

AMERICAN UNIVERSITY OF BEIRUT

NETWORK DATA PLANE VERIFICATION: A TRADEOFF
BETWEEN PROBABILITY OF CORRECTNESS AND

COMPUTATIONAL COST

by
IBRAHIM ABDELGHANY

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Engineering
to the Department of Electrical and Computer Engineering

of the Maroun Semaan Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
January 2020

AMERICAN LINIVERSITY OF BEIRUT

NETWORK DATA PLANE VEzuFICATION:A TRADEOFF
BETWEE.N PROBABILITY OF CORRECTNESS AND

COMPUTATIONAL COST

by

IBRAHIM ABDELGHANY

Approved by:

Dr. Imad H. Elhalj, Professor
Department of Electrical & Computer Engineeri

vt s()r

Dr. Fadi Zaraket. Associate Prof'essor
Department ol'Electrical & Computer Engineering

Member of Conrmittee

Dr. Wassim Masri. Associate Professor
llepartment of Electrical & Ciomputer Engineering

ero f Conrnrittee

l)ate of thesis/dieeerttien del'ense: January 27,2020

AMEzuCAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT RELEASE FORM

Studcnt Name:

A \,.." -fb,.)rir. H^ss^^
[,ast First Middle

Master's Thesis O Master's Project Ooctoral Dissertation

I authorize the American University of Beirut to: (a) reprodr"rce hard or
electronic copies ofmy thesis, dissertation, or projectt (b) include such copies in the
archives and digital repositories ofthe lJniversitl,'; and (c) make freely available such
copies to third parties for rcscar,ch or educational purposes.

V I authorize the American University of Beirut, to: (a) reproduce hard or
electronic copies of it; (b) include such copies in the archives and digital repositories of
the University; and (c) make freely available such copies to third parties for research or
educational purposes
after:

One ---- year from the date of submission of my thesis, dissertation, or
project.

Two ---- years from the date of submission of my thesis, dissertation, or
proJ e

years from the date of submission of my thesis, dissertation, or
prolec

{eL \1 ZoZtJ

Thrcc -

Signature I)ate

 v

ACKNOWLEDGMENTS

First, I would like to thank my parents for their love and support during my academic
studies. I would also like express my gratitude to my advisor Prof. Imad Elhajj for his
invaluable guidance and comments throughout my studies and my thesis. I also appreciate
the comments and the feedback of the rest of the members of my thesis committee Prof.
Fadi Zaraket and Prof. Wassim Masri.

I would like to thank my colleagues at SAUGO 360 for their continuous support and
motivation. I also would like to thank my friends who were immensely supportive during
my master studies.

 vi

AN ABSTRACT OF THE THESIS OF

Ibrahim Abdelghany for Master of Engineering
 Major: Electrical and Computer Engineering

Title: Network Data Plane Verification: A Tradeoff Between Probability of Correctness
and Computational Cost

 Traditional and SDN Networks are increasingly more complex and covering more
use-cases making reasoning about network behavior all-the-more challenging. Dedicated
tools to verify networks for reachability and other invariants exist, but not without
scalability limitations as these problems are combinatorially complex. Workarounds that
exploit regularities to minimize processing exist, but they depend on data-plane properties
that are not guaranteed to exist in SDN networks, especially as more use-cases are being
applied with packet headers used in unconventional ways. We propose a tradeoff between
the probability of correctness, based on network traffic statistics, and the verification
computational cost. Such a tool gives operators the flexibility and freedom to select their
own preference in this tradeoff, while making feasible a partial solution of cases that
require exponential or factorial time. We represent the network as a Markov Chain, and
propose a prioritized traversal algorithm to verify reachability questions. We test our
algorithm on randomly generated networks of varying complexities and traffic
distributions, proving the effectiveness of our method for high-complexity networks and
the efficacy of our traversal algorithm in taking advantage of skewness in traffic weights.
We were able to achieve 99% traffic path probability coverage in 2.45% (and 95% traffic
path probability coverage in 0.57%) of the time needed for full coverage on randomly-
generated test networks.

 vii

CONTENTS

ACKNOWLEDGEMENTS………………………………… v

ABSTRACT………………………………………………… vi

LIST OF TABLES………………………………………….. ix

LIST OF FIGURES…………………………………………. x

Chapter

I. INTRODUCTION ……………………………………………………... 1

II. LITERATURE REVIEW…………………………………………… 5

A. Control Plane Verification……………………………………………. 5

1. SDN Control Plane Verification………………………………. 6

B. Data Plane Verification……………………………………………….. 7

C. Optimizations for Network Verification………………………………. 8

D. Comparison with Out Method………………………………………… 11

III. PROBLEM DEFINITION………………………………………… 13

A. Verify Reachability in a Large Network……………………………… 13

B. Problem Complexity…………………………………………………... 14

C. Discussion…………………………………………………………….. 16

IV. PROPOSED SOLUTION…………………………………………. 17

A. Tradeoff Intuition……………………………………………………... 18

 viii

B. Modelling Network Traffic as a Markov Chain……………………… 19

C. Modelling Network Traffic as Header Space Transfer Functions……. 20

D. Probabilistic Traversal Algorithm……………………………………. 21

1. Core Transformation Step……………………………………... 22
2. Calculating the Cumulative Probability……………………….. 23
3. Prioritized Traversal…………………………………………… 25
4. Big Picture…………………………………………………….. 26
5. Pseudocode……………………………………………………. 27
6. Example……………………………………………………….. 28
7. Correctness Proof……………………………………………… 31

a. Proof of Claim 1……………………………………….. 32
b. Proof of Claim 2……………………………………….. 32

8. Running Time…………………………………………………. 33
a. Transformation Cost…………………………………… 33
b. Number of Transformation Candidates……………….. 33
c. Traversal Cost…………………………………………. 35
d. Candidate Ratio……………………………………….. 35

V. EMPIRICAL RESULTS……………………………………………. 38

A. Implementation……………………………………………………….. 38

B. Results………………………………………………………………… 38

1. Generating Random Networks………………………………… 38
2. Convergence of Cumulative Probability………………………. 40
3. Varying Complexity…………………………………………… 42
4. Varying Skewness……………………………………………... 43
5. Comparison with HSA………………………………………… 44

VI. CONCLUSION……………………………………………………….. 47

REFERENCES……………………………………………………………… 50

 ix

TABLES

Table 1: Comparison of different methods ... 12
Table 2: Forwarding logic of Network shown in Figure 6. Each entry is the packet
wildcard match needed to forward a packet along the edge from node in row to node in
column. ... 29
Table 3: Probability matrix of the Markov Chain representing network traffic of Network
in Figure 6 ... 29

 x

FIGURES

Figure 1: Conceptual plot of convergence of cumulative probability 17	
Figure 2: Core Transformation Step ... 23	
Figure 3: Core Transformation Step & Parent Probability ... 24	
Figure 4: Transformation candidates in the priority queue ... 25	
Figure 5: Overall sketch of the algorithm ... 26	
Figure 6: Network topology consisting of 3 nodes ‘a’, ‘b’ and ‘c’ 29	
Figure 7: Initial setup of the traversal ... 30	
Figure 8: Result of the 1st queue pop and transformation .. 31	
Figure 9: Result of the 2nd queue pop and transformation ... 31	
Figure 10: Forwarding transformation at a port .. 33	
Figure 11: Branching Traversal Tree .. 34	
Figure 12: Probability distribution of a transformation step ... 36	
Figure 13: Fratio of P^k over multiple base distributions P ... 37	
Figure 14: Entropy of 32 samples taken from skew(x,c) plotted against skewness c 39	
Figure 15: Cumulative path probability (below 0.99 cutoff) as the algorithm progresses
(n=30, p=0.99, c=0.6) ... 41	
Figure 16: Fitting cumulative path probability evolution plot to negative exponential
function (n=30, p=0.99, c=0.6) ... 41	
Figure 17: Cumulative Probability Plots for Different Network Complexities (c=0.6,
pth=0.95) ... 43	
Figure 18: Running time and steps to termination (0.95 threshold) vs multiple values of
probability skewness (n=20, p=0.99) .. 44	
Figure 19: Table showing running time of the original HSA algorithm and our algorithm
(p=0.99, c=1.0) at different probability thresholds pth and different network sizes n
normalized by running time of the original HSA algorithm against the same randomly
generated network. (Intel Core i5 3.1 GHZ - 8GB RAM) .. 45	
Figure 20: Bar graph visualization of comparison table in Figure 19 46	

 1

CHAPTER I

INTRODUCTION

Network monitoring, configuration, and management tools are an indispensable

part of operating modern networks. Such tools provide a single pane view where network

statistics are collected, device configuration is stored, and network-wide services are

managed. Software-Defined Networking (SDN) is built around the paradigm of

centralized network management as it separates the control-plane, which is composed of

routing configuration and algorithms, from the data-plane, which is responsible for low-

level packet forwarding operations. Traditional network operators employ ad-hoc

solutions that interface with legacy devices and protocols to provide centralized network

management features.

