutual information at each value of n is computed between
each packet feature and the label vector. The average sum is computed and the
confidence measure is calculated as stated above. Finally, the optimal n is the
one giving the maximal confidence measure.

95

Figure 6.3: Classifier Model

6.3 Ensemble Classifier Model

In this section, we present our classifier model. This model aims at enhancing the
classification accuracy at certain value of n by considering the preceding classifiers
results. This model considers a streaming data type, in our case the successive
packets of a flow. At each value of n, a model is trained with input of dimensions
n × n. The classification results of the preceding classifiers are aggregated and
the weighted average is used to get the ensemble decision.

As shown in Figure 6.3, our model consists of successive classifiers of different
dimensions. For each value of n, a classifier Ci, where i = 2, . . . , Nmax, is trained
on data with dimension n × n. At each n, the classifications at previous values
of n are considered. The successive classifiers form an ensemble model, where
the classifiers predictions are averaged to get the final decision. In the algorithm
below, we present how these classifiers predictions are aggregated and how the
accuracy of the ensemble classifier is computed. It should be noted, as shown
in Algorithm 9, that the probabilistic output of the classifiers is considered and
not only the class label. Consequently, the aggregated results include also the
classification confidence.

Algorithm 9 Ensemble Classification

1: procedure Optimize Accuracy(n)
2: for item ∈ Xtest do
3: while i < n do
4: loadmodeli
5: Pitem(i) = modeli.predict(item)
6: end while
7: Pitem ←

∑
0nPitem(i)

n

8: end for
9: end procedure

96

6.4 Experimentation Results

In this section, we include the results considering our dataset at different levels
in addition to an online voice dataset consisting of spoken digits [370].

6.4.1 Confidence Measure Results

Examples of the results, including the training accuracy, the mutual information,
and the computed confidence measure, are shown in Figure 6.4: a) for level 1, b)
to e) for level 2, f) to k) for level 3, and l) to z) for level 4. These figures clearly
indicate that one can choose the value of n corresponding to the maximum of
the confidence value in the aim to achieve good classification performance at an
early stage.

6.4.2 Ensemble Classifier Results

For assessing the proposed ensemble classifier, we compare different ensemble
techniques to compute the final decision, including: average sum, weighted sum,
and majority voting. In addition, we compare the performance of the ensem-
ble method compared to the individual classifiers performance. For the average
method, we computed the final decision based on Algorithm 9. For the weighted
sum, the probabilistic output of each classifier is multiplied by its confidence mea-
sure before computing the average over the sum of weights (confidence measures
of the successive classifiers). However, for the majority voting, the final decision
is computed based on the maximum number of votes for the output class. In
table 6.6, we include the average results for the different levels and the voice
data. It is clear from the results, that the average voting gives the best results.
Moreover, it can be noticed that the ensemble based accuracy is greater than the
accuracy obtained by the individual classifiers.

6.4.3 Optimal n Results

In this section, we present the results obtained by applying the proposed algo-
rithm for the optimal choice of n by considering our data collected with hierar-
chical classification. Furthermore, to verify the generalization of the proposed
model to time series data, the proposed confidence measure and the classifica-
tion algorithm was applied to a voice dataset of spoken digits [370]. In this
case, n represents the number of samples in the time domain. However, the
mutual information is computed after transforming n samples from the domain
into Mel-Frequency Cepstral Coefficients (MFCCs) features. Similar to the case
of network flows, the voice time series are transformed into gray images of their
MFFCs and CNN is applied. The results show the efficiency of the proposed con-
fidence measure along with the ensemble classifier in the case of time series data.

97

Data Average Weighted Average Majority Voting Individual
Level 1

All 89.77% 86.81% 89.76% 87.34%
Level 2

Bulk Data Transfer 94.74% 92.98% 94.52% 92.41%
Interactive 81.08% 77.74% 79.92% 78.52%
Streaming 94.03% 92.32% 94.03% 93.04%

Transaction 66.67% 66.67% 67.32% 63.16%
Average 84.13% 82.43% 83.95% 81.78%

Level 3
Audio Interactive 74.26% 70.80% 72.87% 65.79%
Video Interactive 37.94% 37.89% 38.01% 42.68%

Texting Interactive 80.63% 80.41% 79.33% 75.78%
File Upload 75.56% 74.58% 73.95% 69.74%

File Download 89.60% 86.94% 89.05% 88.55%
Average 71.60% 70.12% 70.64% 68.51%

Level 4
Actuation 77.51% 76.06% 72.90% 73.71%

Download App 99.02% 98.90% 98.73% 96.87%
Dropbox Download 87.17% 85.95% 86.07% 85.88%

Dropbox Upload 97.77% 95.31% 97.62% 96.70%
Gaming 87.88% 86.87% 85.52% 79.12%

Hangout Audio 56.81% 58.14% 58.28% 69.65%
Hangout Texting 87.23% 86.68% 87.31% 84.24%
Hangout Video 91.03% 90.79% 91.51% 88.55%

Messenger Audio 97.57% 97.71% 97.64% 97.31%
Messenger Texting 91.67% 91.67% 91.67% 91.36%
Messenger Video 52.23% 53.69% 51.49% 49.24%

MyDrive Download 96.74% 93.41% 96.32% 95.12%
MyDrive Upload 96.69% 96.69% 96.78% 95.51%

OneDrive Download 99.06% 99.01% 99.03% 98.81%
OneDrive Upload 90.11% 89.69% 90.55% 90.54%

Sensing 74.29% 74.51% 77.12% 78.21%
Skype Audio 47.43% 48.52% 47.29% 39.00%

Skype Texting 90.42% 90.55% 89.78% 91.32%
Skype Video 94.68% 97.45% 94.91% 90.51%

System Update 95.09% 95.00% 94.54% 89.72%
Audio Streaming 59.84% 60.10% 60.10% 58.57%
Video Streaming 96.88% 95.97% 97.13% 94.06%

Average 84.87% 84.67% 84.65% 83.36%
Voice 75.18% 74.40% 75.04% 67.19%

Table 6.1: Ensemble Accuracy Results

98

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

(y) (z)

Figure 6.4: Confidence Measure Results

In table 6.4.3, we include the results of n and the corresponding accuracy results
when relying on the mutual information, confidence or the training accuracy and
the corresponding maximum attained in the testing phase. It is clear from the
results that relying on the maximum mutual information to find the optimal n
presents low average in number of packets (36 at level 1, 127 at level 2, 35 at
level 3, 164 at level 4, and 110 samples for the voice data) and good accuracy
(87.94 at level 1, 84.70 at level 2, 66.95 at level 3, 82.34% at level 4, and 50.20%
for the voice data). However, relying on the maximum training accuracy to find
the optimal n presents high number of packets (729 at level 1, 402 at level 2,

99

540 at level 3, 229 at level 4, and 2610 samples for the voice data) and better
accuracy (91.55% at level 1, 81.59% at level 2, 70.84% at level 3, 84.93% at level
4, and 67.40% for the voice data). Having the confidence as combination of these
two measures, relying on the maximum confidence for finding the optimal n the
number of packets is higher than of the mutual information (49 at level 1, 149 at
level 2, 286 at level 3, 196 at level 4, and 510 samples for the voice data) but it
presents higher accuracy (88.11% at level 1, 86.19% at level 2, 71.16% at level 3,
84.43% at level 4, and 70.60% samples for the voice data). It can be noticed also
that applying ensemble, the accuracy presented in the column ”Ens” presents an
enhancement to the accuracy obtained with individual classifiers presented in the
column ”Ind”. It should be noted here that N = n × n packets for the case of
network traffic and the number of samples for the voice data.

To evaluate the enhancement and/or degradation in terms of number of pack-
ets and the of accuracy when choosing n relying on the mutual information, train-
ing accuracy, or our proposed confidence measure, we computed the difference
between the obtained n and accuracy and the ones obtained from the testing
phase, as shown in table 6.4.3. It can be noticed that on average, our proposed
confidence measure, if used to choose the optimal n, present better enhance-
ment in the number packets than the training accuracy (as shown in table 6.4.3)
and lower degradation in the accuracy than the mutual information method (as
shown in table 6.4.3). The confidence measure method presents an enhancement
of 680 in the number of packets with degradation of 3.44% in the classification
accuracy at Level 1 and a degradation of 1.29% in the accuracy with the ensem-
ble method. At Level 2, it presents an enhancement of 202 in the number of
packets with degradation of 3.28% in the individual classification accuracy and
an enhancement of 0.63% with the ensemble method. At Level 3, it presents an
enhancement of 105 in the number of packets with degradation of 8.29% in the
classification accuracy which increases to 2.15% with the ensemble method. At
Level 4, it presents an enhancement of 54 in the number of packets with accuracy
degradation of 6.88%, which decreases to 2.29% with ensemble method. Con-
sidering the voice data, the proposed algorithm for finding noptimal based on the
confidence measure presents an enhancement of 1300 in the number of samples
with degradation of 8.80% in the accuracy and an enhancement of 7.40% in the
accuracy with ensemble method (see table 6.7).

To evaluate the enhancement and/or degradation in terms of time when choos-
ing n relying on the mutual information, training accuracy, or our proposed confi-
dence measure, we computed the difference between the flow time for the obtained
n and the one obtained for the best n at the testing phase, as shown in table 6.6.
It can be noticed that on average, our proposed confidence measure, if used to
choose the optimal n, present better enhancement in the required flow time than
the training accuracy. The confidence measure method presents an enhancement
of 5.94 seconds in the flow time at Level 1, 2.78 seconds at Level 2, 3.09 seconds
at Level 3, and 0.96 seconds at Level 4. Considering the voice data, the results

100

Data
MI Training Confidence Testing

N Ind(%) Ens(%) N Ind(%) Ens(%) N Ind Ens(%) N Ind(%) Ens(%)
Level 1

All 36 87.94 90.09 729 91.55 91.55 49 88.11 90.26 729 91.55 91.55
Level 2

Bulk Data Transfer 324 95.34 96.07 484 95.02 96.48 400 94.01 96.23 324 95.34 96.07
Interactive 121 86.30 86.51 441 92.60 79.27 81 86.19 85.67 441 92.60 79.27
Streaming 49 85.23 89.93 361 96.64 97.32 100 92.62 93.29 625 97.99 97.32
Transaction 16 71.93 66.67 324 42.11 66.67 16 71.93 66.67 16 71.93 66.67
Average 127 84.70 84.80 402 81.59 84.93 149 86.19 85.46 351 89.46 84.83

Level 3
Audio Interactive 49 63.70 72.88 676 63.27 77.06 81 68.23 69.34 256 77.03 77.00
Video Interactive 36 36.04 35.71 400 41.09 38.82 100 38.78 37.20 289 65.26 39.01
Texting Interactive 16 76.00 80.00 400 79.00 81.00 25 78.00 81.00 441 84.00 83.00
File Upload 25 71.27 72.36 441 80.00 80.91 441 80.00 80.91 441 80.00 80.91
File Download 49 87.75 87.65 784 90.81 92.85 784 90.81 92.85 529 90.99 92.15
Average 35 66.95 69.72 540 70.84 74.13 286 71.16 72.26 391 79.46 74.41

Level 4
Hangout Texting 36 80.85 72.34 144 100 95.74 49 91.49 74.47 144 100 95.74
OneDrive Download 784 98.92 99.03 9 98.71 98.92 784 98.92 99.03 196 99.25 99.14
Audio Streaming 64 57.56 61.05 81 57.56 61.05 169 57.56 61.05 121 61.05 61.05
Gaming 4 81.82 81.82 4 81.82 81.82 4 81.82 81.82 100 90.91 90.91
MyDrive Download 784 99.44 99.16 529 99.02 98.74 676 99.30 98.88 784 99.44 99.16
Messenger Video 16 53.51 52.63 64 47.37 54.82 25 55.70 54.82 25 55.70 54.82
Video Streaming 49 89.07 89.07 49 89.07 89.07 49 89.07 89.07 64 99.64 100
Download App 16 96.82 98.50 64 95.51 99.25 16 96.82 98.50 361 98.88 99.07
MyDrive Upload 784 96.47 96.47 625 95.29 96.47 784 96.47 96.47 361 100 97.65
Sensing 16 76.47 76.47 289 88.24 76.47 16 76.47 76.47 36 88.24 76.47
Hangout Video 81 89.17 89.17 324 91.25 92.92 324 91.25 92.92 225 94.58 92.92
OneDrive Upload 36 83.81 79.30 576 97.75 98.57 81 85.25 88.52 484 99.39 98.98
Messenger Audio 25 99.12 99.12 169 97.35 97.35 25 99.12 99.12 25 99.12 99.12
Skype Video 16 100 87.50 16 100 87.50 16 100 87.50 16 100 87.50
Skype Texting 4 86.21 86.21 16 89.66 96.55 25 89.66 96.55 625 100 89.66
Dropbox Upload 729 99.32 98.63 225 98.63 99.32 625 99.32 98.63 81 99.32 98.63
Skype Audio 16 48.37 48.37 9 48.37 48.37 16 48.37 48.37 36 48.50 48.37
System Update 9 92.50 97.50 576 87.50 95.00 25 90.00 95.00 121 95.00 95.00
Hangout Audio 64 59.34 52.15 49 64.65 52.27 49 64.65 52.27 625 94.19 64.77
Dropbox Download 49 78.32 84.62 676 95.45 94.06 529 93.71 93.36 676 95.45 94.06
Actuation 16 60.98 85.37 529 53.66 75.61 16 60.98 85.37 361 90.24 75.61
Messenger Texting 16 83.33 91.67 25 91.67 91.67 25 91.67 91.67 64 100 91.67
Average 164 82.34 83.01 229 84.93 85.52 196 84.43 84.54 251 91.31 86.83

Table 6.2: Best Choice of n
101

Data
MI Enhancement

N Ind(%) Ens(%) Ens test(%)
Level 1

All -693 -3.61 -1.46 -1.46
Level 2

Bulk Data Transfer 0 0.00 0.73 0.00
Interactive -320 -6.30 -6.09 7.24
Streaming -576 -12.75 -8.05 -7.38

Transaction 0 0.00 -5.26 0.00
Average -224 -4.76 -4.67 -0.03

Level 3
Audio Interactive -207 -13.33 -4.15 -4.12
Video Interactive -253 -29.22 -29.55 -3.29

