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Title: Studying the Impact of UAVs Adoption on the Safety Performance of 

Construction Projects Using Agent-based Modeling 

 

Despite recent improvements and technological advancements, the construction industry 

is still hazardous and suffers from high rates of work-related injuries and fatalities due 

to unsafe site conditions and unsafe worker behavior. As such, standardized inspection 

procedures to monitor these unsafe conditions and acts and maintain an acceptable 

safety level were deemed necessary. However, traditional safety inspection practices, 

entailing a safety officer who navigates the jobsite, are very tedious and time-

consuming. Recently, drones or unmanned aerial systems (UASs) gained some attention 

in the construction field and their adoption on actual construction projects for safety 

monitoring proved beneficial but is still scarce in the literature. As such, this research 

work aimed at designing an agent-based modeling tool in order to examine the impact 

of the adoption of drones on the safety performance of construction sites and compare it 

against the traditional practice. The safety performance was evaluated using three types 

of indicators (e.g. incident rate, safety behavior, and hazards reported) and explored for 

horizontal-type projects versus vertical-type projects. The effect of the dynamicity of 

the project, the level of site risk, and the initial attitude of workers on the proposed 

system was also individually studied. Experiments were conducted and results revealed 

that the safety performance of the project significantly improved when adopting drones 

as compared to the employment of a safety inspector, but the improvement is less 

significant under dynamic site conditions. Furthermore, better results were witnessed in 

the case of horizontal-type projects, high risk projects, and in projects where the initial 

safety culture is weak. The study contribution lies in shedding light on the potential of 

drones in enhancing the safety performance of projects, as well as aiding safety 

managers and practitioners in evaluating their safety management practices and 

understanding based on the project type and nature whether employing the UAS can add 

value to their system. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

  Although a significant improvement has been recently witnessed in the area of 

construction safety, the construction industry remains one of the major contributors, 

among other industries, to the number of work-related injuries and fatalities (Awwad et 

al., 2015). According to the U.S. Bureau of Labor Statistics (USBLS, 2017), the 

percentage of employment in the construction industry in 2017 was only 4% of the total 

employment in the United States while the number of fatal work injuries was around 

19% of all fatal injuries in all industries (USBLS, 2017). 

The reasons behind accidents on construction sites are mainly attributed to 

unsafe conditions and unsafe acts (Heinrich, 1959). A standardized observation system 

for these conditions on site is necessary in order to monitor and improve the safety 

performance (Laitinen et al., 1999). Safety inspection by safety officers or supervisors is 

a common observation practice that serves mainly for supervision and safety audits 

(Occupational Safety and Health Council, Hong Kong, 2005). Unfortunately, safety 

inspection by walking around the site is a very time consuming and tedious process, 

especially in large and complex building projects as well as heavy civil construction 

projects (highway construction, infrastructure, excavation, etc..). Safety personnel might 

be discouraged to regularly attend to the inspection due to its highly demanding nature 

in terms of both time and physical effort. 

 Advances in construction technology, however, have presented the industry with 

great potential for better control over and governance of the construction process. 

Specifically, the use of drones has recently been introduced into the world of 
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construction. Drones are Unmanned Aerial Vehicles that can be managed without a 

pilot on board and are navigated and controlled either remotely through human 

intervention or autonomously. Moreover, the term UAS (Unmanned Aerial System) is 

sometimes used to describe the system that includes in addition to one or several 

unmanned aerial vehicles, the ground control station or device as well as any other 

needed elements like installed cameras or sensors (Irizarry et al., 2012).  

The use of drones originated in military applications for distant surveillance and the 

realization of dangerous tasks that are too risky for human-piloted aircrafts. Today, they 

are being used in the public sector for transportation management, search and rescue 

during disasters, crime-scene photography and other cases (Irizarry et al., 2012; Howard 

et al., 2018).  Additionally, drones are used commercially in mining, agriculture and 

forestry, motion picture production, and robotics (Howard et al., 2018). In construction, 

although the use of drones is still not very common (Howard et al., 2018), UAVs 

present the industry with potential means for: examining the progress of a project, job 

site logistics, assessing safety conditions and quality inspections, among others (Irizarry 

& Costa, 2016). 

The application of UAVs in construction for safety monitoring is still in its 

prime. Only few studies have addressed this issue mainly to assess the applicability of 

using drones for safety monitoring and inspection. The use of an Unmanned Aerial 

System on an actual construction site for the purpose of safety inspection has been 

scarcely documented in the literature and accordingly no data regarding the efficiency 

of the use of such a system for improving the safety performance of a construction site 

has been presented. Since the collection of this type of data needs a long time with 

application in several projects, this study instead employs agent-based modeling to 
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simulate the dynamics of a real construction site. The aim of this study is to understand 

the long- term effects of using drones for safety inspections compared to the traditional 

practice of safety monitoring. The two scenarios will be compared in order to assess the 

significance of the difference between the two cases on the improvement of the safety 

performance. The results will aid project managers in choosing the appropriate safety 

system that can provide a continuous evaluation measure for the safety conditions and 

acts on site for the aim of improving these conditions and minimizing the number of 

accidents and near misses. 

 

1.2 Research process 

  A research process is conceived to set a plan of work from the beginning of this 

study until completion. The primary step of the research process includes a review of 

the available literature on safety management practices in construction and the use of 

drones for safety inspections as well as the theories related to the unsafe behavior of 

workers. Accordingly, problems and research gaps are identified which in turn form the 

motivation of this study and assist in developing the research objectives. Afterwards, 

specific research questions are set and used as a guidance for the design of the research 

methodology. Based on the methodology, agent-based modeling is performed followed 

by validation of output and simulation experiments. Finally, the results are analyzed, 

and discussed and conclusions and recommendations of this research are put forth. 

 

1.3 Organization of the thesis 

  The organization of the thesis is summarized in Figure 1. Chapter 2 provides a 

research background on workers’ unsafe behavior in construction, technological 
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advances in construction safety management, and specifically the use of drones for 

safety in construction in addition to an overview of safety performance indicators and 

simulation and agent-based modeling. Chapter 3 highlights the problematic areas and 

gaps in the current research and accordingly presents the research objectives and 

questions. Chapter 4 explains the developed research methodologies as well as the 

employed methods. Conceptual and agent-based simulation modeling are explained in 

Chapter 5. Chapter 6 illustrates the techniques used for verification of the model and the 

validation of the output. The conducted simulation experiments are described and their 

results analyzed and discussed in Chapter 7. Chapter 8 concludes with the research 

work, limitations of the current study, recommendations for industry and future 

research. 
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Figure 1 – Organization of the thesis 
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CHAPTER 2 

BACKGROUND RESEARCH 

A lot of studies in the literature discussed the issue of construction safety. The 

literature presented below covers first the main reasons for construction accidents, 

followed by an overview of technological advances used in construction safety 

management and their shortcomings. Next, the available few studies that discuss the use 

of drones for construction safety and monitoring are summarized. This is followed by a 

brief description of the kind of indicators used for measuring safety performance, and 

this section ends with an overview of agent-based modeling. 

 

2.1 Safety in Construction 

  Many early studies related to safety on construction sites focused on finding the 

root causes of accidents in order to try to manage and mitigate the factors that mainly 

contribute to the occurrence of an accident. Abdelhamid & Everett (2000) indicated that 

all accidents occur due to unsafe conditions or unsafe acts. An unsafe condition is 

defined as “a condition in which the physical layout of the workplace or work location, 

the status of tools, equipment, and/or material are in violation of contemporary safety 

standards” (Abdelhamid & Everett, 2000). Some unsafe conditions can be totally 

removed, such as the case of unprotected edges. Other unsafe conditions, however, 

cannot be totally removed such as the presence of operating equipment. Instead, 

workers working in proximity of this equipment should take the necessary safety 

precautions. On the other hand, unsafe acts are the acts taken by workers that do not 

comply to safety standards. These acts can be in response to existing unsafe conditions 

or maybe independent from the existing conditions (Abdelhamid & Everett, 2000). 
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According to Guo et al. (2016), unsafe behavior can be one of three types: moving 

towards hazardous areas, the inappropriate use of personal protective equipment (PPEs), 

and incorrect operation of equipment or tools. 

Laitinen et al. (1999) noted the importance of a standardized observation and 

monitoring method for these work conditions and workers’ acts as an indicator of the 

safety level on a construction site. They proposed the TR-safety observation method 

which they used to find a safety index for the site. They found a direct correlation 

between the existing unsafe conditions and acts and the accident rate (Laitinen et al., 

1999). These results were recently further validated in a study on small and medium 

construction enterprises in Turkey (Gunduz & Laitinen, 2017). Moreover, many unsafe 

conditions and unsafe behaviors are significantly related and thus their separation could 

contribute to the mitigation of accidents (Chi et al., 2013). 

Environment-based safety management focuses on the elimination of unsafe 

conditions, while human-based safety management is directed towards reducing unsafe 

acts. The latter, however, is more difficult to achieve since unsafe acts by humans or 

workers specifically are related to their mental process and their safety attitudes which 

are difficult to observe, quantify, and change (Shin et al., 2014). According to Teo et al. 

(2005), workers exhibit unsafe behavior either due to lack of knowledge or due to poor 

safety attitudes. Lack of knowledge or awareness could be solved and managed through 

systematic training and safety campaigns especially in the area of hazard identification 

in order to improve the risk perception of workers (Teo at al., 2005). A study on the 

hazard perception of onsite personnel in Lebanon, for example, showed that workers, 

more than engineers and foremen, lacked the awareness towards several hazardous 
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activities and their potential risk. This is mainly attributable to lack of training and 

education (Abbas et al., 2018). 

In practice, practitioners resorted to punishments such as fines and penalties 

when workers performed violations against safety rules in order to improve workers’ 

behavior. However, since construction is very dynamic and diverse, it is almost 

impossible to define standard acceptable and safe behavior for every possible situation 

to be encountered (Choi et al., 2016). This is why more attention is currently being 

placed on behavior-based safety which focuses on fostering safe behavior of workers 

such that they recognize and react to risk intuitively without the need for external 

control (Choudry, 2014; Choi et al., 2016). However, in order to change workers’ 

unsafe behavior, the mechanism of safety behavior should be well understood, 

especially since the process that leads to this behavior is not solely related to internal 

aspects of the worker but also to other external factors. 

As shown in Figure 2, the theory of planned behavior traces back behavior to 

behavioral intentions which are affected by factors such as the attitude of the worker as 

well as subjective norms (Ajzen, 1991). The safety attitude of a worker is developed 

through the perceived risks that this worker acquires from different types of information 

(Shin et al., 2014). Risk perception is defined as “the subjective judgment that people 

make about the characteristics and severity of a risk” (Lavino & Neumann, 

2010). Subjective norms represent “a person’s perceptions of significant others’ 

expectations of his behavior” (Zhang & Fang, 2013). For the case of construction 

workers, significant others are mainly co-workers and management (Zhang & Fang, 

2013). The final behavior implemented by the worker leads to a certain outcome that 

could again affect the attitude and subjective norms thus forming a feedback loop (Shin 
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et al., 2014).  Shin et al. (2014) argue that a worker sometimes may act against his 

intention, for example due to habit against the acquired intention. The authors suggest 

implementing safety measures and improvement efforts as early as possible before the 

workers had already acquired unsafe acting as a habit (Shin et al., 2014). 

 

Figure 2 – Workers’ mental process in relation to their safety behavior (Ajzen, 

1991; Shin et al., 2014; Zhang & Fang, 2013) 

Choi et al (2016) studied the “subjective norm” part of to the above mentioned 

theory, specifically perceived management norm and perceived workgroup norm. The 

study showed that perceived workgroup norms do in fact play a mediating role on the 

influence of perceived management norm on safety behavior. Furthermore, the results 

showed that a workers’ social identification with the project or sense of belonging to the 

project strengthens the relationship between management norms and safety behavior 

whereas it weakens the relationship between workgroup norm and safety behavior (Choi 

et al., 2016). 

Workers perceive a positive management norm when a standard safety 

management system is established where there is clear commitment to safety from all 

levels, safety regulations are clearly defined and imposed, safe work conditions are 

preserved along with providing the appropriate PPEs, workers are educated about the 

importance of safety, and safety personnel are employed to make frequent safety 
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inspections to ensure that safety regulations are followed and safe working conditions 

are maintained and to provide the workers with the necessary feedback regarding their 

behavior and overall safety performance (Opfer, 1998; Helander, 1991; Jannadi, 1996; 

Teo et al., 2005; Zhang & Fang, 2013, Abbas et al., 2018). Furthermore, managers 

should be aware that the unsafe behavior of one worker might influence the behavior of 

other workers (Choi et al., 2016). This shows further the need for managers to have an 

eye on the site conditions at all times and this is where the application of drones can 

prove to be very useful. 

