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An Abstract of the Thesis
Proposal of

Ali Ismail for Master of Engineering
Major: Electrical and Computer Engineering

Title: Towards Building Damage Change Detection using Graph Convolutional
Networks and Domain Knowledge: A Case Study on the Beirut Port Explosion

Change detection is a sub-field of remote sensing that aims to detect surface
differences between two images taken at different times. It plays a significant
part in detecting disaster damage and planning rescue operations. The advent of
deep learning has lead to the development of many change detection solutions.
Convolutional neural networks are at the core of recent approaches. As with
most geographical phenomena, the spread of urban damage is more similar with
buildings that in proximity. However, these networks only rely on local features
and ignore the interactions and similarities between neighboring buildings. Also,
it is important to map damage quickly whenever a new disaster occurs for an effi-
cient response. Therefore it is not practical to wait for data to be annotated and
models to be trained. Additionally, many structural building properties that are
not based on proximity may impact the degree to which each building is damaged
such as age and height. These properties can be very diverse especially in dense
and irregularly urbanized cities and are not discernible from overhead imagery.
In this work, we present a graph formulation for building damage change de-
tection which enables learning relationships and representations from both local
patterns and non-stationary neighborhoods that cannot be captured by tradi-
tional neural networks. We propose a novel architecture combining a Siamese
convolutional neural network and a graph convolutional network which we train
in a semi-supervised framework allowing the task to be performed with a small
number of annotations and reducing the time and effort needed to obtain damage
assessment. We also investigate a supervised variant and evaluate the possibility
of generalizing to unseen disasters. We train and validate this approach on the
xBD dataset. We also demonstrate this method on the Beirut Port Explosion
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and show that performance is improved by incorporating domain knowledge from
building meta-features.
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Chapter 1

Introduction

Remote sensing (RS) is the process of capturing data using a sensory platform
operating at a distance from the sensed target. Furthermore, the term remote
sensing is predominantly used in reference to geospatial remote sensing where the
objective is to collect data about the surface of the Earth. RS data can yield a
wealth of information about the surface of the planet at both local and global
scales. This information can be used to gain new knowledge about the environ-
ment, develop solutions to existing problems and make data-driven policies and
decisions.

Change detection (CD) is a sub-field of remote sensing concerned with iden-
tifying and localizing differences in surface objects using RS images taken at
different times [5]. CD has been successfully applied in many different fields such
as forest monitoring [6, 7, 8], surface water monitoring [9, 10], sea ice monitoring
[11, 12], landslide monitoring [13], tsunamis [14, 15], fires [16], urban develop-
ment, LULC (land use land cover) [17, 18, 19] and planetary surface monitoring
[20].

There are many success stories for CD being used for humanitarian assistance
and disaster response. During the World Trade Center attacks satellite images
were used to map the damaged area, detect locations with risk of ignition and
detect rubble to help with planning of site cleanup and restoration. CD was
equally used to plan disaster response and relief for hurricane Katrina [21]. In
addition to humanitarian rescue and relief, ground surveys are carried in the wake
of disasters to perform thorough inspections of the damage. These in person in-
spections are necessary to evaluate buildings’ structural integrity and to estimate
the necessary repair costs. These surveys require a large number of participants
and can last for a long duration. In the case of the 2020 Beirut Port explosion,
ground inspections took about a month to be carried [22]. While the damage
maps obtained from satellite image CD are not detailed and granular enough to
make these assessments, they can guide the efforts of field surveyors and help
them implement plans for more effective and faster surveys. In all of the afore-
mentioned scenarios, the most notable objects of interest were buildings [3]. In
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this work, we focus our CD methodology on disaster-induced building damage
detection.

Change detection is a fairly mature field. Initially, CD was performed us-
ing classical image processing techniques such as algebraic operations and image
transformations [23]. With the increasing availability of huge amounts of data and
with the AI revolution, CD techniques based on machine learning have emerged
[24]. Most importantly deep learning methods, because of their breakthrough
success in computer vision [25]. CD has been addressed using different deep ar-
chitectures under both supervised and unsupervised learning settings. Notably,
convolutional neural network (CNN) models [26] (U-Net [27], Siamese CNN [28],
combining CNN with recurrent neural networks (RNN) [29]...) have been pre-
dominant across the literature [25]. More specifically, CD for building damage
assessment has been addressed using similar approaches [30, 31, 32, 33, 34, 35, 15].

However, CNNs can only extract spatial information within the defined neigh-
borhood of the convolution kernel. Graph convolutional networks (GCN) on the
other hand are an emerging architecture capable of learning from data that is
modeled as graphs [36]. Images have been cast into graphs using various for-
mulations where GCNs can explore non-euclidean relationships between pixels
that go beyond the pixel neighborhood defined by a CNN kernel [37]. These
networks have outperformed CNN-based models in many computer vision appli-
cations [38, 37] including urban change detection [39].

Moreover, when a disaster has recently occurred, RS images are usually readily
available within a number of hours [21]. However, first responders cannot wait
until the new data is labeled and a model trained to plan their rescue and relief
actions. Therefore, an important hallmark in any disaster CD solution is the
ability to quickly obtain new predictions. This is important to consider given
the fact that machine learning models can take days if not weeks to be properly
developed and trained. In general, there are two broad directions for mitigating
this problem: 1) semi-supervised learning which requires few labeled samples
[15, 40, 41]; 2) pre-trained models that are used to infer on the new disaster
without training [31, 42, 43, 44, 45].

Additionally, many cities include a mixture of buildings of various shapes,
heights, time periods, building material and architectural styles in close proximity
to each other. These architectural and structural differences can cause buildings
to interact differently with the disaster and therefore sustain damage to varying
levels. For instance, a short building could be shielded by a taller building and a
heritage building would sustain more damage than surrounding modern buildings.
While current approaches rely strictly on satellite or aerial imagery, it is not
possible to capture the aforementioned architectural differences based on imagery
alone. Therefore, the resulting interactions are not modeled well.

In summary, we identify three main gaps and problems in the field of building
damage change detection. The first is that relationships between neighboring
buildings which would have interacted with the disaster similarly based on prox-
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imity are ignored in object-based CNN models. Secondly, we emphasize that the
ability to quickly obtain damage assessments is critical in this application. Fi-
nally, we highlight that satellite images alone are not sufficient to capture subtle
properties and building-level interactions which could lead to different levels of
sustained damage.

Based on the above, we cast building damage CD into a node classification
problem which we solve using a novel architecture combining a Siamese CNN and
a GCN. This formulation leverages both the local and neighborhood features and
patterns in the data. Also, it is well equipped to satisfy the two aforementioned
solutions for obtaining predictions in a quick manner. When it comes to the
semi-supervised approach, semi-supervised GCNs have been shown to be effective
at propagating labels from labeled graph nodes to unlabeled nodes. As for the
transfer of pre-trained models, different GCN architectures and graph aggregation
methods have been proposed to learn on mini batches of data in a supervised way
and infer on unseen data such as the sample and aggregate (SAGE) operator [46].
Furthermore, we demonstrate how architectural and contextual building features
which we henceforth call meta-features can be incorporated into our graph to
allow the model capture these subtle properties and interactions and improve the
prediction results.

To summarize, the contributions of this work are the following:

• We present a novel formulation of the problem of building damage CD as
a graph node classification which allows learning representations based on
local features as well as relationships with neighboring samples.

• We propose a novel architecture based on a Siamese CNN combined with a
GCN which we trained in a semi-supervised manner to reduce the number
of labeled samples needed to obtain new predictions.

• We showcase our methodology on the Beirut Port explosion and we demon-
strate how we augment the data with domain knowledge based on building
meta-features to improve results.

• We investigate the transferability of the supervised SAGE variant of our
model between different types of disasters.

To the best of our knowledge, there is no prior work which fuses both images
and meta-features for building damage change detection. Also, there is no prior
work which adopts a meta-feature framework with graph convolutional networks.

The rest of this document is organized as follows. In Chapter 2 we provide
some background about remote sensing in general and specifically change de-
tection. We review the literature related to different methodologies addressing
CD. We also provide background on GCNs and review some works using GCNs
for applications similar to CD. Finally, we highlight the previous works that are
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considered state-of-the-art and show what they achieved and contrast their ap-
proaches to the solution presented here. In Chapter 3, we explain our proposed
methodology which includes the graph formulation and the model architectures
used. In Chapter 4, we provide details about the different datasets used and
the experiments performed. We show and analyse our results and highlight our
findings. In chapter 5, we summarize our targeted problem and the solution pro-
posed to address this problem. We reemphasize key takeaways from this work
and propose potential directions for improvement and future research.
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Chapter 2

Literature Review

In this chapter, we provide an essential background around the central concepts of
this thesis work such as remote sensing, change detection and graph convolutional
networks. We also review the works related to CD and GCNs in general and focus
on their applications in building damage detection.

2.1 Physical Principles of Remote Sensing

Remote sensing data consists of capturing the electromagnetic radiation emitted
or reflected by surface objects. Electromagnetic radiation comprises of waves
having different wavelengths. The electromagnetic spectrum (distribution of ra-
diation by wavelength) is subdivided into different categories grouping radiation
into different wavelength ranges. Figure 2.1 shows the full electromagnetic spec-
trum and the various uses for each range of wavelengths.

Figure 2.1: Electromagnetic spectrum (Image credit: https://www.nist.gov/i
mage/designuassspectrum154169990hrjpg).

The Sun provides the Earth with radiation spanning the full electromagnetic
spectrum. This radiation is partially reflected by surface objects or absorbed to
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be emitted as thermal radiation and is at the basis of remote sensing. The most
commonly sensed bands are the red, green and blue (RGB) bands which produce
visible colors. These bands are essential for vision and photography and are also
widely sought in remote sensing. RS sensors are also designed to capture light
outside the visible spectrum. When the imaging product is composed of different
color bands, it is referred to as a multispectral (MS) image. RGB is a type of MS
imagery having only visible bands. It is common to additionally acquire the Red
Edge and Near Infrared (NIR) bands. When bands are sampled continuously
over a narrow range (such as 10 - 20 nm), we obtain hyperspectral (HS) images.
These images have hundreds or thousands of spectral bands and therefore offer
much more spectral information than MS images but at the cost of signal-to-
noise ratio (SNR) which results in lower spatial resolution. Another type of RS
imagery is the panchromatic image which is acquired using a sensor that is highly
sensitive to a large number of bands often including the visible spectrum. These
images have a high SNR and therefore a very high spatial resolution. This sensor
however, does not register different bands separately like MS sensors, it records
the overall energy reflected by each point and therefore each pixel value represents
the overall brightness of that point. As such, panchromatic images are grayscale
[47]. Pan-sharpening is an image fusion technique where a panchromatic image is
fused with a multispectral image in order to obtain a very high resolution colored
image. The resulting image is named a pan-sharpened image [48].

Some sensors emit their own electromagnetic energy and capture the portion
that is reflected back. These systems can provide better observations as they
can be tailored towards a specific application (such as atmospheric aerosol con-
tent) and because the radiation used has a high atmospheric penetration ability
(clouds or fog) [21]. They can also be used to obtain 3D data [49]. Some of the
most notable active sensor systems are radio detection and ranging (Radar), light
detection and ranging (LiDAR) and synthetic-aperture radars (SAR) [49].

Different objects reflect light differently. In the case of RGB, the difference
is observed as a difference in color. Similarly, objects reflect non-visible light
differently. Thus, augmenting remote sensing images with more spectral bands
allows to detect more discriminatory properties and characteristics of the targeted
surface objects. For instance, thermal infrared radiation (TIR) can be used to
measure land surface temperature [50], the near infrared band is widely used in
vegetation monitoring applications as it can be used to calculate the normalized
difference vegetation index (NDVI) which indicates the health of a plant [51].