Texting Interactive -425 -8.00 -4.00 -3.00
File Upload -416 -8.73 -7.64 -8.55

File Download -480 -3.24 -3.34 -4.51
Average -356 -12.50 -9.74 -4.69

Level 4
Hangout Texting -108 -19.15 -27.66 -23.40

OneDrive Download 588 -0.32 -0.22 -0.11
Audio Streaming -57 -3.49 0.00 0.00

Gaming -96 -9.09 -9.09 -9.09
MyDrive Download 0 0.00 -0.28 0.00

Messenger Video -9 -2.19 -3.07 -2.19
Video Streaming -15 -10.57 -10.57 -10.93
Download App -345 -2.06 -0.37 -0.56

hline MyDrive Upload 423 -3.53 -3.53 -1.18
Sensing -20 -11.76 -11.76 0.00

Hangout Video -144 -5.42 -5.42 -3.75
OneDrive Upload -448 -15.57 -20.08 -19.67
Messenger Audio 0 0.00 0.00 0.00

Skype Video 0 0.00 -12.50 0.00
Skype Texting -621 -13.79 -13.79 -3.45

Dropbox Upload 648 0.00 -0.68 0.00
Skype Audio -20 -0.13 -0.13 0.00

System Update -112 -2.50 2.50 2.50
Hangout Audio -561 -34.85 -42.05 -12.63

Dropbox Download -627 -17.13 -10.84 -9.44
Actuation -345 -29.27 -4.88 9.76

Messenger Texting -48 -16.67 -8.33 0.00
Average -8 -8.98 -8.31 -3.82

Table 6.3: Effect of choosing optimal n based on the MI measure
102

Data
Training Acc Enhancement

N Ind(%) Ens(%) Ens test(%)
Level 1

All 0 0.00 0.00 0.00
Level 2

Bulk Data Transfer 160 -0.32 1.13 0.41
Interactive 0 0.00 -13.33 0.00
Streaming -264 -1.34 -0.67 0.00

Transaction 308 -29.82 -5.26 0.00
Average 51 -7.87 -4.53 0.10

Level 3
Audio Interactive 420 -13.76 0.03 0.06
Video Interactive 111 -24.17 -26.44 -0.19

Texting Interactive -41 -5.00 -3.00 -2.00
File Upload 0 0.00 0.91 0.00

File Download 255 -0.18 1.87 0.70
Average 149 -8.62 -5.33 -0.28

Level 4
Hangout Texting 0 0.00 -4.26 0.00

OneDrive Download -187 -0.54 -0.32 -0.22
Audio Streaming -40 -3.49 0.00 0.00

Gaming -96 -9.09 -9.09 -9.09
MyDrive Download -255 -0.42 -0.70 -0.42

Messenger Video 39 -8.33 -0.88 0.00
Video Streaming -15 -10.57 -10.57 -10.93
Download App -297 -3.36 0.37 0.19

MyDrive Upload 264 -4.71 -3.53 -1.18
Sensing 253 0.00 -11.76 0.00

Hangout Video 99 -3.33 -1.67 0.00
OneDrive Upload 92 -1.64 -0.82 -0.41
Messenger Audio 144 -1.77 -1.77 -1.77

Skype Video 0 0.00 -12.50 0.00
Skype Texting -609 -10.34 -3.45 6.90

Dropbox Upload 144 -0.68 0.00 0.68
Skype Audio -27 -0.13 -0.13 0.00

System Update 455 -7.50 0.00 0.00
Hangout Audio -576 -29.55 -41.92 -12.50

Dropbox Download 0 0.00 -1.40 0.00
Actuation 168 -36.59 -14.63 0.00

Messenger Texting -39 -8.33 -8.33 0.00
Average -21 -6.38 -5.79 -1.31

Table 6.4: Effect of choosing optimal n based on the training accuracy
103

Data
Confidence Enhancement

N Ind(%) Ens(%) Ens test(%)
Level 1

All -680 -3.44 -1.29 -1.29
Level 2

Bulk Data Transfer 76 -1.34 0.89 0.16
Interactive -360 -6.40 -6.93 6.40
Streaming -525 -5.37 -4.70 -4.03

Transaction 0 0.00 -5.26 0.00
Average -202 -3.28 -4.00 0.63

Level 3
Audio Interactive -175 -8.80 -7.69 -7.67
Video Interactive -189 -26.48 -28.06 -1.81

Texting Interactive -416 -6.00 -3.00 -2.00
File Upload 0 0.00 0.91 0.00

File Download 255 -0.18 1.87 0.70
Average -105 -8.29 -7.20 -2.15

Level 4
Hangout Texting -95 -8.51 -25.53 -21.28

OneDrive Download 588 -0.32 -0.22 -0.11
Audio Streaming 48 -3.49 0.00 0.00

Gaming -96 -9.09 -9.09 -9.09
MyDrive Download -108 -0.14 -0.56 -0.28

Messenger Video 0 0.00 -0.88 0.00
Video Streaming -15 -10.57 -10.57 -10.93
Download App -345 -2.06 -0.37 -0.56

MyDrive Upload 423 -3.53 -3.53 -1.18
Sensing -20 -11.76 -11.76 0.00

Hangout Video 99 -3.33 -1.67 0.00
OneDrive Upload -403 -14.14 -10.86 -10.45
Messenger Audio 0 0.00 0.00 0.00

Skype Video 0 0.00 -12.50 0.00
Skype Texting -600 -10.34 -3.45 6.90

Dropbox Upload 544 0.00 -0.68 0.00
Skype Audio -20 -0.13 -0.13 0.00

System Update -96 -5.00 0.00 0.00
Hangout Audio -576 -29.55 -41.92 -12.50

Dropbox Download -147 -1.75 -2.10 -0.70
Actuation -345 -29.27 -4.88 9.76

Messenger Texting -39 -8.33 -8.33 0.00
Average -54 -6.88 -6.77 -2.29

Table 6.5: Effect of choosing optimal n based on the proposed confidence measure
104

MI Acc
train

C Acc test MI diff Acc
train diff

C diff

Level 1
All 0.64 6.76 0.82 6.76 -6.12 0.00 -5.94

Level 2
Interactive 2.60 6.56 2.00 6.56 -3.95 0.00 -4.56
Streaming 0.78 5.05 1.51 8.57 -7.79 -3.52 -7.06
Bulk Data Transfer 2.58 3.63 3.09 2.58 0.00 1.05 0.51
Transaction 0.92 6.53 0.92 0.92 0.00 5.62 0.00
Average 1.72 5.44 1.88 4.66 -2.94 0.79 -2.78

Level 3
Audio Interactive 1.20 8.90 1.80 4.20 -3.00 4.70 -2.39
Video Interactive 0.90 4.78 2.01 3.81 -2.91 0.97 -1.80
Texting Interactive 0.86 13.48 1.67 14.59 -13.73 -1.12 -12.93
File Upload 0.43 4.81 4.81 4.81 -4.38 0.00 0.00
File Download 0.41 5.35 5.35 3.69 -3.28 1.66 1.66
Average 0.76 7.46 3.13 6.22 -5.46 1.24 -3.09

Level 4
Hangout Texting 1.77 5.17 2.29 5.17 -3.41 0.00 -2.88
OneDrive File Download 4.72 0.06 4.72 1.29 3.43 -1.23 3.43
Audio Streaming 2.32 2.86 5.59 4.10 -1.78 -1.24 1.49
Gaming Interactive 0.22 0.22 0.22 4.80 -4.58 -4.58 -4.58
MyDrive File Download 5.71 3.94 4.95 5.71 0.00 -1.77 -0.77
Messenger Video 0.44 1.36 0.74 0.74 -0.29 0.62 0.00
Video Streaming 0.37 0.37 0.37 0.47 -0.11 -0.11 -0.11
Download App 0.33 0.75 0.33 1.95 -1.61 -1.20 -1.61
MyDrive File Upload 2.97 2.45 2.97 1.58 1.39 0.87 1.39
Sensing 0.93 6.54 0.93 1.40 -0.47 5.14 -0.47
Hangout Video 1.95 3.92 3.92 3.16 -1.21 0.76 0.76
OneDrive File Upload 0.67 5.83 1.25 5.06 -4.39 0.76 -3.81
Messenger Audio 0.33 1.47 0.33 0.33 0.00 1.15 0.00
Skype Video 0.34 0.34 0.34 0.34 0.00 0.00 0.00
Skype Texting 0.25 1.00 1.82 8.70 -8.45 -7.70 -6.88
Dropbox File Upload 17.95 6.38 15.64 2.53 15.42 3.86 13.11
Skype Audio 0.35 0.17 0.35 0.89 -0.54 -0.72 -0.54
System Update 0.51 3.62 1.46 2.88 -2.37 0.74 -1.42
Hangout Audio 1.86 1.46 1.46 9.60 -7.74 -8.14 -8.14
Dropbox File Download 0.47 5.41 4.29 5.41 -4.95 0.00 -1.12
Actuation 0.91 7.42 0.91 6.49 -5.58 0.93 -5.58
Messenger Texting 1.04 2.10 2.10 5.44 -4.40 -3.33 -3.33
Average 2.11 2.86 2.59 3.55 -1.44 -0.69 -0.96

Table 6.6: Enhancement in terms of time

105

MI Training Confidence Testing
N Ind(%) Ens(%) N Ind(%) Ens(%) N Ind(%) Ens(%) N Ind(%) Ens(%)
110 50.20 51.40 2610 67.40 80.40 510 70.60 82.00 1810 79.40 74.60

Enhancement
MI Training Confidence

N Ind(%) Ens
(%)

Ens
test(%)

N Ind(%) Ens
(%)

Ens
test(%)

N Ind(%) Ens
(%)

Ens
test(%)

2100 -12.00 1.00 5.80 2100 -12.00 1.00 5.80 -1300 -8.80 2.60 7.40

Table 6.7: Voice Results

in terms of time are proportional to the number of samples with a sampling rate
of 8000HZ.

6.5 Formal Description and Discussions

6.5.1 Problem Description

Suppose we have a time series data that we want to classify. The problem is
to define the optimal number of samples that should be considered to guarantee
good classification accuracy while minimizing the time to wait for classification
of the stream of data.

6.5.2 Proposed Solution

In the literature, many techniques have been proposed for features selection or
reduction. However, these techniques if applied in the time series case could
result in choosing features from the high dimension data (vector) without ac-
counting for the cost of waiting to receive this data and thus the time to make
the classification. Moreover, the importance of these features might be slightly
marginally better than the low dimensional ones. In our case, we aim at searching
in a sequential manner to have enough important features that guarantee good
classification accuracy. In other terms, we search for the subset of the time-series
data or subset dimension that guarantee optimal quality of information and clas-
sification accuracy. The empirical solution consists of training several models and
choosing the model with highest validation accuracy. However, the validation ac-
curacy does not always imply best testing accuracy. Therefore, there is a need to
combining e the empirical results with a measure that reflects the quality of the
data. To do so, we define a new measure, called model confidence that reflects
the variation in the training accuracy and the average mutual information, as
presented in (6.1), and (6.2). Thus, there are several question to answer:

• What not relying only on the mutual information?

106

• Why the average mutual information presents a maximum?

• Does the accuracy have a well-defined shape and in what conditions?

• What is the possibility of having low accuracy degradation than the optimal
validation accuracy?

In the following, we present main properties of the proposed confidence mea-
sure:

Property 1: if the mutual information between the input vector [x1, . . . , xN]
and the label vector presents a global maximum at the point α, and the accuracy
is increasing, implies ∃β/β > α, for which C(β) = maxnC(n).

Analysis:
δC(n) = δAcc(n)+δMI(n)

2

Thus, C(n) can be:

• presenting a global maximum⇒δC(β) = 0⇒δAcc(β)+δMI(β) = 0⇒δAcc(β) =
−δMI(β). Given that Acc(n) is increasing ⇒δAcc(β) > 0 ⇒δMI(β) < 0.
Consequently, the accuracy achieved relying on the confidence measure
is greater than the one achieved by relying on the mutual information
Acc(β) > Acc(α).

• monotonically increasing ⇒δC(β) > 0 ⇒δAcc(β) + δMI(β) > 0 ⇒δAcc(β) >
−δMI(β).

• monotonically increasing before α and fluctuating after it. In this case, the
maximum is reached at α or later.

Property 2: Given a time series [x(1, ,)xN] , the average mutual information
of the subset vectors increased until a value of n, β such as MI(β) is maximum.

Analysis:

This can be explained by the fact that for small values of n increasing n results
in having a larger vector with more information, until a certain n, where repeated
patterns appear.

107

MI(n) =

∑n×n
0 MI(xi, Y)

n× n

MI(n+ 1) =

∑(n+1)×(n+1)
0 MI(xi, Y)

(n+ 1)× (n+ 1)

MI(n+ 1)−MI(n) =
(n× n)×

∑(n+1)×(n+1)
0 MI(xi, Y)− (n+ 1)× (n+ 1)×

∑n×n
0 MI(xi, Y)

(n× n)× (n+ 1)× (n+ 1)

=
(n× n)×

∑
(n× n)(n+1)×(n+1)MI(xi, Y)− (2n+ 2)×

∑n×n
0 MI(xi, Y)

(n× n)× (n+ 1)× (n+ 1)
(6.3)

The first term in the numerator consists of the sum of (2n+ 2)×MI(xi, Y),
with (n×n) < i < ((n+ 1)× (n+ 1)), and thus, in total, we have (n×n)× (2n+
2)×MI(xi, Y), and the second term consists of (n× n)× (2n+ 2)×MI(xi, Y),
with 0 < i < (n×n). Consequently, for the samples or packets after the patterns
are repeated presents the same quantity of information or less and thus the first
term is equal or less than the second term ⇒MI(n+1)-MI(n) ≤ 0.

Property 3: Given an ensemble of classifiers C1, C2, , Cn with accuracy of
classification Acc1, Acc2, , Accn, the ensemble classification with average sum of
the probabilistic output is most probably increasing.

Analysis: let us assume that the classifier output is a random variable that
can take one of two values True (T), and False (F). In the worst case, the proba-
bility to have a true classification is equal to the probability of having false clas-
sification PCi

(F) = PCi
(T). The ensemble accuracy is the number of correctly

classified instances over the total number of instances and it can be written as
follows: Accensemble(n) = TotalTrue(n)

TotalTrue(n)+TotalFalse(n)
. At n + 1, the accuracy increase

if the TotalTrue(n+ 1) > TotalTrue(n) or TotalFalse(n+ 1) < TotalFlase(n), given
that TotalT rue(n) + TotalFalse(n) = cst. Considering a test instance, we have
four possibilities when a new classifier Cn is added:

• a correctly classified instance remains correctly classified with probability
PC⇒C ;

• a correctly classified instance becomes falsely classified with probability
PC⇒F ;

• a falsely classified instance remains falsely classified with probability PF⇒C ;

• and a falsely classified instance becomes correctly classified with probability
PF⇒F .

