
 

  



 

AMERICAN UNIVERSITY OF BEIRUT 

 

 

 

NETWORK DATA PLANE VERIFICATION: A TRADEOFF 
BETWEEN PROBABILITY OF CORRECTNESS AND 

COMPUTATIONAL COST 
 

 

by 
IBRAHIM ABDELGHANY 

 

 

 

 

A thesis 
submitted in partial fulfillment of the requirements 

for the degree of Master of Engineering 
to the Department of Electrical and Computer Engineering 

of the Maroun Semaan Faculty of Engineering and Architecture 
at the American University of Beirut 

 
 
 

Beirut, Lebanon 
January 2020 

 
  



AMERICAN LINIVERSITY OF BEIRUT

NETWORK DATA PLANE VEzuFICATION:A TRADEOFF
BETWEE.N PROBABILITY OF CORRECTNESS AND

COMPUTATIONAL COST

by

IBRAHIM ABDELGHANY

Approved by:

Dr. Imad H. Elhalj, Professor
Department of Electrical & Computer Engineeri

vt s()r

Dr. Fadi Zaraket. Associate Prof'essor
Department ol'Electrical & Computer Engineering

Member of Conrmittee

Dr. Wassim Masri. Associate Professor
llepartment of Electrical & Ciomputer Engineering

ero f Conrnrittee

l)ate of thesis/dieeerttien del'ense: January 27,2020



AMEzuCAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT RELEASE FORM

Studcnt Name:

A \,.." -fb,. )rir. H^ss^^
[,ast First Middle

Master's Thesis O Master's Project Ooctoral Dissertation

I authorize the American University of Beirut to: (a) reprodr"rce hard or
electronic copies ofmy thesis, dissertation, or projectt (b) include such copies in the
archives and digital repositories ofthe lJniversitl,'; and (c) make freely available such
copies to third parties for rcscar,ch or educational purposes.

V I authorize the American University of Beirut, to: (a) reproduce hard or
electronic copies of it; (b) include such copies in the archives and digital repositories of
the University; and (c) make freely available such copies to third parties for research or
educational purposes
after:

One ---- year from the date of submission of my thesis, dissertation, or
project.

Two ---- years from the date of submission of my thesis, dissertation, or
proJ e

years from the date of submission of my thesis, dissertation, or
prolec

{eL \1 ZoZtJ

Thrcc -

Signature I)ate



 v 

ACKNOWLEDGMENTS 

 
First, I would like to thank my parents for their love and support during my academic 
studies.  I would also like express my gratitude to my advisor Prof. Imad Elhajj for his 
invaluable guidance and comments throughout my studies and my thesis. I also appreciate 
the comments and the feedback of the rest of the members of my thesis committee Prof. 
Fadi Zaraket and Prof. Wassim Masri. 
 
I would like to thank my colleagues at SAUGO 360 for their continuous support and 
motivation. I also would like to thank my friends who were immensely supportive during 
my master studies. 



 vi 

AN ABSTRACT OF THE THESIS OF 

 
 
 
Ibrahim Abdelghany     for Master of Engineering 
  Major: Electrical and Computer Engineering 
 
 
 
Title: Network Data Plane Verification: A Tradeoff Between Probability of Correctness 
and Computational Cost 
 
 
 
 Traditional and SDN Networks are increasingly more complex and covering more 
use-cases making reasoning about network behavior all-the-more challenging. Dedicated 
tools to verify networks for reachability and other invariants exist, but not without 
scalability limitations as these problems are combinatorially complex. Workarounds that 
exploit regularities to minimize processing exist, but they depend on data-plane properties 
that are not guaranteed to exist in SDN networks, especially as more use-cases are being 
applied with packet headers used in unconventional ways. We propose a tradeoff between 
the probability of correctness, based on network traffic statistics, and the verification 
computational cost. Such a tool gives operators the flexibility and freedom to select their 
own preference in this tradeoff, while making feasible a partial solution of cases that 
require exponential or factorial time. We represent the network as a Markov Chain, and 
propose a prioritized traversal algorithm to verify reachability questions. We test our 
algorithm on randomly generated networks of varying complexities and traffic 
distributions, proving the effectiveness of our method for high-complexity networks and 
the efficacy of our traversal algorithm in taking advantage of skewness in traffic weights. 
We were able to achieve 99% traffic path probability coverage in 2.45% (and 95% traffic 
path probability coverage in 0.57%) of the time needed for full coverage on randomly-
generated test networks. 
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CHAPTER I 

INTRODUCTION 
 

Network monitoring, configuration, and management tools are an indispensable 

part of operating modern networks. Such tools provide a single pane view where network 

statistics are collected, device configuration is stored, and network-wide services are 

managed. Software-Defined Networking (SDN) is built around the paradigm of 

centralized network management as it separates the control-plane, which is composed of 

routing configuration and algorithms, from the data-plane, which is responsible for low-

level packet forwarding operations. Traditional network operators employ ad-hoc 

solutions that interface with legacy devices and protocols to provide centralized network 

management features. 

One critical feature of network management is the ability to verify network-wide 

properties from low-level device configuration. This allows operators to safely push new 

changes without breaking network policies, and to verify that networks will behave as 

expected for arbitrary inputs and conditions. 

Complex networks with many devices each containing many forwarding rules are 

not easily verifiable. Traditional networks are composed of many protocols and ad-hoc 

solutions, making reasoning about their behavior and correctness a daunting task. 

Moreover, SDN has exposed packet headers to arbitrary matching and rewriting, 

accelerating the number and scope of possible services a network could run. Asking 

questions about forwarding behavior needs a framework where forwarding rules are 

translated into formal statements. Afterwards, these formal statements can be verified for 

specific criteria of correctness. 
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One possible framework, among others, for formal verification is SAT-based 

solvers. The input for such frameworks is a set of Boolean equations representing the 

behavior of the system. A generalization of SAT-based verification is Satisfiability 

Modulo Theories (SMT) which introduce support for functions, numbers, bit-vectors, and 

more complex data-types. Alternatively set-based methods rely on sets to represent 

packets and on functions on sets to represent forwarding logic. 

Representing a network node data-plane in terms of bitvector SAT formulas, or 

sets and functions, is fairly straightforward. Moreover, encoding the network topology is 

also straightforward. Using various techniques, verification tools convert reachability 

questions into tests on network models. The worst-case scenario for such tests is in the 

order of exponential, even factorial, in terms of the number of nodes and links, the number 

of forwarding rules, and the header size. This possible combinatorial explosion has 

attracted much research focused on optimizations for cases where networks satisfy certain 

properties [2, 3, 4, 5, 6, 7, 8, 9, 10]. 

Current techniques for avoiding combinatorial scalability issues rely on the fact 

that packet header representations can be compressed to minimize unnecessary 

computations. This relies on the fact that the number of header classes (headers that are 

treated the same way across the network) is relatively small compared to the worst case. 

Traditional networks consisting of routers and switches heavily depend on range-

matching and prefix-matching operations when dealing with packets, limiting the number 

of header classes needed for verification. SDN networks, however, match packet headers 

with arbitrary wildcard masks on a large set of fields making the problem complexity 

closer to the worst-case. Verification complexity is also affected by topology complexity 

which increases as overlay networks become more widespread. As SDN networks 
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implement more complex use-cases and treat packet headers with more freedom, the 

number of header classes is bound to increase. 

