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Based on the differential flatness property of quadrotors, we propose a simple
approach for transferring control policies between different quadrotors. We show
that to guarantee identical performance between different quadrotors, a simple
non-linear transformation between the control signals of the two quadrotors is
sufficient. This transformation depends on the weight and inertia matrix of both
quadrotors.

We also study the problem of efficiently generating dynamically feasible tra-
jectories for quadrotors. A supervised learning approach is used to train a deep
neural network with two hidden layers. The training data is generated from a
well-known trajectory generation method that minimizes jerk given a fixed in-
terval time. More than a million dynamically feasible trajectories between two
random points in 3D space are generated and used as training data. The input of
the neural network is a vector composed of initial and desired states, along with
the final trajectory time. The output of the neural network generates the motion
primitives of the trajectories, as well as the duration or final time of a segment.
Simulation results show very fast dynamically feasible trajectory generation by
the proposed deep learning algorithm.
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Chapter 1

Introduction

There has been a lot of advancement in the field of micro Unmanned Aerial Ve-

hicles (UAV) such as quadrotors. These robots are popular due to their high

mobility in 3D space. Such mobility made the quadrotor an important research

platform due to its potential in various applications such as aerial photogra-

phy, construction, manipulation, and precise agriculture [3], [4]. The diversity

of applications led to unlimited designs of quadrotors with different inertial and

actuator characteristics, which adds more challenges to autonomous quadrotor

flights. Such challenges arise from the difficulty in modeling, motion planning,

and control due to the dynamic environment and nonlinear model of quadrotors.

A common approach to overcome these challenges is to split the problem into

two main tasks: trajectory generation and control [1].

While navigating quadrotors, it is essential to generate a dynamically feasible

trajectory that satisfies some task-related constraints. For example, tasks that

require long-distance traveling should optimize energy consumption, and hence

the trajectories generated must minimize energy required to move the quadrotor

from point A to point B. Alternatively, the task could have time-critical con-
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straints, and thus the energy consumed is less relevant. Therefore, the trajectory

generation requires finding a proper cost function to minimize, subject to the

dynamic constraints of the system at hand. In order for the quadrotor to follow

these generated trajectories, a control method is needed. For simple trajectories

with near hover conditions can be tracked with linear controllers [5]. However,

More specifically, when the quadrotor is moving at higher speeds and large an-

gles of attack, nonlinear dynamics become more dominant. Therefore, complex

nonlinear controllers are required to stabilize quadrotors about these aggressive

trajectories that deviate from the hover state by a large margin [6]. To address

these challenges, we present below a brief literature review on work done in the

field of quadrotor modeling, trajectory generation, and control.

1.1 Related Work

1.1.1 Quadrotor Modeling

To understand how quadrotors function, it is requiered to develop their math-

ematical model. In [3] and [7], Newton’s laws of motion were used to derive a

nonlinear model. While these models treat the quadrotor as a points mass, the

model proved sufficient for designing controllers that were successfully used in

real-world scenarios. More complex models that account for nonlinear aerody-

namics where studied in [3], [8], and [9]. These models take into account blade

flapping and drag forces and moments. While these more complex models capture

more complex dynamics of quadrotors, it is difficult to utilize them for control

design. Hence, blade flapping and drag are often ignored when designing con-

trollers. In [1], it is shown that quadrotors are differentially flat systems. This

property helps to simplify the trajectory generation problem by allowing us to
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generate trajectories in the space of differentially flat outputs instead of the full

state space of the system. This will be discussed in more detail in chapter 3.

1.1.2 Control Algorithms

In the past decade, many control strategies have been proposed and tested for

quadrotors. During the early stages of research on quadrotors, most control

design was focused on the linearized model and operated at low speed and near

hover conditions. In [5] and [10], PD (Proportional-Derivative) controllers were

used to hover quadrotors and slowly move between a set of given waypoints.

Similarly, the LQR (Linear Quadratic Regulator) controller was used in [11]. Like

linear PD controllers, the LQR controller was also operated near hover conditions.

As shown in [9], modeling nonlinear dynamics is difficult. Moreover, even if a

high fidelity model exists, it is very difficult to utilize the model in control design.

To overcome these issues, adaptive control [12] can be used. For example, in [13],

a model reference adaptive controller (MRAC) is designed to combat the loss of

actuator effort. This also helps compensate for nonlinear dynamics that become

dominant during takeoff and landing. However, as it will be shown in chapter

3, such controller performs well near hover conditions only. In particular, this

controller fails to recover from large roll and pitch angles. In [14], a geometric

tracking controller was derived with the capability to stabilize quadrotors from

large deviations from hover conditions. A similar controller was used in [1], [15],

and [6]. The controller was used for aggressive trajectories such as flips and

inverted perching. In another work [16], TVLQR (time-varying LQR) is used

to control quadrotors in cluttered environment. While this controller enables

aggressive trajectory following, it relies on a simple PD attitude controller (similar

to [1]) that runs at a faster rate the TVLQR.
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Other approaches rely on learning trajectories and control parameters. For

example, in [17], expert demonstrations for RC helicopter were used to learn

control policies to perform complex maneuvers such as flips, rolls, and inverted

flight. In [18], controller parameters were iteratively tuned until the quadrotor

was able to perform multiple flips. In a different approach, concurrent learning

[19] was used to tune PID control parameters that are imported to a quadrotor

with different inertial properties than those initially designed.

1.1.3 Trajectory generation

Trajectory generation was the focus of many research papers in the past decade.

Depending on the application requirements, the choice of trajectory generation

algorithm may vary. In a harsh environment, where large disturbances are ex-

pected, it is best to generate soft trajectories that only slightly require the quadro-

tor to deviate from hover conditions. Paired with an adaptive controller such as

[13] that are designed for near hover conditions, these trajectories can be safely

followed.

On the other hand, some applications require fast navigation between way-

points, where time-optimal trajectories generation is required. In [20], time-

optimal trajectories are generated such that Pontryagin’s minimum principle with

respect to time-optimality is satisfied. These trajectories are based on approx-

imate models in a two-dimensional space (ignoring dynamics along the y-axis),

whereas in realistic situations, maneuvers are executed in 3D space. Additionally,

these trajectories take hours to compute. Thus, this method cannot be used in

a dynamic environment where new trajectories must be generated mid-flight. To

overcome this issue, real-time trajectory generation methods are required [21],

[22], [23], [24]. However, to be able to achieve this, the condition for time opti-
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mality has to be relaxed. For example, instead of minimizing the final trajectory

time, the jerk [24] can be minimized to generate trajectories.

In [1], the differential flatness property of quadrotors is exploited to generate

smooth minimum snap trajectories. In [25], an efficient method to compute piece-

wise minimum snap trajectories between waypoints is introduced. Nevertheless,

choosing the final trajectory time has to be manually tuned.

1.2 Scope

In this work, a method for transferring control policies between different quadro-

tors is proposed. We show that to guarantee identical performance between dif-

ferent quadrotors, a simple nonlinear transformation between the control signals

of the two quadrotors is sufficient. This transformation depends on the weight

and inertia matrix of both quadrotors.