108

The probability that TotalTrue(n+ 1) ≥ TotalTrue(n) is equal to:

P (TotalTrue(n+ 1)TotalTrue(n)) = PC⇒C + PC⇒F × P (
n∑
0

Truei >
n∑
0

Falsei)

+ Pf⇒C + PF⇒F × P (
n∑
0

Truei >
n∑
0

Falsei)

(6.4)

While the probability that TotalTrue(n+ 1) < TotalTrue(n) is equal to:

P (TotalTrue(n+ 1) < TotalTrue(n)) = PC⇒C × (1− P (
n∑
0

Truei >

n∑
0

Falsei) + PC⇒F

+ PF⇒C × (1− P (
n∑
0

Truei >
n∑
0

Falsei) + PF⇒F

(6.5)

Thus, the difference between P (TotalTrue(n+1) ≥ TotalTrue(n)) and P (TotalTrue(n+
1) < TotalTrue(n)) can be written as follows:

Diff = P (TotalTrue(n+ 1) ≥ TotalTrue(n))− P (TotalTrue(n+ 1) < TotalTrue(n)) =

PC⇒C × P (
n∑
0

Truei >
n∑
0

Falsei) + PC⇒F × (P (
n∑
0

Truei >
n∑
0

Falsei)− 1)+

PF⇒C × P (
n∑
0

Truei >
n∑
0

Falsei) + PF⇒F × (P (
n∑
0

Truei >
n∑
0

Falsei)− 1)

= (PC⇒C + PF⇒C)× P (
n∑
0

Truei >
n∑
0

Falsei)− (PC⇒F

+ PF⇒F)× P (
n∑
0

Truei <
n∑
0

Falsei)

(6.6)

In the worst case, the probability of the four possibilities are equally probable:
PC⇒C = PC⇒F = PF⇒C = PF⇒F and in this case:

• if P (
∑n

0 Truei >
∑n

0 Falsei) = P (
∑n

0 Truei <
∑n

0 Falsei), the accuracy
does not increase.

• if P (
∑n

0 Truei >
∑n

0 Falsei) > P (
∑n

0 Truei <
∑n

0 Falsei), the accuracy
increases.

109

• if P (
∑n

0 Truei >
∑n

0 Falsei) < P (
∑n

0 Truei <
∑n

0 Falsei), the accuracy
decreases.

Thus, in the worst case, the accuracy increases or remains the same with a
probability of 2/3.

Property 4: Given an ensemble of classifiers C1, C2, , Cn with accuracy of
classification Acc1, Acc2, , Accn, ∃β after which the ensemble accuracy remains
constant or decreases.

Analysis: As stated above the accuracy of the ensemble method is calculated
as follows: Accensemble(n) = TotalTrue(n)

TotalTrue(n)+TotalFalse(n)
. After a certain number of n,

the number of classifiers correctly classifying an instance is sufficient to guarantee
a correct classification if PC⇒F = 0.5.

6.6 Conclusion

In this chapter, we proposed a model confidence measure that helps in choosing
a value of n that optimize the testing accuracy while minimizing the training
overhead, and the testing response time. To do so, we relied on the mutual
information between the packets features and the class vector and the training
accuracy to define a model confidence measure. This measure helps in choosing
the optimal value of n that guarantees a good accuracy level. However, in some
cases, real-time applications impose very low response time and thus the classi-
fication at early stages is highly required. In this case, we propose an ensemble
classification method that considers the average of the classification results given
by the set of successive classifiers of different dimensions (i.e. successive values of
n). The classification results show that the proposed methods present enhance-
ment in terms of accuracy compared to the individual classifiers. Combining the
confidence measure stopping criteria and the ensemble classification, the accuracy
of the model is enhanced at low values of n.

110

Chapter 7

Conclusion

Internet traffic is in a continuous evolution. With the emergence of the IoT, bil-
lions of things will be connected to the Internet. This poses new challenges given
the high scale, heterogeneity, big amount of generated data, and security and pri-
vacy requirements. In this context, new techniques are needed to manage both
QoS and security in the future network. From a QoS perspective, the traditional
techniques/protocols for QoS guarantee suffer from their deployment and man-
agement complexity. Besides, from a security perspective, the traditional IDSes
rely on pre-configured rules, presenting also management complexity. In addi-
tion, detecting unknown attacks require new IDS techniques. Machine Learning
is proposed as a solution to these limitations. In this thesis, we aimed at apply-
ing DL for traffic classification based on different QoS and security requirements.
To do so, we started by defining a hierarchical set of classes presenting differ-
ent levels of granularity. In addition, we proposed a new data representation
method to transform the flows into RGB images. Applying different DL based
architectures, CNN gives the best results. Relying on statistical features, we
show that our representation method is immune towards traffic encryption or
anonymization. However, this does prevent adversarial attacks that might ma-
nipulate the traffic characteristics like packets sizes (padding) and inter-arrival
time (shaping), and thus a traffic classifier should account for such attacks. Even
if in some cases the recovery of original traffic is not possible, the detection is
essential to avoid mis-classification. In this context, we considered defending two
main obfuscation techniques, namely: mutation and morphing. Mutation aims
at modifying the traffic characteristics in the aim of confusing the classifier by
padding and shaping the traffic. On the other hand, morphing aims at imitating
the traffic characteristics to make a flow look like another flow. This presents a
critical security issue, when the attackers morph their traffic to look like normal
traffic to avoid detection. To defend mutation we proposed a generative adver-
sarial DL framework consisting of a denoising autoencoder and a discriminator.
The denoiser is to de-mutate traffic and the discriminator to detect mutation.
To defend morphing, we rely on variational autoencoder to generate morphed

111

traffic and the discriminator part of GAN is used for fake traffic detection. Last
but not least, we worked on optimizing the choice of the number of packets to
achieve good accuracy results. In this aim, we rely on mutual information and
the training accuracy to propose a new confidence measure. Mutual information
is computed between the features and the labels, while increasing n. The results
show that we can decide to stop at a certain n, where the confidence is maximum
to save time and achieve good accuracy. On the other hand, we propose a new
ensemble method consisting of successive classifiers to enhance the classification
performance. The classification results at precedent values of n are aggregated
in proportion to the individual models confidence. The weighted average voting
system is shown to achieve better accuracy than the individual classifiers. This
model can be applied for any type of time series data to meet the compromise
between response time and classification accuracy.

As a future work, we aim to integrate all the proposed modules together
and evaluate the error rate, when the same traffic is passed to the proposed
classification framework. In this case, a classification confidence measure should
be developed based on the decision of each module. In other words, the detection
of mutation or morphing in some parts of the flows should affect the classification
confidence. Moreover, this framework modules are tested offline, however, we
need to work on a real implementation in a real network. Moreover, the issue
of online training of the proposed framework should be considered, taking into
account the change in the optimal value of n.

112

Bibliography

[1] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C.
Lynch, J. Postel, L. G. Roberts, and S. Wolff, “A brief history of the inter-
net,” ACM SIGCOMM Computer Communication Review, vol. 39, no. 5,
pp. 22–31, 2009.

[2] O. Salman, I. Elhajj, A. Chehab, and A. Kayssi, “Iot survey: An sdn and
fog computing perspective,” Computer Networks, vol. 143, pp. 221–246,
2018.

[3] B. Park, Y. Won, J. Chung, M.-s. Kim, and J. W.-K. Hong, “Fine-grained
traffic classification based on functional separation,” International Journal
of Network Management, vol. 23, no. 5, pp. 350–381, 2013.

[4] G. Aceto, A. Dainotti, W. De Donato, and A. Pescapé, “Portload: taking
the best of two worlds in traffic classification,” in 2010 INFOCOM IEEE
Conference on Computer Communications Workshops, pp. 1–5, IEEE,
2010.

[5] A. Tongaonkar, R. Keralapura, and A. Nucci, “Challenges in network ap-
plication identification.,” in LEET, 2012.

[6] D. Qin, J. Yang, J. Wang, and B. Zhang, “Ip traffic classification based on
machine learning,” in 2011 IEEE 13th International Conference on Com-
munication Technology, pp. 882–886, IEEE, 2011.

[7] J. Dromard, P. Owezarski, V. Mozo, A. Ordozgoiti, and B. Vakaruk, “De-
livrable algorithms description: Traffic pattern evolution and unsupervised
network anomaly detection ontic d4. 2,” 2016.

[8] N. Namdev, S. Agrawal, and S. Silkari, “Recent advancement in machine
learning based internet traffic classification,” Procedia Computer Science,
vol. 60, pp. 784–791, 2015.

[9] T. S. Tabatabaei, M. Adel, F. Karray, and M. Kamel, “Machine learning-
based classification of encrypted internet traffic,” in International Work-
shop on Machine Learning and Data Mining in Pattern Recognition,
pp. 578–592, Springer, 2012.

113

[10] G. Cheng and Y. Hu, “Encrypted traffic identification based on n-gram
entropy and cumulative sum test,” in Proceedings of the 13th International
Conference on Future Internet Technologies, p. 9, ACM, 2018.

[11] B. Niemczyk and P. Rao, “Identification over encrypted channels,” Black-
Hat USA, 2014.

[12] R. Alshammari and A. N. Zincir-Heywood, “Machine learning based en-
crypted traffic classification: Identifying ssh and skype,” in 2009 IEEE
Symposium on Computational Intelligence for Security and Defense Appli-
cations, pp. 1–8, IEEE, 2009.

[13] R. Alshammari and A. N. Zincir-Heywood, “How robust can a machine
learning approach be for classifying encrypted voip?,” Journal of Network
and Systems Management, vol. 23, no. 4, pp. 830–869, 2015.

[14] L. Bernaille and R. Teixeira, “Early recognition of encrypted applications,”
in International Conference on Passive and Active Network Measurement,
pp. 165–175, Springer, 2007.

[15] Z. Cao, G. Xiong, Y. Zhao, Z. Li, and L. Guo, “A survey on encrypted traffic
classification,” in International Conference on Applications and Techniques
in Information Security, pp. 73–81, Springer, 2014.

[16] D. J. Arndt and A. N. Zincir-Heywood, “A comparison of three machine
learning techniques for encrypted network traffic analysis,” in 2011 IEEE
Symposium on Computational Intelligence for Security and Defense Appli-
cations (CISDA), pp. 107–114, IEEE, 2011.

[17] C. Gu, S. Zhang, and Y. Sun, “Realtime encrypted traffic identification
using machine learning.,” JSW, vol. 6, no. 6, pp. 1009–1016, 2011.

[18] G. He, B. Xu, L. Zhang, and H. Zhu, “Mobile app identification for en-
crypted network flows by traffic correlation,” International Journal of Dis-
tributed Sensor Networks, vol. 14, no. 12, p. 1550147718817292, 2018.

[19] Z. Hejun and Z. Liehuang, “Encrypted network behaviors identification
based on dynamic time warping and k-nearest neighbor,” Cluster Comput-
ing, pp. 1–10, 2017.

[20] J. Liu, Y. Fu, J. Ming, Y. Ren, L. Sun, and H. Xiong, “Effective and
real-time in-app activity analysis in encrypted internet traffic streams,” in
Proceedings of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 335–344, ACM, 2017.

114

[21] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian, “Deep
packet: A novel approach for encrypted traffic classification using deep
learning,” Soft Computing, pp. 1–14, 2017.

[22] E. Mahdavi, A. Fanian, and H. Hassannejad, “Encrypted traffic classifica-
tion using statistical features.,” ISeCure, vol. 10, no. 1, 2018.

[23] Q. Wang, A. Yahyavi, B. Kemme, and W. He, “I know what you did on your
smartphone: Inferring app usage over encrypted data traffic,” in 2015 IEEE
Conference on Communications and Network Security (CNS), pp. 433–441,
IEEE, 2015.

[24] Q. Xu, Y. Liao, S. Miskovic, Z. M. Mao, M. Baldi, A. Nucci, and T. An-
drews, “Automatic generation of mobile app signatures from traffic obser-
vations,” in 2015 IEEE Conference on Computer Communications (INFO-
COM), pp. 1481–1489, IEEE, 2015.

[25] S. Rezaei and X. Liu, “Deep learning for encrypted traffic classification:
An overview,” IEEE communications magazine, vol. 57, no. 5, pp. 76–81,
2019.

[26] S. Leroux, S. Bohez, P.-J. Maenhaut, N. Meheus, P. Simoens, and
B. Dhoedt, “Fingerprinting encrypted network traffic types using machine
learning,” in NOMS 2018-2018 IEEE/IFIP Network Operations and Man-
agement Symposium, pp. 1–5, IEEE, 2018.

[27] B. Saltaformaggio, H. Choi, K. Johnson, Y. Kwon, Q. Zhang, X. Zhang,
D. Xu, and J. Qian, “Eavesdropping on fine-grained user activities within
smartphone apps over encrypted network traffic,” in 10th {USENIX}Work-
shop on Offensive Technologies ({WOOT} 16), 2016.

[28] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Appscanner: Auto-
matic fingerprinting of smartphone apps from encrypted network traffic,”
in 2016 IEEE European Symposium on Security and Privacy (EuroS&P),
pp. 439–454, IEEE, 2016.

[29] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Robust smartphone
app identification via encrypted network traffic analysis,” IEEE Transac-
tions on Information Forensics and Security, vol. 13, no. 1, pp. 63–78, 2017.

[30] P. Velan, M. Čermák, P. Čeleda, and M. Drašar, “A survey of methods
for encrypted traffic classification and analysis,” International Journal of
Network Management, vol. 25, no. 5, pp. 355–374, 2015.

[31] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end encrypted
traffic classification with one-dimensional convolution neural networks,” in

115

2017 IEEE International Conference on Intelligence and Security Informat-
ics (ISI), pp. 43–48, IEEE, 2017.

[32] Y. Fu, H. Xiong, X. Lu, J. Yang, and C. Chen, “Service usage classification
with encrypted internet traffic in mobile messaging apps,” IEEE Transac-
tions on Mobile Computing, vol. 15, no. 11, pp. 2851–2864, 2016.

[33] Y. Liu, J. Chen, P. Chang, and X. Yun, “A novel algorithm for encrypted
traffic classification based on sliding window of flow’s first n packets,” in
2017 2nd IEEE International Conference on Computational Intelligence
and Applications (ICCIA), pp. 463–470, IEEE, 2017.

[34] A. Dainotti, A. Pescape, and K. C. Claffy, “Issues and future directions in
traffic classification,” IEEE network, vol. 26, no. 1, pp. 35–40, 2012.

[35] A. C. Callado, C. A. Kamienski, G. Szabó, B. P. Gero, J. Kelner, S. F. Fer-
nandes, and D. F. H. Sadok, “A survey on internet traffic identification.,”
IEEE Communications Surveys and Tutorials, vol. 11, no. 3, pp. 37–52,
2009.

[36] T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic
classification using machine learning,” IEEE communications surveys &
tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[37] M. Finsterbusch, C. Richter, E. Rocha, J.-A. Muller, and K. Hanssgen, “A
survey of payload-based traffic classification approaches,” IEEE Communi-
cations Surveys & Tutorials, vol. 16, no. 2, pp. 1135–1156, 2013.

