AMERICAN UNIVERSITY OF BEIRUT

MODELS AND RESOURCES FOR ARABIC
DATA-TO-TEXT GENERATION

by
ROUDY SAMIR TOUMA

A thesis
submitted in partial fulfillment of the requirements
for the degree of Master of Engineering
to the Department of Electrical and Computer Engineering
of the Maroun Semaan Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
Jan 2022

AMERICAN UNIVERSITY OF BEIRUT

MODELS AND RESOURCES FOR ARABIC
DATA-TO-TEXT GENERATION

by
ROUDY SAMIR TOUMA

Approved by:

Dr. Hazem Hajj, Associate Professor Advisor
Electrical and Computer Engineering M/
Dr. Mazen Saghir, Associate Professor Member of Committee
Electrical and Computer Engineering (_
(2Q ((-
0
Dr. Wassim El Hajj, Associate Professor Member of Committee

Computer Science W

Date of thesis defense: Jan 15, 2022

AMERICAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT
RELEASE FORM

Student Name: _10uma Roudy Samir
Last First Middle
@ Master’s Thesis O Master’s Project O Doctoral Dissertation

m I authorize the American University of Beirut to: (a) reproduce hard or electronic copies
of my thesis, dissertation, or project; (b) include such copies in the archives and digital repos-
itories of the University; and (c¢) make freely available such copies to third parties for research
or educational purposes.

D I authorize the American University of Beirut, to: (a) reproduce hard or electronic
copies of it; (b) include such copies in the archives and digital repositories of the University;
and (c) make freely available such copies to third parties for research or educational purposes
after: One ___ year from the date of submission of my thesis, dissertation or project.
Two ___ years from the date of submission of my thesis , dissertation or project.
Three ___ years from the date of submission of my thesis , dissertation or project.

? 02-02-2022

Signature Date

This form is signed when submitting the thesis, dissertation, or project to the University Libraries

Acknowledgements

I would like to say a special thank you to my supervisor Dr. Hazem Hajj
for his support and guidance throughout my graduate studies. I would also like
thank the committee for their valuable inputs during the thesis defense and my
friends for being a great support system. Last but not least, I would like to thank
Ms. Doja for all the times she helped me improve in spirits.

An Abstract of the Thesis of

Roudy Touma for Master of Engineering
Major: Electrical and Computer Engineering

Title: Models and Resources for Arabic Data-to-text Generation

Resource Description Framework (RDF) is the standard for representing struc-
tured knowledge on the Web. It is based on entities such as facts, events, and
the relationships between them. RDF verbalizers are important to generate good
quality textual descriptions from such RDF data. Despite the significant work
done for the English language, no efforts have been directed towards low-resource
languages like the Arabic language. This work promotes the development of
RDF data-to-text (D2T) generation systems for the Arabic language by intro-
ducing a new Arabic dataset (AraWebNLG). A comparative study between mul-
tiple sequence-to-sequence models is also presented while studying the transfer
of knowledge from pre-trained language models (AraBERT, AraGPT2 and mT5)
to overcome data limitations. The analysis involves numerical metrics (BLEU
and Perplexity scores) as well as task-specific metrics related to the accuracy of
the content selection and fluency of the generated text. The results highlight
the importance of pre-training on large corpus of Arabic data as the AraBERT
initialized model is the best performing among the others. Text-to-text pre-
training using m'T5 is also able to achieve competitive results even with multilin-
gual weights.

vi

Contents

Acknowledgements
Abstract
1 Introduction

2 Literature Review
2.1 Background into text generat

ion and language modeling for the

English Language
2.2 Data-to-text generation (D2T) Generation in English
23 NLGin Arabic oo

3 Proposed Method

3.1 Dataset: AraWebNLG
3.2 Baselinemodel
3.3 Warm-starting Encoder-Decoder

Transformer

3.4 Th o

4 Results

4.1 Experimental Setup oL
4.1.1 Quantitative Evaluation

4.1.2 Qualitative Evaluation

4.1.3 Qualitative Assessment

5 Conclusion

Bibliography

vii

vi

-J

13
13
14

15
18

20
20
20
21
22

26

27

List of Figures

1.1

2.1

2.2

2.3

3.1
3.2

3.3

3.4
3.5

Example of D2T generation from the knowledge graph relating
sports teams L oL oL

From Data to Natural Language - Intermediate representation
through RDF triples
Standard architecture of pipeline-based data-to-text generation
system including three main components
End-to-end encoder decoder that directly transcribes RDF triples
into natural language

Architecture of baseline model
Architecture of the proposed encoder-decoder transformer initial-
ized with AraBERT and AraGPT2 checkpoints.
Architecture of encoder block which is the same as BERT’s encoder
block.
Architecture of decoder block.
Architecture of decoder block of GPT-2.

viil

List of Tables

3.1

4.1
4.2
4.3
4.4

Example of Arabic Tokenization

Performance of the models on the test set
Human evaluation metrics on the test data
Statistics on rater’s agreement: Fleiss’ Kappa
Example of the output text for each model where Red indicates a
wrong information and indicates a writing mistake. Miss-
ing information is indicated for each model.

X

Chapter 1

Introduction

Resource description framework (RDF) data is the standard for representing
structured knowledge on the Web. It is based on entities, representing people,
places, and abstract concepts, such as events. They can also contain facts and
can be used to form meaningful relationships between them. RDF Data-to-text
(D2T) generation is the task of converting this structured non-linguistic data into
natural language. Unlike other natural language generation (NLG) systems such
as, conversational chatbots and question answering where the input is generally
in the form of unstructured text, the input in D2T tasks contains structured
information such as tables and knowledge graphs. D2T generation can be used in
several commercial applications including voice assistants and question answering
bots. Also, media organizations like The New York Times and BBC rely on RDF
data as one of the main methods of publishing. An example of D2T generation
is illustrated in Figure 1.1 where a knowledge-graph describing the relationship
between sports teams is transformed into a meaningful and factual sentence.
Previous work in this area can be broadly categorized as either pipeline or end-
to-end approaches. In pipeline-based approaches, the input data is converted into
natural language through several intermediate transformations. However, the re-
cent research is shifting towards adopting end-to-end approaches where the input
data is directly mapped to an output text using encoder-decoder architectures.
End-to-end methods have shown efficacy for short sentences when compared to
pipeline-based methods [1] [2] [3]. The main challenges when developing end-to-
end models are ensuring proper content selection, data fidelity and text fluency
at the same time. Recently, there has been an increased interest in pre-trained
language models like T5 [4] and BART [5] for D2T generation. Language models
are trained on large corpus of text which makes them excel at generating natural-
sounding text. These language capabilities allow them to address the challenge
of text fluency while maintaining proper content selection and understanding.
Despite the significant work done for D2T generation for English, few efforts
have being directed towards low-resource languages like Arabic. In this work, we
address the existing challenges related to D2T, which are previously addressed

Input data

(Christian Panucci) il
-) .;'.': é_]l‘_“

—Q
(Chelsea F.C)

= s *-j]«‘-'_;
O (Real Madrid CF)

EARPRE

) o
St

od

(Livorno F.C)

Example Output Text

IR I ealhs o L o 4 bl b
sial (23U ¥ pay v e Jlby (gl Tasi 5l g cadadS (32 8 ae 20561l S aal

3y
F5

Figure 1.1: Example of D2T generation from the knowledge graph relating sports
teams

in English, for Arabic while focusing on additional challenges of learning with
low-resource availability and generalizing to unseen domains. Therefore, the con-
tribution of this work is as follows:

1. We propose the first D2T news generation in the Arabic language with
comparable results to the English language.

2. We introduce AraWebNLG, the first Arabic dataset for the task of D2T
generation based on the English dataset WebNLG [6].