One critical feature of network management is the ability to verify network-wide

properties from low-level device configuration. This allows operators to safely push new

changes without breaking network policies, and to verify that networks will behave as

expected for arbitrary inputs and conditions.

Complex networks with many devices each containing many forwarding rules are

not easily verifiable. Traditional networks are composed of many protocols and ad-hoc

solutions, making reasoning about their behavior and correctness a daunting task.

Moreover, SDN has exposed packet headers to arbitrary matching and rewriting,

accelerating the number and scope of possible services a network could run. Asking

questions about forwarding behavior needs a framework where forwarding rules are

translated into formal statements. Afterwards, these formal statements can be verified for

specific criteria of correctness.

 2

One possible framework, among others, for formal verification is SAT-based

solvers. The input for such frameworks is a set of Boolean equations representing the

behavior of the system. A generalization of SAT-based verification is Satisfiability

Modulo Theories (SMT) which introduce support for functions, numbers, bit-vectors, and

more complex data-types. Alternatively set-based methods rely on sets to represent

packets and on functions on sets to represent forwarding logic.

Representing a network node data-plane in terms of bitvector SAT formulas, or

sets and functions, is fairly straightforward. Moreover, encoding the network topology is

also straightforward. Using various techniques, verification tools convert reachability

questions into tests on network models. The worst-case scenario for such tests is in the

order of exponential, even factorial, in terms of the number of nodes and links, the number

of forwarding rules, and the header size. This possible combinatorial explosion has

attracted much research focused on optimizations for cases where networks satisfy certain

properties [2, 3, 4, 5, 6, 7, 8, 9, 10].

Current techniques for avoiding combinatorial scalability issues rely on the fact

that packet header representations can be compressed to minimize unnecessary

computations. This relies on the fact that the number of header classes (headers that are

treated the same way across the network) is relatively small compared to the worst case.

Traditional networks consisting of routers and switches heavily depend on range-

matching and prefix-matching operations when dealing with packets, limiting the number

of header classes needed for verification. SDN networks, however, match packet headers

with arbitrary wildcard masks on a large set of fields making the problem complexity

closer to the worst-case. Verification complexity is also affected by topology complexity

which increases as overlay networks become more widespread. As SDN networks

 3

implement more complex use-cases and treat packet headers with more freedom, the

number of header classes is bound to increase.

In this document, we propose a remedy to the problem of combinatorial explosion

(for cases where current optimizations fail to reduce running time) by using network

traffic statistics to create a tradeoff between computational cost and probability of

correctness, based on a Markov Chain representation of the network graph. The proposed

solution is also applicable to general cases by introducing flexibility in allowing users to

choose the degree of correctness to save on running time.

We use a Markov Chain to represent the graph of nodes in the network, where

probabilities are extracted from traffic statistics. Then we take as input a probability

threshold that the user selects and traverse the network graph to verify paths covered

within the threshold. We minimize running time, under the selected threshold, by

traversing the highest probability paths first.

We use the term ‘coverage’ to refer to the cumulative probability of paths verified

while traversing the network graph. Full coverage would result in a cumulative

probability of paths covered equal to 1 with no more search needed for further paths in

the network, while partial coverage under a specific probability threshold will only ensure

that paths with probabilities summing up to it are considered in the search.

Our current solution relies heavily on ideas proposed in Anteater [1], however,

our reachability algorithm applies more naturally to HSA [3] as path enumeration is part

of their method. Moreover, HSA answers reachability questions with a list of packet

headers that are able to traverse the network instead of only yes/no answers and single

counter-examples as in [1].

 4

We tested our algorithm against randomly generated networks and validated the

time-saving power for different network complexities and traffic distributions. We

outperform HSA for probability thresholds less than 1, and lag behind it for full traffic

coverage due to the extra cost of prioritized traversal. We were able to achieve 99% traffic

path probability coverage in 2.45% (and 95% traffic path probability coverage in 0.57%)

of the time needed for full coverage by HSA on randomly generated test networks. The

remaining uncovered traffic path probabilities are paths in the network that have

probabilities less than what is needed to cross the selected probability threshold. Our

algorithm performs better for more complex networks and more skewed traffic

distributions.

This document consists of the following chapters: Chapter I introduces the

problem, highlights the proposed solution, and summarizes the results. Chapter II surveys

the literature on network verification and identifies a gap that we intend to fill. Chapter

III defines the reachability verification problem formally and motivates the need for our

solution in light of trends in modern networks. The proposed solution is explored

thoroughly in Chapter IV, we define our modelling approaches and present our prioritized

traversal algorithm. Our testing results are discussed in Chapter V. Finally, we conclude

and list future directions for research in Chapter VI.

 5

CHAPTER II

LITERATURE REVIEW

Network verification can be classified into two broad categories: data-plane and

control-plane verification.

 Control Plane Verification

Control-plane verification attempts to represent the forwarding decisions of

control- plane protocols (such as BGP, OSPF, ..) and their interaction across a network.

Verifying the control-plane entails modelling distributed routing protocols (and their

interaction) to be tested for desirable properties operators specify (such as reachability,

loop detection, black holes, etc.) which could involve complexity in modelling how a

distributed protocol runs in a network in addition to the interaction of multiple routing

protocols. Moreover, control-plane verification does not have the ability to detect bugs in

router software causing undesirable or incorrect forwarding entries to exist in routers’

forwarding tables.

In [11], authors present Batfish, a tool for generating a data-plane snapshot from

configuration files and environment specifications as ‘what-if’ scenarios. The generated

snapshot is then passed to a data-plane verification tool to check for specific invariants,

while keeping a mapping between specific configuration statements and data-plane rules

associated with undesired behaviors. Unlike [11], Minesweeper [2] models the stable-

state control-plane itself using logical formulas passed to constraint solvers to be tested

for network properties such as reachability, loops, blackholes, waypointing, etc. It doesn’t

generate a data-plane corresponding to input configuration, but rather models the

 6

configurations themselves. Similar to [2], [12] ERA models the control-plane directly

which could consist of multiple interacting protocols and checks for reachability given a

set of environment specifications. Both Minesweeper and ERA employ a range of

optimizations to minimize computation and limit IP Address matching to prefix

matching.

1. SDN Control Plane Verification

With SDN’s centralized control plane, formally verifiable languages for SDN

controllers have been proposed across the literature. The general approach taken is to

create a language that is both expressive and amenable to formal verification methods.

FlowLog [13] is declarative finite-state language for SDN controllers attempting

to mitigate the complexity inherent in reasoning about general-purpose fully-expressive

programming languages generally used. It also allows the reuse of code written in

imperative languages as black boxes to make it convenient for integration with existing

solutions. Similarly, NetKAT [14] is a language for programming and reasoning about

networks based on Kleene Algebra with Tests (KAT) [15]. KAT provides the ability to

test equivalences between programs and enables reasoning about local and global switch

processing. Network programs in NetKat are functions of packet histories that return sets

of packet histories. Kleene operations allow policies to be composed via union, in

sequence, or using an arbitrary combination of both. NetKAT was extended in other

research papers to include probabilistic predicates [16] to allow for reasoning about

networking programs with stochastic elements. Moreover, in [17], event handling was

added along with extending the language with mutable states.

 7

Alternative approaches exist, such as in [18], where the authors propose methods

for dynamic checking of network properties as the controller reacts to changes by

allowing developers to insert assertion statements in general purpose SDN controller

languages.