In this document, we propose a remedy to the problem of combinatorial explosion 

(for cases where current optimizations fail to reduce running time) by using network 

traffic statistics to create a tradeoff between computational cost and probability of 

correctness, based on a Markov Chain representation of the network graph. The proposed 

solution is also applicable to general cases by introducing flexibility in allowing users to 

choose the degree of correctness to save on running time. 

We use a Markov Chain to represent the graph of nodes in the network, where 

probabilities are extracted from traffic statistics. Then we take as input a probability 

threshold that the user selects and traverse the network graph to verify paths covered 

within the threshold. We minimize running time, under the selected threshold, by 

traversing the highest probability paths first. 

We use the term ‘coverage’ to refer to the cumulative probability of paths verified 

while traversing the network graph. Full coverage would result in a cumulative 

probability of paths covered equal to 1 with no more search needed for further paths in 

the network, while partial coverage under a specific probability threshold will only ensure 

that paths with probabilities summing up to it are considered in the search. 

Our current solution relies heavily on ideas proposed in Anteater [1], however, 

our reachability algorithm applies more naturally to HSA [3] as path enumeration is part 

of their method. Moreover, HSA answers reachability questions with a list of packet 

headers that are able to traverse the network instead of only yes/no answers and single 

counter-examples as in [1]. 
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We tested our algorithm against randomly generated networks and validated the 

time-saving power for different network complexities and traffic distributions. We 

outperform HSA for probability thresholds less than 1, and lag behind it for full traffic 

coverage due to the extra cost of prioritized traversal. We were able to achieve 99% traffic 

path probability coverage in 2.45% (and 95% traffic path probability coverage in 0.57%) 

of the time needed for full coverage by HSA on randomly generated test networks. The 

remaining uncovered traffic path probabilities are paths in the network that have 

probabilities less than what is needed to cross the selected probability threshold. Our 

algorithm performs better for more complex networks and more skewed traffic 

distributions. 

This document consists of the following chapters: Chapter I introduces the 

problem, highlights the proposed solution, and summarizes the results. Chapter II surveys 

the literature on network verification and identifies a gap that we intend to fill. Chapter 

III defines the reachability verification problem formally and motivates the need for our 

solution in light of trends in modern networks. The proposed solution is explored 

thoroughly in Chapter IV, we define our modelling approaches and present our prioritized 

traversal algorithm. Our testing results are discussed in Chapter V. Finally, we conclude 

and list future directions for research in Chapter VI.  
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CHAPTER II 

LITERATURE REVIEW 
 

Network verification can be classified into two broad categories: data-plane and 

control-plane verification. 

 

 Control Plane Verification 

Control-plane verification attempts to represent the forwarding decisions of 

control- plane protocols (such as BGP, OSPF, ..) and their interaction across a network. 

Verifying the control-plane entails modelling distributed routing protocols (and their 

interaction) to be tested for desirable properties operators specify (such as reachability, 

loop detection, black holes, etc.) which could involve complexity in modelling how a 

distributed protocol runs in a network in addition to the interaction of multiple routing 

protocols. Moreover, control-plane verification does not have the ability to detect bugs in 

router software causing undesirable or incorrect forwarding entries to exist in routers’ 

forwarding tables. 

In [11], authors present Batfish, a tool for generating a data-plane snapshot from 

configuration files and environment specifications as ‘what-if’ scenarios. The generated 

snapshot is then passed to a data-plane verification tool to check for specific invariants, 

while keeping a mapping between specific configuration statements and data-plane rules 

associated with undesired behaviors. Unlike [11], Minesweeper [2] models the stable-

state control-plane itself using logical formulas passed to constraint solvers to be tested 

for network properties such as reachability, loops, blackholes, waypointing, etc. It doesn’t 

generate a data-plane corresponding to input configuration, but rather models the 
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configurations themselves. Similar to [2], [12] ERA models the control-plane directly 

which could consist of multiple interacting protocols and checks for reachability given a 

set of environment specifications. Both Minesweeper and ERA employ a range of 

optimizations to minimize computation and limit IP Address matching to prefix 

matching. 

 

1. SDN Control Plane Verification 

With SDN’s centralized control plane, formally verifiable languages for SDN 

controllers have been proposed across the literature. The general approach taken is to 

create a language that is both expressive and amenable to formal verification methods. 

FlowLog [13] is declarative finite-state language for SDN controllers attempting 

to mitigate the complexity inherent in reasoning about general-purpose fully-expressive 

programming languages generally used. It also allows the reuse of code written in 

imperative languages as black boxes to make it convenient for integration with existing 

solutions. Similarly, NetKAT [14] is a language for programming and reasoning about 

networks based on Kleene Algebra with Tests (KAT) [15]. KAT provides the ability to 

test equivalences between programs and enables reasoning about local and global switch 

processing. Network programs in NetKat are functions of packet histories that return sets 

of packet histories. Kleene operations allow policies to be composed via union, in 

sequence, or using an arbitrary combination of both. NetKAT was extended in other 

research papers to include probabilistic predicates [16] to allow for reasoning about 

networking programs with stochastic elements. Moreover, in [17], event handling was 

added along with extending the language with mutable states. 
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Alternative approaches exist, such as in [18], where the authors propose methods 

for dynamic checking of network properties as the controller reacts to changes by 

allowing developers to insert assertion statements in general purpose SDN controller 

languages. 

 

 Data Plane Verification 

Data-plane verification attempts to model the network data-plane as it exists in 

the router’s forwarding tables. This entails modelling the low-level decisions the router 

makes in handling packets independently from their origin in control-plane algorithms 

and protocols. Moreover, data-plane verification allows modelling networks of very 

diverse device-types irrespective of high-level routing protocols that guide their behavior. 

It therefore applies to traditional networks by pulling their FIBs (forwarding tables) or 

SDN networks by extracting their forwarding tables (OpenFlow). 

In [1] authors propose Anteater, a tool for data-plane verification based on 

transforming high-level network data-plane configuration and questions about 

reachability into bit-vector logical expressions passed to a SAT solver. Alternatively, 

HSA [3] models packets at ports as points (and cubes) in a header space with switches 

being transfer functions that map one point to a set of points in that space. Reachability 

questions and checks for certain network properties are converted, consequently, into a 

series of transformations applied to a header space according to paths in the network 

topology. 

Following on work in [1] and [3], authors in [19] and [20] propose a SAT-based 

method for verifying network properties. It models the network using propositional logic, 

to which constraints are added as queries about specific properties. It provides a uniform 
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network modelling framework capable of representing arbitrary packet matches and 

rewrites in propositional logic. It doesn’t keep packet histories as spatial and temporal 

information are encoded simultaneously by representing a single packet trace throughout 

the network. It employs a graph-based representation of the network, which avoids 

possible expansions in representations based on paths, but denies the ability to deal with 

multicasting and non-vicious loops. 

Authors in [4] propose a general specification language called Network-optimized 

Datatlog (NoD) for verification of networks. Both network models and queries for 

invariants are written in Datalog allowing flexibility in modelling a wide variety of 

networks. It supports packet rewrites and the ability to define new packet types without 

the need to modify NoD internals. 