3. We provide a comparative study between multiple end-to-end models in-
cluding pre-trained language models to address the challenges of low-resource
availability and overcome data limitations.

The rest of this thesis is organized as follows: Chapter 2 reviews the lit-
erature on D2T generation in English as well as the NLG progress in Arabic.

2

The AraWebNLG dataset is introduced in Chapter 3 along with our proposed
methodology. Chapter 4 details the performed experiments and presents a com-
prehensive analysis of the results. Finally, concluding remarks and directions to
future work are provided in Chapter 5.

Chapter 2

Literature Review

2.1 Background into text generation and lan-
guage modeling for the English Language

Research in text generation has been greatly enhanced over the past years with
the advancements of deep learning and neural language models. In this part,
we give a brief overview of the general text generation methods for the English
language.

Early approaches to automatic text generation mainly relied on rule-based
techniques. To generate text, these methods use the semantics and discreet lin-
guistics rules. Even though they can cover a small part of the human language
needed for specific applications, these methods are not scalable and cannot be
relied on for practical applications because it is very hard to discretize all the
rules that cover linguistics. This is why, researchers started shifting towards sta-
tistical approaches which formulate language generation as a maximum likelihood
estimation problem. This idea is used in the traditional n-gram model. Given a
sequence of n — 1 words, the model can estimate the probability of the following
nth utterance. The main limitation of this model is that it cannot be used for
large-scale applications which require lengthy texts like news articles. The model
can only look at the previous n — 1 words which limits its ability to capture
context and its generalization capabilities.

With the advancements of deep neural networks, language models are becom-
ing more and more advanced and able to capture context over long sequences of
text. They can learn the vector representations of text, encode the context and
semantics and use these representations to reason and decode proper sequences.

Reccurrent Neural Networks and Sequence-to-Sequence Models (RNNs) can
be considered as the classic approach to text modeling and generation. Due to
their sequence structure, they are able to process natural language sequential
text. Several variations of the RNN models can be found such as the long short-
term memory (LSTM) and the gated recurrent unit (GRU). These generally

4

address some of the limitations of the traditional RNN model. In the context of
text generation, these systems usually fall under sequence-to-sequence (seq2seq)
generation models. Seq2seq models were first introduced by Sutskever et al.
[7]. They consist of an encoder network that transforms a series of text inputs
into an embedding representation. Next, a decoder network takes this vector
representation and predicts the output sequence. Seq2seq models have been
widely used as standard approaches for natural language generation problems
such as machine translation[8], text summarizing[9] and story generation[10].

Conventional Seq2seq models have several limitations. They are computa-
tionally demanding and have trouble maintaining long-term dependencies in text
sequences. In addition to that, input text is usually compressed into a fixed vec-
tor space where all words have the same weight. This limits the ability of Seq2seq
models to capture context and extract the main important information from text.
To address this issue, Google introduced in 2018 a seminal work ” Attention Is All
You Need” [11]. In short, attention mechanisms assigns different weights to the
input tokens based on how relevant they are to the context. Instead of processing
each token by itself, attention architectures create a mapping between the inputs
to learn their relationship and dependencies. This marked the start of attention-
based transformer architectures in natural language modeling application as a
replacement for recurrent neural networks.

BERT [12], Bidirectional Encoder Representations from Transformers, is a
language model based on the transformer encoder architecture. It was released
by Google in 2018 and since then have become one of the most important language
models for NLP. What makes BERT remarkable is its ability to capture context
in sentences due to its bidirectional property. Unlike previous word embedding
models like Word2Vec [13|, FastText [14], and GloVe [15] which have one single
encoding for each vocab regardless of how it is used in the context of the sentence,
BERT on the other hand generates embedding representations for the words
based on their specific context in the input. BERT has achieved excellent results
on discriminative tasks like text classification and sentiment analysis. However,
when it comes to text generation, it lacks due to its bidirectional property. The
model is trained on the masked token prediction and take into account both the
future and past context of sentences. When it comes to text generation, the
model has no access to the future context since it is trying to generate them.
An attempt to use the knowledge of BERT-like models for text generation can
be found in Distill-BERT [16]. The authors use knowledge distillation from a
"teacher” BERT model and transfer this knowledge to ”student” Seq2Seq model
during training in a way that the Seq2Seq model generates new text while relying
on BERT’s contextual knowledge.

Transformer-XL [17], is also based on the transformer architecture with a
recurrence mechanism built on top of it. This mechanism allows long term de-
pendencies between the text. It also introduces a new positional encoding which
is based on relative distances instead of absolute encodings. This model is used in

XL-Net [18], an autoregressive language model which learns bidirectional contexts
over all permutations of the input text. The model overcomes the limitations of
BERT and has been widely used for generative tasks by researchers in the field.

GPT-2 [19], Generative Pretrained Transformer 2, is another auto-regressive
transformer based model widely used for text generation tasks. The model relies
on a decoder-only architecture and is pre-trained on the task of predicting the
next token at every time step given the previous tokens. GPT-2 was introduced
by OpenAl in 2018 and has been used since then for various generative tasks
like conversational dialogues [20], story [21] and poetry [22] generation. Also,
most recently, GPT-3 [23] was introduced. The model is an enhanced version of
GPT-2 with a very complex architecture (175 billion parameters). The model
can be used as a few-shot learner where very few data is needed to use the
model on downstream task. Due to ethical concerns regarding the use of GPT-3
for malicious intent, OpenAl decided to only provide the model to selected few
researchers.

Recently, [24] introduced T5, a text-to-text-transfer-transformer model. It
is based on the encoder-decoder transformer architecture and masked language
modeling. The authors reframe all natural language processing (NLP) tasks into
a unified text-to-text format. The model is pre-trained on a very large corpus of
data and has achieved state-of-the-art (SOTA) results on multiple downstream
tasks including question answering, summarization and more. This model is also
available as mt5 with multilingual pre-trained checkpoints [25].

To skip the costly pre-training of text-to-text models, [26] have shown the
importance of using pre-trained checkpoints for sequence generation tasks. The
authors have experimented with warm-starting the transformed-based encoder-
decoder model with checkpoints from pretrained language models including BERT
[12] and GPT-2 [19]. The results show that warm-starting encoder-decoder mod-
els with pre-trained weights are able to achieve competitive results in sequence
generation tasks when compared to large pre-trained language models such as Th
at a fraction of the training cost.

