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ABSTRACT
OF THE DISSERTATION OF

Ahmad Hassan Kourani for Doctor of Philosophy
Major: Mechanical Engineering

Title: Marine Locomotion: A Tethered UAV−Buoy with an Integrated Control
System

Unmanned aerial vehicles (UAVs) are reaching offshore. In this thesis, the novel
problem of a marine locomotive quadrotor UAV, which manipulates the surge ve-
locity of a floating buoy by means of a cable, is formulated. The proposed robotic
system can have a variety of novel applications for UAVs where their high speed
and maneuverability, as well as their ease of deployment and wide field of vision,
give them a superior advantage. In addition, the major limitation of limited
flight time of quadrotor UAVs is typically addressed through an umbilical power
cable, which naturally integrates with the proposed system. A detailed high-
fidelity dynamic model is presented for the buoy, UAV, and water environment,
in a simplified two-dimensional planar case and in the full scale three-dimensional
case. Furthermore, a Directional Surge Velocity Control System (DSVCS) is pro-
posed to allow both the free movement of the UAV around the buoy when the
cable is slack, and the manipulation of the buoy’s surge velocity when the cable
is taut. Using a spherical coordinates system centered at the buoy, the control
system commands the UAV to apply forces on the buoy at specific azimuth and
elevation angles via the tether, which yields a more appropriate realization of
the control problem as compared to the Cartesian coordinates, where the tradi-
tional x-, y-, and z-coordinates do not intuitively describe the tether’s tension
and orientation. The proposed robotic system and controller offer a new method
of interaction and collaboration between UAVs and marine systems from a loco-
motion perspective. The system is validated in virtual high-fidelity simulation
environments (MATLAB/Simulink ® and ROS-Gazebo), which were specifically
developed for this work, while considering various settings, operating conditions,
and wave scenarios.
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On the control systems side, a practical guideline is proposed for designing
and tuning adaptive backstepping control systems by leveraging the similarity
with PID control laws for a class of second-order nonlinear systems. A complete
set of mathematical formulations, visual aids, and a well-structured algorithm are
provided to exploit the benefits of the established link. This aims at facilitating
the adoption and dissemination of advanced nonlinear control laws, namely adap-
tive backstepping and its variants, in more real-life and industrial applications
while benefiting from the legacy of PID tuning rules. Furthermore, the proposed
guideline allows for upgrading primitive PID controllers to more advanced non-
linear control system, and assessing their stability margins using the provided
algorithm without much added complexity. The adaptive backstepping control
law is formulated as a two degrees-of-freedom control law that combines the sum
of a feedback PID control component and a feedforward model compensation
component. The relationship between backstepping and PID gains is provided
in the form of a third-order polynomial, and a simplified second-order one, with
practical tuning guidelines. The paper culminates with devising an algorithm
to design and tune backstepping gains based on the established PID similarity.
The proposed control law and tuning methodology are validated on a quadrotor
unmanned aerial vehicle (UAV) system in both numerical simulations as well as
experimentally on a physical quadrotor UAV platform.
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ABBREVIATIONS

2D Two-Dimensional
3D Three-Dimensional
CBNC Cartesian-Based Nominal Controller
CoM Center of Mass
DOF Degrees of Freedom
DSVCS Directional Surge Velocity Control System
FSV Forward-Surge Velocity
FSVC Forward-Surge Velocity Controller
GPS Global Positioning System
ICS Integrated Control System
IMU Inertial Measurement Unit
INS Inertial Navigation System
MoI Moment of Inertia
PID Proportional-Integral-Derivative
PSO Particle Swarm Optimization
PWM Pulse-Width Modulation
RLS Recursive Least Squares
RTK Real-Time Kinematic
SAR Search and Rescue
SISO single-input single-output
SVCS Surge Velocity Control System
UAV Unmanned Aerial Vehicles
UGV Unmanned Ground Vehicle
USV Unmanned Surface Vehicles
VTOL Vertical Takeoff and Landing
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Chapter 1

INTRODUCTION

Aerial drones are finding their way into different sectors of the industry, includ-
ing construction [3,4], agriculture [5], package delivery [6], inspection and mainte-
nance [7], to name a few, in which drones not only independently fly in the air, but
also physically interact with the environment. In terms of activities, unmanned
aerial vehicles (UAVs) can move slung payloads in solo [8] or cooperatively [9] for
transportation tasks, they can interact and collaborate with unmanned ground
vehicles (UGVs), and they can be equipped with robotic manipulators to achieve
different geometric configurations [10] or to cooperatively manipulate other ob-
jects [3, 11, 12].