[38] F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, and J. Aguilar, “Towards
the deployment of machine learning solutions in network traffic classifica-
tion: a systematic survey,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 2, pp. 1988–2014, 2018.

[39] “Vpn 2016 — datasets — research — canadian institute for cybersecu-
rity — unb.” https://www.unb.ca/cic/datasets/vpn.html. (Accessed on
10/02/2019).

[40] “Tor 2017 — datasets — research — canadian institute for cybersecu-
rity — unb.” https://www.unb.ca/cic/datasets/tor.html. (Accessed on
10/02/2019).

[41] B. Yamansavascilar, M. A. Guvensan, A. G. Yavuz, and M. E. Karsligil,
“Application identification via network traffic classification,” in 2017 In-
ternational Conference on Computing, Networking and Communications
(ICNC), pp. 843–848, IEEE, 2017.

116

[42] H. Huang, H. Deng, J. Chen, L. Han, and W. Wang, “Automatic multi-
task learning system for abnormal network traffic detection.,” International
Journal of Emerging Technologies in Learning, vol. 13, no. 4, 2018.

[43] “Computer laboratory - data.” https://www.cl.cam.ac.uk/research/srg/netos/projects/brasil/data/index.html.
(Accessed on 10/02/2019).

[44] A. W. Moore and D. Zuev, “Internet traffic classification using bayesian
analysis techniques,” in ACM SIGMETRICS Performance Evaluation Re-
view, vol. 33, pp. 50–60, ACM, 2005.

[45] F. Ertam and E. Avcı, “A new approach for internet traffic classification:
Ga-wk-elm,” Measurement, vol. 95, pp. 135–142, 2017.

[46] Z. Li, R. Yuan, and X. Guan, “Accurate classification of the internet traffic
based on the svm method,” in 2007 IEEE International Conference on
Communications, pp. 1373–1378, IEEE, 2007.

[47] J. Cao, Z. Fang, G. Qu, H. Sun, and D. Zhang, “An accurate traffic clas-
sification model based on support vector machines,” International Journal
of Network Management, vol. 27, no. 1, p. e1962, 2017.

[48] T. Auld, A. W. Moore, and S. F. Gull, “Bayesian neural networks for inter-
net traffic classification,” IEEE Transactions on neural networks, vol. 18,
no. 1, pp. 223–239, 2007.

[49] J. Ran, X. Kong, G. Lin, D. Yuan, and H. Hu, “A self-adaptive net-
work traffic classification system with unknown flow detection,” in 2017
3rd IEEE International Conference on Computer and Communications
(ICCC), pp. 1215–1220, IEEE, 2017.

[50] S. Huang, K. Chen, C. Liu, A. Liang, and H. Guan, “A statistical-feature-
based approach to internet traffic classification using machine learning,”
in 2009 International Conference on Ultra Modern Telecommunications &
Workshops, pp. 1–6, IEEE, 2009.

[51] H. Shi, H. Li, D. Zhang, C. Cheng, and X. Cao, “An efficient feature
generation approach based on deep learning and feature selection techniques
for traffic classification,” Computer Networks, vol. 132, pp. 81–98, 2018.

[52] R. Yuan, Z. Li, X. Guan, and L. Xu, “An svm-based machine learning
method for accurate internet traffic classification,” Information Systems
Frontiers, vol. 12, no. 2, pp. 149–156, 2010.

[53] B. Schmidt, D. Kountanis, and A. Al-Fuqaha, “Artificial immune system
inspired algorithm for flow-based internet traffic classification,” in 2014

117

IEEE 6th International Conference on Cloud Computing Technology and
Science, pp. 664–667, IEEE, 2014.

[54] Y. Ding, “Imbalanced network traffic classification based on ensemble fea-
ture selection,” in 2016 IEEE International Conference on Signal Process-
ing, Communications and Computing (ICSPCC), pp. 1–4, IEEE, 2016.

[55] G. Sun, T. Chen, Y. Su, and C. Li, “Internet traffic classification based on
incremental support vector machines,” Mobile Networks and Applications,
vol. 23, no. 4, pp. 789–796, 2018.

[56] Y. Huang, Y. Li, and B. Qiang, “Internet traffic classification based on min-
max ensemble feature selection,” in 2016 International Joint Conference on
Neural Networks (IJCNN), pp. 3485–3492, IEEE, 2016.

[57] S. Dong, D. Zhou, and W. Ding, “The study of network traffic identifica-
tion based on machine learning algorithm,” in 2012 Fourth International
Conference on Computational Intelligence and Communication Networks,
pp. 205–208, IEEE, 2012.

[58] M. Dashevskiy and Z. Luo, “Two methods for reliable classification of net-
work traffic,” Progress in Artificial Intelligence, vol. 1, no. 3, pp. 223–234,
2012.

[59] “https://wand.net.nz/old/wand/publications/barcelona-2001.pdf.”
https://wand.net.nz/old/wand/publications/barcelona-2001.pdf. (Ac-
cessed on 10/02/2019).

[60] P. Perera, Y.-C. Tian, C. Fidge, and W. Kelly, “A comparison of super-
vised machine learning algorithms for classification of communications net-
work traffic,” in International Conference on Neural Information Process-
ing, pp. 445–454, Springer, 2017.

[61] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, “Class-of-service map-
ping for qos: a statistical signature-based approach to ip traffic classifica-
tion,” in Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement, pp. 135–148, ACM, 2004.

[62] J. Erman, M. Arlitt, and A. Mahanti, “Traffic classification using clustering
algorithms,” in Proceedings of the 2006 SIGCOMM workshop on Mining
network data, pp. 281–286, ACM, 2006.

[63] J. Erman, A. Mahanti, and M. Arlitt, “Qrp05-4: Internet traffic identifi-
cation using machine learning,” in IEEE Globecom 2006, pp. 1–6, IEEE,
2006.

118

[64] L. Peng, B. Yang, Y. Chen, and Z. Chen, “Effectiveness of statistical fea-
tures for early stage internet traffic identification,” International Journal
of Parallel Programming, vol. 44, no. 1, pp. 181–197, 2016.

[65] L. Peng, H. Zhang, Y. Chen, and B. Yang, “Imbalanced traffic identifi-
cation using an imbalanced data gravitation-based classification model,”
Computer Communications, vol. 102, pp. 177–189, 2017.

[66] F. Hernández-Campos, A. Nobel, F. Smith, and K. Jeffay, “Statistical clus-
tering of internet communication patterns,” computing science and statis-
tics, vol. 35, 2003.

[67] N. Williams, S. Zander, and G. Armitage, “A preliminary performance com-
parison of five machine learning algorithms for practical ip traffic flow clas-
sification,” ACM SIGCOMM Computer Communication Review, vol. 36,
no. 5, pp. 5–16, 2006.

[68] A. McGregor, M. Hall, P. Lorier, and J. Brunskill, “Flow clustering using
machine learning techniques,” in International workshop on passive and
active network measurement, pp. 205–214, Springer, 2004.

[69] S. Zander, T. Nguyen, and G. Armitage, “Self-learning ip traffic classifi-
cation based on statistical flow characteristics,” in International Workshop
on Passive and Active Network Measurement, pp. 325–328, Springer, 2005.

[70] S. Zander, T. Nguyen, and G. Armitage, “Automated traffic classification
and application identification using machine learning,” in The IEEE Con-
ference on Local Computer Networks 30th Anniversary (LCN’05) l, pp. 250–
257, IEEE, 2005.

[71] A. Este, F. Gringoli, and L. Salgarelli, “Support vector machines for tcp
traffic classification,” Computer Networks, vol. 53, no. 14, pp. 2476–2490,
2009.

[72] J. Park, H.-R. Tyan, and C.-C. J. Kuo, “Ga-based internet traffic classifi-
cation technique for qos provisioning,” in 2006 International Conference on
Intelligent Information Hiding and Multimedia, pp. 251–254, IEEE, 2006.

[73] M. Dusi, F. Gringoli, and L. Salgarelli, “Ip traffic classification for qos guar-
antees: The independence of packets,” in 2008 Proceedings of 17th Inter-
national Conference on Computer Communications and Networks, pp. 1–8,
IEEE, 2008.

[74] H. Kim, K. C. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K. Lee,
“Internet traffic classification demystified: myths, caveats, and the best
practices,” in Proceedings of the 2008 ACM CoNEXT conference, p. 11,
ACM, 2008.

119

[75] “mawi.wide.ad.jp.” http://mawi.wide.ad.jp/mawi/. (Accessed on
10/02/2019).

[76] V. Carela-Español, P. Barlet-Ros, A. Bifet, and K. Fukuda, “A stream-
ing flow-based technique for traffic classification applied to 12+ 1 years of
internet traffic,” Telecommunication Systems, vol. 63, no. 2, pp. 191–204,
2016.

[77] S. Mongkolluksamee, V. Visoottiviseth, and K. Fukuda, “Combining com-
munication patterns & traffic patterns to enhance mobile traffic identifi-
cation performance,” Journal of Information Processing, vol. 24, no. 2,
pp. 247–254, 2016.

[78] F. Allard, R. Dubois, P. Gompel, and M. Morel, “Tunneling activities de-
tection using machine learning techniques,” Journal of Telecommunications
and Information Technology, pp. 37–42, 2011.

[79] H. Dong, G.-L. Sun, and D.-D. Li, “A hybrid method for network traf-
fic classification,” in Proceedings of 2013 2nd International Conference on
Measurement, Information and Control, vol. 1, pp. 653–656, IEEE, 2013.

[80] F. Ghofrani, A. Keshavarz-Haddad, and A. Jamshidi, “A new probabilis-
tic classifier based on decomposable models with application to internet
traffic,” Pattern Recognition, vol. 77, pp. 1–11, 2018.

[81] R. Raveendran and R. R. Menon, “A novel aggregated statistical feature
based accurate classification for internet traffic,” in 2016 International Con-
ference on Data Mining and Advanced Computing (SAPIENCE), pp. 225–
232, IEEE, 2016.

[82] R. Wang, L. Shi, and B. Jennings, “Ensemble classifier for traffic in presence
of changing distributions,” in 2013 IEEE Symposium on Computers and
Communications (ISCC), pp. 000629–000635, IEEE, 2013.

[83] D. M. Divakaran, L. Su, Y. S. Liau, and V. L. Thing, “Slic: Self-learning in-
telligent classifier for network traffic,” Computer Networks, vol. 91, pp. 283–
297, 2015.

[84] X. Chen, J. Zhang, Y. Xiang, and W. Zhou, “Traffic identification in semi-
known network environment,” in 2013 IEEE 16th International Conference
on Computational Science and Engineering, pp. 572–579, IEEE, 2013.

[85] P. Borgnat, G. Dewaele, K. Fukuda, P. Abry, and K. Cho, “Seven years and
one day: Sketching the evolution of internet traffic,” in IEEE INFOCOM
2009, pp. 711–719, IEEE, 2009.

120

[86] H. A. H. Ibrahim, O. R. A. Al Zuobi, M. A. Al-Namari, G. MohamedAli,
and A. A. A. Abdalla, “Internet traffic classification using machine learning
approach: Datasets validation issues,” in 2016 Conference of Basic Sciences
and Engineering Studies (SGCAC), pp. 158–166, IEEE, 2016.

[87] R. Hasibi, M. Shokri, and M. Dehghan, “Augmentation scheme for dealing
with imbalanced network traffic classification using deep learning,” arXiv
preprint arXiv:1901.00204, 2019.

[88] “Nbar2 or next generation nbar - cisco.”
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-
software/network-based-application-recognition-nbar/qac67 −
697963.html.(Accessedon10/02/2019).

[89] L. Peng, H. Zhang, B. Yang, M. Su, and Y. Chen, “On the effectiveness
of packet sampling for early stage traffic identification,” in 2016 IEEE In-
ternational Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical
and Social Computing (CPSCom) and IEEE Smart Data (SmartData),
pp. 468–473, Dec 2016.

[90] “Dpi engine - r&space 2 — deep packet inspection from ipoque gmbh, a ro-
hde & schwarz company.” https://www.ipoque.com/products/dpi-engine-
rsrpace-2. (Accessed on 10/02/2019).

[91] “Github - thomasbhatia/opendpi: Opendpi v.3.10.”
https://github.com/thomasbhatia/OpenDPI. (Accessed on 10/02/2019).

[92] “Application layer packet classifier for linux.” http://l7-
filter.sourceforge.net/. (Accessed on 10/02/2019).

[93] L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano, “ndpi: Open-source
high-speed deep packet inspection,” in 2014 International Wireless Com-
munications and Mobile Computing Conference (IWCMC), pp. 617–622,
IEEE, 2014.

[94] S. Alcock and R. Nelson, “Libprotoident: traffic classification using
lightweight packet inspection,” WAND Network Research Group, Tech.
Rep., 2012.

[95] Z. Aouini, A. Kortebi, and Y. Ghamri-Doudane, “Towards understanding
residential internet traffic: From packets to services,” in 2016 7th Inter-
national Conference on the Network of the Future (NOF), pp. 1–7, IEEE,
2016.

121

[96] M. Dusi, F. Gringoli, and L. Salgarelli, “Quantifying the accuracy of the
ground truth associated with internet traffic traces,” Computer Networks,
vol. 55, no. 5, pp. 1158–1167, 2011.

[97] H. Alizadeh and A. Zúquete, “Traffic classification for managing applica-
tions networking profiles,” Security and Communication Networks, vol. 9,
no. 14, pp. 2557–2575, 2016.

[98] “Coralreef software suite.” https://www.caida.org/tools/measurement/coralreef/.
(Accessed on 10/02/2019).

[99] F. Dehghani, N. Movahhedinia, M. R. Khayyambashi, and S. Kianian,
“Real-time traffic classification based on statistical and payload content
features,” in 2010 2nd International Workshop on Intelligent Systems and
Applications, pp. 1–4, IEEE, 2010.

[100] “Cisco visual networking index: Forecast and trends, 20172022 white pa-
per - cisco.” https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white-paper-c11-741490.html. (Ac-
cessed on 10/02/2019).

[101] B. M. A. Abdalla, H. A. Jamil, M. Hamdan, J. S. Bassi, I. Ismail, and M. N.
Marsono, “Multi-stage feature selection for on-line flow peer-to-peer traf-
fic identification,” in Asian Simulation Conference, pp. 509–523, Springer,
2017.

[102] L. Peng, H. Zhang, B. Yang, and Y. Chen, “Feature evaluation for early
stage internet traffic identification,” in International Conference on Algo-
rithms and Architectures for Parallel Processing, pp. 511–525, Springer,
2014.