Moreover, the problem of efficiently generating dynamically feasible trajectories

for quadrotors is also studied in chapter 6. A supervised learning approach is

used to train a deep neural network with two hidden layers. The training data is

generated from a well-known trajectory generation method that minimizes jerk

given a fixed interval time. More than a million dynamically feasible trajectories

between two random points in 3D space are generated and used as training data.

The input of the neural network is a vector composed of initial and desired states,

along with the final trajectory time. The output of the neural network generates

the motion primitives of the trajectories, as well as the duration or final time of

a segment. Simulation results show a very fast dynamically feasible trajectory

generation by the proposed deep learning algorithm.

In chapter 2, the dynamical model of the quadrotor system is introduced. The
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notation used in this chapter will be adopted through out this thesis. In chapter

3, two control algorithms will be described. These controllers are treated as

baselines to compare with the results of the control transfer method. In chapter

4, the method to transfer controllers from one quadrotor to another is described.

In chapter 4, the stability of transferred controller is studied. In chapter 6, a

method for trajectory generation with deep learning is described and analysed.

Our contribution in this thesis is highlighted in chapters 4, 5, and 6. Finally, a

conclusion for the results of this thesis is presented in chapter 7.
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Chapter 2

Modeling

2.1 Introduction

In this chapter, the coordinate frame system and the dynamical model of the

quadrotor are introduced. Our notation closely follows [3] and [1]. This model

will be used in the following chapters to derive control and trajectory generation

methods.

2.2 Coordinate Frame

It is important to specify the frames of reference. Let {A} denote the inertial

frame, and {B} denote the body frame. The vector r = [x y z]T denotes the

position of the center of mass of {B} in {A} [3]. The quadrotor has six degrees

of freedom: {x, y, z, φ, θ, ψ}. The rotation angles φ, θ, and ψ correspond to roll,

pitch, and yaw, respectively. Therefore, define the state vector to be:

XT =

[
x y z φ θ ψ ẋ ẏ ż φ̇ θ̇ ψ̇

]
(2.1)
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Figure 2.1: Global and body frames of references of quadrotor in 3D space.

We use Z −X − Y Euler angles for the rotation matrices. Let RA
B, or simply R,

denote the rotation from {B} to {A} coordinates.

R =


cosψcosθ − sinφsinψsinθ −cosφsinψ cosψsinθ + cosθsinφsinψ

cosθsinψ + cosψsinφsinθ cosφcosψ sinψsinθ − cosψcosθsinφ

−cosφsinθ sinφ cosφcosθ

 (2.2)

2.2.1 Rigid Body Dynamics

From Newton’s second law:

mr̈ =


0

0

−mg

+R


0

0

F1 + F2 + F3 + F4

 (2.3)

Similarly, for rotational motion:
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I
d~ω

dt
+ ~ω × I~ω = ~τ =


τx

τy

τz

 (2.4)

Where I is the inertia matrix, and I~ω is the angular momentum. Since the AR

Drone platform is symmetric with equally distributed mass, the inertial matrix I

becomes diagonal:

I =


Ixx 0 0

0 Iyy 0

0 0 Izz

 (2.5)

2.2.2 Forces and Moments

The thrust of a single motor is [2]:

Fi = cTω
2
i (2.6)

and the drag force (force acting against the rotation of the blades) for each rotor

is:

Mi = cQω
2
i (2.7)

Where cT and cQ are thrust and moment constants, which are properties of the

blades and quadrotor frame. The total thrust is defined as:

TΣ =
4∑
i=1

cTω
2
i (2.8)
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and the moment about the x-axis is:

τ1 = d(F2 − F4) (2.9)

where d is the distance from the rotors to the center of mass of the quadrotor.

The moment about the y-axis is:

τ2 = d(F1 − F3) (2.10)

The moment about the z-axis is:

τ3 = M1 −M2 +M3−M4 (2.11)

The previous forces and moments can be summarized by the equation below:



TΣ

τ1

τ2

τ3


=



cT cT cT cT

0 dcT 0 −dcT

−dcT 0 dcT 0

−cQ cQ −cQ cQ





ω2
1

ω2
2

ω2
3

ω2
4


(2.12)

The controller will compute required thrust and moments, and then using (2.12)

the individual rotor speeds will be calculated. The processing unit will then issue

a command ω̄desired related to ω̄i by terms of the following first-order differential

equation:

ω̄i = Km (ω̄desired − ω̄i) (2.13)

where Km is a motor gain specific to the motors.
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2.3 System Identification

From the previous section, we see that to perform the same maneuver on quadro-

tor B, we have to learn its inertia matrix. To do this, we go back to equation (2).

Note that the ~ω and ~̇ω can be estimated from onboard sensors, and the torque is

our input. Hence, we can learn the I from data. To do so, first rewrite ~ω× I~ω as:

~ω × I~ω =


0 −r q

r 0 −p

−q p 0



Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz



p

q

r



=


0 −r q

r 0 −p

−q p 0



Ixxp+ Ixyq + Ixxr

Iyxp+ Iyyq + Iyzr

Izxp+ Izyq + Izzr



=


−r(Iy. ~ω)) + q(Iz. ~ω))

r(Ix. ~ω))− p(Iz. ~ω)

−q(Ix. ~ω)) + p(Iy. ~ω))



(2.14)

Where Ix, Iy and Iz represent the rows of I. Therefore, equation (2) can be written

as:

I
d~ω

dt
+ ~ω × I~ω =


Ix.~̇ω − r(Iy. ~ω)) + q(Iz. ~ω))

Iy.~̇ω + r(Ix. ~ω))− p(Iz. ~ω)

Iz.~̇ω − q(Ix. ~ω)) + p(Iy. ~ω))

 =


τx

τy

τz

 (2.15)

Therefore, from the first row of the equations above, we can select a feature

vector:

φ(ω, ω̇) =

[
ṗ q̇ ṙ −rp −rq −r2 qp q2 qr

]
(2.16)

First, we try to use stochastic gradient descent (SGD) to update our estimate

of the elements of I after every measurement of the speeds and acceleration.
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However, the fact that the quadrotor has unstable dynamics introduces a problem

to this approach. In order to stabilize the quadrotor, our input τ is selected to be

a simple feedback controller. Running SGD (or recursive least squares, RLS) on

the collected data, we notice that our estimates diverge from the true value. This

problem is also known as ”loss of system’s identifiability”, and it is due to the

use of feedback controllers [26] [27]. To overcome this issue, a small signal that

slightly pushes the quadrotor to instability is repeatedly added to the feedback

controller until we have sufficient data. Then, we can compute our estimate of I

using least squares estimation.

2.4 Conclusion

In this chapter, we introduced the quadrotor dynamics and frames of references.

Despite the simplicity of this model, it accounts for the most dominant dynamics

for quadrotors. It has been shown in many previous projects, such as [3], [24], [20],

that this model is sufficient for developing autonomous controllers for quadrotors.

This model will be used for control design in chapter 3. Moreover, we will show

that this model defines a differentially flat system. This is a key property that

allows efficient trajectory generation for quadrotors, as it will be shown in chapter

3.
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Chapter 3

Quadrotor Control Methods

3.1 Introduction

In this chapter, two popular nonlinear control strategies will be introduced. The

first controller described in section 3.2.1 is capable of stabilizing quadrotor about

aggressive trajectories far from hover conditions. However, this controller fails to

accommodate for unmodeled disturbances. For this purpose, another adaptive

controller will be introduced in 3.3. Simulation results for each controller will be

shown. In chapter 4, it will be shown that knowing the inertial characteristics

of two quadrotors is sufficient to transfer control policies from one to another.