Another research area that is gaining popularity is the conditional text gen-
eration. The previously mentioned language models can generate remarkably
realistic text. However, even though attention mechanisms help guide the con-
text of the text generation, the models can diverge and generate text that is
not controllable. To help deal with this issue, conditional generation tools are
introduced. Instead of relying only on the context and sequence of textual inputs
to generate text, external inputs are used to guide the generation process. For
example, researchers have used arithmetic transformations to control the text
generation output of the encoder [27] [28] and generate text that conforms to a
certain textual style. variational autoencoders (VAE) are also used to guide the
generation process of the decoder by stochastically sampling from a certain latent
distribution. This method is used in [29] to generate texts conforming to certain
topics. Furthermore, Generative Adversarial Networks (GANs) are used to pro-

6

vide external feedback to control the the external input’s effect on the generator.
A discriminator is generally used to guide the sampling of the generator. This
can be seen in [30] and [31] where reinforcement-learning reward signals coming
from the discriminator are used to improve the quality of the text generation and
encourage the sampling of creative, non-repetitive tokens.

2.2 Data-to-text generation (D2T) Generation
in English

First, we explain how can data be transformed into natural language. One way
of doing so would be through an intermediate representation called resource de-
scription framework or RDF. As can be shown in Figure 2.1, the tabular data
explaining details about people and cities can be transformed into a form of
knowledge graph where the different entities of the table are related together.
Them, this knowledge graph can be used to extract triplets connecting all the
nodes together. These triples are called RDF triples. This way, the problem of
data-to-text generation can be transformed into rdf-to-text generation.

o1 [OF]
TABLE / STRUCTURE KNOWLEDGE GRAPH RDF DATA

Person B [Person/1, name, Alice]

D NAME | AGE cD namg name [Person/l, age, 25]

— [Person/1, based_near, City/100 |
12 :!Ze :JLL 122 (Person1>) @szj [City/100, name, Austin]
based near [Person/2, name, Bob |
City [Person/2, age, NULL]
CID NAME @100:)% [Person/2, based_near, City/100]
100 Austin o [City/200, name, Madrid]

i —— name
200 Madrid <<Ci1y2009

Figure 2.1: From Data to Natural Language - Intermediate representation
through RDF triples

D2T generation systems can be separated based on the end-result they gen-
erate. Some previous work focus on generating sentences while others are more
concerned with generating documents. When it comes to commercial journal-
ism tools, these focus on generating sentences describing the data. This way,
the journalist would be responsible for combining sentences together, choosing
which info is important and then adding their own analysis. As for the research
work, the work done on sentence generation can be thought of as the building
block for the work done on document generation since document generation is
a more challenging task for data-to-text generation models. As for document
generation, these are usually restricted to purely reporting articles in commercial

7

applications where no insights or additional details are needed. Also, in document
generation, there is more room for error. This restricts the generation process
in commercial applications to a fully controlled template that guarantees that
only the input data is written. As for research work, people work on document
generation because it provides a more challenging task for data-to-text models.
And can evaluate the performance on a content selection and content planning
more clearly because this is more noticeable in document rather than sentences.
One thing to consider in terms of datasets, is that document generation requires
datasets that are fact grounded meaning that the paragraphs only include details
about the input data. This is hard to do because most news articles include
external analysis that is not found in the input data which tends to confuse the
models. For example, game reports do not closely follow the game statistics, but
in practice they contain a background knowledge, interpretation, insight into the
game, and quotes that are not present in the official statistics. This makes it
difficult to find noise free datasets that are fact grounded with the input data.
In this work, we mainly focus on sentence-level D2T generation system.

The conventional approach for solving the D2T generation problem relies
on pipeline systems. In this approach, linguistic realization is separated from
content selection and planning. Three main modules can be generally found in
pipeline systems. First, there’s the text planner that is responsible for selecting
what to say from the input information. It is a macro-planner which selects
the content and decides on the high level structure of the text. Second, there’s
the sentence planner which is responsible for how to say the content. It is a
micro-planner responsible for lexicalization, sentence aggregation and referring
expression generation. Finally, the linguistic realizer which is responsible for
writing the text based on syntactic and morphological rules. This architecture
can be shown in Figure 2.2.

The intermediate steps can be template-based which rely on specific sets of
handcrafted rules [1] [2] [32]. However, one challenge with templates is that
the text can be too structured and lack human flow. Researchers have tried
to solve this by relying on ranking models [32] [33] and paraphrasing models
[34]. Another challenge is that templates are hard to construct from scratch.
People have tackled this by working on automatic template generation systems
[35]. The main advantage of templates is having full control over the output with
a guarantee that no misinformation or grammatical mistakes would be present
in the output. Pipeline architectures can also include neural networks such as
GRU and transformer models [3] [33] as intermediate steps. The main challenge
here is the concatenated error from the different modules. Also, by discretizing
the generation process into defined steps, a generation gap is created. A writer
usually has a high-level plan of the text they are going to write, but they would
usually change things and adjust sentences as they write. In pipeline methods,
this is usually not the case because the strategic and tactical components of
the writing process are separated. So for example, a generation system might

TEXT SENTENCE LINGUISTIC

PLANNER PLANNER REALISER
¢ ® 9
What to Say How to Say it Saying it
Macro-planner Micro-planner Syntactic rules
Content Selection Sentence Aggregation ~ Morphological rules
Text Structuring Lexicalization

Referring Expression

Figure 2.2: Standard architecture of pipeline-based data-to-text generation sys-
tem including three main components

determine a particular sentence ordering during the sentence planning stage, but
this might turn out to be ambiguous once sentences have actually been realized.

Recently, end-to-end approaches have proven to be a good alternative to the
labor-intensive and domain-specific pipeline methods. These work by directly
mapping the input data to natural text using encoder-decoder architectures as
can be seen in Figure 2.3. In end-to-end approaches, the distinction between
content selection, content planning, and linguistic realization is blurred out as
everything is done simultaneously. End-to-end encoder-decoder models relying
on GRU, LSTM and Transformer models are used in the literature [1] [2] [3]
to address the D2T problem. Because everything is done simultaneously, one
challenge for end-to-end models is the content selection and planning especially
when it comes to generating lengthy text. In D2T generation, it is important to
generate factual output that matches the given input. Because neural networks
can lack interpretability, they have the tendency to diverge from the given input
or miss out on important information especially when the input data becomes
longer. To address this challenge, researchers have used separate content selection
modules without sacrificing the end-to-end training [36] as well as hierarchical
models [37]. Another challenge is the text fluency and generalization to other
domains. When trained on a specific set of data, these models struggle when
generalizing to unseen domains. The research focus in this area is to rely on
pre-trained language models to benefit from the language capabilities of these
models to generate fluent text while maintaining good content selection.