[103] Y. Aun, S. Manickam, and S. Karuppayah, “A review on features’ robust-
ness in high diversity mobile traffic classifications,” International journal
of communication networks and information security, vol. 9, no. 2, p. 294,
2017.

[104] M. Shafiq, X. Yu, and D. Wang, “Robust feature selection for im applica-
tions at early stage traffic classification using machine learning algorithms,”
in 2017 IEEE 19th International Conference on High Performance Comput-
ing and Communications; IEEE 15th International Conference on Smart
City; IEEE 3rd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pp. 239–245, IEEE, 2017.

[105] A. Dainotti, A. Pescapé, and H.-c. Kim, “Traffic classification through joint
distributions of packet-level statistics,” in 2011 IEEE Global Telecommu-
nications Conference-GLOBECOM 2011, pp. 1–6, IEEE, 2011.

122

[106] S. Filiposka and I. Mishkovski, “Smartphone users traffic characteristics
and modelling,” Transactions on Networks and Communications, vol. 1,
no. 1, pp. 14–40, 2013.

[107] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “Blinc: multilevel traf-
fic classification in the dark,” in ACM SIGCOMM computer communication
review, vol. 35, pp. 229–240, ACM, 2005.

[108] T. Karagiannis, K. Papagiannaki, N. Taft, and M. Faloutsos, “Profiling
the end host,” in International Conference on Passive and Active Network
Measurement, pp. 186–196, Springer, 2007.

[109] J. Cao, A. Chen, I. Widjaja, and N. Zhou, “Online identification of applica-
tions using statistical behavior analysis,” in IEEE GLOBECOM 2008-2008
IEEE Global Telecommunications Conference, pp. 1–6, IEEE, 2008.

[110] M. Meiss, F. Menczer, and A. Vespignani, “Properties and evolution of
internet traffic networks from anonymized flow data,” ACM Transactions
on Internet Technology (TOIT), vol. 10, no. 4, p. 15, 2011.

[111] S.-W. Lee, J.-S. Park, H.-S. Lee, and M.-S. Kim, “A study on smart-phone
traffic analysis,” in 2011 13th Asia-Pacific Network Operations and Man-
agement Symposium, pp. 1–7, IEEE, 2011.

[112] J. Y. Chung, Y. Choi, B. Park, and J. W.-K. Hong, “Measurement analysis
of mobile traffic in enterprise networks,” in 2011 13th Asia-Pacific Network
Operations and Management Symposium, pp. 1–4, IEEE, 2011.

[113] B. Mitevski and S. Filiposka, “Smartphone traffic review,” in International
Conference on ICT Innovations, pp. 291–301, Springer, 2013.

[114] T. Okabe, T. Kitamura, and T. Shizuno, “Statistical traffic identification
method based on flow-level behavior for fair voip service,” in 1st IEEE
Workshop on VoIP Management and Security, 2006., pp. 35–40, IEEE,
2006.

[115] Y. Hu, D.-M. Chiu, and J. C. Lui, “Application identification based on net-
work behavioral profiles,” in 2008 16th Interntional Workshop on Quality
of Service, pp. 219–228, IEEE, 2008.

[116] K. Yu, Y. Liu, L. Qing, B. Wang, and Y. Cheng, “Positive and unlabeled
learning for user behavior analysis based on mobile internet traffic data,”
IEEE Access, vol. 6, pp. 37568–37580, 2018.

[117] A. Moore, D. Zuev, and M. Crogan, “Discriminators for use in flow-based
classification,” tech. rep., 2013.

123

[118] P. Haffner, S. Sen, O. Spatscheck, and D. Wang, “Acas: automated con-
struction of application signatures,” in Proceedings of the 2005 ACM SIG-
COMM workshop on Mining network data, pp. 197–202, ACM, 2005.

[119] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Analyzing android
encrypted network traffic to identify user actions,” IEEE Transactions on
Information Forensics and Security, vol. 11, no. 1, pp. 114–125, 2015.

[120] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu,
M. Conti, A.-R. Sadeghi, and A. S. Uluagac, “Peek-a-boo: I see your smart
home activities, even encrypted!,” arXiv preprint arXiv:1808.02741, 2018.

[121] Q. Xu, T. Andrews, Y. Liao, S. Miskovic, Z. M. Mao, M. Baldi, and
A. Nucci, “Flowr: a self-learning system for classifying mobileapplica-
tion traffic,” ACM SIGMETRICS Performance Evaluation Review, vol. 42,
no. 1, pp. 569–570, 2014.

[122] M. Hur and M.-S. Kim, “Towards smart phone traffic classification,” in
2012 14th Asia-Pacific Network Operations and Management Symposium
(APNOMS), pp. 1–4, IEEE, 2012.

[123] A. Murgia, G. Ghidini, S. P. Emmons, and P. Bellavista, “Lightweight inter-
net traffic classification: A subject-based solution with word embeddings,”
in 2016 IEEE International Conference on Smart Computing (SMART-
COMP), pp. 1–8, IEEE, 2016.

[124] R. Gonzalez, F. Manco, A. Garcia-Duran, J. Mendes, F. Huici, S. Niccolini,
and M. Niepert, “Net2vec: Deep learning for the network,” arXiv preprint
arXiv:1705.03881, 2017.

[125] Y.-H. Goo, K.-S. Shim, S.-K. Lee, and M.-S. Kim, “Payload signature struc-
ture for accurate application traffic classification,” in 2016 18th Asia-Pacific
Network Operations and Management Symposium (APNOMS), pp. 1–4,
IEEE, 2016.

[126] J. Nowak, M. Korytkowski, R. Nowicki, R. Scherer, and A. Siwocha, “Ran-
dom forests for profiling computer network users,” in International Confer-
ence on Artificial Intelligence and Soft Computing, pp. 734–739, Springer,
2018.

[127] Z. Zhang, Z. Zhang, P. P. Lee, Y. Liu, and G. Xie, “Toward unsuper-
vised protocol feature word extraction,” IEEE Journal on Selected Areas
in Communications, vol. 32, no. 10, pp. 1894–1906, 2014.

[128] G. Maier, F. Schneider, and A. Feldmann, “A first look at mobile hand-held
device traffic,” in International Conference on Passive and Active Network
Measurement, pp. 161–170, Springer, 2010.

124

[129] Z. Chen, B. Yu, Y. Zhang, J. Zhang, and J. Xu, “Automatic mobile ap-
plication traffic identification by convolutional neural networks,” in 2016
IEEE Trustcom/BigDataSE/ISPA, pp. 301–307, IEEE, 2016.

[130] Z. Chen, K. He, J. Li, and Y. Geng, “Seq2img: A sequence-to-image based
approach towards ip traffic classification using convolutional neural net-
works,” in 2017 IEEE International Conference on Big Data (Big Data),
pp. 1271–1276, IEEE, 2017.

[131] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and M. Zhu,
“Hast-ids: Learning hierarchical spatial-temporal features using deep neu-
ral networks to improve intrusion detection,” IEEE Access, vol. 6, pp. 1792–
1806, 2017.

[132] Z. Li, Z. Qin, K. Huang, X. Yang, and S. Ye, “Intrusion detection using
convolutional neural networks for representation learning,” in International
Conference on Neural Information Processing, pp. 858–866, Springer, 2017.

[133] Z. Wang, “The applications of deep learning on traffic identification,”
BlackHat USA, vol. 24, 2015.

[134] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware traffic classi-
fication using convolutional neural network for representation learning,”
in 2017 International Conference on Information Networking (ICOIN),
pp. 712–717, IEEE, 2017.

[135] O. Salman, I. H. Elhajj, A. Chehab, and A. Kayssi, “A multi-level internet
traffic classifier using deep learning,” in 2018 9th International Conference
on the Network of the Future (NOF), pp. 68–75, IEEE, 2018.

[136] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Mobile encrypted
traffic classification using deep learning,” in 2018 Network Traffic Measure-
ment and Analysis Conference (TMA), pp. 1–8, IEEE, 2018.

[137] Z. Liu, R. Wang, N. Japkowicz, Y. Cai, D. Tang, and X. Cai, “Mobile
app traffic flow feature extraction and selection for improving classifica-
tion robustness,” Journal of Network and Computer Applications, vol. 125,
pp. 190–208, 2019.

[138] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song, “Networkprofiler:
Towards automatic fingerprinting of android apps,” in 2013 Proceedings
IEEE INFOCOM, pp. 809–817, IEEE, 2013.

[139] B. Schmidt, A. Al-Fuqaha, A. Gupta, and D. Kountanis, “Optimizing an
artificial immune system algorithm in support of flow-based internet traffic
classification,” Applied Soft Computing, vol. 54, pp. 1–22, 2017.

125

[140] S. Mongkolluksamee, V. Visoottiviseth, and K. Fukuda, “Enhancing the
performance of mobile traffic identification with communication patterns,”
in 2015 IEEE 39th Annual Computer Software and Applications Confer-
ence, vol. 2, pp. 336–345, IEEE, 2015.

[141] Z. Yuan and C. Wang, “An improved network traffic classification algorithm
based on hadoop decision tree,” in 2016 IEEE International Conference of
Online Analysis and Computing Science (ICOACS), pp. 53–56, IEEE, 2016.

[142] L. Hu and L. Zhang, “Real-time internet traffic identification based on
decision tree,” in World Automation Congress 2012, pp. 1–3, IEEE, 2012.

[143] J. Lingyu, L. Yang, W. Bailing, L. Hongri, and X. Guodong, “A hierarchical
classification approach for tor anonymous traffic,” in 2017 IEEE 9th Inter-
national Conference on Communication Software and Networks (ICCSN),
pp. 239–243, IEEE, 2017.

[144] N. Jing, M. Yang, S. Cheng, Q. Dong, and H. Xiong, “An efficient svm-
based method for multi-class network traffic classification,” in 30th IEEE
International Performance Computing and Communications Conference,
pp. 1–8, IEEE, 2011.

[145] Y. Hong, C. Huang, B. Nandy, and N. Seddigh, “Iterative-tuning support
vector machine for network traffic classification,” in 2015 IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM), pp. 458–466,
IEEE, 2015.

[146] M. Sabzekar, M. H. Y. Moghaddam, and M. Naghibzadeh, “Tcp traffic
classification using relaxed constraints support vector machines,” in Inte-
gration of Practice-Oriented Knowledge Technology: Trends and Prospec-
tives, pp. 129–139, Springer, 2013.

[147] W. Zhou, L. Dong, L. Bic, M. Zhou, and L. Chen, “Internet traffic classifica-
tion using feed-forward neural network,” in 2011 International Conference
on Computational Problem-Solving (ICCP), pp. 641–646, IEEE, 2011.

[148] S. Dong, D. Zhou, W. Zhou, W. Ding, and J. Gong, “Research on net-
work traffic identification based on improved bp neural network,” Applied
Mathematics & Information Sciences, vol. 7, no. 1, 2013.

[149] D. Smit, K. Millar, C. Page, A. Cheng, H.-G. Chew, and C.-C. Lim, “Look-
ing deeper: Using deep learning to identify internet communications traf-
fic,” in 2017 Australasian Conference of Undergraduate Research (ACUR),
2017.

126

[150] Y. Liu, S. Zhang, B. Ding, X. Li, and Y. Wang, “A cascade forest approach
to application classification of mobile traces,” in 2018 IEEE Wireless Com-
munications and Networking Conference (WCNC), pp. 1–6, IEEE, 2018.

[151] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, “State-of-the-art deep learning: Evolving machine intelligence
toward tomorrows intelligent network traffic control systems,” IEEE Com-
munications Surveys & Tutorials, vol. 19, no. 4, pp. 2432–2455, 2017.

[152] D. Hahn, N. Apthorpe, and N. Feamster, “Detecting compressed clear-
text traffic from consumer internet of things devices,” arXiv preprint
arXiv:1805.02722, 2018.

[153] R. Vinayakumar, K. Soman, and P. Poornachandran, “Applying convolu-
tional neural network for network intrusion detection,” in 2017 Interna-
tional Conference on Advances in Computing, Communications and Infor-
matics (ICACCI), pp. 1222–1228, IEEE, 2017.

[154] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and wireless
networking: A survey,” IEEE Communications Surveys & Tutorials, 2019.

[155] D. Gugelmann, “Deep learning and machine learning for network traffic
analysis,” SIGS Technology Conference 2017 Hacking Day, 2017.

[156] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[157] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information
processing systems, pp. 1097–1105, 2012.

[158] “Cs231n convolutional neural networks for visual recognition.”
http://cs231n.github.io/convolutional-networks/. (Accessed on
10/02/2019).

[159] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 1–9, 2015.

[160] S. Rezaei and X. Liu, “How to achieve high classification accuracy with just
a few labels: A semi-supervised approach using sampled packets,” arXiv
preprint arXiv:1812.09761, 2018.

127

[161] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, “Net-
work traffic classifier with convolutional and recurrent neural networks for
internet of things,” IEEE Access, vol. 5, pp. 18042–18050, 2017.

[162] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 770–778, 2016.

[163] “Recurrent neural network - wikipedia.”
https://en.wikipedia.org/wiki/Recurrentneuralnetwork.(Accessedon10/02/2019).

[164] A. Munther, R. R. Othman, A. S. Alsaadi, and M. Anbar, “A performance
study of hidden markov model and random forest in internet traffic classi-
fication,” in Information Science and Applications (ICISA) 2016, pp. 319–
329, Springer, 2016.

[165] A. Dainotti, A. Pescape, P. S. S. Rossi, G. Iannello, F. Palmieri, and G. Ven-
tre, “Qrp07-2: An hmm approach to internet traffic modeling,” in IEEE
Globecom 2006, pp. 1–6, IEEE, 2006.

[166] J. E. B. Maia and R. Holanda Filho, “Internet traffic classification using a
hidden markov model,” in 2010 10th International Conference on Hybrid
Intelligent Systems, pp. 37–42, IEEE, 2010.

[167] S. E. Gómez, B. C. Mart́ınez, A. J. Sánchez-Esguevillas, and L. H. Callejo,
“Ensemble network traffic classification: Algorithm comparison and novel
ensemble scheme proposal,” Computer Networks, vol. 127, pp. 68–80, 2017.

[168] C. Wang, T. Xu, and X. Qin, “Network traffic classification with improved
random forest,” in 2015 11th International Conference on Computational
Intelligence and Security (CIS), pp. 78–81, IEEE, 2015.

[169] G. Sun, L. Liang, T. Chen, F. Xiao, and F. Lang, “Network traffic clas-
sification based on transfer learning,” Computers & electrical engineering,
vol. 69, pp. 920–927, 2018.

[170] M. Shafiq, X. Yu, and D. Wang, “Network traffic classification using ma-
chine learning algorithms,” in International Conference on Intelligent and
Interactive Systems and Applications, pp. 621–627, Springer, 2017.

