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An Abstract of the Thesis of

Raslan Hussein Kain for Master of Engineering
Major: Electrical and Computer Engineering

Title: Holistic Approach to Energy Efficiency in Context-Aware Mobile Sensing
for Multi-Context Recognition

Mobile devices and sensors have limited battery lifespan thus limiting their
feasibility in context recognition applications. As a result, there is a need to pro-
vide mechanisms for energy-efficient operation of sensors in settings where mul-
tiple contexts are monitored simultaneously. Past methods for efficient sensing
operation have been hierarchical by first selecting the sensors with least energy
consumption, then devising individual sensing schedules that trade off energy
and delays. The main limitation of the hierarchical approach is that it does not
consider the combined impact of sensor scheduling and sensor selection. This pa-
per aims at addressing this limitation by considering the problem holistically and
devising an optimization formulation that can simultaneously select the group of
sensors while also considering the impact of their triggering schedule. The opti-
mization solution is framed as a Viterbi algorithm and providing mathematical
representations for multi-sensor reward function, the user’s behavior. Experiment
results showed an average improvement of 60% compared to the state of the art
hierarchical approach.
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Chapter 1

Introduction

advances in ubiquitous computing, such as smart wearables and sensor networks,
have provided opportunities for health monitoring and human-centered context-
aware systems. Mobile devices with sensory capabilities are commonly used to
recognize the contexts of the user and provide appropriate assistance and services.
Context relates to numerous areas of human-centric activities, such as health-care
monitoring [2] [3], activity recognition [4], social networking [5], location [6] [7],
and emotion recognition [8] [9]. A context state describes one of many possi-
ble depictions of an entity within a context. States from separate contexts are
mutually disjoint, for example in the context activity, the user can be walking,
sitting, or running. On the other hand, in the context of emotion, the states can
be happy, sad, angry. Context states are typically recognized by processing data
collected from smartphone sensors (accelerometer, gyroscopes, GPS, etc.), wear-
able sensors (electrocardiograms (ECG), heart rate sensors, body temperature
sensors), or wearable devices (smartwatches and headsets).

A key issue with context aware applications is the large demand on battery
energy attributed to sensors’ power consumption [10], and algorithms that in-
crease computational workload [11]. To minimize delays in context recognition
, sensors would need to be triggered continuously. However, it would be more
energy efficient to use the sensors intermittently, by turning them off when a
state remains unchanged and then back on when a new state is expected to be
encountered. Unfortunately, the time of state change cannot be perfectly pre-
dicted beforehand, since anticipation of state changes is not deterministic and
is still a significant challenge in the field of anticipatory mobile computing [12].
To achieve energy efficiency, a sensing schedule, should be devised to minimize
delays in contextual change but also minimize the energy consumption required
by frequent sensor triggers.

In addition to efficiency in timely triggers, there is an opportunity for synergy
across choices of sensors when multiple contexts are desired and there are multiple
sensing options for the same context. In such cases, the ideal choice of sensors
is one that minimize the energy consumption across all sensors being used for
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all contexts, not just for each context separately. There has been active research
to devise efficient sensing mechanisms for context recognition. Some methods
have focused on individual sensors or single context [13, 14]. While more recent
research advances [1, 15] can trade-off energy and delays for multiple groups
of sensors and multiple contexts. One promising approach proposed by Taleb
et al. [15] showed a hierarchical approach by first selecting groups of sensors
then determining individual sensing schedules. While their work has achieved
significant improvements compared to prior work, the main limitation of the
work is its inability to account for the combined impact of for schedule decisions
and sensor selection.

The aim of this work is to overcome this limitation by proposing a holis-
tic optimization approach that can simultaneously consider sensor selection and
sensing schedules towards optimal trade-off between overall energy consumption
and delays in detecting desired contexts. The solution is framed as a Vietrbi
algorithm with personalized capture of user behavior that reflects most probable
time instances for change in context. The contributions of this work are:

• A holistic optimization formulation for simultaneous decisions on sensor
choices and sensor schedules. The optimization takes into account person-
alized user behavior that reflects times spent in different context states.

• Viterbi based solution for the optimization with mathematical formulation
for 1) multi-sensor reward function accounting for energy in groups of sen-
sors and delays in detecting context change 2) user behavioral model that
includes the probability of context state change based on historical user
behavior 3) state transition options with corresponding rewards.
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Chapter 2

Literature Review

The amount of research done in energy efficient mobile sensing has increased in
recent years, with the advent of Body Sensor Networks (BSN) that has facilitated
the development of context aware applications for purposes of health monitor-
ing, activity recognition, location tracking, etc. The in-depth surveys [16] [17]
[18] detail some of the work done in the area of energy efficient mobile sensing,
and their content is used in our proposed solution for information about sensor
specifications and different possibilities of sensor groups for context recognition.

Perez-Torres et al. in [16] present a comprehensive study of power-aware
smartphone-based strategies for context recognition, focusing on hardware and
software based strategies, mostly for location based applications. Our work falls
under the category of software based strategies for multiple contexts. Rault et al.
in [17] present a survey existing energy-efficient approaches, from sensor selection,
power on time reduction, communication reduction, and computation reduction
for health care applications. Yurur et al. in [18] survey the literature of context-
aware applications for mobile platforms over a period of 13 years. Previous work
on efficient sensors’ operations for context recognition can be categorized into
work that has considered sensor selection only, sensor scheduling, or both.

2.1 Sensor Selection

A context may be recognized by different combinations of sensor with each combi-
nation having a different impact on energy consumption and accuracy in context
recognition. Some works of research aimed to select sensors to reduce the amount
of energy consumption while considering the impact on the accuracy in context
recognition for the sensor choices. Such as in the paper by Taleb et al. [19],
which presents and algorithm that uses a heuristic for the selection mechanism.
The heuristic consists of choosing the sensors that maximize a ratio of the level
of context recognition accuracy divided by the energy consumption of the sensors
with constrains based on sensor availability, and battery level. Gao et al. in [20]
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propose a framework that selects a set of sensors to reduce energy consumption
attributed to wireless data transmission in a two step process, First a Naive Bayes
classifier classifies the state using a designated initial sensor set and attains a pri-
ori probability. Then expert knowledge is used to select a subset of the initial
sensors based on the state. Convex optimization is used to minimize a trade-off of
transmission energy and the probability context miss-recognition. A framework
presented by Kang et al [21], called SeeMon, selects a set of sensors named the
Essential Sensor Set (ESS) by solving a variation of Minimum Set Cover problem
solved by a heuristic algorithm which greedily selects the most cost-effective sen-
sors iteratively capable of recognizing the context while trading-off computational
complexity and energy savings in terms of data transmission rate. The ESS gets
updated either continuously or periodically based the available battery levels.

Dynamic Sensor Selection Activity Recognition is a method presented by
Zappi et al. [22] which trades-off power consumption and activity recognition
accuracy by adapting the set of sensors once the energy of sensor nodes (i.e.
smart-phone, smart-watch, etc.) get depleted. The approach either selects the
sensor cluster that gives the highest accuracy after enumerating all the possi-
bilities, or by selecting the sensor cluster that first meets an accuracy threshold
during enumeration. Another approach by Gordon et al. [23], selects sensors
based on the predicted future activity state of the user using a first-order Markov
Chain. The approach evaluates a weighted mapping of each activity to the sensors
in terms of the loss in accuracy compared to other sensors. The weighted map
is generated by applying nearest neighbor classifier against all training vectors
for each state and simulating different feature combinations (each feature combi-
nation is linked to a sensor group), and seeing the varying effect on accuracy of
different combinations.

2.2 Sensor Scheduling

The continual operation of sensors drains the battery supply of mobile devices
quickly. So the challenge is to derive a schedule that minimizes energy consump-
tion while avoiding delays in detecting changes in context state. Taleb et al.
[1] presented a dynamic means of generating a sensing schedule using a Viterbi
based algorithm, called Viterbi based Context Aware Mobile Sensing or VCAMS.
VCAMS finds the sequence of sensor triggering decisions that maximizes a cumu-
lative reward function, called the Viterbi path, in the context of hidden Markov
models. The reward function accounts for energy consumption of the sensor used
for context recognition, with a constant value, and a delay component composed
of a weighted sum of delay penalty and a recognition reward. Rachuri et al. [14],
proposed an adaptive sensor triggering method based on the use of a feedback
mechanism that reduces or increases sensor inactivity time by a multiplicative
function based on the current classification of the context state. The current
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state was classified using a Gaussian Mixture Models classifier (GMM) as either
missable or unmissable. A missable event corresponds to no change in the state
or state change that was not of interest leading to a increase in the period sensor
inactivity, while an unmissable event corresponded to a state change leading to
decrease in the period. In a follow-up paper by Rachuri et al. [24], a framework
called sociable sense was created that captures user behavior in office environ-
ments and uses the previous method to schedule sensor operation. However, a
linear reward-inaction algorithm was used to predict missable and unmissable
events in place of the Gaussian Mixture Models classifier (GMM) and adjust the
sensor inactivity time accordingly. Yurur et al. [25] present a Hidden Markov
Model (HMM) based framework to recognize activity with a generalized expecta-
tion maximization algorithm to achieve a trade-off between energy consumption
and accuracy. The state transition probabilities of the HMM are updated, i.e.
sensors are triggered to fill a sliding window frame with sensor observations to
recognize user states using a Viterbi algorithm, when an entropy rate of the user
state transition matrix converges into a stable value.