All above approaches applied naively would result in very expensive 

computational procedures and impracticalities in applying them. Tools and approaches, 

therefore, employ a set of optimizations to make it possible for actual network operators 

to run tests and generate useful results in reasonable time frames. 

 

 Optimizations for Network Verification 

Verifying network properties such as reachability and loop-freedom is an 

expensive computational problem. [1] proved that the problem of verifying reachability 

is at least NP-complete by showing that the Boolean Satisfiability problem (3-SAT) can 

be reduced to a dataplane reachability problem. Thus, most tools resort to SAT solvers 

(or equivalent model checking tools) which apply heuristics and greedy methods to solve 

these problems efficiently. Moreover, even SAT solvers struggle with the complexity of 

network verification due to the large state space of packet headers, in addition to network 
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topology complexity. Packet headers with n bit create a search space of size 2^n possible 

options to test against forwarding rules across paths in the network. Minimizing the search 

space has received a lot of attention in the literature. 

Methods to minimize the search space revolve around compressing headers into 

compact representations that can be efficiently verified for desired network properties. In 

[2] where matching operations were limited to IP address prefixes, proposes a prefix-

hoisting method to minimize the number of variables needed to represent IP-addresses by 

representing them as integers and using the more efficient integer difference logic (IDL) 

for prefix matching. HSA [3] employs a set of optimizations to improve its performance 

such as ‘IP table compression’ to minimize the number of transfer function rules, in 

addition to concept called ‘lazy subtraction’ which avoids unnecessary expansion of 

header space information as the algorithm progresses. Similarly, [4] overcomes scaling 

issues by using symbolic header representations (using BDDs) and difference of cubes 

(inspired by [3]) to minimize an extended representation along with Datalog 

optimizations specific to operations on header input-output relations. 

Authors in [5] and [6] propose the use of atomic predicates as primitives 

corresponding 

to equivalence classes of packet headers to speed up reachability computation by allowing 

the use of sets of integers to represent packet matches. Similarly, Veriflow [7], in its 

attempt to run as an online verification system for SDN data-planes, achieves low latency 

by grouping headers into Equivalency Classes (ECs) which follow the same forwarding 

behavior throughout the network. A graph per-EC is constructed to which flow updates 

specific to these ECs are applied after which a graph verification algorithm to check for 
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custom invariants is run. Moreover, [8] takes a slightly different approach by exploiting 

forwarding similarities in parts of the network, rather than doing so globally. 

Authors in [9] and [10] observe that many tools have faster results than the worse-

case combinatorially complex running time and provide a theoretical grounding for these 

results. They define atoms as classes of headers that follow the same behavior across the 

network and proceeds to provide a polynomial time (in the number of header classes) 

algorithm for loop detection. While many practical cases can be solved efficiently, the 

number of header classes could nonetheless be exponential. 

These methods achieve good results in practice as long as the number of header 

classes is polynomial. However, the problem remains combinatorially complex for cases 

when the number of header classes is not polynomial. 

Our proposed method can use header-compression techniques when relevant to 

minimize the search space as the input allows, but nonetheless for cases when 

compression does not yield considerable reduction in complexity (ex. arbitrary wildcard 

matching in SDN), it creates a tradeoff for further minimizing the search space by 

allowing for a tradeoff between search space covered and probability of correctness by 

exploiting statistical properties of actual network traffic. Moreover, in creating a tradeoff, 

it gives users the ability to define their probability of correctness versus time-saving 

preference where to the best of our knowledge no existing method provides such 

flexibility. 
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 Comparison with Our Method 

Table 1 compares methods from the literature with our approach. Our method’s 

most important contribution is the ability to make probabilistic approximations through 

prioritized traversal under a probability threshold. Moreover, our method supports loop 

tolerance and the option to terminate reachability traversal at looping branches, making 

this feature configurable. We share key optimizations and properties with HSA: (1) We 

provide sets of headers, along with packet histories, as output to reachability questions, 

while other methods return yes/no answers and counter-examples instead of full 

reachability sets; (2) We use header space models and transformations as a base for our 

implementation which allows us to exploit HSA optimizations such as Lazy Subtraction; 

(3) We support abstract forwarding functions which process and manipulate headers, 

regardless of the underlying implementation. 
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Method Possible 
Inputs 

Answers Loop 
Tolerance 

Solver 
types 

Optimizati
ons 

Approximat
ions 

Anteater Match -> 
Rewrite -> 
Forward 

yes/no; 
With 
counter- 
examples 

Tolerates 
Loops; 
Limitation: 
max path 
length fixed 

SAT/SMT 
Solver 

SAT solver 
techniques 

ø 

HSA Match -> 
Rewrite -> 
Forward; 
Abstract 
forwarding 
functions 

Sets of 
Reachable 
Headers  

Stops at 
repeated port 

Header 
Space 
Transformat
ions 

Lazy 
Subtraction 

ø 

[19-20] Match -> 
Rewrite -> 
Forward 

yes/no Stops at 
repeated node 

SAT/SMT 
Solver 

SAT solver 
techniques 

ø 

NoD Match -> 
Rewrite -> 
Forward; 
DataLog 
Models 

Sets of 
objects 

Tolerates 
Loops; 
Model-specific 
interventions 
needed to 
enable/disable 

DataLog Difference 
of Cubes 
(eq. to lazy 
subtraction
) 

ø 

Our 
Method 

Match -> 
rewrite -> 
forward; 
Abstract 
forwarding 
functions 

Sets of 
Reachable 
Headers  

Configurable Header 
Space 
Transformat
ions 

Lazy 
Subtraction 

Prioritized 
Traversal 

Table 1: Comparison of different methods 

 

Next we define the problem of data-plane verification and discuss its complexity 

in light of recent trends and use-cases in modern networks.  
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CHAPTER III 

PROBLEM DEFINITION 
 

 Verify Reachability in a Large Network 

Consider a network with many devices each consisting of data-plane forwarding 

rules of the format: 

match header forward port 

Forwarding rules define how routing should take place in a network device. Each 

rule consists of a match section, which defines the packets this rule is applied to, and an 

action section specifying how to treat the matched packet (forward, drop, rewrite, …). 

Forwarding rules are grouped in routing tables in which they are matched according to 

priority where the highest-priority rule matching a packet is used to forward the packet. 

More complex forwarding table organizations exist, but for practical reasons, the 

treatment of forwarding tables will be restricted to the scheme just described. 

Question: How can we know if a packet <p> can go from device <s> to device 

<t>? 

Network reachability questions are tests to identify if certain traffic (defined by 

packet wildcards) can be forwarded from one network endpoint to another. Reachability 

tests can also be used as building blocks for more advanced network verification 

questions such as: network isolation, forwarding loops, and forwarding blackholes as 

shown in Anteater[1]. 

The input packet defines one or more header wildcards which represent input 

traffic to be tested. The input packet can be alternatively defined as a symbolic header 



 14 

with constraints on its values. Source and target devices/ports are network endpoints that 

we apply the test to. 

We need to use formal verification to answer such questions. Formal verification 

is the application of formal proofs on mathematical models of systems of interest. Formal 

verification allows for proving or disproving whether a modelled system satisfies a 

property of interest, usually related to specifications of correctness. 