2.2 Technology of Remote Sensing

Mankind has always been interested in obtaining a bird’s-eye view of the envi-
ronment and the planet in general. The earliest attempts at remote sensing were
carried using hot air balloons, cameras attached to pigeons or simply by stand-
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ing on a natural or artificial high altitude spot (hilltop, tower) [52]. Nowadays,
geospatial sensors are installed on various types of airborne vehicles, most notably
orbital satellites. There is a variety of satellites orbiting the Earth and collecting
large amounts of images. These satellites differ by the on-board sensors (spectral
bands, active/passive), the ground sampling distance (GSD), swath width and
revisit period [49]. Also, the data from some of these satellites is freely avail-
able such as Landsat, Sentinel and MODIS, however this comes at the cost of
having long revisit periods and/or comparatively low spatial resolution. Other
satellites are operated by commercial firms and have a higher image resolution
than free satellites. These satellites, such as WorldView, do not have a fixed pe-
riodic trajectory, but are commissioned to survey a given region at a given time.
Other emerging airborne platforms include unmanned aerial vehicles (UAV), he-
licopters and other aircrafts. The main advantage of these aircrafts and most
notably UAVs are lower operational cost, high spatial resolution, more frequent
revisit times and flying at lower altitudes thus avoiding atmospheric interference
[53]. However, they still cannot cover areas as large as the areas covered by
satellites.

2.3 Applications of Remote Sensing

In order to extract useful information from remote sensing data, a number of RS
image processing and analysis procedures are applied. These techniques include
image fusion, image registration, change detection, scene classification, object
detection, land use land cover (LULC) classification and segmentation. Some of
these procedures are generally used as preprocessing steps to prepare the data
for other applications (fusion, registration, segmentation) while the others are
directly used to extract information for a specific application [54]. The use cases
of RS are quite numerous and relate to different fields such as urban monitoring
[55], climate monitoring [56], disaster response [21], precision agriculture [51],
archaeology [57] and criminology [21].

2.4 General Background on Change Detection

Change detection is the process of using two or more remotely sensed images
of a certain region taken at different times to identify spatial changes that oc-
curred in this region. It has wide applications such as environmental, urban and
disaster monitoring. The information extracted from CD can be used to learn
about the changes in an environment such as updating urban inventories, damage
assessment [5] and disaster response [21].
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2.4.1 Image Modalities in Change Detection.

CD has been carried using a variety of RS image types. These include passively
sensed multispectral (including RGB), hyperspectral and panchromatic images
as well as actively sensed SAR images. HS images offer the richest spectral
information as they have a large number of spectral bands. However, this leads
to an increased dimensionality. Furthermore, HS images suffer from low SNR
and therefore low spatial resolution (blurred objects or vague boundaries). MS
images seem to compromise on the shortcomings of HS images by sacrificing
spectral information, they are more easily acquired and are more readily accessible
(Landsat, Sentinel) and they generally have a higher spatial resolution than HS
images. Panchromatic images have the highest SNR and therefore a very high
spatial resolution. Their only imitation is that they are monochromatic and
lacking in spectral information. On the other hand, SAR images offer a distinct
advantage of not being affected by atmospheric interference. However, they are
plagued by speckle noise which can influence the output of the CD model.

In some cases, images from different types of sensors have been used in ag-
gregation for CD. This is referred to as heterogeneous CD. Using images from
different modalities can have the advantage of leading to a better differentiation.
However, it also introduces some complications due to the discrepancies in the
data between the different sensors (different resolutions and bands). It also re-
quires the inclusion of an image registration step in the preprocessing pipeline to
make sure that image pairs are correctly matched. Shi et al. [24] have compiled
a comprehensive background on change detection in their survey.

2.4.2 Classical Methods for Change Detection

We identify classical CD methods as approaches that do not employ machine
learning. The most common classical CD methods are algebra based and trans-
form based methods [23, 24].

Algebra-based CD methods consist of performing mathematical operations
on images to obtain the change map. Xiong et al. [58] have proposed a change
thresholding method following an image differencing approach applied on SAR
images. They computed the likelihood ratio using the joint probability distri-
bution functions (PDF) of the two (pre and post) images. Assuming the PDFs
follow a gamma distribution, the single peak of the distribution was used to select
an appropriate threshold. This method however only works if the data follows
a gamma distribution. He et al. [59] proposed a dynamic difference image (DI)
thresholding method. The DI was first produced using change vector analysis
(CVA) (a method which represents the change between two bi-temporal pixels
as a vector with a magnitude and an angle [60]). Then the statistical parame-
ters of the DI were computed using Expectation Maximum algorithm assuming a
Gaussian Mixture model. The threshold was initialized using Bayesian decision
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and the the dynamic threshold computed using Fuzzy c-means. Liu et al. [61]
proposed an efficient method to detect small variations in HS images by using
an iterative approach to CVA. Ke et al. [62] proposed a probabilistic significance
test to threshold a DI taking into consideration the pixel neighborhood.

Transform-based methods are mainly concerned with reducing the dimension-
ality of images by removing redundant and highly correlated data while keeping
only the data with the most variance and information. These transforms include
principal component analysis (PCA) [63], tasseled cap transform [64], Gramm-
Shmidt transform and Chi-square transform [65] and discrete wavelet transform
[66]. Homogeneous pixel transformation is another transform that was used to
transfer both pre and post images to the same feature space to make it easier to
use them for CD [67].

There are many other classical CD methods such as reflectance models, spec-
tral mixture models and GIS-based models [24]. A comprehensive review of
classical CD methods was done by Asokan and Anitha [23]. While classical CD
methods have proven to be successful on multiple occasions, they are generally
sensitive to the threshold selection strategy and can be affected by noise in the
images (from difference in sensors or from natural sources like fog, clouds and
sun angle) [23, 25].

2.4.3 AI for Change Detection

In recent years, the change detection community has adopted AI-based solutions
in order to implement efficient methodologies that do not suffer from the draw-
backs of the classical methods. More so, deep learning methods have been the
most predominant among these owing to their success in computer vision. We
therefore distinguish deep learning techniques from shallow learning techniques.
For a more comprehensive review of CD and AI, the reader is referred to the
surveys carried by Shi et al. [24] and Khelifi and Mignotte [25].

Among the many shallow learning approaches, decision trees and support vec-
tor machines (SVM) have been used for change detection. SVMs and tree-based
models are the most popular shallow models in RS applications [68, 69]. Im and
Jensen [70] computed a neighborhood correlation image by defining pixel neigh-
borhoods of fixed size (they experimented with different sizes) and calculating
the piecewise correlation between the pre and post images. They used these then
with a decision tree classifier to obtain the change map. Nemmour and Chibani
[71] used SVMs in the context of land cover CD to detect urban expansion and
they obtained better results than those obtained using a neural network.

CNNs have lead to the revolution of many computer vision applications.
Aptly, CNNs are currently the most used architecture for CD [25]. Khan et al. [6]
cast the CD problem as an object detection problem. Since their dataset spanned
29 years, some samples had missing reflectance information so they devised an
inpainting method that takes into account surrounding pixels from nearby tem-
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poral samples. They generated bounding box proposals using EdgeBoxes [72]
and used a CNN to predict whether each patch belongs to the changed class or
not. Cao et al. [18] used transfer learning for land use change analysis. They ex-
perimented with several pre-trained Imagenet [73] CNNs and fine tuned them on
an open LULC dataset. Then they used the best performing model, a GoogleNet
[74] with an SVM classifier, to detect the expansion of residential areas in the
study area. Peng et al. [27] approached CD as a semantic segmentation problem.
They used the encoder-decoder network UNet++ [75] with deep supervision. As
an input to the network, they also concatenated the bi-temporal images. They
tested their formulation on an open dataset of an urban setting and outperformed
other related works, especially concerning small and obscure changes.

Zhan et al. [28] used a Siamese CNN for CD. They used a weighted contrastive
loss function to train the network which resulted in having feature vectors distant
from each other if there is a change. Therefore, the CM was constructed based
on a simple distance measure and thresholding. They also added a K-nearest
neighbors (KNN) classifier to further refine the results. Daudt et al. [76] compiled
and annotated a dataset for urban growth change detection using MS images from
Sentinel 2. They trained two deep models on their dataset. The first was a single
stream CNN that concatenates the two images on input and produces a Softmax
prediction at the output. The second was a double stream Siamese CNN, the
output of the two streams was concatenated and classified by a fully-connected
network. They showed that the first architecture tends to perform better and
that adding more MS color channels improved the detection.

Lyu et al. [77], used a long short-term memory (LSTM) network as opposed
to a CNN. In this framework, the pixel vector for the pre image was fed to the
input layer which computes the hidden state. The hidden layer then receives the
pixel vector of the post image along with the hidden state and outputs the change
decision. This approach was shown to transfer well to multi-class scenarios and
for inference on new images. Mou et al. [29] took this further by combining RNN
with CNN. At each time step, a CNN was used to extract feature maps represent-
ing the images which were fed to a hidden RNN layer. They experimented with
vanilla RNN, LSTM and gated recurrent networks (GRU) and obtained compet-
itive results with the LSTM-based model. Chen et al. [78] used a multi-layer
LSTM coupled with a Siamese CNN. First, the Siamese network was used to
extract features from the bi-temporal images. These were then inputted sequen-
tially to the multi-layer LSTM. This step replaced stacking or subtracting the
feature maps by a learnable model. Finally, a fully connected network was used
to classify the output. This method was shown to excel in comparison with SOTA
especially with heterogeneous data. Jing et al. [79] introduced a Tri-Siamese net-
work where each stream of the Siamese architectures receives three inputs: one
image (pre or post) but at three different scales. They showed that this methods
outperforms other SOTA and that the introduction of the Tri-Siamese aspect was
their most impactful contribution.
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2.4.4 AI for Building Damage Change Detection

Building damage detection is a specific case of change detection where the objec-
tive is to localize damaged buildings and assess the damage severity in the wake
of a disaster. This information is important to help plan rescue and relief in the
short term and repair operations in the longer term.