There are several works of research that utilize sensors that consume little
amounts energy for activity recognition, such as an accelerometer and gyroscope,
to schedule the operation of sensors that consume a lot of energy for location
recognition, such as GPS and GSM. SenseLess by Abdesslem et al. [26] uses
binary simple inference performed on accelerometer data accessed every 10 sec-
onds. Similarly in the Jigsaw system by Lu et al. [27], recognizes activity using
accelerometer and microphone data, in addition to the expected running time and
energy budget, in a Markov Decision Process to schedule GPS sensor operation
for location recognition. SmartDC by Chon et al. [28] uses and accelerometer
to recognize historical pattern of movement to infer the location, If the location
could not be recognized, a sensing schedule was generated, based on maximizing
a reward function that minimize an energy cost partitioned into levels based on
an accuracy of location recognition threshold.

2.3 Sensor Selection and Scheduling

A few works of research have aimed to combine both techniques in one frame-
work, however they all follow a hierarchical structure. Wang et al. [13] present
a hierarchical sensor management system called Energy Efficient Mobile Sensing
System (EEMSS) that first selects the sensors and then schedules sensing while
minimizing a trade-off between accuracy, delay, and energy consumption. The
framework consists of a sensor management scheme that manually links the users
states with specific sensors by deciding which sensors to activate based on the
current recognized state. When a state transition gets detected, the next set of
sensors in the sequence is activated. Also, a sensing schedule, called sensor duty
cycle in the paper, is manually generated through empirical tests, having energy
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accuracy and latency trade-off in mind. This is cumbersome to do and does not
allow for adaptability and finding the Pareto optimal trade-off similar to other
methods have done by automating the process. Orchestrator presented by Lee
et al. [29], is a resource coordination system that satisfies the resource demands
of the multiple applications, system-wide policies, and meeting resource avail-
ability of devices. A processing planner generates multiple plans which specify
the combinations of sensors with the associated accuracy in context recognition.
These plans are pre-defined by developers specifying requirements on sensors, and
then only some of them are selected based on whether they support the maxi-
mal context recognition requests, minimize energy consumption, and maximize
recognition accuracy with available resources. Moreover, sensor triggering and
data transmission are done periodically at fixed time intervals, according to the
estimated energy level availability and accuracy requirement.

More recently, Taleb et al [15] considered the decision of both sensor selection
and scheduling. The method, dubbed EGO, relies on an ontology that contains
specifications such as sensors and machine learning parameters. The approach
filtered out combinations of sensors groups that don’t meet manually set accuracy
and energy budget constraints. The group with the minimum energy consump-
tion per trigger was selected. The framework uses a Viterbi based algorithm
presented in VCAMS [1] to generate the sensing schedules of the selected sensors
as described in section 2.2. The sensing schedule based on a user state behavioral
model predicts when the user may change state. The last step in the algorithm is
to synchronize the schedules of multiple sensors common across different context
recognition requests.

EGO relies on a hierarchical structure, it first selects the groups of sensors,
then schedules their operation, and finally synchronizes the schedules of the com-
mon sensors. Such an approach doesn’t take into account how the operation
of the chosen sensor groups according to a sensing schedule will impact energy
consumption and delay in state change detection. Our work proposes a holistic
approach that takes into account the energy and delay costs of operating sensors
according to optimized sensing schedules, accounting for the impact of accuracy in
context recognition on delay, in selecting the sensor groups to recognize multiple
contexts simultaneously.
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Chapter 3

Problem Description and
Optimization Formulation

Given the current state of the user, the goal is to decide on the sensors and the
timing of their triggers, that form a sensing schedule, to recognize multiple target
contexts simultaneously while minimizing the trade-off between total energy con-
sumption by all sensors selected and the delays incurred in context recognition.
The problem is illustrated in figure 3.1.

Holistic
Optimization

Approach
Current States

Behavioral Model

Chosen Sensors 
Corresponding

Sensing SchedulesInputs to System

CRM KB

Schedule 1 
U 

Schedule 2
U

Schedule 3

Sensor 2

Sensor 1
Context 1

Context 2

Context 3

Sensor 4

Sensor 3

Sensor 5

Schedule 1 
U 

Schedule 3

Schedule 2

Schedule 3

Figure 3.1: Illustration of the system inputs and outputs. The inputs are the
user’s current context states, behavior model, and the CRM KB. The outputs
are the selected sensors and their respective sensing schedules. The selected
sensors are either used in recognizing a single context with a sensing schedule
corresponding to the group, or else used in recognizing multiple context, and
have a synchronized sensing schedule obtained by the union of the schedules
corresponding to the different sensor groups.

The holistic optimization takes as input a Context Recognition Models Knowl-
edge Base (CRM KB), the history of past user behavior (behavior model), and
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the current context state of the user of each desired context. When a selected sen-
sor is common between multiple groups recognizing different contexts, its sensing
schedule must serve the recognition operation of each context. Thus, the sens-
ing schedules of the different sensor groups, that the common sensor is part of,
require synchronization to be assigned to the sensor, by taking the union of the
schedules. The sensors that are unique to a sensor group are designated the
sensing schedule of that particular sensor group. The sensors common to the
multiple sensor groups are designated the synchronized sensing schedule of the
sensor groups. We assume that, for a particular context state, sensing switches
to continuous once the time interval exceeds the length of the sensing schedule.
During continuous sensing, there would be no incurred delays as the sensors are
always on.

Each context is denoted cl with l = 1, . . . , L, where L is the total number of
context that can be recognized by the system. For each context cl the states are
denoted by xjl , where j = 1, . . . , Jl, and Jl is the number of states for context
cl. For example, the activity context can be in of the following states: walking,
sitting, working; The location context can be at home, work, or cafe; The emotion
context can have the following states: happy, sad, and neutral. Each context cl
requires sensory data accessible by the mobile and wearable devices handling the
computations required for the recognition. Hereafter, when l appears as an index
for a term it means that that term is related to context cl.

3.1 Knowledge Base for Context Recognition

Models

Our solution makes use of the wealth of past knowledge in the field of context
recognition. In particular, we assume the availability of a knowledge base that
contains information about context recognition models, sensors they can use, and
accuracy that can be achieved along with sensors’ specifications. The knowledge
base contains specifications about ML models for context recognition including
specifications for required sensors. Such information can be easily extracted from
credible research publications, like the one used in EGO [15].

The Context Recognition Model Knowledge Base (CRM KB) is illustrated in
figure 3.2 and contains:

• Context table containing the primary key, name of contexts that may be
recognized (C Name), and the different possible context states (C State).

• Recognition model table containing the primary key, the context recognized
my the model (RM Context), the Machine learning model or algorithm
used to recognize the context (RM Model), the parameters of the model
(RM Parameters), the features required by the model (RM Features), and
the needed group of sensors (RM SensorGroups).
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• Sensors and Specifications table containing the primary key and for each
sensor the energy consumed per sensing duration (S EnergyPerSensingDuration),
the power consumption value (S PowerConsumption), the recommended
sampling frequency (S SamplingFrequency), and the sampling window size
(S SamplingWindowSize).

• Context recognition model relational table, containing the primary key
(CRM ID), and the foreign key of the three entity tables found in the CRM
KB. For the context table (C ID), the recognition model table (RM ID), and
the sensors and specifications table (S ID). In addition to the senor group
context recognition accuracy and the sensing duration, which depend on
the combination of information from all the entity tables.

Context

C_IDPK
C_Name
C_State

CRM

 CRM_IDPK
 C_IDFK1
 RM_IDFK2
 S_IDFK3
 Group_Accuracy

 Sensing_Duration

Sensors and Specifications

S_IDPK
S_EnergyPerSensingDuration
S_PowerConsumption
S_SamplingWindowSize

Recognition Model

RM_IDPK
RM_Context
RM_Model
RM_Parameters
RM_Feautres

RM_SensorGroups

Context Recognition Model Knowledge Base (CRM KB)

S_SamplingFrequency

Figure 3.2: The Context Recognition Model Knowledge Base (CRM KB), con-
taining the information relevant to context recognition: 1) Context 2) Sensors and
Specifications 3) Recognition Model and 4) the associations of the three together
to recognize a context..

The information, needed for sensor decisions, can extracted by querying the
CRM KB. The following is a list of information extracted for our solution along
with the notations:
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• The set of possible sensor groups for each context is denoted by πl.

• Each sensor group within πl is represented by Gln where n represents one
of the possible groups of sensors to recognize cl. Nl is the total number of
groups in πl, i.e. that n = 1, . . . , Nl.