Nevertheless, to guarantee stability, controllers must be transferred from bigger

to smaller quadrotors. This stability analysis of the transferred controller is

discussed in detail in chapter 4.
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3.2 Cascaded PID Control

In this section, we leverage the work in [1]. A nonlinear controller, split into a

position controller and an altitude controller, is presented.

Figure 3.1: Position and attitude control approach as described in [1]. The
position controller computes desired attitude angles along with thrust command
U1. The attitude controller computes desired torque commands U2.

3.2.1 Control Design

To show that controllers can be easily transformed from one quadrotor to another,

we assume that a well-tuned nonlinear controller is available for the reference

quadrotor. The control law is described by the following equations:

Fdes = −Kpep −Kvev +mgzw +mr̈T (3.1)

This desired force is not always feasible, since it may not be aligned with zb.

Therefore, the commanded thrust is obtained by projecting the desired force

along zb. Hence,

u1 = Fdes.zb (3.2)

The commanded torques are computed as follows:

τ = −KReR −Kwew (3.3)

14



Where Kp , Kv, KR, and Kw are diagonal matrices of gains. Additionally, ep is

the error in position, ev is the error in velocity, eR is the error in rotation, and

ew is the error in angular speeds.

3.2.2 Simulation Results

To test this controller, a random set of waypoints is selected. The quadrotor

is commanded to move from one point to another at random timestamp. This

is equivalent to a step response test in all direction [x, y, z]. Notice in 3.2 that

for all axis, there is less than 15% overshoot and less than one second rise time.

The initial pitch angle of the quadrotor is randomized between θ = [0, π
2
]. For all

simulation results, it is noticed that the quadrotor stabilizes withing two seconds.

In 3.2, the worst case of initial θ = π/2 is shown.

Figure 3.2: Simulation results of the PD controller from AR drone. The quadrotor
is started at position [0, 0, 0] with initial pitch angle θ = π

2
to test for recovery

from large attitude deviations that are far from hover conditions.
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3.3 Adaptive Control

In the previous section, a nonlinear controller capable of stabilizing quadrotors

about aggressive trajectories was introduced. Nevertheless, this controller does

not account for changes in the dynamical model of the system described by the

set of equations 2.3 and 2.4. For example, when one of the blades of the quadrotor

is cut, the actuator would lose its thrust. This loss of thrust introduces a distur-

bance to the quadrotor dynamical model, which makes the controller designed in

the previous section fail at stabilizing the quadrotor even for simple trajectories.

To verify this, a simulation experiment is carried where the quadrotor is com-

manded to navigate between several waypoints. At t = 10s one of the actuators

is set to have 50% of its commanded thrust instead of 100%. Results shown in

figure 3.3 show that after loss of effort occurs, the quadrotor will quickly deviate

from its trajectory and crash.

To deal with such problems, a model reference adaptive controller (MRAC)

is designed to account for disturbances on the quadrotor dynamical model [13],

such as loss of effort in one of the actuators. The controller is designed based on a

linearized model near hover conditions. In the following sections, the importance

of such controllers is shown by comparing simulation results of a well designed

LQR controller with an MRAC controller.

3.3.1 Linearized Model

The equations of motion 2.3 and 2.4 presented in the chapter 2 are nonlinear.

The adaptive controller is designed for a model linearized near hover conditions.

The near hover assumptions are: θ = φ = ψ = 0, ṙ = 0, φ̇ = θ̇ = ψ̇ = 0.

16



Figure 3.3: Simulation of trajectory following using cascaded PD control struc-
ture. Continuous lines show desired trajectories for [x, y, z]. Dotted lines show
actual trajectories for [x, y, z]. At t = 10, one of the actuators losses 50% of it
total thrust.

The linearized equations for motions become:

ẍ = r̈1 = gθ

ÿ = r̈2 = −gφ

z̈ = r̈3 =
1

m
u1 − g

(3.4)

and for rotational motion:


ṗ

q̇

ṙ

 =


τ1/Ix

τ2/Iy

τ3/Iz

 (3.5)
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3.3.2 Control Design

In this section, we derive an adaptive controller that compensates for any un-

certainties in the dynamics of the quadrotor. The state-space equation of our

system can be written as:

ẋ = Apxp +BpΛu (3.6)

where Ap ∈ Re12x12, Bp ∈ Re12x4, xp ∈ Re12 is the state vector, u ∈ Re4 is the

input vector, and are all derived from the dynamics equations 3.4 and 3.5. Λ

is an unknown 4 × 4 matrix that models the loss of thrust in one of the blades.

The state consists then of x, y, z, φ, θ, ψ and their derivatives. Our goal is to

track the reference command ym ∈ Re4. So we define the output of system 3.7 as

yp = Cpxp with yp being the vector (x, y, z, ψ)T . We define the output tracking

error as ey = yp − ym, and the integrated output tracking error eyI as ėyI = ey.

We then augment these errors in the state-space model 3.7 which leads to an

extended system

ẋ = Ax+BΛu+Bcym (3.7)

where x = (xp
T eyI

T )T is the extended state vector. The extended system’s

matrices are given by:

A =

 Ap 0npxm

Cp 0mxm

 , B =

 Bp

0mxm

 , Bc =

 0npxm

−Imxm

 (3.8)

We will use the model reference adaptive controller approach (MRAC) in order

to adapt to any changes in the dynamics of the quadrotor (loss of thrust in one

of the blades). By comparing with the system dynamics in 3.7, we choose the
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reference model to be:

ẋm = Amxm +Bcr (3.9)

where xm is the reference model state vector, Bc is the matrix defined in 3.7,

and the reference output is the vector [xref , yref , zref , ψref ]T . Besides, it will

be assumed that there exists a matrix Kx of the LQR baseline controller such

that A − BΛKx is Hurwitz i.e. its eigenvalues are negative. We choose Am =

A−BΛKx. The adaptive control law is defined as:

uad = K̂Tx+ θ̂Tr r + θ̂Td = θ̂Tω (3.10)

where θ̂T = [K̂T θ̂Tr θ̂Td ] is a 4 × 21 matrix of time-varying adaptive parameters

and ωT=[xT rT 1 ] is the regressor vector of dimension R21. Notice that the

first element of the adaptive controller is K̂Tx, which has the same form as the

baseline LQR controller. Thus, we propose to augment the adaptive controller

to the LQR controller instead of replacing it, and this is claimed to lead to less

adaptation gains and more robust performance. So the control law ends up being:

u = uad + uLQR = θ̂Tω −Kxx (3.11)

In order to choose a convenient adaptation law of the parameters matrix θ̂ that

ensures stability and tracking of our system to the reference model, we proceed

with the Lyapunov-based approach and propose the following candidate Lya-

punov function that we claim will do the job:

V (e, θ) = eTPe+ tr(θ̂TΓ−1θ̂Λ) (3.12)
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where e = x− xm is the model tracking error, Γ is a 21× 21 diagonal matrix of

adaptive gains, P is a 16×16 symmetric positive definite (SPD) matrix satisfying

the Lyapunov equation, Am
TP+PAm = −Q where Q is also a symmetric positive

definite matrix. We aim toward deriving an adaptation law that will lead to

V̇ < 0.