Kalantar et al. [33] experimented with three CNN models for post-earthquake
building damage detection. The first is a single stream CNN for which the pre
and post RGB images are stacked. The second is a Siamese CNN whose two
outputs are concatenated. The third is similar to the Siamese CNN however
the two streams do not share parameters. Their experiments showed that the
Siamese model outperforms the others. Jiang et al. [32] introduced a pyramid
feature-based attention guided Siamese network for building damage detection.
The network consists of a Siamese VGG16 [80] feature extractor. They proposed
a novel co-attention model that takes the feature maps of the two input im-
ages and outputs a correlation map. Areas with high temporal correlation are
likely to be unchanged. This was followed by a pyramid-based decoder which
iteratively merges the features across the layers while up-sampling the output at
each layer until it recovers the original image size at the output. Their approach
achieved SOTA results on the WHU dataset [81] and on their own dataset. Ji et
al. [30] proposed a framework for detecting building damage using automatically
generated positive samples (since they are usually scarce). They first extracted
building footprints using a segmenter, then the bi-temporal segmented images
were fed into the change detection network. To generate more changed samples,
they simulated changes in the binary building maps by reduction. Also, they
simulated co-registration errors by shifting building footprints between the bi-
temporal images. This had a regularizing effect and made the model more robust
to errors or noise in the data. They obtained adequate scores on the WHU Build-
ing dataset [81]. Most importantly they fared well even when training on only
simulated data. The performance improved as they added more real data. Wang
et al. [82] addressed the CD as an object detection task rather than a segmen-
tation task. Khan et al. [6] argued that this approach has some advantages over
the segmentation-based approach. They used Faster Region-based CNN (Faster
R-CNN) [83] for change detection in high resolution images in a from-to scheme
rather than binary (from vegetation to building). They tried two different image
fusion methods: concatenation and differencing. They found that the differencing
technique worked better outperforming other baselines. Wheeler and Karimi [35]
used a CNN-based model to classify disaster damage level in the xBD dataset
[3]. They used a pre-trained UNet model to generate building footprint poly-
gons, these polygons were then used to extract sub-images that were passed to a
CNN classifier. The models they tested were based on transfer learning from sev-
eral Imagenet [73] pre-trained models. They also incorporated a class weighing
scheme in their loss function because the ”no damage” class greatly outnumbered
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the other classes. Weber and Kané [84] experimented with different data process-
ing and model training approaches for building damage assessment on the xBD
dataset. They used a shared weight dual stream ResNet50 [85] backbone with
a feature pyramid network for feature extraction. The features were then fed
to segmentation and damage assessment model. Dividing each input image into
four crops, using the same network for both building localization and damage as-
sessment and weighing the loss function inversely to the occurrence of the classes
provided a significant performance improvement. Su et al. [86] provided a review
of the techniques used for building damage detection and used the xBD dataset
to perform an in depth assessment of technical and operational problems that
hinder progress in building damage detection. They identified an inconsistency
and non-uniformity among evaluation metrics used because of the various model
types used (object level and pixel level). They proposed a novel metric and a
way to convert between the different metrics. They suggested training models
relying solely on post images is case pre images were not available. Another sug-
gestion was generating pre-images using generative adversarial networks. They
also identified class imbalance as being a major issue in this field and proposed
various re-sampling techniques. Weight sharing in Siamese architectures, network
pruning and knowledge distillation were discussed as approaches for reducing the
computational needs while still maintaining a good performance.

2.4.5 Methodologies for Fast Change Detection

We have highlighted the importance of obtaining predictions as quickly as possible
in the aftermath of a disaster. There is a large and growing body of work that
aims to address this problem. We have identified two main strategies used to
fulfill this requirement: pre-trained models that transfer from one disaster/region
to another allowing them to be used to infer on new disasters without training
and semi-supervised learning which allows a model to be trained with few labeled
samples thus reducing the amount of time needed for data labeling.

Cross-Domain Transfer for Disaster Damage Detection

Nex et al. [31] acknowledged the effectiveness of CNN-based solutions for CD
and they tested what they can deliver from an operational and first responder
perspective for post-disaster damage detection. They assessed model transfer-
ability and time cost. They also proposed their own CNN model which uses
dense connections and dilated convolutions. They found that the transferabil-
ity is highly dependent on the original training data being similar to the target
data. They also proposed that time cost can be reduced by eliminating some
tiles with irrelevant content (vegetation, water...). Miura et al. [34] also used a
CNN with a similar framework. They tested it on a dataset of typhoon-induced
damage. Benson and Ecker [43] focused on the ability of change detection models
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to generalize into different disaster types. Since the xBD dataset is by default an
IID (independent and identically distributed) set, it was not suitable for assess-
ing the cross-domain generalization ability of a model. Therefore, they created
their own split which provided ample data for training while testing on entirely
different disasters. They experimented with two different models on both the
IID set and their own set and noted the generalization gap. They proposed
multi-domain adaptive batch normalization and stochastic weight averaging to
mitigate this gap in model generalization. Bai et al. [87] studied the effective-
ness of a Semi-Siamese model with a pyramid poling module and an attention
mechanism. They showed good performance on the xBD dataset. To further
demonstrate the robustness of their model, they showed its effectiveness in pre-
dicting on an additional dataset. Gupta and Shah [88] introduced RescueNet,
a unified framework that localizes buildings and provides damage classification.
They outperformed the xBD baseline [3]. To demonstrate the domain-shift gen-
eralization, they trained the model on the Tier 1 data and tested on the Tier
3 data. The model transferred well in terms of localization but less so in terms
of damage classification. Yang et al. [44] assessed the generalization ability of
four CNN models. They first trained these models on data from the xBD dataset
following a variety of training and fine-tuning schemes. They then tested their
on earthquake satellite imagery taken in a different geographical regions and
on aerial images. Their findings highlighted that the models transferred poorly
when tested on aerial images due to the difference in image sensors. However,
this performance was improved when a small number of images from the aerial
dataset were included with the training data. Zheng et al. [45] aimed to address
the issues with object-based image analysis with patch-based CNNs and fully
convolutional Siamese networks. The former has good semantic consistency but
weak feature representation while the latter is the opposite. Therefore, they pro-
posed a deep object-based semantic change detection framework integrating the
two aforementioned frameworks to mitigate their weaknesses. They trained their
model on data from the xBD dataset and tested its performance on the Beirut
Port and Bata barracks explosions to demonstrate its performance and general-
ization ability. They highlighted that being an end-to-end trainable model was
the most important improvement they introduced.

Semi-supervised Learning for Change Detection

Pati et al. [89] developed a hybrid approach combining supervised and unsu-
pervised learning. They proposed a feature extraction algorithm that takes into
consideration neighboring pixels. For labeling the data they used a hybrid un-
supervised model based on clustering and a fuzzy logic membership function.
Then they used these labels to train an SVM and tune its hyperparameters us-
ing genetic optimization. Sublime and Kalinicheva [15] adopted an unsupervised
approach to detect damage caused by a tsunami. They used a deep autoencoder
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(AE) with the assumption that the AE will easily learn trivial changes (caused
by weather, illumination...) while the disaster-induced changes (which are of in-
terest) will be considered as outliers and having high reconstruction error. They
used this information to construct a CM of the non-trivial changes. Finally, they
used clustering to separate the non-trivial changes into different types (flood,
damaged building...). This approach achieved comparable results to supervised
methods. Since the majority of samples in building damage CD are negative
samples (no damage), Tilon et al. [40] cast this problem into an anomaly de-
tection problem with the damaged cases considered as anomalies. They used an
anomaly detecting generative adversarial network. The main advantage of this
approach is that it was only trained on pre-disaster imagery and therefore can be
prepared before a disaster occurs. They tested their method on both the xBD
dataset and their own UAV dataset. They also evaluated the generalization of
their model by testing on different disaster types and regions and they noted that
it decreased when the test set is contextually different than the training set. The
main disadvantage of this approach is that it can only provide binary damage
classification. Peng et al. [41] proposed a semi-supervised framework based on
a UNet++ segmentation network and generative adversarial training. The full
set of both labeled and unlabeled images was fed into the segmentation network
which produces binary change maps. The labeled subset is used to train the seg-
menter in a supervised manner. The outputs of unlabeled images along with the
ground truth of the labeled images were used to train a discriminator intended
to differentiate between output from unlabeled images or ground truth. This dis-
criminator was trained in an adversarial manner with the segmenter thus making
the unlabeled outputs more similar to ground truth. A second discriminator was
similarly trained on the entropy maps of labeled and unlabeled outputs. They
tested their approach on both a public dataset as well as their own dataset and
showed that they achieve SOTA performance.

In this paragraph, we have reviewed several approaches that can accelerate
the process of obtaining predictions for new disasters. We note that the majority
of the work is focused around providing pre-trained models that can be used for
direct inference. However, the generalization of these models has been reported
to be effective to varying degrees and oftentimes hinged on how similar the test
data is to the training data and could be improved by retraining on some samples
of the new data. It is also subject to degradation due to data heterogeneity. This
motivates the use of semi-supervised learning since it is built for each disaster
individually. Also, it is arguably easier to develop since pre-trained models need
to be trained on large and diverse data to maximize their effectiveness which
could be time and resource consuming.
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2.5 Graph Convolutional Networks

2.5.1 Concepts Behind Graph Convolutions

Graphs are a non-linear data structure used to represent complex relationships
among entities of the dataset. We formally define a graph G = (ν, ε) by a set of
N nodes (vertices) ν connected by a set of edges ε with each node characterised
by a feature vector of size F . Node edges can also be weighted or can simply
represent a binary connection. Figure 2.2 shows an example of a classical social
circle problem represented by a graph.

Figure 2.2: Zachary’s Karate Club [1], a common social relation problem repre-
sented by a graph. Each node is a student and the edges represent their social
relations. Different colors represent how the students split into two factions after
a conflict between the club owner and their coach.

Most machine learning models can only deal with euclidean data which is data
that is highly structured and can be represented in a flat space. For example,
CNNs are extremely efficient at exploiting the stationary structure of images (a
two-dimensional array). However, many real world problems naturally fall into a
graph representation such as social relations, molecular chemistry, recommender
systems and traffic prediction. Also, many types of data that are naturally eu-
clidean can be cast as graphs which enables a more global and wholesome repre-
sentation of the data. Graph neural networks have thus emerged to fill this gap
[90, 2].

Graph convolutional networks are currently the most popular type of graph
neural networks, they generalize the concept of convolution into non-euclidean
space by extracting features using signals coming from neighboring nodes. Figure
2.3 shows a high level illustration of conventional and graph convolutions.

In general, the purpose of graph convolutions is to produce node embeddings
which are subsequently used for different downstream tasks such as graph clas-
sification, node classification, and graph clustering. For a given graph, the node
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Figure 2.3: High level depiction of 2D convolution (left) and graph convolution
(right) (Image credit: [2]).

embeddings Z are of shape N×C where C is the number of node output features.
GCNs are divided into two categories: spectral GCNs and spatial GCNs. Spec-
tral GCNs rely on the graph Fourier transform (similar to the Fourier transform
in signals). Graph convolutions are obtained by multiplying two graph signals
in the spectral domain and doing the inverse Fourier transform (a principal well
established in the field of signal processing) [37]. However, the computation of
the graph Fourier transform is relatively expensive. Therefore, a first order ap-
proximation of this process is proposed in spatial GCNs [36] which makes the
process more analogous to the forward pass in a traditional neural network.

In spatial graph convolutions, the graph G is represented by a feature matrix
X of size N × F where each row i is the F-dimensional feature vector of node
i and an adjacency matrix A of size N × N . The adjacency matrix denotes the
edges in the graph. For each pair of nodes i and j, the value of Aij represents the
connection between these two nodes. A value of 0 denotes the absence of an edge
and a value of 1 denotes its presence. In the case of weighted edges, the value of
1 is replaced by the edge weight value. In general, a graph convolutional layer (l)
of a graph neural network of L layers can be defined according to Equation 2.1:

H(l+1) = f(H(l), A) (2.1)

For the input layer, H(0) = X and for the output layer H(L) = Z. the mapping
function f is the graph convolution. Most graph convolutional algorithms differ
only by the definition of f . Initially, this function is defined by Kipf and Welling
[36] according to equation 2.2 where W (l) is the matrix of learnable weights at
layer (l) and σ is a non-linear activation function such as ReLu (rectified linear
unit).

f(H(l), A) = σ(AH(l)W (l)) (2.2)

This propagation rule implies that for each node, we compute the elementwise
sum of the features of the nodes that are connected to it which is then propagated
to the next layer (l + 1) through the weight matrix W (l). However, this does
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not take into account the features of the node itself unless the graph has self-
loops. This is corrected by adding the identity matrix I to A thus enforcing
self-loops. Another proposed modification is the symmetric normalization of A
using its degree matrix D. The outcome is the following updated propagation
rule (Equation 2.3).

f(H(l), A) = σ(D̂− 1
2 ÂD̂− 1

2H(l)W (l)) (2.3)

Where Â = A + I and D̂ is the degree matrix of Â. This proposed formulation
has mostly been applied in transductive settings such as semi-supervised learning.
The major shortcomings of this model is that for transductive learning, the model
needs to have access to the full graph which can be very memory consuming in
certain applications. Also, this trained model cannot be used to generalize on
unseen graphs or nodes.