 

2.2 Safety Performance and Indicators 

  Traditionally, safety performance on construction sites was measured or 

quantified using reactive indicators such as the Total Recordable Incident Rate (TRIR) 

and Lost Work Day rate (LWD) (Jazayeri, & Dadi, 2017). These indicators mainly 

show the magnitude of the occurrence of accidents and are reactive in the sense that 

they collect after the fact statistics meaning a reaction is initiated only after the incidents 

had already occurred. These are called lagging indicators and they are positively 

characterized by being “easy to collect, easily understood, comparable with each other, 

used in benchmarking, and useful in the identification of trends” (Lingard, 2013). 

However, they don’t provide any information about the reasons behind a deterioration 

in the safety performance and thus cannot offer any insight about the specific items that 

should be addressed in the system to improve this performance (Hinze et al., 2013). 

The need for more proactive safety measures lead to the introduction of leading 

indicators for the measurement of safety performance. Leading indicators are metrics 

that portray the efficiency of the actions, methods and procedures taken to avoid 
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accidents as part of the safety system (Grabowski et al., 2007). When these observations 

show a flaw or a weakness in the system, this means that there is a higher probability of 

the occurrence of an accident. Accordingly, the necessary intervention can be made in 

order to improve the process before any incident actually occurs. In other words, these 

indicators provide a method of monitoring the process during its implementation and 

thus giving the chance for managers to proactively respond to the collected results 

(Hinze et al., 2013). Hallowell et al. (2013) explained that leading indicators are similar 

to health-related indicators, such as blood pressure, that signal the presence of a 

problem or an illness that needs to be treated before the occurrence of serious 

complications. 

Ideally, a combination of both lagging and leading indicators should be used to 

measure the safety performance such that leading indicators will provide measures for 

actions and lagging indicators will indicate whether these actions are giving effective 

results (SM_ICG, 2013). In the current study, safety behavior and hazards reported will 

be used as leading indicators (Mills et al., 2017; Nasirzadeh et al., 2018), while incident 

rate will be used as lagging indicator (Jazayeri, & Dadi, 2017). Details about the 

definitions and calculations of these indicators will be explained in later sections. 

 

2.3 Technological Advances in Construction Safety Management 

  “It is believed that the availability of technology makes the construction safety 

reachable” (Alizadehsalehi et al., 2017). Visualization technology can improve 

construction safety management through facilitating the monitoring process of 

personnel, equipment, and the environment. To achieve this, both the location and the 

motion of workers and equipment can be tracked using tools that are either sensor-based 
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(infrastructure-based) such as RFID, UWB, GPS, and WLAN, or tools that are 

infrastructure-free (not relying on sensors) such as cameras, IMU, and laser scanning. 

Usually a hybrid of both types of tools is used to achieve higher accuracy. (Guo et al., 

2016; Khoury et al., 2015). 

Carbonari et al. (2011) used UWB for tracking workers’ positions on site in 

order to implement a system that alerts workers when they get close to hazardous areas 

in outdoor environments. The results showed good accuracy in terms of distance and the 

number of initiated false alarms, however, it only accounted for predefined hazardous 

areas and thus was not ideal for dynamic environments such as construction and needed 

further enhancement. Moreover, in order to identify potential hazardous areas on 

construction sites, Kim et al. (2016) used a real time locating system based on RFID to 

track the movement of workers. The path followed by these workers is then compared 

to the optimal route, extracted from the building information model (BIM), which is the 

shortest path that ideally should be taken by the laborers. According to the deviation 

from the optimal path and assuming that this deviation is done mainly to avoid obstacles 

(materials, hazards, etc.), the potential hazardous areas could be located (Kim et al., 

2016). Conducted experiments showed that out of the potential hazards detected by the 

proposed system, 80% were in fact actual hazards. Golovina et al. (2016) proposed a 

method for the collection of records of incidents of proximity between workers-on-foot 

and heavy construction equipment, for the aim of using these records as an indicator for 

safety performance as well as the analysis of the situations that lead to the incidents and 

consequently helping in determining the root causes. The location tracking tool used for 

the implementation of the system was the GPS. 
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Although these tools and technologies are being used for tracking on-site 

entities, they still present several shortcomings. Infrastructure-based systems such as 

RFID, UWB, and GPS, which are most commonly used, require the pre-installation and 

calibration of a network of sensors on site. Construction environment; however, is 

known for its dynamic nature with frequent change of the location of equipment, 

materials, and personnel, and therefore repeatedly modifying the network of sensors 

along with these variations is highly impractical (Khoury et al., 2015). Moreover, UWB 

can only cover small ranges while RFID, although having a large signal cover, have a 

weak penetration ability through obstacles (Guo et al., 2016). On the other hand, 

infrastructure-free systems that mainly rely on the use of IMU require the installation of 

the IMU units on all the entities to be tracked and are usually combined with sensor-

based systems since the use of IMU alone does not provide the needed accuracy 

(Khoury et al., 2015). These problems have shifted the attention of researchers towards 

the use of vision-based technologies relying mainly on photos and videos extracted from 

cameras. The advantage of this technology is that it does not rely on the use of any 

sensors and does not require the workers to be equipped or carrying any devices that 

may affect their performance or productivity. Moreover, the implementation of this 

technology is simple and easy and it has a low cost (Park & Brilakis, 2016; Mneymneh 

et al., 2018). 

Park & Brilakis (2012) presented a method for the automatic detection of 

resources from video frames in order to initialize the tracking of these resources. The 

proposed method uses “background subtraction, the histogram of oriented gradients 

(HOG), and the HSV color histogram, one after the other, in order to narrow down the 

detection regions to moving objects, people, and finally construction workers, 



 

14 

respectively” (Park & Brilakis, 2012). In order to observe and automatically detect the 

unsafe behavior of workers, Han & Lee (2013) proposed a framework that consists of 

the extraction of 3D skeletons of workers from site videos and the identification of 

unsafe behavior through the comparison of these 3D skeletons with motion templates 

and skeleton models that correspond to predefined critical unsafe acts. Mneymneh et al. 

(2018) utilized computer vision techniques to detect workers that are not wearing 

hardhats from captured videos on the construction site. Several conducted experiments 

yielded accurate results with high precision and recall under different conditions. 

The problem with the use of computer vision techniques for detection is that these 

techniques might be sensitive to conditions such as lighting, dynamic environments, 

shadows, and occlusion which affects the accuracy of the results (Li et al., 2016). 

Moreover, cameras can only locate objects within line of sight and their view can be 

hindered by obstacles, which means it would be necessary to install several cameras in 

order to be able to monitor the whole site which might become expensive in large and 

complex projects and impractical in terms of the huge amount of data that needs to be 

processed (Guo et al., 2016). Drones with installed cameras can be used to overcome 

these problems since they can fly all around the site and change orientation which 

eliminates the need for more than one camera in most cases. Additionally, if the 

inspector or manager finds that a collected visual asset is unclear or obstructed or even 

if he needs additional details about a certain view, the drone can be automatically sent 

back to collect more information from the needed location. 
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2.4 Use of Drones for Enhancing Safety in Construction 

  UAVs can improve safety management systems by being an effective tool for 

monitoring the conditions on site and hence aiding in conducting safety inspections 

which are known for being difficult and time consuming, but crucial for maintaining the 

safety level on site (Irizarry et al., 2012; de Melo et al., 2017). Visual assets can be 

collected by the drone quickly and as frequently as necessary with the capability of 

transmitting the gathered data to the ground control station in real-time and thus 

allowing for instantaneous intervention where needed (Irizarry et al., 2012; Irizarry & 

Costa, 2016). Managers can get the chance to constantly visualize dangerous activities 

without physically being present at the location. Irizarry & Costa (2016) tested the 

possible applications of unmanned aerial systems for construction management issues 

and found that most of the collected visual assets (pictures and videos) helped in the 

identification of safety-related issues. However, including UAVs in the safety 

management system has to be accompanied with a set of standardized procedures for 

adequately planning the flight mission, collecting and storing the data, analyzing this 

data, and taking the appropriate immediate and future managerial actions accordingly 

(de Melo et al., 2017). 

Irizarry et al. (2012) indicated that for safety inspections to be effective, they 

should be characterized by being frequent, having direct observations of conditions and 

methods, and providing direct interaction between the inspector and the workers. In 

addition to satisfying the first characteristic, some available drones can allow for direct 

observation through, first, easy navigation control by a simple user interface on the 

inspector’s personal smartphone or tablet, and second, the ability to issue real-time 

videos to this interface (Irizarry et al., 2012). Moreover, drones can be equipped with 
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communication devices for direct interaction (Irizarry & Costa, 2016). An ideal 

inspection drone, according to Irizarry et al. (2012) should have the following features: 

“Autonomous navigation, voice interaction, environmental applicability, high-resolution 

cameras, multitasking application, and extended battery life”. 

Experiments performed with drones on the field showed that some of the safety-

related issues that can be observed from the collected assets are: “damaged safety nets, 

missing safety guardrails, improper material storage and debris, stairs without fall 

protection, workers on the edge of a roof without appropriate fall protection, workers 

without hard-hats and personal fall arrest systems, safety platforms not installed on the 

entire perimeter of the building and safety platforms with uncompleted floorboard, 

inappropriate use of hard-hats, and safety platforms with unforeseen overload (people 

and scaffolding)” (Irizarry & Costa, 2016; de Melo et al., 2017). On the other hand, 

safety managers believe that using UAVs can mostly improve safety in the following 

three situations: “working in proximity of boomed vehicles/cranes, working near an 

unprotected edge/opening, and working in the blind spot of heavy equipment” (Gheisari 

& Esmaeili, 2016). Surprisingly, safety managers did not believe that UAVs can 

frequently aid in issues related to the adequate use of PPEs by workers (Gheisari & 

Esmaeili, 2016), although conducted experiments prove otherwise (de Melo et al., 

2017).  This indicates that construction professionals do not fully understand the 

potential of using UASs in improving safety on site, probably since it is still an 

emerging technology that has not yet been heavily applied in this area. 

Kim & Irizarry (2015) indicated that the performance of UAVs can be 

influenced by the features of the used UAS, the project characteristics, as well as the 

project team features. Such features include: “Easy user interface for UAS operation, 
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battery life of the UAS, maximum visible angle of the UAS camera, project size, 

duration, and complexity, team’s prior experience with UAS, adequacy of training or 

education for UAS use as safety monitoring system, etc.” The results of the study were 

not conclusive regarding the importance of each factor in affecting the UAV 

performance mainly since the number of respondents on the survey was small and since 

most of these respondents had no prior experience with the use of UAVs for safety 

monitoring and thus were unable to provide definitive answers. The authors concluded 

that it is currently very difficult to measure the actual performance of UASs for safety 

monitoring before more field tests had been conducted (Kim & Irizarry, 2015). 

 

2.5 Simulation and agent-based modeling (ABM) 

  As aforementioned, the construction industry is very dynamic and evolving such 

that frequent changes have become a rule instead of an exception (Kim & Paulson, 

2003). Moreover, construction projects include numerous participants from various 

organizations socially interacting with each other and the site components, making these 

projects perfect candidates for presentation through computer simulation, in particular 

agent-based modeling (ABM) rather than analytical models based on mathematical 

equations (Macal & North, 2009). ABM simulation is a method that uses a bottom-up 

approach to capture emergent phenomena of a set of agents that interact with each other 

and the surrounding environment (Bonabeau, 2002; Walsh & Sawhney , 2004). Agents 

in agent-based models are characterized by being diverse, autonomous, decision-making 

through a set of rules, but at the same time adaptive such that they can learn from the 

environment and modify their behavior accordingly (Macal & North, 2009). In agent-

based models, “simple rules at the micro level create complex behavior at the macro 
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level” which can lead to changes in the overall environment (Lu et al., 2016). All these 

characteristics make agent-based modeling a powerful tool that can offer a very realistic 

illustration of the actual system. 

Agent-based models can be used to predict the output of the system, describe 

how the system behaves and why it behaves the way it does, experiment with if-then 

scenarios to understand how the system will perform under different circumstances, and 

suggest new questions from unexpected observations (Epstein, 2008). Moreover, these 

models can be used for training of practitioners, measuring the performance of the 

system, design and test systems that do not yet exist, and help in making decisions 

accordingly (Epstein, 2008; Kelton et al., 2010). 