 Data Plane Verification

Data-plane verification attempts to model the network data-plane as it exists in

the router’s forwarding tables. This entails modelling the low-level decisions the router

makes in handling packets independently from their origin in control-plane algorithms

and protocols. Moreover, data-plane verification allows modelling networks of very

diverse device-types irrespective of high-level routing protocols that guide their behavior.

It therefore applies to traditional networks by pulling their FIBs (forwarding tables) or

SDN networks by extracting their forwarding tables (OpenFlow).

In [1] authors propose Anteater, a tool for data-plane verification based on

transforming high-level network data-plane configuration and questions about

reachability into bit-vector logical expressions passed to a SAT solver. Alternatively,

HSA [3] models packets at ports as points (and cubes) in a header space with switches

being transfer functions that map one point to a set of points in that space. Reachability

questions and checks for certain network properties are converted, consequently, into a

series of transformations applied to a header space according to paths in the network

topology.

Following on work in [1] and [3], authors in [19] and [20] propose a SAT-based

method for verifying network properties. It models the network using propositional logic,

to which constraints are added as queries about specific properties. It provides a uniform

 8

network modelling framework capable of representing arbitrary packet matches and

rewrites in propositional logic. It doesn’t keep packet histories as spatial and temporal

information are encoded simultaneously by representing a single packet trace throughout

the network. It employs a graph-based representation of the network, which avoids

possible expansions in representations based on paths, but denies the ability to deal with

multicasting and non-vicious loops.

Authors in [4] propose a general specification language called Network-optimized

Datatlog (NoD) for verification of networks. Both network models and queries for

invariants are written in Datalog allowing flexibility in modelling a wide variety of

networks. It supports packet rewrites and the ability to define new packet types without

the need to modify NoD internals.

All above approaches applied naively would result in very expensive

computational procedures and impracticalities in applying them. Tools and approaches,

therefore, employ a set of optimizations to make it possible for actual network operators

to run tests and generate useful results in reasonable time frames.

 Optimizations for Network Verification

Verifying network properties such as reachability and loop-freedom is an

expensive computational problem. [1] proved that the problem of verifying reachability

is at least NP-complete by showing that the Boolean Satisfiability problem (3-SAT) can

be reduced to a dataplane reachability problem. Thus, most tools resort to SAT solvers

(or equivalent model checking tools) which apply heuristics and greedy methods to solve

these problems efficiently. Moreover, even SAT solvers struggle with the complexity of

network verification due to the large state space of packet headers, in addition to network

 9

topology complexity. Packet headers with n bit create a search space of size 2^n possible

options to test against forwarding rules across paths in the network. Minimizing the search

space has received a lot of attention in the literature.

Methods to minimize the search space revolve around compressing headers into

compact representations that can be efficiently verified for desired network properties. In

[2] where matching operations were limited to IP address prefixes, proposes a prefix-

hoisting method to minimize the number of variables needed to represent IP-addresses by

representing them as integers and using the more efficient integer difference logic (IDL)

for prefix matching. HSA [3] employs a set of optimizations to improve its performance

such as ‘IP table compression’ to minimize the number of transfer function rules, in

addition to concept called ‘lazy subtraction’ which avoids unnecessary expansion of

header space information as the algorithm progresses. Similarly, [4] overcomes scaling

issues by using symbolic header representations (using BDDs) and difference of cubes

(inspired by [3]) to minimize an extended representation along with Datalog

optimizations specific to operations on header input-output relations.

Authors in [5] and [6] propose the use of atomic predicates as primitives

corresponding

to equivalence classes of packet headers to speed up reachability computation by allowing

the use of sets of integers to represent packet matches. Similarly, Veriflow [7], in its

attempt to run as an online verification system for SDN data-planes, achieves low latency

by grouping headers into Equivalency Classes (ECs) which follow the same forwarding

behavior throughout the network. A graph per-EC is constructed to which flow updates

specific to these ECs are applied after which a graph verification algorithm to check for

 10

custom invariants is run. Moreover, [8] takes a slightly different approach by exploiting

forwarding similarities in parts of the network, rather than doing so globally.

Authors in [9] and [10] observe that many tools have faster results than the worse-

case combinatorially complex running time and provide a theoretical grounding for these

results. They define atoms as classes of headers that follow the same behavior across the

network and proceeds to provide a polynomial time (in the number of header classes)

algorithm for loop detection. While many practical cases can be solved efficiently, the

number of header classes could nonetheless be exponential.

These methods achieve good results in practice as long as the number of header

classes is polynomial. However, the problem remains combinatorially complex for cases

when the number of header classes is not polynomial.

Our proposed method can use header-compression techniques when relevant to

minimize the search space as the input allows, but nonetheless for cases when

compression does not yield considerable reduction in complexity (ex. arbitrary wildcard

matching in SDN), it creates a tradeoff for further minimizing the search space by

allowing for a tradeoff between search space covered and probability of correctness by

exploiting statistical properties of actual network traffic. Moreover, in creating a tradeoff,

it gives users the ability to define their probability of correctness versus time-saving

preference where to the best of our knowledge no existing method provides such

flexibility.

 11

 Comparison with Our Method

Table 1 compares methods from the literature with our approach. Our method’s

most important contribution is the ability to make probabilistic approximations through

prioritized traversal under a probability threshold. Moreover, our method supports loop

tolerance and the option to terminate reachability traversal at looping branches, making

this feature configurable. We share key optimizations and properties with HSA: (1) We

provide sets of headers, along with packet histories, as output to reachability questions,

while other methods return yes/no answers and counter-examples instead of full

reachability sets; (2) We use header space models and transformations as a base for our

implementation which allows us to exploit HSA optimizations such as Lazy Subtraction;

(3) We support abstract forwarding functions which process and manipulate headers,

regardless of the underlying implementation.

 12

Method Possible
Inputs

Answers Loop
Tolerance

Solver
types

Optimizati
ons

Approximat
ions

Anteater Match ->
Rewrite ->
Forward

yes/no;
With
counter-
examples

Tolerates
Loops;
Limitation:
max path
length fixed

SAT/SMT
Solver

SAT solver
techniques

ø

HSA Match ->
Rewrite ->
Forward;
Abstract
forwarding
functions

Sets of
Reachable
Headers

Stops at
repeated port

Header
Space
Transformat
ions

Lazy
Subtraction

ø

[19-20] Match ->
Rewrite ->
Forward

yes/no Stops at
repeated node

SAT/SMT
Solver

SAT solver
techniques

ø

NoD Match ->
Rewrite ->
Forward;
DataLog
Models

Sets of
objects

Tolerates
Loops;
Model-specific
interventions
needed to
enable/disable

DataLog Difference
of Cubes
(eq. to lazy
subtraction
)

ø

Our
Method

Match ->
rewrite ->
forward;
Abstract
forwarding
functions

Sets of
Reachable
Headers

Configurable Header
Space
Transformat
ions

Lazy
Subtraction

Prioritized
Traversal

Table 1: Comparison of different methods

Next we define the problem of data-plane verification and discuss its complexity

in light of recent trends and use-cases in modern networks.

 13

CHAPTER III

PROBLEM DEFINITION

 Verify Reachability in a Large Network

Consider a network with many devices each consisting of data-plane forwarding

rules of the format:

match header forward port

Forwarding rules define how routing should take place in a network device. Each

rule consists of a match section, which defines the packets this rule is applied to, and an

action section specifying how to treat the matched packet (forward, drop, rewrite, …).

Forwarding rules are grouped in routing tables in which they are matched according to

priority where the highest-priority rule matching a packet is used to forward the packet.

More complex forwarding table organizations exist, but for practical reasons, the

treatment of forwarding tables will be restricted to the scheme just described.

Question: How can we know if a packet <p> can go from device <s> to device

<t>?

Network reachability questions are tests to identify if certain traffic (defined by

packet wildcards) can be forwarded from one network endpoint to another. Reachability

tests can also be used as building blocks for more advanced network verification

questions such as: network isolation, forwarding loops, and forwarding blackholes as

shown in Anteater[1].