We start by deriving the error dynamics of our system. Notice that ė is the

derivative of the model tracking error and is given by the following equation:

ė = ẋ− ẋm

= (Ax+BΛu+Bcr)− (Amxm +Bcr)

= (Ax+BΛ(uad + uLQR) +Bcr)− (Amxm +Bcr)

+ Amx− Amx

= (Ax+BΛ(θ̂Tω −Kxx) +Bcr)

− (Amxm +Bcr) + Amx− (A−BΛKx)x

= Ame+BΛ(θ̂Tω)

(3.13)

By differentiating the Lyapunov function 3.12 with respect to time we get:

V̇ = ėTPe+ eTP ė+ 2tr([θ̂TΓ−1 ˙̂
θ]Λ)

= (Ame+BΛ(θ̂Tω))TPe+ eTP (Ame+BΛ(θ̂Tω))

+ 2tr([θ̂TΓ−1 ˙̂
θ]Λ)

= eT (AmP + PAm)e+ 2eTPBΛθ̂Tω

+ 2tr([θ̂TΓ−1 ˙̂
θ]Λ)

(3.14)

As we see in the previous equation, the first term clearly simplifies to −eTQe
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which is convenient for us. The other terms, on the other hand, are nasty, and

we shall find an adaptation law such that they cancel out. Using a small trick,

we can include the second term inside the transpose term. The trick is basically

a linear algebra identity which is stated as follows: given any two n dimensional

vectors a and b, aT b = tr(baT ).

Consider the second term of equation (3.14), let aT = eTPBΓ and b =

θ̂Tω. Therefore, by simply applying the previous identity, we can deduce that

eTPBΛθ̂Tω = tr(θ̂TωeTPBΛ). Thus equation (3.14) simplifies to:

V̇ = eT (AmP + PAm)e+ 2eTPBΛθ̂Tω

+ 2tr([θ̂TΓ−1 ˙̂
θ]Λ)

= −eTQe+ 2tr(θ̂T [ωeTPB + Γ−1 ˙̂
θ]Λ)

(3.15)

Therefore, the following adaptation law can be derived in order to get rid of

the term in side the transpose:

˙̂
θ = −ΓωeTPB (3.16)

and if this adaptation law was chosen, the time derivative of V becomes:

V̇ = −eTQe < 0 (3.17)

which is negative definite if Q was chosen to be a positive definite matrix.

This concludes the derivation of the control law that would maintain the

tracking of the quadrotor system even under changes in the dynamics of the

quadrotor. In the next section, we show some simulation results for our model
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that proves the robustness and practicality of such an adaptive controller.

3.3.3 Simulation Results

In this section, the main challenges in tuning both control and adaptation gains

are described. Then, with properly selected gains, simulation results of the loss

of effort in one of the quadrotor’s propellers are shown. The simulation duration

is made 25 seconds. At tLOE = 15 seconds, a loss of thrust is introduced:

ω2
LOE = (1− loss)ω2 (3.18)

In a realistic situation, the change will occur in the thrust constant cT (see 2.6 ),

leading to a LOE that is similar to our simulation. First, we note that the choice

of the reference model has a significant effect on the adaptation rate. Recall that

the reference model is chosen as:

Am = A−BKx (3.19)

where Kx is the LQR gain matrix:

Kx = R−1BTP (3.20)

Also, recall that Am is used to solve the Lyaponov equation to find the matrix

P . Finally, equation 3.20 shows the dependence of the adaptation gains on P .

Therefore, Am has to be carefully selected to satisfy both good performance and

good adaptation.

For adaptation gain tuning, states with slow dynamics are assigned smaller

gains than states with fast dynamics. For example, according to the dynamic
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model specified above, the acceleration z̈ is directly related to the control input

u1 = uThrust, whereas ẍ and ÿ are related to u2 and u3 with double integrals.

Therefore we assign larger gains for z that x and y 1. A series of simulations

are done for 25%, 50% and 80% loss of thrust for both the baseline(LQR) and

adaptive controllers. The results of our simulations are shown in the set of fig-

ures 3.4. Figures 3.4a and 3.4c show that the baseline controller is robust enough

to reject 25% and 50% loss of thrust in one of the actuators. The quadrotor

was able to recover its position within 4 seconds in the 50% LOE case, which is

acceptable in real world applications. However, for 80%, the quadrotor loses 6

meters in altitude and overshoots by two meters while trying to recover, which

is not tolerable.

On the other hand, the adaptive controller performs significantly better than the

baseline controller. For 25% and 50% LOE (figures 3.4a, and 3.4d) the position

is perturbed by few centimeters only. For 80% LOE, the adaptive controller was

able to recover within 3 seconds and losing only around 20 cm in altitude as in

figure 3.4f.

This improvement however comes at the cost of higher control thrust commands;

which is predictable. Specifically, the adaptive controller has to command the

higher speeds for the motors that lose its effort due to damaged rotors. Figure 3.5

shows that higher thrusts are commanded by the adaptive controller, especially

after the loss occurs at t = 15 seconds.

Also, note that the adaptive controller commands negative thrusts during take

off. This is due to the fact that actuator saturation is not included in the con-

troller design. It is also important to note that the control commands of the

1When hover conditions are violated, the relationship between the states and the inputs will
significantly change. Thus it is important to investigate time varying adaptation gains. One
possible solution is to project methods [13]. In this situation, it is sensible to project the gains
along the direction of the total thrust.
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(a) LQR control with 25% LOE. (b) Adaptive control with 25% LOE.

(c) LQR control with 50% LOE. (d) Adaptive control with 50% LOE.

(e) LQR control with 80% LOE. (f) Adaptive control with 80% LOE.

Figure 3.4: LOE simulation with different percentages for baseline (left column)
and adaptive (right column) controllers. Continuous curves represent actual sig-
nals. Dotted lines represent desired signals. Red, green, and blue curves represent
x, y, and z respectively.

adaptive controller change more aggressively than the baseline controller. This

means that the motors will receive higher frequency commands, especially in the
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Figure 3.5: Total thrusts commanded by the baseline and adaptive controllers
with 60% LOE.

presence of new disturbance. Figure 3.6 shows that higher frequency components

of the adaptive controller have more power than those of the baseline controller,

which is a price that we have to pay for fast adaptation.

In the last test, the reference signal is set to have a non-zero yaw angle. This

means that the linearized model of the quadrotor will be inaccurate since we

made the assumption that the yaw angle is zero. Results show immediate diver-

gence from the desired trajectory (and instability of the system). Therefore, it

is important to consider alternative control approaches that can compensate for

inaccurate modeling.

3.4 Conclusion

In this chapter, two popular nonlinear control strategies have been introduced.