• Each sensor is denoted by Sm, wherem indicates the specific sensor. Assum-
ing the availability of M embedded and wearable sensors, m = 1, . . . ,M .
A sensor can belong to different sensor groups. The sensors that make up
a group are typically available in mobile and wearable devices, such as a
smartphone and smartwatch. Example sensors include: GPS, accelerome-
ter, gyroscope . . . etc.

• The energy consumption is denoted by EGln for each sensor group Gln. This
energy is composed of the energy spent turning the sensor on and off, CPU,
data transmission, as in the case of a wearable sensor.

• The accuracy achieved by each sensor group Gl
n in detecting contextual

state xjl is denoted AjGln
.

• The time duration needed to recognize a state xjl is denoted δGln . δGln includes
the time to turn the sensors on and collect enough sensory data to recognize
a context state. For example, the time to recognize a location state with a
GPS, according to the process described in [30], is 20 seconds. While the
time required to recognize an activity state with an accelerometer, according
to the process described in [31], is 5 seconds.

• The specifications for the ML model needed to recognize a particular con-
text including:

– The possible states xjl in a given context cl.

– Machine learning models that would be used for a given choice of
sensors.

– Data features collected for each machine learning model.

3.2 User Time Spent in each Context State

Our solution also makes use of a behavioral model that provides opportunity
for personalizing the sensing operation to particular users and particular states.
Previous approach [1], to derive user behavior, assumes one pattern of behavior
for each state and derives a single time limit for the user in those state. We
propose an alternative method that takes a more realistic assumption of user’s
behavior by accounting for variation of user’s behavioral pattern within each
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(a) (b)

Figure 3.3: Distribution of time durations spent in Walk (a) and Sleep (b) states
in an activity context. The red dashed line is the result of previous approach
[1] with one time limit, while the yellow lines are obtained using our method of
modeling the behavior using multiple time limits.

state. As a result, a user can have, instead of one time limit, multiple time
limits within each state. Our proposed method uses a frequent pattern mining
approach, where we capture the most frequent times spent in each state. The
method requires two parameters to be specified: 1) The size of the histogram
bins reflecting the desired granularity for the patterns of time limits, and 2) The
threshold of counts within a bin to consider the pattern frequent enough. These
two parameters can be set based on the desired time resolution and what the
system designer deems as frequent. For the purpose of our experimentation, A
histogram of the different values with bin sizes equal to 10% of the longest time
duration recorded for the state. The threshold of counts was selected to be 5%
of the time durations recorded for the state. The time limits are computed by
taking the middle time duration of the bins that exceed the threshold of counts.
Additionally, if consecutive bins are not individually highly populated, multiple
bins are combined to form a frequent pattern. The middle time duration of the
consecutive bins is taken as a time limit.

Figure 3.3 shows time durations spent in the two activity states, ”Walk” and
”Sleep”. The yellow lines indicate the time limits generated by our method. In
figure 3.3(b) there are four highly populated bins (the first four), that get captured
by the two time limits represented by the yellow lines. The red dashed linein both
figures indicates the time limit obtained by averaging all the time durations. The
behavioral model can be updated over time by tracking the user’s time spent in
each state. When the count of a bin surpasses the 5% threshold, the list of time
patterns, or time limits, for each state is updated. The resulting time limits for
each state xjl , are denoted by T jl,h, where the h index represents the time limit in
ascending order, where h = 1, . . . , H, H is the total number of time limits for a
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state and T jl,H is the time limit with the longest duration.

The time limits, T jl,h, are used to generate a sensing schedule, denoted by aiGln
,

for a sensor group Gln, where a sensing decision is taken every δGln seconds, and the
each particular time instance is referred to as tiGln

, where i = 1, . . . , IGln , and IGln
is the last decision instance before sensing becomes continuous and is computed
as shown in 3.1.

IGln =
T jl,H
δGln

(3.1)

U

Behavioural Model for
Multiple Context States

δ

clxl
3

δ

1Tl,H

t iSensor
Schedules

For Different
Sensor Groups 

Sensor 
Trigger

2Tl,H
2Tl,	h

t i

Trigger Decision
Period

Time
Limits

xl
2xl

1

Sensor Schedule
for Sensors

Common to Groups

Figure 3.4: The segmentation of time schedule for 2 sensor groups capable of
detecting the same state, with each group having a different triggering decision
interval. In addition to a synchronized schedule for common sensors between the
2 sensor groups.

Figure 3.4 illustrates an example of two sensing schedules (aiGl1
and aiGl2

) for

sensor groups (Gl1 and Gl2) in recognizing context cl. a
i
Gl1

has a triggering decision

period of δGl1 and aiGl2
has a period of δGl2 . The user behavior model captures the

historical patterns of user’s behavior in different context states. These patterns
are represented by time limits, denoted by T jl,h, that indicate when there is a
likelihood of change in a context state. On the top of figure 3.4 the behavior model
is shown for each context state xjl with the corresponding time limit T jl,h. The
time limits influence the triggering decisions, as can be seen in figure 3.4, showing
that sensing decisions for aiGl1

and aiGl2
. Moreover, if sensor groups Gl1 and Gl2 have

common sensors, then their schedule is aiGl1
∪ aiGl2 which is the synchronization

of the two sensing schedules aiGl1
and aiGl2

, as illustrated as the bottom sensing

schedule in figure 3.4.
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3.3 Mathematical Formulation

Mathematically, the optimization problem can be formulated as a weighted sum
of two objectives, minimizing energy consumption and delay based on scalariza-
tion [32]. The potential sets of sensors are formed by the union of the selected
groups of sensors to recognize each context cl, represented as UlGln. The specific
choices of sensor groups and their schedules are obtained by aiming to achieve
an optimal trade-off between energy and delay. The formulation minimizes the
combination of energy consumption of the union of sensor groups Ej

UlGln
while

recognizing context state xjl and cumulative delays for all contexts in contextual
state detection Dj

UGln
according to the assigned sensing schedule aiGln

, multiplied

by the boolean decision variable yGln for the sensor group considered in the com-
putation, normalized by the maximum possible values of energy and delay.

min
yGl

n
, aiSm

∑
Gln

(
ωt

Ej
UGln

EUGln,max
+ (1− ωl)

Dj
UGln

Dj
l,max

)(∏
l

yGln

)
(3.2)

with the following constraint:∑
n

yGln = 1, ∀ cl (3.3)

• Ej
UlGln

is the total energy consumption resulting from triggering the union of

sensors UlGln. Ej
UlGln

is computed as the sum of sensor triggers multiplied by

the energy consumption per trigger EUlGln of the sensor groups recognizing
each context state according to the respective sensing schedules. To account
for uncharacteristic changes in user behavior, i.e. changing state before
or after a time limit, the average of the energy expenditure for multiple
scenarios of multi-context recognition is used to obtain the final result.
Each scenario ends when the user changes their state, and thus the number
of triggers prior to the context state change is counted.

• Dj
UGln

represents the delays incurred in using the selected sensors for context

recognition of the different states xjl . Dj
UGln

is computed as the difference

in time between when the state has changed and the sensor trigger fol-
lowing the change, and averaged over multiple scenarios of multi-context
recognition.

• yGln is a boolean decision variable denoting the selection of sensor group Gln .
yGln is 1 when the groups of sensors is being considered in the computations,
otherwise yGln is 0 when the sensor groups energy is not included in the
minimization term.
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• aiSm is a vector of boolean decision variables denoting the trigger schedule
for sensor Sm ∈ UGln at different time instances tiGln

as follows:

aiSm =

{
1, when sensor Sm is triggered at tiGn
0, otherwise

(3.4)

• ωl is a weighting factor that provides a balance between the two objectives,
and is user-specified depending on the application.. For example in health
context delay in state change might be more important than the energy
consumption, thus a smaller value of ωl.

• Ej
UlGln,max

in the maximum energy consumption value, which is equal to

the last time limit T jl,H multiplied by ΩUlGln , where ΩUlGln is the power

consumption value of the union of sensor groups UlGln when the sensors are
operating continuously.

Ej
UlGln,max

= ΩUlGln × T
j
l,H (3.5)

• Dj
l,max is the the maximum delay value, which is equivalent to T jl,H since it

represents the case when the generated sensing schedule does not decide to
sense until tIGln

, or when tiGln
= T jl,H ,

Dj
l,max = T jl,H (3.6)

Equation 3.2 exploits the synergy between the selected groups of sensors by
considering the total energy cost consumed by the union of sensors UlGln of the
selected groups to recognize the different contexts. Constraint 3.3 states that
exactly one group of sensors for each context is to be chosen. The objective func-
tion 3.2 takes the form of a mixed-integer linear programming (MILP) problem,
which is NP-Hard [33], where the one variable is a boolean variable for the choice
of sensor groups and the other is a vector of boolean variables of varying size
representing the sensing schedule of the selected sensor. The solution is guaran-
teed to converge to a global minima because of the convexity of linear problem
[34]. The optimization problem is solved by choosing sensors to recognize the re-
quested context with the respective sequence of sensing decisions for each sensor
that minimize the objective function 3.2.

