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An Abstract of the Thesis of

Zoulfikar Ali Nasser Shmayssani for Master of Computer Science
Major: Computer Science

Title: Studying Children Food Exposure and Food Consumption using Deep Learning

Children’s eating behaviours is one of the main pillars of a healthy life. Re-
cent studies show that eating unhealthy food is highly associated with many
chronic diseases including diabetes, obesity, and cancer. Such dietary habits are
often shaped by complex factors influenced by the children’s home, school, and
neighborhood environments. However, studying the eating behaviours of chil-
dren and analyzing the factors affecting them is currently done using traditional
questionnaire-based methods, which often suffers from recall and bias issues. In
this thesis, we developed a comprehensive approach to study children food ex-
posure and food consumption using deep learning. Our approach takes as input
a set of images captured automatically using wearable cameras and that contain
any exposure to food, including actual food items, food outlets, and food adver-
tisements. Our approach then relies on a series of deep learning models to 1)
classify food exposure images into one or more of the above-mentioned classes,
and 2) to predict the healthiness of any food items consumed in all the images,
using the NOVA classification system as a measure of healthiness. To be able
train all of these models, we relied on crowdsourcing to generate the training
data. First, we built the food exposure dataset that contains 3,560 images that
belong to the different food exposure classes. Then, the NOVA dataset that
was labeled by Tunisian expert dietitians contains 3,728 food items labeled by
bounding boxes that belong to the different NOVA groups. After training our
models, we evaluated them on the testing datasets. The food exposure models
achieved an average f1-score of 0.96. The food item detection model achieved a
mAP@0.5 of 0.90. Finally, the average f1-score of the NOVA classification model
was 0.86. After validating our models, we deployed them in a real world case
study in Greater Tunisia.
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Chapter 1

Introduction

Estimating the healthiness of food items consumed by children has become an

important goal in the last few years because the eating behavior of a child affects

his/her health. Eating unhealthy food may result in many health problems such

as diabetes, lack of energy and even cancer [2]. This eating behavior is usually

driven by many factors that are related to the community and the neighbor-

hood environments of the children [3]. Children are exposed in their daily lives

when going to and from their schools to different types of food exposure that

have an influence on the children’s food preferences and eating behaviors. This

food exposure includes food outlets, food advertisements, and food consumption.

Therefore, it is important to classify the food exposure scenes into a hierarchy

of classes which help health researchers to analyze the relations between the

detected food exposures and the dietary and eating behaviours of children. How-

ever, this classification and analysis is typically being done using traditional data
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collection tools and recall-based interviews with professional dietitians which has

many limitations including inaccuracies and poor recall [4, 5].

In this thesis, we propose an approach that is based on a series of deep learn-

ing models that aim to automatically classify images captured through wearable

cameras into different food exposure categories, detect food items in those im-

ages, and asses their healthiness. First, we build a food exposure classification

model that aims to classify the images into one or more of the following food

exposure categories: Food Consumption, Food Outlet, Food Advertisement. The

Food Consumption classification model comes after, and it aims to classify the

images into one or more of the following categories: Personal Food Consumption

and Others Food Consumption. After building the food exposure and consump-

tion typology models, we develop a food healthiness prediction approach that is

based on an accurate food item detection model followed by a food healthiness

model that classifies the detected food items into different groups based on their

processing level. After building and validating these models, we deployed them

in a real-word case study in Tunisia that aims to study the eating behaviors of

children, and explore the factors that affects their food choices.

1.1 Challenges

Building a supervised computer vision deep learning model requires a big number

of good quality labeled images. The first challenge that we faced is the lack

2



of labeled datasets that meet our requirements. There are no available public

datasets that contain labeled images with a food exposure typology (Food outlets,

food advertisements, and food consumption). Also, there are no datasets that

contain labeled images with the categories of personal food consumption and

others food consumption. To solve this issue, we used crowdsourcing to build

and label different datasets for training our models. In addition to that, we used

transfer learning which is defined by Ranaweera et al. [6] as a technique that uses

a model that is trained on a certain task to do a different task by transferring

the learnt knowledge. Some of the advantages of using transfer learning that

are discussed in [6] are: training a model on a new task using a small amount

of labeled data and providing an optimized starting point, a faster training, a

higher accuracy, and a generalization for unseen classes.

The second challenge was building multi-label classification models that aim

to classify each image into one or more classes at the same time. In [7], researchers

discussed some of the main challenges that face this type of models, including

unbalanced data and the high dimensionality of the label space. These problems

result in a low precision and recall, especially when there are no enough training

instances that belong to a combination of classes [7]. We tackled this challenge by

oversampling the images of the underrepresented classes using data augmentation

techniques such as vertical and horizontal flips, rotations, brightness variations,

etc.

Building a generic and accurate food item detection model is a challenging
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problem in computer vision. Many researchers have attempted to do this, how-

ever, they were using datasets that contain homogeneous and pre-processed food-

related images. In this thesis, our dataset contains food consumption images that

are taken from wearable cameras, which makes the task of detecting food items

more challenging. The captured images are not homogeneous and they contain

food items with various types, sizes, shapes, and distances from the camera. In

addition to that, these images contain various non-food related objects since the

images were captured in different places such as schools and houses. We over-

came those challenges by building an optimized YOLOv3 model [8] that applies

the detection on three different image scales. In addition, our model is based

on a backbone that was trained on a large food-related dataset, which helps in

detecting only the food related objects in an image.

Finally, food-item healthiness estimation is a challenging task that was ad-

dressed using multiple approaches. Most of these approaches however use calo-

ries and volume estimation techniques, which require images that are captured

by cameras from predefined distances and angles. Also, the images should con-

tain reference objects. This approach does not work on our data because the

images were captured using wearable cameras. This resulted in images with var-

ious angles and distances to the food items. In this thesis, we propose to build a

multi-label classification model that predicts the healthiness of food items using

the NOVA classification system [9].
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1.2 Objectives and Contributions

In this thesis, we aim to build a novel approach that is based on a hierarchy

of deep learning models that are able to classify food exposure images in the

wild into different food exposure categories, as well as detect the food items and

asses their healthiness qualitatively. To achieve our aim, we first built a multi-

label food exposure model that classifies each image into one or more of the

following categories: Food Consumption, Food Outlet, and Food Advertisement.

The Food consumption multi-label model comes after, and it classifies the Food

Consumption images into one ore more of the following categories: Personal

Food Consumption and Others Food Consumption. After building the first two

classification models, we developed a generic food item detection model that

is based on an optimized version of YOLOv3 model [8] and we showed that it

outperforms the standard version of the model on our task. Finally, and on

the contrary to most of the approaches that were proposed previously for food

healthiness prediction and that use quantitative techniques that are based on

volume and calories estimation, we proposed an approach to qualitatively asses

the healthiness of of food items based on the NOVA classification system [9],

and which classifies food items into four groups based on their processing levels.

For each of the four models, we also built training data that meets the model’s

requirements. Since the datasets that we labeled are not very large, we used

transfer learning to train our models which led to a better performance and
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accuracy. These models were deployed in a case study in Tunisia involving school

children, and our models have shown to be very beneficial in classifying food

exposure images captured through wearable cameras into their respective classes,

as well as in estimating the healthiness of food items consumed in this images.

Our contributions in this thesis can thus be summarized as follows:

1. We built a food exposure multi-label classification model and a food con-

sumption multi-label classification model.

2. We developed an accurate and generic food item detection model that is

based on an optimized version of YOLOv3 which outperformed the standard

version of the model.

3. We built a qualitative healthiness prediction multi-label model that classi-

fies food items into the different NOVA groups.

4. We created the needed datasets for each model using crowdsourcing: Food

Exposure, Food Consumption, and NOVA datasets.

1.3 Thesis Outline

This thesis is organized as follows: Chapter 2 surveys literature about food items

detection, recognition, and healthiness prediction using deep learning approaches.