A common medium for UAVs to interact with their environment is through
a tether [13,14], as it can have a variety of interesting applications including the
transmission of power, forces, and data. Tethered UAVs were studied for stability
and control while maintaining positive cable tension in [15]. The numerous ap-
plications of UAV raise the challenge to customize the control algorithm to best
fit each application, and to upgrade them with more features to withstand the
conditions imposed by these applications.

1.1 Offshore UAVs

Aerial drones are well-suited for applications that meet the 4D criteria: dull,
dirty, distant, and dangerous [16]. As such, the offshore oil industry and offshore
wind-farms are excellent candidates for their adoption, given the potential of
drones to become the go-to technology in assets inspection and infrastructure
maintenance [16]. For example, traditional offshore solutions such as inspecting
offshore wind-farms entail moving a vessel, which is expensive and requires a
human crew, unlike the deployment of drones that can significantly save cost and
time [7]. UAVs can also perform sensing jobs, place sensors, and perform on-site
repairs and maintenance [7]. Furthermore, offshore applications of UAVs make
it more likely for aviation authorities to permit their utilization, since they are
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deployed faraway from human populations [17].

1.2 Limitations of offshore UAVs

Due to their limited power capacity and flight time, the interaction of UAVs
with the marine environment is still in its early stages. Current uses are mainly
limited to information gathering such as transmitting visual feedback to human
operators, targeting the locations of floating objects for their retrieval [18], and
generating and transmitting full area maps and path-planning for other agents
to perform rescue missions [19]. Physical interaction is limited to low-power
applications such as landing assistance on a rocking ship [20], power-feeding the
UAV through a cable [21,22], and sensing jobs [23].

1.3 UAVs vs USVs

Although unmanned surface vehicles (USVs) are naturally-suited robots in marine
environments, UAVs can outperform them in certain aspects that make it more
practical to adopt UAV-based marine solutions and applications. First, UAVs are
advantageous over USVs in terms of their field of vision (bird’s-eye view), ease
of deployment, and maneuverability, all of which give UAVs the advantage while
performing tasks in unstructured and hard-to-reach areas, and tasks that require
precision and quick deployment. In addition, UAVs are especially advantageous
in rivers since they can follow shorter paths above land and avoid in-water ob-
stacles and waterfalls. Furthermore, it is more challenging to deploy and retrieve
USVs since they require direct access to the water surface, whereas multirotor
UAV’s benefit from their vertical takeoff and landing (VTOL) capabilities to be
independently deployed from anywhere. This fact highlights the advantage that
UAVs have in addressing the issue of the limited and expensive free-space on off-
shore structures, vehicles, and coastal strips that stand to benefit from deploying
aerial robotic system solutions.

1.4 UAV-USV Teams

Teams of unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs)
harness the advantages of each vehicle to form a superior robotic system. To face
challenges brought by flood disasters [24], marine oil spill events [25, 26], search
and rescue [27, 28], monitoring and patrol [29], and water surface cleanup [30],
amongst others, heterogeneous UAV-USV systems have been employed.

The advantages of combining UAVs and USVs have been explored in literature
[24, 31] based on their complementary abilities. UAVs are advantageous given
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their wide field of vision and bird’s-eye view, higher maneuverability, flexibility,
and ease of deployment; on the other hand, USVs are advantageous in their
durability, extended running time, and large load-carrying capacity. For instance,
to deal with flooding disasters, the advantage of a UAV’s wide-angle view of the
environment, including the visual horizon, was combined with the long cruising
ability of a USV to overcome their individual shortcomings, thus allowing the
creation of a system with higher efficiency and lower risk in Search and Rescue
(SAR) operations [24].