To address these issues, a different graph convolution operator named SAGE
was proposed by Hamilton et al. capable of learning in an inductive manner
and inferring on new unseen data [46]. This method is based on a cycle of
neighborhood sampling and aggregations to compute the new node embeddings.
This cycle is run for K iterations. For a node ν, the embeddings are noted by
hkν . Initially, the embeddings h0ν are equal to the node features.Then for each
node v ∈ ν, the features of its neighborhood N(v) are aggregated according to the
notation in Equation 2.4.

hkN(v)
= AGGREGATEk(h

k−1
u ,∀u ∈ N(v)) (2.4)

Where AGGREGATE is a differentiable permutation invariant aggregation func-
tion. The authors [46] experiment with three types of aggregators: mean, max
pooling and LSTM. In most cases, the max pooling aggregation is found to be
effective. In this approach, the feature vector of each neighbor u ∈ N(v) is fed
through a fully connected neural network layer and then the resulting vectors are
aggregated into a single vector using an elementwise max operation. This process
is show in Equation 2.5.

AGGREGATEpool
k = max(σ(W poolhku + b),∀u ∈ N(v)) (2.5)

The embedding of node v is then updated using the aggregated features of its
neighbors following Equation 2.6.

hkv = σ(W k.CONCAT (hk−1
v , hkN(v)

)) (2.6)

Where σ is a nonlinearity, W k is a matrix of learnable parameters and CONCAT
is a concatenation operation. This process is repeated K times to obtain the final
node embeddings. Effectively, K determines the number of neighborhood hops
used to aggregate features for each node. Using this sampling and aggregation
strategy, node embeddings can be learned using small subgraphs rather than
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the entire graph. The size of the subgraphs is dictated by the number of edge
traversals K.

2.5.2 Graph Convolutional Networks in Computer Vision

The representation of images as graph structures has enabled the use of GCNs
to solve a number of computer vision problems such as image classification and
object detection. Chauduri et al. [38] used a Siamese GCN for remote sens-
ing image retrieval. First, the two images were segmented into different regions.
Then a feature vector for each segment was constructed using handcrafted shape,
color and texture features. In their graph representation, each segment is a
node and nodes are connected if the segments are adjacent. The edges were also
weighted according to the pairwise centroid pixel and segment orientation dif-
ference. They trained the Siamese GCN using the contrastive loss and used the
Euclidean distance on its output to get image retrievals. Chen et al. [91] used
GCNs to improve the process of multi-label classification in images. While the
co-occurring classes were treated independently, they built a directed graph that
maps the logical relationships between the different classes. This graph was used
to train a stack of GCNs to learn a set of classifiers which were then combined
with the output of a CNN (feature map) to obtain the final classification. By
inspecting the learned weights of the graph, they showed that these weights rep-
resented logical conditional probabilities between the objects. Khan et al. [92]
extended their previous work [38] for multi-label RS image classification. They
used a multi-label output GCN instead of a Siamese GCN. Mou et al. [93] ex-
ploited the semi-supervised nature of GCNs and the possibility of learning from
image-wide relationships using non-local graph representation for LULC classi-
fication in hyperspectral imagery. In their graph formulation, each pixel was
considered to be a node and the similarity between every pair of nodes was mea-
sured to build the edges indicating the likelihood of the two nodes belonging to
the same class. They trained a semi-supervised GCN and showed its effectiveness
on different datasets. They noted a major shortcoming of this method being the
high computational resource demand. Hong et al. [37] developed a GCN variant
for HS image classification. Their variant, called miniGCN, can be trained using
mini-batches of data (like traditional neural networks) and can be used to infer
on new data. In their graph model, each pixel was a node and edges were a
measure of similarity or dissimilarity between pixels. They experimented with
miniGCN as well as miniGCN combined with a GCN throught different output
fusion schemes. They outperformed other works using their concatenation-based
fusion network.
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2.6 State-of-the-Art Work

In this chapter, we have reviewed works related to change detection and GCNs
as these are all related to the problem we are targeting and/or to our formulated
solution. In this paragraph, we regard the works which we identified as being
state-of-the-art in relation to this work.

In general, it was difficult to select a prior work that met all the criteria to
be considered SOTA mainly for two reasons: 1) the lack of a unified benchmark
dataset as most works tend to use their own data; 2) the non-uniformity of
evaluation metrics across different works.

The first SOTA work considered here it that of Saha et al. [39] which was the
first to use a semi-supervised GCN for change detection, largely motivated by the
difficulty of obtaining a large number of labeled samples. They used pre and post
VHR satellite images of the area of interest where a few samples were labeled
as changed or not changed. A superpixel segmentation algorithm was used to
segment the image into multitemporal parcels at different resolution levels. The
graph was constructed using the parcels at the base resolution level as nodes. The
parcel segmentations at higher resolution levels were only used to compute node
features (mean, maximum and minimum spectral values and the area at all the
segmentation resolution levels)r. The graph connectivity was represented by the
adjacency matrix. Any two parcels that did not share an adjacent pixel were not
connected. Otherwise, the edge weight was calculated according to a node feature
similarity measure. For the model architecture they used the GCN operator as
defined by Kipf and Welling [36] to construct a multi-layer network. They trained
and tested their approach for a generic binary urban change detection for an
area in Trento, Italy. They experimented with different hyperparameters and
outperformed other semi-supervised and unsupervised approaches.

Concerning the domain transfer of building damage change detection models,
Xu et al. [42] worked on different earthquake cases. They collected three earth-
quake datasets (Haiti, Mexico City and Indonesia). The only image preprocessing
done was histogram equalization. The labels were obtained from the UNOSAT
program on a five level damage scale similarly to the xBD annotations. However,
to avoid ambiguity, the authors merged the ”Severe” and ”Destroyed” classes.
Since the UNOSAT data only provided annotations for damaged buildings, the
authors used a Faster RCNN building footprint detector to add negative (non
damaged) samples to the dataset. Finally, they cropped the images into smaller
patches for both the pre and the post images. They compared four different
CNN models. The four architectures only differed in how the input is provided:
concatenating the pre and post images, using only the post image, a Siamese
architecture with concatenation of the feature maps and a Siamese architecture
with the difference of the feature maps instead of their concatenation. They first
compared the four models on the Haiti data and found that the Siamese sub-
traction model outperformed the others even though theoretically the Siamese
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concatenation model should have fared better since it is more general. They then
proceeded to test the generalization of the Siamese subtraction model by train-
ing it on one set of regions and testing on another. The best generalization was
achieved when a small percentage of samples was leaked from the test set into
the training data.

In summary, Saha et al. [39] introduced GCNs to the field of change detec-
tion and showed how this problem can be cast into a semi-supervised graph node
classification. One important shortcoming of this approach is that for GCNs to
be trained under a transductive setting, the entire graph must be loaded into
memory. In the case of satellite imagery, this can reach unscalable levels of mem-
ory consumption. It is worth noting that the authors of the above work avoided
this bottleneck by using handcrafted summary features of the node segments.
However, this eliminates the opportunity of using the full image pixels to learn
important features as is done in traditional CNN based frameworks. On the
other hand, Xu et al. [42] proposed a systematic framework for assessing the
generalization and domain shift robustness of a model which is a necessary test
to perform on any disaster related change detection solution. One notable gap in
their analysis is that the studied domain shift is exclusively related to a change
in the disaster location and not in the disaster type.

In this work, we present a graph node classification building disaster damage
detection framework. Our formulation is inspired by that of Saha et al. [39]
but we take it further by modifying the way the graph is built by learning deep
pixel feature maps as node features instead of calculating summary features as
it is done in traditional CNN frameworks. We also use a geometric triangula-
tion to define the edges to ensure that every building is connected to all of its
surrounding neighbors instead of only connecting adjacent patches. We adopt
both an inductive learning setting and a transductive setting. The former being
suitable for semi-supervised learning which needs much fewer labeled samples to
converge and the latter being more suitable when seeking a solution that can
transfer to other data domains. We test the transferability by adopting a similar
experimental setup to that of Xu et al. [42] but using the xBD dataset but our
assessment also takes into account transferring to different disaster types and not
just different regions with the same disaster. Benson and Ecker [43] also provided
a robust experimental setup for testing model domain shift effectiveness using the
xBD dataset. However, we adopted that of Xu et al. [42] because it allows for
more flexibility regarding which disasters to choose as training and target subsets
and regarding the size of each subset. Furthermore, we embed contextual build-
ing meta-features which introduce additional data for learning based on domain
knowledge. None of the previous works rely on anything other than image data.
Table 2.1 summarizes how the work presented here is different from the SOTA
literature.
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Table 2.1: Qualitative Comparison with State-of-the-art Work.
Work Building Damage Uses GCN Semi-supervised Domain Transfer Uses Meta-features

Xu et al. [42] Yes No No Yes No
Saha et al. [39] No Yes Yes No No
This Work Yes Yes Yes Yes Yes

2.7 General Research Trends

Based on the literature reading we have done in this work, we draw several
conclusions and note patterns and trends in research concerning the field of change
detection. For this analysis, we discard works that were simply cited to define a
term or to credit resources. As a result, we obtain a corpus of 83 publications. We
divide these works into several subcategories based on the general topic (Figure
2.4). The majority of the works considered are naturally related to CD. We
divide the different CD works by application. We focus on damage detection and
disaster related applications since this is the case considered in this work. Urban
CD works are those concerned with tracking urban expansion or LULC change
while Environmental CD are works related to monitoring natural phenomena and
environmental problems such as lakes and sea ice. Remote sensing subtopics were
collected to provide the background on remote sensing and its applications at the
beginning of this chapter. Works under the category Algorithms were the works
that introduced an algorithm or a theory that was useful for this work such as
the Semi-supervised GCN [36].

Figure 2.4: Different subcategories of the collected publications.

With only a few exceptions, the majority of the publications are journal ar-
ticles which indicates the maturity of the research being done in this field. We
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also note that most of them were concentrated in the last few years and have
been increasing every year (Figure 2.5). This means that although CD is a long-
standing field, interest in new solutions has not waned and the field is still being
continuously improved.

Figure 2.5: Publication year and venue type of the collected works.

In terms of publication venues, the majority of works were published in re-
mote sensing themed journals instead of being published in machine learning
venues (Figure 2.6) despite the solutions and experiments carried being heavily
dominated by machine learning development and testing protocols.

Figure 2.6: Top 10 publication venues of the reviewed literature.

Finally, we show in Figure 2.7 how the adopted CD approaches have changed
over the years. We first note that traditional approaches such as classical CD

22



and shallow learning have seen a decrease in use and have all but disappeared in
2019. This was accompanied by the adoption of deep learning based approaches.
Particularly, there was a sharp increase in CNN adoption in 2019 and it has
been since the predominant family of models. Moreover, new architectures have
appeared in 2020 and 2021 such as hybrid GAN-based models as well as GCN.

Figure 2.7: Evolution of CD methods over the years.

In summary, our review of related works shows that the field of change detec-
tion has been rapidly evolving in recent years. The amount of research interest
in this field has risen sharply and new and sophisticated solutions are being de-
veloped. In this work, we proceed along this path by proposing our own method
based on a GCN combined with a CNN that still retains the powerful capabili-
ties of the CNN while overcoming the limitation of its locality. We also propose
how the limitations of satellite-based solutions can be mitigated using contextual
urban features.
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Chapter 3

Methodology

The main contribution of this work is the introduction of a novel graph-based
approach for building damage change detection. Below we present details about
the graph-based data structure and the model architectures used and training
configurations.