[4] and [5] have investigated the fine-tuning of a pre-trained T5 model for D2T
generation tasks. The model achieved SOTA results on multiple D2T datasets
including WebNLG [6], MultiWoz [38] and ToTTo [39] benchmarks.

9

|

ENCODER — DECODER

T

Figure 2.3: End-to-end encoder decoder that directly transcribes RDF triples
into natural language

Automated journalism is the generation of news reports from structured non-
textual data inputs. Data like sport games results, finance and other statistical
domains can be transformed into documented reports by relying on automated
data-to-text generation systems. In a paper proposed by Kanerva et al. [40],
the authors generate news reports for Finnish ice hockey games. They rely on a
system to extract the main events and results of the game and decode this infor-
mation using an attention-based decoder. The generated text, however, includes
false information due to the mismatch in player names and winning teams. Also,
the text generated is somewhat discontinuous and requires human editing for
viable publications. Another work that tackles a similar problem for soccer arti-
cles automation [41]. The authors rely on knowledge graphs build upon content
determination, aggregation and lexicalization based on pre-defined templates be-
fore generating the resulting text. The main limitation of this approach is that
it relies on an explicit knowledge graph that is domain specific which limits its
generalizabilty to other domains. Also, defining this knowledge graph can be a
tedious task which requires a lot of fine-tuning. Hence, the main research chal-
lenge in this area is the structure control of the output article and maintaining a
coherent arrangement of the extracted information.

2.3 NLG in Arabic

The abundance of huge datasets and large-scale computing power for the English
Language has accelerated the progress of the research in the area of text genera-

10

tion by introducing big language models like Grover and GPT. However, when it
comes to low resource languages like Arabic, these datasets are not available and
are very hard to collect and label. Also, generalizing the English models to the
Arabic language would require machine translation systems which add an extra
layer of error. In addition to that, languages like Arabic have specific intrinsic
properties and challenges that cannot be modelled and represented through En-
glish data. Unfortunately, this has relatively stalled the progress of the research
in Arabic language generation as the most important research areas in English
language generation have not been extensively explored for the Arabic language.
Most previous work falls under Natural Language Understanding (NLU) and is
still restricted to few tasks like text classification and sentiment analysis. There
has been, however, some previous efforts in researching Arabic language genera-
tion areas. Arabic Machine Translation (AMT), for example, has been receiving
a good amount of attention by researchers as detailed in a recent survey by [42].
Also, a recent survey [43] examined the available chatbots for Arabic. All of
these, however, rely on non-learning pattern matching techniques to sample di-
alogue responses from pre-defined answers. To a lesser degree, researchers have
addressed image captioning [44] and poetry generation [45] by relying on small
datasets and simple recurrent neural network based models. Finally, an abstrac-
tive Arabic text summarizer is presented in [46]. In the context of news articles,
automatic summarizing techniques are used to generate news headlines. This
problem was addressed in [47], where the authors used statistical and extractive
techniques to generate headlines.

Despite the big research progress in the area of D2T generation in the English
language, there hasn’t been any attempt on tackling this research problem for
low-resource langauges like Arabic. This is mainly related to the lack of Arabic
datasets and resources.

Recently, the research on Arabic language processing and generation has fo-
cused on introducing pre-trained Arabic language models such as hULMonA
[48] and AraBERT [49] which have proved to be very important for NLP tasks.
AraBERT is an Arabic pretrained version of Google’s BERT [12] that is trained
on large Arabic corpora extracted from Arabic news sources. The model achieves
state-of-the-art results on multiple downstream tasks including Sentiment Analy-
sis, Named Entity Recognition, and Question Answering. Most recently, [50] have
introduced AraGPT2, the first advanced Arabic language generation model. The
model is based on the GPT2 architecture [19] which consists of a stack of trans-
former decoder blocks followed by a dense layer. It relies on the auto-regressive
language modeling objective and it is trained on a huge corpora of Arabic text.
Specifically, the model is capable of producing good quality Arabic text and
achieves successful results on different tasks including Synthetic News Genera-
tion, and Question Answering. Because they are trained on a huge Arabic corpus,
AraBERT and AraGPT2 are able to accumulate a great lexical and pragmatic
knowledge which makes them good candidates for the task of D2T generation

11

which requires both good language understanding and generation.

In this work, we address the D2T-related challenges for the Arabic language.
The challenges, previously addressed in the English language, include content
selection & planning, factual output generation and text fluency. Another main
challenge we are targeting is the low-resource availability for Arabic. To do so,
we introduce a new Arabic dataset. We also leverage the pre-trained weights
from Arabic language models including AraBERT [49] and AraGPT2 [50] and
we compare them against the multilingual text-to-text model mT5 [25].

12

Chapter 3

Proposed Method

3.1 Dataset: AraWebNLG

Since no dataset is available for D2T in the Arabic language, we translate WebNLGI6],
an existing and widely used dataset in the English language. The dataset con-
tains 21,855 data/text pairs where the text is a verbalisation of the data. Also, a
Russian version of the WebNLG dataset [51] was recently introduced. It contains
around 15k instances of data/text pairs translated from the English dataset. The
WebNLG dataset contains multiple categories including Artist, Food, Celestial-
Body, SportsTeam, Politician, University, etc. The dataset was originally created
to encourage the development of verbalisers that can generate short text from
RDF data, i.e., a knowledge graph. For instance, the knowledge graph shown in
Figure 1.1, can be transformed into 3 RDF triples relating all the different nodes
as such:

1. g\ﬂjﬂ{ Ol S| pe | 99,50 (50

A.S. Livorno Calcio | manager | Christian Panucci

2. qu.t..u Lf.»lj | Lug.»l:J\ | Lnsxbj.:b UL:L.«JJ{

Christian Panucci | club | Chelsea F.C.

3. 2 pae o | oW1 | sl Ol 5
Christian Panucci | club | Real Madrid C.F.

13

A total of 7,001 distinct data/text pairs were selected from the dataset and trans-
lated to Arabic using Google Translate’s API'. Next, in-house crowd-sourcing is
used to post-edit the translations and manually correct the wrong translations.
Finally, quality checking is performed on a small subset of the dataset by human
labelers to make sure that the translated samples are reasonable and understand-

able.

Attention Mechanism

-

Source Embedding Layer

Figure 3.1: Architecture of baseline model

3.2 Baseline model

Similarly to the work done by [3], we rely on an End-to-end sequence-to-sequence
(Seq2Seq) model as a benchmark model. The encoder consists of an embedding
layer (of size 100) and 2 LSTM layers. As for the decoder, stacked LSTM layers
are used with dropout to avoid overfitting. A global attention mechanism is also
used with the Seq2Seq model. The architecture of the model is shown in Figure
3.1.

thttps://pypi.org/project/googletrans/

14

Example Text

WYy 5K) e Ll e A
Lard 3 gl ibse by OF el
Farasa Segmentation

e Yy Sl e o3l Il as
gl J s+ Cilbge b, O8% 5 s I
a3

BPE Tokenization

Sl e iy U1 s s

o K5 o J Y

bams 3 gl Oor e Bbss)

Table 3.1: Example of Arabic Tokenization

Because the baseline model is not pre-trained on any Arabic corpus, we need
to reduce the size of the vocabulary so that it is able to learn proper language
relationships. To reduce lexical sparsity, the samples in the dataset are segmented
using Farasa Segmenter [52]. It is an SVM rank-based segmenter used for Arabic
text tokenization. It uses a variety of features and lexicons to rank different
possible segmentations of a word. These features include the likelihood of stems,
prefixes, suffixes, and their combination; presence in lexicons containing valid
stems and named entities; and underlying stem templates. An example of a
sample before and after segmentation can be seen in Table 3.1.

