
AMERICAN UNIVERSITY OF BEIRUT

A FRAMEWORK TO MAXIMIZE GROUP
FAIRNESS FOR WORKERS ON ONLINE

LABOR PLATFORMS

by

ANIS SAMI EL RABAA

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Science
to the Department of Computer Science

of the Faculty of Arts and Sciences
at the American University of Beirut

Beirut, Lebanon
January 2022

AMERICAN UNIVERSITY OF BEIRUT

A FRAMEWORK TO MAXIMIZE GROUP
FAIRNESS FOR WORKERS ON ONLINE

LABOR PLATFORMS

by

ANIS SAMI EL RABAA

Approved by:

Dr. Shady Elbassuoni, Associate Professor Advisor

Computer Science

Dr. Amer Abdo Mouawad, Assistant Professor Member of Committee

Computer Science

Dr. Wassim El Hajj, Associate Dean Member of Committee

Computer Science

Date of thesis defense: January 25, 2022

AMERICAN UNIVERSITY OF BEIRUT

THESIS RELEASE FORM

Student Name:
Last First Middle

I authorize the American University of Beirut, to: (a) reproduce hard or electronic copies
of my thesis; (b) include such copies in the archives and digital repositories of the University;
and (c) make freely available such copies to third parties for research or educational purposes

As of the date of submission of my thesis

After 1 year from the date of submission of my thesis .

After 2 years from the date of submission of my thesis .

After 3 years from the date of submission of my thesis .

Signature Date

This form is dated and signed when asked to submit the final document to ScholarWorks.
DELETE THIS NOTE WHEN SIGNED

31/01/2022

AnisEl Rabaa Sami

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my thesis advisor, Professor
Shady Elbassuoni, for all his helpful advice, support and massive patience with me
throughout this thesis journey. It was an honor to work under his supervision,
and I would not have it any other way. I would also like to thank Professor
Amer Abdo Mouawad for his helpful assistance, answering my questions relating
to complexity theory, as well as accepting to serve on my thesis committee.
I also thank Professor Wassim El Hajj, who accepted to serve on my thesis
committee and provided insightful remarks that helped improve my work. Thanks
as well to Jihad Hanna for the helpful insight on complexity theory and dynamic
programming.

Last but absolutely not least, I would like to thank everyone who happily
supported me throughout this journey, from parents to family members, friends,
classmates and professors. Thanks to everyone who cheered me up when feeling
low or stuck, to everyone who poked my interest and opened my eyes to a certain
field of knowledge, to everyone who pushed me and challenged me to achieve
more, to everyone who did not forget me in their thoughts and prayers. I cannot
imagine how I would have made it this far without every single one of you.

1

ABSTRACT
OF THE THESIS OF

Anis Sami El Rabaa for Master of Science
Major: Computer Science

Title: A Framework to Maximize Group Fairness for Workers on Online Labor Platforms

As the number of online labor platforms and the diversity of jobs on these
platforms increase, ensuring group fairness for workers needs to be the focus
of job-matching services. Risk of discrimination occurs in two different job-
matching services: when someone is looking for a job (i.e., a job seeker) and
when someone wants to deploy jobs (i.e., a job provider). In this thesis, we
propose a theoretical framework to maximize group fairness for workers 1) when
job seekers are looking for jobs on multiple online labor platforms, and 2) when
jobs are being deployed by job providers on multiple online labor platforms. In our
proposed framework, we formulate each goal as different optimization problems
with different constraints, prove most of them are computationally hard to solve
and propose various efficient algorithms to solve all of them in reasonable time.
We then design a series of experiments that rely on synthetic and semi-synthetic
data generated from a real-world online labor platform to evaluate our proposed
framework.

2

Table of Contents

ACKNOWLEDGEMENTS 1

ABSTRACT 2

1 INTRODUCTION 9

1.1 Motivation . 9

1.2 Objectives and Contributions . 10

1.3 Thesis Outline . 13

2 LITERATURE REVIEW 14

3 FRAMEWORK 17

3.1 Maximizing Fairness for Job Seekers 19

3.2 Maximizing Fairness for Job Providers 28

4 EXPERIMENTS 34

4.1 Semi-Synthetic Dataset (for Qualitative Experiments) 35

4.2 Job Seeker Experiments . 36

4.2.1 Algorithms Implementation 36

4.2.2 Unconstrained Scalability Experiments 37

4.2.3 Unconstrained Qualitative Experiments 41

3

4.2.4 Constrained Scalability Experiments 45

4.2.5 Constrained Qualitative Experiments 47

4.3 Job Provider Experiments . 54

4.3.1 Algorithms Implementation 54

4.3.2 Job Provider with Global Budget Scalability Experiments 54

4.3.3 Job Provider with Global Budget Qualitative Experiments 56

4.3.4 Job Provider with Local Budgets Scalability Experiments . 60

4.3.5 Job Provider with Local Budgets Qualitative Experiments 63

5 CONCLUSION 66

Bibliography 67

4

ILLUSTRATIONS

3.1 Sample Bipartite Graph for the Unconstrained Job Seeker Problem 18

3.2 Sample Bipartite Graph for the Constrained Job Seeker Problem.

Note the addition of a reward r for each job-platform pair 25

3.3 Sample Bipartite Graph for the Job Provider problem. In addition

to the fairness values per group, each edge between a job j and a

platform p has a weight c(j, p) equal to the cost of deploying job j

on platform p. 28

4.1 Unconstrained Job Seeker Experiment: Naive vs. Top-k performance

for different values of k . 39

4.2 Unconstrained Job Seeker Experiment: Naive vs. Top-k Times for

k = 20 . 39

4.3 Top-k algorithm times wrt. Number of Protected Attributes, n. . 40

4.4 Occurrences of each World in the Seekers’ Top-5 Results 41

4.5 Occurrences of each Job in the Seekers’ Top-5 Results 42

4.6 Sum of fairness values of the top-five (j, p) pairs, per seeker 44

4.7 Comparing worker counts in the twenty selected jobs: world2 vs.

world7 . 45

5

4.8 Constrained Job Seeker: Comparing performance of the ORTools

solver (ILP) versus the proposed Dynamic Programming algorithm

(DP) . 46

4.9 DP algorithm times wrt. Number of Protected Attributes, n. . . . 47

4.10 Variation in Largest Frequency Observed wrt. Precision used (lower

is better) . 49

4.11 A closer look from the plot of Figure 4.10 50

4.12 Variation in Entropy wrt. Number of Precision Digits (higher is

better) . 50

4.13 Constrained Experiment: Distribution of top-5 pairs among worlds,

for each seeker . 52

4.14 Constrained Experiment: Distribution of top-5 pairs among jobs

of interest, for each seeker . 52

4.15 Constrained Experiment: Sums of fairness values of the top five

(j, p) pairs, per seeker and world. 53

4.16 Job Provider with Global Budget: DP algorithm vs. ILP solver

scalability wrt. number of pairs N 55

4.17 Job Provider with Global Budget: DP algorithm vs. ILP solver

scalability wrt. budget limit B. 56

4.18 Job Provider with Global Budget: First qualitative experiment;

Optimal fairness value obtained per platform(s) of interest. 58

4.19 Job Provider with Global Budget: Second qualitative experiment;

Optimal fairness value obtained for the same problem instance,

but with varying budget limits. 59

4.20 Job Provider with Local Budgets: Exact algorithms’ time performance

wrt. N (number of pairs) . 61

6

4.21 Job Provider with Local Budgets: Heuristic algorithms’ time and

quality performance wrt. N (number of pairs) 62

4.22 Job Provider with Local Budgets: First qualitative experiment;

Optimal fairness value obtained with different number of platforms

of interest. 64

4.23 Job Provider with Local Budgets: First qualitative experiment;

Optimal fairness value obtained per platform(s) of interest. 65

7

TABLES

4.1 Platform statistics for the alternative worlds (in percentages) . . . 36

4.2 Constrained Experiment: Sums of fairness values and rewards of

the top-k pairs chosen. As expected, the sum of rewards for each

seeker is indeed over 400. 53

8

Chapter 1

INTRODUCTION

1.1 Motivation

Online labor platforms such as TaskRabbit and Upwork are gaining popularity

as mediums to hire workers to perform certain jobs. On these platforms, people

can find temporary workers in the physical world (e.g., someone to clean an

apartment in New York City), or remote workers such as ”someone to develop a

mobile app” or ”someone to design a website” by submitting a description of the

job and receiving a ranked list of potential workers deemed qualified for the job

by the platform. These platforms thus rely heavily on job-matching services. A

job seeker (i.e., a worker looking for a job) provides her job interests and skills

and is matched to certain jobs available on the platform. On the other hand,

a job provider (i.e., an employer looking for workers to perform a certain job)

provides a description of the job and is matched to potential workers. In the

majority of these platforms, such job-matching services are algorithmic and most

of the time opaque.

The algorithmic and opaque nature of job-matching services in online labor

9

platforms thus raises fairness concerns. For instance, consider a job provider

looking for someone to move furniture in San Francisco on an online labor platform

such as TaskRabbit. The job provider receives a ranked list of potential workers

on the platform for this job. Such ranking might be considered unfair if it is

biased towards certain groups of people, say where white males are consistently

ranked above black males or white females. This can commonly happen since

such ranking might depend on the ratings of workers on the platform and the

number of their past jobs, both of which can perpetuate bias against certain

groups of workers.

As the number of such online labor platforms and the jobs available on

them increase, it becomes crucial to provide both job seekers and job providers

with means to assess and compare the fairness of different jobs on different

platforms. This can then be used to inform job seekers about which jobs on

which platforms are deemed the most fair with respect to their demographic

groups, thus maximizing their chances of landing jobs. Similarly, this can be

used by job providers to decide on which platforms to deploy which jobs so as to

maximize worker fairness.