To apply formal verification to the reachability problem, we need to formally 

model the network’s forwarding dataplane as well as the input to our reachability test. 

Multiple modelling approaches exist, each suited for certain types of tools/methods for 

answering forwarding questions.  

After modelling network and the reachability test input, we feed the test to a 

theorem prover. Theorem provers (SAT solvers, reasoning engines, ..) are tools and 

methods which accept formal models and answer questions about the model’s properties. 

Theorem provers come in different flavors but all rely on formal methods (symbolic logic, 

set theory, graph theory, …) in order to reason through the provided input to identify 

whether the property in question is satisfied. 

 

 Problem Complexity 

The problem of verifying dataplane reachability in networks is combinatorially 

complex and at least NP-Complete as proven in [1]. The actual complexity of the problem 

of s-t graph reachability with boolean filters is P-SPACE Complete as proven in [27]. 

This means we can’t find the correct answer for all possible inputs due to possible 

combinatorial explosion in running-time. We need heuristics, or we need to be 
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economical in the way to check for cases. SAT-solvers and theorem provers already do 

that. 

To solve a verification problem, you need to cover all possible cases (inputs) and 

validate that the result is as expected. SAT-solvers and similar tools try to minimize the 

checks needed to solve a problem by applying a combination of greedy techniques and 

heuristics, which exploit regularities and patterns that make most practical problems 

much easier than the worst-case. Tools and frameworks that are not SAT-based, such as 

Header Space Analysis, also apply a similar flavor of the above tricks to minimize the 

scope and number of cases to be checked. 

The bag of tricks developed by the formal verification community does a good 

job as long as the actual complexity of the problem is less than the worst-case. At worst-

case they just give the best approximate answer they can in the time window given. 

Network verification complexity is a function of the complexity of the input 

needed for the property being checked for. In a network reachability verification problem, 

the number and complexity of forwarding rules on devices, the size and complexity of 

network graphs, and the size of packet headers contribute to the overall complexity of the 

verification problem. 

Forwarding rule complexity is a function of the number of bits being checked for 

in a match operation, the number of bits being rewritten, and the relative uniqueness of 

the match/rewrite operation compared to other rules in the network. Network graph 

complexity is directly related to the size and density of the graph, which increases the 

number of possible paths taken by a packet. Header complexity is directly related to the 

number of bits in the header. 
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Network dataplanes can become too complex when forwarding devices apply 

free-form header matching operations instead of abiding by legacy header fields and 

matching operations. This happens when more network devices apply wildcard header 

matching instead of prefix-matching and range matching in addition to manipulating 

header fields in non-standard ways (by re-using fields for unintended functions). Free 

usage of packet headers significantly contributes to dataplane complexity. Case in point 

are SDN networks that expose packets to full wildcard matching and rewriting. 

Network graphs can become too complex as more and more overlay networks are 

deployed in arbitrary topologies which are not limited to the physical ports existing on a 

network device. Free overlay networks are enabled by SDN and similar technologies. 

Packet headers become too complex as new protocols substantially increase 

header size. IPv6 has significantly larger header sizes than IPv4, moreover, MPLS can 

vary in size and grow as their applications evolve. 

 

 Discussion 

For large and complex problems, SAT solvers and similar tools can only give 

approximate answers or no answer at all. Solvers apply computational tricks to save on 

running time, but end up giving approximate answers based on general-purpose greedy 

approaches. It would be of value to make use of traffic statistics to create meaningful 

metrics to be used in reaching an approximate answer. This will be the topic of the next 

section. 
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CHAPTER IV 

PROPOSED SOLUTION 
 

For complex networks where it is infeasible to get a full answer to the dataplane 

reachability problem, we will make use of traffic statistics to prioritize checking and save 

on running time. It would be even better if we can use meaningful probability metrics to 

quantify the quality of the approximation, and even better than that would be using a 

probability threshold as an input to a tradeoff between probability of correctness (based 

on traffic coverage) and computational cost. 

We propose a tradeoff between probability of correctness and computational cost 

and provide an algorithm that takes a probability threshold as an input and minimizes 

running time under that threshold.  

It is our intuition that as the user varies the selected probability threshold from 1 

downwards, the running time of the algorithm will drastically improve as shown in the 

below conceptual figure (Figure 1). We defend this intuition in the next section. 

 

 
Figure 1: Conceptual plot of convergence of cumulative probability 
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 Tradeoff Intuition 

Our intuition is that traffic statistics follow a statistical pattern best described 

using Ziph’s Law. Ziph’s law is an empirical statistical law describing properties found 

in social and physical systems, such as population sizes of cities, word frequencies in 

corpuses, etc... It describes a relationship between frequency and rank where the 

frequency of an item is inversely proportional to its frequency (raised to a certain power). 

The law is sometimes popularly referred to as the 80-20 rule where 20% of elements in a 

population contribute to 80% of its weights. We suspect that path probabilities in the 

network graph are Ziph distributed and will inherit skewness properties from the Ziph’s 

Law. 

Our intuition relies on four important observations. First, internet usage patterns 

are not evenly spread over the available options. Very few websites/services consume 

most of the internet traffic (Netflix 15%, YouTube 11%, …) [23]. This means very few 

traffic streams consume most of the bandwidth. Second, routers group traffic streams 

using wide packet matches such as IP Prefixes, wildcards, ranges, or other compression 

mechanisms to minimize forwarding rules. These techniques group diverse traffic flows 

into limited paths in the network, making few paths correspond to many underlying traffic 

flows, therefore, aggregating their weights. Third, routers treat similar traffic similarly 

across the network. This ensures that aggregations of traffic streams does not differ from 

router to router, preserving groups of traffic streams across the network. Fourth, similar 

network traffic tends to be processed by few nodes as networks make use of forwarding 

trunks and hierarchical tree routing schemas, which minimizes the total number of 

forwarding rules in the network among other objectives. 
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This allows the covered probability in a greedy traversal algorithm to quickly 

converge to 1, as a minority of the sample space carries most of the traffic. As networks 

become more complex, there will still be statistical regularities. We want to exploit them 

to save on computation and utilize the tradeoff. Next, we discuss how we model traffic 

statistics. 

 

 Modelling Network Traffic as a Markov Chain 

Representing the network as a Markov Chain allows us to simplify our analysis 

as we only need to consider probabilities at each node/port, which overlaps with statistics 

collected by devices. 

Markov Chains are memoryless, meaning that 

𝑃(𝑒𝑣𝑒𝑛𝑡	|	ℎ𝑖𝑠𝑡𝑜𝑟𝑦) 	= 	𝑃(𝑒𝑣𝑒𝑛𝑡	|	𝑝𝑟𝑒𝑠𝑒𝑛𝑡) 

This property greatly reduces the state space as we only consider transition 

probabilities between nodes when constructing path probabilities. 

A Markov Chain can be represented by a set of traffic states {𝑠3, . . . , 𝑠6}, 

corresponding to network nodes and ports, and a transition matrix 𝑃6	×	6, corresponding 

to traffic statistics, where: 

𝑝9,: = probability of transition from state 𝑠9 to state 𝑠: 

We map each node (and port) in the network (graph 𝐺) to a state in the Markov 

Chain, in addition to special states such as 𝑠<=>? being one of them. Traffic statistics from 

ports will be turned into transition probabilities by dividing traffic volume on an outgoing 

port by overall node outgoing traffic volume. For the sake of simplicity we stick to 

mapping the traffic volume ratios as-is to transition probabilities. Other more advanced 

mechanisms can be used to ensure no existing network link has a transition probability of 
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0 by introducing a baseline probability of randomly choosing an arbitrary link at random. 