3.3 Warm-starting Encoder-Decoder
Transformer

Our proposed model for D2T generation is based on the transformer encoder-
decoder architecture [11]. The encoder is a stack of encoder blocks and the
decoder is a stack of decoder blocks, followed by a dense layer, called language
model head. The architecture can be shown in Figure 3.2. Because we are deal-
ing with a limited-sized dataset, we want to leverage transfer of knowledge from
pre-trained language models in order to enhance performance, improve generaliz-
ability and fluency. Similarly to the work done by [26], we study two possibilities
to warm-start an encoder-decoder model:

1. BERT2BERT: where we initialize both the encoder and decoder part from
an encoder-only model checkpoint (AraBERT).

15

----------- Decoder Block
Decoder Block

RRERE

Decoder Block

Encoder Block

Figure 3.2: Architecture of the proposed encoder-decoder transformer initialized
with AraBERT and AraGPT2 checkpoints.

X"3

gfeed-forward

Xn

Figure 3.3: Architecture of encoder block which is the same as BERT’s encoder
block.

2. BERT2GPT: where we initialize the encoder part from an encoder-only
model checkpoint (AraBERT), and the decoder part from and a decoder-
only model (AraGPT2). The intuition here is that we can benefit from
BERT’s great input understanding and GPT-2’s great text generation at

16

yu1 y..2 y"3

gfeed-forward

gfeed-forward geross-attention

(T T T F——{IT]

X1

gself-attention

y3

Figure 3.4: Architecture of decoder block.

the same time.

In order to initialize an encoder-decoder with pre-trained BERT or GPT-2
weights, the architectures are compared and common layers are initialized with
the pre-trained weight parameters of the respective layers. The rest of the layers
are randomly initialized. The encoder block, shown in Figure 3.3, which consists
of one bi-directional self-attention layer and two feed-forward layers, matches
perfectly with the architecture of BERT. This means that the layers of all the
encoder blocks are initialized with the weights of the BERT encoder blocks. As
for the decoder block, shown in Figure 3.4, it consists of one unidirectional self-
attention layer, one cross-attention layer, and two feed-forward layers. So, in
the case of a BERT-initialized decoder, the cross-attention layers are randomly
initialized, the feed-forward layers are initialized using BERT’s weights, and the
unidirectional self-attention layers are initialized using the bi-directional BERT
layers. Finally, the language model head layer on top of the last decoder block is
initialized using BERT’s word embedding layer. In the case of a GPT2-intialized
decoder, the architectures are more similar. The decoder block of GPT-2 can
be shown in Figure 3.5. Only the cross-attention layers are randomly initialized
while the rest of the layers are equivalent to GPT2’s layers including the language
model head, uni-directional self-attention and feed-forward layers.

Concerning the arabic tokenization used with these models, the Byte-Pair-
Encoding (BPE) tokenization is used. This scheme is typical with transformer

17

V'3

afeed-fo rward

aself-attention

Y3

Figure 3.5: Architecture of decoder block of GPT-2.

models and is able to build words it has never seen before by using multiple sub-
word tokens, and thus requires smaller vocabularies. An example of a tokenized
sentence can be seen in Figure 3.1.

3.4 T5

T5 is a type of Transformer that is based on the encoder-decoder transformer
architecture presented by [11] with some exceptions. T5 was introduced by [24]
with the goal of creating a unified architecture that can learn multiple language
tasks at once. In this work, we fine-tune the model on the task of D2T generation.
Since a pre-trained Arabic version of this model is not yet available, we rely on
the multilingual version for fine-tuning. One main difference between the T5
model and the previously mentioned BERT2BERT and BERT2GPT models is
that T5H is that T5 is pre-trained on text-to-text generation meaning that the
encoder and decoder were pre-trained together on a large corpus of data. While
in the case of the other models, the encoder and decoder are both pre-trained
separately. Because the model can be used for multiple tasks at once, it expects
a task-related prefix. In this case, we append the prefix "data2text: ” at the

18

beginning of all the samples.

19

Chapter 4

Results

4.1 Experimental Setup

The transformer-based models including BERT2BERT, BERT2GPT and T5 were
developed using the Huggingface transformers library !. The baseline model is
developed using OpenNMT library [53]. All models are trained using the same
dataset partitioning (80% training, 10% validation, 10% test) which is the same
split used in the original WebNLG data.

4.1.1 Quantitative Evaluation

The numerical performance evaluations of the models are summarized in Table
4.1. Here, we rely on the BLEU (bilingual evaluation understudy) and perplexity
(PPL) scores. As can be seen from the table, the BERT2BERT model consistently
outperforms the other models since it has the lowest PPL and highest BLEU
scores. This validates the importance of initializing the BERTB2ERT model with
pre-trained AraBERT checkpoints. The results also show that mT5 is the second
best performing model with a 4.89 reduction in BLEU score and an increase of
0.37 in PPL score from BERT2BERT. However, the intuition that using GPT-2
model as a decoder for better text generation alongside BERT is not completely
validated since it exhibites 5.7 points reduction in BLEU score and 0.867 increase
in PPL score from BERT2BERT. The baseline model has the lowest performance
with high perplexity score of 8.025 and a low BLEU score of 16.72 which indicates
the content can be hard to understand. The numerical results highlight the
importance of pre-training on larger corpus of text to address the challenge of
limited resource data as all the pre-trained models exhibit better performance
than the baseline.

Thttps://github.com /huggingface/transformers

20

Model BLEU PPL
Baseline 16.72 8.025
BERT2BERT 25.65 1.383
BERT2GPT 19.95 2.25
mT5H 21.76 1.60

Table 4.1: Performance of the models on the test set

4.1.2 Qualitative Evaluation

Numerical metrics such as the BLEU and PPL scores are not completely sufficient
to evaluate the models’ performance on the D2T generation task. Therefore, we
conduct qualitative evaluation where human raters are presented with the input
data in triple form along with the predicted texts from each model, i.e., a total
of 4 sentences per example. The raters are asked to judge the prediction along
two axes on a scale from 0 to 5 where 0 conveys terrible performance and 5 for
excellent performance. The first metric is related to the accuracy or faithfulness
to the input data. This metric is used to gauge whether the output texts convey
the same information as the input information and whether there are missing
and/or wrong information included in the output. The second evaluation metric
is the fluency of the text. This is an aggregate score related to the linguistic
realization which accounts for whether the text flows in a natural, easy to read
manner and whether wrong expressions and/or repetitions are present in the text.