Chapter 3 describes the Food Exposure and Consumption Typology models that

aim to classify the food related images into a hierarchy of classes. In Chapter 4, we

6



explain the approach that we used for food item healthiness prediction, which is

based on an optimized YOLOv3 object detection model and a NOVA healthiness

prediction model. For each of the models, we present the datasets that we built

and used in training and testing the models.In chapter 5, we describe the case

study that employed our developed models to study food exposure among school

children in Greater Tunisia, and predict the healthiness of food items consumed

by those children. Finally, Chapter 6 concludes the thesis and suggests future

work.

7



Chapter 2

Literature Review

There is a wealth of work on the topic of dietary and food analysis using machine

learning. These related works use different approaches for food items detection,

recognition, and healthiness prediction.

2.1 Food Items Detection and Recognition

Most of the machine learning work related to food and dietary analysis require

algorithms and models for food items detection, recognition, and segmentation.

In [10], the authors propose a CNN architecture that is based on the ResNet-

5 pre-trained model that is used to extract the features from fast food images.

The extracted features are then used to train a multiclass Support Vector Ma-

chine (SVM) classifier that classifies fast food images into 10 classes. This model

achieved 94% accuracy on the PFID dataset [11]. Liu et al. [12] proposed a

8



deep learning approach based on CNNs that accurately classifies food images

that are captured in the real world. Others modified and optimised the Inception

model architecture [13] by adding convolutional layers which increased the depth

of the Inception model and decreased its the dimension at the same time. Their

model outperformed all of the previous experiments that were done on UEC-256

dataset [14] with 94.6% top-5 accuracy and Food-101 dataset [15] with 93.7%

top-5 accuracy.

Aguilar et al. [16] developed a framework that targets the problem of auto-

matic food tray analysis in restaurants. Their system is based on CNNs, and

it consists of food localization, recognition, and segmentation. The first part of

the framework is a food segmentation model that is based on Fully convolutional

networks (FCNs), and it aims to separate food-related items from the background

image (the tray). After that, Moore-Neighbor tracing algorithm is applied to the

binary image, which is predicted by the FCN model, to detect the exterior bound-

aries of the food items and then generate the corresponding bounding boxes. The

second part does food items object detection using YOLOv2 model. The results

of the two parts of the framework are combined to decrease false positives de-

tection. They have achieved a 0.911% F2 score. Bolanos et al. [17] proposed

another approach for a generic simultaneous food Localization and recognition.

First, they trained the CNN GoogleNet architecture [13] to distinguish between

food and non-food images and they reached a 95.64% testing accuracy. Sec-

ond, they modified the previous architecture by adding Global Average Pooling
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(GAP) layer that aims to generate heat maps of foodness probabilities. Finally,

bounding boxes are generated for the regions with a probability above a certain

threshold. After detecting the food items, they fined tuned GoogleNet architec-

ture to classify them into their types. This approach was trained and tested on

UECFood256[14] dataset and resulted in a precision of 54.33% , a recall of 50.86%

, and an accuracy of 36.84%. In addition to that, they built the EgocentricFood

dataset, which contains food consumption images that are taken from wearable

cameras. Their approach was also tested on this dataset, however they achieved

a precision of 17.38% , a recall of 8.72% , and an accuracy of 6.41%. The authors

explained that their approach faced problems on the EgocentricFood dataset be-

cause the images in this dataset were taken from a lateral point of view where the

quality of the images is lower and the food items are far away from the camera

wearer. Also, there are some food items that are difficult to distinguish from the

non-food objects especially when big parts of the food items are occluded.

2.2 Food Items Healthiness Prediction

Predicting the healthiness of food using the corresponding food image is a chal-

lenging problem in computer vision. Current work mainly uses food calories

estimation for assessing the healthiness of the food. Liang et al. [18] proposed

a calorie estimation system that takes two images as an input: a top and a side

view of the food dish that include on its side a coin, which is used as a calibration

10



object. They used Faster R-CNN for detecting food items using bounding boxes.

After that, they applied image segmentation on the detected food items for back-

ground removal using GrabCut algorithm. The segmented images are then used

to estimate their volume and mass, which are used to estimate the number of Kcal

per food item. Their system achieved a 93.0% mean Average Precision(mAP),

and the volume estimation error did not exceed ±20%. The authors in [19] de-

veloped the Im2Calories system that estimates the number of calories per food

dish. They started by training a GoogLeNet model on Food101 multi-labeled

dataset and they achieved an overall of 0.5 mAP. Then, they used DeepLab sys-

tem for semantic image segmentation which allows them to localize food items

and segment them. Using the voxel representation and the segmentation mask

of food items, they estimated the volume of each food item, and consequently

predict the number of calories using the calorific density of each kind of food.

The authors, however, faced the problem of insufficient calorie-annotated dataset

and they could not do sufficient evaluations because the texture properties and

the color of the images in their dataset are different from the ones of real food

images. Similarly, in [20], the authors build an AI system that is able to estimate

the nutrients intake in hospitals. They built a dataset of 660 images by setting up

a table that contains a camera on the top with a specific distance from the food

items. In addition to that, they created a database that contains the recipes and

the nutrients information of the consumed meals. They used a Multi-Task Fully

Convolutional Network model for image segmentation that aims to estimate the

11



food items volumes which helped in estimating the nutrient intakes based on the

created database. Their system has a 15% estimation error.

Gao et al. [21] introduced MUSEFood, which is a food volume estimation

system that is different from all of the previous volume estimation methods.

Their proposed system does not require any training using food images with

their corresponding volume information, and in addition eliminates the need to

place a reference object of a known size when capturing the images. Instead,

they used microphones and speakers to calculate the vertical distance from the

camera to the food item, which helps in estimating the actual volume of the

food and thus estimating the number of calories. Also, they used FCN for food

images segmentation and they got mIoU of 0.92. Their experiments show that

MUSEFood system outperforms all of the state-of-the-art methods with an error

of +2.7% for food in plates, and -0.27% for food on bowls [21]. This error however

increases for food items with irregular shapes.

Overall, using volume and calories estimation approaches for assessing the

healthiness of food items has many limitations including 1) the fact that the

pictures of the food items should be captured from specific angles, 2) the need

for reference objects, which are used in volume estimation, should be placed in

all of the images, 3) training these models typically require a large number of

annotated images for each type of food items, and 4) there should be a specific

predefined database that contains the nutrients information about the food items

that exist in the images dataset.
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Sudo et al. [22] proposed a different healthiness prediction approach that is

based on a feature extraction deep learning model that is followed by ranking

algorithm. First, they built a dataset of 850 food meals images that are taken

from a top-view. These images were ranked by registered dietitians based on the

healthiness of the whole meal from best to worst. Second, they built a feature

extraction model that uses a CNN followed by a pyramid scene parsing network

(PSPNET) [23], which outputs pixels-based feature maps. The extracted features

are used as an input to the ranking algorithm that uses another CNN. The authors

found the correlation coefficient between the dietitians judgement and the ground

truth rank that is based on the nutritional measurements of the meals to be 0.73,

which is low. Their system achieved an accuracy of 83.6% for ranking pairs of

test images. Therefore, this approach did not result in a high enough accuracy

because assessing the healthiness of food meals by ranking them from best to

worst without a specific criteria is not highly correlated with the ground truth

healthiness of the food items.

In this thesis we built a healthiness prediction system that is composed of two

models: Food Item Detection model, and the NOVA classification model. Our

approach is different from the previous methodologies discussed above, where we

propose to build a food item detection model that generically detects the food

items of different shapes, sizes, and types. Our model is based on an optimized

version of YOLOv3 that is able to detect food items on three different image

scales with a high accuracy. In addition, most of the previous approaches used

13



a quantitative systems that measure the healthiness of food items based on the

number of calories. Instead of that, we used the NOVA classification system

that aims to qualitatively asses the healthiness of food items by classifying them

into four groups according to the level of processing they have undergone. This

approach overcomes the limitations of volume and calories estimation methods

such as the need to label large number images for each type of food items using

masks and polygons. Also, the model can be applied on images that are taken

from wearable cameras without any predefined angles.
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Chapter 3

Food Exposure and Consumption

Typology Models

The aim of the Food Exposure and Consumption Typology models is to classify

food-related images captured by wearable cameras into a hierarchy of food ex-

posure and food consumption classes. Our proposed approach is based on two

models as shown in Figure 3.1. The first model is the multi-label Food Exposure

model that classifies each image into one or more of the following classes: Food

Outlet, Food Consumption, and Food Advertisement. The Food Consumption

category consists of images that contain food items that are being consumed or

about to be consumed. The Food Outlet Category includes images that contain

a food outlet such as a supermarket, a shop, a restaurant, a kiosk, a cafe, etc.