The table 3.1 on the next page summarizes the notations used in the formu-
lation.
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Table 3.1: List of notations

Groups Notations Descriptions

Sets

L Set of contexts
M Set of available sensors Sm

Nl Set of sensor groups capable of recognizing context l
Jl Set of total states in context cl
H Set of time limits in state xjl

IGln

Number of sensing decision instances in the sensing
schedule of sensor group Gln before continuous
sensing is applied

πl Set of sensor groups

Parameters

cl Particular context out of L total requested contexts

xjl Particular state in context cl

Gln
Sensor groups that can detect context cl, where n
corresponds to each sensor group, such that,
n = 1, . . . , Nl

ΩUlGln
Power consumption value for continuous sensing
operation of sensor group Gln

Sm Sensor belonging to sensor group Gln

Optimization
values

ωl Where 0 < ωl < 1is the weighting factor
Em Energy consumption by each sensor Sm

Ej
Gln

Estimated energy consumed by group Gln with sensor
schedule aiGln

Ajm Accuracy of sensor SmGln
in recognizing state xjl

AjGln
Accuracy that group Gln can guarantee for state xjl

Dj
Gln

Delay in recognizing state xjl using sensor group Gln

Variables

tiGln
Time instants related to the sensor group Gln

T jl,h

Most frequent time durations the user spends in

state xjl , where h is the number of time limits such

that h = 1, . . . , H and T jl,H is the last time limit

pj(tiGln
, T jl,h)

State Survival probability representing the likelihood

of remaining in state xjl at any time tiGln
as a function

of T jl,h

ε
Near zero value that is reached by the survival

probability pj(tiGln
, T jl,h) at tiGln

= T jl,h

η

Factor of the time limits T jl,h where the survival

probability pj(tiGln
, T jl,h) represented by the Uniform

function drops to ε
Decision
Variables

yGln Binary variable representing selection of group Gln
aiGln

Vector representing sensor triggering for group Gln
actions in context: 1 for sense and 0 for not sense
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Chapter 4

Overview of Proposed System

The solution to the optimization problem needs to be used in real-time by context
recognition systems to decide which groups of sensors and when to trigger them
to consume the least energy and achieve minimal delay in multi-context recog-
nition. To achieve real-time performance, we propose to pre-compute optimized
sensing schedules and recognition delays for different possible combinations of
sensor groups and context states, and make decisions among these choices online.
As a result, the approach is split into two stages, an online stage and an offline
stage as illustrated in figure 4.1.

CRM KB
Specifications for Context
Recognition Models and

Required Sensors
Sensing

Schedule
for each
Sensor

Sensor
Choices

Look-Up Table
containing

pre-computed
Schedules

Model Update

Recording of
Time Durations

in Context
States

Schedule
Synchronization

and
Sensor SelectionViterbi -

Based
Sensor

Scheduling
Approach

(Offline) Current
Context
States

Behavioral
Model

(Online)

Figure 4.1: The holistic optimization approach split into the two stages, the
online stage and the offline stage. The offline stage provides the best sensing
schedule for a particular context and a group of sensors. The online stage finds
the best synergy between sensor options for the simultaneous recognition of mul-
tiple context, and determines the best combinations of sensors and their sensing
schedules.
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The offline stage addresses the problem of determining the optimized sensing
schedule that provides the best trade-off between energy consumption and delay
for each particular context. These combinations are then stored in a look-up-
table (LUT) that is used online. The online stage addresses the problem of
finding the groups of sensors and their schedule to achieve best synergy between
sensor options for the simultaneous recognition of multiple contexts. The online
system provides multi-context trade off between energy and delay.

4.1 Online System: Sensor Selection and Sched-

ule Syncronization

The proposed solution is based on the Viterbi algorithm, where the goal is to
make the sensing and sensor selection decisions that maximize a holistic reward
function. The details are further described below.

Algorithm 1 details the procedure for selecting the sensors. The online sys-
tem runs every time a context state changes. The approach starts by computing
combinations of sensor groups UGln from the set of sensor groups πl capable of
recognizing all the desired contexts. For each possible sensor group combination
combination UlGln we obtain the sensing schedules from the LUT generated using
the Viterbi based algorithm for each sensor group Gln and synchronize the sensing
schedules for sensors common to multiple sensor groups. The energy consump-
tion and delay attributed to the union of the sensor groups being considered are
evaluated to account of the synchronized schedules of the common sensor groups.
The energy value attributed to the sensor groups is re-computed without the en-
ergy consumption per trigger of the common sensors Em. While for the common
sensors, the energy consumed according to the synchronized schedule is computed
and added to the total energy value of the combination of sensor groups.

For each unique sensor Sm in Gln we assign it aiGln
as aiSm , and for the com-

mon sensors, the corresponding synchronized schedule, which is the union of the
schedules, and we assign it as aiSm . The energy and delay values are used to calcu-
late objective function values according to equation 3.2. Finally the combination
of sensor groups UlGln based on yGln and corresponding sensing schedule aiSm for
each sensor Sm giving the minimum objective function value are selected. Each
time a new context state is detected, the time spent in previous context state is
recorded and added to the historical record, which is used to update the behavior
model, to account for any changes in used behavior.

To illustrate how we calculate the objective function for a given group of
sensors with their sensing schedule using the data, shown in table 4.1, for three
hypothetical scenarios of recognizing an activity state ”Walk”. The context state
is recognized using an accelerometer sensor G12 , which consumes EG12 = 0.3 mJ of
energy per trigger for δ = 10 seconds. Three scenarios are represented capturing
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Algorithm 1 Overview of Online Algorithm for Sensor Selection and Sensing
Schedules

Input: xjl , πl, S
m, Em, Ej

Gln
, Dj
Gln
aiGln

xjl : the current context state of the user contexts ∀ l = 1, 2, . . . , L
From CRM KB:
πl: the set of possible sensor groups Gln for each of the requested L contexts
Sm: the available sensors
Em: the energy consumption by each sensor Sm

From LUT:
Ej
Gln

: the pre-computed energy consumption for each group of sensors Gln in

recognizing context state xjl
Dj
Gln

: the pre-computed delay of each sensor group Gln in recognizing context

state xjl
aiGln

: the pre-computed optimized sensing schedules for the sensor groups in πl in
recognizing each context state.

Output: yGln , aiGln
yGln : The boolean variable representing the selected sensor groups to recognize

multiple contexts states xjl
aiSm : Sensing schedules corresponding to the sensors of the selected group includ-
ing the synchronized schedules

1: Derive all the possible union of sensor groups UlGln available in πl
2: for each UlGln do
3: for each Sm ∈ UlGln do
4: if Sm ∈ Gln then
5: Assign aiGln

obtained from the LUT to Sm of group Gln as aiSm

6: else if Sm ∈ Glw & Glq for w 6= q then
7: Synchronize sensing schedules aiGlw

& aiGlq
and assign to Sm as aiSm

8: end if
9: end for
10: Calculate objective function values according to equation 3.2
11: Track sensors Sm ∈ UlGln and sensing schedules aiSm with minimum objective

function value according to equation 3.2
12: end for
13: Return sensors Sm ∈ UlGln with yGln = 1 and the corresponding sensing

schedules aiSm having the minimum objective value

14: if state xjl changes to xjl then
15: Record time spent in changed context state xjl
16: end if
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Table 4.1: Three Scenarios in Walk State Detection with Time Limits T 1
1,1 = 3431

and T 1
1,2 = 10274, with unit of time in seconds.

Walk
Activity
Scenarios

Time of
Actual State

Change

Time of Nearest
Sensor Trigger to

State Change

Triggers
During

Scenarios

Scenario (1) 2000 1990, 2020 40

Scenario (2) 5000 4980, 5050 90

Scenario (3) 12000 - 180

the energy, delay, and objective function values are computed by taking the
average values over the three scenarios and then normalize by the maximum
possible values. We note that past the time instance equivalent to the time
limit T 1

1,2 = 10274 seconds, continuous sensing is applied. So, at time instance
tiG12

= 12000 seconds for the third scenario, which is past T 1
1,2 unlike the other

scenarios where the state change happens before the last time limit, there is no
delay from having the sensors turned off according to the sensing schedule.