Marzouk & Ali (2013) prepared an ABM model to estimate bored piles 

productivity within space and safety constraints. Asgari et al. (2016) simulated the 

competitive construction bidding process through an agent-based model incorporating 

the various factors that interfere in the decision of the markup value by contractors 

including competition, risk attitude of contractors, and the need for work. Al Hattab & 

Hamzeh (2018) employed agent-based modeling to study the effect of using BIM-based 

design on improving the workflow taking into consideration the social interaction 

between participants and the dynamics of information exchange. 

In the area of construction safety, the first attempt to use agent-based modeling 

was done by Walsh & Sawhney (2004) who tried to understand the relationship between 

the attitudes of owners towards production and safety and the behavior of onsite 

workers. The attributes used to describe workers’ behavior in the model were the 

production ability (productivity) and the risk-tolerance, whereas the simulated site had 

variable levels of danger. The results demonstrated a direct link between the safety 
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attitude of employers and the risk-tolerance distribution in the population (Walsh & 

Sawhney, 2004). 

The relationship between safety investment and safety performance on 

construction sites was investigated through an agent-based model prepared by Lu et al. 

(2016). Three safety investments were considered in the study: 1- the use of a novel 

technological tool that tracks the locations of workers and equipment and gives warning 

signals to workers when they are close to a hazard, 2- the use of a safety supervisor to 

conduct safety inspections and warn workers of close danger, and 3- promoting 

responsibility of coworkers’ safety. The results showed that the three investments have 

a positive impact on the safety performance but the use of the first and third investments 

are favorable in terms of cost. Moreover, another important finding is that different 

safety investments can have different impacts on productivity and that the first 

investment is the most effective in reducing unsafe acts without delaying workers (Lu et 

al., 2016).  

Choi & Lee (2017) employed agent-based simulation to model the 

sociocognitive process of workers’ safety behaviors. This was done in order to 

investigate the influence of interventions such as management feedback with varying 

strictness and frequency on the safety behavior of workers through this process (Choi & 

Lee, 2017). 
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CHAPTER 3 

RESEARCH MOTIVATION AND OBJECTIVES 

3.1 Problem statement and motivation 

  The construction industry is known for its highly hazardous nature and high 

rates of work-related injuries compared to other industries. Based on the aforementioned 

literature, the two main reasons for construction accidents are unsafe conditions and 

unsafe acts. Accordingly, many studies emphasized the need for conducting regular and 

frequent safety inspections to monitor the conditions on site and the behavior of workers 

in order to control the level of safety. The most common practice of safety inspection is 

done by a safety officer or supervisor who navigates the site. This process, however, is 

very time-consuming and tedious and requires a great amount of effort especially in 

complex situations which are quite common on dynamic construction sites. Moreover, 

there are certain locations that have limited access to construction personnel and others 

that are very risky for the inspectors to traverse and thus would compromise their own 

safety. Therefore, the use of drones can help managers in overcoming the manual 

burden of traditional safety inspections. Drones can fly around the site collecting rapidly 

and frequently visual assets and can reach limited access locations. This novel 

technology is still in its prime and only few studies have addressed the issue of using 

drones for safety in construction, specifically to test the applicability of this technology 

for safety inspections. However, the use of drones on an actual construction site for the 

purpose of safety inspection has been scarcely documented in the literature and 

accordingly no data regarding the efficiency of the use of such a system for improving 

the safety performance of a construction site has been presented. Therefore, it is 
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essential to understand the long- term effects of using drones for safety inspections 

compared to the traditional practice of safety monitoring. Moreover, assessing the 

impacts of different influencing factors such as the type and characteristics of the 

project is very important for optimizing the performance of the system. 

 

3.2 Research Objectives 

This study employs an agent-based simulation model to mimic the dynamics of a 

real construction site while taking into consideration its hazardous nature as well as the 

cognitive process of workers’ safety behavior. As such, the overall objective of the study 

is to aid managers in choosing the appropriate method for rapidly inspecting and 

monitoring their projects so as to maintain an acceptable level of safety. The interim 

objectives intended from this study are as follows: 

Objective 1: Identify the difference in the resulting safety performance of the project for 

two cases: using a safety officer or using a UAS for safety monitoring. 

  This objective will be achieved by studying and comparing three kinds of safety 

performance indicators: incident rate, hazards detected, and safety behavior of workers. 

Objective 2: Explore the difference in the resulting safety performance between projects 

with horizontal layouts and projects with vertical layouts (ex: high-rise building) when 

employing a UAS. 

Since the nature of vertical projects imposes certain restrictions that might 

hinder the performance of the UAS, this issue will be explored in order to study its 

effect on the resulting safety performance. 

Objective 3: Examine how varying parameters related to the characteristics of the 

project can influence the performance of the UAS in improving the safety performance. 
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The effect of factors related to the characteristics of the project on the safety 

performance of the UAS will be examined including: the dynamicity of the project, the 

level of site risk, and the safety culture. 

 

3.3 Research Questions 

The following questions serve as a guide throughout this research for achieving the 

aforementioned objectives: 

Q1. What difference is witnessed when employing a safety officer vs. adopting a UAS on 

the safety performance? 

Q2. How does the type of the project (vertical vs. horizontal layout) impact the safety 

performance when employing a UAS? 

Q3. How do different variations in the characteristics of the project influence the overall 

safety performance of the system? 

. 
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CHAPTER 4 

RESEARCH METHODOLOGY AND METHODS 

 To answer the aforementioned research questions, a stepwise research 

methodology, summarized in Figure 3, is designed to comprise the following major tasks: 

1) knowledge acquisition and background research, 2) Development of a conceptual 

framework, 3) Agent-based simulation modeling, 4) Verification and validation, 5) Model 

experiments and simulation runs, 6) Analysis of results. A brief description of each stage 

of the methodology is presented below: 

 

4.1 Knowledge Acquisition and Background Research  

  A thorough review of studies related to using drones for safety in construction as 

well as the behavioral process of workers related to safety. 

 

4.2 Development of a conceptual framework 

Developing a conceptual framework that explains the process of safety inspection 

by a safety officer or a drone as well as the cognitive process of workers’ safety behavior. 

The framework incorporates the interaction of these workers with the inspector, the UAV, 

other coworkers, and the environment (construction site). This framework in developed 

based on the acquired knowledge from previous studies. 

 

4.3 Agent-based simulation modeling 

Preparing a computer simulation model using Anylogic as the simulation 

platform. The model will include several agents with defined variables and parameters 
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along with these agents’ behavioral rules and also the rules of interactions among agents 

and between agents and the environment. 

 

Figure 3 – Research Methodology 

 

4.4 Verification and Validation 

Verification of the model is checking whether the computerized model has been 

programmed and implemented correctly (Sargent, 2009). This will be done by a code 

walkthrough with an expert. Moreover, the mathematical equations of a simple case will 

be computed manually and compared with the results of the simulation. Validation of 

the output of the model will be done through a subjective approach based on comparing 

the results of the model to previous empirical findings about safety behavior of 

construction workers both qualitatively and quantitatively. 
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4.5 Model Runs and Experiments and Analysis of Results 

Simulation runs will be conducted on the prepared model in order to calculate 

the safety performance indicators. Moreover, several scenarios will be tested by varying 

certain attributes related to the project so as to understand the effect of these variations 

on the performance. Accordingly, the results of the conducted simulation runs and 

experiments will be inferred and presented. 
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CHAPTER 5 

AGENT-BASED MODEL 

5.1 Conceptual framework 

  Unsafe behavior by workers is the main reason for construction accidents 

(Heinrich, 1959; Salminen & Tallberg, 1996; Hinze, 2006). Moreover, the elimination 

of unsafe conditions and unsafe acts by workers can effectively contribute to the 

prevention of accidents (Shin et al., 2014). Based on these findings, the prepared 

conceptual model is mainly focused around two main concepts. The first is the cognitive 

process of construction workers’ safety behavior adopted from Choi et al. (2016), and 

the second is the process of safety inspection using a UAS as described and tested by de 

Melo et al. (2017). The effect of the interaction between these two concepts on the 

safety performance of the project will be studied. The conceptual framework aims at 

studying the difference in the safety performance between 2 proposed systems, one that 

employs a safety officer for safety monitoring and the other that utilizes a UAS instead. 

Moreover, the framework will help to depict the impact of different features of the 

project when using the UAS on the overall performance of the system. 

The construction site is characterized by the level of risk. Site risk is most 

commonly defined in the literature as the product of probability and severity (Choe & 

Leite, 2016).  Therefore, site risk is represented in the model by the probability that a 

worker gets exposed to an unsafe condition as well as the severity of the risk that 

workers will be exposed to under the unsafe condition. Moreover, as the type of the 

project (having a horizontal layout such as a highway construction project or a vertical 

layout such as a high rise building) impacts the performance of the UAV (Kim & 
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Irizarry, 2015; de Melo et al., 2017), this issue will also be incorporated as an attribute 

of the project.  

Construction workers move around the site searching for work. During the 

execution of a task, workers can be subject to unsafe conditions and whether they 

commit an unsafe behavior will be determined through the depicted cognitive process in 

the model. This process is adopted from Choi et al. (2016). It is directly related to the 

risk perception and the risk attitude of workers. The actual risk on site is perceived 

differently between one worker to another based on the perceiving coefficient (Shin et 

al., 2014) which is affected by the worker’s previous experience, knowledge about risk 

and safety, as well as his risk attitude (Mearns & Flin, 1995). However, even if two 

workers perceive a risk similarly, their reaction to the perceived risk is different. This 

reaction is a consequence of the acceptable risk by each worker which is determined by 

both internal factors of the worker such as attitude, as well as the interaction with 

external factors such as other coworkers, representing the workgroup norm, and the 

safety inspector or the drone, representing the management norm (Choi et al., 2016). 

This is due to the fact that workers are influenced by the safety behavior of their 

coworkers when learning the acceptable or normal behavior in a project especially in 

situations and types of work that they hadn’t encountered previously and thus are not 

sure about the kind of behavior that should be undertaken. Also, workers learn the kind 

of behavior that is tolerated by management through the managers’ or safety personnel 

feedback. In cases when the workers’ unsafe actions are neglected, they will learn that 

this kind of behavior is acceptable in the project (Choi & Lee, 2017). Finally, the 

comparison between the perceived risk and the acceptable risk by the worker will lead 

to the decision of safe or unsafe behavior (Shin et al., 2014). 
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Regarding the management intervention, in the first case a safety inspector will 

wander the site to check for any non-compliance with the standard safety levels. When 

an unsafe condition is encountered, the officer or inspector will take the necessary 

measure to remedy the condition (example: if the inspector notices an unprotected 

opening, he will ask the concerned party to install the missing guardrails). Moreover, 

when the inspector notices an unsafe behavior by a worker, the worker will be informed 

through direct communication in order to take the appropriate action (example: if a 

worker is not wearing his hardhat, the inspector warns the worker about his unsafe 

behavior). Note that the immediate change of the worker’s act from unsafe to safe for 

the particular instance is not conveyed in the model. Instead, the interaction will cause 

the worker to be more careful about the act in the future. This approach is more 

reasonable and realistic since the attitude of workers cannot be changed instantaneously. 

In other words, even if the worker wears the hardhat following the inspector’s warning, 

this does not mean that he will wear it all the time from now on. The behavior of the 

worker will improve gradually based on his initial attitude. The officers’ monitoring 

process is mainly characterized by the time required to conduct the inspection. Figure 4 

summarizes the conceptual framework when a safety officer is employed for safety 

inspection. 

For the second case, a UAS consisting of one UAV (drone) mounted with a 

camera and a ground control station (a tablet for example) will be used for the 

monitoring process and the communication between management and the workers will 

be done through the UAV. The assumption is that the drone will navigate the site 

externally without entering inside the built part of the buildings. During one complete 

inspection mission, the drone will inspect the site at three different levels: overview, 
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medium view, and close-up view. Based on the study by de Melo et al. (2017), only 

certain percentage of requirements will be visualized at each level. Moreover, the 

detection of unsafe behavior and conditions from the collected photos or videos will be 

done through an algorithm and again only certain percentage of requirements will be 

detected based on the precision of the algorithm. In addition to the visualization and 

detection percentages, the other features of the UAV that will be considered in the 

model are the velocity of the drone and the battery life. Figure 5 summarizes the 

conceptual framework when a UAS is employed for safety inspection. 