Finally, the Food Advertisement category includes any ads that are related to

food such as billboards, storefront ads, etc.

15



The second model is the Food Consumption model that aims to further clas-

sify the Food Consumption images into Personal Food Consumption, Others

Food Consumption, or both of the categories. An image belongs to Self Food

Consumption if it contains food items that the person wearing the wearable cam-

era is obviously consuming or is about to consume. An image belongs to Others

Food Consumption if it contains other people consuming food or about to con-

sume food. An image belongs to both of categories if the person wearing the

wearable camera is eating food with other people.

Figure 3.1: Food Exposure Models Typology

3.1 Datasets

3.1.1 Children Trajectory Dataset

The dataset that we used in this thesis was generated by Yorgo et. al [24] in

Greater Tunis. The dataset was collected from wearable cameras of 265 children
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from 29 schools. After prepossessing the images, a machine learning model was

used to filter the Food Exposure related images only such as images containing

food outlets, food advertisements, and food consumption. Using the filtered

food exposure dataset, which contains 30,170 images, we sampled 3,560 unique

and representative images that belong to the different classes we have. We used

Labelbox platform [25] for crowdsourcing and labelling the sampled images to

build our Children Trajectory dataset. First, we trained a team of five annotators,

who work at Labelbox as full time labelers, on the labeling task and we provided

them with the needed instructions. The task was that for each image, they

should select one or more of the following categories: Personal Food Consumption,

Others Food Consumption, Food Outlet, and Food Advertismnet. We ensured

the quality of the annotations by reviewing the labeled images through a voting

system, where the incorrect labels were given down-votes and then they were

corrected by the labelers. Moreover, there was a direct communication with the

labelers through a shared document where they can ask about the ambiguous

images. Table 3.1 shows the distribution of the labeled images over the classes.

Category Count
Personal Food Consumption 1600
Others Food Consumption 340
Personal and Others Food Consumption 940
Food Outlets 380
Food Outlet and Advertisement 70

Table 3.1: Children Trajectory Dataset
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3.1.2 Food Exposure Model Dataset

We built the Food Exposure model’s dataset using a combination of three datasets:

Children Trajectory dataset, Neighborhood Mapping dataset, and Egocentric-

Food Dataset. First, we used the Children Trajectory dataset, however, we com-

bined the food consumption related classes into one class which is the Food

Consumption class. Figure 3.2 shows a sample images for Food Consumption

(a), Food Outlets (b), Food Advertisements (c), and Food Outlets and Adver-

tisements (d).

Figure 3.2: Food Exposure sample images for different classes

In addition to the Children Trajectory dataset, we used the Neighborhood

Mapping Dataset, which consists of images from the community food environ-

ments of the children such as food outlets and food advertisements that are lo-
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cated in the neighborhoods of the children’s schools[26]. The data was collected

using a module that identifies, classifies, and maps food outlets and advertise-

ments within a range of 800-meter around selected schools[26]. The images in

this dataset were classified into: Food Outlets, Food Advertisements, or Food

Outlets and Advertisements. Table 3.2 shows the number of images per each

of the previous classes. In addition, the images in this dataset are very simi-

lar to the images in the Children Trajectory dataset since they were taken in

the same area. Moreover, the food outlets and advertisements are labeled with

subcategories. The food outlets are labeled with different subcategories such as

supermarket, grocery shop, butcher shop,etc. The food advertisements are la-

beled with the name of the advertised food products and if they are healthy or

not.

Category Count
Food Outlet 2048
Food Outlet and Advertisement 2130
Food Advertisement 25

Table 3.2: Neighborhood Mapping Dataset

Moreover, we used the EgocentricFood dataset [17] that includes 5,038 food

related images that are taken by wearable cameras. From this dataset, we sam-

pled 3000 food consumption images, and 200 food outlet images. Table 3.3 shows

the number of images per each class for each dataset. Since the number of images

that belong to the Food Advertisement category is very small, we additionally

crawled food advertisement images using a major Web search engine (Google),
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which are mainly images of food advertisement billboards.

Dataset/Category Food Consumption Food Outlet Food Outlet + Ads Food Ads
Children Trajectory 2880 380 70
Neighborhood Mapping 2048 2130 25
EgocentricFood 3000 160
Crawled Ads 512
Food Exposure 5880 2588 2200 537

Table 3.3: Food Exposure Model Dataset

3.1.3 Food Consumption Model Dataset

We built the Food Consumption model’s dataset using food consumption related

classes of the Children Trajectory dataset as shown in Table 3.4. Figure 3.3 shows

a sample images for Personal Food Consumption (a), Others Food Consumption

(b), and Personal and Others Consumption (c).

Category Count
Personal Food Consumption 1600
Others Food Consumption 340
Personal and Others Food Consumption 940

Table 3.4: Food Consumption Model Dataset
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Figure 3.3: Food Consumption sample images for different classes

3.2 Models

3.2.1 Food Exposure Typology Model

Using the Food Exposure dataset explained above, we trained different multi-

label deep learning models that are based on Convolutional Neural Network

(CNN) architectures to classify the food exposure images into one or more of

the following: Food Consumption, Food Outlets, and Food Advertisements. We

split our dataset into 80% for training (8,965 images), 10% for validation (1,120

images) and 10% for testing (1,120 images) in a balanced way between the classes

as shown Table 3.3. This data was used to train and test three CNN-based deep
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learning models that are used in computer vision tasks which are: MobileNetv1

[27], MobileNetv2 [28] , and VGG16 [29].

The VGG16 is a very deep CNN architecture that is composed of a total of 16

layers where 13 of them are CNN layers followed by 3 fully connected layers. The

model contains a total of 134 million parameters. We used a VGG16 model loaded

with the pretrained ImageNet weights [30]. We modified the head of the model,

which contains the three FC layers, where we replaced the 4096 neurons in the

first two FC layers with 500 neurons. Also, we modified the last FC layer, which

is the output layer, where we replaced the 1000 neurons that correspond to the

number of classes of ImageNet by 3 neurons that correspond to our three classes

(Food Consumption, Outlets, and Advertisements). In addition, since our aim

is to build a multi-label classification model, we replaced the Softmax activation

function with the Sigmoid function that outputs independent probability for each

of the classes.

MobileNetV1 is an efficient and accurate CNN model that is compatible with

mobile devices. This model is more efficient and more accurate than the VGG16

model discussed above. It is made up of 14 pairs of Convolution (Conv) and

Depthwise separable Convolution layers (Conv dw), followed by a Fully Con-

nected layer and a Softmax classifier. The Depthwise Separable Convolutions

(DWISE) that was proposed by Chollet [31], is an approach that substitutes the

operations that are done in the convolutional layer with a simpler version that

breaks the convolution into two separate layers. Each of the Conv and Conv
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dw is followed by Batch Normalization and ReLU6 activation function. We used

this model loaded with ImageNet weights and we modified the FC layer to be 3

instead of 1000. Also, we used Sigmoid Activation function.

MobileNetV2 is an improved version of MobileNetV1, and it is based on an

inverted residual structure with linear bottlenecks. The inverted residual blocks

are used to connect the start and the end of a convolutional block by a skip

connection, and it has a structure goes in an inverted direction (narrow to wide

then to narrow) according to the number of channels [28]. This approach led to a

fewer number of parameters (3.4 million). In addition, the linear bottleneck block

is composed of Convolution2D layer, Depthwise Separable Convolution layer, and

a linear convolution layer with ReLU6 activation function as shown in Figure 3.4.

The model is made up of 19 residual bottleneck layers.