Normalized Energy =
Ej
Gln

Ej
Gln,max

=
1

3
·

3∑
Scenario=1

E1
G12

T 1
1,2 · EG12/δ

=
1

3
·

3∑
1

# of Triggers× EG12
T 1
1,2 · EG12/δ

=
1

3
· 40× 0.3 + 90× 0.3 + 180× 0.3

10274× 0.3/10
∼= 0.1

Normalized Delay =
Dj
Gln

Dj
l,max

=
1

3
·

3∑
Scenario=1

D1
Gl2

T 1
1,2

=
1

3
·

3∑
1

Trigger After Change− Trigger Before Change

T 1
1,2

=
1

3
· 2020− 1990 + 5050− 4980

10274
∼= 0.01

Objective Value = ωl
Ej
Gln

Ej
Gln,max

+ (1 − ωl)
Dj
Gln

Dj
l,max

= 0.1 + 0.01 = 0.11

For the experiment we don’t consider value of the weighting parameter ωl, de-
scribed in equation 3.2, since energy and delay are given equal weight to maintain
the generality of the approach. However, for an actual implementation, ωl may be
leveraged to generate sensing schedules to optimize performance by prioritizing
either energy reduction or delay reduction.
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4.2 Offline System: Viterbi based Sensor Schedul-

ing

The Viterbi algorithm is used in the offline stage to generate the sensing sched-
ules for each sensor group in recognizing each context state according to the
established behavior model by accounting for the likelihood of changing to a new
context state at any time. The schedules and the associated energy consumption
and delay values are stored in a Look-up Table for later use during the online
stage. The sensing schedule is composed of a sequence of sensing decisions that
directs the sensor operation during the recognition of a particular context state.
An optimized schedule balances energy and delay since triggering the sensors too
often leads to excessive energy consumption, and too little leads to increased de-
lays. There are three aspects that increase the complexity of the sensor scheduling
task. 1) The user may change their context state at any time, so there remains
an uncertainty at all times in the sensing decision, which we represent with a
survival probability [35]. 2) When making the sensing decision, an important
factor is the time elapsed since the last time the sensor were turned on, creating
a dependency between different the different elements of the vector representing
the sensing schedule. 3) The number of sensing decision sequences grows ex-
ponentially with the number of triggering decisions required for each schedule.
These aspects make enumeration methods unfeasible, and necessitates the use of
algorithmic methods to find the solution to the sensor scheduling problem. We
propose the use of a dynamic programming algorithm, called the Viterbi algo-
rithm [36], to solve the sensor scheduling problem, with the aim of maximizing
the utility of the possible combinations of sensors in recognizing multiple contexts
concurrently. There are two specific aspects that are useful for determining an
efficient sensing schedule. The first aspect are the time limits for a user in each
state. For example, if a user is likely to spend a lot of time in a particular state,
there would be no need to trigger the sensors often until the state is expected
to change. The other useful aspect of the behavior model is knowing at anytime
time the likelihood of state change, called state survival probability. The survival
probability would be high when there it is unlikely that the user will have a state
change. On the other hand, the probability would be low when it is imminent
that the user will change state.

4.2.1 User Behavior State Survival Probability

For each state, the time limits are used to compute the survival probability,
denoted pj(t, T jl,h), of the user remaining in the state. The likelihood of staying in
the state correlates with the length of time t the user spends in a state, and when
the time durations reaches the time limits T jl,h, the survival probability reaches
a close to zero value, denoted by ε. During the time preceding the time limits,
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the variation of the survival probability is subject to the distribution of the time
durations found in the statistical record for each state. The survival probability
may be modeled as a linear or an exponential decay. Figure 4.2(a) illustrates an
example of the survival probability with a linear decay rate, while figure 4.2(b)
illustrates an example of the survival probability having an exponential decay
rate.

(a)

(b)

Figure 4.2: Illustration of the survival probability using the (a) Linear function
(b) Exponential function.

A linear decay would be used when random changes in state are not exhibited
by the distribution of the time durations, while an exponential decay would be
used when changes in state occur more randomly. We note that an exponential
function cannot decay to zero, thus, ε is used in place of zero as an asymptotic
representation. On the other hand, a distribution of time duration for a state
may exhibit a a uniform patter, where the time durations recorded are values
close to the time limits only. So, the survival probability may be represented by
a uniform function, having a high confidence in survival probability throughout
the context recognition period, with a sudden drop within a range of the time
limits, denoted by η. Figure 4.3 illustrates an example of the survival probability
with a uniform representation.
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Figure 4.3: Illustration of the survival probability using the Uniform function.

(a)

(b)

Figure 4.4: (a) Histogram of time duration spent in a state found in the user
historical record, (b) Survival probability using the Distribution function for the
survival probability.

The probability may be formulated as a direct mapping of the distribution
of the time durations recorded for a state, by taking the compliment of the
density of each bin in the histogram as the value of the survival probability
at the time corresponding to each bin. Figure 4.4(a) shows the distribution of
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time durations for the ”walk’ activity with the corresponding time limits, and
the resulting survival probability is illustrated in figure 4.4(b). We discuss the
mathematical representation of the different possible survival probabilities in the
following section and the experiments we conducted to evaluate them in section
5.3.3.

4.2.2 Mathematical Representation of Survival Probabil-
ity

The state survival probability decays until a time limit is reached, then the sur-
vival probability is reset to 1. When the maximum time limit is surpassed,
sensing switches to continuous, i.e. the survival probability remains near zero
(ε), and we do not have information about the behavior of the user. In the work
[1] an Exponential function was used for the state survival probability, described
mathematically as following:

pj
(
tiGln , T

j
l,h

)
= e

ln(ε).
ti
Gl
n

T
j
l,h (4.1)

The Uniform function can be described as following: The value is set to 1
anytime tiGln

is not near a time limit, otherwise if tiGln
is within a period of time

duration that is a fraction η of a time limit, i.e. η × T j. or the beginning of the
schedule, then the survival probability is ε. The Uniform function is described
mathematically as following:

pj
(
tiGn , T

j
l,h

)
=

{
1, if η × T jl,h < tiGn < (1− η)× T jl,h
ε, otherwise

(4.2)

The Linear function, is simply a linearly decaying survival probability, starting
at 1 and reducing to ε when a time limit is reached, and resetting to 1 if the time
limit reached is not the final time limit T jl,H following the below equation:

pj
(
tiGln , T

j
l,h

)
=

(
−1 + ε

T jl,h − T
j
l,h−1

)
∗ tiGn + 1 (4.3)

In the time period before reaching the first time limit, where h = 1, then
T jl,h−1 = 0. The survival probability can be derived from the distribution of
time duration, to produce what we called the distribution function. The function
doesn’t require all the time limits obtained, it only requires the last time limit
T jl,H as follows:
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• The time durations found in the historical record for a given state are sorted
in increasing order.

• Group the time durations into 30 bins, with each bin representing 3.3% of
the longest time duration in the historical record.

• Count the number of time durations per bin.

• Calculate the survival probability assigned to each bin range, using the
following formulation:

pj
(
tiGln , T

j
l,H

)
= 1− # of occurrences

Largest # of occurrences ∀ bins
(4.4)

Where tiGln
∈ bin range. Moreover, we tested multiple bin sizes, 1%,2%, 3.3%,

5%, 6.6%, and 10% of the longest time duration in the historical record, with
3.3% giving the best result.

4.2.3 Reward Function

The Viterbi based algorithm generates a sensing schedule by making a decision at
each time instant tiGln

whether to trigger the sensors or not to trigger. The possible
sequential decisions form a path of decision nodes linked by edges, of sensing or
non-sensing nodes, arriving at the final node at tiGln

= T jl,H , where the user is most
likely to transition into another context state. The utility of transition between
nodes, or the sensor triggering decision, is measured by a metric called reward
function R(), with each edge having its own defined metric. The Viterbi algorithm
aims at finding the sensing schedule decisions that maximize the accumulated
reward function over the entire schedule. Each sensing decision has an associated
value, and maximizing the accumulated reward results in consuming less energy
and incurring less delay. Mathematically, the Viterbi objective function aims to
find the sequence of triggering decisions aiGln

to maximize the accumulated reward
function as follows:

argmax
aiGn

IGn∑
i=1

R
(
aiGln ,∆t

i+1
Gln
, pj(tiGln , T

j
l,h)
)

(4.5)

• aiGn represents the sensing schedule, where for each i, a sensor triggering
decision is made at tiGln

.

• IGn is the last decision instance before sensing becomes continuous, such

that IGn =
T j
l,H

δGl
n

.
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• ∆ti+1
Gln

is the elapsed time since the preceding sensor ”Sense” decision.

• pj(tiGln , T
j
l,h) is the state survival probability.