In order to asses the agreement between the raters, Fleiss” kappa (k) is used.
This is a statistical measure that calculates the inter-observer agreement taking
into account the expected agreement by chance as shown in Equation 4.1 where
P, is the observed agreement and P, is the expected agreement.

(4.1)

As shown in Table 4.2, BERT2BERT substantially outperforms all other mod-
els on the faithfulness metrics with a score of 4.044 while m'T5 stands in second
place at 3.467. BERT2GPT and the Seq2Seq baseline model perform poorly with
low scores of 2.782 and 2.290, respectively. As for the fluency scores, they are
relatively decent for all models. However BERT2BERT is still better performing
with a fluency score of 4.264 followed by mT5 with 3.894 score. The statistics on
the raters’ agreement shown in Table 4.3 indicate a Fleiss kappa score of 0.383
for the fluency metric which reflects a fair agreement between the raters. A value
of 0.52 for the Fleiss kappa score on the faithfulness metric indicates a moderate
agreement.

21

Model Faithfulness Fluency

Baseline 2.290 3.484
BERT2BERT 4.044 4.264
BERT2GPT 2.782 3.691
mT5H 3.467 3.894

Table 4.2: Human evaluation metrics on the test data

Faithfulness Fluency
Fleiss Kappa 0.520 0.383

Table 4.3: Statistics on rater’s agreement: Fleiss’ Kappa

4.1.3 Qualitative Assessment

As can be seen from the numerical and human evaluations, BERT2BERT provides
the best results with the highest score of 4.044 on the faithfulness metric. This
reflects BERT’s abilities when it comes to data understanding as a state-of-the-art
encoder that provides better encoder representations. The input representation
for the task of D2T generation is very important to ensure that the generated
text perfectly matches with the given input. An example is shown in Table 4.4
where all the models miss some information from the input and/or include wrong
information except for BERT2BERT which includes all the given content.

Another important observation is related to GPT-2’s suboptimal performance.
The intuition that using GPT-2 model as the decoder, along with BERT encoder,
for better text generation did not stand. Although BERT2GPT achieves a decent
fluency score of 3.691, the model performs poorly on content selection with a
faitfluness score of 2.782. It seems that GPT-2’s text generation hinders the
content selection provided by BERT and the results show that initializing the
decoder part with a pre-trained GPT2 checkpoint is not more effective than
initializing it with a pre-trained BERT checkpoint even though GPT2 is more
similar to the decoder in its architecture. One reason for this would be that it is
often beneficial for the encoder and decoder parts of the model to share weights,
especially if the target distribution is similar to the input distribution. This is
valid in our case since the target text has to perfectly match the input data. As
shown in Table 4.4, BERT2GPT misses out on three details present in the input
and includes two wrong pieces of information.

The results also validate the importance of pre-training on large corpus with
limited resource languages. All the pre-trained models of AraBERT, AraGPT2,
and mTH achieve better performance than the baseline models in both quantita-
tive and qualitative evaluation metrics. The pre-trained language models provide
good representations of the Arabic language as they are pre-trained on large Ara-
bic corpus. When fine-tuned, these models need only to learn how to transform
the input data into text. As opposed to the baseline model, where the model

22

has to learn both the language representations and how to properly select the
content from a small dataset. This, in a way, mimics the process of pipeline-
based approaches where content selection is separated from linguistic realization.
In general, pre-training improves generalizability and enables the models not to
overfit on specific instances in the dataset which in turn helps content selection.
This can be seen in the example in Table 4.4 where the baseline model includes
information that is not present in the input but is actually correct and present
in other instances of the data related to ” Adam Cook”.

Based on the obtained results, mT5 is the second best performing among the
evaluated models which shows that text-to-text pre-training is suitable for the
task of D2T generation. One main reason that could lead to mT5 not outperform-
ing BERT2BERT is that it is pre-trained on multilingual and not monolingual
Arabic corpus. This is noticed in the literature [54] where multilingual pre-trained
language models lag behind their monolingual competitors. Due to the constant
number of parameters, the model capacity for rich-resource languages decreases
if we have a lot of languages in the pre-training process. Another thing to note
is that AraBERT is pre-trained in a self-supervised fashion on text extracted
from Arabic news. News articles include similar semantics and structure to the
AraWebNLG dataset which mainly includes factual news-like sentences. This
helps achieving high text fluency for the BERT2BERT model.

Finally, the dataset includes a lot of proper nouns and relationships between
them. Because the dataset is translated from English, these nouns are transcribed
to Arabic. These proper nouns are very specific to other languages such as
English, Spanish, Brazilian, etc. This makes it hard for the models to associate
the proper gender pronouns. This is especially true since the pre-trained corpus
used to train AraBERT and AraGT2 is taken from Arabic news text where such
confusing proper nouns do not exist. As can be seen in Table 4.4, the baseline
model mistakenly uses the feminine pronoun when referring to a man. This
emphasises the importance of data-centric approaches to ensure that the texts
are properly cleaned and that the models are not being fed confusing data.

To compare our models against the state-of-the-art English models, we fine-
tune the pre-trained English T5 and the multi-lingual mT5 models on the same
subset of the WebNLG dataset, i.e., we only select the 7k instances that were
translated out of the total dataset. This eliminates the effect of the size of
the dataset and provides a more just comparison. The mT5 model achieves
a BLEU score of 17.9 which is lower than the score achieved with the same
model for the Arabic language. However, the T5 model pre-trained only on
English corpora is able to achieve a 39.57 BLEU score, 13 points higher than
the best pretrained Arabic BERT2BERT model but still within the same range
of understandable to good outputs. This reinforces the idea that text-to-text
pertaining on monolingual Arabic corpora would lead to state-of-the-art results
on the Arabic D2T task.

As for the Russian task, pretrained models such as T5 achieve the best per-

23

formance on this task. The automatic metric evaluation scores achieved are
competitive to the English task with a BLEU score of 45 [55] on 15k instances
of training data compared to a score of 65 for the T5 model fine-tuned on 25k
instances of English data. These numerical results show that more data is always
needed to achieve better performance and that a larger Arabic dataset is needed.
The authors also go over some failure cases such as the omitting of information for
long inputs of 7 RDF triples and failures related to proper nouns that are infre-
quent in the dataset. The authors also conclude that the distributions of the data
in the training would require further investigation to analyze the stated issues to
provide additional insight into the outputs of the model. These conclusions align
with the observations previously stated in our work.

24

Input

Wbyl Ludodl O AT dylas | 35570

Adam Koc | battles | Polish-Soviet War

Loy I AN AT | flo s | isldgedl Ladgdl
Polish-Soviet War | isPart OfMilitary Conflict | Russian Civil War

S5 Osd | S| Adgnd) LIl O~

Polish-Soviet War | commander | Leon Trotsky

Baseline Model

ik GO0 3l e ¢ Gligdl Ludgdl O A 5 dsS 2l ol

Missing Info: dwwg I L.L;\N oAl s S 0
EN: Adam Cook fought in the Polish-Soviet War, and (she) was awarded
the Fleetti Milici Award.