In our experiments, we concentrated on MobileNetv2 model since it is one of

the top accurate and efficient computer vision pretrained models. First, the size

of the model is only 14 MB with 3,538,984 parameters, which make it compatible

for deployment in mobile devices and applications which we aim to. The few

number of parameters contributes in the model’s high inference time of 3.83 ms.

Second, the model achieved 0.713 Top-1 Accuracy on ImageNet dataset. Table

3.5 shows the results of the experiments that were done on ImageNet validation

dataset for some of the known pretrained models. For example, we can see that

InceptionResNetV2 achieved a higher accuracy of 0.803, however, it contains

huge number of parameters (55,873,736) compared to MobileNetV2. Therefore,
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MobileNetv2 balances between high accuracy and efficiency.

Model Size (MB) Top-1 Accuracy Parameters Inference Time (ms)
MobileNetV2 14 0.713 3,538,984 3.83
InceptionV3 92 0.779 23,851,784 6.86
InceptionResNetV2 215 0.803 55,873,736 10.02
VGG16 528 0.713 138,357,544 4.16

Table 3.5: Pretrained models results on ImageNet validation dataset [1]

Starting from MobileNetv2 architecture loaded also with ImageNet pretrained

weights, we created our feature extractor base model by freezing the weights of

all MobileNetv2 layers. Then, we added a classifier on the top of our feature

extraction model as shown in Figure 3.5. Our classifier is made up of a Glob-

alAveragePooling2D layer followed by a dense layer of size 256 and a dropout

regularization layer (twice). The last layer is a dense layer of size 3 with a sig-

moid activation function that outputs independent probabilities. After that, we

did fine-tuning by unfreezing the weights of the last 56 layers of the MobileNetV2.

Figure 3.4: MobileNetV2 Bottleneck Block
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Figure 3.5: The Architecture of our Food Exposure Model

In all of the above models, we tuned the hyper-parameters using the Random

Search algorithm [32] by trying the following parameters: batch sizes (32,64,128),

Learning rate (0.0001, 0.001, 0.01), and optimizers (Adam, SGD, RMSProp). In

addition, we resized the images in all of the experiments to 224× 244.

3.2.2 Food Consumption Model

Our multi-label Food Consumption model was trained using the Children Tra-

jectory dataset to classify the images into one or more of the following categories:

Personal Food Consumption and Others Food Consumption. We splitted the

dataset into 70% for training (2,016 images), 10% for validation (297) and 20%

for testing (576) in a balanced way among the classes. As discussed above,

MobileNetv2 model is more efficient and more accurate than VGG16 and Mo-

bileNetV1 models since it uses an optimized architecture with a fewer number of
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parameters. Therefore, we used the MobileNetv2 model that is described in Fig-

ure 3.5, however, we changed the output layer to be Dense(2) instead of Dense(3)

since we have two main classes in this dataset (Personal Consumption and Others

Consumption).

3.3 Results

3.3.1 Food Exposure Model Results

Tables 3.6, 3.7 , and 3.8 show the results of MobileNetV2, MobileNetV1, and

VGG16 models respectively on the Food Exposure testing dataset. We evalu-

ated each model using the following metrics: precision, recall, and F1-score. We

can clearly notice that MobileNetV2 outperforms the other models in terms all

of the metrics. The optimal hyper-parameters that were used in training our

MobileNetV2 are the following: For the transfer learning phase, we trained the

model for 20 epochs with a batch size of 64 and a learning rate of 0.001. In the

fine-tuning phase, the model was trained for 15 more epochs with a learning rate

to 0.0001. Also, we used Adam optimizer.

Category/Metric Precision Recall F1-score
Food Consumption 0.99 0.99 0.99
Food Outlet 0.98 0.99 0.98
Food Advertisement 0.95 0.93 0.93
Average 0.97 0.97 0.96

Table 3.6: MobileNetV2 results on the Food Exposure Test Data
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Category/Metric Precision Recall F1-score
Food Consumption 0.95 0.94 0.94
Food Outlet 0.94 0.95 0.94
Food Advertisement 0.88 0.90 0.89
Average 0.92 0.93 0.92

Table 3.7: MobileNetV1 results on the Food Exposure test dataset

Category/Metric Precision Recall F1-score
Food Consumption 0.96 0.95 0.95
Food Outlet 0.95 0.94 0.94
Food Advertisement 0.90 0.88 0.89
Average 0.94 0.92 0.92

Table 3.8: VGG16 results results on the Food Exposure test dataset

3.3.2 Food Consumption Model Results

The results of our Food Consumption model on the testing data are shown in

Table 3.9. The optimal hyper-parameters that the model was trained with are

the following: learning rate 0.001, 25 epochs, Adam optimizer, and a batch size

of 32.

Category/Metric Precision Recall F1-score
Personal Food Consumption 0.97 0.99 0.98
Others Food Consumption 0.97 0.89 0.93
Average 0.97 0.94 0.95

Table 3.9: MobileNetV2 results on the Food Consumption Test Data

3.3.3 Error Analysis

In this section, we perfrom error analysis for the Food Exposure and Consumption

models. First, the food exposure model performed well on the testing data with
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an average f1-score of 0.96. The Food Advertisement class had lower precision

and recall than other classes since some of the images contain food advertisements

that are very small and barely visible. Second, the food consumption model also

performed well on both of its classes. The recall of the others food consumption

class was 0.89 since some of the images contain other people consuming food on

the same table, however, the wearable camera is directed towards the table and

it does not clearly show the other people on the table.

Figure 3.6: LIME results of sample images

In addition, we used LIME [33], which stands for Local Interpretable Model-

agnostic Explanation, to explain the two models’ decisions on sample images by

28



extracting the regions that are responsible for the classifiers’ predictions. For

example, in Figure 3.6, image (b) is classified as Food outlet and advertisement

since it contains a region of pixels that belongs to outlets, also it contains another

one that belongs to advertisements. Similarly, image (c) is labeled as personal

and others food consumption because there is a dish that is directly in front the

camera wearer on one side, and on the other side there is another person who is

consuming food on the same table.
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Chapter 4

Food Item Healthiness Prediction

Automatically estimating the healthiness of food items from food images is a

challenging computer vision task . This task is usually composed of two steps

which are: (1) detecting and localizing the food items that are present in the

images, and (2) building a food item healthiness prediction model. Our proposed

approach that is shown in Figure 4.1, takes the Personal Food Consumption

related images as an input to our generic food item detection model, which is

based on YOLOv3 architecture. Then, the food items are extracted from the

images using their corresponding detected bounding boxes. These extracted food

items are then used as an input to our NOVA classification model, which is based

on the NOVA classification System [9]. This system aims to classify food items

into four groups according to the processing level they went through. The four

groups are: 1)Unprocessed Foods, 2)Processed Culinary Ingredients, 3) Processed

Foods, 4) Ultra-processed Foods.
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Figure 4.1: Healthiness Prediction Flowchart

4.1 Food Item Detection Model

We developed a generic food item detection model that localizes the food item

in an image using bounding boxes. The food items are of various types, shapes,

and sizes. Also, they could be in a dish, a bowl, a cup, or held by a person. We

trained and tested our food item detection model, which is based on an optimized

YOLOv3 architecture, on different datasets.

4.1.1 Datasets

Training our food item detection model requires large datasets of images that

contain food items that are annotated using bounding boxes’ coordinates. First,

we created and labeled a dataset that includes images with various food items

using bounding boxes, and we refer to this dataset as the NOVA dataset. In

addition, we used two public datasets, which are the EgocentricFood dataset [17]

and the UECFood-256 dataset [14]. We assumed that all types of food items in
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these datasets belong to one class, which is Food, and we used their bounding

box annotations to localize food items in the images. In addition, we converted

the bounding boxes coordinates to the normalized YOLOv3 format.

First, we built our NOVA dataset using 1,800 unique images that were sam-

pled from the output of the Food Consumption model. These images belong to

either Personal Food Consumption or Personal and Others Food Consumption.