1.2 Objectives and Contributions

In this thesis, we propose a theoretical framework that can be used to assess and

compare worker fairness of multiple jobs on multiple online labor platforms. We

focus on group fairness, which is defined as the fair treatment of all groups of

people [1, 2], where groups are defined using protected attributes such as gender,

age, or ethnicity. For example, the worker groups could be males, females, asians,

whites, blacks, black females, young white males, etc. Our framework assumes the

10

presence of an unbounded number of platforms on which an unbounded number

of jobs are available. A job can be available on multiple platforms, and each

job is associated with a different fairness value for each worker group on each

platform. More precisely, we assume that a job j for worker group g on platform

p is associated with a fairness value f(j, p, g). Without loss of generality, we

assume that f(j, p, g) is a value between 0 and 1, and that the higher the value

is, the more fair job j is considered for group g on platform p.

Our framework can be used by two types of end-users: 1) job seekers looking

to find which jobs to apply to on which platforms, and 2) job providers looking to

deploy multiple jobs on multiple platforms. To be able to serve these two types

of users, we formulate a series of optimization problems that aim to maximize

worker group fairness subject to various constraints such as payment constraints,

number of jobs applied to, etc. More precisely, our first and second optimization

problems aim to maximize worker fairness for job seekers. Given a set of worker

groups G that the job seeker belongs to, a set of jobs of interest J , and a set

of platforms P on which these jobs might be available, our goal in the first

optimization problem we propose is is to find the top-k fairest (j, p) pairs, where

j ∈ J is a job, p ∈ P is a platform, and the pair (j, p) means job j on platform

P . We also consider the case where jobs are associated with rewards. That is, we

assume that each job j available on platform p is associated with a reward r(j, p).

This constitutes the basis for our second optimization problem, where the goal is

to find the top-k fairest job-platform pairs such that their total reward is above

a certain threshold.

Our third and fourth optimization problems aim to maximize worker fairness

when a job provider is deploying a set of jobs on different platforms. We assume

that each job j is associated with a cost c(j, p) on a platform p it is available

11

on, and that this cost differs from one platform to the other. Given a set of

jobs J to be deployed on a set of platforms P and a budget B, our goal in the

third optimization problem is to assign each job j ∈ J to at most one platform

p ∈ P such that the total cost of the jobs assigned does not exceed the budget

B and the total fairness of the assigned jobs is maximized. A slight variation of

this optimization problem is our fourth and final optimization problem we define.

Given a set of jobs J to be deployed on a set of platforms P and a budget bp

for each platform p ∈ P , our goal is to assign each job j ∈ J to at most one

platform p ∈ P such that the total cost of the jobs assigned to each platform p

does not exceed its budget bp , and the total worker fairness of the assigned jobs

is maximized.

We prove that three of our four optimization problems are computationally

hard, and propose algorithms to solve all four of them in reasonable time. We also

design a series of experiments using synthetic and semi-synthetic data generated

from TaskRabbit, a real-world online labor platform, to evaluate our proposed

framework and algorithms. More precisely, we use synthetic data to demonstrate

the scalability of our proposed algorithms as the number of jobs and number

of platforms increase and to compare them to suitable baseline ones. On the

other hand, we use semi-synthetic data to conduct case studies that highlight the

merits of the solutions generated by our proposed algorithms from a qualitative

perspective.

To the best of our knowledge, our framework is the first to address the problem

of finding the fairest jobs on multiple platforms for job seekers with and without

reward constraints. Our framework is also the first to address the problem

of deploying multiple jobs on multiple platforms such that worker fairness is

maximized with different budget constraints.

12

Our main contributions in this thesis can thus be summarized as follows:

1. We formulate four novel optimization problems to maximize group fairness

for workers when job seekers are looking for multiple jobs on multiple online

platforms and when job providers are deploying multiple jobs on multiple

online labor platforms

2. We prove that three of our optimization problems are computationally hard,

and propose a number of algorithms to solve the four problems efficiently

3. We establish a benchmark of synthetic and semi-synthetic data to evaluate

our algorithms both from a scalability perspective as well as from a usability

one. Given that there exists no available benchmarks to perform such

evaluations, our established benchmark and proposed experimental framework

is thus a major contribution of this work.

1.3 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, we review related work

that revolves around fairness in online labor platforms. In Chapter 3, we describe

our proposed framework, which is composed of four optimization problems and

algorithms to solve them efficiently. In Chapter 4, we describe the experiments

that we used to evaluate our proposed framework and their results. Finally, we

conclude and present future work in Chapter 5.

13

Chapter 2

LITERATURE REVIEW

Fairness of ranking is an increasingly trending topic in research. Many works

have already underlined the importance of fair rankings, and their impact on the

actual selection of ranked items by users. As Singh and Joachims explained in

[3], the probability of a ranked item being selected (e.g. a job candidate being

hired) decreases significantly with lower ranking positions; a concept referred to

as exposure. Along the same topic, the experiment in [4] studied user behavior

when presented with manipulated Google search results, and found that users

exhibit ”partial bias” towards an item’s rank, tending to select items at the top

of search results. Fairness of ranking is thus especially important for online labor

platforms, where unfair rankings of workers can lead to disparate distributions of

work opportunities or income [5].

To address fairness of ranking in such platforms, various methods have been

proposed to actively generate fair rankings. Many of them are post-processing

methods (e.g., [6, 5, 7, 8]), where given an existing ranking of workers, a new

ordering of the workers is generated so as to satisfy certain fairness constraints.

On the other hand, in-processing methods address ranking bias of an algorithm

14

at the training phase, such as the DELTR Learn-to-Rank framework in [9].

In contrast, other notable works focused on assessing fairness of a worker

ranking in its current state, rather than trying to adjust it. For instance, the

authors in [10] found evidence of bias in two prominent online labor platforms,

TaskRabbit and Fiverr. In both platforms, they found that perceived gender and

race have significant correlations with worker evaluations, and even with worker

rankings in the case of TaskRabbit. In [11], the author examined gender bias in

the resume search platforms Indeed, Monster and CareerBuilder. Two notions of

fairness issues were considered: a) ranking bias, which is the disparity of ranking

distributions across genders (group unfairness), and b) unfairness, i.e. the gap

in ranking between male and female applicants having the same qualifications

(individual unfairness). The author found evidence of both issues on all three

platforms.

Notable efforts have also been made to quantify unfairness [12, 13, 14, 15].

In [12, 13, 14], the authors formulated an optimization problem to find the

partitioning of workers (based on their protected attibutes) that exhibits the

highest unfairness based on a given scoring function. They used Earth Mover’s

Distance (EMD) between score distributions as a measure of unfairness. In [16],

the authors proposed a unified framework to study fairness in online jobs. They

defined two generic fairness problems: quantification, which is finding the k

worker groups, or jobs or locations for which a job search site is most or least

unfair, and comparison, which is finding the locations at which fairness between

two groups differs from all locations, or finding the jobs for which fairness at two

locations differ from all jobs for instance. They adapted Fagin top-k algorithms

to address their fairness problems and case-studied two particular job search sites:

Google job search and TaskRabbit.

15

Our proposed work differs from all the reviewed related work above in that it

is, to the best of our knowledge, the first to establish a generic framework that

can be used to assess and compare worker fairness of multiple jobs on multiple

online labor platforms. Our framework can have multiple use cases from the

perspective of both job seekers and job providers. It can be deployed as a stand-

alone service on top of existing online labor platforms to maximize fairness of job-

matching services on these platforms when job seekers are being matched to jobs

and when job providers are deploying jobs on these platforms. Our framework

is theoretically founded and we propose an extensive and thorough experimental

setup to evaluate it using both synthetic as well as real-world generated data.

16

Chapter 3

FRAMEWORK

Our framework assumes the presence of an unbounded number of platforms on

which an unbounded number of jobs are available. A job can be available on

multiple platforms, and each job is associated with a different fairness value for

each worker group on each platform. The worker groups are defined using one or

more protected attributes such as gender, ethnicity, age and so on. For example,

the worker groups could be males, females, asians, whites, blacks, black females,

young white males, etc.

More precisely, we assume that a job j for demographic group g on platform

p is associated with a fairness value f(j, p, g). Without loss of generality, we

assume that f(j, p, g) is a value between 0 and 1, and that the higher the value

is, the more fair job j is considered for group g on platform p. To obtain such

fairness values for each job-platform-group tuple, we assume the presence of a

blackbox that takes as input a job j, a platform p and a group g and returns a

fairness value f(j, p, g) between 0 and 1. We do not make any assumptions on

how these fairness values are computed and thus different methods for computing

them that depend on different group fairness notions can be seamlessly plugged

17

< f(j1, p1, g1), ..., f(j1, p1, gn) >

< f(j2, p2, g1), ..., f(j2, p2, gn) >

< f(j2 , pP , g1), ..., f(j2 , pP , gn) >

< f(jJ , pP , g1), ..., f(jJ , pP , gn) >

Jobs P latforms

j1

j2

jJ

p1

p2

pP

Figure 3.1: Sample Bipartite Graph for the Unconstrained Job Seeker Problem

into our framework. In our experiments, we make use of the framework in [16],

which uses two different notions for computing group fairness.

Furthermore, we assume the presence of two predicates: a(j, p) which is only

true if job j is available on platform p, and e(j, p, g) which is only true if group g is

available for job j on platform p. That is, we assume that not all jobs are available

on all platforms and that not all worker groups are available on all platforms.

Our framework thus operates on an incomplete weighted bipartite graph where

the first set of nodes represent jobs, the second set of nodes represent platforms

and there is an edge between a job j and platform p only if a(j, p) = true.

Moreover, each edge in this bipartite graph is associated with a set of weights

{f(j, p, g)|g ∈ G ∧ e(j, p, g) = true} that correspond to the different fairness

values for the different groups that exist in the platform p for job j. To better

illustrate, a sample of such graph is shown in Figure 3.1.

The main goal of our framework is to assess and compare worker fairness of

multiple jobs on multiple platforms, which can then be used to maximize fairness

18

of job-matching services on online labor platforms when job seekers are being

matched to jobs and when job providers are deploying jobs on these platforms,

To achieve this goal, we define four different optimization problems, two for the

job seeker case and two for the job provider case. We prove that three of our

optimization problems are at least as hard as NP-hard problems and we propose

a set of algorithms to solve the four of them efficiently.