[171] A. K. J. Michael, E. Valla, N. S. Neggatu, and A. W. Moore, “Network traf-
fic classification via neural networks,” tech. rep., University of Cambridge,
Computer Laboratory, 2017.

[172] B. Wang, J. Zhang, Z. Zhang, W. Luo, and D. Xia, “Traffic identification
in big internet data,” in Big Data Concepts, Theories, and Applications,
pp. 129–156, Springer, 2016.

128

[173] M. Shafiq, X. Yu, A. K. Bashir, H. N. Chaudhry, and D. Wang, “A machine
learning approach for feature selection traffic classification using security
analysis,” The Journal of Supercomputing, vol. 74, no. 10, pp. 4867–4892,
2018.

[174] M. Usama, J. Qadir, A. Raza, H. Arif, K.-L. A. Yau, Y. Elkhatib, A. Hus-
sain, and A. Al-Fuqaha, “Unsupervised machine learning for networking:
Techniques, applications and research challenges,” IEEE Access, vol. 7,
pp. 65579–65615, 2019.

[175] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Can’t you hear me
knocking: Identification of user actions on android apps via traffic analysis,”
in Proceedings of the 5th ACM Conference on Data and Application Security
and Privacy, pp. 297–304, ACM, 2015.

[176] G. Dewaele, Y. Himura, P. Borgnat, K. Fukuda, P. Abry, O. Michel,
R. Fontugne, K. Cho, and H. Esaki, “Unsupervised host behavior classifi-
cation from connection patterns,” International Journal of Network Man-
agement, vol. 20, no. 5, pp. 317–337, 2010.

[177] J. Erman, A. Mahanti, M. Arlitt, and C. Williamson, “Identifying and
discriminating between web and peer-to-peer traffic in the network core,”
in Proceedings of the 16th international conference on World Wide Web,
pp. 883–892, ACM, 2007.

[178] J. Yuan, Z. Li, and R. Yuan, “Information entropy based clustering method
for unsupervised internet traffic classification,” in 2008 IEEE International
Conference on Communications, pp. 1588–1592, IEEE, 2008.

[179] C. Yang, F. Wang, and B. Huang, “Internet traffic classification using db-
scan,” in 2009 WASE International Conference on Information Engineer-
ing, vol. 2, pp. 163–166, IEEE, 2009.

[180] J. Zhang, Z. Qian, G. Shou, and Y. Hu, “Traffic identification method
based on on-line density based spatial clustering algorithm,” in 2010 2nd
IEEE InternationalConference on Network Infrastructure and Digital Con-
tent, pp. 270–274, IEEE, 2010.

[181] L. Bernaille, R. Teixeira, and K. Salamatian, “Early application identifica-
tion,” in Proceedings of the 2006 ACM CoNEXT conference, p. 6, ACM,
2006.

[182] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian, “Traf-
fic classification on the fly,” ACM SIGCOMM Computer Communication
Review, vol. 36, no. 2, pp. 23–26, 2006.

129

[183] M. Zhang, H. Zhang, B. Zhang, and G. Lu, “Encrypted traffic classification
based on an improved clustering algorithm,” in International Conference
on Trustworthy Computing and Services, pp. 124–131, Springer, 2012.

[184] J. Höchst, L. Baumgärtner, M. Hollick, and B. Freisleben, “Unsupervised
traffic flow classification using a neural autoencoder,” in 2017 IEEE 42nd
Conference on Local Computer Networks (LCN), pp. 523–526, IEEE, 2017.

[185] D. Li, Y. Zhu, and W. Lin, “Traffic identification of mobile apps based on
variational autoencoder network,” in 2017 13th International Conference on
Computational Intelligence and Security (CIS), pp. 287–291, IEEE, 2017.

[186] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, pp. 2672–2680, 2014.

[187] H. Zenati, C. S. Foo, B. Lecouat, G. Manek, and V. R. Chandrasekhar,
“Efficient gan-based anomaly detection,” arXiv preprint arXiv:1802.06222,
2018.

[188] D. Li, D. Chen, J. Goh, and S.-k. Ng, “Anomaly detection with gen-
erative adversarial networks for multivariate time series,” arXiv preprint
arXiv:1809.04758, 2018.

[189] L. Deecke, R. Vandermeulen, L. Ruff, S. Mandt, and M. Kloft, “Image
anomaly detection with generative adversarial networks,” in Joint European
Conference on Machine Learning and Knowledge Discovery in Databases,
pp. 3–17, Springer, 2018.

[190] S. Tripathi, Z. C. Lipton, and T. Q. Nguyen, “Correction by projection:
Denoising images with generative adversarial networks,” arXiv preprint
arXiv:1803.04477, 2018.

[191] D. Warde-Farley and Y. Bengio, “Improving generative adversarial net-
works with denoising feature matching,” 2016.

[192] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial
autoencoders,” arXiv preprint arXiv:1511.05644, 2015.

[193] S. Ger and D. Klabjan, “Autoencoders and generative adversarial networks
for anomaly detection for sequences,” arXiv preprint arXiv:1901.02514,
2019.

[194] X. Wang, Y. Du, S. Lin, P. Cui, and Y. Yang, “Self-adversarial variational
autoencoder with gaussian anomaly prior distribution for anomaly detec-
tion,” arXiv preprint arXiv:1903.00904, 2019.

130

[195] H. S. Vu, D. Ueta, K. Hashimoto, K. Maeno, S. Pranata, and S. M. Shen,
“Anomaly detection with adversarial dual autoencoders,” arXiv preprint
arXiv:1902.06924, 2019.

[196] L. Beggel, M. Pfeiffer, and B. Bischl, “Robust anomaly detection in images
using adversarial autoencoders,” arXiv preprint arXiv:1901.06355, 2019.

[197] A. Creswell and A. A. Bharath, “Denoising adversarial autoencoders,”
IEEE transactions on neural networks and learning systems, vol. 30, no. 4,
pp. 968–984, 2018.

[198] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A
survey,” arXiv preprint arXiv:1901.03407, 2019.

[199] S. Liu, J. Hu, S. Hao, and T. Song, “Improved em method for internet
traffic classification,” in 2016 8th International Conference on Knowledge
and Smart Technology (KST), pp. 13–17, IEEE, 2016.

[200] Y. Zhao, J. Chen, G. You, and J. Teng, “Network traffic classification
model based on mdl criterion,” in Advanced Multimedia and Ubiquitous
Engineering, pp. 1–8, Springer, 2016.

[201] Y. Wang, Y. Xiang, J. Zhang, W. Zhou, G. Wei, and L. T. Yang, “Internet
traffic classification using constrained clustering,” IEEE transactions on
parallel and distributed systems, vol. 25, no. 11, pp. 2932–2943, 2013.

[202] M. Laner, P. Svoboda, and M. Rupp, “Detecting m2m traffic in mobile
cellular networks,” in IWSSIP 2014 Proceedings, pp. 159–162, IEEE, 2014.

[203] G. Szabó, J. Szüle, Z. Turányi, and G. Pongrácz, “Multi-level machine
learning traffic classification system,” in The Eleventh International Con-
ference on Networks, pp. 69–77, 2012.

[204] Z. A. Shaikh and D. G. Harkut, “A novel framework for network traffic clas-
sification using unknown flow detection,” in 2015 Fifth International Con-
ference on Communication Systems and Network Technologies, pp. 116–
121, IEEE, 2015.

[205] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, “Robust network traffic
classification,” IEEE/ACM Transactions on Networking (TON), vol. 23,
no. 4, pp. 1257–1270, 2015.

[206] J. Zhang, C. Chen, Y. Xiang, and W. Zhou, “Robust network traffic
identification with unknown applications,” in Proceedings of the 8th ACM
SIGSAC symposium on Information, computer and communications secu-
rity, pp. 405–414, ACM, 2013.

131

[207] J. Zhang, X. Chen, Y. Xiang, and W. Zhou, “Zero-day traffic identifica-
tion,” in Cyberspace Safety and Security, pp. 213–227, Springer, 2013.

[208] W. Li and A. W. Moore, “A machine learning approach for efficient traffic
classification,” in 2007 15th International Symposium on Modeling, Analy-
sis, and Simulation of Computer and Telecommunication Systems, pp. 310–
317, IEEE, 2007.

[209] J. Zhang, C. Chen, Y. Xiang, W. Zhou, and A. V. Vasilakos, “An effective
network traffic classification method with unknown flow detection,” IEEE
Transactions on Network and Service Management, vol. 10, no. 2, pp. 133–
147, 2013.

[210] J. Zhang, Y. Xiang, W. Zhou, and Y. Wang, “Unsupervised traffic classifi-
cation using flow statistical properties and ip packet payload,” Journal of
Computer and System Sciences, vol. 79, no. 5, pp. 573–585, 2013.

[211] T. Bakhshi and B. Ghita, “On internet traffic classification: A two-phased
machine learning approach,” Journal of Computer Networks and Commu-
nications, vol. 2016, 2016.

[212] T. Glennan, C. Leckie, and S. M. Erfani, “Improved classification of known
and unknown network traffic flows using semi-supervised machine learning,”
in Australasian conference on information security and privacy, pp. 493–
501, Springer, 2016.

[213] P. Amaral, J. Dinis, P. Pinto, L. Bernardo, J. Tavares, and H. S. Mamede,
“Machine learning in software defined networks: Data collection and traffic
classification,” in 2016 IEEE 24th International Conference on Network
Protocols (ICNP), pp. 1–5, IEEE, 2016.

[214] A. Fahad, A. Almalawi, Z. Tari, K. Alharthi, F. S. Al Qahtani, and
M. Cheriet, “Semtra: A semi-supervised approach to traffic flow labeling
with minimal human effort,” Pattern Recognition, vol. 91, pp. 1–12, 2019.

[215] C. Rotsos, J. Van Gael, A. W. Moore, and Z. Ghahramani, “Probabilistic
graphical models for semi-supervised traffic classification,” in Proceedings
of the 6th International Wireless Communications and Mobile Computing
Conference, pp. 752–757, ACM, 2010.

[216] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson, “Of-
fline/realtime traffic classification using semi-supervised learning,” Perfor-
mance Evaluation, vol. 64, no. 9-12, pp. 1194–1213, 2007.

132

[217] J. Gao, F. Liang, W. Fan, Y. Sun, and J. Han, “A graph-based consensus
maximization approach for combining multiple supervised and unsuper-
vised models,” IEEE Transactions on Knowledge and Data Engineering,
vol. 25, no. 1, pp. 15–28, 2011.

[218] A. M. Almalawi, A. Fahad, Z. Tari, M. A. Cheema, and I. Khalil, “k nnvwc:
An efficient k-nearest neighbors approach based on various-widths clus-
tering,” IEEE Transactions on Knowledge and Data Engineering, vol. 28,
no. 1, pp. 68–81, 2015.

[219] A. Vlăduţu, D. Comăneci, and C. Dobre, “Internet traffic classification
based on flows’ statistical properties with machine learning,” International
Journal of Network Management, vol. 27, no. 3, p. e1929, 2017.

[220] X. Li, F. Qi, D. Xu, and X.-s. Qiu, “An internet traffic classification method
based on semi-supervised support vector machine,” in 2011 IEEE Interna-
tional Conference on Communications (ICC), pp. 1–5, IEEE, 2011.

[221] F. Qian, G.-m. Hu, and X.-m. Yao, “Semi-supervised internet network traf-
fic classification using a gaussian mixture model,” AEU-International Jour-
nal of Electronics and Communications, vol. 62, no. 7, pp. 557–564, 2008.

[222] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli, “Traffic classifica-
tion through simple statistical fingerprinting,” ACM SIGCOMM Computer
Communication Review, vol. 37, no. 1, pp. 5–16, 2007.

[223] G.-L. Sun, Y. Xue, Y. Dong, D. Wang, and C. Li, “An novel hybrid method
for effectively classifying encrypted traffic,” in 2010 IEEE Global Telecom-
munications Conference GLOBECOM 2010, pp. 1–5, IEEE, 2010.

[224] H. Shi, H. Li, D. Zhang, C. Cheng, and W. Wu, “Efficient and robust fea-
ture extraction and selection for traffic classification,” Computer Networks,
vol. 119, pp. 1–16, 2017.

[225] C.-N. Lu, C.-Y. Huang, Y.-D. Lin, and Y.-C. Lai, “High performance traffic
classification based on message size sequence and distribution,” Journal of
Network and Computer Applications, vol. 76, pp. 60–74, 2016.

[226] J. Kim, J. Hwang, and K. Kim, “High-performance internet traffic clas-
sification using a markov model and kullback-leibler divergence,” Mobile
Information Systems, vol. 2016, 2016.

[227] Y. Wang and R. Nelson, “Identifying network application layer protocol
with machine learning,” Proc. Passive and Active Network Measurement
(PAM 09), Seoul, Korea, 2009.

133

[228] A. W. Moore and K. Papagiannaki, “Toward the accurate identification of
network applications,” in International Workshop on Passive and Active
Network Measurement, pp. 41–54, Springer, 2005.

[229] P. Wang, S.-C. Lin, and M. Luo, “A framework for qos-aware traffic classi-
fication using semi-supervised machine learning in sdns,” in 2016 IEEE In-
ternational Conference on Services Computing (SCC), pp. 760–765, IEEE,
2016.

[230] H. Jiang, A. W. Moore, Z. Ge, S. Jin, and J. Wang, “Lightweight ap-
plication classification for network management,” in Proceedings of the
2007 SIGCOMM workshop on Internet network management, pp. 299–304,
ACM, 2007.

[231] T. Chen and Y. Zeng, “Classification of traffic flows into qos classes by
unsupervised learning and knn clustering,” KSII Trans. on Internet and
Information Systems, vol. 3, no. 2, pp. 134–146, 2009.

[232] M. S. Seddiki, M. Shahbaz, S. Donovan, S. Grover, M. Park, N. Feamster,
and Y.-Q. Song, “Flowqos: per-flow quality of service for broadband access
networks,” tech. rep., Georgia Institute of Technology, 2015.

[233] J. Park, H.-R. Tyan, and C.-C. J. Kuo, “Internet traffic classification for
scalable qos provision,” in 2006 IEEE International Conference on Multi-
media and Expo, pp. 1221–1224, IEEE, 2006.

[234] W. Zai-jian, Y.-n. Dong, H.-x. Shi, Y. Lingyun, and T. Pingping, “Internet
video traffic classification using qos features,” in 2016 International Con-
ference on Computing, Networking and Communications (ICNC), pp. 1–5,
IEEE, 2016.

[235] J. Yang, S. Zhang, X. Zhang, J. Liu, and G. Cheng, “Characterizing smart-
phone traffic with mapreduce,” in 2013 16th International Symposium on
Wireless Personal Multimedia Communications (WPMC), pp. 1–5, IEEE,
2013.