In addition, the sampled images contain various types of food items that belong

to the different NOVA groups. Second, we created a custom interface on Label-

box platform [25] that allows the annotators to select a food item and label it

with the corresponding classes. We trained four Tunisian expert dietitians, since

the dataset was captured in Tunisia and it contains food items that are specific

to this country, to do the labeling on our Labelbox project and we provided them

with the needed instructions. The task was that for each image, the dietitian

should select each food item that is present in the image using a bounding box

and assign to it one or more of the four NOVA classes. Also, if it is impossible to

classify a certain food item into one of the classes, the dietitian can choose either

the Unknown Liquid or the Unknown Solid class and specify the reason behind

this choice.

To ensure the quality of the labels, each image was labeled twice by two

different dietitians and a consensus score that represents the agreement between

the labelers was generated. The consensus score was calculated using the IoU of

the bounding boxes as well as the chosen classes. After finishing the labelling of
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the images, the agreement score between the dietitians was 85%. The discrepancy

between the annotations is due to the fact that some food items contain a lot of

ingredients and some of them are not visible in the image such as oil and salt.

To enhance the quality of the annotations further, we asked the dietitians to go

over the labels with a consensus score less than 95% and to agree on the correct

labels. After the data was annotated on Labelbox, we ended up with a dataset

that contains 4,201 food items that belong to different classes. To train our food

items detection model, we assumed all of these food items to belong to only one

class, namely Food.

Second, we also used the EgocentricFood dataset, which includes 5,038 images

that are taken by wearable cameras. The images contain 7,294 food items that

are annotated using bounding boxes and classes. There are nine classes in this

dataset which are: glass, cup, jar, can, mug, bottle, dish, food, and basket. The

distribution of these classes is shown in Table 4.1. Also, the nature and quality

of the images in this dataset are similar to the NOVA dataset that we created

since the images were taken in realistic setting using wearable cameras. Figure

4.2 shows a sample of images from this dataset.
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Category Number of Items
Glass 975
Cup 775
Jar 37
Can 176
Mug 1,063
Bottle 2,250
Dish 983
Food 939
Basket 96
Total Number 7,294

Table 4.1: Classes distribution of EgocentricFood dataset

Figure 4.2: Sample images from EgocentricFood dataset

Third, we also used the UECFOOD-256 dataset, which is an Asian food

dataset that is crawled from the Web. The dataset is annotated using bounding

boxes and classes, which are the names of the food items. It contains a total of

28,898 unique images that include 31,395 food items, which belong to 256 differ-

ent kinds of food. Each kind of food in the dataset has a 100+ images. Table

4.2 shows the top-10 food items with the highest number of occurrences in the
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dataset. Figure 4.3 shows sample images from the UECFOOD-256 dataset. Since

a part of the dataset was crawled from the Web, there are images that are not

taken in real-life setting such as commercial images of food items.

Category Number of Items
Miso Soup 728
Rice 620
Ramen Noodle 353
Green Salad 342
Beef 246
Hamburger 233
Egg 224
Toast 218
Fried Rice 169
French Fries 153

Table 4.2: Top-10 classes of UECFood-256 dataset

Figure 4.3: Sample images from UECFood-256 dataset
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4.1.2 Models

Our generic Food item detection model is based on the architecture of YOLOv3

model with some optimizations applied to it. In the following subsections we will

explain: why we chose YOLOv3 model, the model’s architecture and output, the

optimizations applied to the model, and the experiments that we did on different

datasets.

4.1.2.1 YOLOv3 Performance

Our generic food item detection model is based on YOLOv3 (You Only Look

Once, Version 3) [8] model that was developed by Redmon and Farhadi. YOLOv3

is a one stage real-time object detection model that localizes specific objects in

images and videos using bounding boxes. This model outperforms many object

detection models in terms of mean Average Precision (mAP) at IOU threshold

of 0.5, as well as the object detection speed.

4.1.2.2 Model’s Architecture

YOLOv3 architecture is made up of two main components which are the Feature

Extractor and the Feature Detector. The Feature Extractor part is based on

Darknet-53, which is a convolutional neural network architecture that is made

up of 53 layers, consisting of 3 × 3 and 1 × 1 convolutional layers followed by

residual connections, proposed by ResNet architecture [34], which are used to

take the output from a certain layer and add it into another deeper layer in

36



the block. In addition to the Darknet-53 architecture, 53 layers are added to

serve as a detection head for the network resulting in a total of 106 convolutional

layers. The detection head of the model applies the detection on three different

image scales through applying 1 × 1 detection kernels on their corresponding

feature maps [8]. The three scales of each image are determined by the Strides

parameter in the CNN that are responsible for down-sampling the images by the

factors of 32, 16, and 8. We trained our food detection model on images of size

416 × 416 which results in three resolutions which are: 52 × 52, 26 × 26, and

13× 13. This technique helps in improving the accuracy of detecting food items

of different sizes.

4.1.2.3 Model’s Output

After getting the feature maps, the input image is divided into S × S grid ac-

cording to the extracted feature map size. For example, a 416× 416 image with

a 26× 26 feature map will result in an image divided into 26× 26 cells. Each of

the cells predicts 3 bounding boxes, objectness scores, and class predictions. The

model outputs bounding box coordinate (x,y,w,h), where (x, y) is the center of

the bounding box and (w, h) is the width and height of the box. The bounding

boxes are calculated by the help of the anchor boxes which are predefined bound-

ing boxes that are used to predict the bounding boxes coordinates by predicting

the offsets to the anchor boxes. Figure 4.4 shows the predicted bounding box

coordinates in green and the anchor box in red.
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The prior anchor boxes are calculated using k-means [35] which is an unsu-

pervised iterative clustering algorithm that starts by choosing K random points

as initial clustering centers (centroids), then calculating the distance from each

point to each of the clustering centers, and finally assigning each point to its

nearest centroid. During k-means iterations, the centroids are updated until op-

timal results are reached. In our model, the input of the algorithm is (w, h) of

the bounding boxes where w is the width of the bounding box and h is the height

of the bounding box. Also, we set k = 9 since we need 3 anchor boxes per each

of the three image scales. YOLOv3 calculates the distance from the centroid to

the box is calculated by subtracting 1 from the IoU of the box and the centroid

as shown in Equation 3.1.

Distance(Box,Centroid) = 1− IOU(Box,Centroid) (4.1)

Figure 4.4: Bounding box coordinates prediction
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The equations below are used by YOLOv3 model for bounding box coordi-

nates calculation. First, (bx, by, bw, bh) is the transformed bounding box coordi-

nates of (tx, ty, th, tw) which is the output of the CNN, where (bx, by) is calculated

by applying sigmoid function (3.5) on the predicted (tx, ty) and adding (cx, cy)

which is the top-left offset of our grid from the current cell of the feature map.

(bw, bh) is the width and height of the predicted bounding boxes that are calcu-

lated using (pw, ph) which is the anchor box’s coordinates.

bx = σ (tx) + cx (4.2)

by = σ (ty) + cy (4.3)

bw = pwe
tw (4.4)

bh = phe
th (4.5)

σ(x) =
1

(1 + e−x)
(4.6)

In addition to the bounding box coordinates, the model outputs an objectness

score which is calculated using logistic regression and indicates the probability

that there is an object is inside a certain bounding box. Moreover, the model

predicts classes for the objects using Sigmoid function so that it becomes a multi-

label model where it can predicts more than one class per bounding box. YOLOv3

model uses Binary Cross Entropy (BCE) loss for objectness scores and classes

predictions.
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4.1.2.4 Model Optimization

YOLOv3 model calculates the bounding box error using Mean Squared Error

(MSE) of t− t̂ [8], where t is the ground truth coordinates, and t̂ is the predicted

ones. In our model, we used an improved loss function which is Generalized IoU

(GIoU) proposed by Rezatofighi et al.[36]. First, IoU is a measure that calculates

the similarity between two bounding boxes using Jaccard index by dividing the

intersection of the shapes by the union of them as shown in Equation 3.2

IoU =
|A ∩B|
|A ∪B|

(4.7)

However, this metric has two weaknesses which are discussed in [36]. First, If

|A ∩B| = 0, then IoU = 0 and therefore IoU doesn’t tell us if the bounding boxes

are near or far of each others. Second, IoU doesn’t actually reflect the overlap

between the bounding boxes. GIoU metric was proposed to solve these problems.