This baseline probability is referred to as “damping factor” in PageRank [22]. 

Increasing the order of the Markov Chain increases accuracy of the model at the 

expense of an expansion in the state space. This can be done by adding one element of 

history: where 𝑃9,:,@represents transition probabilities from states i to j to k.  

 

 Modelling Network Forwarding using Header Space Transfer Functions 

We will use HSA [3] as a base for our solution. HSA has many attractive qualities 

that make it a suitable framework to use since: (1) It is flexible in supporting arbitrary 

packet headers. (2) It is capable of representing match/rewrite/forward operations. (3) It 

transparently processes the network graph and packet headers, lending itself to network-

specific manipulation. (4) It contains optimizations to limit the search space by exploiting 

forwarding rule regularities. (5) It supports abstract forwarding functions independent 

from specific device implementation details. 

HSA represents headers as points in an n-dimensional space where all header bits 

are treated equally with no assumptions and restrictions to their use. Moreover, 

hypercubes in this header space represent sets of packets with wildcards used for certain 

bits. Hypercubes allow for symbolic processing of packets in that sets of headers with 

certain properties can be processed instead of particular concrete headers. Network ports 

are also modelled as points in space. 

In HSA network devices are transfer functions that map a pair of port and header 

space object into a set of ports and header space object. This represents how an input 

packet at a source port is forwarded into multiple ports with potentially modified headers. 

The transfer functions map one input into multiple potential forwarding decisions (ports 
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& header) which is necessary to deal with hypercubes (symbolic packets, wildcard 

headers). Such transfer functions also support multicasting in addition to header 

manipulation and rewrites. 

Transfer Function: (header, port) → *(header, *port) 

The topology is also represented by the same transfer function from ports to ports, 

irrespective of header values, according to the links present in the network. 

To verify reachability between two points in the network, HSA applies the transfer 

function at the source port and the input header and keeps applying the transfer function 

to the resulting ports and headers until the destination is reached or a loop is detected. 

HSA uses header compression techniques to minimize expansion in header 

processing by using difference of cubes or lazy subtraction instead of expanding negation 

operations into flat unions until it is unavoidable. These techniques exploit processing 

regularities across the network to minimize the number of checks/tests in verification. 

Such techniques were given theoretical grounding in [9] and [10] by introducing the 

concept of equivalency classes of similarly treated sets of headers. 

 

 Probabilistic Traversal Algorithm 

The probabilistic traversal algorithm verifies the reachability of an input packet 

header between a source port and a set of destination ports. It returns a set of reachable 

packet headers at the destination ports along with their histories (headers and ports during 

forwarding in the network). 

The probabilistic traversal algorithm verifies reachability in a network according 

to an input probability threshold which picks a point in the tradeoff between correctness 

and computational cost. It minimizes the computational cost under that threshold by 
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selecting the largest probability subpaths while traversing the network graph according 

to forwarding logic. 

The probabilistic traversal algorithm is run against a network model consisting of 

a network transfer function and a network Markov Chain. The network transfer function 

models the network forwarding logic as a map from a header object at a port to a set of 

header objects each at a list of ports. The network Markov Chain is constructed from 

traffic statistics at nodes and ports in the network. It is represented as a transition matrix 

where each element is the probability of going from node/port at row to node/port at 

column. 

Overall signature of the probabilistic traversal algorithm: 

Input: 
● Input header 
● Source port 
● Destination ports 

 
● Probability threshold 

 
● Network Model: 

○ Network Transfer Function:  
■ (header,port) → * (header,*port) 

○ Network Markov Chain: 
■ Pnxn 

 
Output: 

● List of largest probability paths covered by the probability threshold 
that trace the input packet from input port to output ports 

 

1. Core Transformation Step 

We will identify a core transformation step which we will run recursively on the 

network model until we reach a stopping condition. The core transformation step takes a 

header at a port as input and transforms them into a set of header at port with probability. 

This transformation is done (1) by using the network transfer function to generate the 
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next port-header tuples and (2) by using the network markov chain to get the transition 

probability from the input port to the output port. (Figure 2) 

 
Figure 2: Core Transformation Step 

 

The algorithm needs to use this core transformation step as building block in a 

way that prioritizes traversal of largest probability subpaths. Moreover, it needs to keep 

track of a cumulative probability to be used as a stopping condition when it is equal or 

more than the input probability threshold.  

In the next sections we will address two concerns: (1) how to calculate the 

cumulative probability at every step in order to identify the stopping condition and (2) 

how to prioritize traversal by choosing highest probability first. 

 

2. Calculating the Cumulative Probability 

The cumulative probability is the sum of the probabilities of terminated sub-paths 

discovered while traversing the network model. It is used, along with the probability 

threshold, in the stopping condition in the algorithm. 
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Figure 3: Core Transformation Step & Parent Probability 

 

Each node being traversed has a start-to-node probability which is the path 

probability from the source node to the current node. In Markov Chains, path probabilities 

are the product of transition probabilities between the nodes along the path. Initially, the 

source node has a start-to-node probability of 1, and as the branching traversal of the 

network model takes place, each step from one node to another multiplies the parent’s 

start-to-node probability with the parent-child transition probability (generated by the 

core transformation step) to generate the current node’s start-to-node probability. 

Cumulative probability is incremented when a terminated node is reached during 

traversal. Terminated nodes are either destination nodes or unreachable nodes. When a 

destination node is reached we increment the cumulative probability with the node’s start-

to-node probability which is the start-parent probability multiplied with the parent-child 

probability returned in the core transformation step. The core transformation step does 

not explicitly return unreachable nodes, they must be inferred by comparing the output 

with network model. The core transformation step returns the reachable ports with their 

corresponding headers and parent-child Markov Chain transition probability (Figure 3). 

The probability of a step transition (sum of all one-step transitions) in a Markov Chain is 

1. The sum of unreachable parent-child probabilities is therefore 1 - ∑(parent-child 
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probability; for all reachable nodes). The cumulative probability is then incremented 

with the unreachable parent-child probabilities multiplied by the parent’s start-to-node 

probability. 

 

3. Prioritizing Traversal 

For the algorithm to minimize the number of checks under the selected probability 

threshold, we will prioritize our traversal to cover the largest probabilities first. Every 

node during traversal has a start-to-node probability. This probability is the maximum 

probability coverage that can result from traversing recursively through the node until 

stopping at all destinations or unreachable nodes. This probability is the priority metric 

which will be used to select which node to process next in the traversal. 