The first controller described in 3.2.1 is capable of stabilizing quadrotor about

aggressive trajectories far from hover conditions. However, this controller fails to
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Figure 3.6: Power spectrum of total thrust commands in the baseline LQR (blue
curve) and adaptive controllers (red curve).

accommodate for unmodeled disturbances. For this purpose, another adaptive

controller was introduced. As it was shown in simulation results, this controller

is capable of recovering from a large loss of effort in one of the actuators of the

quadrotor. In chapter 4, it will be shown that knowing the inertial characteristics

of two quadrotors is sufficient to transfer control policies from one to another.

Nevertheless, to guarantee stability, controllers must be transferred from bigger

to smaller quadrotors. This stability analysis of the transferred controller is

discussed in detail in chapter 4.
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Chapter 4

Transfering Control Policies

between Quadrotors

4.1 Introduction

A common approach in nonlinear control is to split the problem into two main

tasks. First, generate a dynamically feasible trajectory for the system, followed

by the design of a faithful controller that stabilizes the system around the de-

signed trajectory. This approach is heavily used for quadrotor control ([1], [25]

[22], [27]), which is particularly effective due to the differential flatness prop-

erty of quadrotors. For a differentially flat system, there is a set of flat outputs

such that the states and the inputs to the system can be written as a func-

tion of those flat outputs and their derivatives (input equations from previous

draft). In [1], quadrotors are proven to be differentially flat, with the flat out-

put σ = [x, y, z, ψ]. Therefore, generating trajectories can be performed in the

space of the four dimensional flat outputs instead of the twelve dimensions of the

state vector X = [x, y, z, ẋ, ẋ, ẋ, φ, θ, ψ, φ̇, θ̇, ψ̇]. This property enabled the de-
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sign of computationally efficient and dynamically feasible trajectories in a lower-

dimensional space, resulting in significant improvements in quadrotor trajectory

generation methods.

In this chapter, we extend the use of differential flatness property to transfer

controller from one quadrotor to another. After introducing the control transfer

method, we show simulation results for transferring two baseline controllers de-

scribed in 3. In chapter 5, a stability analysis of the overall transferred controller

is presented.

4.2 Transferring Control Policies

In this section, we show how control actions can be transferred from one quadrotor

to another. Consider two quadrotors A and B with inertia matrices IA and IB

and weights mA and mB. Let σdesired denote the desired trajectory describing

the differential flat outputs. Assume that σdesired is dynamically feasible for

quadrotors A and B. Moreover, assume that there is a well-tuned controller for

quadrotor A that computes the desired thrust T and desired moments M . From

2.4, we can write:

r̈ = gzw +
T

m
zB (4.1)

where T is the total thrust commanded by the position controller, and zB corre-

sponds to the body frame z-axis (not to be confused as a subscript for quadrotor

B). Since r = [x, y, z] is a subset of σ, we have rA = rB. Hence we get:

TA

mA
=
TB

mB
(4.2)
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Therefore, the total thrust signals required to stabilize both quadrotors A and

B are proportional to their weights. This is intuitive since the model ignores

the drag forces on the quadrotors. Hence, if we have a control law to find the

desired thrust for quadrotor A, then it is possible to compute the desired thrust

for quadrotor B via equation 4.2.

To get a similar relation between the moments of the quadrotors, a relationship

between the angular velocities ωA and ωB should be derived. From [1], the desired

angular velocities p and q can be written as:

p = −m
T
j2, q =

m

T
j1 (4.3)

Where j =
...
r = ȧ is the jerk. Combining equations 4.2 and 4.3, we obtain:

pA = −m
A

TA
j2 = −m

B

TB
j2 = pB (4.4)

And,

qA =
mA

TA
j1 =

mB

TB
j1 = qB (4.5)

And since ψ ∈ σdesired, it follows that rA = rB (r being the rotational velocity

around zbody, and not to be confused with position vector). Therefore,

ωA = ωB (4.6)

Rewriting the rotational equation of motion 4.7:

ω̇ = I−1M − I−1ω × Iω (4.7)
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Taking the derivative of 4.6 and substituting with 4.7, we get:

(IA)−1MA − (IA)−1ω × IAω = (IB)−1MB − (IB)−1ω × IBω (4.8)

Finally, by simplifying the above equation, we obtain the map that transfers

attitude control law:

MB = IB(IA)−1MA − IB(IA)−1ω × IAω + ω × IBω (4.9)

The block diagram below shows how the method of transferring control policies

works:

Figure 4.1: Block diagram of control transfer method for any baseline controller.

4.3 Simulation Results

In chapter 3, two control methods were introduced. In this section, we show

the results of transferring controllers policies from one quadrotor to another for

the two baseline controllers chosen in the previous chapter. The model of the

reference quadrotor is the same as AR drone, and the model for the secondary

quadrotor is the same as hummingbird. Inertial parameters for both quadrotors

are summarized in 4.1.
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Quadrotor Model Parrot AR Asctec Hummingbird
Weight (Kg) 0.429 0.18
Ix (Kg.m) 0.002237568 0.00025
Iy (Kg.m) 0.002985236 0.000232
Iz (Kg.m) 0.00480374 0.0003738
d (m) 0.1785 0.086

Table 4.1: Parrot AR and Asctec Hummingbird propertiess [2] .

4.3.1 PD Control

In this section, the simulation results of transferring the PD controller described

in section 3.2.1 will be studied. To test our approach, the same controller that

is used to generate simulation results for AR drone is used. In the first test, the

secondary quadrotor is commanded to traverse a set of waypoints. The initial

position of the quadrotor is at [0, 0, 0]. The initial pitch angle is randomized

between θ = [0, π
2
] to test the ability of the transferred controller to recover

from large deviations from hover conditions. Results in figure 4.2 show that the

secondary quadrotor transitions smoothly between waypoints. Moreover, the plot

shows that the quadrotor also recovers within two seconds from the large pitch

deviations.

In another test, both quadrotors are commanded to follow circular paths with

different overall time tf . For slow trajectories with tf = 5s, both quadrotors have

similar behavior and can smoothly follow the circular trajectories (4.2a and 4.2b).

When the overall desired path time is set to tf = 3s, both quadrotors have the

same deviation from the nominal trajectory. Thus we conclude that the cascaded

PD controller designed for quadrotor A (Parrot AR) is successfully transferred

to quadrotor B (Hummingbird).
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Figure 4.2: Simulation results of the transferred PD controller from AR drone
to Asctec Hummingbird. The secondary quadrotor is started at position [0, 0, 0]
with initial pitch angle θ = π

2
to test for recovery from large attitude deviations

that are far from hover conditions.

4.3.2 Adaptive Control

In [13], a model reference adaptive controller is designed for quadrotors. This

controller was demonstrated to effectively mitigate the loss of thrust in one of

the actuators of the quadrotor, as shown in chapter 3. Similar to the previous

section, the control transfer method is tested with the adaptive controller. At

tLOE = 15s, a loss of actuator effort is simulated. Similar to the results obtained

in the previous chapter, the results in figure 4.4 show fast recovery from back to

the nominal trajectory.
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(a) Parrot AR following path with tf = 5s. (b) Hummingbird following path with tf = 5s.

(c) Parrot AR following path with tf = 3s. (d) Hummingbird following path with tf = 3s.

Figure 4.3: Both quadrotors traversing a circular trajectory of radius 2m at
different speeds. Notice that the behavior of both quadrotor is very similar.