[236] T. Bujlow, T. Riaz, and J. M. Pedersen, “A method for classification of
network traffic based on c5. 0 machine learning algorithm,” in 2012 interna-
tional conference on computing, networking and communications (ICNC),
pp. 237–241, IEEE, 2012.

[237] A. Kortebi, Z. Aouini, C. Delahaye, J.-P. Javaudin, and Y. Ghamri-
Doudane, “A platform for home network traffic monitoring,” in 2017
IFIP/IEEE Symposium on Integrated Network and Service Management
(IM), pp. 895–896, IEEE, 2017.

134

[238] T. Iwai and A. Nakao, “Adaptive mobile application identification through
in-network machine learning,” in 2016 18th Asia-Pacific Network Opera-
tions and Management Symposium (APNOMS), pp. 1–6, IEEE, 2016.

[239] M. Grajzer, M. Koziuk, P. Szczechowiak, and A. Pescapé, “A multi-
classification approach for the detection and identification of ehealth ap-
plications,” in 2012 21st International Conference on Computer Commu-
nications and Networks (ICCCN), pp. 1–6, IEEE, 2012.

[240] S. Valenti and D. Rossi, “Identifying key features for p2p traffic classifica-
tion,” in 2011 IEEE International Conference on Communications (ICC),
pp. 1–6, IEEE, 2011.

[241] S. K. Baghel, K. Keshav, and V. R. Manepalli, “An investigation into traffic
analysis for diverse data applications on smartphones,” in 2012 National
Conference on Communications (NCC), pp. 1–5, IEEE, 2012.

[242] A. Pektaş, “Proposal of machine learning approach for identification of
instant messaging applications in raw network traffic,” International Jour-
nal of Intelligent Systems and Applications in Engineering, vol. 6, no. 2,
pp. 97–102, 2018.

[243] Y. Choi, J. Y. Chung, B. Park, and J. W.-K. Hong, “Automated classifier
generation for application-level mobile traffic identification,” in 2012 IEEE
Network Operations and Management Symposium, pp. 1075–1081, IEEE,
2012.

[244] D. Bonfiglio, M. Mellia, M. Meo, N. Ritacca, and D. Rossi, “Tracking down
skype traffic,” in IEEE INFOCOM 2008-The 27th Conference on Computer
Communications, pp. 261–265, IEEE, 2008.

[245] J. Kampeas, A. Cohen, and O. Gurewitz, “Traffic classification based on
zero-length packets,” IEEE Transactions on Network and Service Manage-
ment, vol. 15, no. 3, pp. 1049–1062, 2018.

[246] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Traffic classification
of mobile apps through multi-classification,” in GLOBECOM 2017-2017
IEEE Global Communications Conference, pp. 1–6, IEEE, 2017.

[247] I. Tsompanidis, A. H. Zahran, and C. J. Sreenan, “Mobile network traffic:
A user behaviour model,” in 2014 7th IFIP Wireless and Mobile Networking
Conference (WMNC), pp. 1–8, IEEE, 2014.

[248] L. Vassio, I. Drago, and M. Mellia, “Detecting user actions from http traces:
Toward an automatic approach,” in 2016 International Wireless Commu-
nications and Mobile Computing Conference (IWCMC), pp. 50–55, IEEE,
2016.

135

[249] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and
S. Tarkoma, “Iot sentinel: Automated device-type identification for se-
curity enforcement in iot,” in 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), pp. 2177–2184, IEEE, 2017.

[250] O. Salman, L. Chaddad, I. H. Elhajj, A. Chehab, and A. Kayssi, “Pushing
intelligence to the network edge,” in 2018 Fifth International Conference
on Software Defined Systems (SDS), pp. 87–92, IEEE, 2018.

[251] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake,
A. Vishwanath, and V. Sivaraman, “Classifying iot devices in smart en-
vironments using network traffic characteristics,” IEEE Transactions on
Mobile Computing, 2018.

[252] B. Copos, K. Levitt, M. Bishop, and J. Rowe, “Is anybody home? infer-
ring activity from smart home network traffic,” in 2016 IEEE Security and
Privacy Workshops (SPW), pp. 245–251, IEEE, 2016.

[253] K. Gopalratnam, S. Basu, J. Dunagan, and H. J. Wang, “Automatically
extracting fields from unknown network protocols,” in First Workshop on
Tackling Computer Systems Problems with Machine Learning Techniques
(SysML06), 2006.

[254] S. Zhao, S. Chen, Y. Sun, Z. Cai, and J. Su, “Identifying known and un-
known mobile application traffic using a multilevel classifier,” Security and
Communication Networks, vol. 2019, 2019.

[255] C. R. Kalmanek, S. Misra, and Y. R. Yang, Guide to reliable internet
services and applications. Springer Science & Business Media, 2010.

[256] Y. Xie, H. Deng, L. Peng, and Z. Chen, “Accurate identification of internet
video traffic using byte code distribution features,” in International Con-
ference on Algorithms and Architectures for Parallel Processing, pp. 46–58,
Springer, 2018.

[257] A. Canovas, J. M. Jimenez, O. Romero, and J. Lloret, “Multimedia data
flow traffic classification using intelligent models based on traffic patterns,”
IEEE Network, vol. 32, no. 6, pp. 100–107, 2018.

[258] T. D. Nguyen, S. Marchal, M. Miettinen, N. Asokan, and A. Sadeghi, “Dı̈ot:
A self-learning system for detecting compromised iot devices,” CoRR, vol.
abs/1804.07474, 2018.

[259] Y. Meidan, M. Bohadana, A. Shabtai, M. Ochoa, N. O. Tippenhauer, J. D.
Guarnizo, and Y. Elovici, “Detection of unauthorized iot devices using
machine learning techniques,” arXiv preprint arXiv:1709.04647, 2017.

136

[260] S. Siby, R. R. Maiti, and N. Tippenhauer, “Iotscanner: Detecting
and classifying privacy threats in iot neighborhoods,” arXiv preprint
arXiv:1701.05007, 2017.

[261] H. Kawai, S. Ata, N. Nakamura, and I. Oka, “Identification of communi-
cation devices from analysis of traffic patterns,” in 2017 13th International
Conference on Network and Service Management (CNSM), pp. 1–5, IEEE,
2017.

[262] L. Bai, L. Yao, S. S. Kanhere, X. Wang, and Z. Yang, “Automatic device
classification from network traffic streams of internet of things,” in 2018
IEEE 43rd Conference on Local Computer Networks (LCN), pp. 1–9, IEEE,
2018.

[263] P. Robyns, E. Marin, W. Lamotte, P. Quax, D. Singelée, and B. Preneel,
“Physical-layer fingerprinting of lora devices using supervised and zero-
shot learning,” in Proceedings of the 10th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, pp. 58–63, ACM, 2017.

[264] R. Das, A. Gadre, S. Zhang, S. Kumar, and J. M. Moura, “A deep learning
approach to iot authentication,” in 2018 IEEE International Conference on
Communications (ICC), pp. 1–6, IEEE, 2018.

[265] N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan, and D. R. Karger,
“Infranet: Circumventing web censorship and surveillance.,” in USENIX
Security Symposium, pp. 247–262, 2002.

[266] “Protocol obfuscation - emule wiki.” http://wiki.emule-
web.de/Protocolobfuscation.(Accessedon10/02/2019).

[267] B. Wiley, “Dust: A blocking-resistant internet transport protocol,” Tech-
nical rep ort. http://blanu. net/Dust. pdf, 2011.

[268] Q. Wang, X. Gong, G. T. Nguyen, A. Houmansadr, and N. Borisov, “Cen-
sorspoofer: asymmetric communication using ip spoofing for censorship-
resistant web browsing,” in Proceedings of the 2012 ACM conference on
Computer and communications security, pp. 121–132, ACM, 2012.

[269] Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeister, S. Cheung,
F. Wang, and D. Boneh, “Stegotorus: a camouflage proxy for the tor
anonymity system,” in Proceedings of the 2012 ACM conference on Com-
puter and communications security, pp. 109–120, ACM, 2012.

[270] H. Mohajeri Moghaddam, B. Li, M. Derakhshani, and I. Goldberg, “Skype-
morph: Protocol obfuscation for tor bridges,” in Proceedings of the 2012
ACM conference on Computer and communications security, pp. 97–108,
ACM, 2012.

137

[271] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo, i
still see you: Why efficient traffic analysis countermeasures fail,” in 2012
IEEE symposium on security and privacy, pp. 332–346, IEEE, 2012.

[272] “pluggable-transports/obfsproxy - pluggable transport for
obfuscated traffic.” https://gitweb.torproject.org/pluggable-
transports/obfsproxy.git/tree/doc/obfs2/obfs2-protocol-spec.txt. (Ac-
cessed on 10/02/2019).

[273] “Flash proxies.” https://crypto.stanford.edu/flashproxy/. (Accessed on
10/02/2019).

[274] P. Winter, T. Pulls, and J. Fuss, “Scramblesuit: A polymorph network
protocol to circumvent censorship,” arXiv preprint arXiv:1305.3199, 2013.

[275] A. Houmansadr, T. J. Riedl, N. Borisov, and A. C. Singer, “I want my voice
to be heard: Ip over voice-over-ip for unobservable censorship circumven-
tion.,” in NDSS, 2013.

[276] “obfs3-protocol-spec.txt\obfs3\doc - pluggable-
transports/obfsproxy - pluggable transport for obfus-
cated traffic.” https://gitweb.torproject.org/pluggable-
transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt. (Ac-
cessed on 10/02/2019).

[277] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Protocol
misidentification made easy with format-transforming encryption,” in Pro-
ceedings of the 2013 ACM SIGSAC conference on Computer & communi-
cations security, pp. 61–72, ACM, 2013.

[278] “doc/meek tor bug tracker & wiki.”
https://trac.torproject.org/projects/tor/wiki/doc/meek. (Accessed
on 10/02/2019).

[279] J. Gardiner and S. Nagaraja, “Blindspot: Indistinguishable anonymous
communications,” arXiv preprint arXiv:1408.0784, 2014.

[280] J. Lv, C. Zhu, S. Tang, and C. Yang, “Deepflow: Hiding anonymous com-
munication traffic in p2p streaming networks,” Wuhan University Journal
of Natural Sciences, vol. 19, no. 5, pp. 417–425, 2014.

[281] S. Li, M. Schliep, and N. Hopper, “Facet: Streaming over videoconferenc-
ing for censorship circumvention,” in Proceedings of the 13th Workshop on
Privacy in the Electronic Society, pp. 163–172, ACM, 2014.

[282] “Github - yawning/obfs4: The obfourscator (courtesy mirror).”
https://github.com/Yawning/obfs4. (Accessed on 10/02/2019).

138

[283] Y. Tang, P. Lin, and Z. Luo, “psobj: Defending against traffic analysis
with pseudo-objects,” in International Conference on Network and System
Security, pp. 96–109, Springer, 2015.

[284] Y. Tang, P. Lin, and Z. Luo, “Obfuscating encrypted web traffic with com-
bined objects,” in International Conference on Information Security Prac-
tice and Experience, pp. 90–104, Springer, 2014.

[285] Y. Li, R. Dai, and J. Zhang, “Morphing communications of cyber-physical
systems towards moving-target defense,” in 2014 IEEE International Con-
ference on Communications (ICC), pp. 592–598, IEEE, 2014.

[286] W. B. Moore, H. Tan, M. Sherr, and M. A. Maloof, “Multi-class traffic
morphing for encrypted voip communication,” in International Conference
on Financial Cryptography and Data Security, pp. 65–85, Springer, 2015.

[287] K. Kohls, T. Holz, D. Kolossa, and C. Pöpper, “Skypeline: Robust hidden
data transmission for voip,” in Proceedings of the 11th ACM on Asia Con-
ference on Computer and Communications Security, pp. 877–888, ACM,
2016.

[288] R. McPherson, A. Houmansadr, and V. Shmatikov, “Covertcast: Using live
streaming to evade internet censorship,” Proceedings on Privacy Enhancing
Technologies, vol. 2016, no. 3, pp. 212–225, 2016.

[289] D. Barradas, N. Santos, and L. Rodrigues, “Deltashaper: Enabling
unobservable censorship-resistant tcp tunneling over videoconferencing
streams,” Proceedings on Privacy Enhancing Technologies, vol. 2017, no. 4,
pp. 5–22, 2017.

[290] F. Li, A. Razaghpanah, A. M. Kakhki, A. A. Niaki, D. Choffnes, P. Gill,
and A. Mislove, “lib erate,(n): A library for exposing (traffic-classification)
rules and avoiding them efficiently,” in Proceedings of the 2017 Internet
Measurement Conference, pp. 128–141, ACM, 2017.

[291] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg, “A sys-
tematic approach to developing and evaluating website fingerprinting de-
fenses,” in Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, pp. 227–238, ACM, 2014.

[292] A. Iacovazzi and Y. Elovici, “Network flow watermarking: A survey,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 1, pp. 512–530, 2016.

[293] L. Dixon, T. Ristenpart, and T. Shrimpton, “Network traffic obfuscation
and automated internet censorship,” IEEE Security & Privacy, vol. 14,
no. 6, pp. 43–53, 2016.

139

[294] T. A. Ghaleb, “Techniques and countermeasures of website/wireless traffic
analysis and fingerprinting,” Cluster Computing, vol. 19, no. 1, pp. 427–438,
2016.

[295] C. V. Wright, S. E. Coull, and F. Monrose, “Traffic morphing: An efficient
defense against statistical traffic analysis.,” in NDSS, vol. 9, Citeseer, 2009.

[296] C. H. Rowland, “Covert channels in the tcp/ip protocol suite,” First Mon-
day, vol. 2, no. 5, 1997.

[297] K. Ahsan and D. Kundur, “Practical data hiding in tcp/ip,” in Proc. Work-
shop on Multimedia Security at ACM Multimedia, vol. 2, 2002.

[298] Y. Huang, B. Xiao, and H. Xiao, “Implementation of covert communica-
tion based on steganography,” in 2008 International Conference on Intelli-
gent Information Hiding and Multimedia Signal Processing, pp. 1512–1515,
IEEE, 2008.

[299] S. Burnett, N. Feamster, and S. Vempala, “Chipping away at censorship
firewalls with user-generated content.,” in USENIX Security Symposium,
pp. 463–468, Washington, DC, 2010.

[300] L. Invernizzi, C. Kruegel, and G. Vigna, “Message in a bottle: Sailing past
censorship,” in Proceedings of the 29th Annual Computer Security Applica-
tions Conference, pp. 39–48, ACM, 2013.