 

Figure 4 – Conceptual Framework: Safety Officer 



 

30 

 

Figure 5 – Conceptual Framework: UAS 

 

5.2 Agent-based Simulation Model 

  In agent-based models, agents live in a main environment where they interact 

with each other and the environment they live in (Bonabeau, 2002). The environment in 

our study is the construction project where construction activities are taking place in the 

concrete phase. The main agents residing and interacting in the environment are: 1- the 

workers, 2- the safety inspector, and 3- the drone. The safety inspector and the drone 

however will not coexist in the same model since the aim of the study is to compare 

between the two. Instead, each agent will be used in a separate model and the results of 

the two models will be compared. 

As mentioned earlier, Anylogic will be used as a simulation platform. In 

Anylogic, the main environment that hosts the main agents, which is the construction 

project in our case, is called “Main”. This level contains populations of agents, and each 

population contains a certain number of single agents. The agent populations in our 

model are named “workers”, “inspectors”, and “drones”. 
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5.2.1 Main Environment: Construction Project 

  The main environment is defined by certain boundaries. It contains the agent 

groups, variables, parameters, events, and functions that may be related to either the 

main environment itself or to the agents contained in it. Moreover, the databases and 

charts needed to store and get the intended results are also found in the main 

environment. Walsh & Sawhney (2004) argued that going into excessive details of the 

actual geometry of the construction site and its changes with time might in fact cause 

ambiguities in the basic behavior of the model instead of reinforcing it. Therefore, a 

simple square layout is chosen to represent the construction project, having a length of 

50m and a width of 50m, thus an area of 2500m2. Since construction sites are dynamic, 

different activities can be taking place in different areas, and naturally, each area is 

characterized by different logistics.  Accordingly, the total area in the model is divided 

into 1m2 cells and each cell is characterized by certain attributes that reflect these 

variations. Figure 6 and Figure 7 show the 2D and 3D layout of the site from the model 

respectively. 

These attributes are represented in the model with variables. Variables in 

Anylogic are used to represent characteristics of objects that are not static but change 

over time during one simulation run. The variables that will characterize the site are 

shown in Figure 8 and the relevant attributes are described below. 

1- Task availability: either there is a task available in the cell or there is no 

available task since it has already been accomplished by a previous worker. At 

the beginning of the model, all cells contain available tasks. 
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Figure 6 – “Main” environment layout-2D 

 

Figure 7 – “Main” environment layout-3D 
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Figure 8 – Main Environment  

2- Site Risk: 

The level of risk on site is represented through 2 attributes: The probability of the 

presence of an unsafe condition as well as the average severity of the risk that the 

worker will be under when exposed to the unsafe condition. 

a- Unsafe Condition: The probability of the existence of an unsafe condition in 

each cell. For instance, in the baseline model, the probability is taken to be 

50%, meaning there is a 50% chance that the cell will contain an unsafe 

condition (modest or medium risk). 
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b- Actual Risk: the severity of the risk present in the cell or in other words, the 

probability of occurrence of an incident when the worker behaves unsafely. 

These attributes are represented in the model through the three variables described in 

Table 1: 

Table 1 – Summary of site variables 

Attribute Variable 

name 

Type Range of values Initial value 

Task 

availability 

task Array / integers  0: task 

unavailable 

1: task available 

1 for all cells 

Unsafe 

condition 

Ucondition Array / Boolean True: unsafe 

condition 

False: safe 

condition 

Medium risk: 

50% probability 

of being true 

Actual risk AR Array / double From 0 to 1 Medium risk: 

beta distribution 

(Choi & Lee, 

2017) 

 

As mentioned earlier, the values of these variables are not constant but change 

overtime. For example, when a worker finishes the task in a cell, the value will change 

from 1 to 0 to reflect that the task is no longer available in this cell. The mode of change 

of these variables will be described in later sections when discussing the agent groups. 

Three main events are present in the main environment: 

1- changeCond: Since construction sites are dynamic and regularly changing, the 

site risk should change with time. This event is responsible for generating this 

change It is a rate-triggered event and it is set to occur twice per day. 

Accordingly, when this event is triggered, the variables “Ucondition” and “AR” 

will be revaluated for all the cells. 

2- regenWork: This event is a “timeout”-triggered event and it is set to occur every 

30 minutes. When triggered, it calls the function “workDone”. The function 
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“workDone” is responsible for checking whether all the work has been 

accomplished in all cells. In other words, this function checks for the condition 

when the tasks in all cells become unavailable (task=0). Once this condition is 

satisfied, the event “regenWork” regenerates tasks in all cells (task=1 in all cells 

again). 

3- stop: This event occurs once after one year in model time units to stop the 

simulation. 

On the other hand, parameters in Anylogic are used to represent characteristics 

of objects that do not change over time during one simulation run. The parameter 

“memory” is an attribute of the worker but it is included in the “Main” environment 

since it has the same value for all workers. This attribute represents the time duration in 

which the worker is capable of remembering the perceived social norms. In other words, 

it is a worker’s memory of their coworkers past safety-related behavior and of the 

management safety rules and statements. This value is assumed to be equal to 28 days in 

the model (Liang et al., 2018). 

 

5.2.2 Agent Group: Workers 

As mentioned earlier, workers are a main agent group in the model. These 

workers live in the main environment. The population of workers contains 50 agents. At 

the beginning of the simulation, workers are randomly distributed in the cells as shown 

in Figure 9. Since all cells initially contain available tasks, these workers will start 

working directly in the cell they are located in. 
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As explained in the conceptual model, the safety behavior of workers will follow 

the empirical findings of previous studies such as Choi et al. (2016) and Shin et al. 

(2014). These studies explain the socio-cognitive process of safety behavior. Based on 

 

Figure 9 – Workers Distribution  

the probabilities and distributions assigned for the site risk, the worker will be exposed 

to either a safe or an unsafe condition. When exposed to an unsafe condition, the worker 

will perceive a certain level of risk based on his risk perceiving coefficient. However, 

even if two workers perceive a risk similarly, their reaction to the perceived risk is 

different. This reaction is a consequence of the acceptable risk by each worker (Shin et 

al., 2014). Therefore, the choice of safe or unsafe behavior will be based on the below 

Equations 1 & 2 in the model: 

if           RA < PR, the worker will behave safely, (1) 

but if     RA > PR, the worker will behave unsafely, (2) 

where RA = risk acceptance of the worker and PR = perceived risk by the worker. 
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The perceived risk is determined based on the actual risk in the cell and the risk 

perceiving coefficient of the worker, such that:  

PR = RPcoeff * AR,                              (3) 

where RPcoeff = risk perceiving coefficient of the worker and AR = actual risk in the 

cell. 

The risk perceiving coefficient is influenced by the worker’s previous 

experience, knowledge about risk and safety, as well as his risk attitude (Mearns & Flin, 

1995). The risk attitude shows the affinity of the worker towards taking risk. The value 

of risk attitude ranges from 0 to 1, 0 being the most risk-averse and 1 being the most 

risk-seeking. In other words, as the value of attitude increases from 0 to 1, the worker 

will have a higher tendency for taking risk. Therefore, when the risk attitude of the 

worker is close to 0 (risk-averse), then the risk perceiving coefficient will be greater 

than 1 since he will perceive a high value of risk and thus overestimate the actual risk 

(Choi et al., 2017). Moreover, the risk perceiving coefficient will change based on the 

change of the attitude according to Equation 4 such that the risk perceiving coefficient 

will increase when the attitude decreases and vice versa: 

RPcoeff new= RPcoeffold – ( Attnew – Attold), (4) 

where Att = risk attitude of the worker. 

As for the risk acceptance, it is determined by both internal factors of the worker 

such as attitude, as well as the interaction with external factors such as other coworkers, 

representing the workgroup norm, and the safety inspector or the drone, representing the 

management norm (Choi et al., 2016). Hence, the risk acceptance is calculated based on 

Equation 5: 

RA = (1-SI)*Att + SI* ( PJI*MN + (1-PJI)*WN ), (5) 
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where SI = weight on social influence, PJI = project identification, MN = management 

norm as perceived by the worker, and WN = workgroup norm as perceived by the 

worker. 

The weight on social influence represents the extent to which the worker is 

affected by social factors (interaction with coworkers and management). This factor 

intensifies the effect of management and workgroup norms and attenuates the influence 

of the personal factor which is the attitude. Moreover, project identification represents 

the extent to which workers identify themselves with the project (Choi et al., 2016). 

Workers with stronger identification with the project they are working in will probably 

be less influenced by the workgroup norm and more willing to comply to management 

norms. Thus, this factor strengthens the effect of management norms while it weakens 

the effect of workgroup norms (Choi et al., 2016). Both of these findings are reflected in 

Equation 5. 

The workgroup norm is the worker’s perception of the acceptable risk of his 

coworkers taking into consideration the amount of info that he can retain based on his 

memory. In the model, the worker can only observe the coworkers that are in the 8 

neighboring cells to his own. While working, the worker observes his coworkers in the 

neighboring cells. If the coworker is performing a safe behavior, then this worker 

perceives that the risk acceptance of his coworker must be less than the actual risk of the 

cell that the coworker is working in. On the other hand, if the coworker is performing an 

unsafe behavior, then this worker perceives that the risk acceptance of his coworker 

must be greater than the actual risk of the cell. Consequently, the worker updates his 

perceived workgroup norm by taking into consideration the average of the coworkers’ 

risk acceptance as perceived by him according to Equation 6: 
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WNi = (1-1/memory) * WNi prev. + 1/memory * (1/k * ∑ 𝑃𝑅𝐴𝑛𝑘
0 ), (6) 

such that PRAn =    random (ARn
cell , 1), if coworker n is performing unsafe behavior 

or random (0, ARn
cell), if coworker n is performing safe behavior   

where memory = memory capacity, k = total number of coworkers in the neighboring 

cells of the worker i, and PRAn is the risk acceptance of coworker n as perceived by the 

worker i, and ARn
cell is the actual risk of the cell that coworker n is working in. 

The management norm is the worker’s perception of the acceptable risk by 

management in the project. If the worker is performing an unsafe behavior and he gets 

warned about it by the inspector, then this worker perceives that the risk acceptance of 

the management must be less than the perceived risk of the actual risk of the cell by the 

worker. On the other hand, if the worker is performing an unsafe behavior and he 

doesn’t get warned about it by the inspector, then this worker perceives that the risk 

acceptance of the management must be greater than the perceived risk of the actual risk 

of the cell by the worker. The worker updates his perceived management norm 

according to the above and as reflected in Equation 7. If the worker is performing a safe 

behavior, the management norm will remain as it is. 

Ni = (1-1/memory) * MNi prev. + 1/memory * PMA (7) 

such that PMA =      MNi 
prev., if worker i is performing safe behavior 

or random (0, PRi), if worker i is performing unsafe behavior and 

he gets warned 

or random (PRi, 1), if worker i is performing unsafe behavior and 

he doesn’t get warned 

where PMA is the management risk acceptance as perceived by the worker, and PRi is 

the perceived risk of the actual risk by worker i. 
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For the cases when the worker is not exposed to an unsafe condition but to a safe 

condition instead, there will always remain a small probability that he will act unsafe if 

he makes a mistake during taking action, such that the mistake in this context is not 

related to the cognitive process but to a simple human error. If such a mistake does not 

occur, the worker will act safely. 

Any time a worker enters a new cell or the conditions of the cell that he is 

working in change, all the above formulas and conditions will be re-evaluated. The 

attitude of the worker in Equation 5 will change if this worker undergoes a near miss or 

an accident. In such a case, the worker will become more risk-averse and thus the value 

of his attitude will decrease. Conversely, the attitude of the worker will increase to 

become more risk-seeking in the cases when the worker behaves unsafely but is neither 

warned by the inspector nor does he experience a near miss or an accident. This is 

because in this case the worker will underestimate the likelihood of an accident (Zhang 

& Fang, 2013). 

 

5.2.2.1 Worker’s State Chart and Transitions 

The above explained socio-cognitive process will be reflected in AnyLogic 

through the behavioral states and in-between transitions in the state chart. Figure 10 

shows the state chart of the workers in the simulation model. 

Initially, the workers are in state “localizing” where they are randomly 

distributed on the cells. Note that each cell can only contain one agent. After 

distribution, the workers enter into the “working” state where they start accomplishing 

the task in the cell they are located in. The transition between the two states named 



 

41 

“tran1” is a “timeout” transition with a negligible small duration since the workers will 

start working directly after localizing.  