The reward function takes into account the energy consumption of the sensors
relative to each other and for the accuracy of the sensor group in recognizing con-
text state. Accounting for accuracy is necessary since an incorrectly recognized
context state would lead to additional delays, due to the elapsed time until the
state is correctly recognized. The function also takes into account the possible
delay, based on the time period since the preceding sensor activation decision,
i.e. when the sensing schedule turned the sensor on. The state of the user is
not known before triggering the sensors, so the reward function is probabilistic
and depends on the likelihood of having transitioned into a new state which is
captured by a survival probability pj(tiGln

, T jl,h). For tiGln
= T jl,h, the survival prob-

ability reduces to near zero, i.e. ε, and sensing switches to continuous, The value
of the reward function depends on the combination of the decision taken and the
survival probability value. The reward function is divided into two instantaneous
rewards r(), the first instantaneous reward represents the case where a state does
not change at the new time instance, while the second instantaneous reward is
when a state change occurs. Mathematically, the reward function can be derived
from the expected value of the instantaneous rewards:

R
(
aiGln ,∆t

i+1
Gln
, tiGln

)
= Es

[
r
(
xjl , a

i+1
Gln
,∆ti+1

Gln

)]
= pj(tiGln , T

j
l,h) · r

(
xjl , a

i+1
Gln
,∆ti+1

Gln

)
+
(

1− pj(tiGln , T
j
l,h)
)
· r
(
xjl , a

i+1
Gln
,∆ti+1

Gln

)
(4.6)

Es is the expected reward that depends on whether the current state being

recognized has changed or not, i.e. xjl or xjl respectively. At each time instant
tiGln

there is a probability pj(tiGln
, T jl,H). To make decisions at each step whether to

trigger the sensors or not, a value is attributed to the instantaneous reward r(),
to calculate the best triggering decision for the next step, i.e. ai+1

Gln
. To penalize

long periods of inactivity of the sensors, that might lead to delays, and to reward
quick recognition of a state change, we measure the difference in time between
the next decision and the last triggering instance as ∆ti+1

Gln
.

The instantaneous reward reflects the impact of sensing decision on consumed
energy and delay in detecting a state change. The energy reward component is
computed as:

−
Ej
Gln

EGln,max

(4.7)
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Where EGln is the energy cost of triggering sensor group Gln, and it is normal-
ized by the maximum instantaneous energy value EGln,max of the available sensor
groups to recognize the requested context. The delay component is reflected in
the combination of two terms; the probability of recognition captured by accu-
racy of the model and the amount of delay captured by time elapsed ∆ti+1

Gln
since

last sensing decision:

−α.(∆ti+1
Gln

) +
β.AGln

(∆ti+1
Gln

)
(4.8)

Depending on the combination of triggering decision taken (Sense or Don’t

Sense) and user state xjl or xjl (”No State Change” or ”State Change”), the
instantaneous reward is a weighted sum of the two components: 1) Energy and
2) Time Elapsed.

r = 0

r = 

r = 

r = 

No State
Change

State
Change

Current
Context State

Sense
Don't Sense

Figure 4.5: State transition diagram showing the instantaneous reward values for
the different conditions, of ”Sense” and ”Don’t Sense” sensor triggering decision,
depending on whether the state has changed or not.

Figure 4.5 shows the instantaneous reward values with the state change to
triggering action conditions. The triggering decision are represnted in the figure
by a line for the”Sense” decision, and dashed line for the ”Don’t Sense” decision.
When the decision is to sense and the state does not change (xjl ), then the in-
stantaneous reward is represented by the energy cost penalty. However, if the

state has indeed changed (xjl ), then in addition to the energy penalty, the time
elapsed component is added. The time elapsed component is composed of two
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terms, a delay penalty weighted by α, and a state recognition reward weighted
by β. The delay term penalizes the instantaneous reward in proportion to the
time elapsed ∆ti+1

Gln
. The state recognition term is inversely proportional to ∆ti+1

Gln
to reward recognizing the change in state as soon as possible and is proportional
to the accuracy of the sensor group AjGln

in recognizing state xjl to account for the

chance of incorrect recognition of the context state. Incorrect recognition of the
context state can take the form of false positives or false negatives, which lead to
additional delays and energy consumption because additional sensor triggers are
required before the correct state is recognized. Thus, accuracy is directly related
to delay, and needs to be accounted for in the reward function to optimize the
sensing schedule based on the specifications of the sensor groups used for context
recognition.

The α and β are weighting factors, and their combination is specified by
finding the optimal Pareto solution to an optimization formulation 4.9, as applied
to a single sensor group takes the form:

argmin
(α,β)

ωl
Ej
Gln

Ej
Gln,max

+ (1− ωl)
Dj
Gln

Dj
l,max

(4.9)

The terms in the formulation are the same as those found in equation 3.2, only
they are related to single sensor group (Ej

Gln
), rather than the union of multiple

groups (UEj
Gln

). Once the optimal combination of α and β are obtained, they

are applied to the reward function to find the optimal sensing schedule for each
sensor group, following the steps described in Algorithm 2 to fill the LUT with
the generated sensing schedules.
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Algorithm 2 Sensor Scheduling Algorithm

Input: πl, S
m, AGln , Em, T jl,h

From CRM KB:
πl: the choices of groups of sensors
Gln for each of the requested L contexts Sm: the available sensors
AGln : Accuracy of group Gln
Em: the energy consumption by each sensor Sm

From User Behavior:
T jl,h: the time limits of the context states xjl

Output: Ej
Gln

, Dj
Gln

, (α, β) aiGln
Ej
Gln

: the energy consumption for each group of sensors Gln in recognizing context

state xjl
Dj
Gln

: the delay of each sensor group Gln in recognizing context state xjl
(α, β): the Pareto optimal weighting factors for the Viterbi reward function in
recognizing context xjl with sensor group
aiGln

: the sensing schedules for the sensor groups in πl in recognizing each context
state.

1: for each sensor group Gln ∈ πl do
2: Calculate EGln as the sum of Em of Sm ∈ Gln
3: for each context state xjl do
4: for each (α, β) pair do
5: Run Viterbi algorithm to determine sensing schedule for Gln in

recognizing state xjl
6: Compute the objective function value according to 4.9
7: Track the resulting energy consumption, delay, and the (α, β) pair

for the derived sensing schedule.
8: end for
9: Store the sensing schedule aiGln

with the minimum objective function

value and the associated energy consumption Ej
Gln

, delay Dj
Gln

,

and (α, β) pair in the Look-Up Table (LUT)
10: end for
11: end for
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Chapter 5

Experiments and Results

We conducted a set of experiments to evaluate the performance of the proposed
method. The experiments include the evaluation of three aspects: the holistic
approach that simultaneously determines the optimized group of sensors and
their schedules, the behavior model, and the survival probability. The holistic
approach is compared to state of the art [15], which used a single pattern of time
spent in a given state and was based on hierarchical selection of groups then
determining sensing schedules.

Table 5.1: CRM KB Sensor Groups Data

Context Ref.
Group
(Gln)

Sensors
(Sm)

Energy (mJ)
(EGln)

Accuracy
(AGln)

Activity
[37] G11

Acc.1, Compass, PPG2,
ECG3, Resp. 4, SaO25,

Skin Temp.6
1.22 86%

[38] G12 Acc. 0.3 80%

Location
[30] G21 GPS 2.5 85%

[30] G22 Acc., GPS, GSM 1.1 71%

Health
[39] G31

Acc., ECG,
Skin Temp.

0.62 91%

[40] G32 ECG 0.12 76%

1Acc.: accelerometer
2PPG: photoplethysmogram
3ECG: electrocardiogram
4Resp. refers to respiration sensor
5SaO2: oxygen saturation sensor
6Skin Temp.:skin temperature sensor
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5.1 Experimental Setup

The sensors specifications used in the experiments are listed in table 5.1 along
with the related references. The accuracy values obtained from the references are
for the best case outcome. To reflect a practical scenario of using relatively accu-
rate recognition models, we selected the sensor groups that achieve recognition
accuracy above 70%. The information found in the CRM KB are obtained from
published research papers of energy efficient context recognition systems. In the
experiments we conducted we used the information found in [37, 38, 30, 39, 40].

To simulate context scenarios, we generated a dataset using the Smarter Time
Android application to track activities of daily life, location, and time spent in
each recognised activity and location over a period of two months. The applica-
tion captures user contexts state time durations, which can be used to represent
user behavior [41]. Three categories of context were recorded: Activity, Loca-
tion, and Health. The tracked states for the activity context included ’Walk’,
’Sit’, and ’Jog’. Location states included ’Home’ and ’Work’. Health states in-
cluded ’Healthy’ and ’Unhealthy’. At any time a user can be in any combination
of states for the monitored contexts. For example, a multi-context scenario may
consist of the case where the user is sitting at home and is healthy. The user
would be in the ’Sit’ state for activity context, the ’Home’ state for location
context, and the ’Healthy’ for state health context. The frequent time limits,
representing the user behavior in the different states are summarized in table 5.2.

Table 5.2: User Behavior Time Limits for Different Context States

Context State (xjl )
Single Time

Limit (T jl )
Multiple Time Limits (T jl,h)

Activity
x11 = ”Walk” T 1

1 = 2675 T 1
1,1 = 3431, T 1

1,2 = 10274

x21 = ”Sit” T 2
1 = 612 T 2

1,1 = 696, T 2
1,2 = 2065, T 2

1,3 = 3433

x31 =”Jog” T 3
1 = 825 T 3

1,1 = 880, T 3
1,2 = 2619, T 3

1,3 = 4357

Location
x12 = ”Home” T 1

2 = 1929 T 1
2,1 = 1720, T 1

2,2 = 1481, T 1
2,3 = 5142

x22 = ”Work” T 2
2 = 1548 T 2

2,1 = 503, T 2
2,2 = 1481, T 2

2,3 = 2460

Health
x13 = ”Healthy” T 1

3 = 2334 T 1
3,1 = 2295

x23 =”Unhealthy” T 2
3 = 403 T 2

3,1 = 521

5.2 System Parameters

The Pareto optimal (α, β) combination is selected, by enumerating the different
possible combination to find the pair that gives minimum point according to
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equation (8).