3.1 Maximizing Fairness for Job Seekers

A job seeker is a person looking for the top-k fairest jobs available on different

platforms that fits her interests or skills. A job seeker belongs to multiple

demographic groups. For example, a job seeker could be female, white, and

middle-aged. We also consider combinations of these values to exhaust all the

groups the job seeker belongs to. That is, in our example, the job seeker would

be also a white female, a middle-aged white, and a middle-aged white female.

Given a set of demographic groups G that the job seeker belongs to, a set of jobs

of interest J , and a set of platforms P on which these jobs might be available,

our goal is to find the top-k fairest (j, p) pairs, where j ∈ J is a job, p ∈ P is a

platform, and the pair (j, p) means job j on platform P . We formulate this goal

as the following optimization problem.

Problem 1. (Unconstrained) Job Seeker Problem: Given a set of demographic

groups G that the job seeker belongs to, a set of jobs of interest J , and a set of

platforms P on which these jobs might be available, our goal is to find the top-k

fairest (j, p) pairs, where j ∈ J is a job, p ∈ P is a platform, and the pair (j, p)

means job j on platform P . Our job-seeker problem can then be formulated as

the following optimization problem:

19

argmax
S

∑
(j,p)∈S

min
g∈G∧e(j,p,g)=true

f(j, p, g)

subject to: S ⊆ J × P

a(j, p) = true ∀(j, p) ∈ S

|S| = k

Since each job seeker belongs to different worker groups, we need to aggregate

the different fairness values for each group the job seeker belongs to in order

to obtain a single fairness value for a job-platform pair. In the optimization

problem above, we use minimum as an aggregation operator. This means that

for each job-platform (j, p) pair, the aggregated fairness value would be equal to

the minimum of the fairness values of job j for all groups that the job seeker

belongs to on platform p. Thus, we take a conservative worst-case approach here

to quantify the fairness value of a job-platform pair for a given job seeker. Of

course other aggregation methods can be also applied without any fundamental

changes.

The input in the job-seeker problem is a set of jobs J , a set of platforms

P , and all the demographic groups G that the job seeker belongs to. A näıve

approach to solve the job-seeker problem defined above is to loop over all jobs,

all the platforms and all the groups, and for each job-platform pair (j, p) such

that a(j, p) is true, it computes the minimum fairness for that pair overall groups

G the job seeker belongs to. It then returns the k job-platform pairs with the

highest minimum fairness over all groups G. We assume that the fairness for a

group g and a job j on platform p is precomputed and denoted by f(j, p, g).

A more efficient approach can make use of optimal aggregation algorithms

such as Fagin’s algorithm [17] provided we use a monotone aggregation function

20

(such as the minimum in our formulation) to compute the fairness value of a

job-platform pair over groups . To be able to do this, we assume the existence

of a set of inverted lists, one for each worker group g. The inverted index Ig

contains an entry for each job-platform pair (j, p) where e(j, p, g) is true. The

entries in Ig are sorted in descending order based on the fairness values f(j, p, g).

Our optimal-aggregation algorithm (Algorithm 1) is an adaptation of Fagin’s

threshold algorithm to solve our job-seeker problem.

We also consider the case where jobs are associated with rewards. That is,

we assume that each job j available on platform p is associated with a reward

r(j, p). Thus, each edge in our bipartite graph would include an additional weight

representing the reward of a job j on platform p, as shown in Figure 3.2. In this

case, the goal of the job seeker is to find the top-k fairest jobs such that their

total reward is above a certain threshold. This goal can be formulated as the

following optimization problem.

Problem 2. Constrained Job Seeker Problem: Given a set of demographic

groups G that the job seeker belongs to, a set of jobs of interest J , and a set of

platforms P on which these jobs might be available, our goal is to find the top-k

fairest (j, p) pairs, where j ∈ J is a job, p ∈ P is a platform, and the pair (j, p)

means job j on platform P and such that the total reward for the selected job-

platform pairs is above a certain threshold R. Our constrained job-seeker problem

can then be formulated as the following optimization problem:

21

Algorithm 1 Top-k Job Seeker Algorithm

1: Input: a set of jobs J , a set of platforms P , a set of groups G, k
2: output: the k (j, p) pairs with the highest minimum fairness over all groups
G

3: topk ← minHeap() . Initialization
4: cursor ← 0
5: while topk.minV alue() < τ or topk.size() < k do
6: τ ← −∞
7: for g ∈ G do
8: ((j, p), f(j, p, g))← Ig.getEntry(cursor) . Read entry at current line

(cursor)
9: if j ∈ J and p ∈ P then
10: if τ < f(j, p, g) then . Update threshold value
11: τ ← f(j, p, g)
12: end if
13: min← f(j, p, g)
14: for g′ ∈ G and g′ 6= g do . Perform random access on all other

lists
15: if e(j, p, g′) is true then
16: f(j, p, g′)← Ig′ .getV alue((j, p))
17: if f(j, p, g′) < min then
18: min← f(j, p, g′)
19: end if
20: end if
21: end for
22: if topk.size() < k then . Update top-k set (if needed)
23: topk.insert(((j, p),min)
24: else
25: if topk.minV alue() < min then
26: topk.pop()
27: topk.insert((j, p),min)
28: end if
29: end if
30: end if
31: end for
32: cursor ← cursor + 1
33: end while
34: return topk

22

argmax
S

∑
(j,p)∈S

min
g∈G∧e(j,p,g)=true

f(j, p, g)

subject to: S ⊆ J × P

a(j, p) = true ∀(j, p) ∈ S

|S| = k∑
(j,p)∈S

r(j, p) ≥ R

The same problem can be formulated as an Integer Linear Programming optimization

problem as follows:

max
∑
j∈J

∑
p∈P

min
g∈G∧e(j,p,g)=true

f(j, p, g)× x(j, p)

subject to: x(j, p) ∈ {0, 1} ∀j ∈ J,∀p ∈ P

x(j, p) = 1→ a(j, p) = true ∀j ∈ J,∀p ∈ P∑
j∈J

∑
p∈P

x(j, p) = k ∀j ∈ J,∀p ∈ P

∑
j∈J

∑
p∈P

r(j, p)× x(j, p) ≥ R

Theorem 1. The Constrained Job Seeker problem is polynomial-time reducible

to the optimization variant of the Knapsack problem and is therefore at least

as hard.

Note that since the Knapsack optimization problem is known to be at least

as hard as its decision version, also known to be NP-Complete [18], this theorem

gives us a lower bound on the hardness of the Constrained Job Seeker

problem.

Proof. Note that by having only one group and one platform, the problem reduces

23

to the following: Given a list J of pairs ji = (fi, ri), where fi is the assigned

fairness value and ri the reward value, select k pairs such that fairness is maximized

and the total reward is at least R. Using this version of the problem, we give a

polynomial-time reduction from the optimization version of Knapsack. Given

a list L of pairs ai = (vi, wi), where vi represents the value of the pair and wi

its weight, and an integer W , the Knapsack problem asks for a subset of L of

maximum value such that the total weight is at most W .

Given an instance of the Knapsack problem where |L| = n, create a list J of

n pairs ji = (fi, ri) where fi = vi and ri = W − wi. Moreover, add n additional

pairs (0,W) to J . Set k = n and R = (n−1)W . We prove now prove equivalence

of both instances. In other words, we prove that L contains a subset of total value

X, satisfying the Knapsack constraints, if and only if J contains a subset of size

n with total fairness X, satisfying the Constrained Job Seeker constraints.

Assume L contains a subset A of of size s (s ≤ n) of total value X and total

weight WA ≤ W . Construct a subset B of size n = k of J by taking ∀pi ∈ A its

equivalent ji ∈ J , and finally add n − s ≤ n pairs of the form (0,W). Let FB

denote the total fairness of B and RB its total reward.

FB =
∑
ji∈B

fi =
∑
pi∈A

vi + (n− s)× 0 = X

RB =
∑
ji∈B

ri = sW −
∑
pi∈A

wi + (n− s)W = nW −WA ≥ nW −W = (n− 1)W = R

Assume now that J has a subset B of size k = n of total fairness X and total

reward RB ≥ R. Let s denote the number of pairs (0,W) in B. By removing

those s elements from B we get a new set B′ consisting of elements originating

from pairs in L, of total fairness X (since all removed pairs had f = 0) and total

24

< f(j1, p1, g1), ..., f(j1, p1, gn) >, r(j1, p1)

< f(j2, p2, g1), ..., f(j2, p2, gn) >, r(j2, p2)
< f(j2 , pP , g1), ..., f(j2 , pP , gn) >, r(j2 , pP)

< f(jJ , pP , g1), ..., f(jJ , pP , gn) >, r(jJ , pP)

Jobs P latforms

j1

j2

jJ

p1

p2

pP

Figure 3.2: Sample Bipartite Graph for the Constrained Job Seeker Problem.
Note the addition of a reward r for each job-platform pair

reward RB′ = RB−sW ≥ (n−s−1)W . Construct the set A = {pi : ji ∈ B′} ⊆ L.

Let VA denote the total value of A and WA its total weight.

VA =
∑
pi∈A

vi =
∑
ji∈B′

fi = X

RB′ =
∑
ji∈B′

ri = (n− s)W −
∑
pi∈A

wi ≥ (n− s)W −W

Therefore,
∑
pi∈A

wi = WA ≤ W .

The next question that arises is how to solve this problem efficiently in

practice, and the similarity with the Knapsack problem gives a nearly immediate

dynamic programming (DP) solution that we describe below (Algorithms 2 and 3).

25

Algorithm 2 Constrained Job Seeker Algorithm

1: Input: A set of jobs J , a set of platforms P , a set of groups G, and two
integers K and R.

2: Output: TheK (j, p) pairs with the highest minimum fairness over all groups
G having reward at least R. Running time is O(JPKR).