The input packet defines one or more header wildcards which represent input

traffic to be tested. The input packet can be alternatively defined as a symbolic header

 14

with constraints on its values. Source and target devices/ports are network endpoints that

we apply the test to.

We need to use formal verification to answer such questions. Formal verification

is the application of formal proofs on mathematical models of systems of interest. Formal

verification allows for proving or disproving whether a modelled system satisfies a

property of interest, usually related to specifications of correctness.

To apply formal verification to the reachability problem, we need to formally

model the network’s forwarding dataplane as well as the input to our reachability test.

Multiple modelling approaches exist, each suited for certain types of tools/methods for

answering forwarding questions.

After modelling network and the reachability test input, we feed the test to a

theorem prover. Theorem provers (SAT solvers, reasoning engines, ..) are tools and

methods which accept formal models and answer questions about the model’s properties.

Theorem provers come in different flavors but all rely on formal methods (symbolic logic,

set theory, graph theory, …) in order to reason through the provided input to identify

whether the property in question is satisfied.

 Problem Complexity

The problem of verifying dataplane reachability in networks is combinatorially

complex and at least NP-Complete as proven in [1]. The actual complexity of the problem

of s-t graph reachability with boolean filters is P-SPACE Complete as proven in [27].

This means we can’t find the correct answer for all possible inputs due to possible

combinatorial explosion in running-time. We need heuristics, or we need to be

 15

economical in the way to check for cases. SAT-solvers and theorem provers already do

that.

To solve a verification problem, you need to cover all possible cases (inputs) and

validate that the result is as expected. SAT-solvers and similar tools try to minimize the

checks needed to solve a problem by applying a combination of greedy techniques and

heuristics, which exploit regularities and patterns that make most practical problems

much easier than the worst-case. Tools and frameworks that are not SAT-based, such as

Header Space Analysis, also apply a similar flavor of the above tricks to minimize the

scope and number of cases to be checked.

The bag of tricks developed by the formal verification community does a good

job as long as the actual complexity of the problem is less than the worst-case. At worst-

case they just give the best approximate answer they can in the time window given.

Network verification complexity is a function of the complexity of the input

needed for the property being checked for. In a network reachability verification problem,

the number and complexity of forwarding rules on devices, the size and complexity of

network graphs, and the size of packet headers contribute to the overall complexity of the

verification problem.

Forwarding rule complexity is a function of the number of bits being checked for

in a match operation, the number of bits being rewritten, and the relative uniqueness of

the match/rewrite operation compared to other rules in the network. Network graph

complexity is directly related to the size and density of the graph, which increases the

number of possible paths taken by a packet. Header complexity is directly related to the

number of bits in the header.

 16

Network dataplanes can become too complex when forwarding devices apply

free-form header matching operations instead of abiding by legacy header fields and

matching operations. This happens when more network devices apply wildcard header

matching instead of prefix-matching and range matching in addition to manipulating

header fields in non-standard ways (by re-using fields for unintended functions). Free

usage of packet headers significantly contributes to dataplane complexity. Case in point

are SDN networks that expose packets to full wildcard matching and rewriting.

Network graphs can become too complex as more and more overlay networks are

deployed in arbitrary topologies which are not limited to the physical ports existing on a

network device. Free overlay networks are enabled by SDN and similar technologies.

Packet headers become too complex as new protocols substantially increase

header size. IPv6 has significantly larger header sizes than IPv4, moreover, MPLS can

vary in size and grow as their applications evolve.

 Discussion

For large and complex problems, SAT solvers and similar tools can only give

approximate answers or no answer at all. Solvers apply computational tricks to save on

running time, but end up giving approximate answers based on general-purpose greedy

approaches. It would be of value to make use of traffic statistics to create meaningful

metrics to be used in reaching an approximate answer. This will be the topic of the next

section.

 17

CHAPTER IV

PROPOSED SOLUTION

For complex networks where it is infeasible to get a full answer to the dataplane

reachability problem, we will make use of traffic statistics to prioritize checking and save

on running time. It would be even better if we can use meaningful probability metrics to

quantify the quality of the approximation, and even better than that would be using a

probability threshold as an input to a tradeoff between probability of correctness (based

on traffic coverage) and computational cost.

We propose a tradeoff between probability of correctness and computational cost

and provide an algorithm that takes a probability threshold as an input and minimizes

running time under that threshold.

It is our intuition that as the user varies the selected probability threshold from 1

downwards, the running time of the algorithm will drastically improve as shown in the

below conceptual figure (Figure 1). We defend this intuition in the next section.

Figure 1: Conceptual plot of convergence of cumulative probability

 18

 Tradeoff Intuition

Our intuition is that traffic statistics follow a statistical pattern best described

using Ziph’s Law. Ziph’s law is an empirical statistical law describing properties found

in social and physical systems, such as population sizes of cities, word frequencies in

corpuses, etc... It describes a relationship between frequency and rank where the

frequency of an item is inversely proportional to its frequency (raised to a certain power).

The law is sometimes popularly referred to as the 80-20 rule where 20% of elements in a

population contribute to 80% of its weights. We suspect that path probabilities in the

network graph are Ziph distributed and will inherit skewness properties from the Ziph’s

Law.

Our intuition relies on four important observations. First, internet usage patterns

are not evenly spread over the available options. Very few websites/services consume

most of the internet traffic (Netflix 15%, YouTube 11%, …) [23]. This means very few

traffic streams consume most of the bandwidth. Second, routers group traffic streams

using wide packet matches such as IP Prefixes, wildcards, ranges, or other compression

mechanisms to minimize forwarding rules. These techniques group diverse traffic flows

into limited paths in the network, making few paths correspond to many underlying traffic

flows, therefore, aggregating their weights. Third, routers treat similar traffic similarly

across the network. This ensures that aggregations of traffic streams does not differ from

router to router, preserving groups of traffic streams across the network. Fourth, similar

network traffic tends to be processed by few nodes as networks make use of forwarding

trunks and hierarchical tree routing schemas, which minimizes the total number of

forwarding rules in the network among other objectives.

 19

This allows the covered probability in a greedy traversal algorithm to quickly

converge to 1, as a minority of the sample space carries most of the traffic. As networks

become more complex, there will still be statistical regularities. We want to exploit them

to save on computation and utilize the tradeoff. Next, we discuss how we model traffic

statistics.

 Modelling Network Traffic as a Markov Chain

Representing the network as a Markov Chain allows us to simplify our analysis

as we only need to consider probabilities at each node/port, which overlaps with statistics

collected by devices.

Markov Chains are memoryless, meaning that

𝑃(𝑒𝑣𝑒𝑛𝑡	|	ℎ𝑖𝑠𝑡𝑜𝑟𝑦) 	= 	𝑃(𝑒𝑣𝑒𝑛𝑡	|	𝑝𝑟𝑒𝑠𝑒𝑛𝑡)

This property greatly reduces the state space as we only consider transition

probabilities between nodes when constructing path probabilities.

A Markov Chain can be represented by a set of traffic states {𝑠3, . . . , 𝑠6},

corresponding to network nodes and ports, and a transition matrix 𝑃6	×	6, corresponding

to traffic statistics, where:

𝑝9,: = probability of transition from state 𝑠9 to state 𝑠:

We map each node (and port) in the network (graph 𝐺) to a state in the Markov

Chain, in addition to special states such as 𝑠<=>? being one of them. Traffic statistics from

ports will be turned into transition probabilities by dividing traffic volume on an outgoing

port by overall node outgoing traffic volume. For the sake of simplicity we stick to

mapping the traffic volume ratios as-is to transition probabilities. Other more advanced

mechanisms can be used to ensure no existing network link has a transition probability of

 20

0 by introducing a baseline probability of randomly choosing an arbitrary link at random.

This baseline probability is referred to as “damping factor” in PageRank [22].

Increasing the order of the Markov Chain increases accuracy of the model at the

expense of an expansion in the state space. This can be done by adding one element of

history: where 𝑃9,:,@represents transition probabilities from states i to j to k.