3.1 Graph Data Formulation

We propose a graph-based structure for presenting the data which allows our
models to exploit both the local image features as well as their relationships
with neighboring samples. This formulation assumes the existence of building
footprint polygons which are available in the xBD dataset and were procured
for our Beirut Port Case study from the Beirut Recovery Map project 1. In
case these footprints were not available, they can be obtained using a building
footprint detector [35].

Our formulation builds an undirected acyclic graph using the building poly-
gons. Each node in the graph represents one building. The node features are the
concatenation of the pre and post image crops defined by the rectangular envelope
of the building polygons. The crops are resized to a width and height of 128×128
in order to unify their size and reduce the memory footprint of the graph. The
pixel values are normalized to a range between 0 and 1. The resulting feature
vector is of size N = 128 × 128 × 3 × 2 = 98304. To exploit domain knowledge
information, we embed the meta-features at the node level which increases the
dimension of the vector to N = 98324. The edges are constructed using a Delau-
nay triangulation [94] based on the building envelope centroid coordinates. Each
edge is given a weight measuring the similarity between the connected nodes.
This weight is calculated according to Equation 3.1 which was used by Saha et
al. [39] to build their adjacency matrix. In Equation 3.1 below, Ei,j is the weight
of the edge connecting node i to node j and N is the number of elements in the

1https://openmaplebanon.org/beirut-recovery-map
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feature vector Fi of node i which is equal to the number of pixels per RGB image
multiplied by two due to the presence of both a pre and post image.

Ei,j = 1− 1

N

N∑
n=1

|F n
i − F n

j |
|F n
i |+ |F n

j |
(3.1)

Figure 3.1 shows a conceptual sketch of the proposed graph formulation while
Figure 3.2 shows a realized implementation on an example from the xBD Joplin
Tornado set.

Figure 3.1: Concept of the Graph Formulation. Different node colors indicate
nodes’ different classes.

It is important to note the differences in constructing the graph when using
the transductive semi-supervised approach as opposed to the inductive supervised
approach. For the transductive case, the entirety of the data needs to be built
into a single graph because the semi-supervised GCN, as is the case with semi-
supervised models, needs to observe the entirety of the data during training. Only
a relatively small number of samples is labeled during training and the model
learns to propagate labels along the graph edges to the rest of nodes. However,
this requires that the forward pass be made on the full dataset during training
which requires heavy computational resources to hold the large graph in memory.
In the inductive setting, training is done on batches of data which mitigates the
memory issue of transductive graph learning. In the case of graphs, each batch
is created by sampling a neighborhood of nodes from the full graph [46]. Based
on the above, we exploit the natural organization of the xBD dataset to define
suitable graph construction methods for both cases. For the transductive setting,
we construct one large graph out of each region. In this case, the coordinates are
the UTM (Universal Transverse Mercator) coordinates of the polygon envelope
centroids. What we do differently is in regards to the inductive case. Normally,
we would have built a large graph out of each region as we did for the transductive
case and sampled subgraphs. However, the size of such a graph proved too large
to hold even within CPU memory. The xBD dataset is already divided into
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Figure 3.2: Subgraph implemented on a sample from the Joplin Tornado set.

image chips with each chip covering a certain geographical area and having a non
uniform number of buildings. Therefore, we use this predefined organization to
build a single graph out of each image chip. In this case, the coordinates are
based on the pixel positions. Figure 3.2 is an example of an image chip that was
used to create a subgraph.

3.2 Model Architecture

Using the proposed graph formulation, we use graph convolutions to aggregate
signals coming from neighboring nodes. However, our preliminary experiments
have shown that it is important to have a reliable way of extracting local features.
Therefore, we present an architecture combining both a CNN and a GCN. The
CNN backbone is used to extract local image features and the GCN operator is
used to aggregate them with CNN features of connected nodes. The CNN back-
bone is a Siamese ResNet34 network with the classification layers removed [85].
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The output of the two-stream network is the difference between the individual
stream outputs which is piped into a graph convolutional network whose output
is the classification. The ReLu activation function is used for all layers except the
last layer which uses a Softmax activation. The ResNet weights are initialized
with the ImageNet weights but are trained along with the entire model.

The same architecture is used for both the transductive and inductive cases,
the only difference being the graph convolution operator used. For the transduc-
tive case, we use the semi-supervised graph convolutional operator by Kipf and
Welling [36]. For the inductive case, we use the SAGE operator by Hamilton et
al. [46] which was conceived to allow GCNs to be trained in an inductive manner
using batches of data.

When introducing domain knowledge data, the images are fed through the
ResNet backbone and the output is concatenated with the meta-features. The
resulting vector is then inputted through the GCN layers. A similar meta-feature
injection method was adopted in different applications [95, 96]. The diagram in
Figure 3.3 shows the overall layout of the proposed architecture with or without
meta-features.

Figure 3.3: Architecture of the proposed model. Objects in dotted lines indicate
meta-feature injection if these features are available.
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Chapter 4

Experiments, Results and
Discussion

In this chapter, we present the data that was used in this work along with the
data preprocessing steps needed. We describe the experiments and procedures
done to implement and evaluate our approach. We also show and analyse our
results and discuss their significance and implications.

4.1 Datasets and Evaluation Metrics

The proposed approach is tested on both a public dataset to position this method-
ology with respect to the literature as well as the Beirut Port Explosion dataset
which serves as a demonstration of the effectiveness of meta-feature injection for
building disaster damage change detection.

4.1.1 xBD Dataset

The xBD dataset [3] has different cases of city damage for different disaster types
(earthquake, flood, wildfire...). It contains a collection of manually annotated
pre and post Worldview 2 images acquired from Maxar’s open data program.
The dataset is organized into two big sets. The Tier 1 set contains a collection
of disasters divided into train, test and hold subsets. The Tier 3 set introduces
additional disasters. This dataset was used for the xView21 competition.

At the time of writing, this dataset is the most diverse in terms of regions,
disaster types, buildings and urban density. It contains image chips of earthquake,
tsunami, flood, volcano, wildfire and tornado/hurricane disasters across sixteen
regions as shown in Figure 4.1. The landscape in these different regions varies
from an urban scene such as Mexico to largely rural regions such as Guatemala.

1https://xview2.org/
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Figure 4.1: xBD disaster distribution across the regions (Image credit: [3])

The dataset is annotated according to a four-class joint damage scale: no dam-
age, minor damage, major damage and destroyed. As with most disaster datasets,
this dataset suffers from severe class imbalance as the majority of buildings are
non-damaged. This was indicated by the authors and is further highlighted by
exploring the number of individual buildings belonging to each class per region.
This is shown in Figure for a subset (Tier 3) of the regions. On average, 80.4% of
individual buildings across the Tier 3 regions are non-damaged (Fig. 4.2). Also,
since each region is divided into equal image chips, we investigated the number of
chips with at least one damaged instance and found that about 50% on average
do not contain any damaged buildings (Fig. 4.3). This was important for formu-
lating our data sampling strategy. Especially considering that many image chips
had no damage at all and these could be undersampled. Dataset class balance
visualizations for Tier 1 regions are provided in Appendix A.

4.1.2 Beirut Explosion Dataset

Beirut is an architectural mosaic with irregular and heterogeneous building pat-
terns with many different layers of architectural styles added on top and next to
each other over the decades. The architecture in this city spans many centuries
and civilizations as it is home to Roman heritage sites and civil war (1975-1990)
ruins. However, these structure are not located far from luxurious commercial
and financial districts and modern residential high-rises. The architectural styles
that dot the city are also varied and include Ottoman, European and Gothic
patterns [97].

The port explosion occurred on August 4, 2020 resulting in the death of nearly
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Figure 4.2: xBD Tier 3 number of buildings per class.

135 people, around 5000 injuries and causing severe structural damage to the
surrounding area leaving more than 300000 people homeless [98]. The strength of
the blast was estimated to be equivalent to the twentieth of the Hiroshima bomb
and as the strongest non-nuclear explosion in the 21st century [99]. Worldview
2 satellite products covering a large portion of Beirut were donated by Maxar
Technologies2. The first was taken on July 31 2020 and the second was taken
on August 5 2020. The damage classification was provided by the Open Map
Lebanon team who curated these annotations for their Beirut Recovery Map
project3. These annotations use a four class damage scale: minor, moderate,
major and severe damage. Furthermore, the heterogeneous and irregular urban
and architectural landscape of Beirut motivated us to use of contextual meta-
features to enable our model to learn the patterns and interactions resulting
from this building non-uniformity. This dataset were obtained from Krayem et
al. [100].

The images needed to be preprocessed before being used. All of the following
steps were carried using ArcGIS Pro 2.8.0. First, the two image products (pre
and post) were used to produce pansharpened color images (using the RGB and
panchromatic images). Then the shapefiles containing the image polygons were
overlaid on top of the images. A subset of the provided polygons was selected
for memory constraints. These shapefiles contain the polygon geometries as well

2https://www.maxar.com/
3https://openmaplebanon.org/beirut-recovery-map
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Figure 4.3: xBD Tier 3 chips with at least one damaged building.

as some additional features including the damage class which was converted to
integer encoding. A view of this area as well as the class distribution of the
included polygons are shown in Figures 4.4 and 4.5 respectively.

The first and problem with the data is that the building polygons are not
aligned with the buildings in the actual images because the polygons were cre-
ated4 on a different image. Different satellite images are taken at different angles
which produces this alignment error. Therefore, each one of the two images was
georeferenced to the polygons. First, the entire image was moved in order to
align with as many polygons as possible. However, it is not possible to achieve
a satisfactory general alignment using this method since the misalignment is not
uniform across the entire map. The next step was to manually add ground control
points (GCP) linking each building in the image to its corresponding polygon.
Once all the GCPs were added, a third order transformation was used to fit the
image into the GCPs thus reducing the misalignment error. However, this does
not achieve a perfect fit. An example of a corrected polygon misalignment is
shown in Figure 4.6.

The second problem was that the polygons were drawn to the shape of the
building rooftops. This assumes that the satellite image was taken at nadir and
therefore only the rooftops of buildings would be visible and this is often not
the case. For most buildings this would not cause an issue. However for tall

4https://www.beiruturbanlab.com/en/Details/666/municipal-beirut-basemap-ava

ilable-for-download
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Figure 4.4: Overview of the selected area.

buildings, this would have resulted in the cropped image showing only a small
portion of the visible part of the building. A similar difficulty was also reported
by Zheng et al. [45]. An example of this scenario is shown in Figure 4.7.

To mitigate this, we create a rectangular envelope around each polygon buffered
by five meters in each direction. This also helps with the georeferencing error. A
similar procedure was proposed by Miura et al. [34]. An example of a buffered
mask is shown in Figure 4.8.

The centroid latitude and longitude for each of the buffered masks was cal-
culated for building the graph. Finally, the image chips defined by the buffered
masks were extracted.

The meta-features dataset contains multiple building features collected from
multiple sources. To join the explosion damage database with this database, we
first convert this dataset’s coordinate reference system (CRS) from Stereographic
Levant to World Geodetic System (WGS) 84 using a geodetic translation with
(-186.99, -20.42, 272.936) XYZ values. Due to the absence of a common sample
identification key between the two datasets, we perform a spatial join operation.
As feature preprocessing, we first drop the features related to electricity consump-
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Figure 4.5: Class distribution of the selected samples.