BERT2BERT

C A el ol oo) Rl Ladedl O A Gl 958 20T)L

X6 Ky O OF Cam ¢ Ly) laY

EN: Adam Cook participated in the battles of the Polish-Soviet War

that were part of the conflict of the Russian Civil War, with Leon Trotsky as commander.

BERT2GPT

ks O s im OF g s) RN O A 3 0B Ol i e O
Missing Info: aewg ! w&‘ oAl s g 0sd A8 f;‘

EN: Joseph Stalin was a commander in the Russian Civil War
, with Jefferson Davis as a commander

mT5

X6 Ly 0 OF Cum (Zidgd] Ludgdl O A Ajff.;‘ P
Missing Info: dcug I UA‘XH o &)
EN: Adam Cook fought in the Polish-Soviet War, with Leon Trotsky as commander.

Table 4.4: Example of the output text for each model where Red indicates a
wrong information and indicates a writing mistake. Missing information
is indicated for each model.

25

Chapter 5

Conclusion

In this paper, we present the first work to address the D2T generation in the Ara-
bic language. This work addresses the challenges of content selection and fluent
text generation in Arabic while focusing on the challenge of low resource avail-
ability. A new dataset, AraWebNLG, is introduced for the task. This dataset is
translated and reviewed from a smaller subset of the English WebNLG dataset.
In this work, we focused on end-to-end approaches as they are more efficient than
pipeline-based approaches in the English language. We also leverage pre-trained
language models including AraBERT, AraGPT2 and mT5 to address the chal-
lenge of low resource availability. Our results highlight importance of pre-training
on large corpus of Arabic data for the task in terms of fluency and faithfulness.
The BERT2BERT model initialized with AraBERT checkpoint outperformed all
other models which reflects the importance of having good input encoding rep-
resentations for the task at hand. Another finding is that it is important for the
encoder and decoder to share weights at initialization as the results showed that
the AraGPT?2 initialized decoder is not suitable for the task. Lastly, we can also
conclude that text-to-text pretraining (mT5) is suitable for the D2T generation
on Arabic data even with multilingual pre-training. Further work may include
the adoption of a data-centric approach to improve common failure cases related
to Arabic-specific challenges and presenting an enhanced version of the data.
Another area of improvement is the monolingual pre-training for the T5 model
on Arabic data which is expected to give competitive results compared to the
BERT2BERT model initialized with monolingual AraBERT weights. Another
area of research is to introduce additional datasets for the task by extracting
Arabic Wikipedia text and mapping them to their corresponding WikiData [56]
RDF triples. Although this would require extensive dataset preparation and
cleaning, this eliminates the need for translation and ensures that the data is
tailored toward the Arabic language.

26

Bibliography

1]

2]

S. Wiseman, S. M. Shieber, and A. M. Rush, “Challenges in data-to-
document generation,” arXiv preprint arXiv:1707.08052, 2017.

Y. Puzikov and I. Gurevych, “E2e nlg challenge: Neural models vs. tem-
plates,” in Proceedings of the 11th International Conference on Natural Lan-
guage Generation, pp. 463-471, 2018.

T. C. Ferreira, C. van der Lee, E. Van Miltenburg, and E. Krahmer, “Neu-
ral data-to-text generation: A comparison between pipeline and end-to-end
architectures,” arXiv preprint arXiv:1908.09022, 2019.

M. Kale and A. Rastogi, “Text-to-text pre-training for data-to-text tasks,”
arXiv preprint arXiw:2005.10453, 2020.

L. F. Ribeiro, M. Schmitt, H. Schiitze, and 1. Gurevych, “Investigating
pretrained language models for graph-to-text generation,” arXiv preprint
arXiv:2007.08426, 2020.

C. Gardent, A. Shimorina, S. Narayan, and L. Perez-Beltrachini, “The
webnlg challenge: Generating text from rdf data,” in Proceedings of the

10th International Conference on Natural Language Generation, pp. 124—
133, 2017.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing sys-
tems, pp. 3104-3112, 2014.

M. X. Chen, O. Firat, A. Bapna, M. Johnson, W. Macherey, G. Foster,
L. Jones, N. Parmar, M. Schuster, Z. Chen, et al., “The best of both worlds:

Combining recent advances in neural machine translation,” arXiv preprint
arXw:1804.09849, 2018.

R. Nallapati, B. Zhou, C. Gulcehre, B. Xiang, et al., “Abstractive text sum-
marization using sequence-to-sequence rnns and beyond,” arXiv preprint
arXiv:1602.06023, 2016.

27

[10]

[11]

[12]

[15]

[16]

[17]

[18]

[19]

A. Fan, M. Lewis, and Y. Dauphin, “Hierarchical neural story generation,”
arXiw preprint arXiww:1805.04853, 2018.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
neural information processing systems, pp. 5998-6008, 2017.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Ad-
vances in neural information processing systems, pp. 3111-3119, 2013.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors
with subword information,” Transactions of the Association for Computa-
tional Linguistics, vol. 5, pp. 135-146, 2017.

J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for
word representation,” in Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pp. 1532-1543, 2014.

Y.-C. Chen, Z. Gan, Y. Cheng, J. Liu, and J. Liu, “Distilling knowledge
learned in bert for text generation,” in Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pp. 7893-7905, 2020.

Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov,
“Transformer-xl: Attentive language models beyond a fixed-length context,”
arXiv preprint arXiw:1901.02860, 2019.

7. Yang, 7. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le,
“Xlnet: Generalized autoregressive pretraining for language understanding,”
in Advances in neural information processing systems, pp. 5753-5763, 2019.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.,
“Language models are unsupervised multitask learners,” OpenAlI blog, vol. 1,
no. 8, p. 9, 2019.

P. Budzianowski and I. Vuli¢, “Hello, it’s gpt-2—how can i help you? towards
the use of pretrained language models for task-oriented dialogue systems,”
arXiv preprint arXw:1907.05774, 2019.

J. Guan, F. Huang, Z. Zhao, X. Zhu, and M. Huang, “A knowledge-enhanced
pretraining model for commonsense story generation,” Transactions of the
Association for Computational Linguistics, vol. 8, pp. 93-108, 2020.

28

[22]

23]

[24]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

Y. Liao, Y. Wang, Q. Liu, and X. Jiang, “Gpt-based generation for classical
chinese poetry,” arXiv preprint arXiw:1907.00151, 2019.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language models
are few-shot learners,” arXiw preprint arXiv:2005.14165, 2020.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,
W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified
text-to-text transformer,” arXiv preprint arXiv:1910.10683, 2019.

L. Xue, N. Constant, A. Roberts, M. Kale, R. Al-Rfou, A. Siddhant,
A. Barua, and C. Raffel, “mt5: A massively multilingual pre-trained text-
to-text transformer,” arXiv preprint arXiv:2010.11934, 2020.