 Modelling Network Forwarding using Header Space Transfer Functions

We will use HSA [3] as a base for our solution. HSA has many attractive qualities

that make it a suitable framework to use since: (1) It is flexible in supporting arbitrary

packet headers. (2) It is capable of representing match/rewrite/forward operations. (3) It

transparently processes the network graph and packet headers, lending itself to network-

specific manipulation. (4) It contains optimizations to limit the search space by exploiting

forwarding rule regularities. (5) It supports abstract forwarding functions independent

from specific device implementation details.

HSA represents headers as points in an n-dimensional space where all header bits

are treated equally with no assumptions and restrictions to their use. Moreover,

hypercubes in this header space represent sets of packets with wildcards used for certain

bits. Hypercubes allow for symbolic processing of packets in that sets of headers with

certain properties can be processed instead of particular concrete headers. Network ports

are also modelled as points in space.

In HSA network devices are transfer functions that map a pair of port and header

space object into a set of ports and header space object. This represents how an input

packet at a source port is forwarded into multiple ports with potentially modified headers.

The transfer functions map one input into multiple potential forwarding decisions (ports

 21

& header) which is necessary to deal with hypercubes (symbolic packets, wildcard

headers). Such transfer functions also support multicasting in addition to header

manipulation and rewrites.

Transfer Function: (header, port) → *(header, *port)

The topology is also represented by the same transfer function from ports to ports,

irrespective of header values, according to the links present in the network.

To verify reachability between two points in the network, HSA applies the transfer

function at the source port and the input header and keeps applying the transfer function

to the resulting ports and headers until the destination is reached or a loop is detected.

HSA uses header compression techniques to minimize expansion in header

processing by using difference of cubes or lazy subtraction instead of expanding negation

operations into flat unions until it is unavoidable. These techniques exploit processing

regularities across the network to minimize the number of checks/tests in verification.

Such techniques were given theoretical grounding in [9] and [10] by introducing the

concept of equivalency classes of similarly treated sets of headers.

 Probabilistic Traversal Algorithm

The probabilistic traversal algorithm verifies the reachability of an input packet

header between a source port and a set of destination ports. It returns a set of reachable

packet headers at the destination ports along with their histories (headers and ports during

forwarding in the network).

The probabilistic traversal algorithm verifies reachability in a network according

to an input probability threshold which picks a point in the tradeoff between correctness

and computational cost. It minimizes the computational cost under that threshold by

 22

selecting the largest probability subpaths while traversing the network graph according

to forwarding logic.

The probabilistic traversal algorithm is run against a network model consisting of

a network transfer function and a network Markov Chain. The network transfer function

models the network forwarding logic as a map from a header object at a port to a set of

header objects each at a list of ports. The network Markov Chain is constructed from

traffic statistics at nodes and ports in the network. It is represented as a transition matrix

where each element is the probability of going from node/port at row to node/port at

column.

Overall signature of the probabilistic traversal algorithm:

Input:
● Input header
● Source port
● Destination ports

● Probability threshold

● Network Model:

○ Network Transfer Function:
■ (header,port) → * (header,*port)

○ Network Markov Chain:
■ Pnxn

Output:

● List of largest probability paths covered by the probability threshold
that trace the input packet from input port to output ports

1. Core Transformation Step

We will identify a core transformation step which we will run recursively on the

network model until we reach a stopping condition. The core transformation step takes a

header at a port as input and transforms them into a set of header at port with probability.

This transformation is done (1) by using the network transfer function to generate the

 23

next port-header tuples and (2) by using the network markov chain to get the transition

probability from the input port to the output port. (Figure 2)

Figure 2: Core Transformation Step

The algorithm needs to use this core transformation step as building block in a

way that prioritizes traversal of largest probability subpaths. Moreover, it needs to keep

track of a cumulative probability to be used as a stopping condition when it is equal or

more than the input probability threshold.

In the next sections we will address two concerns: (1) how to calculate the

cumulative probability at every step in order to identify the stopping condition and (2)

how to prioritize traversal by choosing highest probability first.

2. Calculating the Cumulative Probability

The cumulative probability is the sum of the probabilities of terminated sub-paths

discovered while traversing the network model. It is used, along with the probability

threshold, in the stopping condition in the algorithm.

header

probability

port

transform

header port

 24

Figure 3: Core Transformation Step & Parent Probability

Each node being traversed has a start-to-node probability which is the path

probability from the source node to the current node. In Markov Chains, path probabilities

are the product of transition probabilities between the nodes along the path. Initially, the

source node has a start-to-node probability of 1, and as the branching traversal of the

network model takes place, each step from one node to another multiplies the parent’s

start-to-node probability with the parent-child transition probability (generated by the

core transformation step) to generate the current node’s start-to-node probability.

Cumulative probability is incremented when a terminated node is reached during

traversal. Terminated nodes are either destination nodes or unreachable nodes. When a

destination node is reached we increment the cumulative probability with the node’s start-

to-node probability which is the start-parent probability multiplied with the parent-child

probability returned in the core transformation step. The core transformation step does

not explicitly return unreachable nodes, they must be inferred by comparing the output

with network model. The core transformation step returns the reachable ports with their

corresponding headers and parent-child Markov Chain transition probability (Figure 3).

The probability of a step transition (sum of all one-step transitions) in a Markov Chain is

1. The sum of unreachable parent-child probabilities is therefore 1 - ∑(parent-child

Transformation

Step
 parent

header

start-parent
probability

parent
port

child
header

child
port

parent-
child

probability

 25

probability; for all reachable nodes). The cumulative probability is then incremented

with the unreachable parent-child probabilities multiplied by the parent’s start-to-node

probability.

3. Prioritizing Traversal

For the algorithm to minimize the number of checks under the selected probability

threshold, we will prioritize our traversal to cover the largest probabilities first. Every

node during traversal has a start-to-node probability. This probability is the maximum

probability coverage that can result from traversing recursively through the node until

stopping at all destinations or unreachable nodes. This probability is the priority metric

which will be used to select which node to process next in the traversal.

This can be achieved by using a priority queue to keep intermediate nodes during

traversal and to pop highest priority (probability) nodes. (Figure 4)

Figure 4: Transformation candidates in the priority queue

Transformation
Candidate

Priority

Priority Queue

 26

4. Big Picture

Starting with the source node as the initial transformation candidate with path

probability equal to 1, we use a priority queue to prioritize traversal according to node

path probability. A while loop iterates until either the queue is empty or the cumulative

probability reaches the input threshold (Figure 5). At every step in the while loop the

algorithm:

1) Pops a transformation candidate from the priority queue

2) Applies the transformation step

3) Updates cumulative probability

4) Inserts child nodes as transformation candidates where the priority for every child

is the start-to-child probability

Figure 5: Overall sketch of the algorithm

Priority Queue Pop
Largest
Probability
Candidate

 Transf

Update Cumulative Probability

Update
Candidate

Probabilities

Push Valid
Candidates

 27

5. Pseudocode

def verify_reachability(
 network,
 input_port,
 input_header,
 destinations,
 prob_thresh):

 pq = PriorityQueue()

 pq.push(1, {
 port: input_port,
 header: input_header,
 history: []
 })

 cum_prob = 0

 while cum_prob <= prob_thresh:
 prob, next = pq.pop()

 hops, leftover_prob = transform(network, next)

 cum_prob += leftover_prob

 for hop in hops:
 path_prob = hop.prob * prob

 if hop.port in destinations:
 cum_prob += hop_prob

 reachable_paths.append(hop, path_prob)

 else:
 pq.push(path_prob, {
 port: hop.port,
 header:hop.header,
 history:hop.history
 })

 return reachable_paths

 28

def transform(
 network,
 port,
 header):

 ntf = network.transfer_function
 nmc = network.markov_chain

 next_hops = ntf.tx(port, header)

 leftover_prob = 1

 for hop in next_hops:
 hop.prob = nmc[port, hop.port]
 leftover_prob -= hop.prob_thresh

 return next_hops, leftover_prob

6. Example

We consider a simple example to illustrate how our prioritized traversal algorithm

solves the reachability problem. Consider the network shown in Figure 6 consisting of 3

nodes in a full mesh topology with a header of length 3 bits. The forwarding logic of the

network is given in Table 2 detailing the packet matches needed to forward packet

between any two nodes as packet wildcards where an unset bit (don’t care) is marked by

‘x’ while set bits are give values ‘0’ or ‘1’. Table 3 shows the probability matrix of the

Markov Chain modelling network statistics.