GIoU is calculated using Equation 4.8 [36], where C is the smallest box enclosing

A and B, and |C\(A∪B)| calculates the area occupied by C without A and B. The

IoU value range is [0, 1], however, for GIoU it is [−1, 1], where 1 is the maximum

value when two bounding boxes overlap and -1 is the minimum value when the

bounding boxes are not overlapping. GIoU loss is calculated by subtracting 1

from the value of GIoU as shown in equation 4.8. Their experiments show that

using the GIoU loss improves the AP of many object detection models including

40



YOLOv3 model (+6.36% AP on COCO dataset [37]).

GIoU(A,B) = IoU(A,B)− |C\(A ∪B)|
|C|

(4.8)

LGIoU = 1−GIoU (4.9)

In addition, instead of using Binary Cross Entropy loss for objectness scores

and classes prediction, we used Binary Cross Entropy with Logits Loss (BCE-

WithLogitsLoss) shown in Equation 3.1. Where y is the true label of the image,

ŷ is the predicted probability, and σ is the sigmoid function that maps the values

between 0 and 1. This is a more stable version of BCE loss since in the case of

negative predicted values it will take too long to converge, however when we use

BCEWithLogitsLoss it uses sigmoid before applying the BCE loss resulting in a

more stable results [38].

BCEWithLogitsLoss = − 1

n
×
∑
i

(yi × log (σ (ŷi)) +

(1− yi)× log (1− σ (ŷi)))

(4.10)

4.1.2.5 Model’s Loss Computation

YOLOv3 model optimizes the predicted results using the concept of error back-

propagation, where the error is calculated between the predicted value and the

real value. Our optimised YOLOv3 model loss function is based on the weighted

summation of the food items localization loss, the classification loss and the ob-
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jectness loss as shown in Equation 4.11 .

Lmodel = LLocalization + LClassification + LObjectness (4.11)

LLocalization =
S2∑
i=0

B∑
j=0

LGIoU(bji , b̂
j
i ) (4.12)

LObjectness =
S2∑
i=0

B∑
j=0

1obj
i,j

[
cji × log

(
σ
(
ĉji
))
−
(
1− cji

)
× log

(
1− σ

(
ĉji
)) ]

+λnoobj

S2∑
i=0

B∑
j=0

1noobj
i,j

[
cji × log

(
σ
(
ĉji
))
−
(
1− cji

)
× log

(
1− σ

(
ĉji

)) ] (4.13)

LClassification =
S2∑
i=0

B∑
j=0

1obj
i,j

∑
c∈class

[
p(cji )× log

(
σ
(
p(ĉji )

))
−
(
1− p(cji )

)
× log

(
1− σ

(
p(ĉji )

)) ] (4.14)

In the above loss equations, s2 = (s× s) is the number of cells of the feature

map, and B which is set to 3 in our model is the number of bounding boxes

generated by each cell. In the localization loss equation (4.12), bji and b̂ji are

the true and predicted bounding boxes coordinates respectively. The objectness

loss (4.13) is calculated using BCEWithLogitsLoss, where cji and ĉji are the true

and predicted confidences respectively. 1noobj
i,j is used to determine if the jth

bounding box of the ith cell is not responsible for the detection of the object. In

addition, λnoobj is the weight of GIoU error which is set to 0.5 in our experiments.

Similarly, the classification loss (4.14) is calculated using BCEWithLogitsLoss,

where p(cji ) is the ground truth probability that the object in the ith cell belongs
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to class c, and p(ĉji ) is the predicted probability. Also, 1obj
i,j checks if the jth

bounding box of the ith cell is the one responsible for the detection. It is equal

to 1 if the GIoU(BoundingBox,GroundTruth) is the largest, and its is equal to

0 otherwise.

4.1.2.6 Models

After building the architecture of our YOLOv3 model, we trained three mod-

els using the UECFood256 dataset, the EgocentricFood dataset, and the Nova

dataset.

First, we trained our base food item detection model using our modified

YOLOv3 model. Starting from the COCO pretrained weights [37], we trained

the model on the UECFood256 dataset. We split the data into 80% for training

(23,119 images) and 20% for validation (5,780 images).

After training our base model on the UECFood256 dataset, we froze the

weights of our backbone model, Darknet-53, which is used as our feature extrac-

tor model in our YOLOv3 architecture. Using the EgocentricFood dataset, we

trained the head of our YOLOv3 model using transfer learning. The dataset was

split into 80% for training (4,038 images) and 20% for validation (1,000 images).

Finally, our main model is based on the base model that we built using the

UECFood256 dataset. We did transfer learning by freezing the backbone of our

architecture, Darknet-53, and we trained the head of the model on a combination

of the Nova dataset and the EgocentricFood dataset. We split the data into 80%
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for training (images) and 20% for testing( images). Also, we trained a standard

YOLOv3 model on this dataset and compared it with our modified version of the

model.

We tested the above three models on 500 images that were sampled from the

Nova dataset, which is described in Section 4.2.1. All the models were trained

for 100 epochs on images of size 416× 416. Also, we used a learning rate of 0.01

and a decay weight of 0.0005. We used different anchor boxes according to the

dataset that was used for training. We calculated 9 anchor boxes for each dataset

using the K-mean algorithm that is explained in Section 3.4.2. Table 4.3 shows

the anchor boxes for each dataset on three scales.

Dataset/ Scale Small (32) Medium (16) Large (8)

UECFood256 (195× 174), (319× 259), (417× 369) (535× 289), (507× 420), (581× 381) (445× 549), (606× 454), (593× 574)

EgocentricFood (68× 73), (82× 124), (182× 98) (124× 149), (103× 233), (225× 179) (173× 332), (426× 193), (402× 367)

EgocentricFood+Nova (63× 54), (76× 104), (158× 87) (98× 152), (107× 247), (177× 172) (339× 151), (180× 320), (411× 303)

Table 4.3: The calculated anchor boxes for each dataset

4.1.3 Results

We evaluated our models using the mean Average Precision (mAP) metric. mAP

is the average of AP over the classes and since we only have the Food class, the

mAP will be the same as AP. To calculated this metric, we need to compute the

precision (4.15) and the recall (4.16). Also, we need to specify an IoU threshold

value. For threshold IoU = 0.5, the model classifies the object detection as True

Positive (TP) if IoU ≥ 0.5, else it will consider it as wrong detection and classifies
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it as False Positive (FP). In case there is a food item in the image and the model

couldn’t detect it, we classify it as False Negative (FN). Finally, we classify all

the parts of the image that don’t contain any food item as True Negative (TN).

Precision =
TP

TP + FP
(4.15)

Recall =
TP

TP + FN
(4.16)

In our experiments, we used two mAP evaluation metrics: the Pascal Vi-

sual Object Classes (VOC) metric [39] and the COCO metric [37]. The Pascal

VOC metric, mAp@0.5 calculates the mAP for IoU ≥ 0.5. The COCO metric,

mAP@[0.5 : 0.95] , calculates the average of mAP for different IoU thresholds

that range from 0.5 to 0.95 with a step size of 0.05.

The results of the three models on their corresponding validation datasets are

shown in they below Table 4.4. We can notice from the results that our YOLOv3

model achieved good mAP@0.5 scores on the validation sets of each model.

Model Precision Recall mAP@0.5 mAP@[0.5:0.95]
UECFood256 (base model) 0.90 0.93 0.91 0.65
EgocentricFood 0.87 0.91 0.90 0.66
NOVA and EgocentricFood 0.86 0.89 0.88 0.63

Table 4.4: The Results of the models on the validation datasets

Table 4.5 shows the results on the validation set of the NOVA and Egocen-

tricFood combined dataset on the standard YOLOv3 model and our modified
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version of the model. Our modified YOLOv3 model outperformed the standard

YOLOv3 in terms of mAP@0.5 (3% improvement) as well as it achieved a lower

localization and objectness losses. This is due to using LGIoU instead of MSE

for calculating the error between the ground truth and the predicted bounding

boxes.