. Step 1: Initialization + aggregation of fairness values

3: minFair[1...len(J)][1...len(P)]← new 2D array initialized to +∞.
4: for j ∈ J and p ∈ P and g ∈ G do
5: if e(j, p, g) = true then
6: minFair[j][p]← min(minFair[j][p], f(j, p, g))
7: end if
8: end for

9: L← Empty list
10: for j ∈ J and p ∈ P do
11: (j, p, f, r)← (j, p,minFair[j][p], r(j, p))
12: L.append((j, p, f, r))
13: end for

. Step 2: Call recursive DP procedure (see Algorithm 3)

14: DP [0...len(L)][0...K][0...R]← new 3D array initialized to −1.
15: choice[0...len(L)][0...K][0...R]← new 3D array initialized to −1.
16: maxFairness← recursiveMaxFairness(1, L, K, R, DP, choice)
17: if maxFairness = −∞ then return φ

. Step 3: Read result (optimal assignment) from the choice matrix and return

18: i← 0, result← φ
19: while i 6= len(L) do
20: if choice[i][K][R] = 0 then
21: i← i+ 1
22: continue
23: end if
24: result.add((j, p))
25: K ← K − 1
26: R← max(0, R− L[i].r)
27: i← i+ 1
28: end while

29: return result

26

Algorithm 3 Recursive Maximum Fairness Algorithm

1: procedure recursiveMaxFairness(i, L, K, R, DP, choice)
2: if K = 0 then return R = 0 ? 0 : −∞
3: if i > N then return −∞
4: if DP [i][K][R] 6= −1 then return DP [i][K][R]

5: dontTakePair← recursiveMaxFairness(i+1, L, K, R, DP, choice)
6: takePair ← recursiveMaxFairness(i + 1, L, K − 1, R −
L[i].r, DP, choice)

7: if dontTakePair = −∞ and takePair = −∞ then return DP [i][K][R] =
−∞

8: if dontTakePair 6= −∞ and takePair 6= −∞ then
9: choice[i][K][R]← (dontTakePair < L[i].f + takePair)
10: return DP [i][K][R]← max(dontTakePair, L[i].f + takePair)
11: end if
12: if dontTakePair ≥ 0 then
13: choice[i][K][R]← 0
14: return DP [i][K][R]← dontTakePair
15: end if
16: choice[i][K][R]← 1
17: return DP [i][K][R]← L[i].f+ takePair
18: end procedure

27

< f(j1, p1, g1), ..., f(j1, p1, gn) >, c(j1, p1)

< f(j2, p2, g1), ..., f(j2, p2, gn) >, c(j2, p2)
< f(j2 , pP , g1), ..., f(j2 , pP , gn) >, c(j2 , pP)

< f(jJ , pP , g1), ..., f(jJ , pP , gn) >, c(jJ , pP)

Jobs P latforms

j1

j2

jJ

p1

p2

pP

Figure 3.3: Sample Bipartite Graph for the Job Provider problem. In addition
to the fairness values per group, each edge between a job j and a platform p has
a weight c(j, p) equal to the cost of deploying job j on platform p.

3.2 Maximizing Fairness for Job Providers

A job provider is a person looking to deploy a set of jobs on different platforms.

We assume that each job j is associated with a cost c(j, p) on a platform p it

is available on, and that this cost differs from one platform to the other. This

extends our bipartite graph from before so that each edge is now associated with

an additional weight that represents the cost of deploying job j on platform p.

A sample of such graph is depicted in Figure 3.3. The goal of the job provider

is thus to deploy the jobs on the platforms such that the overall worker group

fairness is maximized while satisfying a budget constraint(s). We assume that

each job can be deployed on at most one platform. This goal can be formulated

as the following optimization problem.

28

Problem 3. Job Provider Problem with Global Budget: Given a set of

jobs J to be deployed on a set of platforms P and a budget B, our goal is to

assign each job j ∈ J to at most one platform p ∈ P such that the total cost

of the jobs assigned does not exceed the budget B and the total fairness of the

assigned jobs is maximized. Our job-provider problem can be formulated as the

following optimization problem (in Integer Linear Programming form):

max
∑
j∈J

∑
p∈P

min
g|e(j,p,g)=true

f(j, p, g)× x(j, p)

subject to: x(j, p) ∈ {0, 1} ∀j ∈ J,∀p ∈ P

x(j, p) = 1→ a(j, p) = true ∀j ∈ J,∀p ∈ P∑
j∈J

∑
p∈P

c(j, p)× x(j, p) ≤ B

∑
p∈P

x(j, p) ≤ 1 ∀j ∈ J

A slight variation of the previous optimization problem for the job provider

can be specified as follows. Given a set of jobs J to be deployed on a set of

platforms P and a budget bp for each platform p ∈ P , our goal is to assign each

job j ∈ J to at most one platform p ∈ P such that the total cost of the jobs

assigned to each platform p does not exceed its budget bp , and the total worker

fairness of the assigned jobs is maximized. This optimization problem can be

formulated as follows.

Problem 4. Job Provider Problem with Local Budget: Given a set of jobs

J to be deployed on a set of platforms P and a budget bp for each platform p ∈ P ,

our goal is to assign each job j ∈ J to at most one platform p ∈ P such that the

total cost of the jobs assigned does not exceed the total budget for all platforms

for which the jobs are assigned, and the total fairness of the assigned jobs is

29

Algorithm 4 Job Provider Problem with Global Budget Algorithm

1: Input: A set of jobs J , a set of platforms P , a set of groups G, and an integer
B.

2: Output: The maximum size subset of (j, p) pairs with the highest minimum
fairness over all groupsG having cost at mostB and where each job is assigned
to at most one platform. Running time is O(JPB).

. Step 1: Initialization, aggregation of fairness values
3: minFair[1...len(J)][1...len(P)]← new 2D array initialized to +∞.
4: for j ∈ J and p ∈ P and g ∈ G do
5: if e(j, p, g) = true then
6: minFair[j][p] = min(minFair[j][p], f(j, p, g))
7: end if
8: end for

. Step 2: Iterative DP: For each subproblem containing the first i jobs,
DP [i][t]
. will store the optimal fairness obtainable from these jobs at budget limit
t.

9: DP [0...len(J)][0...B]← new 3D array initialized to 0.
10: for i ∈ [0, len(J)) and t ∈ [0, B] do
11: dp[i+ 1][t]← max(dp[i+ 1][t], dp[i][t])
12: for j ∈ [1...len(P)] do
13: (f, c)← (minFair[J [i]][P [j]], c(J [i], P [j]))
14: if c+ t ≤ B then
15: dp[i+ 1][c+ t]← max(dp[i+ 1][c+ t], f + dp[i][t])
16: end if
17: end for
18: end for

. Step 3: Get total cost of the optimal assignment found
19: maxFairness← 0
20: b← 0
21: N ← len(J)
22: for t ∈ [0...B] do
23: if dp[N][t] > maxFairness then
24: maxFairnes← dp[N][t]
25: b← t
26: end if
27: end for

30

. Step 4: Read result (optimal assignment) from the DP matrix and return
28: result← Empty list
29: while N 6= 0 do
30: (j)← J [N]
31: if dp[N − 1][b] 6= dp[N][b] then
32: for i ∈ [1...len(P)] do
33: if b ≥ c(j, P [i]) and dp[N][b] = minFair[j][P [i]] + dp[N − 1][b −

c(j, P [i])] then
34: result.append((j, P [i]))
35: b← b− c(j, P [i])
36: break
37: end if
38: end for
39: end if
40: N ← N − 1
41: end while

42: return result

maximized. Our second version of the job-provider problem can be formulated as

the following optimization problem:

max
∑
j∈J

∑
p∈P

min
g|e(j,p,g)=true

f(j, p, g)× x(j, p)

subject to: x(j, p) ∈ {0, 1} ∀j ∈ J,∀p ∈ P

x(j, p) = 1→ a(j, p) = true ∀j ∈ J,∀p ∈ P∑
j∈J

c(j, p)× x(j, p) ≤ bp ∀p ∈ P

∑
p∈P

x(j, p) ≤ 1 ∀j ∈ J

We next prove that both job provider problems are computationally hard.

Theorem 2. The Job Provider with Global Budget and the Job Provider

with Local Budget problems are both polynomial-time reducible to the optimization

variant of the Knapsack problem and are therefore at least as hard.

31

Proof. Constraining both problems to one group and one platform gives the

optimization version of the Knapsack problem, known to be at least as hard as

the decision version, known to be NP-Hard.

Like for Problem 2, the similarity between Problem 3 and the Knapsack

problem gives a near-immediate dynamic programming algorithm, described in

Algorithm 4.

This is not all for Problem 4, however. Note that, if the aggregation of fairness

values for each group is done a priori, then Problem 4 becomes equivalent to

LEGAP, a variant of the Generalized Assignment Problem (GAP) where each job

must be assigned to at most one platform instead of exaclty one [19]. And since

LEGAP is proven to be equivalent to the ”standard” GAP [19, 20], then Problem

4 (with pre-aggregated fairness values) is equivalent to GAP. This implies that

Problem 4 is, like GAP, strongly NP-hard.

The advantage of this equivalence is that GAP algorithms from the literature

can solve our problem. The only adjustment required to our problem is to

add a dummy platform pdummy, set its associated fairness values to zero (so

f(j, pdummy, g) = 0 ∀j ∈ J, g ∈ G), cost values to 1 (so c(j, pdummy) = 0 ∀j ∈ J),

and its budget limit to |J |. This creates an instance of GAP that is equivalent

to our problem, and thus can be directly solved by available GAP algorithms.

On the other hand, however, the strong NP-hardness of Problem 4 gives us a few

limitations. By the property of strong NP-hardness, we have that: 1) no exact

pseudo-polynomial time algorithm (such as DP-based methods) can exist for our

problem, unless P = NP ; and 2) no polynomial-time approximation scheme with

a mathematically-guaranteed solution quality can exist either, unless P = NP

[19]. Therefore, when proposing an adequate algorithm to solve Problem 4, we

are left with two possible choices: either non polynomial-time exact algorithms,

32

or more efficient heuristics with no mathematical guarantee on solution accuracy.

With this in mind, we start first by exploring exact GAP algorithms from

the literature. A common outline for solving GAP is the branch-and-bound

(BB) method. We examine three algorithms from this category: 1) the BB with

multiplier adjustment method (MAM) by Fisher et al. [21, 19], 2) the BB with

steepest descent MAM by Karabakal et al. [22], and 3) the BB with variable

fixing by Posta et al. [23]. These three algorithms all use the BB technique, the

main differences between them being the way lower bounds are computed, the

branching strategies, and extra computations involved (such as variable fixing in

[23]). A scalability comparison of these algorithms is included in Chapter 4.