Figure 4.6: Before (left) and after (right) georeferencing.

tion as we deem them irrelevant. We retain features related to the number of
apartments, area, perimeter, number of floors, digital surface model (DSM) value,
building height, construction year, construction era, heritage status and build-
ing function. Then we consolidate the different columns containing the same
feature coming from different sources into single columns to minimize missing
values. However, the data still had a lot of missing values. Categorical features
such as building function are converted to one-hot encoding format. Figure 4.9
shows the distributions of the Heritage and Building Function attributes. For
the case of the Function attribute, the value ”Other” is equivalent to a missing
value. Finally, all columns were normalized to a range between zero and one with
zero representing missing values. Table 4.1 shows some statistics regarding the
meta-features including the number of missing values (nulls) for each attribute.
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Figure 4.7: A polygon covering only part of the building.

Table 4.1: Summary Statistics of the Beirut Meta-features.
Number of apartments Mean DSM Mean building height Area Perimeter Era Built year Floors

Count 535 1023 1023 1257 1257 711 789 870
Number of nulls 831 343 343 109 109 655 577 496

Mean 6.72 41.24 18.47 568.03 86.95 2.74 1954.41 4.17
Std 6.95 18.39 10.88 1484.34 76.44 0.97 36.93 2.63
Min 1 3.78 1.66 17.58 17.81 1 1219 1
Max 60 113.70 95.65 16574.86 1062.72 5 2021 26

4.2 Model Evaluation

4.2.1 Performance Metrics

For model evaluation, we refer to SOTA literature to decide which metrics to
use. For the transductive experiments, we compute the accuracy (Equation 4.1),
precision (Equation 4.2), recall (Equation 4.3) and specificity (Equation 4.4) as
was done by Saha et al. [39] along with the F1 score (Equation 4.5). For the
inductive case, the accuracy and ROC (receiver operating characteristic) AUC
(area under the curve) score are used as was done by Xu et al. [42]. The ROC
curve is a plot of the true positive rate (recall) with respect to the false positive
rate (1− specificity). This curve represents the ability of a model to distinguish
between positive and negative samples. The area under this curve (AUC) is
used as a summary metric of this curve. The closer the AUC is to 1 the more
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Figure 4.8: Buffered mask (red) around the original polygon (orange).

capable the model is of correctly distinguishing between the classes. We also
supplement it with the F1 score which is, along with The AUC score, sensitive to
class imbalance which is prevalent in this dataset. The aforementioned metrics
are shown in the Equations below where:

• TP (true positive): number of positive samples predicted as positive.

• TN (true negative): number of negative samples predicted as negative.

• FP (false positive): number of negative samples predicted as positive.

• FN (false negative): number of positive samples predicted as negative.

accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

precision =
TP

TP + FP
(4.2)

recall =
TP

TP + FN
(4.3)
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Figure 4.9: Counts of Beirut heritage buildings and Beirut buildings by function.

specificity =
TN

TN + FP
(4.4)

F1 =
2× precision× recall
precision+ recall

(4.5)

4.2.2 Model Benchmarking

Since none of the works in the literature report results on the same data sampling
scheme followed here, we rely on training benchmark models and comparing their
performance to our method.

For evaluating the semi-supervised GCN, we train and report the performance
of the Semi-supervised Multiresolution Autoencoder by Ienco and Pensa [4]. This
model was also used for benchmarking in the recent work by Saha et al. [39]. The
key concept behind this autoencoder is that it solves a classification problem in
addition to the traditional reconstruction problem. The architecture (Figure 4.10)
consists of a traditional encoder-decoder with a bottleneck layer in the middle
which is also connected to a prediction layer. The encoder-decoder is trained to
reproduce the input at the decoder output by optimizing the mean squared error
reconstruction loss calculated on the entire data. This is important for learning
robust data embeddings at the bottleneck layer which are subsequently used for
prediction. The classification categorical crossentropy loss is calculated only on
a small number of training samples. This tunes the bottleneck embeddings to
be useful for classification and not just for reconstruction. This method also
adopts an ensemble strategy where multiple autoencoders are trained with a
randomly sampled number of neurons for the bottleneck and intermediate layers.
The output of the model is the concatenation of the bottleneck embeddings of all
autoencoders. The samples are then partitioned into different groups by applying
k-means clustering on the embeddings.

36



Figure 4.10: Semi-supervised autoencoder architecture (Image credit: [4])

To calculate the desired metrics on the output of the autoencoder, we needed
to establish which cluster corresponds to which class. This was done based on
the majority class per cluster. Each cluster is considered to represent the class
of the majority of the samples that were placed in it. In practice, this was done
by building the confusion matrix which would be initially disordered and then
rearranging either the rows or the columns to maximize the sum of the diagonal
[101]. The right permutation is found using the Hungarian algorithm [102].

For evaluating the supervised Graph SAGE, we adopt our own benchmark
model, a Siamese CNN, which is nearly identical to the Graph SAGE architec-
ture except that it does not perform graph convolutions. This was done by simply
replacing the SAGE layers with fully connected layers. The reason behind adopt-
ing such a benchmark is that we want the models to be relatively on the same
complexity level with only the SAGE graph convolution being the difference.
This allows us to clearly highlight the contribution of the graph convolutions
when comparing the two models.

4.2.3 Null Hypothesis Testing

In the previous paragraph, we have described how we compare our methodology
to other benchmark models in order to assess its merit. Such a claim can be made
more certain by eliminating the possibility that the difference in performance
is situational and proving that it is statistically significant. This is done by
performing a hypothesis test in order to reject the null hypothesis which assumes
the difference is due to chance.

For this purpose, we adopt the paired Student’s t-test [103] and the Wilcoxon
signed-rank test [104]. The latter is similar to the t-test however it is not paramet-
ric, meaning it does not assume any distribution of the data (the t-test assumes
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a t distribution). Each of the two models being compared is trained thirty times
on a differently sampled training set and its performance is reported on a hold
set. To ensure that the independence condition is not violated and that there is
no overlap between the re-sampled training sets and the hold set, the latter is
separately partitioned and the remainder of the data is randomly sampled into
a different training set every run. The variable considered for the test is the
difference between the metrics of the two models. A separate test is carried for
each of the calculated metrics with a significance level of 5%.

4.3 Experimental Setup

All of the below experiments and procedures were implemented using Python 3.8.
GCN Models were built and trained using Pytorch 1.7.1 and Pytorch Geometric
1.7.0 [105]. The siamese CNN was built using Pytorch and the multiresolution
semi-supervised autoencoder was built using Tensorflow 2.3. Additional compu-
tational libraries used include Numpy, Scikit-learn, PIL (Python Image Library),
Scipy and Pandas. Code was executed on a virtual machine running on 8 cores
of an AMD EPYC 7551 32-Core Processor with an Nvidia V100 32GB GPU.
The code base that was used to perform these experiments is available56. The
Adam optimizer [106] was used with the categorical crossentropy loss function
for all models (except for the autoencoder which was trained as specified by the
authors). The loss function included class weights in order to mitigate the im-
pact of class imbalance. The class weights were calculated based on Equation 4.6
which was inspired by King and Zen [107]. Additionally, the ”major damage”
and ”destroyed” classes in the xBD dataset were merged into a single class since
they are very nuanced and are hard to distinguish which would degrade the per-
formance of our models. This was also done by Xu et al. [42] on their dataset.
For similar reasons, we merge the ”minor” and ”moderate” classes in the Beirut
dataset.

class weight =
n samples

n classes× class occurrence
(4.6)

For all models (except for the autoencoder), the number of neurons, number
of layers, dropout rate, learning rate and batch size were tuned in a way to reduce
overfitting and improve performance on the test set. The final adopted config-
uration is two graph convolutional (fully connected in the case of the Siamese
CNN) layers with 32 neurons and a dropout rate of 0.5. The batch size was set
to 256 (only for the supervised models) and the learning rate to 0.0003.

5https://gitlab.com/awadailab/gcn-remote-sensing
6https://gitlab.com/awadailab/sage-project
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4.4 Semi-supervised GCN with the xBD dataset

The first set of experiments aims to evaluate the merit of our semi-supervised
GCN by training and testing it on data from xBD. We use the Pinery Bushfire,
Joplin Tornado and Nepal Flooding events from the Tier 3 set. One important
aspect of this method is that it needs to observe all of the training data during
training because it is semi-supervised. Moreover, in the case of GCN, all of the
data needs to be loaded at once since it is necessary to have all the samples to
build the full graph.

In order to accommodate this requirement with the memory resources avail-
able, we devised a strategy to prune the data. First of all, all unlabeled samples
were discarded. As previously mentioned, each disaster event is divided into
equal image chips. Figure 4.11 shows the image chips for Joplin Tornado. We
have also shown (Figure 4.3) that many chips do not have any damaged samples
at all. This is because the damage is more concentrated around the location of
the damaging force. Figure 4.12 shows how the damage is mostly concentrated
along the trajectory of the tornado.

Figure 4.11: Image chips of Joplin Tornado as squares of different color.

Therefore, We discard image chips that do not have any damaged samples.
Finally, if the data still needed to be reduced, a random subset is sampled while
preserving the class distribution of the original data.

The obtained samples are used to build the graph. Afterwards, each node in
the graph is marked as being either training, testing and hold. This assignment
is done randomly while maintaining the same class distribution. The training
nodes are a small number of nodes for which the loss function will be computed
during training and used to optimize the model. Testing samples will be used
to compute performance metrics after every epoch for model selection. After the
training is done the metrics are computed on the hold set as well as the entire
graph. Metrics are also computed on the training set after each epoch.

We experimented with different sizes for the training set and found that us-
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Figure 4.12: Above: Joplin Tornado damage as provided in the xBD dataset.
Below: Joplin Tornado trajectory (Image credit: https://www.nist.gov/ima

ge/aerialimageofjoplinmissouritornadodamagejpg).

ing 20% of the data to be the best compromise in terms of performance and
maintaining a relatively small number of training samples (Figure 4.13).

4.4.1 Benchmarking with Multiresolution Autoencoder

The multiresolution autoencoder was trained on the same data that was used to
train the GCN with exactly the same train, test and hold splits. The hyperpa-
rameters such as the number of layers, batch size and learning rate were used as
proposed by the authors [4]. However, the number of intermediate neurons was
specified as being proportional to the number of features. We had to scale that
down while maintaining the proportional relationship because due to the large
number of features we have (pixels) with the original scaling that number became
too large and the memory footprint of the model exploded. Table 4.2 show the
results for both the GCN and the multiresolution autoencoder.

In general, we find that the GCN systematically outperforms the autoen-
coder. Fig. 4.14 shows the difference between the BLDNet and autoencoder
hold scores for all three disasters. We achieved an average increase of 16.3%,
14.05%, 16.51%, 8.62% and 15.98% for accuracy, precision, recall, specificity and
F1 score respectively on the hold set across disasters. Recall saw the highest
average improvement which signifies a notable amelioration in the ability to de-
tect the positive class (damage). We also see a trend where specificity tends to
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Figure 4.13: Model performance with respect to the training data size.

be higher than other metrics. This measure represents the model performance
on the negative class as opposed to recall. This difference is more pronounced
the more unbalanced the dataset is. To show this, we compute the Shannon
equitability index (range 0-1 with 1 being balanced and 0 unbalanced) [108] for
each of the three sets we used in both their original and pruned versions. We
also calculate the difference between the specificity and recall scores on the full
set for each disaster (Table 4.3). First of all, we find that all pruned sets have a
higher index than their original counterparts which means that our data pruning
had a positive impact on the unbalanced state of the dataset. This is due to our
prioritization of non-damaged samples for removal. Also, the difference between
specificity and recall is consistently reduced with lower class imbalance (higher
Shannon index). We therefore conclude that decreasing class imbalance and the
prevalence of non-damaged samples increased the model’s ability to accurately
detect damage. The disasters in Table 4.3 are sorted to reflect this pattern.