Model Localization Loss Objectness Loss mAP@0.5
Yolov3 0.12 0.08 0.85
Yolov3+GIoU 0.01 0.02 0.88

Table 4.5: YOLOv3 vs.YOLOv3+GIoU results on the validation dataset

In order to compare the models, we tested the above three models on 500

annotated images that were sampled from our NOVA dataset. Table 4.6 presents

the results using different metrics. We can clearly see that the NOVA and Egocen-

tricFood model outperforms the first two models. UECFood256 model achieved

bad results since the images in this dataset are crawled from the Web and they are

homogeneous and preprocessed, which is different from the nature of the images

in our dataset that are captured from wearable cameras. The EgocentricFood

model achieved better results since the images in this dataset are taken from

wearable camera which are very similar to the images in our dataset. Finally,

combining the NOVA and the EgocentricFood datasets and training the head

of our YOLOv3 with frozen weights of Darknet-53 taken from the UECFood256

model achieved the best results over all of the used metrics as shown in the below

table.
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Model Precision Recall mAP@[0.5:0.95] mAP@0.5
UECFood256 0.44 0.22 0.11 0.22
EgocentricFood 0.70 0.73 0.41 0.71
NOVA and EgocentricFood 0.87 0.91 0.65 0.90

Table 4.6: The results of the models on the NOVA dataset

4.1.4 Error Analysis

In this section, we analyze the error of the food item detection model. As dis-

cussed in the previous section, the NOVA and EgocentricFood model that is

based on the optimized version of YOLOv3 outperformed all other models. We

can see from table 4.6 that the model achieved a high mAp@0.5 of 0.90, as well a

precision of 0.87 and a recall of 0.91 on the testing dataset. The model was able

to detect most of the food items that appear in the Food Consumption images

as shown in Figure 4.5. On the other hand, the model was not able to detect

some of the food items that are occluded by other objects such as the dish in

image (a).1, which is occluded by the water bottle. On the other hand, overall

the model was robust, as it was able to detect small food items that are far from

the food table (see image (b).1). This is due to the fact that our YOLOv3 model

applies the detection on three different image scales (small, medium, and large).

This factor decreased the precision, by increasing the false positives, since the

labelers did not label food items that are far away from the food table. Finally,

some of the food items have overlapping bounding boxes( image (b).2), we solved

this by excluding the ones with a low confidence score (lower than 0.40).
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Figure 4.5: Sample results of the food item object detection model

4.2 NOVA classification Model

There have been many attempts to estimate the healthiness of food items using

their corresponding images. However, most of these are quantitative approaches

that are based on volume and calories estimation, which face many limitations

including capturing the images from specific predefined angles, adding reference

objects in each image, and segmenting the food items in a pixel-wise way. Thus,

many nutrition experts are advocating for food classification systems that are

based on the food processing level rather than using calories and nutrients con-

tent of the food items [40]. Therefore, our approach aims to do a qualitative

assessment of the healthiness of food items rather than a quantitative assessment

that is based on the amount of calories of the food items.

In this thesis, we used the NOVA classification system [9] that classifies food
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items into four groups according to their nature, extent and the aim of the in-

dustrial processes that they were applied to the food items. The first group is

the Unprocessed foods, which includes natural foods such as vegetables, fruits,

eggs, milk, water, etc. The second group is the Processed culinary ingredients

that are usually acquired from group 1 and they include butter, oil, honey, etc.

The third group is the Processed foods that are included in meals and dishes

such as ham, fish, meat, bread, etc. Finally, we have the Ultra-processed foods

group that includes foods that are produced using a series of industrial processes

such as chips, chocolate, soft drinks, hotdog, etc. These four groups are related

to each other since a food item may belong to more than one group at the same

time.

To reach our goal, we built a dataset of food items that are classified according

to the NOVA classification system described above. This data was used to train

and test our deep learning multi-label model that classifies each food item into

one or more of the NOVA system groups.

4.2.1 Datasets

Using the NOVA dataset that was discussed previously, we extracted the food

items from the images with their corresponding labels using the bounding boxes

coordinates. The initial dataset consisted of 4,016 images that belong to the

different NOVA groups. Also, it contained 112 images that were labeled with the
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Unknown Liquid category and 73 images that were labeled with the Unknown

Solid category. We excluded those categories since they do not belong to any of

the NOVA groups. In addition to that, we cleaned the dataset by removing the

images that are too blurry or very small. The NOVA dataset, after cleaning it,

consisted of 3,728 images that belong to the different NOVA groups as shown in

table 4.7

NOVA Groups 1 2 3 4 12 13 14 23 34 123 124 134
Images Nb 1,094 122 759 557 510 40 4 7 11 569 49 6

Table 4.7: NOVA Dataset Groups

4.2.2 Models

After building the NOVA dataset using the procedure described in the previous

section, we split it into 80% for training, 10% for validation and 10% for testing.

This dataset was used to train and test our multi-label classification model that

aims to classify each food item into one or more of the NOVA groups.

For this task, we used MobileNetV2 architecture. First, we built a model that

is made up of MobileNetV2 architecture loaded with frozen ImageNet weights,

and we added a classifier on the top of it. The classifier consisted of a global

average pooling layer followed by a dense layer of 250 neurons and a drop out layer

of value 0.5. The output layer is a dense layer with 4 neurons representing the

NOVA groups. Also, we used sigmoid activation function to output independent

probabilities for the classes we have. We trained this model for 20 epochs with
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Adam optimizer that has a learning rate of 0.001. After that, we did a fine-tuning

step by unfreezing the last 55 layers of MobileNetV2 model and retrain the model

for 10 more epochs with a learning rate of 0.0001.

Since the NOVA dataset contains images of various sizes, we used different

image sizes as hyper-parameter (128, 160, 192, 224). We resized the images using

Bilinear Interpolation, which is a resampling method that calculates a new pixel

value based on the distance weighted average of the nearest four pixels [41].

4.2.3 Results

After training our NOVA classification model with different image sizes, the 224×

224 image size was the best fit for the model. The results of this model on the

testing data is shown in Table 4.8 that presents the precision, the recall, and the

F1-score for each of the NOVA groups.

Group/Metric Precision Recall F1-score
1 0.92 0.86 0.89
2 0.90 0.85 0.87
3 0.86 0.84 0.85
4 0.84 0.85 0.84

Table 4.8: NOVA model results on the testing data

4.2.4 Error Analysis

In this section, we analyze the error of our NOVA classification model. The overall

performance of the model on the testing data was relatively high, however, some

of the images were miss-classified due to the complexity of the food items. We
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noticed that our model could not predict all the ground truth NOVA groups for

some of the images that contain ingredients that are not visible to the model such

as salt and oil. Figure 4.6 shows a sample of miss-classified images by the NOVA

model. For example, the first image’s ground truth NOVA groups are 1-2 since

it is a salad, and 4 because it contains cheese. The model was able to correctly

predict that the food item belong to groups 1 and 2, however, it didn’t predict

the group 4 since most of the salad related images in the training dataset belong

to groups 1 and 2 only. Another example is image 3, where the ground truth

is that the food item belongs to the NOVA groups 1, 3, and 4 since it contains

bread, tomatoes, and cheese. The model correctly predicted that it belongs to

groups 1 and 3 and it misses group 4. These results explain why we don’t have

a very high recall in some of the NOVA groups.

This NOVA classification model is used to qualitatively asses the healthiness

of the Tunisian food specifically, since the model was trained on images that were

collected in Tunis where there are some type of foods that are specific for this

country. From here, we can conclude that our NOVA classification model has

two limitations 1) Dependent on the country where the dataset is collected 2)

Doesn’t always detect the small and hidden ingredients.
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Figure 4.6: Error analysis of miss-classified images of the NOVA model

4.3 Overall System Performance

In this section, we will evaluate the performance of the whole approach.