 29

Figure 6: Network topology consisting of 3 nodes ‘a’, ‘b’ and ‘c’

from * to * a b c

a 1xx 0xx 01x

b 1xx 1x1 011

c x1x x0x 111

Table 2: Forwarding logic of Network shown in Figure 6. Each entry is the
packet wildcard match needed to forward a packet along the edge from node in

row to node in column.

pi,j a b c

a 0.1 0.4 0.5

b 0.5 0.2 0.3

c 0.3 0.6 0.1

Table 3: Probability matrix of the Markov Chain representing network
traffic of Network in Figure 6

a

b

c

 30

 We will work through the algorithm for an arbitrary input packet ‘xxx’ with start

node ‘a’ and destination node ‘c’. Initially, the cumulative probability is zero and the

priority queue only contains node ‘a’ with candidate probability 1 (Figure 7). Node ‘a’ is

then popped from the priority queue and transformed using the forwarding logic and the

markov chain (Figure 8). At this point, node probabilities are calculated by multiplying

the parent node candidate probability with each child’s transition probability. Also,

terminated paths are identified and the cumulative probability is updated. Only path ‘a-

>c’ is terminated and its probability is used to update cumulative probability. Candidate

subpaths ‘a->a’ and ‘a->b’ are inserted along with their probabilities (and headers) into

the priority queue. Figure 9 shows the result of the queue pop operation of highest

probability sub-path ‘a->b’ and the result of its transformation. All its children are

terminating paths with ‘a->b->a’ and ‘a->b->b’ being unreachable and ‘a->b->c’ reaching

the destination. The resulting cumulative probability is 0.9 equal to the probability

threshold, which will terminate the algorithm.

 It is worth mentioning that our algorithm does not terminate at loops by default,

as not all loops are vicious and infinite due to possible packet rewrites in forwarding logic.

Moreover, for probability thresholds less than 1, the algorithm will eventually terminate

even if loop detection is disabled.

Figure 7: Initial setup of the traversal

xxx

(a, 1)

cum_prob=0 a

Priority Queue:

 31

Figure 8: Result of the 1st queue pop and transformation

Figure 9: Result of the 2nd queue pop and transformation

7. Correctness Proof

To prove that the proposed algorithm works, we need to satisfy 2 conditions:

1) The algorithm should cover the probability threshold correctly

2) The algorithm should evaluate highest probability sub-paths first in the traversal

a

a b c

(b, 0.4), (a, 0.1)
1xx

0xx 01x

Priority Queue:

cum_prob=0.5

a

a b c

xxx

a b c

(a, 0.1)

1xx
0xx 01x

Ø Ø 011

Priority Queue:

cum_prob=0.9

 32

a. Proof of Claim 1: The algorithm should cover the probability threshold correctly

The algorithm should calculate and update the cumulative probability correctly

according to (sub-path) Markov probabilities. It terminates when the cumulative

probability becomes equal or greater than the probability threshold.

The branching traversal of the network graph from the source port until a

terminating node is reached follows a tree diagram where the root is the source port and

children are next hops from their parent. Children can either terminate or continue

branching.

Each node in the tree has a probability. This probability starts at 1 and keeps

getting multiplied with hop probabilities when branching. A node in the tree has a

probability equal to the product of hop probabilities from the start node until reaching the

current node. The resulting probability is the Markov sub-path probability.

If the node is a terminating node (unreachable or destination), its probability is

added to the cumulative probability. The cumulative probability tracks the terminated

path probabilities. The cumulative probability will add up to 1 if all paths have been

traversed, since a parent node’s probability will be equal to the sum of child probabilities.

b. Proof of Claim 2: The algorithm should evaluate highest probability sub-paths first

in the traversal

The branching traversal keeps unterminated (tree) nodes in a priority queue and

pops highest probability paths first. This ensures that if a terminated path is identified, it

will be the highest probability path out of all possible options.

 33

8. Running Time

a. Transformation Cost

Let transform_cost be the cost of processing one transformation candidate.

(Figure 10)

Figure 10: Forwarding transformation at a port

transform_cost = O(F(h, r) * m) <= O(F(h,r) * n)

Where:

● h is the number of bits in the header

● r is the number of rules in a device

● m is the number of edges in a node

● F(h, r) is the cost of matching and transforming a header at a port/node

b. Number of Transformations and Candidates

Let num_transformations be the number of nodes transformed.

Let num_candidates be the number of node candidates generated in the traversal

branching tree (Figure 11).

 h

h

h

m

headers

 34

Figure 11: Branching Traversal Tree

The maximum number of elements in a tree of degree d and depth k is O(d^(k-

1)).

The number of candidates num_candidates can at most be equal to the size of the

whole branching traversal tree. In many cases, the algorithm does not need to process all

possible nodes and terminates before processing the whole tree. Let the candidate_ratio

be the ratio, out of all possible hypothetical tree nodes, of processed candidates. Note that

candidate_ratio is not a constant but varies with network traffic, forwarding logic, and

network size, where it could reduce num_candidates by orders of magnitude.

num_candidates = O(candidate_ratio * d^(k-1))

depth
k

degree

All Transformations

All Candidates
1

1

d

 35

The number of transformations num_transformations can at most be equal to

the number of candidates. A lower bound is not guaranteed as extra assumptions will be

required.

num_transformations <= num_candidates = O(candidate_ratio * d^(k-1))

c. Traversal Cost

Let traversal_cost be the cost of traversing through the network using a priority

queue.

The cost of queue_push = O(1)

The cost of queue_pop = O(log(queue_size)) = O(log(num_candidates))

traversal_cost = transform_cost * num_transform * queue_pop + queue_push

* all_candidates

= O(F(h, r) * n * candidate_ratio * d^(k-1) * log(candidate_ratio * d^(k-1))) +

O(candidate_ratio * d^(k-1))

d. Candidate Ratio

We will focus on statistical properties and their relation to running time

improvement. We assume no early terminations take place. Early terminations happen

due to unreachable packets due to forwarding logic (as opposed to traffic statistics) which

halt the branching traversal at depths less than the maximum k.

Let P be the probability distribution of a single transformation step’s output. It

assigns a probability to each potential forwarding outcome. (Figure 12)

 36

Figure 12: Probability distribution of a transformation step

The probability distribution after k recursive transformations is P^k with support

(number of elements over which the discrete distribution is defined) d^k. Which could

be interpreted as the probability of a sequence of k iid random variables each representing

a transformation step.

We are interested in the behavior of P^k. Specifically, we are interested in how

our tradeoff behaves on a distribution raised to a power. Our tradeoff can be formulated

as a function Fratio from a distribution P^k and a probability threshold Pth to the ratio

of the minimum number of elements, out of all possible elements, needed from P^k to

cover Pth.

𝑭𝒓𝒂𝒕𝒊𝒐(𝑷, 𝒌, 𝑷𝒕𝒉) =

𝒎𝒊𝒏L𝒔𝒊𝒛𝒆(𝒔𝒖𝒃𝒔𝒆𝒕(𝑷𝒌)); 	𝒔𝒖𝒎S𝑷𝒓𝒐𝒃(𝒍𝒆𝒂𝒇); 	𝒍𝒆𝒂𝒇	 ∈ 	𝒔𝒖𝒃𝒔𝒆𝒕(𝑷𝒌)W 		≥ 	𝑷𝒕𝒉	Y
𝒔𝒖𝒑(𝑷𝒌)

Fratio gives us the ratio of tree leafs needed to satisfy our threshold, which

asymptotically bounds the running time of the algorithm.

P[1]

P[d]

 d
out ports in port

 37

Empirical observations in the below graph (Figure 13) show the evolution of

Fratio as k is increased. For different base distributions P of varying skewness, Fratio

decreases exponentially fast.

The observed exponential decline is investigated in theory of large deviations

[24], a branch of probability theory concerned with the asymptotic behavior of remote

tails of functions applied to sequences of probability distributions. A detailed theoretical

analysis is out of scope for this document.