4.4 Conclusion

In this chapter, a method to transfer controllers between quadrotors was intro-

duced. The control transfer method was tested in simulation to transfer two

baseline controllers, as described in chapter 3. Results show very similar behav-

ior between the two quadrotors. In the next chapter, theoretical stability analysis
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Figure 4.4: Simulation result of transferred adaptive controller for step response
with 80% LOE at t = 15s. Continuous lines represent actual state signals.
Dotted lines represent desired states. Red, green, and blue represent x, y, and z
respectively. Notice that the new quadrotor B with the transferred controller is
able to recover quickly.

is conducted.
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Chapter 5

Stability Analysis

5.1 Introduction

Few baseline controllers were described in the previous sections. In this section,

the stability of the quadrotors’ attitude dynamics with transferred controllers

using our derived method is analyzed. Similar to chapter 4, it is assumed that

there is a quadrotor A with a well-tuned controller that achieves a desirable

performance. We try to utilize the controller of A to achieve similar performance

on a quadrotor B. Recall the attitude control transfer law:

MB = IB
(
IA
)−1

MA − IB
(
IA
)−1

ω × IAω + ω × IBω (5.1)

where M = [τx, τy, τz]
T is the moments vector.

In this chapter we show that in many cases quadrotor B inherits its stability from

quadrotor A. In particular, we show that it is safe to map controllers from one

quadrotor to another with smaller inertial characteristics.

35



5.2 Linear Controllers Stability

In this section, we show that systems with transferred linear controllers inherit

their stability from the original controllers. More specifically, the transfer func-

tions of the two systems A and B are identical.

Linear controllers are designed to operate with perfectly symmetrical quadro-

tors. This means a diagonal inertia matrix I. Moreover, near hover conditions

are assumed to apply. Recall the following assumptions for near hover flight:

ψ = ψ0

ṙ = 0

φ̇ = θ̇ = ψ̇ = 0

cosφ ≈ cos θ ≈ 1

sinφ ≈ φ

sin θ ≈ θ

(5.2)

Under these conditions, equation 5.1 becomes:

MB = IB
(
IA
)−1

MA (5.3)

Since I is symmetric, we can write three separate mappings for each dimension:

uBx =
IBx
IAx
uAx ,

uBy =
IBy
IAy
uAy ,

uBz =
IBz
IAz
uAz

(5.4)
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5.2.1 PD Control Stability

First, consider a quadrotor with a linear PD controller. Because the quadrotor

is operating near hover conditions, the roll, pitch, and yaw dynamics can be

decoupled. Here we consider the stability of roll dynamics, and similar analysis

can be performed for pitch and yaw. Recall the roll dynamics equation:

φ̈ ≈ ux
Ix
, (5.5)

and the control law for φ:

ux = τx = kp,φeφ + kd,φėφ (5.6)

Under near hover conditions, equation 5.6 becomes:

ux = −kp,φφ− kd,φφ̇ (5.7)

Substituting equation 5.7 in equation 5.5, we get:

φ̈+
kd,φ
Ix

φ̇+
kp,φ
Ix

φ = 0 (5.8)

Alternatively, we can write equation 5.8 as:

φ̈+ 2ξωnφ̇+ ω2
nφ = 0 (5.9)

where:

kd,φ = 2Ixξωn,

kp,φ = Ixω
2
n

(5.10)
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This non-dimensional approach to tune PD controllers was used in [28]. By

selecting a proper damping ratio ξ and a proper natural frequency ωn, the stability

of the quadrotor can be guaranteed.

Now consider the stability of roll dynamics in quadrotor B. From equations 5.4

and 5.7, we get:

φ̈ ≈ uBx
IBx

=
1

IBx

(
IBx
IAx

)
uAx =

1

IBx

(
IBx
IAx

)(
−kAp,φφ− kAd,φφ̇

)
(5.11)

Substituting equation 5.10 in 5.11 and simplifying, we get:

φ̈+ 2ξωnφ̇+ ω2
nφ = 0 (5.12)

which means that rolling dynamics of quadrotor B have the same natural fre-

quency and damping ratio as quadrotor A. Hence, quadrotor B has the same

stability properties as quadrotor A.

5.2.2 Full State Feedback Stability

Consider the state-space representation of the linearized dynamics of the quadro-

tor:

Ẋ = AX +Bu (5.13)

The values of A and B are shown in equation 5.13. This system is controllable,

and the control signal u is computed via a full state feedback controller of the

form:

u = −Kx, (5.14)
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where K is a gain matrix. Therefore the closed-loop dynamics equation can be

written as:

Ẋ = (A−BK)X = AclX (5.15)

The gain matrix K can be chosen by pole placement. Alternatively, K can be

selected by designing an LQR controller and solving its corresponding algebraic

Riccati equation.

A =



0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 g 0 0 0 0 0 0 0
0 0 0 −g 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



, B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1
m

0 0 0
0 1

Ix
0 0

0 0 1
Iy

0

0 0 0 1
Iz



(5.16)

Remarkably, the state matrix A is independent of the inertial properties of

the quadrotors. Hence, under the control transfer law derived previously, it can

be shown that the input matrix B is identical for both quadrotors. Therefore,

both quadrotors have the same closed-loop dynamics.

5.3 Nonlinear Control Stability Analysis

In this section, the stability of the nonlinear controller described in [1] is analyzed.

The controller laws are:

F = −Kpep −Kvev +mgzw + r̈T (5.17)
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M = −KReR −Kωeω (5.18)

Equation 5.17 describes the position control, whereas equation 5.18 describes the

attitude controller. This controller is a relaxation of the geometric tracking con-

troller derived in [14]. In particular, the attitude controller ignores second-order

terms of angular velocities. The original attitude controller has the following

structure:

M = −KReR −Kωeω + ω × Iω − I
(
ω̂RTRdωd −RTRdω̇d

)
(5.19)

The exponential stability and the exponential attractiveness of this system are

guaranteed for almost all initial conditions [14]. In [1] demonstrates that even

the relaxed controller structure (equations 5.17 and 5.18) is also stable with very

large roll and pitch angles.

5.3.1 System B Stability

Substituting equation 5.19 in 5.1. We get:

MB =IB
(
IA
)−1
[
−KReR −Kvev + ω × IAω − IA

(
ω̂RTRdωd −RTRdω̇d

)]
− IB

(
IA
)−1

ω × IAω + ω × IBω
(5.20)

Notice that the third term in the brackets cancels the first term outside the brack-

ets. Expanding and reorganizing terms we get:

MB = IB
(
IA
)−1[−KReR−Kvev

]
+ω× IBω− IB

(
ω̂RTRdωd−RTRdω̇d

)
(5.21)
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The first term of equation 5.21 becomes:

IB
(
IA
)−1[−KReR −Kvev

]
= − IB

(
IA
)−1

KR︸ ︷︷ ︸
K′

R

eR − IB
(
IA
)−1

Kv︸ ︷︷ ︸
K′

ω

ev (5.22)

Replacing in equation 5.18, we get:

MB = −K ′ReR −K ′vev + ω × IBω − IB
(
ω̂RTRdωd −RTRdω̇d

)
(5.23)

This resulting attitude controller for system B has an identical structure to the

one described in equation 5.19. In [14], it is shown that the control law derived for

quadrotor B guarantees exponential stability for a large set of initial conditions.
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Chapter 6

Generating Polynomial

Trajectories Using Deep Learning

6.1 Introduction

Generating dynamically feasible trajectories in real-time is essential for maneu-

vering quadrotors between an initial and a desired state. Depending on the nature

of the generated trajectories, this task might be computationally expensive. Thus

infeasible to be executed in real-time. For example, time-optimal trajectories re-

quired around one hour to be computed in [20]. While a quadrotor might be

able to follow the generated trajectories, there is no guarantee that it can recover

from unexpected perturbations. A slight wind gust might hinder the quadrotor

from reaching the desired state, and the controller might saturate the actuators

while trying to stabilize the quadrotor about the original trajectory. Therefore,

it is common practice to rely on real-time trajectories generation methods. To

resolve this issue, the condition for time optimality is relaxed. Instead of trying

to minimize the total duration between two desired states, an alternative can be
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generating smooth trajectories that satisfy minimum jerk [22] or minimum snap

objectives [1], [25].