Additionally, we investigate the class separation ability of this model by pro-
ducing a TSNE (t-distributed stochastic neighbor embedding) [109] visualization
of the node embeddings produced by the GCN (Figure 4.15). We notice that
each class forms a cluster. However, we also note that the ”minor damage” class
lies between the two other classes and that it does not form a cluster as sepa-
rated and condensed as the other two since we see points belonging to the ”minor
damage” class within the other clusters. This gives credit to our and Xu et al.’s
[42] assumption that intermediate damage classes can be ambiguous and harder
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Table 4.2: Comparison between our Semi-supervised GCN and the Multiresolu-
tion Autoencoder (AE) with Bold Italics Indicating Better Performance.

Set AE GCN

Pinery Bushfire

Acc Precision Recall Specificity F1 Acc Precision Recall Specificity F1
Train 0.6044 0.4935 0.4811 0.7386 0.4495 Train 0.9524 0.8444 0.9813 0.9822 0.9023
Test 0.5000 0.3338 0.3288 0.6357 0.3013 Test 0.7146 0.4515 0.5057 0.7791 0.4660
Hold 0.4773 0.3439 0.3090 0.6651 0.3044 Hold 0.7145 0.4517 0.4941 0.7743 0.4646
Full 0.3909 0.2993 0.3226 0.6028 0.2588 Full 0.7247 0.4671 0.5182 0.7918 0.4826

Joplin Tornado

Acc Precision Recall Specificity F1 Acc Precision Recall Specificity F1
Train 0.6337 0.5450 0.4925 0.8033 0.5067 Train 0.9634 0.9462 0.9696 0.9839 0.6562
Test 0.5171 0.5188 0.4274 0.7484 0.4457 Test 0.7610 0.6968 0.6968 0.8802 0.6900
Hold 0.6179 0.5382 0.4967 0.7837 0.4967 Hold 0.7540 0.6987 0.6992 0.8778 0.6914
Full 0.5988 0.5400 0.4893 0.7809 0.4961 Full 0.7606 0.7049 0.7027 0.8810 0.6954

Nepal Flooding

Acc Precision Recall Specificity F1 Acc Precision Recall Specificity F1
Train 0.6484 0.3976 0.6864 0.6836 0.3905 Train 0.9707 0.9310 0.9871 0.9889 0.9566
Test 0.5463 0.3664 0.3701 0.6958 0.3643 Test 0.6780 0.4907 0.4535 0.7344 0.4623
Hold 0.5930 0.4056 0.4121 0.7059 0.4082 Hold 0.7086 0.5589 0.5199 0.7613 0.5328
Full 0.5754 0.3712 0.3733 0.6907 0.3720 Full 0.7152 0.5585 0.5244 0.7710 0.5363

Figure 4.14: Performance difference with respect to the autoencoder for all three
disasters.

to distinguish from other classes. These results are achieved without using an
ordinal crossentropy loss function and therefore the model had no incentive to
treat the classes as being ordered.

To further ensure the validity of these results, we ran the Student t-test and
Wilcoxon signed rank test as previously described. The null hypothesis was
rejected for every metric meaning that the difference in performance is not due
to chance. Looking at the distributions of the metric population (Figure 4.16),
it can be argued that the difference is clearly significant without the need to run
a statistical test.

4.5 Semi-supervised GCN with the Beirut Ex-

plosion dataset

The second set of experiments demonstrates the effectiveness of our method on
a different scenario. The Beirut Port explosion is a man-made disaster resulting
from artificial explosives as opposed to the natural disasters we have dealt with
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Table 4.3: Shannon Equitability Index for the Chosen xBD Sets and the Differ-
ence between Specificity and Recall.

Joplin Tornado Nepal Flooding Pinery Bushfire
Shannon equitability original 0.813 0.558 0.247
Shannon equitability pruned 0.878 0.597 0.495

Specificity - Recall 0.1783 0.2466 0.2736

Figure 4.15: GCN node embeddings for Joplin tornado.

previously. Also, Beirut presents the case of a city with largely irregular and
non-homogeneous urban and architectural layouts which entails that buildings
within close proximity of each other would interact differently with the damaging
force.

We run these experiments with the same model and training configurations
that were adopted for the xBD dataset. No data pruning strategy was needed here
since the area of interest was selected during preprocessing (Figure 4.4). The first
experiment was performed without any meta-features and the second experiment
was performed with meta-feature injection. Table 4.4 shows the results of both
experiments. Bold and italic numbers indicate superior numbers.

In most aspects, we find that the experiment with the meta features yielded
better results. On the hold set, we achieve an average increment of 5.65% over
the five metrics. The least improvement is 3.09% for specificity and the highest
is 8.79% for accuracy. This means that augmenting the images with these addi-
tional contextual features helps the model better estimate how each building was
impacted by the disaster. This improvement was achieved despite 32.18% of the
data being missing on average across the meta-features.
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Figure 4.16: Distribution of the performance metrics obtained after 30 runs with
different data samples.

Table 4.4: Comparison between the GCN with or without Meta-features on the
Beirut Data with Bold Italics for Best Metrics.

Beirut

Accuracy Precision Recall Specificity F1
Train 0.9534 0.8474 0.9804 0.9817 0.9033
Test 0.7415 0.5930 0.6744 0.7810 0.6189
Hold 0.7291 0.5993 0.6826 0.7815 0.6274
Full 0.7460 0.6241 0.7276 0.8031 0.6595

Beirut Meta-features

Accuracy Precision Recall Specificity F1
Train 0.9963 0.9926 0.9985 0.9985 0.9955
Test 0.7878 0.5779 0.6571 0.7827 0.6100
Hold 0.8170 0.6533 0.7329 0.8124 0.6866
Full 0.8133 0.6409 0.7407 0.8178 0.6808

4.6 Supervised change detection and domain shift

with Graph SAGE

We recall that in this work, a desired feature of our solution is ability to obtain
predicitions in a quick manner because this is necessary for planning emergency
disaster response for rescue and relief. The previous experiments achieve this by
relying only on a small number of annotated samples. This experiment aims at
addressing this aspect using a different approach: having a pre-trained model
that can used on new disasters without training.

For this purpose, we adopt the SAGE graph operator since it can be trained
on mini batches in a supervised manner and used to infer on unseen data. The
experiment designed to test generalization was inspired by Xu et al. [42]. They
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started by training and testing on the same disaster and then experimented with
training on a certain disaster set and testing on a different disaster. We follow a
similar strategy using disasters from the xBD dataset. Additionally, our experi-
ments not only test training and testing sets belonging to different regions, but
we chose different types of disasters. The last experiment aims to indicate how
much leaking some of the test data into the training data improves performance.
This simulates the case where a small number of labeled samples for the new dis-
aster can be obtained (similarly to the semi-supervised case). Image chips with
only one building and image chips with only one annotated building or with no
labeled buildings were discarded since these would not be suitable for creating a
graph. As a benchmark, the Siamese CNN model described previously was also
trained on the same data. The data used for these experiments as well as the
results for both models are shown in Table 4.5.

Table 4.5: Comparison between the Graph SAGE and the Siamese CNN.
Train Test/Hold Siamese CNN Graph SAGE

Socal + Portugal fire Socal

Acc Macro F1 Weighted F1 AUC Acc Macro F1 Weighted F1 AUC
Train 0.8746 0.5994 0.9036 0.9648 Train 0.9110 0.5642 0.9205 0.9347
Test 0.8439 0.5267 0.8696 0.8606 Test 0.8672 0.5042 0.8768 0.8567
Hold 0.8581 0.5449 0.8787 0.8609 Hold 0.8870 0.5315 0.8902 0.8374

Nepal flooding Socal

Acc Macro F1 Weighted F1 AUC Acc Macro F1 Weighted F1 AUC
Train 0.6921 0.6342 0.7275 0.8764 Train 0.5092 0.3421 0.5487 0.5314
Test 0.4609 0.3223 0.5911 0.6229 Test 0.5697 0.3245 0.6525 0.6121
Hold 0.4356 0.315 0.5708 0.6601 Hold 0.6075 0.3275 0.6727 0.4999

Nepal flooding + Joplin tornado
+ Puna volcano

Socal

Acc Macro F1 Weighted F1 AUC Acc Macro F1 Weighted F1 AUC
Train 0.9283 0.9008 0.9306 0.9877 Train 0.7042 0.2824 0.5870 0.5199
Test 0.599 0.3832 0.6928 0.7265 Test 0.8744 0.3110 0.8157 0.6319
Hold 0.6082 0.3913 0.6966 0.6597 Hold 0.8542 0.3072 0.7873 0.6445

Nepal flooding + Joplin tornado
+ Puna volcano + 10% Socal Fire

Socal

Acc Macro F1 Weighted F1 AUC Acc Macro F1 Weighted F1 AUC
Train 0.9666 0.9522 0.9671 0.9963 Train 0.7094 0.2873 0.5951 0.5394
Test 0.6659 0.4205 0.7418 0.7173 Test 0.8591 0.3172 0.7959 0.6765
Hold 0.6668 0.4308 0.7405 0.6853 Hold 0.8552 0.3131 0.7899 0.6665

The results shown in Table 4.5 do not demonstrate a clear advantage for the
Graph SAGE which outperforms the Siamese CNN on 20 out of 48 total occasions
in terms of raw performance. By looking at the results we can deduce that the
likely reason is that the Graph SAGE is being more severely degraded by the
class imbalance than the Siamese CNN. The Graph SAGE seems to outperform
the Siamese CNN in terms of accuracy and weighted F1 score with an average
increase of 14.74% and 6.34% on the hold set respectively. These two metrics
ignore the impact of class imbalance. On the other hand, it falls behind most
of the time in terms of macro averaged F1 and underperforms systematically in
terms of AUC with an average difference of 5.07% and 5.44% on the hold set
respectively. These last two metrics are both sensitive to class imbalance.

In terms of domain shift generalization, the Graph SAGE presents a more
satisfactory behavior. We demonstrate this by computing the difference between
the performance on the training set and the hold set for every experiment (Fig-
ure 4.17). For the first experiment, the Siamese CNN presents a lesser drop in
performance compared to Graph SAGE. However, for subsequent experiments
which are cross-domain, the difference for Graph SAGE is negative in most cases
which means that performance on the hold set was higher than performance on
the training set. Furthermore, the negative difference increases in magnitude as
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we move from left to right. Meaning that generalization improved when aug-
menting the training data with more diverse disasters. This implies that having
larger training data improves generalization to other domains even if none of
the subsets in the training data are related to the test data. When the training
data is supplemented with a small number of test samples, we achieve the best
generalization. On the other hand, the Siamese CNN shows a consistent positive
generalization gap which is likely due to overfitting the training data. We note
that it is not suitable to compare the test set results between the last experiment
and the others since for the last experiment, the leak data was taken from the
test set.

Figure 4.17: Difference between training and hold scores for the Siamese CNN
and Graph SAGE. The x-axis indexes indicate the different experiments with
different train - test configurations: 1) Fire - Fire, 2) Flooding - Fire, 3) Flooding
+ Tornado + Volcano - Fire and 4) Flooding + Tornado + Volcano + 10% Fire
- Fire.

4.7 Computational and performance considera-

tions for best practices

In this work we have expressed our aim to provide a solution that allows predic-
tions for new disasters to be obtained in relatively fast manner. Here we compare
the GCN and Graph SAGE approaches with respect to this requirement and we
highlight the computational constraints and considerations we’ve had to address
while working with these models.