For use cases where efficiency is more essential than solution accuracy, heuristic

algorithms may also be worth considering. For this, we explore and test various

heuristics from the literature that solve GAP, including: 1) MTHG, a polynomial-

time greedy search with regret measure proposed by Martello and Toth [19]; 2)

a Local Search Descent method by Osman [24]; and 3) a Tabu Search method

by Osman [24]. A comparison of these algorithms, both in terms of performance

and solution quality, can be found in Chapter 4.

33

Chapter 4

EXPERIMENTS

To evaluate our proposed framework described in the previous chapter, we design

two sets of experiments. The first set aims to study the scalability of our

proposed algorithms to solve the different job seeker and job provider optimization

problems as the number of jobs, the number of platforms and the number of

worker groups increase. For such experiments, we rely on purely synthetic data.

The second set of experiments to qualitatively analyze the solutions provided by

our algorithms for the different problems and for that we use semi-synthetic data

generated from a real-world online platform.

We divide this chapter as follows. First, we explain how the semi-synthetic

dataset (used in qualitative experiments) is generated. We then describe the

different experiments (both scalability and qualitative) and their results for the

job seeker problems. Finally, we describe the experiments and the results for the

job provider ones.

34

4.1 Semi-Synthetic Dataset (for Qualitative

Experiments)

To simulate multiple, semi-synthetic platforms, we use the TaskRabbit dataset

from [16], and generate eight different ”worlds” from it using interventions. An

intervention is a sampling of the initial dataset’s workers such that the sampled

”world” matches a specific distribution of protected attributes (in our case either

on gender or ethnicity). When generated, each of the obtained worlds is treated as

a separate platform. The resulting dataset, consisting of the original TaskRabbit

data and the eight new worlds, is saved to files for ease of reuse, and we refer to

these nine platforms collectively as the alternative worlds.

The worlds world1 to world4 are created based on gender interventions from

the original world as follows: world1 has percentages of males and females

switched compared to the original; world2 is composed of 50% males and 50%

females; world3 is composed of 30% males and 70% females; and finally world4

is composed of 70% males and 30% females.

The worlds world5 to world8 are created based on ethnicity interventions from

the original world as follows: world5 contains 33% black, 33% white, and 34%

asian people. Worlds 6 through 8 are created from switching the percentages of

two of the ethnicities from the original world. So, world6 swaps the percentages

of whites and blacks, world7 those of whites and asians, and finally world8 those

of blacks and asians. A summary of the resulting platforms and their worker

distributions can be found in Table 4.1.

35

World Male Female

Taskrabbit 0.75 0.25
World1 0.26 0.74
World2 0.50 0.50
World3 0.30 0.70
World4 0.70 0.30
World5 0.74 0.26
World6 0.72 0.28
World7 0.74 0.26
World8 0.75 0.25

(a) Gender statistics

World Black White Asian

Taskrabbit 0.24 0.69 0.07
World1 0.27 0.66 0.07
World2 0.25 0.68 0.07
World3 0.26 0.67 0.07
World4 0.24 0.69 0.07
World5 0.33 0.33 0.34
World6 0.69 0.24 0.07
World7 0.24 0.07 0.69
World8 0.07 0.69 0.24

(b) Ethnicity statistics

World
Male
Asian

Male
Black

Male
White

Female
Asian

Female
Black

Female
White

Taskrabbit 0.05 0.17 0.52 0.02 0.07 0.17
World1 0.02 0.06 0.18 0.05 0.21 0.48
World2 0.04 0.11 0.35 0.03 0.14 0.33
World3 0.02 0.07 0.21 0.05 0.20 0.46
World4 0.05 0.16 0.49 0.02 0.08 0.20
World5 0.26 0.24 0.25 0.08 0.09 0.08
World6 0.05 0.49 0.18 0.02 0.20 0.06
World7 0.52 0.17 0.05 0.16 0.07 0.02
World8 0.18 0.05 0.52 0.06 0.02 0.17

(c) Group statistics

Table 4.1: Platform statistics for the alternative worlds (in percentages)

4.2 Job Seeker Experiments

4.2.1 Algorithms Implementation

For the Unconstrained Job Seeker problem, both the naive and the top-k algorithms

were implemented in Python 3.8, as the function to compute fairness values

defined in [16], and needed for the naive algorithm, was already implemented in

Python. For the top-k algorithm, the index files were built as simple text files for

36

sequential access, each accompanied with a positions table for random access.

For the Constrained Job Seeker variant, we implemented the proposed algorithm

in C++, since this routine relies on dynamic programming.

All scalability experiments were run on the same computer, an Apple MacBook

Pro with a 2.3 GHz dual-core Intel Core i5 processor. Throughout this thesis,

all solving times are measured as CPU time, except for the Unconstrained Job

Seeker experiments. For the latter, real (wall-clock) time was used, since the top-

k algorithm relies on disk reads and memory accesses, which should be accounted

for.

For all qualitative experiments, the fairness scoring function used is the EMD

metric from [16].

4.2.2 Unconstrained Scalability Experiments

To compare the performance of our two unconstrained job seeker algorithms at

various scales, we now build a fully-synthetic dataset consisting of 5000 jobs and

70 platforms. Each job in each platform is represented as a file, containing a

ranked list of its fictional workers. The number of these workers for each job-

platform pair is a random value between 0 and 50. In addition, each worker

is assigned values for two protected attributes, also at random. Then, the

corresponding index files for the top-k algorithm are built from the generated

data.

On this new dataset, we run both the naive and top-k algorithms we implemented,

using increasing values of |J |, |P |, and k on each run. To compute fairness values,

we use the two metrics defined in [16], namely Earth Mover Distance (EMD) and

Exposure. Therefore, this scalability experiment is run for both metrics.

The experiment then goes as follows. For each run, we generate ten fictional

37

job seekers, and assign to each of them |J | jobs and |P | platforms of interest at

random. Then, we find the top-k job-platform pairs for each seeker using both

the naive and the top-k algorithms. Each possible (|J |, |P |, k) combination is ran

for all seekers, and the average running time of each algorithm per combination

is recorded.

After performing all the runs, we first plot the time results for all values of k

in Figure 4.1. As the curves for the different values of k show very similar trends,

we only focus on k = 20 for comparing Naive vs. Top-k performance. A plot

comparing runtimes for both algorithms at k = 20 is shown in Figure 4.2. As

the figure shows, a general trend is that as the number of pairs (N = J × P)

increases, the naive algorithm becomes much slower, while the top-k algorithm

becomes slightly faster until its speed eventually plateaus, which indicates that

the top-k algorithm scales much better than the naive one. Also, it seems that

the naive algorithm performs better using the Exposure fairness metric rather

than EMD, as EMD is more computationally expensive.

Next, we analyze how well the top-k algorithm scales as the number of

protected attributes n increases. For this, we generate a new synthetic index,

which also assumes 5000 jobs and 70 platforms. This index is essentially a large

set of index files that map each new job-platform pair to a random fairness value,

and where each index file represents one group.

At this stage, it is important to distinguish between a protected attribute and

a group. While a protected attribute is only one attribute or characteristic, such

as gender or age, a group represents a combination of one or more protected

attributes that are assigned a value, e.g. {gender : ”female”}. This means

that, when n attributes are being considered, each worker then belongs to all

groups that are combinations of one or more of their protected attributes’ values.

38

0 1,000 2,000 3,000 4,000 5,000
0

20

40

60

80

100

Number of job-platform pairs

T
im

e
(s

)

k
5
10
15
20
30

(a) Naive time wrt. N (metric: EMD)

0 1,000 2,000 3,000 4,000 5,000
0

20

40

60

80

100

Number of job-platform pairs

T
im

e
(s

)

k
5
10
15
20
30

(b) Top-k time wrt. N (metric: EMD)

0 1,000 2,000 3,000 4,000 5,000
0

20

40

60

80

100

Number of job-platform pairs

T
im

e
(s

)

k
5
10
15
20
30

(c) Naive time wrt. N (metric: Exposure)

0 1,000 2,000 3,000 4,000 5,000
0

20

40

60

80

100

Number of job-platform pairs

T
im

e
(s

)

k
5
10
15
20
30

(d) Top-k time wrt. N (metric: Exposure)

Figure 4.1: Unconstrained Job Seeker Experiment: Naive vs. Top-k performance
for different values of k

0 1,000 2,000 3,000 4,000 5,000
0

20

40

60

80

100

Number of job-platform pairs

T
im

e
(s

)

Naive
Top-k

(a) Time wrt. N (metric: EMD)

0 1,000 2,000 3,000 4,000 5,000
0

20

40

60

80

100

Number of job-platform pairs

T
im

e
(s

)

Naive
Top-k

(b) Time wrt. N (metric: Exposure)

Figure 4.2: Unconstrained Job Seeker Experiment: Naive vs. Top-k Times for
k = 20

39

0 1 2 3 4 5 6 7
0

50

100

150

Number of protected attributes

T
im

e
(s

)

k
5
10
15
20
30

Figure 4.3: Top-k algorithm times wrt. Number of Protected Attributes, n.

For example, a male asian worker belongs not only to the group {gender :

”male”, ethnicity : ”asian”}, but also to {gender : ”male”} and {ethnicity :

”asian”}. Assuming that a worker can only have one value for an attribute at

a given point in time (e.g., a worker does not have two ages at the same time),

then the total number of groups that each worker belongs to is 2n − 1, which is

the size of the powerset of the attributes set, minus the empty set.

So, each synthetic index file corresponds to a group, and therefore, when we

consider n protected attributes for each seeker, we need to read 2n− 1 index files

concurrently for each seeker during the Top-k algorithm run. This therefore hints

at an exponential growth in runtime as we increase n, which is consolidated by

the obtained scalability results of Figure 4.3.