The state “working” is a composite state that contains other simple states. This is 

because while working, the worker can either behave safely or unsafely. Accordingly, 

when entering the state “working”, if a certain condition is satisfied, the worker will 

 

Figure 10 – Behavioral state chart of workers  

move to the state “actingSafe”. This condition is either when the cell has an unsafe 

condition and PR < RA, or if the cell has a safe condition and the worker makes a 
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mistake. If the worker enters into the “actingUnsafe” state, there will be two possible 

outcomes. “Tran2” is a “condition” transition that defines the probability of the worker 

getting into a near miss or an accident based on the site risk. When this condition or 

probability is satisfied, the worker will enter to the state “inNearMiss”. On the other 

hand, if the worker receives a message from the inspector through the “message” 

transition “tran3”, the worker will move to the state “Warned”.  

Transition “tran4” is a “timeout” transition that defines the duration of the task 

being accomplished by the worker. The duration of the task is assumed to follow a 

uniform distribution ranging from 4 to 16 hours. Note that the variables are assumed to 

follow a uniform distribution since this distribution is best suitable when there is no 

information clearly known regarding the actual distribution (Bruch and Atwell 2015). 

When this duration is finished, the worker moves to the state “searching”. When the 

worker enters this state, he will move to another random cell to search for an available 

task. This process is repeated until the worker finds a cell having the variable “task = 1” 

meaning that an available task that hasn’t already been accomplished by a previous 

worker is present. This condition is the one conveyed in the “condition” transition 

“tran6”. In such a case, the worker will enter back to the “working” state to start 

working on the new task. 

Transition “tran7” is a “message” type transition. This transition is triggered by 

the event “changeCond” in the “Main”. Once triggered, the worker re-enters the 

“working” state and thus all variables and conditions will be re-evaluated based on the 

new cell condition and risk. 
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5.2.2.2 Worker’s Variables & Parameters 

All the factors in the socio-cognitive process explained in the previous section 

are represented in the “workers” agent group through either variables or parameters. 

Figure 11 shows the state chart of the workers with the corresponding variables, 

parameters, and functions. In addition to the factors explained earlier, the variables 

“row” and “column” represent the location of the cell in the grid that the worker is 

residing in. The “ActualRisk” is the actual site risk of the cell as drawn from the initial  

 

Figure 11 – Workers’ variables, parameters, and functions  

distribution. The variables “Safe”, “Unsafe”, “incident”, and “Wcount” are all variables 

that will be used to collect statistics of the behavior of the agents in the simulation runs. 
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Table 2 shows a summary of the variables and parameters related to the 

“workers” agent along with their description and initialization. The distribution for 

“RPcoeff” is chosen such that the mean is less than 1 since workers usually have the 

tendency to undervalue the actual risk and they believe that they can control the 

situation (Zhang & Fang, 2013; Choi et al., 2017). As for “Att”, “SI”, and “PJI’, the 

distribution is assumed to be between 0.1 and 0.9 in order to rule out extreme cases. 

Moreover, management norms usually tend to be stricter towards safety than workgroup 

norms and this is why MN is assigned values between 0.2 and 0.4 (strict) and WN is 

assigned values between 0.6 and 0.8 (lenient) (Andersen et al., 2015; Choi et al., 2016). 

Table 2 – Workers’ variables & parameters initialization 

Properties Name Type Initial value 

Variables ActualRisk double 0 to 1 (medium risk-beta distribution) 

RPcoeff double  0.4 to 1.2 uniform distribution 

PR double RPcoeff * ActualRisk 

Att double 0.1 to 0.9 uniform distribution  

MN double 0.2 to 0.4 uniform distribution 

WN double 0.6 to 0.8 uniform distribution 

RA double (1-SI)*Att + SI* ( PJI*MN + (1-PJI)*WN ) 

row integer 0 to 49 

column integer 0 to 49 

Safe integer 0 

Unsafe integer 0 

incident integer 0 

Wcount integer 0 

Parameters SI double 0.1 to 0.9 uniform distribution 

PJI double 0.1 to 0.9 uniform distribution 

 

Note that once the agent worker enters the state “working”, it either means that 

the agent has entered a new cell with new properties or that the properties of the same 

cell have changed. Accordingly, variables “row”, “column”, “ActualRisk”, and “PR” 
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are all re-evaluated upon this entrance. Moreover, when the worker agent exits the state 

“working”, the variables “Att”, “RPcoeff”, “WN’, “MN”, and “RA” are re-evaluated 

based on the process that occurred during working in the particular cell. 

The function “MnRA” is used to calculate the management norm as perceived by the 

worker, and the function “CoRA” is used to calculate the workgroup norm as perceived 

by the worker of the coworkers in the neighboring cells to his own. In other words, 

“MnRA” and “CoRA” are used to calculate the second terms of Equation 6 and 

Equation 7 respectively. The piece of code used for the two functions is inserted below: 

MnRA: 

double b=0; 

if (this.inState(actingSafe))//if the worker is acting safe 

 b = this.MN; 

if ((this.inState(actingUnsafe))||(this.inState(inNearMiss)))//if the 

worker in acting unsafe and hasn’t been warned 

 b = uniform(this.PR, 1); 

if (this.inState(Warned))//if the worker is acting unsafe and has been 

warned 

    b = uniform(0, this.PR); 

return b; 

CoRA: 

double sum=0; 

int a=0; 

for( CellDirection dir : CellDirection.values() ) { 

 Worker w = (Worker)( getAgentNextToMe( dir ) ); 

 if (w!=null){ 

   a++; 

     if (w.inState(w.actingSafe))//if the worker next to me in a 

certain direction is acting safe 

   sum = sum + uniform(0, main.AR[w.row][w.column]); 

     if 

((w.inState(w.actingUnsafe))||(w.inState(w.inNearMiss))||(w.inState(w.

Warned)))//if the worker next to me in a certain direction is acting 

unsafe 

   sum = sum + uniform(main.AR[w.row][w.column], 1);} 

 if (w==null){ //if there is no worker next to me in the currently 

chosen direction 

 a=a; //keep a as it is 

 sum=sum;} //keep sum as it is  

   }   

if (a==0) //this means that there is no one around him at all 

return this.WN; 

else    

return (sum/a); 
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5.2.3 Agent Group: Inspector 

The inspector agent lives in the “Main” along with the workers. It is customary 

that for every 50 workers, one safety inspector should be present on site (DEVB, 1999; 

Cameron & Hare, 2013). Hence, one inspector agent is added in the model. The 

inspector roams the site moving from one cell to another to check for both unsafe 

behaviors by workers or unsafe conditions on the site. In order to find the average time 

needed for a typical safety inspection of a construction site in the concrete phase, a 

semi-structured interview was conducted with several safety inspectors in Lebanon. 

These inspectors provided the average time it takes them to inspect one level on the site 

along with the area of the level. Accordingly, the time it takes to inspect an area of one 

meter squared was calculated. This information was translated into the model through a 

“timeout” transition that defines the amount of time that the inspector stops in each cell.  

Figure 12 shows the state chart of the inspector. 

  

Figure 12 – Behavioral state chart of the inspector  

The inspector enters into the state “moving” and starts moving from the upper 

most left cell downwards than upwards alternatively until reaching the upper most-right 

cell in order to inspect all the area. The inspector moves a distance of 1m each time to 
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reach the next cell and then enters the state “inspecting” where he stops in the cell a 

certain amount of time to inspect the 1m2 that he is standing in and then enters back to 

the state “moving” to move to the next cell and so on. “Tran1” is a “timeout” transition 

that has a negligible duration (very small time) since the time needed by the inspector to 

inspect the 1m2 cell (obtained from the interviews) already includes the time needed to 

move through the site. “Tran2” is also a “timeout” transition which represents the 

amount of time the inspector will stay in the state “inspecting” in order to inspect a cell 

(having an area of 1m2). This time is obtained from the above mentioned interviews and 

it is set to a uniform distribution between 2.3 to 6 seconds. 

During the inspection, if the inspector witnesses an unsafe behavior by a worker, 

the inspector sends a “warning” message to the worker. This message will cause the 

“worker” agent to move to the state “Warned”. On the other hand, if the inspector finds 

an unsafe condition in the cell, the “Ucondition” of the cell will change from “true” to 

“false” within a time assumed to be uniform between 15 to 60 minutes. This time 

duration was assumed because during the interviews, the inspectors indicated that they 

made sure that all problems are handled immediately and as fast as possible once 

detected. 

The frequency of inspections per day is controlled through the parameter 

“frequency” of type “double”. The interviewed inspectors indicated that usually one 

inspection only is conducted per day for the whole site. Only one inspector indicated 

that he conducted 2 inspections per day, one in the morning and one in the afternoon. 

Moreover, in a study by Zhang at al. (2019), senior managers on construction sites also 

indicated that they usually conducted one safety inspection every day. This is why the 

frequency will be set to once per day in the base model. 
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5.2.4 Agent Group: Drone 

The second model is the same as the first one and it contains the same agents, 

variables, parameters, initializations, distributions…etc., however, in this model the 

“inspector” agent is replaced with a “drone” agent. The behavior and details of the 

drone mission as used in the model are all adopted from the study done by de Melo et 

al. (2017) in which they tested the applicability of the use of drones for safety inspection 

through actual trials on two construction sites. In the study, the drone is equipped with a 

camera and the mission is conducted over 3 different levels: 1- Close up view, 2- 

Medium altitude view, and 3- Overview. The aspects and safety requirements that can 

and need to be visualized from each level are clearly specified before the mission. For 

instance, the overview is a broad view of the site that involves mainly the checking of 

items related to “organization and housekeeping, temporary installation, and wastes”. 

Moreover, the medium altitude flight is focused around collective and individual 

protective equipment. As for the close-up view, it is mainly aimed to check items and 

processes such as “roof and waterproofing, concrete pouring and masonry, earthwork 

and foundation, equipment operation, and façade” (de Melo et al., 2017). 

The heights considered in the model for each view are 10, 30, and 60 meters 

respectively. This means that the drone will fly over the whole site at these three 

different levels for each inspection. 

Since only certain items are assigned to be detected at each level, a new variable 

is added to the “Main” in order to specify the items that can be detected at each height. 

The variable is named “level” and it is an array of type “String”. Each cell can have one 

of three levels: “L” for low level, “M” for medium level, and “H” for high level. The 

variable is distributed through the cells such that 20% belong to the category “M”, 28% 
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to “H”, and the remaining 52% to “L” (de Melo et al., 2017). This means that when the 

drone is, for instance, inspecting at the low level, it can only detect the items that are in 

the cells belonging to “L” as “level”. 

Figure 13 shows a simplified view of the state chart of the drone. The final state 

chart is a copy of this one repeated for each level of flight as shown in Figure 14. 

However, we are going to use Figure 13 in the elaboration below for easier reference. 

 

Figure 13 – Simplified behavioral state chart of the drone 

The agent “drone” starts by entering the state “localizing” where the drone moves from 

its initial location to the point of start of the inspection mission. Upon arrival of the 

drone to this point it enters into the state “moving”. The transition connecting these two 

mentioned states is a transition that is triggered by the “agent arrival” to the specified 

location in the state. When the drone enters the state “moving”, it starts moving over the 

site along a specified path for each level of inspection. Figure 15 shows the three 

different paths that the drone follows on each level. These three paths are not chosen 
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randomly; they are related to the footprint of the camera attached to the drone at each 

height. The details of the calculations are indicated below. 

 

Figure 14 – Complete behavioral state chart of the drone 

 

5.2.4.1 Drone Paths 

In order to have an efficient inspection mission, de Melo et al. (2017) advised 

that the flight mission be well planned by defining the trajectory to be followed by the 

drone including the take-off location and the landing operation while taking into 

consideration all safety requirements. The path of the drone in the simulation model is 
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Figure 15 – Drone path 

devised such that all the site area is covered by the drone flight at each level. However, 

since in reality the drone will have to maneuver in order to avoid obstacles and since 

this issue is not taken into consideration in the used paths, the assigned speed for the 

drone in the model is decreased by 20% in order to account for this additional time. 

Accordingly, the speed of the drone while flying horizontally is set to 28 mph or 12.5 
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m/s (35 mph minus 20%) and 10.5 mph or 4.7 m/s (14 mph minus 20%) while 

ascending. This speed is chosen based on the specifications of the drone used in the 

study by de Melo et al. (2017) which is the DJI Phantom 3 Advanced. 

The calculation of the footprint of the camera depends of the characteristics of 

the used camera as well as the height at which the camera is operating from the ground. 