Figure 5.1: Sample plot of the parameters alpha and beta vs the resulting objec-
tive value, resulting from the sensing schedule for different combinations of (α, β).
The red dot represents the chosen optimal combination (α, β) and the black lines
in represents a boundary condition of (α, β) beyond which the objective function
value increases exponentially.

As shown in figure 5.1, it was observed that values of α + β > 1 lead to
sudden increase in objective function and divergence from global optimal. Also,
the choice of α = 0 leads to no sensing, which is to be avoided. As a result, the
values of (α, β) where limited to satisfy the condition:

α + β ≤ 1 & α > 0 (5.1)

In figure 5.1, the black lines indicate the boundaries of the search space and
the brown dot is the (α, β) combination that corresponds to minimum objective
function value. The sensing schedules in figure 5.2(a) and 5.2(c) correspond
to values of (α, β) that are within the bounds of search space, and the sensing
schedule alternates between ”Sense” and ”Don’t Sense” up to each time limit. On
the other hand, the sensing schedules in figures 5.2(b) and 5.2(d) correspond to
values of (α, β) outside the bounds of the search space, and they show a consistent
”Sense” decision without alternating back to ”Don’t Sense” long before reaching
the time limits.
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(a) (b)

(c) (d)

Figure 5.2: Sensing schedules for (α, β) combinations showing the continuous
sensor triggering phenomenon for values of (a) α = 0.3, β = 0.7, (b) α = 0.3,
β = 0.8, (c) α = 0.8, β = 0.2, and (d) α = 0.8, β = 0.3

For the experiment, we set δ = 10s for all contexts to simplify the experiments,
Moreover, the Exponential function for the survival probability is used for both
the holistic and hierarchical approaches.

5.3 Comparison to State of the Art

In this section, we compare our proposed holistic approach to sensor selection and
scheduling with state of the art approach (EGO [15]) that is based on hierarchical
decision making by first selecting sensors then deciding on their schedule of op-
eration. We consider all possible combinations of states for the three monitored
contexts detailed in Table 5.2, making up 12 context scenarios.

5.3.1 Effect of Holistic Approach Versus Hierarchical

To test the merit of holistic versus hierarchical approach without other improve-
ments, we assume all other conditions are the same for both approaches. This
includes using the same sensor information and the same behavioral model for
both. In particular, we use the proposed behavior model of multiple time limits
for both methods. The results of the experiments are shown in figure 5.3.

For each of the 12 context scenarios, figure 5.3(a), shows the normalized en-
ergy values obtained for both the holistic and the hierarchical approach (EGO),
while figure 5.3(c) shows the normalized delay values. For all the cases, the
holistic approach performs better than the hierarchical in both delay and energy
consumption. The actual energy consumption values in Joules and delay in sec-
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(a) (b)

(c) (d)

Figure 5.3: Comparison between EGO and the holistic approach both using the
new behavioral model for (a) normalized energy and (c) normalized delay for
each states combination scenario, (b) Average normalized energy and (d) average
normalized delay for all states combination scenarios

onds can be obtained by multiplying the normalized value with the maximum
values, as previously illustrated in computations of energy and delay. However,
since the purpose is to do a comparison, the actual values in terms of the corre-
sponding units are not necessary. In figure 5.3(b), the holistic approach resulted
in a normalized energy value of 0.15 (110 mJ) while the average normalized en-
ergy value for EGO was 0.405 (179 mJ), meaning the holistic approach showed an
average improvement of 63% in normalized energy. In figure 5.3(d), the holistic
approach resulted in a normalized delay value of 0.033 (11 seconds) while the av-
erage delay value for EGO was 0.05 (14 seconds), meaning the holistic approach
showed an average improvement of 34% in normalized delay. When summing the
delay and energy, the cumalative improvement is 60% in the objective function.
Additionally, the standard deviation of the normalized energy value for the holis-
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tic approach is smaller than the standard deviation of EGO, as can be seen by
the black line at the center of the bars in figure 5.3(b), indicating a more stable
performance.

5.3.2 Performance Analysis

To study more closely the effect of using the holistic approach, we examine one of
the context scenarios to find out why the holistic approach performs better. For
the first state combination, where the states are, ’Jog’, ’Work’, and ’Unhealthy’
, i.e. the scenario for the bar in figure 5.3(a) labeled ’01’. As such, we look at all
the possible sensor group combinations with their respective normalized energy
and normalized delay values, as shown in figure 5.4, which represents all the
sensor group combinations, with their respective normalized delay and energy.

Figure 5.4: Representations of all sensor group combinations terms of their nor-
malized delay and energy. The black dots are group combinations not selected
by either method, the red triangle is the groups selected by EGO, the green cross
is the same groups selected by EGO but with the values resulting from using
the holistic approach, and the blue square is the group selected by the holistic
approach

The black dots are for sensor combinations that have not been selected by
either method, the blue square is for the group combination selected by the
holistic approach and the red triangle is for the groups selected by EGO [15].
Additionally, the figure shows the sensor group combination chosen by EGO,
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but from the application of the Viterbi algorithm used in the holistic approach
represented by the green cross.

The groups selected by the holistic approach are G11 (G11), G22 (G22), and
G32 (G32) while the groups selected by EGO are G12 (G12), G22 , and G32 . Both
methods select the same groups, G22 , and G32 , for the location and health contexts
but different groups, G11 and G12 , for the activity context. The group selected
by the holistic approach has a lower objective function value (0.21), while the
combination selected by EGO has a greater value (0.35). As reflected in table 5.1,
group G11 has the accelerometer sensor in common with group G22 and the ECG in
common with G32 , while G12 only has the accelerometer in common with group G22 .
Thus, by synchronizing the sensing schedules aiG11

and aiG22
for the accelerometer

sensor, and aiG11
and aiG32

for the ECG sensor, the operation of group G11 reduced

the energy costs attributed to both group G22 , and G32 . By taking advantage of
the operation of the accelerometer and ECG as part of G11 , the operational energy
cost was reduced for G22 and G32 . While for the groups selected by EGO, because
aiG12

and aiG22
are synchronized for the accelerometer sensor, the operation of group

G12 only reduced the energy costs of group G22 , but not enough to surpass the
energy reduction in the holistic approach.

In addition to energy improvements, Figure 5.4 shows an improvement in
delay. The improvement is attributed to an improved representation of energy
consumption of the sensor groups in the instantaneous reward of Viterbi algo-
rithm. In EGO the energy is represented in terms of a constant and does not
account for the differences in energy consumption between possible selections
sensor groups to recognize a context. Which can represent the relative difference
in energy consumption between the possible groups of sensors.

Figure 5.5 illustrates the difference in the sensing schedules between EGO,
figure 5.5a, and the holistic approach, figure 5.5b, for the same selection sensor
group G32 . More frequent sensor triggering leads to more energy consumption,
however, the increased energy consumption is compensated by the selection of
additional common sensors leading to reduced energy consumption over all the
expected operation time. More frequency sensing also leads to a lower delay
value.

5.3.3 Impact of Multiple Time Limits

Here, we compare the proposed solution with both aspects of holistic optimiza-
tion and improved behavioral model versus the original state of the art (EGO)
using their own behavioral model which consists of averaging the historical time
duration data spent in each state and adding a fraction of the standard deviation
to compute a single time limit per state. The normalized energy, normalized de-
lay, and the resulting objective function values for the 12 combinations of states
and the average values are examined for the holistic approach and EGO in figure
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(a)

(b)

Figure 5.5: Sensing schedule generated using Viterbi algorithm for sensor group
G32 with the reward function of (a) EGO and (b) Holistic approach

5.7. To keep the comparison fair, the maximum values in the denominators used
for normalization is kept the same across both approaches, because the maxi-
mum values of energy and delay are different for the two approaches due to the
difference in behavior modeling.

The use of the different modeling techniques, i.e. the binning technique and
the averaging technique, results in different sensing schedules applied to a sensor
group when detecting a state.

To illustrate the difference, Figure 5.6(a) has three time limits, obtained using
the binning technique, each time a time limit is approached more sensing is en-
couraged by the Viterbi algorithm, but once it is passed, sensing triggers become
scarcer. Figure 5.6(b) shows the result of the previous method in the literature
[1] and that relies on only one time limit. Note that at the last time limit T jl,H ,
continuous sensing is applied until a change in state is detected.