40

Figure 4.4: Occurrences of each World in the Seekers’ Top-5 Results

4.2.3 Unconstrained Qualitative Experiments

The Qualitative Experiments

We design two experiments in this section. The first one focuses on the alternative

worlds, and how their demographic group distributions affect the search results for

seekers of different groups. This experiment goes as follows: generate six seekers

(one per gender-ethnicity combination), assign the same |J | = 20 random jobs

of interest to all seekers, set their platforms of interest to be the nine alternative

worlds, and fetch the top five fairest (j, p) pairs for each seeker using the top-

k algorithm. For each top-five result set, the number of occurrences of each

platform is recorded in Figure 4.4, and the number of occurrences of each job in

Figure 4.5.

Looking at the world frequency results, we see that platforms world2 and

41

Figure 4.5: Occurrences of each Job in the Seekers’ Top-5 Results

world4 are present in all of the seekers’ top-five results, suggesting that these

worlds are fair to every group for the twenty chosen jobs of interest. On the

other hand, we see that taskrabbit and world7 do not occur in any of the seekers’

top-five results, which suggests these platforms are the least fair of the bunch

for the chosen jobs. For the job frequencies, we notice that the job ”Cleaning

in London, UK” appears across the board, implying that this job is fair to all

demographic groups in our study. Other frequently appearing jobs are ”Furniture

Shopping and Assembly in Colombus, OH”, which appears in the top-five for all

groups except the Black ones, and ”Pack for a Move in Raleigh, NC” which

appears for all groups except the Asian ones.

The second experiment investigates how the chosen worlds of preference affect

a seeker’s chances of finding fair jobs. For this, we fix one random set of jobs of

interest, and assign it to all six seekers. Then, for each seeker and each alternative

42

world pi, we retrieve the seeker’s top five fairest jobs in platform pi. Then, we also

retrieve the seeker’s overall top-five fairest jobs in all platforms combined. Finally,

for each top-five result set, the sum of the jobs’ fairness values is computed and

compared against the ones of the other sets. The obtained results are shown in

Figure 4.6.

We notice that world7 has the lowest sum of fairness values across the board,

which indicates that world7 is the least fair platform for the chosen set of jobs.

Recall that world7 is the world sampled from taskrabbit such that the percentage

of Asians and Whites is reversed. As Asians form quite a minority in taskrabbit

(7% of all workers), this world has by far the fewest number of workers in it,

which can negatively affect fairness values.

World2 vs. World7: Further Analysis

To further understand the reason behind world7’s relatively poor fairness performance

on the selected jobs, we compare statistics between this world and world2, one

of the worlds that fared the best in our previous tests. We first compare the

number of workers between world2 and world7 for the twenty jobs, which results

are shown in Figure 4.7. The plot shows that the twenty jobs in world7 have in

general very few workers compared to world2, with most of these jobs containing

less than five workers each. Also, we notice that many of these jobs only contain

workers from a very few groups (especially the jobs that have very few workers).

This leaves many demographic groups unrepresented in these jobs, hence we have

no fairness data for the affected (job, world, group) combinations. As a result,

these combinations cannot appear in any seeker’s top results.

43

Figure 4.6: Sum of fairness values of the top-five (j, p) pairs, per seeker

44

Figure 4.7: Comparing worker counts in the twenty selected jobs: world2 vs.
world7

4.2.4 Constrained Scalability Experiments

We now test the scalability of our Dynamic Programming algorithm proposed in

Chapter 3. For this, we create a synthetic set of N job-platform pairs, where

each pair is associated with a set of fairness values (one per group, selected at

random between 1000 and 9999) and a reward value, selected at random between

10 and 99. From there, the task is to find, for various values of N and k, the

top-k pairs that maximize fairness while satisfying a reward threshold of 80× k.

For now, the number of protected attributes n considered is fixed to n = 2 (and

so, the number of groups considered is 22 − 1 = 3).

So, for each run, we pick different fairness and reward values at random,

and then find the desired optimum result in two ways: 1) using our Dynamic

Programming (DP) algorithm from Chapter 3, and 2) an off-the-shelf Integer

45

0 1,000 2,000 3,000 4,000 5,000
0

5

10

15

20

Number of job-platform pairs

T
im

e
(s

)

k
5
10
15
20
30

(a) ILP time wrt. N

0 1,000 2,000 3,000 4,000 5,000
0

5

10

15

20

Number of job-platform pairs

T
im

e
(s

)

k
5
10
15
20
30

(b) DP wrt. N

Figure 4.8: Constrained Job Seeker: Comparing performance of the ORTools
solver (ILP) versus the proposed Dynamic Programming algorithm (DP)

Linear Programming (ILP) solver (Google’s ORTools). We execute ten such

runs for every (N , k) combination, and record the average solving time of each

algorithm over the ten runs. The results are summarized and compared in the

plots of Figure 4.8.

As the plots show, the proposed DP algorithm finds the desired results much

faster than the general-purpose ILP solver, for all values of k considered. Both

algorithm’s runtimes seem to increase as N gets larger, but this observed increase

for DP is less pronounced and much more linear than for ILP. This suggests that

the proposed DP scales much better than ILP in terms of N . With respect to

k, we see the DP algorithm’s running time also increases with k, but the ILP’s

seem to remain mostly unchanged as k varies, suggesting that the ILP’s running

time does not depend much on k.

Next, we examine how the DP algorithm performs as the number of protected

attributes n increases. For this, we repeat the experiment above, but instead of

setting n = 2 protected attributes, we run the experiment for increasing values

of n. The time results are recorded in Figure 4.9.

46

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

Number of protected attributes

T
im

e
(s

)

k
5
10
15
20
30

Figure 4.9: DP algorithm times wrt. Number of Protected Attributes, n.

From the plot, we can see that up until n = 11, the solving time does

not change much, but then grows exponentially after that point. Remember

that the DP algorithm consists of two main stages: a ”preprocessing” stage

where the minimum fairness of each job-platform pair is computed, with time

complexity O(JPG), followed by a solving phase using dynamic programming,

of complexity O(JPkR). Back to the plot, the point where the time starts

increasing exponentially is the point where the value of JPG becomes significant

(same order of magnitude) compared to JPkR. From there, we conclude that as

long as the number of groups G = 2n − 1 is of smaller order of magnitude than

KR, then the DP algorithm’s time will not depend much on n.

4.2.5 Constrained Qualitative Experiments

Precision

As the Constrained Job Seeker algorithm requires fairness values to be input as

integers, and our current values are floats between 0 and 1, we need to convert

47

our values to integers before running the algorithm. The idea is then to truncate

each fairness value to d significant digits, and then multiply the result by 10d.

For example, if d = 2, then a fairness value of 0.831 will be mapped to the integer

83, and the range of possible integer values will be between 0 and 99.

However, we need to ensure that d is large enough to avoid mapping too many

fairness values to the same integer, yet small enough that the fairness integers

are not too large or too granular.

An optimal value of d would be the smallest value that gives us enough

precision when truncating the fairness values, so as to avoid too large collisions

when mapping to integers. To find the optimal d, we considered integers from 1

to 8 as candidate values. For each candidate value of d, we took all fairness values

of our semi-synthetic data’s index, and mapped them to d-digit integers. We then

binned the resulting values in a histogram, where the bins are {0, 1, 2, ..., 10d−1},

so that we get for each possible integer value, the frequency of fairness values that

were actually mapped to it.

From there, we record 1) the largest frequency observed (in percentage),

which gives us the size of the largest collision in the histogram; and 2) the

entropy of the obtained fairness values, which we use as an indicator of how well-

distributed (and not biased towards certain values) the mappings are. Comparing

these metrics between candidate values of d shows us how much ”improvement”

(smaller collisions) there is going from one precision d to the next. The observed

values are shown in Figure 4.10 and Figure 4.12.

Looking at Figure 4.10 (with a clearer view in Figure 4.11), the size of the

largest collision decreases significantly from d = 1 to d = 2, followed by a slower

decrease at d = 3, before stagnating mostly between d = 4 and 6. Then we see

another marginal decrease at d = 7. This means that the biggest precision gains

48

0 2 4 6 8
0

0.1

0.2

0.3

0.4

Precision

L
ar

ge
st

F
re

q
.

in
H

is
to

gr
am

Group
male

female
asian
black
white

male asian
male black
male white

female asian
female black
female white

Figure 4.10: Variation in Largest Frequency Observed wrt. Precision used (lower
is better)

we see lie between d = 1 and d = 3, with a relative gain starting from d = 7

onwards.

Also, Figure 4.12 reveals that the increase in entropy is most noticeable from

d = 1 till d = 4, with much slower increases from there till d = 6, followed

by a further increase at d = 7. As entropy is a good indicator of the spread

and variety of the obtained fairness values, we can then conclude that the most

impactful decreases in collisions occur between d = 1 and d = 4, with other

relative improvements seen from d = 7 and on. Therefore, we conclude from the

three figures that d = 4 is a reasonable precision to use.

The Qualitative Experiments

We now conduct two experiments on the Constrained Job Seeker algorithm, using

the exact same setting as the previous Unconstrained qualitative runs: same

seekers, same jobs J and platforms P of interest. The experiments themselves

are very similar to their Unconstrained counterparts, the only difference being

that here, each job-platform pair is associated with a reward value between 1

49

0 2 4 6 8
0

5 · 10−2

0.1

0.15

Precision

L
ar

ge
st

F
re

q
.

in
H

is
to

gr
am

Group
male

female
asian
black
white

male asian
male black
male white

female asian
female black
female white

Figure 4.11: A closer look from the plot of Figure 4.10

0 2 4 6 8
0

2

4

6

8

10

12

Precision

E
n
tr

op
y

S
co

re

Group
male

female
asian
black
white

male asian
male black
male white

female asian
female black
female white

Figure 4.12: Variation in Entropy wrt. Number of Precision Digits (higher is
better)

50

and 100, and now each seeker aims to select the top five pairs that maximize the

fairness values they get, while having a total reward of at least 400.

The goal of the two experiments is to confirm whether our newly-added reward

constraint is actually affecting the obtained top-k results, which would ensure the

relevance of our provided algorithm.

For the first experiment, we use the same seekers as the first Unconstrained

qualitative run, and find the top-five job-platform pairs for each seeker while

satisfying the new reward threshold of 400. Then, we record the number of times

each world and job occurs in every seeker’s result set, as shown in the plots of

Figures 4.13 and 4.14. Also recorded are the sum of (four-digit) fairness values

and the sum of rewards for each result set, which can be seen in Table 4.2.