First, we sampled 100 images from our testing datasets that belong to the different

classes of Food exposure. Then, we ran our models sequentially on the sampled

images and we calculated the corresponding precision, recall, and F1-score. Table

4.3 shows the results of each model, as well as the final average score of the

approach. our approach achieved an average f1-score of 0.85. The reason behind

this score is the propagation of error between the models. For example, if the

Food consumption model miss-classifies an image , it will affect the results of the

food item detection model, as well as the NOVA classification model.
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Model Precision Recall F1-score
Food Exposure 0.97 0.95 0.96
Food Consumption 0.92 0.93 0.92
Food Item Detection 0.79 0.80 0.79
NOVA Classification 0.76 0.74 0.75
Average 0.86 0.85 0.85

Table 4.9: Overall performance of our approach
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Chapter 5

Case Study

5.1 Setting

Our case study was done in Greater Tunis on a sample that included 215 children

aged 11-12 years old from grades 5 and 6 recruited from 29 Tunisian schools

between January 30th until mid-March 2020. After filtering the collected data

by the wearable cameras through a binary image classification model that classify

images into food and non-food classes, we ended up with a total of 30,170 images

(3.69 GB ) related to food exposure [24]. In this thesis, we applied our approach

that is composed of four deep learning models on the resultant dataset.
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5.2 Results

First, we applied the Food exposure and the Food Consumption models on the

dataset. We found that the vast majority of pictures were showing food consump-

tion (95%) with only 4% related to food outlets. Among the food consumption

images, 69% were about Personal Food Consumption” (69%), 23% were images

including both personal and other people consumption of foods, and only 8%

were images showing only other people consuming foods. After that, we sub-

jected the images that were labeled with Personal Food Consumption to the

food item healthiness prediction models. First, we ran the food item detection

model on the images, and we extracted the food items using bounding box co-

ordinates (27,757 food item). Then, we applied the NOVA classification model

on those extracted food images. Table 5.1 shows the number of images per the

NOVA group(s). These results will be used by researchers to analyze the eating

behaviours of students and associate them with the food exposures that they

encountered including food advertisements and food outlets.

NOVA Groups 1 2 3 4 12 13 14 23 34 123 124 Other
Images Nb 8,101 764 6,062 2,441 3,342 179 5 14 33 4,909 58 1,849

Table 5.1: NOVA results of the Tunisian case study

56



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we presented a novel approach that is based on various deep learning

models that classifies food exposure related images in the wild into a hierarchy of

food exposure and consumption classes, and extracts and assesses the healthiness

of the food items based on the NOVA classification system. This approach can

be used by researchers to automate the dietary case studies that are usually done

using traditional tools such as interviews and questionnaires, and which usually

suffer from low accuracy and recall. Our approach is based on a series of four

deep learning models: Food Exposure Model, Food Consumption Model, Food

Item Detection Model, and Food Item Healthiness Prediction Model.

First, we built a multi-label Food Exposure model that aims to classify the

images into one or more of the following classes: Food Consumption, Food Outlet,
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and Food Advertisement. Then the multi-label Food Consumption model comes

after, and it is used to classify the Food Consumption images into: Personal Food

Consumption, Others Food Consumption, or both of them. To train these model,

we built two high quality datasets of images that belong to the above-mentioned

classes for each model using crowdsourcing on Labelbox platform.

Second, we built the food item healthiness prediction models that consists of

the Food Item Detection model followed by the NOVA Classification model. The

Food Item Detection model is based on a modified version of YOLOv3 model,

where we used GIoU loss instead the MSE for the localization error. This opti-

mization improved the precision and the recall of detecting food items. The model

was trained using a new approach where we used a combination of three datasets,

UECFOOD256 dataset, the Egocentric dataset, and the NOVA dataset that we

built, to train the model on one class which is Food. Our NOVA dataset was

labeled by Tunisian expert dietitians where each food item was labeled by bound-

ing box coordinates with its corresponding NOVA group. Finally, we trained

the multi-label NOVA classification model which aims to qualitatively asses the

healthiness of the detected food items according to their processing level using

the four NOVA groups.

We deployed these models in a real-world case study in Tunisia, where re-

searchers were able to have for each student the captured images classified into

the different food exposure categories. In addition, the extracted food items

with their NOVA healthiness categories helped researchers to associate between

58



the eating behaviours of the children and the food exposures that includes food

advertisements and outlets.

Since the models were trained on images that were captured in a specific coun-

try, Tunisia, they may not result in a good accuracy when applied directly on

images that are captured from different countries. First, countries have different

buildings infrastructure which results in a different food outlets and advertise-

ments forms. Second, each country has type of foods that are specific to their

culture where they are not consumed by people in Other countries. This puts

limitations on using the NOVA classification model on Food items from different

countries.

6.2 Future Work

For the future work, we are planning to integrate the models we built in this

thesis into a user friendly End-to-End tool that can be used by researchers who

are working on similar case studies in the Arab region. To reach that, we first need

to adapt our models to the new datasets that will be collected in other countries.

This could be done by using transfer learning techniques on our trained models

or by retraining the models on the combined datasets which makes the models

more generalizable. Finally, the approach that we implemented in this thesis will

be used in a similar case study in Lebanon.
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Appendix A

Abbreviations

CNN Convolutional Neural Network

ML Machine Learning

AI Artificial Intelligence

RNN Recurrent Neural Network

NLP Natural Language Processing

GAP Global Average Pooling

IoU Intersection over Union

mIoU mean Intersection over Union

GIoU Generalized Intersection over Union

YOLOv3 You Only Look Once version 3
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Appendix B

Labelbox Crowdsourcing

Guidelines

B.1 Food Exposure Labeling Guidelines

The aim of this job is to classify an image related to food exposure into one or

more of four categories. These images were captured through wearable cameras,

and the classification will help us analyze the data captured. The four categories

are: Food Outlets, Self Food Consumption, Others Food Consumption, and Food

Advertisements. You will be displayed an image and your task is to decide

whether the picture belongs to one or more of the above four categories. For

each category, you will have to choose whether the image belongs to it (Yes),

doesn’t belong to it (No). If it’s not clear or you can’t decide, you should choose

“Not sure”.
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• An image should be labeled as Food Outlet if it contains a food outlet such

as a supermarket, a shop, a vending machine, a restaurant, a mobile vendor,

a food-stand, a kiosk, a food factory, etc. Hotels and malls which usually

include food outlets are also included in this category.

• An image should be labeled as Self Food Consumption if it contains food

items that the person wearing the wearable camera is obviously consuming

or is about to consume. For instance, dishes on a table where the person

wearing the camera is sitting on, or a sandwich held by the person wearing

the camera, etc.

• An image should be labeled as Others Food Consumption if it contains

other people consuming food or about to consume food.

• An image should be labeled as Food Advertisement if it contains any food

ads such as billboards, storefront ads, commercials on a TV screen, com-

mercials on vehicles, ads in magazines, ads on our mobile phone, etc.

• Finally, if an image doesn’t satisfy any of the criteria above, you should

label all the categories with ”No”.

• Note that the displayed image could be labeled using more than one of the

labels above if it satisfies more than one criteria. Also note that by food

here we mean both food and beverages.
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Figure B.1: Food Exposure sample labeled image in Labelbox

B.2 Nova Healthiness Score Labeling Guidelines

The Nova classification assigns food items to four groups according to the extent

and purpose of the industrial processing used. For each image, you will have to

select each food item that appears in the image and assign one or more group to

it.

I. An image will appear to you on the platform. For each food item that appears

in the image, you should do the following:

1. You click on the Bounding Box label that is found on the left side of the

screen to draw a bounding box on the food item.

2. After drawing the bounding box, a checklist of 6 options will appear on the
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left side.

3. If you know the group(s) that the food item belongs to, you should choose

one or more of the following 4 groups:

a) Group 1= Unprocessed or minimally processed foods

b) Group 2= Processed ingredients

c) Group 3= Processed foods

d) Group 4= Ultra-processed foods

4. If you can’t choose the group(s) that the food item belongs to, you should

choose one of the following options:

a) Unknown- Solid: After choosing this option, you should write the reason in

the text box named ”Unknown solid reason” which will appear on the left

side.

b) Unknown-Liquid: After choosing this option, you should write the reason

in the text box named ”Unknown liquid reason” which will appear on the

left side.

II. Once you are done with the image, you should click on the Submit button to

go to the next image.
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Figure B.2: NOVA sample labeled image in Labelbox
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