This can be achieved by using a priority queue to keep intermediate nodes during 

traversal and to pop highest priority (probability) nodes. (Figure 4) 

 

 
Figure 4: Transformation candidates in the priority queue 
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4. Big Picture 

Starting with the source node as the initial transformation candidate with path 

probability equal to 1, we use a priority queue to prioritize traversal according to node 

path probability. A while loop iterates until either the queue is empty or the cumulative 

probability reaches the input threshold (Figure 5). At every step in the while loop the 

algorithm: 

1) Pops a transformation candidate from the priority queue 

2) Applies the transformation step 

3) Updates cumulative probability 

4) Inserts child nodes as transformation candidates where the priority for every child 

is the start-to-child probability 

 

 
Figure 5: Overall sketch of the algorithm 
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5. Pseudocode 

def verify_reachability( 
    network, 
    input_port, 
    input_header, 
    destinations, 
    prob_thresh): 
 
  pq = PriorityQueue() 
 
  pq.push(1, { 
    port: input_port, 
    header: input_header, 
    history: [] 
  }) 
 
  cum_prob = 0 
 
  while cum_prob <= prob_thresh: 
    prob, next = pq.pop() 
 
    hops, leftover_prob = transform(network, next) 
 
    cum_prob += leftover_prob 
 
    for hop in hops: 
      path_prob = hop.prob * prob 
 
      if hop.port in destinations: 
        cum_prob += hop_prob 
 
        reachable_paths.append(hop, path_prob) 
 
      else: 
        pq.push(path_prob, { 
          port: hop.port, 
          header:hop.header, 
          history:hop.history 
        }) 
 
    return reachable_paths 
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def transform( 
  network, 
  port, 
  header): 
 
  ntf = network.transfer_function 
  nmc = network.markov_chain 
 
  next_hops = ntf.tx(port, header) 
 
  leftover_prob = 1 
 
  for hop in next_hops: 
    hop.prob = nmc[port, hop.port] 
    leftover_prob -= hop.prob_thresh 
 
  return next_hops, leftover_prob 
 

 

6. Example 

We consider a simple example to illustrate how our prioritized traversal algorithm 

solves the reachability problem. Consider the network shown in Figure 6 consisting of 3 

nodes in a full mesh topology with a header of length 3 bits. The forwarding logic of the 

network is given in Table 2 detailing the packet matches needed to forward packet 

between any two nodes as packet wildcards where an unset bit (don’t care) is marked by 

‘x’ while set bits are give values ‘0’ or ‘1’. Table 3 shows the probability matrix of the 

Markov Chain modelling network statistics.  
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Figure 6: Network topology consisting of 3 nodes ‘a’, ‘b’ and ‘c’ 

 

from * to * a b c 

a 1xx 0xx 01x 

b 1xx 1x1 011 

c x1x x0x 111 

Table 2: Forwarding logic of Network shown in Figure 6. Each entry is the 
packet wildcard match needed to forward a packet along the edge from node in 

row to node in column. 

 

pi,j a b c 

a 0.1 0.4 0.5 

b 0.5 0.2 0.3 

c 0.3 0.6 0.1 

Table 3: Probability matrix of the Markov Chain representing network 
traffic of Network in Figure 6 

 

a 

b 

c 
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 We will work through the algorithm for an arbitrary input packet ‘xxx’ with start 

node ‘a’ and destination node ‘c’. Initially, the cumulative probability is zero and the 

priority queue only contains node ‘a’ with candidate probability 1 (Figure 7). Node ‘a’ is 

then popped from the priority queue and transformed using the forwarding logic and the 

markov chain (Figure 8). At this point, node probabilities are calculated by multiplying 

the parent node candidate probability with each child’s transition probability. Also, 

terminated paths are identified and the cumulative probability is updated. Only path ‘a-

>c’ is terminated and its probability is used to update cumulative probability. Candidate 

subpaths ‘a->a’ and ‘a->b’ are inserted along with their probabilities (and headers) into 

the priority queue. Figure 9 shows the result of the queue pop operation of highest 

probability sub-path ‘a->b’ and the result of its transformation. All its children are 

terminating paths with ‘a->b->a’ and ‘a->b->b’ being unreachable and ‘a->b->c’ reaching 

the destination. The resulting cumulative probability is 0.9 equal to the probability 

threshold, which will terminate the algorithm. 

 It is worth mentioning that our algorithm does not terminate at loops by default, 

as not all loops are vicious and infinite due to possible packet rewrites in forwarding logic. 

Moreover, for probability thresholds less than 1, the algorithm will eventually terminate 

even if loop detection is disabled. 

 
Figure 7: Initial setup of the traversal 
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Figure 8: Result of the 1st queue pop and transformation 

 

 
Figure 9: Result of the 2nd queue pop and transformation 

 

7. Correctness Proof 

To prove that the proposed algorithm works, we need to satisfy 2 conditions: 

1) The algorithm should cover the probability threshold correctly 

2) The algorithm should evaluate highest probability sub-paths first in the traversal 
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a. Proof of Claim 1: The algorithm should cover the probability threshold correctly 

The algorithm should calculate and update the cumulative probability correctly 

according to (sub-path) Markov probabilities. It terminates when the cumulative 

probability becomes equal or greater than the probability threshold. 

 

The branching traversal of the network graph from the source port until a 

terminating node is reached follows a tree diagram where the root is the source port and 

children are next hops from their parent. Children can either terminate or continue 

branching.  

Each node in the tree has a probability. This probability starts at 1 and keeps 

getting multiplied with hop probabilities when branching. A node in the tree has a 

probability equal to the product of hop probabilities from the start node until reaching the 

current node. The resulting probability is the Markov sub-path probability. 

If the node is a terminating node (unreachable or destination), its probability is 

added to the cumulative probability. The cumulative probability tracks the terminated 

path probabilities. The cumulative probability will add up to 1 if all paths have been 

traversed, since a parent node’s probability will be equal to the sum of child probabilities.  

 

b.  Proof of Claim 2: The algorithm should evaluate highest probability sub-paths first 

in the traversal 

The branching traversal keeps unterminated (tree) nodes in a priority queue and 

pops highest probability paths first. This ensures that if a terminated path is identified, it 

will be the highest probability path out of all possible options. 
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8. Running Time 

a. Transformation Cost 

Let transform_cost be the cost of processing one transformation candidate. 

(Figure 10) 

 

 
Figure 10: Forwarding transformation at a port 

 

transform_cost = O( F(h, r) * m) <= O( F(h,r) * n) 

Where: 

● h is the number of bits in the header 

● r is the number of rules in a device 

● m is the number of edges in a node  

● F(h, r) is the cost of matching and transforming a header at a port/node 

 

b. Number of Transformations and Candidates 

Let num_transformations be the number of nodes transformed. 

Let num_candidates be the number of node candidates generated in the traversal 

branching tree (Figure 11). 

 

 h 

h 

h 

 
m  

headers 



 34 

 
Figure 11: Branching Traversal Tree 

 

The maximum number of elements in a tree of degree d and depth k is O(d^(k-

1)). 

 

The number of candidates num_candidates can at most be equal to the size of the 

whole branching traversal tree. In many cases, the algorithm does not need to process all 

possible nodes and terminates before processing the whole tree. Let the candidate_ratio 

be the ratio, out of all possible hypothetical tree nodes, of processed candidates. Note that 

candidate_ratio is not a constant but varies with network traffic, forwarding logic, and 

network size, where it could reduce num_candidates by orders of magnitude. 

num_candidates = O(candidate_ratio * d^(k-1) ) 
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The number of transformations num_transformations can at most be equal to 

the number of candidates. A lower bound is not guaranteed as extra assumptions will be 

required.  

num_transformations <= num_candidates = O(candidate_ratio * d^(k-1) ) 

 

c. Traversal Cost 

Let traversal_cost be the cost of traversing through the network using a priority 

queue. 