Looking at Figures 4.13 and 4.14, we notice that for both plots, the results

shown are different from those of the corresponding Unconstrained run, even

though both experiments share the exact same setting aside from the reward

threshold. This indicates that the latter is actively affecting results. Also, the

values in Table 4.2 confirm that the reward constraint is indeed met, while still

providing satisfactory fairness values.

Next, for the second experiment, we use again the same sets of seekers, jobs

and platforms as we did previously. From there, we find for each seeker and

each platform pi in P , the top-five jobs in platform pi that maximize fairness,

while satisfying the reward constraint. Then, we similarly find the seeker’s

(constrained) top-five pairs for all platforms in P combined. Finally, we record

the sum of fairness values for each obtained result set as shown in Figure 4.15,

and compare the results to the ones of the corresponding Unconstrained run.

We note here again that the results of the two experiments differ, which further

confirms that the reward constraint is taking effect as expected.

51

Figure 4.13: Constrained Experiment: Distribution of top-5 pairs among worlds,
for each seeker

Figure 4.14: Constrained Experiment: Distribution of top-5 pairs among jobs of
interest, for each seeker

52

Seeker Sum of Fairness Values Sum of Rewards

Male Asian 43434 402
Male Black 38456 400
Male White 39750 401

Female Asian 43434 402
Female Black 38607 402
Female White 38753 401

Table 4.2: Constrained Experiment: Sums of fairness values and rewards of the
top-k pairs chosen. As expected, the sum of rewards for each seeker is indeed
over 400.

Figure 4.15: Constrained Experiment: Sums of fairness values of the top five
(j, p) pairs, per seeker and world.

53

4.3 Job Provider Experiments

4.3.1 Algorithms Implementation

For the Job Provider with Global Budget problem variant, we implemented

the proposed Dynamic Programming algorithm in C++. For the Local Budget

variant, we implemented the algorithms in C++ as well, except for the Posta et

al.’s algorithm, which C code was taken from the authors’ GitHub repository 1,

and Karabakal et al.’s algorithm, for which we used the C code from the technical

report in [25].

All scalability experiments were run on the same computer, an Apple MacBook

Pro with a 2.3 GHz dual-core Intel Core i5 processor. Solving times are again

measured in CPU time.

4.3.2 Job Provider with Global Budget Scalability

Experiments

To assess the scalability of our proposed algorithm, we first create problem

instances as follows. For given values of |J | and |P |, and for a fixed number of

protected attributes n = 2, we generate N = |P | × |J | job-platform pairs. Each

pair is associated with 2n − 1 = 3 fairness values, selected at random between

1000 and 9999, and one cost value selected at random between 50 and 150. The

task is then to find the subset of job-platform pairs with the highest fairness,

while respecting a budget limit of 50× |J |.

So, for increasing values of |J | and |P |, we create one hundred such problem

instances per (J, P) combination. This time we went for a hundred instances

1https://github.com/postamar/gap-solver

54

0 1,000 2,000 3,000 4,000 5,000
0

5 · 10−2

0.1

0.15

0.2

0.25

Number of job-platform pairs

T
im

e
(s

)

ILP
DP

Figure 4.16: Job Provider with Global Budget: DP algorithm vs. ILP solver
scalability wrt. number of pairs N .

instead of ten, because the solving time of this algorithm is very short and prone

to slight fluctuations, so averaging time over more instances is needed to have a

stable reading. Next, each of the instances is solved using two methods: 1) our

proposed DP algorithm; and 2) the Google ORTools ILP sovler. The average

solving time of each method over the hundred instances is then recorded. The

results are shown in Figure 4.16, which reveals that the DP solving times are

faster than the ILP times for all values of N , and that the DP times increase

more slowly than the ILP times as N increases.

Next, as the budget limit B is part of the DP algorithm’s time complexity, we

design a second scalability experiment to see how solving times are affected by the

value of B. For this, we fix the number of jobs and of platforms to |J | = |P | = 50,

and generate one hundred instances worth of fairness values and cost values in

the same way as the experiment above. Then, each instance (i.e. set of fairness

and cost values) is solved with increasing values of B, by both the DP algorithm

55

1 2 3 4 5

·104

0

0.1

0.2

0.3

0.4

0.5

Budget limit

T
im

e
(s

)

ILP
DP

Figure 4.17: Job Provider with Global Budget: DP algorithm vs. ILP solver
scalability wrt. budget limit B.

and the ORTools solver as a reference. Average time results are shown in Figure

4.17, hinting at a linear increase in the DP’s solving time as B increases.

4.3.3 Job Provider with Global Budget Qualitative

Experiments

We design two experiments for this section. The first aims to find to what extent

the platforms chosen affect fairness results, for the same jobs of interest. For this,

we take one job provider, and fix their jobs of interest to twenty jobs, selected

at random. Each of the twenty jobs is assigned a cost, selected as a random

integer between 50 and 150. From there, for each alternative world pi, we solve

the Job Provider with Global Budget problem for the platform pi, the selected

twenty jobs, and a budget limit of 1000. We then do the same but with all

alternative worlds combined. The optimal fairness value found for each instance

56

is recorded, and displayed in the plot of Figure 4.18. (Note that unlike for Job

Seeker problems, the plot here is two-dimensional, since the ”seeker” dimension is

not relevant for Job Provider problems). The plot shows that the optimal fairness

value found is not the same for each platform, and that choosing all platforms

together (the ”Overall” entry in the plot) yields a much better fairness value

than any of the nine platforms separately. Then, our conclusion here is twofold:

first, the best fairness achievable varies from platform to platform, so choosing

a platform of interest wisely is important; and second, higher fairness values are

achievable when choosing multiple platforms of interest instead of just one.

The second experiment aims to answer the question: ”Does a higher budget

limit necessarily imply better fairness results?”. For this, we take again one

job provider, with the same twenty jobs of interest as the previous experiment,

and we fix the provider’s platforms of interest to be all nine alternative worlds.

From there, we solve the Job Provider with Global Budget problem for this

provider, with the same jobs and the same platforms of interest, but with budget

limits varying between 1000 and 2000. For each budget limit considered, the

optimal fairness value found is recorded and displayed in Figure 4.19. As shown

by the plot, the obtained fairness value increases slightly at first as the budget

limit becomes more permissive, before eventually plateauing when the budget

limit reaches 1300. This happens because, in this particular problem instance,

the job-to-platform assignment with the highest fairness possible has a cost of

1204. Thus, any input budget limit greater than 1204 will return this optimal

assignment, with no further improvement possible on the fairness value obtained.

Therefore, the answer to our question above is yes, a higher budget limit can

imply better fairness results, but only up to a certain point.

57

ta
sk

ra
bb

it

wor
ld

1

wor
ld

2

wor
ld

3

wor
ld

4

wor
ld

5

wor
ld

6

wor
ld

7

wor
ld

8

ov
er

al
l

2

4

6

8
·104

F
ai
rn
es
s

Figure 4.18: Job Provider with Global Budget: First qualitative experiment;
Optimal fairness value obtained per platform(s) of interest.

58

1,000 1,200 1,400 1,600 1,800 2,000

7.2

7.3

7.4

·104

Budget limit set

F
ai

rn
es

s

Figure 4.19: Job Provider with Global Budget: Second qualitative experiment;
Optimal fairness value obtained for the same problem instance, but with varying
budget limits.

59

4.3.4 Job Provider with Local Budgets Scalability

Experiments

Recall that for this problem, we are considering a selection of both exact and

heuristic algorithms from the literature. To compare these algorithms’ performance,

we develop a scalability experiment as follows. For increasing values of |J | and

|P |, and for a fixed number of attributes n = 2, we generate 100 problem instances

as follows. First, we assign to each job in J a set of 2n − 1 = 3 fairness values,

selected at random between 1000 and 9999, and a cost value selected at random

between 50 and 149. Next, each platform p in P is assigned a budget limit bp,

where:

bp =

⌈
100× |J |
|P |

⌉
+ ε; ε random integer between 0 and 49.

The point of this formula is to roughly even out the budget limits across

platforms, while still having some fluctuation in the bp values. The goal is then

to solve these problem instances using each of the algorithms considered, as well

as a generic ILP solver (ORTools), while recording each method’s solving times

and optimality gaps.

Starting with exact algorithms, the three methods we are comparing are:

� The BB algorithm by Fisher et al. [21], following the pseudo-code in [19];

� The BB algorithm by Karabakal et al. After parameter tuning, we set the

root subgradient iteration limit (”ROOTSUBITLIM”) to 200, the subgradient

limit at other nodes to 100, and the maximum branching limit to 200,000,

with all other parameters being kept at their defaults.

� The BB algorithm by Posta et al. After parameter tuning, we set the

60

0 1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

0.8

1

Number of job-platform pairs

T
im

e
(s

)

Algorithm
Karabakal et al.

Posta et al.
ILP

Figure 4.20: Job Provider with Local Budgets: Exact algorithms’ time
performance wrt. N (number of pairs)

subgradient iteration limit to 30, the root bundle iteration count to 25000,

and leave other parameters at their default values.

For the three algorithms, the experiment is run on the same problem instances.

Early on in the tests, we notice the Fisher et al. algorithm’s solving times to be

substantially slower than for the other two algorithms, despite our best efforts

at optimizing our code. Therefore, this algorithm was dropped from the rest of

our benchmark. The time results of the benchmark for the remaining algorithms

versus ORTools can be found in Figure 4.20. In the absolute, both Karabakal

et al.’s and Posta et al.’s algorithms scale fairly well within our problems’ sizes,

with Karabakal et al.’s method having a slight edge, however neither of them is

much faster than the ILP solver.