Figure 13: Fratio of P^k over multiple base distributions P

In the next section we present empirical results and investigate the behavior of

our method against randomly generated networks with different complexities and

statistical properties.

 38

CHAPTER V

EMPIRICAL RESULTS
 Implementation

Our implementation of the probabilistic traversal algorithm relied on HSA’s

python codebase [26] to model network headers and forwarding logic. We used their

header-space objects to model packet headers, and their transfer functions to model

network forwarding. We modelled the network markov chain as an nxn matrix

implemented as a python dictionary (hash-table). We used the standard python

implementation of priority queue in the heapq module.

 Results

1. Generating Random Networks

We tested our implementation by generating random networks with random forwarding

rules. We also randomly generated markov chain probabilities. We construct random

network topologies by generating random G(n,p) graphs using the networkx python

library. We select two parameters to randomly generate a graph; n the size of the network,

and p the probability of two nodes having an edge. We use n and p to generate all other

parameters. We set the packet header size to be double the number of bits needed to

address all network ports 2 * log2(n2).

We construct forwarding tables by randomly creating node_rules_n forwarding

rules, where node_rules_n is equal to the expected number of connected ports in the

network n2 * p. Each forwarding rule consists of a match and forward section. We

generate the match section by randomly selecting an arbitrary subset of bits (15% of

 39

header size) to randomly set to 0 or 1. We set the forward section of a rule to a random

out-port in the node.

We generate the markov chain probability matrix by sampling n shuffled vectors,

each of size equal to the number of neighbors of a node in the graph, from the function:

𝒔𝒌𝒆𝒘(𝒙, 𝒄) 	= 	𝒙^𝒄 	− 	𝟏; 	𝒙 ∈]𝟎, 𝟏[

where c is considered a skewness parameter. We then normalize the vectors to

make sure each adds up to 1. We vary c to control the skewness of the resulting

distribution. With c very close to zero skew becomes a constant function much like a

normal distribution. With c taking larger values, skew becomes very uneven. Alternative

functions can be used to sample probabilities while controlling skewness.

Figure 14: Entropy of 32 samples taken from skew(x,c) plotted against
skewness c

 40

Figure 14 shows how the skewness factor c affects the entropy of probability

vectors sampled from skew(x,c). Entropy is almost equal to uniform entropy 5 for c very

close to 0, and keeps decreasing as c increases. Entropy can be used as a test for

evenness/skewness of probability distributions by measuring diversity where it is

maximum for equal probabilities across a sample space and minimum for extreme

concentration of probabilities in limited parts of it.

2. Convergence of Cumulative Probability

Cumulative probability tracks the covered traffic volume throughout the progress

of the algorithm. It is used to terminate the algorithm when it reaches the target threshold

(cutoff) probability. Figure 15 shows how the cumulative probability progresses at each

step in the algorithm. As expected, cumulative probability grows very quickly in the

beginning and becomes slower as time progresses. This is due to the fact that path

probability tends to be concentrated at few paths in the network.

The shape of the plot is that of a negative exponential of the form 𝑦 = 1 −

𝑒^e	⋅	g	h. Figure 16 shows the result of fitting a negative exponential function to the

evolution of cumulative probability.

 41

Figure 15: Cumulative path probability (below 0.99 cutoff) as the algorithm

progresses (n=30, p=0.99, c=0.6)

Figure 16: Fitting cumulative path probability evolution plot to negative

exponential function (n=30, p=0.99, c=0.6)

The speed of convergence is directly proportional to 𝛼 and 𝛽. Due to the fact

that two parameters define the fitting function, it is not possible to use both of them at

the same time to compare the convergence of two different instances of the fitting

function.

 42

The derivative of 𝑦 is 𝑦′ = 𝛼𝛽𝑥m^3𝑒^egh. Identifying the speed of convergence

through the derivative is a tricky matter as taking the derivative at zero does not yield an

answer, as it will actually be infinite (𝛽 < 1). Moreover, taking the derivative at any

other point is arbitrary and cannot be used as grounds for comparing different instances

of this function.

Another more fundamental problem is our assumption of the validity of 𝑦 over

all possible results of the algorithm. Due to the above reasons, we will use the number

of steps needed to reach a cutoff probability threshold of 0.99 as the rate of

convergence. This definition avoids making assumptions about a fitting function and

gives a practical estimate for the behavior of the algorithm under different

circumstances.

3. Varying Complexity

Figure 17 shows the effect of varying two network complexity parameters on the

growth of cumulative probability in terms of number of steps. The number of steps needed

to reach probability threshold of 0.95 increases with network complexity n & p, with the

number of nodes n contributing to most significant increase in running time. It is

important to note that in our setup header size (2 * log2(n2)) grows with n and the number

of forwarding rules (n2 * p) grows quadratically with n and linearly with p.

Another observation can be made: the shape of the curve under different

conditions takes two forms. It either grows quickly and plateaus as in the case of { n=20,

p=0.8 } or grows, more-or-less, uniformly as in the case of { n=30, p=0.8 }. The first

shape, of sudden increase and later plateau, reflects a form of skewness where the

majority of the probability is concentrated in a group of paths, while the remaining

 43

probability is evenly spread, while the second shape reflects a more global distribution of

skewness across the whole network. The 𝛽 factor in the fitting function seems to be

directly related to the relative concentration of path probabilities with higher 𝛽 correlated

with more uniformity in speed of growth and less concentration of skewness.

Figure 17: Cumulative Probability Plots for Different Network

Complexities (c=0.6, pth=0.95)

4. Varying Skewness

Figure 18 shows the effect of skewness on the running time (in seconds) and the

number of steps. As expected, as we increase skewness the algorithm covers the target

threshold 0.95 faster and with less steps. This is due to the concentration of probability in

fewer and fewer paths in the network, which is taken advantage of by our probabilistic

traversal algorithm.

Due to the random assignment of probabilities in the markov chain, there is a

variability in the running time and number of steps needed to reach the threshold.

Nonetheless, this variability follows a decreasing pattern as we increase skewness. Each

 44

datapoint in Figure 18 corresponds to randomly generated traffic distribution based on

the skewness value. We generated 15 samples at each skewness point and averaged out

the resulting running time and number of steps per skewness point.

Figure 18: Running time and steps to termination (0.95 threshold) vs
multiple values of probability skewness (n=20, p=0.99)

5. Comparison with HSA

Our algorithm differs from the original HSA reachability algorithm in one

important aspect. We do not explicitly check for loops and avoid them. We can process

the same node/port multiple times. Our implementation relies on intermediate node

probabilities taking care of this issue, as the probability of going through a cycle will

exponentially decrease (geometric distribution) with time. The markov chains we deal

with are connected and do not have islands of isolated groups of nodes. This means that

the probability of absorption by the destination nodes and termination nodes is 1. This

 45

does not necessitate that the algorithm will terminate in a finite amount of time if the

probability threshold is set to be 1, as the probability of absorption is the probability of

eventually reaching an absorbing state.

To make our algorithm comparable to the original HSA algorithm, we added a

check to avoid processing the same port multiple times in the same path.

Figures 19 and 20 shows how our algorithm compares to the original HSA

reachability algorithm under different conditions. Multiple important observations can

be made. First, as we increase network size our algorithm at probability threshold equal

to 1 needs increasingly more time compared to HSA’s reachability algorithm. This can

be explained by the extra log(n) factor in our asymptotic running time due to the use of

a priority queue. Second observation, is that as we increase network size our algorithm

saves more time at probability thresholds 0.95 and 0.99. This can be explained by the

increasing concentration of high-probability paths for distributions P^n as n increases.

Figure 19: Table showing running time of the original HSA algorithm and

our algorithm (p=0.99, c=1.0) at different probability thresholds pth and different
network sizes n normalized by running time of the original HSA algorithm against

the same randomly generated network. (Intel Core i5 3.1 GHZ - 8GB RAM)

 46

Figure 20: Bar graph visualization of comparison table in Figure 19

We were able to achieve 99% traffic coverage in 2.45% (and 95% traffic

coverage in 0.57%) of the time needed for full coverage by HSA for a randomly-

generated network with n=25, p=0.99 and skewness c=1.