The cost of queue_push = O(1) 

The cost of queue_pop = O(log(queue_size)) = O(log(num_candidates)) 

traversal_cost = transform_cost * num_transform * queue_pop + queue_push 

* all_candidates 

= O(F(h, r) * n * candidate_ratio * d^(k-1) * log(candidate_ratio * d^(k-1))) + 

O(candidate_ratio * d^(k-1)) 

 

d. Candidate Ratio 

We will focus on statistical properties and their relation to running time 

improvement. We assume no early terminations take place. Early terminations happen 

due to unreachable packets due to forwarding logic (as opposed to traffic statistics) which 

halt the branching traversal at depths less than the maximum k. 

Let P be the probability distribution of a single transformation step’s output. It 

assigns a probability to each potential forwarding outcome. (Figure 12) 
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Figure 12: Probability distribution of a transformation step 

 
 

The probability distribution after k recursive transformations is P^k with support 

(number of elements over which the discrete distribution is defined) d^k. Which could 

be interpreted as the probability of a sequence of k iid random variables each representing 

a transformation step. 

We are interested in the behavior of P^k. Specifically, we are interested in how 

our tradeoff behaves on a distribution raised to a power. Our tradeoff can be formulated 

as a function Fratio from a distribution P^k and a probability threshold Pth to the ratio 

of the minimum number of elements, out of all possible elements, needed from P^k to 

cover Pth. 

 

𝑭𝒓𝒂𝒕𝒊𝒐(𝑷, 𝒌, 𝑷𝒕𝒉) = 

𝒎𝒊𝒏L𝒔𝒊𝒛𝒆(𝒔𝒖𝒃𝒔𝒆𝒕(𝑷𝒌)); 	𝒔𝒖𝒎S𝑷𝒓𝒐𝒃(𝒍𝒆𝒂𝒇); 	𝒍𝒆𝒂𝒇	 ∈ 	𝒔𝒖𝒃𝒔𝒆𝒕(𝑷𝒌)W 		≥ 	𝑷𝒕𝒉	Y
𝒔𝒖𝒑(𝑷𝒌)

 

 

Fratio gives us the ratio of tree leafs needed to satisfy our threshold, which 

asymptotically bounds the running time of the algorithm. 
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Empirical observations in the below graph (Figure 13) show the evolution of 

Fratio as k is increased. For different base distributions P of varying skewness, Fratio 

decreases exponentially fast. 

The observed exponential decline is investigated in theory of large deviations 

[24], a branch of probability theory concerned with the asymptotic behavior of remote 

tails of functions applied to sequences of probability distributions. A detailed theoretical 

analysis is out of scope for this document. 

 
Figure 13: Fratio of P^k over multiple base distributions P 

 

In the next section we present empirical results and investigate the behavior of 

our method against randomly generated networks with different complexities and 

statistical properties. 
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CHAPTER V 

EMPIRICAL RESULTS 
 Implementation 

Our implementation of the probabilistic traversal algorithm relied on HSA’s 

python codebase [26] to model network headers and forwarding logic. We used their 

header-space objects to model packet headers, and their transfer functions to model 

network forwarding. We modelled the network markov chain as an nxn matrix 

implemented as a python dictionary (hash-table). We used the standard python 

implementation of priority queue in the heapq module. 

 

 Results 

1. Generating Random Networks 

We tested our implementation by generating random networks with random forwarding 

rules. We also randomly generated markov chain probabilities. We construct random 

network topologies by generating random G(n,p) graphs using the networkx python 

library. We select two parameters to randomly generate a graph; n the size of the network, 

and p the probability of two nodes having an edge. We use n and p to generate all other 

parameters. We set the packet header size to be double the number of bits needed to 

address all network ports 2 * log2(n2).  

We construct forwarding tables by randomly creating node_rules_n forwarding 

rules, where node_rules_n is equal to the expected number of connected ports in the 

network n2 * p. Each forwarding rule consists of a match and forward section. We 

generate the match section by randomly selecting an arbitrary subset of bits (15% of 



 39 

header size) to randomly set to 0 or 1. We set the forward section of a rule to a random 

out-port in the node. 

We generate the markov chain probability matrix by sampling n shuffled vectors, 

each of size equal to the number of neighbors of a node in the graph, from the function: 

𝒔𝒌𝒆𝒘(𝒙, 𝒄) 	= 	𝒙^𝒄 	− 	𝟏; 	𝒙 ∈	]𝟎, 𝟏[ 

where c is considered a skewness parameter. We then normalize the vectors to 

make sure each adds up to 1. We vary c to control the skewness of the resulting 

distribution. With c very close to zero skew becomes a constant function much like a 

normal distribution. With c taking larger values, skew becomes very uneven. Alternative 

functions can be used to sample probabilities while controlling skewness. 

 

Figure 14: Entropy of 32 samples taken from skew(x,c) plotted against 
skewness c 
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Figure 14 shows how the skewness factor c affects the entropy of probability 

vectors sampled from skew(x,c). Entropy is almost equal to uniform entropy 5 for c very 

close to 0, and keeps decreasing as c increases. Entropy can be used as a test for 

evenness/skewness of probability distributions by measuring diversity where it is 

maximum for equal probabilities across a sample space and minimum for extreme 

concentration of probabilities in limited parts of it. 

 

2. Convergence of Cumulative Probability 

Cumulative probability tracks the covered traffic volume throughout the progress 

of the algorithm. It is used to terminate the algorithm when it reaches the target threshold 

(cutoff) probability. Figure 15 shows how the cumulative probability progresses at each 

step in the algorithm. As expected, cumulative probability grows very quickly in the 

beginning and becomes slower as time progresses. This is due to the fact that path 

probability tends to be concentrated at few paths in the network. 

The shape of the plot is that of a negative exponential of the form 𝑦 = 1 −

𝑒^e	⋅	g	h. Figure 16 shows the result of fitting a negative exponential function to the 

evolution of cumulative probability.  
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Figure 15: Cumulative path probability (below 0.99 cutoff) as the algorithm 

progresses (n=30, p=0.99, c=0.6) 

 
Figure 16: Fitting cumulative path probability evolution plot to negative 

exponential function (n=30, p=0.99, c=0.6) 

 

The speed of convergence is directly proportional to 𝛼 and 𝛽. Due to the fact 

that two parameters define the fitting function, it is not possible to use both of them at 

the same time to compare the convergence of two different instances of the fitting 

function.  
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The derivative of 𝑦 is 𝑦′ = 𝛼𝛽𝑥m^3𝑒^egh. Identifying the speed of convergence 

through the derivative is a tricky matter as taking the derivative at zero does not yield an 

answer, as it will actually be infinite (𝛽 < 1). Moreover, taking the derivative at any 

other point is arbitrary and cannot be used as grounds for comparing different instances 

of this function. 

Another more fundamental problem is our assumption of the validity of 𝑦 over 

all possible results of the algorithm. Due to the above reasons, we will use the number 

of steps needed to reach a cutoff probability threshold of 0.99 as the rate of 

convergence. This definition avoids making assumptions about a fitting function and 

gives a practical estimate for the behavior of the algorithm under different 

circumstances. 