In order to be consistent, the type of the camera assumed to be used in the model is 

chosen to be the same as the one used in the study by de Melo et al. (2017). The camera 

used is the “Sony EXMOR camera ½0.3”, 12.76 pixels of resolution, image size of 

4000 _ 3000, creating pictures in JPEG and DNG format and videos in MP4”. 

The drone is assumed to follow a flat flying motion and the dimensions of the 

footprint are denoted as shown in Figure 16. The length and width of the footprint are 

calculated as shown in Equations 8, 9, and 10 as adopted from the study by Chen et al. 

(2009). 

 

Figure 16 – The camera footprint in flat flying motion (Chen et al., 2009) 
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𝑙 = ℎ[cot (𝑎𝑓 − θ −
fov1

2
) − cot (af − θ +

fov1

2
) 

(8) 

𝑤1 =
2ℎ 𝑡𝑎𝑛 (

𝑓𝑜𝑣2
2 )

sin (𝑎𝑓 − θ −
fov1

2
)
 

(9) 

𝑤1 =
2ℎ 𝑡𝑎𝑛 (

𝑓𝑜𝑣2
2 )

sin (𝑎𝑓 − θ −
fov1

2
)
 

(10) 

where 

h - Flight altitude. 

fov1 - Vertical angle of FOV (Field of View). 

fov2 - Horizontal angle of FOV. 

w1 - Front width of camera footprint. 

w2 - Back width of camera footprint. 

l - Length of camera footprint. 

θ - Pitch angle, θ ϵ (0,
𝜋

2
) 

af - Front-mounted angle which is the included angle between longitudinal axis of 

UAV and bisector of fov1. 

fov1 and fov2 are related to the performance of the camera, and they are calculated as 

per Equation 11 and Equation12 respectively. 

𝑓𝑜𝑣1 = 2 arctan(
𝑣

2𝑓
) 

(11) 

𝑓𝑜𝑣2 = 2 arctan(
𝑡

2𝑓
) 

(12) 

where 

v – length of the sensor of the camera 

t – height of the sensor of the camera 
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f – focal length of the camera 

For the chosen camera, v = 6.2 mm, h = 4.65 mm, and f ranges from 4.3 to 513 mm and 

assumed to be 10 mm in the calculation. 

Accordingly,  

𝑓𝑜𝑣1 = 2 arctan (
6.2

2 ∗ 10
) = 34.44 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 

𝑓𝑜𝑣2 = 2 arctan (
4.65

2 ∗ 10
) = 26.17 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 

Which means that for the close up view where h = 10m: 

It is assumed that the camera lens is directed downwards, so af = 90 degrees. 

𝑙 = 10 [cot (90 − 0 −
34.44

2
) − cot (90 − 0 +

34.44

2
) = 4.65m 

𝑤1 =
2 ∗ 10 𝑡𝑎𝑛 (

26.17
2

)

sin (90 − 0 −
34.44

2
)

= 6.36𝑚 

𝑤2 =
2 ∗ 10 𝑡𝑎𝑛 (

26.17
2

)

sin (90 − 0 +
34.44

2
)

= 6.36𝑚 

Therefore, the area that will be detected by the drone at this level is 

approximately a 6 by 5 square as shown in Figure 17. The drone moves a distance of 5m 

each time to reach the next inspection area and then enters the state “inspecting” where 

it stops at the center of the area for 5 seconds to capture the needed photos and videos in 

all directions, then enters back to the state “moving” to move to the next area and so on. 
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Figure 17 – Area detected by the drone at the close-up view 

Similarly, for the medium view where h = 30m: 

𝑙 = 30 [cot (90 − 0 −
34.44

2
) − cot (90 − 0 +

34.44

2
) = 13.95m 

𝑤1 =
2 ∗ 30 𝑡𝑎𝑛 (

26.17
2

)

sin (90 − 0 −
34.44

2
)

= 19.09𝑚 

𝑤2 =
2 ∗ 30 𝑡𝑎𝑛 (

26.17
2

)

sin (90 − 0 +
34.44

2
)

= 19.09𝑚 
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Therefore, the area that will be detected by the drone at this level is 

approximately a 20 by 14 square as shown in Figure 18. The drone moves a distance of 

14m each time to reach the next inspection area and then enters the state “inspecting” 

where it stops at the center of the area for 5 seconds to capture the needed photos and 

videos in all directions, then enters back to the state “moving” to move to the next area 

and so on. 

 

Figure 18 – Area detected by the drone at the medium altitude view 
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For the overview where h = 60m: 

𝑙 = 60 [cot (90 − 0 −
34.44

2
) − cot (90 − 0 +

34.44

2
) = 27.9m 

𝑤1 =
2 ∗ 60 𝑡𝑎𝑛 (

26.17
2

)

sin (90 − 0 −
34.44

2
)

= 19.09𝑚 

𝑤2 =
2 ∗ 60 𝑡𝑎𝑛 (

26.17
2

)

sin (90 − 0 +
34.44

2
)

= 38.19𝑚 

Therefore, the area that will be detected by the drone at this level is 

approximately a 38 by 28 square as shown in Figure 19. The drone moves a distance of 

28m each time to reach the next inspection area and then enters the state “inspecting” 

where it stops at the center of the area for 5 seconds to capture the needed photos and 

videos in all directions, then enters back to the state “moving” to move to the next area 

and so on. 

At the inspection area and in the state “inspecting”, the photos that are taken by 

the camera are scanned for detection through a certain algorithm. The mechanism for 

detection along with its performance are adopted from the study by Mneymneh et al. 

(2018). Mneymneh et al. (2018) devised a computer vision technique capable of 

detecting unsafe behavior of workers such as not wearing hardhats from captured videos 

on the construction site. The time needed for the detection of the unsafe acts/conditions 

by the algorithm is approximated for each area based on the findings of this study. For 

the close up view, it is approximated to be 5 seconds, for the medium view 50 seconds, 

and for the overview 180 seconds. 

Figure 20 shows the percentage of safety inspection requirements visualized at 

each level for project A (horizontal-type) and project B (vertical-type). According to the 



 

58 

 

Figure 19 – Area detected by the drone at the overview 

  

Figure 20 – Percentage of safety inspection requirements visualized by snapshots  

(de Melo et al., 2017) 
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tests done by de Melo at al. (2017), for horizontal-type projects, 79% of the items at the 

close-up view will be visualized. As for vertical-type projects, 48% of the items at the 

close-up view will be visualized. Moreover, the algorithm used by Mneymneh et al. 

(2018) is capable of detecting 86% of the instances in outdoor near range visual assets. 

These findings are incorporated in the inspection process in the state “inspecting”. The 

code for this is indicated below: 

{int c = ((int)( getX() / main.spaceCellWidth() ))-3; 

int r = ((int)( getY() / main.spaceCellHeight() ))+2; 

if (direction != 0){ 

for (int i=r; i>r-5; i--){ 

    for (int j=c; j<c+6; j++){ 

      if (main.level[i][j]=="L"){ 

         if ((main.getAgentAtCell( i, j )!=null) && 

(((Worker)main.getAgentAtCell( i, j )).inState(Worker.actingUnsafe))) 

            { if( randomTrue( 0.79*0.86 ) )  

                main.getAgentAtCell( i, j ).receive( "warning" );} 

                 

         if (main.Ucondition[i][j]==true){ 

              if( randomTrue( 0.79*0.86)){ 

                 Fixer fx = randomWhere (inspSpace.fixers, f -> 

f.inState(Fixer.waiting)); 

                 fx.destinationX = j* main.spaceCellHeight(); 

                 fx.destinationY = i* main.spaceCellWidth(); 

                 send ("fix", fx); 

                 }}}}}}} 

For both the medium view and the overview, 96% of the items will be visualized 

in horizontal-type projects (de Melo at al., 2017). For vertical-type projects, 70% of the 

items will be visualized at medium view and 88% at overview. Moreover, 84% of the 

instances in all the above cases will be detected in outdoor far range visual assets 

(Mneymneh et al., 2018). Note that for the overview inspection, only unsafe conditions 

will be visualized since the behavior of workers is very difficult to detect at such an 

elevated altitude. 

Similar to the case of the inspector, during the inspection by the drone, when an 

unsafe behavior by a worker is detected, a “warning” message will be sent to the 

worker. Moreover, if an unsafe condition is detected, the “Ucondition” of the cell will 
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change from “true” to “false” within a time assumed to be uniform between 15 to 60 

minutes. 

Since the battery of the drone has a certain lifespan, the drone will need to return 

for charging or replacement of the battery when the battery is close to becoming empty. 

Manufacturers usually advise that the drone returns when the battery charging level 

reaches 30% (Costa et al., 2016). Accordingly, when the lifespan of the battery is down 

to 30% (whether during “moving” or “inspecting”), the drone agent will enter to the 

state “returning” where it will return to its initial location through a straight path which 

is the shortest path between its current location and the location it started the mission 

from on the ground. Both “tran4” and “tran5” are message transitions responsible for 

transitioning the drone to the state “returning” once a message is received that the 

battery has reached 30%.  

Next, when the drone reaches the initial location, it enters to the state 

“recharging”. The UAV assumed to be used in the model is the DJI Phantom 3 

Advanced (de Melo at al., 2017). The battery of this drone needs around 1.5 hours for 

recharging. However, more than one battery can easily be obtained on site in order to 

avoid waiting for recharging. Therefore, “tran7” which is a “timeout” transition is set to 

5 minutes which is assumed to be the time needed to replace the battery of the drone. 

When these 5 minutes pass, this transition is triggered and the drone enters into the state 

“movingBack” where it returns to the exact location that the inspection was interrupted 

at and then continues the mission by entering again to the state “moving”. Finally, when 

the drone reaches the end of the highest path assigned in the mission (when “tran8” 

which is an “on arrival” transition is triggered), it will enter into the state “finishing” 

where it will return back to its initial location through a straight path. 
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This inspection by the drone can easily be repeated as much as needed per day 

since no physical effort will be needed and since the safety of any personnel is not 

compromised. The “timeout” transition “tran9” represents the time between inspections. 

This time is set to 10 minutes in order to take into consideration the time needed to 

replace the battery. According to the above, if the flight mission needs around 45 

minutes to be completed including the time needed by the algorithm for detection, then 

in an 8 hours working day, around 8 inspections can be conducted per day. 
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CHAPTER 6 

VERIFICATION AND VALIDATION 

An important part of the process of developing an agent-based model is the 

verification and validation of the model in order to ensure the credibility of the model 

for its intended use. Verification is making sure that the computerized model has been 

programmed and implemented correctly to do what it is meant to do as per the 

conceptual model and that it does not contain any programming errors that may distort 

the results. This step is usually done along with the process of model building and after 

finalizing the model but before validating it and conducting the needed experiments 

(Grabner, 2018). Model validation, on the other hand, is defined as “the process of 

determining whether a simulation model is an accurate representation of the system, for 

the particular objectives of the study” (Law, 2008). 

 

6.1 Model Verification 

The methods used for verification of the model are adopted from Sargent (2013). 

First, during the process of building the model, animation was used to check the model’s 

operational validity in order to make sure that agents appeared to behave graphically as 

intended in the code (Sargent, 2013). In case of inconsistency, the code was reviewed and 

corrected where needed. Moreover, input-output relationships were checked by 

computing all mathematical equations manually for specific input values and the results 

compared with those of the simulation (Ormerod & Rosewell, 2006). In order to verify 

the final developed model, a structured walkthrough was conducted with an expert to 

make sure there are no errors in the model. This was done by reviewing and explaining 

the code line by line to the expert to check its correctness (Sargent, 2013). 
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6.2 Validation of output 

Several techniques exist to validate agent-based models. The appropriate 

validation method shall be chosen based on the accessible data and the goal or purpose 

of the model. For our case, since little data is available from the actual system (non-

observable system), a subjective approach based on exploring the model behavior as 

described by Sargent (2013) is chosen. This method is centered around exploring the 

output behavior of the model. This can be done by comparing the results of the baseline 

model to empirical findings about safety behavior of construction workers from 

previous studies. This type of validity is distinguished by Gon et al. (2000) as the 

replicative validity (i.e., “the model matches data already acquired from the real 

world”). The output of the model can be explored qualitatively such that the general 

trend in the output is checked for compliance with previous findings, or quantitatively 

such that both the trend and the magnitude of the output are investigated (Sargent, 

2013). 