Alternatively, data-driven approaches can be used to learn certain trajectories,

and thus, be able to generate them with less computational effort. In [29], an

expert driver repeats a set of maneuvers for a remote-controlled (RC) helicopter,

and an apprenticeship learning algorithm is used to leverage these expert trials

and learn a good control policy. This approach, however, does not generalize to

maneuvers other than those executed during the data collection procedure, which

is expensive and time-consuming. In [30], quadrotors are controlled using neural

networks with two hidden layers that are trained using reinforcement learning,

with the unique feature that the neural network directly predicts the control

signals. This method is computationally attractive as it only requires 7 µs to

compute a control signal, and the results show impressive maneuvers that the

quadrotor can perform well. However, end-to-end deep learning approaches do

not provide stability guarantees. The only way to validate such an approach is

through statistical methods ([31], [32], and [33]) and extensive testing in real-

life scenarios, which can be prohibitively expensive and dangerous. In [34], a

supervised learning method is used to generate paths between obstacles in 2D

maps. While the feasibility of the results can be checked for collisions, there is no

guarantee of dynamic feasibility of the trajectories that will be generated along

this path.

In this paper, we address the problem of generating real-time trajectories in

3D space without obstacles. Applications for this problem vary from aerial pho-

tography, to benchmarking controllers in indoor environments. Our proposed

solution builds upon the recent success of deep learning approaches. We utilize

a deep neural network to approximate complex trajectory generation methods,
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which are typically nonlinear in terms of the input and constraints. In other

words, we try to encode the mapping between the inputs and outputs of deter-

ministic trajectory generation algorithms. The inputs to the neural network are

the initial and final desired states, and the outputs of the network are the motion

primitives and the final time of the trajectory. Utilizing deep learning has a sig-

nificant advantage in terms of computational efficiency, which becomes even more

pronounced in the presence of a graphics processing unit (GPU) that can han-

dle deep learning models in parallel computation. This enables the simultaneous

evaluation of numerous trajectories in a single time step.

For our model of choice, simulation results show that it is possible to compute

around 1000 trajectory motion primitives in less than 1µs on a standard personal

computer. Another key advantage of the proposed deep learning method is that

its generated trajectories are verifiable, which is not possible with other deep

learning approaches, such as deep reinforcement learning. Since the neural net-

work outputs motion primitives, the feasibility of the trajectories can be checked

by the same method described in [22].

Figure 6.1: Overall block diagram for a quadrotor motion control system. A
trajectory generator computes the desired position. The desired position and
the current state estimates of the quadrotor are used by the position controller
to compute the total thrust and desired orientation. The attitude controller
computes the desired torques. The clocks represent different frequencies for the
trajectory generator and controller. This chapter is related to the trajectory
generation block.
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6.2 Trajectory Generation

In this paper, we leverage the work of [24], which describes a method to generate

minimum-jerk trajectories between initial and final states for a fixed time interval,

T . Formally, we want to generate trajectories such that the L2-norm of the jerk

is minimized:

min
1

T

∫ T

0

‖j(t)‖2dt (6.1)

where the jerk j is the derivative of the acceleration a. This minimization is

subject to the constraints:

0 ≤ fmin < F < fmax,

|ω| ≤ ωmax.

(6.2)

Moreover, we would like to find the minimum final trajectory time, T , such that

we are able to find a solution to the optimization problem in (6.1) without vio-

lating the specified constraints. The proposed solution finds decoupled quadratic

polynomial trajectories for each axis as:

ji(t) =
1

2
ait

2 + bit+ ci, (6.3)

where ai, bi, and ci are the motion primitives of each axis. After computing

these primitives, we find the acceleration, velocity, and position by integration to

obtain:

ai(t) =
1

6
ait

3 + bit
2 + cit+ a0,

vi(t) =
1

24
ait

4 +
1

6
bit

3 + cit
2 + a0t+ v0,

pi(t) =
1

120
ait

5 +
1

24
bit

4 +
1

6
cit

3 + a0t
2 + v0t+ p0.

(6.4)
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We will next show how these motion primitives along with the final time, T , can

be efficiently computed using a supervised deep learning approach.

6.3 Data Collection

In order to train a neural network to generate trajectories, training data is first

sampled from the proposed method of computing motion primitives in [22]. The

input of the training data is a vector composed of the initial and final state:

Xi =

[
rt0 ṙt0 r̈t0 rT ṙT r̈T

]
. (6.5)

The output is a vector of motion primitives along with the optimal final time, T :

yi =

[
ax bx cx ay by cy az bz cz T

]
. (6.6)

Note that it is challenging to sample feasible states from this high dimensional

input (18 variables). To avoid selecting infeasible data points, we randomize

positions of the initial and final states, along with segment final times. For these

samples, the velocity and acceleration are set to [0, 0, 0]T , i.e., the quadrotor is at

rest. After generating a trajectory between the initial and desired positions, we

randomly sample two time instants, tA and tB, along this trajectory such that:

0 ≤ tA < tB < T. (6.7)

A new set of motion primitives is computed for the new datapoint. To avoid

biasing the neural network, we keep the number of states at rest equal to the
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number of states in motion. Hence, we randomly choose with probability p = 0.5

to have a balanced distribution between states at rest and states in motion, to

re-sample the initial and final states.

For each training example, we compute the minimum final time, T , using

binary search. We choose an upper-bound Tmax = 15s and a lower-bound Tmin =

0.1s. The initial guess, Tguess, for T is set as the midpoint of Tmax and Tmin. We

check if the trajectory generated between the selected states is feasible for the

current guess of the optimal trajectory time. If the current time is feasible, we set

Tmax = Tguess. On the other hand, if Tguess is not feasible, we set Tmin = Tguess.

By repeating this process several times, the true optimal time for the trajectory

is bounded between Tmax and Tmin. The loop is terminated when:

Tmax − Tmin = α, (6.8)

where α is a tolerance value. We sample one million trajectories for training

and validation. We also sample another dataset consisting of 100,000 trajectories

for testing after training is finished. It is noted here that the gradient descent

method described in [25] can be used as an alternative for selecting the final time.