 

3. Varying Complexity 

Figure 17 shows the effect of varying two network complexity parameters on the 

growth of cumulative probability in terms of number of steps. The number of steps needed 

to reach probability threshold of 0.95 increases with network complexity n & p, with the 

number of nodes n contributing to most significant increase in running time. It is 

important to note that in our setup header size ( 2 * log2(n2) ) grows with n and the number 

of forwarding rules  ( n2 * p ) grows quadratically with n and linearly with p.  

Another observation can be made: the shape of the curve under different 

conditions takes two forms. It either grows quickly and plateaus as in the case of { n=20, 

p=0.8 } or grows, more-or-less, uniformly as in the case of { n=30, p=0.8 }. The first 

shape, of sudden increase and later plateau, reflects a form of skewness where the 

majority of the probability is concentrated in a group of paths, while the remaining 
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probability is evenly spread, while the second shape reflects a more global distribution of 

skewness across the whole network. The 𝛽 factor in the fitting function seems to be 

directly related to the relative concentration of path probabilities with higher 𝛽 correlated 

with more uniformity in speed of growth and less concentration of skewness. 

 
Figure 17: Cumulative Probability Plots for Different Network 

Complexities (c=0.6, pth=0.95) 

 

4. Varying Skewness 

Figure 18 shows the effect of skewness on the running time (in seconds) and the 

number of steps. As expected, as we increase skewness the algorithm covers the target 

threshold 0.95 faster and with less steps. This is due to the concentration of probability in 

fewer and fewer paths in the network, which is taken advantage of by our probabilistic 

traversal algorithm. 

Due to the random assignment of probabilities in the markov chain, there is a 

variability in the running time and number of steps needed to reach the threshold. 

Nonetheless, this variability follows a decreasing pattern as we increase skewness. Each 
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datapoint in Figure 18 corresponds to randomly generated traffic distribution based on 

the skewness value. We generated 15 samples at each skewness point and averaged out 

the resulting running time and number of steps per skewness point. 

 

Figure 18: Running time and steps to termination (0.95 threshold) vs 
multiple values of probability skewness (n=20, p=0.99) 

 

5. Comparison with HSA 

Our algorithm differs from the original HSA reachability algorithm in one 

important aspect. We do not explicitly check for loops and avoid them. We can process 

the same node/port multiple times. Our implementation relies on intermediate node 

probabilities taking care of this issue, as the probability of going through a cycle will 

exponentially decrease (geometric distribution) with time. The markov chains we deal 

with are connected and do not have islands of isolated groups of nodes. This means that 

the probability of absorption by the destination nodes and termination nodes is 1. This 
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does not necessitate that the algorithm will terminate in a finite amount of time if the 

probability threshold is set to be 1, as the probability of absorption is the probability of 

eventually reaching an absorbing state. 

To make our algorithm comparable to the original HSA algorithm, we added a 

check to avoid processing the same port multiple times in the same path. 

Figures 19 and 20 shows how our algorithm compares to the original HSA 

reachability algorithm under different conditions. Multiple important observations can 

be made. First, as we increase network size our algorithm at probability threshold equal 

to 1 needs increasingly more time compared to HSA’s reachability algorithm. This can 

be explained by the extra log(n) factor in our asymptotic running time due to the use of 

a priority queue. Second observation, is that as we increase network size our algorithm 

saves more time at probability thresholds 0.95 and 0.99. This can be explained by the 

increasing concentration of high-probability paths for distributions P^n as n increases. 

 
Figure 19: Table showing running time of the original HSA algorithm and 

our algorithm (p=0.99, c=1.0) at different probability thresholds pth and different 
network sizes n normalized by running time of the original HSA algorithm against 

the same randomly generated network. (Intel Core i5 3.1 GHZ - 8GB RAM) 
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Figure 20: Bar graph visualization of comparison table in Figure 19 

 

We were able to achieve 99% traffic coverage in 2.45% (and 95% traffic 

coverage in 0.57%) of the time needed for full coverage by HSA for a randomly-

generated network with n=25, p=0.99 and skewness c=1. 
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CHAPTER VI 

CONCLUSION 
 

In this document, we motivated and proposed a tradeoff between running time 

and traffic coverage (probability of correctness) for the problem of identifying 

reachability between two network endpoints. Our proposed solution converts network 

traffic statistics into a Markov Chain and applies a prioritized traversal algorithm to 

minimize running time while ensuring traffic coverage according to a user-defined 

probability threshold. Our solution makes it feasible to check for reachability for cases 

when network forwarding complexity becomes too large for complete solutions. It allows 

approximations to take advantage of statistical properties of networks instead of relying 

on general-purpose heuristics and tricks present in SAT-solvers and similar tools. 

We tested our solution against randomly generated networks with randomly 

generated traffic statistics. As expected, the prioritized traversal algorithm saves on 

running time by taking a small fraction of what it would take for a complete solution. The 

amount of time-saving is correlated to the skewness of traffic distribution, proving our 

algorithm’s efficacy in tracking highest-probability paths and utilizing it to save on 

computation. 

For higher network complexity, our algorithm costs slightly more than the 

reference implementation in HSA [3] for probability threshold equal to 1 (full traffic 

coverage), but the amount of time-saving for the probability threshold less than 1 becomes 

smaller and smaller. This phenomena is supported by another independent observation 

made in Chapter 4 Section D8 stating that total network skewness increases for increasing 

network complexity, leading to the conclusion that our algorithm is even better suited for 

high-complexity settings. 
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 Future Directions 

This research project can be expanded in multiple directions. Our solution focused 

on applying the correctness-vs-performance tradeoff to reachability in HSA [3], but this 

is only one example of an adaptation. The tradeoff can be expanded to cover verification 

questions other than reachability. Different verification methods can also be explored for 

possible extension with our proposed tradeoff. One possible adaptation is to make use of 

optimization features in SMT Solvers such as Microsoft’s Z3 [25], and to formulate the 

tradeoff as an objective function for an optimization, with forwarding logic and 

reachability questions encoded as SMT specifications. 

Another direction is to explore traffic models beyond global (first-order) Markov 

Chains. Network traffic can have statistics beyond the stateless model of a single-network 

Markov Chain, which matches traffic counters at individual network ports irrespective of 

specific header information. Two possible approaches for enhancing the accuracy of 

traffic model representation exist: 

(1) A traffic model can be built per (symbolic) header to capture specific 

statistics and use them in creating a tradeoff for reachability of specific headers. 

The challenge in this case would be that of making use of partial statistics from 

different traffic counters, of varying target packets, where gaps need to be 

accounted for and covered. 

(2) Higher-order Markov Chains can be used to capture statistics collected 

across multiple devices and ports. This would be useful in enhancing the accuracy 

of the traffic model to track streams of packets at multiple devices instead of at 

single nodes. In order to avoid unnecessary state expansion, variable-length sub-
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path probabilities can also be explored and used to build an algorithm that makes 

use of ‘whatever’ statistics are collected from a network. 

Additionally, stateful network models and their verification can be explored and 

adapted to our tradeoff. This would expand our solution to firewalls and stateful 

middleboxes, in addition to stateful routing algorithms and protocols. 
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