First, the qualitative conformity of the replicative validity was tested. The 

perceived strictness of the management norm represented by the risk acceptance by 

management, the perceived strictness of workgroup norm represented by the risk 

acceptance of workers as a group, and the individual risk acceptance are compared. 

Accordingly, Figure 21 shows the change in the mean of the risk acceptance of each of 

the three aforementioned entities with respect to time in the baseline model. The results 

show that management norm is stricter than workgroup norm since the risk acceptance 

of the latter is greater and that the risk acceptance of the individual worker stands 

between that of management and workgroup. These results replicate the empirical 

findings by Choi et al. (2016). 
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Figure 21 – Change in the risk acceptance of management and workgroup and the 

individual risk acceptance in the baseline model 

Moreover, Figure 22 shows a positive and significant relationship between 

personal risk attitude and the risk acceptance (r2=0.666, p<0.001) in the baseline model, 

such that the risk acceptance increases with the increase of the risk attitude (when the 

worker has a more risk-seeking attitude). These results reasserted the findings of many 

previous empirical studies about the effect of personal attitude on safety behavior 

(Ajzen, 1991; Donald & Young, 1996; Teo et al., 2005; Cavazza & Serpe, 2009; Shin et 

al., 2014; Xu et al., 2018). 

Liang et al. (2018), in their study on the social contagion within the construction 

crew, found that workers are more inclined to violating safety regulations when they are 

socially supported to do so by their coworkers. In other words, workers who identify 

high levels of coworkers’ safety violations are more likely to breach safety regulations 

themselves. Moreover, the empirical results of the study by Choi et al. (2016) showed 

that the safety behavior of workers is affected by both management and workgroup 

norms. Figures 23 & 24 show the relationship between management norm or the 
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Figure 22 – Relationship between risk attitude and risk acceptance in the 

baseline model 

workgroup norm and the individual risk acceptance respectively, in the baseline model. 

As shown in both graphs, there is a positive relationship between the subjective norm and 

the risk acceptance, such that when the strictness of these norms increases (when the 

values of the norms are smaller) the acceptable risk by the worker decreases and thus the 

safety behavior improves. These results again reiterate the findings of the studies 

mentioned above. Furthermore, Choi et al. (2016) in the same study, found that a workers’ 

social identification with the project strengthens the relationship between management 

norms and safety behavior whereas it weakens the relationship between workgroup norm 

and safety behavior. This is directly reflected in Figures 23 & 24. As shown in Figure 23, 

the regression slope of the interaction between management norm and the risk acceptance 

is steeper when there is higher identification exhibited by the workers towards the project. 

On the other hand, Figure 24 shows the opposite since the slope becomes steeper when 

there is low identification with the project by the workers. 
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Figure 23 – Interaction between project identity and management norms in the 

baseline model 

 

Figure 24 – Interaction between project identity and workgroup norms in the 

baseline model 
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behavior ratio from the 50 runs is 0.31 (standard deviation = 0.0157). This result is in 

compliance with Sa et al. (2009) and Fang & Wu (2013), where both studies indicated 

that usually one third of the workers behaved unsafely on a construction site. The 

second indicator used in the incident rate. The incident rate was calculated based on the 

Heinrich triangle (Heinrich, 1959). Heinrich suggested that for every major accident 

there are 29 minor accidents and 300 near misses. This means that the ratio between 

major injuries, minor injuries and near misses was 1:29:300 or 30:300 between 

accidents and near misses. The mean of the incident rate from the 50 runs is 3.9 

(standard deviation = 0.96) which is similar to the incident rate of nonfatal occupational 

injuries in the construction industry in 2015 which is equal to 3.5. (USBLS 2016).
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CHAPTER 7 

ANALYSIS AND DISCUSSION OF RESULTS 

7.1 Safety Performance Indicators 

In order to study the effect of the use of a safety inspector versus the use of a 

UAS on the safety performance of a construction site, three types of indicators were 

used. As a first step, the baseline model was used to calculate the indicators. All 

variables and parameters were initialized as mentioned earlier in chapter 5. 

 

7.1.1 Incident Rate 

The first indicator used is a lagging indicator which is the incident rate. Equation 

13 is used to calculate the incident rate and it is adopted from OSHA: 

Total Recordable Incident Rate = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠 ∗ 200,000

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑙𝑎𝑏𝑜𝑟 ℎ𝑜𝑢𝑟𝑠 𝑤𝑜𝑟𝑘𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟
 (13) 

 (Jazayeri & Dadi, 2017). 

Three cases were considered: (1) employing a safety inspector for safety 

monitoring (2) using a UAS for safety monitoring in a horizontal-type project (3) using 

a UAS for safety monitoring in a vertical-type project. Moreover, in order to get reliable 

results, the model was simulated 100 times for each case. 

Figure 25 shows the box plots for the incident rate for the 100 simulation runs in 

each of the cases under study. Moreover, the table shows the mean for the incident rate 

for the 100 runs. The mean for the incident rate for the case of the safety inspector is 

3.9. As for the case of the UAS in horizontal projects, the mean is 0.63 which is 

significantly less than the previous case. Finally, the mean for the incident rate for the 
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case of a UAS in vertical projects is 0.98 slightly greater than for horizontal projects but 

still mush less than the case of the safety inspector. 

 

Method Inspector UAS-horizontal UAS-vertical 

Mean 3.9 0.63 0.98 

Figure 25 – Box plots and the mean for the incident rate of 100 simulation runs 

 

7.1.2 Safety Behavior 

The second indicator is the safety behavior of workers which is a leading 

indicator. The safety behavior of workers is inspected by tracking the change in the ratio 

of unsafe behavior with the progress of the project. The unsafe behavior ratio is 

calculated as shown in Equation 14: 

Unsafe Behavior = (
𝑇𝑜𝑡𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑢𝑛𝑠𝑎𝑓𝑒 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟

𝑇𝑜𝑡𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑠𝑎𝑓𝑒 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟+𝑇𝑜𝑡𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑢𝑛𝑠𝑎𝑓𝑒 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟
) ∗ 100 (14) 

 (Nasirzadeh et al., 2018). 
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Figure 26 shows the change in the unsafe behavior ratio with time. The data 

points are the average of 100 iterations. The horizontal axis represents the time in hours 

in the simulation, bearing in mind that each 8 hours constitute one day, and the vertical 

axis represents the ratio of unsafe behavior in percentage. The results show that the 

unsafe behavior of workers increases with time in the case of the safety inspector. The 

inspector needs around 3 hours to complete one inspection and this inspection is being 

conducted only once per day. Moreover, the site conditions change twice per day and 

accordingly the behavior of workers relative to these changes will also be modified. 

This means that the inspector will be able to detect only limited numbers of the unsafe 

behavior by workers. For instance, assuming that the inspection is being conducted in 

the morning, most of the unsafe behavior of the workers during these 3 hours will 

probably be detected. However, all modified conditions and unsafe behavior during the 

remaining 5 hours of the day will be missed. Accordingly, the obtained result is 

explained by the fact that the workers are rarely getting warned about their unsafe 

 

Figure 26 – The effect of intervention type on the safety behavior of workers 
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behavior and this is why they resume to act unsafely. This clearly shows that employing 

a safety inspector to monitor the site conditions is not enough on its own to improve the 

behavior of workers. It should be accompanied with other safety management practices, 

such as safety training, toolbox meetings, feedback, and open communication about 

safety. 

For the case of the use of the UAS, the unsafe behavior for both horizontal and 

vertical type projects decreases at a fast rate in the beginning up till around 200 hours or 

25 days, and then this rate decreases gradually until the curve levels out towards a 

minimum value at around 1200 hours or 150 days. This is due to the fact that at the 

beginning three factors are all contributing together to the change in the risk acceptance 

of the worker: the personal risk attitude, the communication within the workgroup 

between workers, and the communication with management through the UAS. However, 

towards the end of the simulation, the effect of workers on each other is minimized since 

most of the workers will have reached a unified or similar value of perceived workgroup 

norm, bearing in mind that the study is done on the same work crews throughout all the 

simulation. For instance, five random workers were chosen and their individual unsafe 

behavior ratio plotted over time. As shown in Figure 27, the curves of the workers’ 

individual safe behavior tend to converge until they reach similar values where they 

become steady. Moreover, since towards the end of the simulation, the unsafe behavior 

of the worker will have decreased, then they will not get a high chance of updating the 

risk acceptance through management intervention. Finally, it is impossible for the attitude 

of the workers to decrease infinitely with time and this is controlled in the model by 

setting upper and lower boundaries for the value of the attitude variable. This fact also 

effects the rate of decrease of the unsafe behavior. 
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Figure 27 – Change of the individual safety behavior of workers 

Although the two curves in Figure 26 for horizontal and vertical projects show the 

same trend, the decrease is greater for horizontal projects. In horizontal projects, the total 

decrease from beginning to end is 13.61% while in vertical projects the decrease is 

10.52%. 

 

7.1.3 Hazards Reported 

The third indicator used is also a leading indicator which is the number of hazards 

reported. This indicator shows the percentage of unsafe conditions that were detected 

throughout the project. It is calculated using Equation 15. 

Hazards Reported = (
𝑇𝑜𝑡𝑎𝑙 ℎ𝑎𝑧𝑎𝑟𝑑𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑎𝑧𝑎𝑟𝑑𝑠
) ∗ 100 (15) 

Figure 28 shows the box plots for the % of hazards detected in 100 simulation 

runs for each of the cases under study. Moreover, the table shows the mean for the % of 

hazards detected from the 100 runs. The mean for the case of the safety inspector is 

41.88%. The low percentage of hazards detected in the case of the safety inspector 

explains further the reason behind the increase in the percentage of unsafe behavior of 
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workers instead of decreasing since a similar percentage will be obtained for the ratio of 

unsafe behavior that were detected by the inspector. 

 

Method Inspector UAS-horizontal UAS-vertical 

Mean 41.88 79.07 71.64 

Figure 28 – Box plots and the mean for the % of hazards detected of 100 

simulation runs 

For the case of the UAS, the mean is 79.07% for horizontal-type projects and 

71.64% for vertical-type projects. The fact that the percentage of unsafe conditions 

detected by the UAS is very high despite the restrictions imposed (visualization & 

detection by algorithm) is highly related to the number of times that the cell conditions 

change per day. For instance, as mentioned earlier, the “changeCond” event is set to be 

triggered twice per day, meaning twice every 8 hours. As obtained from the simulation 

model, the inspection mission, including the time taken by the algorithm to apply the 
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detection, takes around 45 minutes. This means that while the conditions will change only 

2 times in the 8 hours, the UAS will have conducted around 8 missions in this time 

duration. So if an item was not visualized or detected in the first mission, for example, 

there is a good probability that it will be visualized or detected in the next mission or the 

next before the condition actually changes. This is to some extent a true reflection of 

reality depending on how dynamic the site is. This is because, if the UAS fails to clearly 

inspect a certain area, it can be sent again for inspection when and as much as needed 

before the conditions in this area change. However, in order to understand further the 

implications of this issue on the safety performance, the model was tested under different 

trigger values for the event “changeCond”. The details for this experiment are elaborated 

in the next section. 

The results of the three calculated indicators show that when considering the 

intervention of safety monitoring independently, the use of a UAS will yield a 

considerably better safety performance when compared to the use of a safety inspector. 

The two leading indicators, safety behavior and hazards detected, explain the results of 

the lagging indicator which is the incident rate. When using the UAS, the safety behavior 

of workers improves progressively which implies that the attitude of workers towards 

safety improves such that they become more risk-averse and thus will avoid taking risk 

in unsafe conditions. Moreover, the high percentage of hazards detected implies that these 

conditions are being treated and that workers will be less subject to unsafe conditions 

which will in turn yield to safer behavior. The correlation of these two factors directly 

implies that less incidents will occur in the project since the project will contain less 

unsafe conditions and since workers will behave more safely. For the case of the 

inspector, the increase in the unsafe behavior of workers is the main factor that explains 
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the high rate of incidents which is in turn affected by the low percentage of hazards being 

detected since in this case the workers will be subject to more unsafe conditions. 

Moreover, the results prove that the nature of the project (horizontal vs vertical) 

effects the performance of the UAS. The use of a UAS yields a better safety performance 

in horizontal type projects. This technology, for example, can prove to be very beneficial 

for projects such as bridges, highways, dams, etc. The performance of the UAS in vertical 

type projects is affected by factors such as: the limited altitude that can be reached by the 

UAV as indicated by the law which restricts the view of all the building and mainly the 

roof works, the protecting net that may cause a barrier against detailing, and the strong 

winds at heights that may affect the stability of the drone. 