6.4 Model Selection and Training

Before training the machine learning algorithm, we normalize and standardize

the training data, which is a particularly important step for the fidelity of the

output data given that the scale of the outputs varies by two orders of magnitude.

Normalization and standardization help with avoiding imbalanced gradients dur-

ing training, and they also remove hockey stick learning curves by eliminating
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Figure 6.2: Fully connected neural network architecture used for computing mo-
tion primitives and final trajectory time. The input layer is formed of the initial
and final states described by position, velocity, and acceleration. The two hid-
den layers have 1000 nodes each. The network has around one million trainable
parameters.

the need to learn any biases in the output vector. We train a fully connected

neural network with two hidden layers, each consisting of Nhidden = 1000 hidden

nodes, as shown in figure 6.2. While tuning the hyperparameters, it is noticed

that increasing the number of hidden layers and the number of nodes per hidden

layer results in lower losses and higher accuracy. However, the final values for

these parameters are chosen to strike a balance between the accuracy of predic-

tions and the computational power required. This is important especially in the

case of a quadrotor, where the computations are executed on-board. The first

two layers have rectified linear units (”ReLu”s) [35] as activation functions for
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the two hidden layers, and the final layer has a linear activation function. A

similar neural network was able to learn complex end-to-end control policies in

[36] and [30]. We choose to minimize the mean absolute error (MAE) between

the trajectories as the loss function to be minimized:

MAE =
1

N

N∑
i=1

|yi − ŷi| (6.9)

We use Adam optimizer [37] with learning rate, lr = 1× 10−4, and a decay of

2×10−6. Training is carried for 250 epochs, and we perform 5-fold cross validation

by randomly partitioning the data into five sets. For five training iterations, we

keep one partition for validation and train on the rest of the data. Training

is stopped when the training and validation losses consistently (as in equations

6.9) plateau around 0.0028. After cross validation, the neural network is trained

again for 250 epochs over the entire training dataset. All hyperparameters are

summarized in Table 6.1.

Training Hyperparameters

Number of hidden layers 2
Number of nodes in hidden layers 1000
1st and 2nd layer activations Relu
Final layer activation Linear
Batch size 256
Learning rate 10−4

Rate decay 10−6

Number of epochs 250
Optimizer Adam
Cost function Mean absolute error

Table 6.1: The final selected training hyperparameters.

49



Figure 6.3: Flow chart for real-time feasibility checking of the trajectories gener-
ated using deep learning.

6.5 Results

Training the neural network converges to a mean absolute error loss of MAE =

0.0028. This loss shows that the error is very small between the true labels and

the predicted values. To get a better understanding of the output, we visualize

the results by plotting the jerk, acceleration, velocity, and position along each

axis for the true and predicted values. A sample of the results is shown in Fig.

6.4. To generate this figure, and initial and final state are selected. In this case,

the initial position is [0, 0, 0], and the final position is [−5, 5, 0]. Then, motion

primitives for the trajectory connecting the two states are computed using the

method described in [22]. Additionally, the selected input states are fed to the

trained neural network to predict motion primitives. The two sets of motion

primitives are used to plot the ground truth trajectory (generated via sequential

method in [22]) and predicted trajectory (generated using deep learning). Lines
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with stars represent predictions, while continuous lines represent ground truths.

The plotted polynomials show extremely close match to the true labels (almost

identical) along the entire duration of the trajectory. In fact, the predicted final

trajectory time, T , is only about 0.5 ms away from the true label. Also, note

that the trajectory generated converges to the desired state at the estimated final

time. For the particular example shown in figure 6.4, the final accelerations and

velocities are zeros, and the final positions are < 1mm away from the desired

positions on each axis. For the rest of 100,000 test trajectories, the test loss is

0.0030, which is very close to training and validation loss. To estimate how long

each set of motion primitives and final time requires to be computed, a set of

100,000 trajectories are sequentially tested. The average time to compute a single

trajectory on an Nvidia GTX 980 GPU is around 0.4µs. Moreover, each of the

1024 datapoints can be computed in one batch with an average time of 0.64µs.

A final remark is that even though the predictions of the neural network

are very accurate, some of the generated trajectories are slightly infeasible. To

address this issue, we utilize the predicted final trajectory time, T , as the initial

guess for the sequential method described in the data collection section (similar

approach in [34]), and we notice that by adding 1ms to the final time, almost all

generated trajectories (> 99%) become dynamically feasible. This is summarized

in figure 6.3.

6.6 Conclusion

A method for generating dynamically feasible polynomial trajectories using su-

pervised learning was presented. After generating millions of trajectories from a

well-established trajectory generation method, the data is used to train a deep
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Figure 6.4: Actual vs predicted motion primitives. The vertical line on 1.37
seconds represents the predicted final time of the trajectories.
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neural network to predict motion primitives along with minimum final trajectory

time per segment. Results show very accurate predictions of motion primitives

as well as the final time. One of the main advantages of using our method is that

it enables us to check the feasibility of the trajectories being generated, since

it directly computes motion primitives. This is a property that is missing from

most other deep learning approaches, such as deep reinforcement learning. Since

the neural network was able to learn a complex trajectory generation method,

we can try training similar networks for predicting more complex trajectories. A

good alternative is time optimal trajectories, which takes a long time to compute,

and therefore, cannot be used for real-time applications. On the other hand, the

current method suffers from its inability to incorporate obstacles and corridor

constraints. Properly representing cluttered environments in the training data

might allow this method to be extended to new applications, such as trajectory

generation for fleets of quadrotors.
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Chapter 7

Conclusion

A method for transferring control policies between different quadrotors was pro-

posed. We showed that to guarantee identical performance between different

quadrotors, a simple non-linear transformation between the control signals of the

two quadrotors is sufficient. This transformation depends on the weight and iner-

tia matrix of both quadrotors. While this method to transfer controllers between

one quadrotor to another is derived from a simplified model ignores aerodynamic

forces such as drag, it is possible to derive another control policy.

Moreover, the problem of efficiently generating dynamically feasible trajecto-

ries for quadrotors is also studied in chapter 6. A supervised learning approach is

used to train a deep neural network with two hidden layers. The training data is

generated from a well-known trajectory generation method that minimizes jerk

given a fixed interval time. More than a million dynamically feasible trajectories

between two random points in 3D space are generated and used as training data.

The input of the neural network is a vector composed of initial and desired states,

along with the final trajectory time. The output of the neural network generates

the motion primitives of the trajectories, as well as the duration or final time
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of a segment. Simulation results show very fast dynamically feasible trajectory

generation by the proposed deep learning algorithm. This encourages us to use

a deep learning approach method for generating time-optimal trajectories, which

are computationally prohibitive to generate using sequential methods. Finally,

both control transfer and trajectory generation methods should be tested in a

realistic scenario to further validate our work.
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Appendix A

Abbreviations

UAV Unmanned Aerial Vehicles

IMU Inertial Measurement Unit

PID Proportional-Integral-Derivative

LQR Linear Quadratic Regulator

TVLQR Time Varying Linear Quadratic Regulator

UAV Unmanned Aerial Vehicle

MRAC Model Reference Adaptive Control

RLS Recursive Least Squares

SGD Stochastic Gradient Decent

ReLu Rectified Linear Unit

LOE Loss Of Effort

SPD Symmetric Positive Definite
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