For the GCN, we reiterate that it needs to observe all the data during training.
This is typical for most if not all semi-supervised models. However, one additional
constraint when it comes the GCN is that the entirety of the data is used to
build the graph. This graph is loaded into working memory during training and
inference which means that it would occupy a sizeable memory footprint. This
was noted by Mou et al. [93] who also used a semi-supervised GCN with satellite
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images. This is not the case for the multiresolution autoencoder for instance, since
the entirety of the data is observed however it is observed in batches. Therefore,
to be able to use this model to its best potential, a large GPU is needed that can
hold all the data as well as the model itself. However, once these resources are
provided, the GCN runs relatively fast. All our GCN experiments that included
preprocessing the data, building the graph, training and producing predictions
took around 10 to 15 minutes to finish on a virtual machine running on 8 cores
of an AMD EPYC 7551 32-Core Processor with an Nvidia V100 32GB GPU.

As for the Graph SAGE, it addresses the aforementioned constraint by work-
ing with subgraphs which are effectively batches of the original graph. The major
downside of this method is that it takes very long to train. Each of our experi-
ments with the Graph SAGE took on average four days to finish. Also, building
the subgraphs and storing them on disk (since they cannot all be built and stored
in memory during runtime) takes a considerable amount of time (two to three
days). These problems would be alleviated in case this long development and
training procedure is done once and the model can be used for inference without
training. However, despite a promising domain shift generalization ability, our
results are not conclusive in terms of raw performance. Additionally, the best
domain shift performance was achieved when a small number of labeled test sam-
ples was added to the training data. This effectively leads to a framework similar
to the semi-supervised approach where few samples are annotated. Furthermore,
even if domain shift performance was demonstrated for the data that we have, it
would not guarantee that this would continue to be the case as new and different
disasters occur across different regions. It might be that this pretrained model
would have to continuously be refined in a lifelong learning manner which is still
a time consuming process.
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Chapter 5

Conclusion and Future Work

Every year, countless human lives are jeopardized by devastating events of various
sources, magnitude and extent. In such cases, awareness of the location and level
of destruction is essential for planning an effective response. By knowing which
sites need to be prioritized, response teams can maximize the amount of lives that
can be saved. More importantly, this information needs to be obtained as quickly
as possible as delays can cause more lives to be lost due to injuries or entrapment.
These maps are not only beneficial for rescue and relief efforts as they are also
instrumental for planning ground survey missions. By knowing the location and
the rough estimation of the damage severity, field inspectors can select where to
concentrate their efforts to produce detailed reports about structural hazards and
estimated repair costs in a relatively quick manner. Satellite imagery remains one
of the most reliable data sources that can be used to gain such information. The
main advantage of satellites is that they can cover very large areas with their
images. With the availability of these images, artificial intelligence and machine
learning have proven to be valuable tools for detecting disaster damage. Like
most vision applications, convolutional neural network models are currently at
the core of this field.

When it comes to disaster building damage, the majority of the destruction is
usually clustered around the path or the epicenter of the disaster such as the epi-
center of an earthquake or the trajectory of a tornado. Therefore, when it comes
to assessing damage, it can be expected that neighboring buildings would have a
similar damage signature. In many cases, the urban layout of the devastated city
is non-uniform and therefore it is very common to observe neighboring buildings
of different age, height and function. This adds an additional layer of interactions
that makes these buildings sustain damage differently. All of these aspects are
not addressed by traditional models since they do not take into account the simi-
larities between neighboring buildings nor do they incorporate additional domain
knowledge related to building properties.

In this work, we have presented a graph formulation that allows representing
building damage data in a way where buildings are connected to their neigh-
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bors and therefore allows exploiting these relationships for assessing damage.
Additionally, we have shown how our formulation can augment satellite image
data with additional building features. Our work also takes into account the
necessity of providing damage mappings with the least time and effort possi-
ble. We proposed a novel architecture comprising a graph convolutional network
with a Siamese convolutional backbone for extracting local features and aggre-
gating them with neighboring features. We demonstrated the effectiveness of this
method on the xBD dataset by comparing it to the multiresolution autoencoder
benchmark. We also showcased how it can be effectively applied on the Beirut
Port explosion data and obtained improved performance when augmenting the
image data with building meta-features. Through semi-supervised learning, few
images need to be labeled which enables our model to obtain predictions in an
efficient manner and alleviates the need to label a large number of images. An-
other approach we explored is the possibility of having a pretrained model with
good generalization ability that would be used to infer on new disasters with
little to no training. For this we adopted a different graph aggregation opera-
tor (SAGE) based on sampling mini batches of graphs (subgraphs) and trained
it in a supervised setting on different subsets of the xBD dataset to assess its
cross domain generalization. Our results do not allow us to recommend this as
much as we recommend the semi-supervised GCN especially given that it has
very long training times and its performance was severely impaired by class im-
balance. However, we have found that Graph SAGE can close the generalization
gap and that increasing the number of disasters in the training data improves
performance on the unseen disaster. This leads us to speculate that given large
enough training data and addressing the class imbalance issue can lead to more
favorable results from the SAGE model.

Based on the above and the insights we gathered throughout this work, we
recommend the following as potential new directions for future research:

• In this work we have only considered RGB satellite images while other
satellite bands are known to be good indicators for specific types of surfaces
such as vegetation or built surfaces. The donated Beirut Port data included
a multitude of multispectral products. However, the potential improvement
from adding these bands was not explored since we needed to evaluate our
novel approach on public data which is strictly RGB.

• In many cases when a disaster occurs the pre and post images are not from
the same satellite. This data heterogeneity introduces additional noise that
makes the task more challenging. In this work, we encountered some data
heterogeneity with the Beirut data since the pre and post images were taken
at different angles and under different illumination conditions. However, we
have not tested the robustness of our method against data coming from two
different satellites having different image resolutions. In many other works,
heterogeneity was shown to degrade model performance [44].
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• After the Beirut Port explosion, there have been several attempts at doc-
umenting the event at a street view level by collecting street view images
of the damaged buildings1. Since these images are geotagged, our graph
formulation would be suitable for using this data for assessing the damage
from the street view images which would replace or be combined with the
satellite imagery. Street view images are valuable since they offer a point
of view that cannot be seen from above.

• In terms of meta-feature injection, we highlight that the flexibility of our
graph formulation can be further exploited by injecting these meta-features
at the edge level and not the node level only. In this work, we had intended
to add the difference between the building heights as the edge weight. This
is more suitable for capture the impact of varying building heights where
a tall building may shield a short building next to it. However, due to the
prevalence of missing values in our dataset, we decided that this is more
likely to hurt performance.

1https://openmaplebanon.org/beirut-recovery-map
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Appendix A

xBD Dataset Tier 1 Class
Distribution

Figure A.1: xBD Tier 1 building per class.
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Figure A.2: xBD Tier 1 chips with at least one damaged building.
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Appendix B

Abbreviations

AE Autoencoder
AI Artificial Intelligence
AUC Area Under the Curve
CD Change Detection
CM Change Map
CNN Convolutional Neural Network
CVA Change Vector Analysis
DI Difference Image
GCN Graph Convolutional Network
HS Hyperspectral
LULC Land Use Land Cover
MS Multispectral
ReLu Rectified Linear Unit
RGB Red Green Blue
RNN Recurrent Neural Network
RS Remote Sensing
SAGE Sample and Aggregate
SAR Synthetic-aperture Radar
SNR Signal-to-noise Ratio
SOTA State-of-the-art
SVM Support Vector Machine
UAV Unmanned Aerial Vehicle
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[65] R. Vázquez-Jiménez, R. Romero-Calcerrada, C. J. Novillo, R. N. Ramos-
Bernal, and P. Arrogante-Funes, “Applying the chi-square transformation
and automatic secant thresholding to Landsat imagery as unsupervised
change detection methods,” Journal of Applied Remote Sensing, vol. 11,
p. 016016, Feb. 2017.

[66] H. Zhuang, K. Deng, Y. Yu, and H. Fan, “An approach based on discrete
wavelet transform to unsupervised change detection in multispectral im-
ages,” International Journal of Remote Sensing, vol. 38, pp. 4914–4930,
Sept. 2017.

[67] Z. Liu, G. Li, G. Mercier, Y. He, and Q. Pan, “Change Detection in Het-
erogenous Remote Sensing Images via Homogeneous Pixel Transformation,”
IEEE Transactions on Image Processing, vol. 27, pp. 1822–1834, Apr. 2018.

[68] M. Belgiu and L. Drăguţ, “Random forest in remote sensing: A review of
applications and future directions,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 114, pp. 24–31, Apr. 2016.

[69] G. Mountrakis, J. Im, and C. Ogole, “Support vector machines in remote
sensing: A review,” ISPRS Journal of Photogrammetry and Remote Sens-
ing, vol. 66, pp. 247–259, May 2011.

[70] J. Im and J. Jensen, “A change detection model based on neighborhood
correlation image analysis and decision tree classification,” Remote Sensing
of Environment, vol. 99, pp. 326–340, Nov. 2005.

[71] H. Nemmour and Y. Chibani, “Multiple support vector machines for land
cover change detection: An application for mapping urban extensions,”
ISPRS Journal of Photogrammetry and Remote Sensing, vol. 61, pp. 125–
133, Nov. 2006.

[72] C. L. Zitnick and P. Dollár, “Edge Boxes: Locating Object Proposals from
Edges,” in Computer Vision – ECCV 2014 (D. Fleet, T. Pajdla, B. Schiele,
and T. Tuytelaars, eds.), vol. 8693, pp. 391–405, Cham: Springer Interna-
tional Publishing, 2014.

[73] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Im-
ageNet Large Scale Visual Recognition Challenge,” arXiv:1409.0575 [cs],
Jan. 2015.

60



[74] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, and A. Rabinovich, “Going Deeper with Convolutions,”
arXiv:1409.4842 [cs], Sept. 2014.

[75] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++:
A Nested U-Net Architecture for Medical Image Segmentation,”
arXiv:1807.10165 [cs, eess, stat], July 2018.

[76] R. C. Daudt, B. Le Saux, A. Boulch, and Y. Gousseau, “Urban Change
Detection for Multispectral Earth Observation Using Convolutional Neural
Networks,” in IGARSS 2018 - 2018 IEEE International Geoscience and
Remote Sensing Symposium, (Valencia), pp. 2115–2118, IEEE, July 2018.

[77] H. Lyu, H. Lu, and L. Mou, “Learning a Transferable Change Rule from
a Recurrent Neural Network for Land Cover Change Detection,” Remote
Sensing, vol. 8, p. 506, June 2016.

[78] H. Chen, C. Wu, B. Du, L. Zhang, and L. Wang, “Change Detection in
Multisource VHR Images via Deep Siamese Convolutional Multiple-Layers
Recurrent Neural Network,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 58, pp. 2848–2864, Apr. 2020.

[79] R. Jing, S. Liu, Z. Gong, Z. Wang, H. Guan, A. Gautam, and W. Zhao,
“Object-based change detection for VHR remote sensing images based on
a Trisiamese-LSTM,” International Journal of Remote Sensing, vol. 41,
pp. 6209–6231, Aug. 2020.

[80] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition,” arXiv:1409.1556 [cs], Apr. 2015.

[81] S. Ji, S. Wei, and M. Lu, “Fully Convolutional Networks for Multisource
Building Extraction From an Open Aerial and Satellite Imagery Data Set,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 57, pp. 574–
586, Jan. 2019.

[82] Q. Wang, X. Zhang, G. Chen, F. Dai, Y. Gong, and K. Zhu, “Change de-
tection based on Faster R-CNN for high-resolution remote sensing images,”
Remote Sensing Letters, vol. 9, pp. 923–932, Oct. 2018.

[83] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks,” arXiv:1506.01497 [cs],
Jan. 2016.
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