 47

CHAPTER VI

CONCLUSION

In this document, we motivated and proposed a tradeoff between running time

and traffic coverage (probability of correctness) for the problem of identifying

reachability between two network endpoints. Our proposed solution converts network

traffic statistics into a Markov Chain and applies a prioritized traversal algorithm to

minimize running time while ensuring traffic coverage according to a user-defined

probability threshold. Our solution makes it feasible to check for reachability for cases

when network forwarding complexity becomes too large for complete solutions. It allows

approximations to take advantage of statistical properties of networks instead of relying

on general-purpose heuristics and tricks present in SAT-solvers and similar tools.

We tested our solution against randomly generated networks with randomly

generated traffic statistics. As expected, the prioritized traversal algorithm saves on

running time by taking a small fraction of what it would take for a complete solution. The

amount of time-saving is correlated to the skewness of traffic distribution, proving our

algorithm’s efficacy in tracking highest-probability paths and utilizing it to save on

computation.

For higher network complexity, our algorithm costs slightly more than the

reference implementation in HSA [3] for probability threshold equal to 1 (full traffic

coverage), but the amount of time-saving for the probability threshold less than 1 becomes

smaller and smaller. This phenomena is supported by another independent observation

made in Chapter 4 Section D8 stating that total network skewness increases for increasing

network complexity, leading to the conclusion that our algorithm is even better suited for

high-complexity settings.

 48

 Future Directions

This research project can be expanded in multiple directions. Our solution focused

on applying the correctness-vs-performance tradeoff to reachability in HSA [3], but this

is only one example of an adaptation. The tradeoff can be expanded to cover verification

questions other than reachability. Different verification methods can also be explored for

possible extension with our proposed tradeoff. One possible adaptation is to make use of

optimization features in SMT Solvers such as Microsoft’s Z3 [25], and to formulate the

tradeoff as an objective function for an optimization, with forwarding logic and

reachability questions encoded as SMT specifications.

Another direction is to explore traffic models beyond global (first-order) Markov

Chains. Network traffic can have statistics beyond the stateless model of a single-network

Markov Chain, which matches traffic counters at individual network ports irrespective of

specific header information. Two possible approaches for enhancing the accuracy of

traffic model representation exist:

(1) A traffic model can be built per (symbolic) header to capture specific

statistics and use them in creating a tradeoff for reachability of specific headers.

The challenge in this case would be that of making use of partial statistics from

different traffic counters, of varying target packets, where gaps need to be

accounted for and covered.

(2) Higher-order Markov Chains can be used to capture statistics collected

across multiple devices and ports. This would be useful in enhancing the accuracy

of the traffic model to track streams of packets at multiple devices instead of at

single nodes. In order to avoid unnecessary state expansion, variable-length sub-

 49

path probabilities can also be explored and used to build an algorithm that makes

use of ‘whatever’ statistics are collected from a network.

Additionally, stateful network models and their verification can be explored and

adapted to our tradeoff. This would expand our solution to firewalls and stateful

middleboxes, in addition to stateful routing algorithms and protocols.

 50

REFERENCES

[1] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. Godfrey and S. King,
“Debugging the data plane with anteater”, ACM SIGCOMM Computer Communication
Review, vol. 41, no. 4, p. 290, 2011.

[2] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A General Approach to
Network Configuration Verification,” Proceedings of the Conference of the ACM Special
Interest Group on Data Communication - SIGCOMM 17, 2017.

[3] P. Kazemian, G. Varghese and N. McKeown, “Header space analysis: Static
checking for networks.”, Proceedings of the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12), 2012.

[4] N.P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese,
“Checking beliefs in dynamic networks.”, Proceedings of the 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15), 2015.

[5] H. Yang, “Efficient verification of network reachability properties,” 2013 21st
IEEE International Conference on Network Protocols (ICNP), 2013.

[6] H. Yang, "Efficient verification of packet networks", Ph.D, 2015.

[7] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow: Verifying
network-wide invariants in real time,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 4, p. 467, 2012.

[8] A. Horn, A. Kheradmand, and M. Prasad, “Delta-net: Real-time network
verification using atoms.”, Proceedings of the 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17) pp. 735-749, 2017.

[9] Y. Boufkhad, L. Linguaglossa, F. Mathieu, D. Perino, and L. Viennot,
“Efficient Loop Detection in Forwarding Networks and Representing Atoms in a Field of
Sets.” arXiv preprint arXiv:1809.01896, 2018.

[10] Y. Boufkhad, R. De La Paz, L. Linguaglossa, F. Mathieu, D. Perino, and L.
Viennot, “Forwarding Tables Verification through Representative Header Sets.”, arXiv
preprint arXiv:1601.07002, 2016.

[11] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R.
Mahajan, and T.D. Millstein, “A General Approach to Network Configuration Analysis.”,
In NSDI pp. 469-483, 2015.

 51

[12] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. D. Millstein, V. Sekar, and
G. Varghese, “Efficient Network Reachability Analysis Using a Succinct Control Plane
Representation.”, In OSDI, pp. 217-232, 2016.

[13] T. Nelson, A. Guha, D. J. Dougherty, K. Fisler, and S. Krishnamurthi, “A
balance of power: Expressive, analyzable controller programming.”, In Proceedings of
the second ACM SIGCOMM workshop on Hot topics in software defined networking,
pp. 79-84, 2013.

[14] C. J. Anderson, N. Foster, A. Guha, J. B Jeannin, D. Kozen, C. Schlesinger,
and D. Walker, “NetKAT: Semantic foundations for networks.”, In ACM SIGPLAN
Notices, Vol. 49, No. 1, pp. 113-126, 2014.

[15] D. Kozen, “Kleene algebra with tests.” ACM Transactions on Programming
Languages and Systems (TOPLAS), 19(3), pp. 427-443, 1997.

[16] N. Foster, D. Kozen, K. Mamouras, M. Reitblatt, and A. Silva, “Probabilistic
netkat.”, In European Symposium on Programming Languages and Systems, pp. 282-
309, Springer, Berlin, Heidelberg, 2016.

[17] J. McClurg, H. Hojjat, N. Foster, and P. Černý, “Event-driven network
programming.”, In ACM SIGPLAN Notices, Vol. 51, No. 6, pp. 369-385, 2016.

[18] R. Beckett, X. K. Zou, S. Zhang, S. Malik, J. Rexford, and D. Walker, “An
assertion language for debugging SDN applications.” In Proceedings of the third
workshop on Hot topics in software defined networking, pp. 91-96, 2014.

[19] S. Zhang, “Computer Network Verification and Management using
Constraint Solvers”, Doctoral dissertation, Princeton University, 2016.

[20] S. Zhang and S. Malik, “SAT based verification of network data planes.”, In
International Symposium on Automated Technology for Verification and Analysis, pp.
496-505, Springer, 2014.

[21] G. G. Xie, J.Zhan, D. A. Maltz, H. Zhang, A. Greenberg, G. Hjalmtysson,
and J. Rexford, “On static reachability analysis of IP networks.”, In INFOCOM 2005
24th Annual Joint Conference of the IEEE Computer and Communications Societies,
Proceedings IEEE Vol. 3, pp. 2170-2183, 2005.

[22] S. Brin, and L. Page, “The anatomy of a large-scale hypertextual web search
engine.”, Computer networks and ISDN systems, 30(1-7), pp. 107-117, 1998.

[23] M. Armstrong and F. Richter, “Infographic: Netflix is Responsible for 15%
of Global Internet Traffic,” Statista Infographics, 09-Oct-2018. [Online]. Available:
https://www.statista.com/chart/15692/distribution-of-global-downstream-traffic/.
[Accessed: 13-Jan-2020].

 52

[24] J. M. Swart, “Large Deviation Theory.”, 2012.

[25] L. D. Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” Tools and
Algorithms for the Construction and Analysis of Systems Lecture Notes in Computer
Science, pp. 337–340, 2008.

[26] P. Kazemian, “Header Space Library (Hassel).” [Online]. Available:
http://stanford.edu/~kazemian/hassel.tar.gz. [Accessed: 13-Jan-2020].

[27] M. Nagl, “Graph-Theoretic Concepts in Computer Science.” Berlin,
Heidelberg: Springer-Verlag, 1990.