Next, we move on to heuristics. The heuristics to be compared are:

� MTHG

61

0 1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

0.8

1

Number of job-platform pairs

T
im

e
(s

)

Algorithm
LS

MTHG
TS
ILP

(a) Times wrt. N

0 1,000 2,000 3,000 4,000 5,000
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Number of job-platform pairs

O
p

ti
m

al
it

y
G

ap
(%

)

Algorithm
LS

MTHG
TS

(b) Optimality gaps wrt. N (where 1 =
100%)

Figure 4.21: Job Provider with Local Budgets: Heuristic algorithms’ time and
quality performance wrt. N (number of pairs)

� Osman’s LS Descent method (LS)

� Osman’s Tabu Search method (TS)

For the Tabu Search method, the iteration limit was set to 100 × |J |, the

tabu list size to 20 × |J |; all other parameters for all the algorithms were kept

to their defaults. The three algorithms are then compared to each other and

to ORTools based on solving time, and also based on solution quality this time.

Here, solution quality is computed as the gap between the optimal value found

by a heuristic, zh, and the one found by ORTools, zopt (which is assumed to be

optimal), via the following formula:

optimality gaph =

zopt−zh
zopt

if zopt 6= 0

0 otherwise.

The results are shown in Figure 4.21, revealing that all three heuristics perform

much faster than the ILP solver at scale, while returning decently accurate

solutions within 2% from optimality on average. Therefore, if exact optimality

62

is not a must, then heuristics can be a solid, more efficient alternative to exact

algorithms.

4.3.5 Job Provider with Local Budgets Qualitative

Experiments

We design two experiments in this section. The first one aims to find, for a given

(total) budget limit, whether higher fairness values are achievable with fewer

platforms (but with higher budget limits each), or with more platforms (and

lower budget limits each). For this, we take the same nine worlds and twenty

jobs as in Section 4.3.3. The twenty jobs are fixed as jobs of interest, and the

fairness values for each job-platform pair are kept the same as in Section 4.3.3. We

also fix a (total) budget limit of 1000, again like in Section 4.3.3’s first experiment.

The idea is then to vary the number of platforms |P | of interest, and divide the

budget limit evenly across these platforms (if the total limit is not divisible by

|P |, then the remainder amount after division is added to the last platform). We

run nine runs for this experiment: in the first run, we have P = {taskrabbit} as

platform of interest, in the second run P = {taskrabbit, world1}, in the third,

P = {taskrabbit, world1, world2}, etc. In each run, the Job Provider with Local

Budget problem is solved using the Karabakal et al. algorithm [22], and the total

fairness value of the optimal assignment is recorded.

The results of this experiment are displayed in Figure 4.22. The plot shows

an apparent trade-off: at first, fairness values generally increase, as we get more

options (job-platform pairs) to choose from. However, as we increase the number

of platforms further, the budget limits keep getting tighter on each platform, and

so we start seeing a decrease in the total fairness value. Therefore, using our

63

2 4 6 8
2

3

4

5

6

·104

Number of platforms of interest

T
ot

al
F

ai
rn

es
s

Figure 4.22: Job Provider with Local Budgets: First qualitative experiment;
Optimal fairness value obtained with different number of platforms of interest.

framework, the answer to the question above is that choosing the right number

of platforms poses a trade-off, that should be handled on a case-by-case scenario.

Our second experiment aims to find the extent to which a platform of interest

can affect the obtained fairness results. For this, we reuse the same setup as

the first experiment, but this time at each run, only one platform is selected

individually. That is, for the first run, P = {taskrabbit}, for the second run,

P = {world1}, the third, P = {world2}, etc., plus one final run where all

platforms combined are selected. Results are shown in Figure 4.23. As we can

see, the fairness value chosen does vary from platform to platform, with all things

remaining constant, which implies that choosing a platform of interest must be

done wisely.

Also, when comparing these results with those of the equivalent experiment

64

ta
sk

ra
bb

it

W
or

ld
1

W
or

ld
2

W
or

ld
3

W
or

ld
4

W
or

ld
5

W
or

ld
6

W
or

ld
7

W
or

ld
8

O
ve

ra
ll

2

4

6

8
·104

F
ai
rn
es
s

Figure 4.23: Job Provider with Local Budgets: First qualitative experiment;
Optimal fairness value obtained per platform(s) of interest.

for the Global Budget variant (Section 4.3.3, Figure 4.18.), we see that they are

all identical, except for the last run (where all platforms are combined). This is

because for one platform, both the Global and the Local Budget problems are

equivalent, and thus their algorithms return the same results. For the last run, the

fairness obtained in the Local Budget experiment are lower, since the constraints

are tighter compared to the Global Budget one. While the total budget of 1000

is the same, the Local Budget variant has additional constraints on how costs

should be distributed over all platforms.

65

Chapter 5

CONCLUSION

In this work, we proposed a framework to assess and compare fairness of ranking

on multiple jobs, that can exist on multiple online platforms. We based our

framework on realistic use cases for both job seekers and providers, which we

formulated as four optimization problems. We also proved that three of these

problems at least NP-hard. As shown by our experiments, the algorithms we

proposed for all four problems are efficient, and answer useful fairness-related

inquiries. Possible future work includes using our framework to conduct real-

world case studies, where real jobs and platforms are examined from a ranking

bias standpoint. Also, it would be interesting to adapt our framework to handle

fairness issues other than ranking, such as bias in worker ratings and evaluations.

66

Bibliography

[1] T. Calders and S. Verwer, “Three naive bayes approaches for discrimination-

free classification,” Data Mining and Knowledge Discovery, vol. 21, pp. 277–

292, Sep 2010.

[2] I. Zliobaite, “A survey on measuring indirect discrimination in machine

learning,” CoRR, vol. abs/1511.00148, 2015.

[3] A. Singh and T. Joachims, “Fairness of exposure in rankings,” in Proceedings

of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pp. 2219–2228, 2018.

[4] M. T. Keane, M. O’Brien, and B. Smyth, “Are people biased in their use

of search engines?,” Communications of the ACM, vol. 51, no. 2, pp. 49–52,

2008.

[5] A. J. Biega, K. P. Gummadi, and G. Weikum, “Equity of attention:

Amortizing individual fairness in rankings,” in The 41st international acm

sigir conference on research & development in information retrieval, pp. 405–

414, 2018.

[6] M. Zehlike, F. Bonchi, C. Castillo, S. Hajian, M. Megahed, and R. Baeza-

Yates, “Fa* ir: A fair top-k ranking algorithm,” in Proceedings of the 2017

67

ACM on Conference on Information and Knowledge Management, pp. 1569–

1578, 2017.

[7] L. E. Celis, D. Straszak, and N. K. Vishnoi, “Ranking with fairness

constraints,” arXiv preprint arXiv:1704.06840, 2017.

[8] M. Zehlike, T. Sühr, R. Baeza-Yates, F. Bonchi, C. Castillo, and S. Hajian,

“Fair top-k ranking with multiple protected groups,” Information Processing

& Management, vol. 59, no. 1, p. 102707, 2022.

[9] M. Zehlike and C. Castillo, “Reducing disparate exposure in ranking: A

learning to rank approach,” in Proceedings of The Web Conference 2020,

pp. 2849–2855, 2020.

[10] A. Hannák, C. Wagner, D. Garcia, A. Mislove, M. Strohmaier, and

C. Wilson, “Bias in online freelance marketplaces: Evidence from taskrabbit

and fiverr,” in Proceedings of the 2017 ACM conference on computer

supported cooperative work and social computing, pp. 1914–1933, 2017.

[11] L. Chen, Measuring algorithms in online marketplaces. PhD thesis,

Northeastern University, 2017.

[12] S. Elbassuoni, S. Amer-Yahia, A. Ghizzawi, and C. Atie, “Exploring fairness

of ranking in online job marketplaces,” in 22nd International Conference on

Extending Database Technology (EDBT), 2019.

[13] A. Ghizzawi, J. Marinescu, S. Elbassuoni, S. Amer-Yahia, and G. Bisson,

“Fairank: An interactive system to explore fairness of ranking in online

job marketplaces,” in 22nd International Conference on Extending Database

Technology (EDBT), 2019.

68

[14] S. Elbassuoni, S. Amer-Yahia, and A. Ghizzawi, “Fairness of scoring in online

job marketplaces,” ACM Transactions on Data Science, vol. 1, no. 4, pp. 1–

30, 2020.

[15] S. C. Geyik, S. Ambler, and K. Kenthapadi, “Fairness-aware ranking

in search & recommendation systems with application to linkedin talent

search,” in Proceedings of the 25th acm sigkdd international conference on

knowledge discovery & data mining, pp. 2221–2231, 2019.

[16] S. Amer-Yahia, S. Elbassuoni, A. Ghizzawi, R. Borromeo, E. Hoareau,

and P. Mulhem, “Fairness in online jobs:{A} case study on taskrabbit and

google,” in International Conference on Extending Database Technologies

(EDBT), 2020.

[17] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for

middleware,” Journal of computer and system sciences, vol. 66, no. 4,

pp. 614–656, 2003.

[18] M. G. Lagoudakis, “The 0-1 knapsack problem–an introductory survey,”

1996.

[19] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer

Implementations. USA: John Wiley & Sons, Inc., 1990.

[20] M. Yagiura and T. Ibaraki, “Generalized assignment problem,” in Handbook

of Approximation Algorithms and Metaheuristics (Chapman & Hall/Crc

Computer & Information Science Series) (T. F. Gonzalez, ed.), Chapman &

Hall/CRC, 2007.

69

[21] M. L. Fisher, R. Jaikumar, and L. N. Van Wassenhove, “A multiplier

adjustment method for the generalized assignment problem,” Management

science, vol. 32, no. 9, pp. 1095–1103, 1986.

[22] N. Karabakal, J. C. Bean, and J. R. Lohmann, “A steepest decent [sic]

multiplier adjustment method for the generalized assignment problem,” tech.

rep., 1993.

[23] M. Posta, J. A. Ferland, and P. Michelon, “An exact method with variable

fixing for solving the generalized assignment problem,” Computational

Optimization and Applications, vol. 52, no. 3, pp. 629–644, 2012.

[24] I. H. Osman, “Heuristics for the generalised assignment problem: simulated

annealing and tabu search approaches,” Operations-Research-Spektrum,

vol. 17, no. 4, pp. 211–225, 1995.

[25] N. Karabakal, “A c code for solving the generalized assignment problem.,”

tech. rep., 1992.

70