S. Rothe, S. Narayan, and A. Severyn, “Leveraging pre-trained checkpoints
for sequence generation tasks,” Transactions of the Association for Compu-
tational Linguistics, vol. 8, pp. 264-280, 2020.

Y. Zhou, Y. Tsvetkov, A. W. Black, and Z. Yu, “Augmenting non-
collaborative dialog systems with explicit semantic and strategic dialog his-
tory,” arXiv preprint arXiv:1909.13425, 2019.

Z. Fu, X. Tan, N. Peng, D. Zhao, and R. Yan, “Style transfer in text: Ex-
ploration and evaluation,” arXiv preprint arXw:1711.06861, 2017.

W. Wang, Z. Gan, H. Xu, R. Zhang, G. Wang, D. Shen, C. Chen, and
L. Carin, “Topic-guided variational autoencoders for text generation,” arXiv
preprint arXiw:1905.07137, 2019.

W. Fedus, I. Goodfellow, and A. M. Dai, “Maskgan: Better text generation
via filling in the_,” arXiv preprint arXiv:1801.07736, 2018.

L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative adver-
sarial nets with policy gradient,” in Thirty-first AAAI conference on artificial
intelligence, 2017.

A. V. Mota, T. L. C. da Silva, and J. A. F. De Macédo, “Template-based
multi-solution approach for data-to-text generation,” in Furopean Confer-
ence on Advances in Databases and Information Systems, pp. 157-170,
Springer, 2020.

A. Moryossef, Y. Goldberg, and 1. Dagan, “Step-by-step: Separating plan-

ning from realization in neural data-to-text generation,” arXiv preprint
arXiv:1904.08396, 2019.

29

[34]

[35]

[36]

[39]

[40]

[41]

[43]

[44]

L. M. Werlen, M. Marone, and H. Hassan, “Selecting, planning, and rewrit-
ing: A modular approach for data-to-document generation and translation,”
in Proceedings of the 3rd Workshop on Neural Generation and Translation,
pp- 289-296, 2019.

R. Ye, W. Shi, H. Zhou, Z. Wei, and L. Li, “Variational template machine
for data-to-text generation,” arXiv preprint arXiw:2002.01127, 2020.

R. Puduppully, L. Dong, and M. Lapata, “Data-to-text generation with
content selection and planning,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 33, pp. 6908-6915, 2019.

C. Rebuffel, L. Soulier, G. Scoutheeten, and P. Gallinari, “A hierarchi-
cal model for data-to-text generation,” Advances in Information Retrieval,
vol. 12035, p. 65, 2020.

P. Budzianowski, T.-H. Wen, B.-H. Tseng, I. Casanueva, S. Ultes,
O. Ramadan, and M. Gasi¢, “Multiwoz—a large-scale multi-domain

wizard-of-oz dataset for task-oriented dialogue modelling,” arXiv preprint
arXw:1810.00278, 2018.

A. P. Parikh, X. Wang, S. Gehrmann, M. Faruqui, B. Dhingra, D. Yang,
and D. Das, “Totto: A controlled table-to-text generation dataset,” arXiv
preprint arXiw:2004.14373, 2020.

J. Kanerva, S. Ronnqvist, R. Kekki, T. Salakoski, and F. Ginter,
“Template-free data-to-text generation of finnish sports news,” arXiv
preprint arXiv:1910.01863, 2019.

M. Cremaschi, F. Bianchi, A. Maurino, and A. P. Pierotti, “Supporting jour-
nalism by combining neural language generation and knowledge graphs.,” in
CLiC-it, 2019.

M. S. H. Ameur, F. Meziane, and A. Guessoum, “Arabic machine translation:
A survey of the latest trends and challenges,” Computer Science Review,
vol. 38, p. 100305, 2020.

S. AlHumoud, A. Al Wazrah, and W. Aldamegh, “Arabic chatbots: A sur-
vey,” INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCI-
ENCE AND APPLICATIONS, vol. 9, no. 8, pp. 535-541, 2018.

O. ElJundi, M. Dhaybi, K. Mokadam, H. M. Hajj, and D. C. Asmar, “Re-

sources and end-to-end neural network models for arabic image captioning.,”
in VISIGRAPP (5: VISAPP), pp. 233-241, 2020.

30

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[55]

S. Talatha and B. Rekabdar, “Arabic poem generation with hierarchical
recurrent attentional network,” in 2019 IEEFE 13th International Conference
on Semantic Computing (ICSC), pp. 316-323, IEEE, 2019.

A. M. Azmi and N. I. Altmami, “An abstractive arabic text summarizer
with user controlled granularity,” Information Processing & Management,
vol. 54, no. 6, pp. 903-921, 2018.

F. Alotaiby, S. Foda, and I. Alkharashi, “New approaches to automatic head-
line generation for arabic documents,” Journal of Engineering and Computer
Innovations, vol. 3, no. 1, pp. 11-25, 2012.

O. ElJundi, W. Antoun, N. El Droubi, H. Hajj, W. El-Hajj, and K. Shaban,
“hulmona: The universal language model in arabic,” in Proceedings of the
Fourth Arabic Natural Language Processing Workshop, pp. 6877, 2019.

W. Antoun, F. Baly, and H. Hajj, “Arabert: Transformer-based model for
arabic language understanding,” arXiv preprint arXiv:2003.00104, 2020.

W. Antoun, F. Baly, and H. Hajj, “Aragpt2: pre-trained transformer for
arabic language generation,” arXiv preprint arXiw:2012.15520, 2020.

T. Ferreira, C. Gardent, N. Ilinykh, C. van der Lee, S. Mille, D. Moussallem,
and A. Shimorina, “The 2020 bilingual, bi-directional webnlg+ shared task
overview and evaluation results (webnlg+ 2020),” in Proceedings of the 3rd
International Workshop on Natural Language Generation from the Semantic

Web (WebNLG+), 2020.

K. Darwish and H. Mubarak, “Farasa: A new fast and accurate arabic word
segmenter,” in Proceedings of the Tenth International Conference on Lan-
guage Resources and Fvaluation (LREC’16), pp. 1070-1074, 2016.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush, “Open-
nmt: Open-source toolkit for neural machine translation,” arXiv preprint
arXw:1701.02810, 2017.

A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek,
F. Guzman, E. Grave, M. Ott, L. Zettlemoyer, and V. Stoyanov, “Un-
supervised cross-lingual representation learning at scale,” arXiv preprint
arXw:1911.02116, 2019.

X. Li, A. Maskharashvili, S. J. Stevens-Guille, and M. White, “Leveraging
large pretrained models for webnlg 2020,” in Proceedings of the 3rd Interna-

tional Workshop on Natural Language Generation from the Semantic Web
(WebNLG+), pp. 117124, 2020.

31

[56] D. Vrandeci¢ and M. Krotzsch, “Wikidata: a free collaborative knowledge-
base,” Communications of the ACM, vol. 57, no. 10, pp. 78-85, 2014.

32