 

7.2 Simulation Experiments and Results 

  In order to understand the effect of the characteristics of the project on the 

performance of the UAS, several experiments were formulated. Note that since the main 

aim of the study is understanding the behavior of the UAS, these experiments are only 

conducted on the case of the use of a UAS for safety monitoring. 

 

7.3.1 Effect of Dynamicity 

First, the effect of the dynamic nature of the project was inspected by modifying 

the number of change of conditions per day or in other words the number of times in 

which the event “changCond” is triggered (2, 4, or 6 changes per day). The three 

indicators were tested under these conditions for both horizontal and vertical type 

projects. Figure 29 shows that as the number of changes per day increases (an increment 

of 2 each time), the % of hazards detected decreases around 10%. 
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Figure 29 – Effect of the number of changes of site conditions per day on the 

incident rate and the % of hazards detected in horizontal & vertical type projects 

Moreover, Figures 30 & 31 show that the safety behavior of workers is also 
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horizontal type projects, 2 changes per day yield a total decrease of 13.61% while 6 

changes per day yield a total decrease of 7.26% only. For the case of vertical type 

projects, the effect is even more intensified because for the case of 6 changes per day, 

the unsafe behavior of workers actually increases with a total change of 1.97%. Figure 

29 also shows that the incident rate increases with the increase of the number of changes 

per day. However, it is interesting that as the number of change per day increases, the 

rate of change in the incident rate decreases. For the case of the horizontal project, for 

example, the mean of the incident rate increases from 0.63 to 1.02 between 2 and 4 

changes but only changes from 1.02 to 1.08 between 4 and 6 changes. This is explained 

by the fact that when the conditions of the site change more frequently, this means that 

the time that the worker is exposed to an unsafe condition decreases and accordingly the 

probability that an incident occurs also decreases. This contrast between the high 

probability of occurrence of the incident due to the increasing unsafe behavior of 

workers and the low probability of occurrence of the incident because of the short time 

of exposure of the worker to the unsafe condition also explains why the distribution of 

results for the case of 6 changes shows more variability than the distribution of results 

for the case of 4 changes.  
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Figure 30 – Effect of the number of changes of site conditions per day on the safety 

behavior of workers in horizontal type projects 

 

Figure 31 – Effect of the number of changes of site conditions per day on the safety 

behavior of workers in vertical type projects 
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7.3.2 Effect of Site Risk 

Second, the effect of the level of risk in the project was studied by modifying the 

site risk. The model was run under three scenarios: (1) low risk site conditions (2) 

moderate risk site conditions (baseline), and (3) high risk site conditions. As mentioned 

earlier, the site risk reflects the level of risk present on site. This attribute is used as a 

main characteristic of the project since in reality construction projects are not similar in 

terms of the probability of occurrence and the severity of the unsafe conditions that 

workers may be subject to. For instance, different construction trades and activities 

impose different levels of risk on workers (Choe & Leite, 2016). As such, even within 

the same project the risk can differ in different periods or phases of the project 

(Esmaeili & Hallowell, 2012). The low risk site is represented in the model with 25% 

probability and the high risk site with 75%. As for the severity of the risk, same as the 

moderate risk condition, the beta distribution ranging from 0 to 1 is assigned for the 

variable “ActualRisk”. However, the average severity is 0.25 (positively skewed 

distribution) for low risk site condition, 0.5 for moderate risk site condition, and 0.75 

(negatively skewed distribution) for high risk site condition (Choi & Lee, 2017). 

For this experiment and the next, only the safety behavior of the workers will be 

studied since the initial conditions that are being modified will affect the final values of 

the incident rate regardless of the safety monitoring method used. This is why it would 

be difficult to understand whether the change in the incident rate is due to the initial 

condition or the monitoring method. Conversely, the fact that we are able to monitor the 

change of the unsafe behavior from the beginning towards the end, this change can be 

justified. 
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As shown in Figure 32, the use of the UAS is mostly effective for the case of 

high risk site conditions where the unsafe behavior decreases a total of 21.58% to 

finally reach 13.38% unsafe behavior. For the case of moderate site risk there is 13.61% 

decrease and the final value reached is 24.26%, and finally for the case of low site risk, 

the decrease is minimal and equal to 5.73% to eventually reach 27.17%. It is important 

to note that the final values of unsafe behavior reached in both the modest and the high 

site risk are smaller than the final value reached in the low site risk. This is because in 

low risk sites, workers will not get a big chance of improving their attitude since the 

number of situations where they will be susceptible to risk is already very low. 

 

Figure 32 – Effect of the site risk on the safety behavior of workers when 

employing a UAS in horizontal type projects 

 

7.3.3 Effect of Safety Attitude 

The third experiment is related to the initial attitude of the workers. This attribute 
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management down to every single worker (Leino et al., 2010). So in our case a low 

attitude (range considered between 0.1 and 0.5) suggests a strong safety culture where 

workers prioritize safety and hold themselves responsible towards their own and their 

coworkers’ safety as well. As for the case of high attitude (range considered between 0.5 

and 0.9), this suggests a weak safety culture where workers do not value the importance 

of safety and have a high tendency to taking risk. Figure 33 shows that the use of a UAS 

as a safety monitoring method has a minimal effect on the safety performance of projects 

that have a strong safety culture. This is due to the fact that the attitude of workers towards 

safety is already good and it would be difficult to improve it even further. On the other 

hand, a significant decrease in the unsafe behavior is noticed in the case of projects with 

a weak safety culture since the attitude of workers towards safety can be greatly improved. 

It is also shown that the two cases end up with the same percentage of unsafe behavior at 

the end of the project.  

 

Figure 33 – Effect of the safety culture on the safety behavior of workers when 

employing a UAS in horizontal type projects 
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The last two experiments suggest that for the cases of low site risk and a strong 

safety culture, the use of the UAS alone does not present a very tempting investment for 

project managers. However, the comparison of the results with the case of the safety 

inspector puts things into a different perspective. In both Figures 34 & 35, the unsafe 

behavior of workers increases with time in the case of the safety inspector. Especially 

for the case of strong safety culture, the unsafe behavior of workers increases around 

27% since the unsafe behavior of workers is highly connected to their safety attitude. 

This is due to the fact that the attitude of workers doesn’t simply remain constant. Even 

if they start off with a good safety attitude, the lack of the appropriate follow-up 

procedures by management will lead back to an inclination in the overall safety 

performance. 

 

Figure 34 – Change in the safety behavior of workers in low risk sites when 

employing a safety inspector versus a UAS 
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Figure 35 – Change in the safety behavior of workers in projects with strong safety 

culture when employing a safety inspector versus a UAS 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

U
n

sa
fe

 B
e

h
av

io
r 

(%
)

Time (hours)

Safety Inspector

UAS



 

84 

CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

The construction industry is known for its highly hazardous nature and elevated 

injury rates. The two main reasons for accidents discussed in the literature are unsafe 

conditions and unsafe behavior and acts by construction workers. Therefore, a 

standardized observation system on site is necessary in order to monitor and improve 

the safety performance. The traditional practice of safety monitoring by a safety 

inspector who travels around the site is tedious, impractical and time consuming. In an 

attempt to overcome the limitations and difficulties of this practice, researchers recently 

started exploring the use of drones or UAVs as safety monitoring tools. The application 

of this technology for safety monitoring is still emerging. In fact, the use of an 

Unmanned Aerial System on an actual construction site for the purpose of safety 

inspection has been scarcely documented in the literature. Therefore, this study aimed at 

studying the long term influence of using this system on the safety performance of 

construction sites compared to the traditional practice of safety monitoring by a safety 

inspector. This was achieved by preparing an agent-based model that simulated the 

dynamics of a real construction site while taking into consideration the cognitive 

process of construction workers’ safety behavior in combination with the safety 

management intervention. The contribution of this study lies in providing practitioners 

and project managers with some guidance in choosing the appropriate safety system that 

can provide a continuous evaluation measure for the safety conditions and acts on site 

for the aim of improving these conditions and minimizing the number of incidents. 
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After attaining a deep understanding of construction workers’ safety behavior 

and the components and behavior of the unmanned aerial system through a meticulous 

literature review, a conceptual framework was prepared. The framework illustrated the 

cognitive process of workers’ safety behavior which is directly related to the risk 

perception and the risk acceptance by workers. The risk acceptance is determined by 

both internal factors of the worker such as attitude, as well as the interaction with 

external factors such as other coworkers, representing the workgroup norm, and the 

safety inspector or the drone, representing the management norm. The comparison 

between the perceived risk and the acceptable risk by the worker will lead to the 

decision of safe or unsafe behavior. Regarding the UAS, the basic behavior is adopted 

from the study by de Melo et al. (2017). A safety checklist for the mission is prepared 

before the start of the inspection. The drone follows a predefined path and the 

inspection is done on three different levels: Overview, medium altitude view, and close 

up view. For each level, there are specific safety requirements intended to be inspected. 

The detection of the safety requirements is done automatically through an installed 

detection algorithm in the system. Additional attributes of the UAS that were taken into 

consideration are the speed of the drone and the battery life. Moreover, the project is 

characterized by the level of risk and whether the project has a horizontal or vertical 

nature. 

After translating the conceptual model into the agent-based model, the 

computerized model is verified and its’ results validated qualitatively and quantitatively 

by comparing these results with empirical findings from previous studies. Finally, 

simulation runs and experiments are conducted. The results showed that the use of a 

UAS can effectively improve the safety performance of both horizontal and vertical 
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type projects. However, the performance of the UAS is restricted by factors such as 

altitude limits and wind speed in vertical type projects. Moreover, the conducted 

experiments showed that as the project becomes more dynamic, the performance of the 

UAS becomes less efficient in the improvement of workers’ safety behavior, especially 

in vertical type projects, while preserving an almost steady incident rate. Finally, the use 

of the UAS yields best results in high risk projects and projects with a weak safety 

culture. 

  This study imposes several practical implications and recommendations that aim 

to enhance the safety management of construction projects. Since studies related to the 

actual application of a UAS on construction sites and the effect on the improvement of 

safety performance are currently scares in the literature, this study aimed to fill this gap 

by studying this issue through agent-based modeling. The results provide practitioners 

with an idea of the advantages of the use of such a system on improving the workers’ 

safety behavior, increasing the amount of unsafe conditions detected, and ultimately 

decreasing the incident rate within their organization. Moreover, project managers have 

the chance to evaluate the safety management practices they already use and understand 

based on the type of project and the level of risk in each phase of the project whether 

employing the UAS can add value to their system. Note that it would be useful, in order 

to make additional use of these results, to perform a cost analysis related to the 

components of the UAS. Managers should keep in mind when taking this step that this 

technology is an investment that can be used on several sites using the same equipment 

which are already low in purchase and maintenance cost. However, the use of the UAV 

as an equipment on its own is not enough. The UAV is part of a full system that 

includes the employment of human resources such as trained and experienced pilots for 
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the UAV and staff with enough safety knowledge in the project for efficiently planning 

and observing the flight missions. Restrictions against the appropriate use of the 

technology include: country legislation, weather conditions such as wind and rain, 

physical obstacles such as electrical wires, poles and trees, and limited view of internal 

areas. However, if employed correctly, this system can bring about great benefits to the 

safety performance of the organization, not just because it highly facilitates the process 

of observation and monitoring but also because it helps in collecting a valuable database 

that can be used for risk analysis, performance evaluation, and root cause analysis 

which all in turn help the organization in continuous improvement in the area of safety 

management. 

  Finally, several limitations of this research study are worth mentioning so that 

future research work can be recommended. Regarding the developed agent-based 

model, the major limitation is the use of a uniform distribution when describing certain 

behavior attributes of the workers since no info in the literature is present regarding 

these distributions. In this study, identifying such probability distribution which 

requires a separate research study is out of the scope. Regarding the conceptual 

framework, the model only considers the inspection of the project externally. The use 

of a UAV in indoor spaces has totally different characteristics and considerations and 

the behavior of the UAV differs completely. This issue can be considered in future 

studies. Moreover, it is important to note that in reality, safety inspectors tend to take 

shortcuts in order to reach the locations where construction activities are taking place 

instead of actually traversing the whole site, and thus the actual time needed to inspect 

the site might be less than the time considered in the model. This study can be extended 

further by collecting real information from construction sites regarding all assumed 
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variables in order to further validate the model. Furthermore, it would be interesting to 

back up the study with cost analysis and comparison between the use of a safety 

inspector and a UAS for safety monitoring. 
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