[301] D. Barradas, N. Santos, and L. Rodrigues, “Effective detection of multime-
dia protocol tunneling using machine learning,” in 27th {USENIX} Security
Symposium ({USENIX} Security 18), pp. 169–185, 2018.

[302] H. Liu, Z. Wang, and F. Miao, “Concurrent multipath traffic impersonating
for enhancing communication privacy,” International Journal of Commu-
nication Systems, vol. 27, no. 11, pp. 2985–2996, 2014.

[303] Y. Hu, X. Li, J. Liu, H. Ding, Y. Gong, and Y. Fang, “Mitigating traffic
analysis attack in smartphones with edge network assistance,” in 2018 IEEE
International Conference on Communications (ICC), pp. 1–6, IEEE, 2018.

[304] Y. Gokcen, V. A. Foroushani, and A. N. Z. Heywood, “Can we identify nat
behavior by analyzing traffic flows?,” in 2014 IEEE Security and Privacy
Workshops, pp. 132–139, IEEE, 2014.

[305] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” tech. rep., Naval Research Lab Washington DC,
2004.

140

[306] S. Saleh, J. Qadir, and M. U. Ilyas, “Shedding light on the dark corners of
the internet: A survey of tor research,” Journal of Network and Computer
Applications, vol. 114, pp. 1–28, 2018.

[307] G. He, M. Yang, J. Luo, and X. Gu, “A novel application classification at-
tack against tor,” Concurrency and Computation: Practice and Experience,
vol. 27, no. 18, pp. 5640–5661, 2015.

[308] E. Hodo, X. Bellekens, E. Iorkyase, A. Hamilton, C. Tachtatzis, and
R. Atkinson, “Machine learning approach for detection of nontor traffic,” in
Proceedings of the 12th International Conference on Availability, Reliability
and Security, p. 85, ACM, 2017.

[309] M. AlSabah, K. Bauer, and I. Goldberg, “Enhancing tor’s performance
using real-time traffic classification,” in Proceedings of the 2012 ACM con-
ference on Computer and communications security, pp. 73–84, ACM, 2012.

[310] M. AlSabah and I. Goldberg, “Performance and security improvements for
tor: A survey,” ACM Computing Surveys (CSUR), vol. 49, no. 2, p. 32,
2016.

[311] S. Matic, C. Troncoso, and J. Caballero, “Dissecting tor bridges: a secu-
rity evaluation of their private and public infrastructures,” in Network and
Distributed Systems Security Symposium, pp. 1–15, The Internet Society,
2017.

[312] B. Qu, Z. Zhang, L. Guo, X. Zhu, L. Guo, and D. Meng, “An empirical
study of morphing on network traffic classification,” in 7th International
Conference on Communications and Networking in China, pp. 227–232,
IEEE, 2012.

[313] B. Qu, Z. Zhang, X. Zhu, and D. Meng, “An empirical study of morphing on
behavior-based network traffic classification,” Security and Communication
Networks, vol. 8, no. 1, pp. 68–79, 2015.

[314] X. Fu, B. Graham, R. Bettati, and W. Zhao, “On effectiveness of link
padding for statistical traffic analysis attacks,” in 23rd International Con-
ference on Distributed Computing Systems, 2003. Proceedings., pp. 340–347,
IEEE, 2003.

[315] A. Iacovazzi and A. Baiocchi, “Protecting traffic privacy for massive aggre-
gated traffic,” Computer Networks, vol. 77, pp. 1–17, 2015.

[316] A. Iacovazzi and A. Baiocchi, “Padding and fragmentation for masking
packet length statistics,” in International Workshop on Traffic Monitoring
and Analysis, pp. 85–88, Springer, 2012.

141

[317] A. Iacovazzi and A. Baiocchi, “Investigating the trade-off between over-
head and delay for full packet traffic privacy,” in 2013 IEEE International
Conference on Communications Workshops (ICC), pp. 1345–1350, IEEE,
2013.

[318] A. Iacovazzi and A. Baiocchi, “Optimum packet length masking,” in 2010
22nd International Teletraffic Congress (lTC 22), pp. 1–8, IEEE, 2010.

[319] A. Iacovazzi and A. Baiocchi, “Internet traffic privacy enhancement with
masking: Optimization and tradeoffs,” IEEE transactions on parallel and
distributed systems, vol. 25, no. 2, pp. 353–362, 2013.

[320] L. Wang, K. P. Dyer, A. Akella, T. Ristenpart, and T. Shrimpton, “Seeing
through network-protocol obfuscation,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pp. 57–
69, ACM, 2015.

[321] A. Houmansadr, C. Brubaker, and V. Shmatikov, “The parrot is dead: Ob-
serving unobservable network communications,” in 2013 IEEE Symposium
on Security and Privacy, pp. 65–79, IEEE, 2013.

[322] M. Yang, J. Luo, Z. Ling, X. Fu, and W. Yu, “De-anonymizing and counter-
measures in anonymous communication networks,” IEEE Communications
Magazine, vol. 53, no. 4, pp. 60–66, 2015.

[323] M. Rigaki and S. Garcia, “Bringing a gan to a knife-fight: Adapting mal-
ware communication to avoid detection,” in 2018 IEEE Security and Pri-
vacy Workshops (SPW), pp. 70–75, IEEE, 2018.

[324] Q. Bai, G. Xiong, and Y. Zhao, “Find behaviors of network evasion and pro-
tocol obfuscation using traffic measurement,” in International Conference
on Trustworthy Computing and Services, pp. 342–349, Springer, 2014.

[325] Z. Cao, G. Xiong, and L. Guo, “Mimichunter: A general passive
network protocol mimicry detection framework,” in 2015 IEEE Trust-
com/BigDataSE/ISPA, vol. 1, pp. 271–278, IEEE, 2015.

[326] M. Dusi, M. Crotti, F. Gringoli, and L. Salgarelli, “Tunnel hunter: De-
tecting application-layer tunnels with statistical fingerprinting,” Computer
Networks, vol. 53, no. 1, pp. 81–97, 2009.

[327] R. W. Shirey, “Internet security glossary, version 2,” 2007.

[328] W. Stallings, Cryptography and Network Security, 4/E. Pearson Education
India, 2006.

142

[329] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padmanabhan, and
L. Qiu, “Statistical identification of encrypted web browsing traffic,” in
Proceedings 2002 IEEE Symposium on Security and Privacy, pp. 19–30,
IEEE, 2002.

[330] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in web
applications: A reality today, a challenge tomorrow,” in 2010 IEEE Sym-
posium on Security and Privacy, pp. 191–206, IEEE, 2010.

[331] M. Gruteser and D. Grunwald, “Enhancing location privacy in wireless lan
through disposable interface identifiers: a quantitative analysis,” Mobile
Networks and Applications, vol. 10, no. 3, pp. 315–325, 2005.

[332] T. Jiang, H. J. Wang, and Y.-C. Hu, “Preserving location privacy in wireless
lans,” in Proceedings of the 5th international conference on Mobile systems,
applications and services, pp. 246–257, ACM, 2007.

[333] Y. Fan, B. Lin, Y. Jiang, and X. Shen, “An efficient privacy-preserving
scheme for wireless link layer security,” in IEEE GLOBECOM 2008-2008
IEEE Global Telecommunications Conference, pp. 1–5, IEEE, 2008.

[334] B. Greenstein, D. McCoy, J. Pang, T. Kohno, S. Seshan, and D. Wetherall,
“Improving wireless privacy with an identifier-free link layer protocol,” in
Proceedings of the 6th international conference on Mobile systems, applica-
tions, and services, pp. 40–53, ACM, 2008.

[335] K. Bauer, D. McCoy, B. Greenstein, D. Grunwald, and D. Sicker, “Physical
layer attacks on unlinkability in wireless lans,” in International Symposium
on Privacy Enhancing Technologies Symposium, pp. 108–127, Springer,
2009.

[336] W. Hu, D. Willkomm, M. Abusubaih, J. Gross, G. Vlantis, M. Gerla,
and A. Wolisz, “Dynamic frequency hopping communities for efficient ieee
802.22 operation,” IEEE Communications Magazine, vol. 45, no. 5, pp. 80–
87, 2007.

[337] A. Sheth, S. Seshan, and D. Wetherall, “Geo-fencing: Confining wi-fi cov-
erage to physical boundaries,” in International Conference on Pervasive
Computing, pp. 274–290, Springer, 2009.

[338] I. Martinovic, P. Pichota, and J. B. Schmitt, “Jamming for good: a fresh
approach to authentic communication in wsns,” in Proceedings of the second
ACM conference on Wireless network security, pp. 161–168, ACM, 2009.

[339] S. Lakshmanan, C.-L. Tsao, R. Sivakumar, and K. Sundaresan, “Securing
wireless data networks against eavesdropping using smart antennas,” in

143

2008 The 28th International Conference on Distributed Computing Systems,
pp. 19–27, IEEE, 2008.

[340] F. Zhang, W. He, and X. Liu, “Defending against traffic analysis in wireless
networks through traffic reshaping,” in 2011 31st International Conference
on Distributed Computing Systems, pp. 593–602, IEEE, 2011.

[341] N. Al Khater and R. E. Overill, “Network traffic classification techniques
and challenges,” in 2015 Tenth International Conference on Digital Infor-
mation Management (ICDIM), pp. 43–48, IEEE, 2015.

[342] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?,”
The Journal of Machine Learning Research, vol. 15, no. 1, pp. 3133–3181,
2014.

[343] M. Crotti, F. Gringoli, and L. Salgarelli, “Impact of asymmetric routing on
statistical traffic classification,” in GLOBECOM 2009-2009 IEEE Global
Telecommunications Conference, pp. 1–8, IEEE, 2009.

[344] M. Grzenda, “Towards the reduction of data used for the classification of
network flows,” in International Conference on Hybrid Artificial Intelli-
gence Systems, pp. 68–77, Springer, 2012.

[345] W. De Donato, A. Pescapé, and A. Dainotti, “Traffic identification engine:
an open platform for traffic classification,” IEEE Network, vol. 28, no. 2,
pp. 56–64, 2014.

[346] “Intelligent networking is all about app development - cisco.”
https://www.cisco.com/c/en/us/solutions/enterprise-networks/intelligent-
network.html. (Accessed on 10/02/2019).

[347] “Huawei leaps into ai; announces powerful chips and ml frame-
work.” https://medium.com/syncedreview/huawei-leaps-into-ai-
announces-powerful-chips-and-ml-framework-f9aa6ec87bcb. (Accessed
on 10/02/2019).

[348] “Machine learning and endpoint security - palo alto networks.”
https://www.paloaltonetworks.com/resources/whitepapers/machine-
learning-endpoint-security. (Accessed on 10/02/2019).

[349] “Artificial intelligence for smarter cybersecurity — ibm.”
https://www.ibm.com/security/artificial-intelligence. (Accessed on
10/02/2019).

144

[350] L. Grimaudo, M. Mellia, and E. Baralis, “Hierarchical learning for fine
grained internet traffic classification,” in 2012 8th International Wireless
Communications and Mobile Computing Conference (IWCMC), pp. 463–
468, IEEE, 2012.

[351] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and M. Zhu,
“Hast-ids: Learning hierarchical spatial-temporal features using deep neu-
ral networks to improve intrusion detection,” IEEE Access, vol. 6, pp. 1792–
1806, 2018.

[352] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end encrypted
traffic classification with one-dimensional convolution neural networks,” in
2017 IEEE International Conference on Intelligence and Security Informat-
ics (ISI), pp. 43–48, July 2017.

[353] O. Salman, I. H. Elhajj, A. Chehab, and A. Kayssi, “A multi-level internet
traffic classifier using deep learning,” in 2018 9th International Conference
on the Network of the Future (NOF), pp. 68–75, Nov 2018.

[354] “Vpn-nonvpn dataset (iscxvpn2016), howpublished =
https://www.unb.ca/cic/datasets/vpn.html.”

[355] “Tor-nontor dataset (iscxtor2016).” https://www.unb.ca/cic/datasets/tor.html.

[356] “Tflearn — tensorflow deep learning library.” http://tflearn.org/.

[357] “Tensorflow.” https://www.tensorflow.org/.

[358] “scikit-learn: machine learning in python scikit-learn 0.21.3 documenta-
tion.” https://scikit-learn.org/stable/. (Accessed on 09/24/2019).

[359] Buyun Qu, Zhibin Zhang, Le Guo, Xingquan Zhu, Li Guo, and Dan Meng,
“An empirical study of morphing on network traffic classification,” in 7th
International Conference on Communications and Networking in China,
pp. 227–232, Aug 2012.

[360] B. Qu, Z. Zhang, X. Zhu, and D. Meng, “An empirical study of morphing on
behavior-based network traffic classification,” Security and Communication
Networks, vol. 8, no. 1, pp. 68–79, 2015.

[361] L. Chaddad, A. Chehab, I. H. Elhajj, and A. Kayssi, “Mobile traffic
anonymization through probabilistic distribution,” in 2019 22nd Confer-
ence on Innovation in Clouds, Internet and Networks and Workshops
(ICIN), pp. 242–248, Feb 2019.

145

[362] Xinwen Fu, B. Graham, R. Bettati, and Wei Zhao, “On effectiveness of link
padding for statistical traffic analysis attacks,” in 23rd International Con-
ference on Distributed Computing Systems, 2003. Proceedings., pp. 340–347,
May 2003.

[363] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo, i
still see you: Why efficient traffic analysis countermeasures fail,” in Pro-
ceedings of the 2012 IEEE Symposium on Security and Privacy, SP ’12,
(Washington, DC, USA), pp. 332–346, IEEE Computer Society, 2012.

[364] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards the
development of realistic botnet dataset in the internet of things for network
forensic analytics: Bot-iot dataset,” Future Generation Computer Systems,
vol. 100, pp. 779 – 796, 2019.

[365] “dpkt, howpublished = https://dpkt.readthedocs.io/en/latest/, note = Ac-
cessed: 2019.”

[366] “tensorflow, howpublished = https://www.tensorflow.org/, note = Ac-
cessed: 2019.”

[367] M. Huh, A. Liu, A. Owens, and A. A. Efros, “Fighting fake news: Image
splice detection via learned self-consistency,” in Proceedings of the European
Conference on Computer Vision (ECCV), pp. 101–117, 2018.

[368] “Tensorflow.” https://www.tensorflow.org/. (Accessed on 09/24/2019).

[369] L. Van Der Maaten, “Accelerating t-sne using tree-based algorithms,” The
Journal of Machine Learning Research, vol. 15, no. 1, pp. 3221–3245, 2014.

[370] “Github - jakobovski/free-spoken-digit-dataset: A free audio dataset of
spoken digits. think mnist for audio..” https://github.com/Jakobovski/free-
spoken-digit-dataset. (Accessed on 01/18/2020).

146