For each of the 12 context scenarios, figure 5.7(a), shows the normalized energy
values obtained for both the holistic and the hierarchical approach (EGO), while
figure 5.7(c) shows the normalized delay values. As before, the holistic approach
performs better than the hierarchical in both delay in state change detection
and energy consumption for all the cases. In figure 5.7(b), the holistic approach
resulted in an average reduction of 68% in normalized energy. In figure 5.7(d), the
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(a)

(b)

Figure 5.6: Sensing schedules using the same sensor group to detect the same
state, with a) using the binning technique and b) using the VCAMS [1] method
for modeling the behavior of the user.

holistic approach showed an average reduction of 34% in normalized delay, which
is the same as before, meaning the modified behavioral model reduces energy
consumption while maintaining the same levels of delay. Taking the sum of the
energy and delay terms, the holistic approach showed an average reduction 65%
for the objective function value using the holistic approach compared to EGO. In
summary, the improvements attributed to the use of the binning technique are
5% for the normalized energy, 0% for the normalized delay.

5.3.4 Impact of State Survival Probability

Finally, we test the impact of the survival probability function on the sensing
schedule generated by the Viterbi Algorithm as illustrated in figure 5.8.

The Uniform function in figure 5.8(a) shows sensing decisions at the start
of the schedule and around the time limits. The Uniform function may lead to
optimized results in cases of high confidence that the user only changes their
state close to the obtained time limits, as that would reduce the obtained delays
while reducing energy consumption drastically. For this experiment the Uniform
function performed poorly because the user data is more stochastic and less de-
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(a) (b)

(c) (d)

Figure 5.7: Comparison between the holistic approach using the new behavioral
model vs EGO its own behavior model for (a) normalized energy and (c) normal-
ized delay for each states combination scenario, (b) Average normalized energy
and (d) average normalized delay for all states combination scenarios

terminable, i.e. we cannot know for sure that the state of the user will change
exactly according to the behavioral model. Therefore, the distribution of the
time duration data, needs to be taken into consideration when choosing the func-
tion modeling the survival probability of context states. The Linear function in
figure 5.8(b) shows sensing decisions in the schedule that gradually become more
frequent until reaching the time limits. The Exponential function in figure 5.8(c)
shows sensing decisions in the schedule that quickly become more frequent, faster
than that of the Linear function, until reaching the time limits. The Distribution
function in figure 5.8(d) shows sensing decisions in the schedule of a constant
frequency, starting at the lowest point in the survival probability.

The results for all context scenarios of the average normalized energy con-
sumption and average normalized delay are shown in figure 5.9(a) and 5.9(b)
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(a) (b)

(c) (d)

Figure 5.8: Illustration of impact on the sensing schedule generated by the Viterbi
algorithm using the (a) Uniform function (b) Linear function (c) Exponential
function (d) Distribution function

respectively.

(a) (b)

Figure 5.9: (a) Average normalized energy consumption value for all context
scenarios using the different survival probabilities (b) Average normalized delay
value for all context scenarios using the different survival probabilities

In figure 5.9(a) the best result, in terms of energy consumption is the Uni-
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form function followed by the Distribution function, while the worst is Linear
function and followed by the Exponential function. In figure 5.9(a), the best
result, in terms of delay is the Exponential function and followed by Distribu-
tion function, while the worst is Uniform function. Thus, the choice of survival
probability function will impact the overall outcome, so it is beneficial to have
an accurate representation of of state survival probability to ensure optimized
sensing decisions.

5.4 Computational Complexity

In the offline stage, the holistic Viterbi algorithm is applied repeatedly to find
the Pareto optimal weighting parameters, the number of times the algorithm is
applied depends on how many combinations of (α, β) are to be examined, i.e.
complexity is O(N2). We note that because of the (α, β) boundary conditions, as
opposed to the previous work in VCAMS [1], the complexity becomes O(1

2
N2).

Additionally, since each iteration of (α, β) combination, is independent of the
other, then the process of finding the optimal combination is parallelizable. The
complexity of applying the Viterbi algorithm is O(I.A2), where I is the total
number of time instances in which triggering decisions are made, and A is the
number of distinct actions that can possibly be taken, which are to sense or not
to sense. As for the complexity in the online stage, the computational complexity

is dominated by the number of possible combinations ΠL
l=1Gln

′
for sensor groups

to recognize the desired contexts. Thus the complexity is O(L.N), where N is
the number of groups per context, and L is the number of desired contexts for
recognition.
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Chapter 6

Conclusion

The paper described a holistic optimization approach to minimize energy con-
sumption and delays in the simultaneous detection of multiple context states.
The problem was formulated as an optimization problem, to simultaneously de-
cide on the sensors and their sensing schedules. The contributions included a
new user behavioral model based on capturing user’s frequent patterns in every
context state and the Viterbi instantaneous reward functions captured normal-
ized energies allowing comparison across groups of sensors and the accuracy in
context recognition as it impacts delays. Compared to previous state of the art,
the proposed solution showed an improvement of 64% in energy reduction and
34% faster detection in state change. We were able to reduce the number of
computations needed to find the optimal parameters for the Viterbi algorithm.
Moreover, we showed the adaptation of the method to different state survival
probabilities and the importance for accurately represent the user behavior. We
acknowledge some limitations in our work. The need for a large dataset of his-
torical time durations spent in contexts, which need to be collected over a long
period of time, impact the immediate applicability of the method. That can be
addressed by future work with Reinforcement Learning which can be explored
for continual learning as user behavior changes. Moreover, for future work, the
problem can be extended to find the group of sensors that can, not only trade off
energy and delay, but also achieve a balance with best accuracy in multi-context
recognition.

41



Bibliography

[1] S. Taleb, H. Hajj, and Z. Dawy, “Vcams: Viterbi-based context aware mo-
bile sensing to trade-off energy and delay,” IEEE Transactions on Mobile
Computing, vol. 17, no. 1, pp. 225–242, 2017.

[2] D. Craig, “Cognitive prosthetics in alzheimer’s disease: A trial of a novel cell
phoned-based reminding system,” Alzheimer’s & Dementia: The Journal of
the Alzheimer’s Association, vol. 6, no. 4, p. S173, 2010.

[3] M. Skubic, “A ubiquitous sensing environment to detect functional changes
in assisted living apartments: The tiger place experience,” Alzheimer’s &
Dementia: The Journal of the Alzheimer’s Association, vol. 6, no. 4, p. S173,
2010.

[4] O. D. Lara and M. A. Labrador, “A mobile platform for real-time human ac-
tivity recognition,” in 2012 IEEE consumer communications and networking
conference (CCNC), pp. 667–671, IEEE, 2012.

[5] E. Miluzzo, N. D. Lane, S. B. Eisenman, and A. T. Campbell, “Cenceme–
injecting sensing presence into social networking applications,” in European
Conference on Smart Sensing and Context, pp. 1–28, Springer, 2007.

[6] M. Kim, D. Kotz, and S. Kim, “Extracting a mobility model from real user
traces,” 2006.

[7] L. Liao, D. Fox, and H. Kautz, “Extracting places and activities from gps
traces using hierarchical conditional random fields,” The International Jour-
nal of Robotics Research, vol. 26, no. 1, pp. 119–134, 2007.

[8] E. Jovanov, A. Lords, D. Raskovic, P. G. Cox, R. Adhami, and F. Andrasik,
“Stress monitoring using a distributed wireless intelligent sensor system,”
IEEE Engineering in Medicine and Biology Magazine, vol. 22, no. 3, pp. 49–
55, 2003.

[9] R. W. Picard, E. Vyzas, and J. Healey, “Toward machine emotional in-
telligence: Analysis of affective physiological state,” IEEE Transactions on
Pattern Analysis & Machine Intelligence, no. 10, pp. 1175–1191, 2001.

42



[10] L. Ardito, G. Procaccianti, M. Torchiano, and G. Migliore, “Profiling power
consumption on mobile devices,” ENERGY, pp. 101–106, 2013.

[11] K. Nishihara, K. Ishizaka, and J. Sakai, “Power saving in mobile devices us-
ing context-aware resource control,” in 2010 First International Conference
on Networking and Computing, pp. 220–226, IEEE, 2010.

[12] V. Pejovic and M. Musolesi, “Anticipatory mobile computing for behaviour
change interventions,” in Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing: Adjunct Publication,
pp. 1025–1034, ACM, 2014.

[13] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, B. Krishna-
machari, and N. Sadeh, “A framework of energy efficient mobile sensing
for automatic user state recognition,” in Proceedings of the 7th international
conference on Mobile systems, applications, and services, pp. 179–192, ACM,
2009.

[14] K. K. Rachuri, C. Mascolo, and M. Musolesi, “Energy-accuracy trade-offs of
sensor sampling in smart phone based sensing systems,” in Mobile Context
Awareness, pp. 65–76, Springer, 2012.

[15] S. Taleb, H. Hajj, and Z. Dawy, “Ego: Optimized sensor selection for multi-
context aware applications with an ontology for recognition models,” IEEE
Transactions on Mobile Computing, vol. 18, no. 11, pp. 2518–2535, 2018.
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