UAVs and USVs can form a dexterous robotic team in the marine environ-
ment, as evidenced by the various applications considered in the literature. A
heterogeneous robotic swarm was considered in [28], where UAVs are used to
generate and transmit path-planning information in addition to full area maps
for USV agents to perform rescue missions. Further cooperation between the
two vehicle systems can be achieved via additional sensing and control schemes,
among which is the aerial visual tracking of the USV. One control solution for
robust visual tracking was proposed in [29], and going further, even visual pose
estimation of the USV is made possible using the UAV’s on-board camera as
proposed in [27]. If they get within close proximity, UAVs can perform coor-
dinated trajectory tracking of USVs as in [32], and they can target-track them
to prioritize the camera tilt over the UAV’s motion while maintaining continu-
ous monitoring of the USV [33]. Physical interaction is another aspect of the
heterogeneous UAV-USV system. For instance, the USV can serve as a landing
platform for the UAV [34], and power transmission from a USV to a UAV can be
achieved through an umbilical power cable [21].

1.5 Tethered UAVs

In addition to using robotic manipulators, a UAV can interact with its envi-
ronment via a tether [13, 14], as it is flexible, extendable, light-weight, and can
transmit tensile forces. Recently, there have been several advances and studies
on the tethered UAV problem. A tethered power system for UAVs was proposed
in [22] and is now commercially available [35]. Such a system can be optimized to
suit the special case of a continuously oscillating marine power station as studied
in [21]. A tethered UAV is also useful in information transmission. For instance,
it plays a keys role in the emergency marine communication network proposed
in [36], where it takes off from the communication support ship to secure a wide
network coverage, while being fed with bandwidth and power to sustain its lo-
cation. To address the challenge presented by wind gusts in the open marine
environment, which can affect the stability of tethered systems, few works can
be found on the effect of wind disturbances on the tether and the UAV’s stabil-
ity [13], and on the tether vibration [37]. To simplify the analysis of the tether
dynamics, the system was modeled as a multi-element body in [38].
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Beyond the use of a tether for power or information transmission, it can
transmit tensile forces whereby a UAV can control the magnitude and direction
of the link/tether force, which was proven to be a set of differentially flat outputs
of tethered UAV systems in [39]. A practical example of force transmission is
found in [40], where the transportation of a payload is cooperatively performed
by a team of UAVs, which was made possible through calculation of the required
wrench set. The clever use of a tether even allowed a single UAV to lift a heavy
object after hooking itself at high ground then activating its on-board winch [41].

1.6 Power Solutions for UAVs

1.6.1 Power over Tether

From the above literature survey and discussion, it is evident that having an
integrated system that incorporates an umbilical power cable can open the door
in front of a whole new level of UAV marine applications [35]. An analogous
system was investigated in [42], in which an unmanned ground vehicle carries the
power source while following a tethered UAV. Furthermore, an optimal length and
tension design of a cable that links a UAV and USV was provided in [21]. The op-
timization problem minimizes both fouling (cable entanglement or jamming) and
excessive downforce on the UAV during dynamic heaves, which boosts the power
capacity of the UAV and simultaneously optimizes the dynamic performance of
the coupled system. In addition, the employment of USVs as a landing platform
has been studied in the literature; for instance, a coupled UAV−USV system was
proposed in [43], where the USV is equipped with an expendable landing deck for
additional safety, and the system serves as a foundation for further collaborative
tasks.

1.6.2 Hybrid-Electric Propulsion

Another option to address the power limitation of multirotor UAVs is hybrid-
electric propulsion, where UAVs can benefit from extended flight time due the
high power density of fuel compared to lithium-ion batteries [44]. For instance,
a fuel cell weighs 3.5 times less than a lithium-ion battery of the same energy
capacity, which results in extended flight time in real-life testing [45]. The concep-
tual design of a hybrid-electric propulsion system for small UAVs was proposed
in [46], which has found its way into several applications such as the GAIA 160MP
heavy-lift drone that successfully completed a 100 km flight across sea [47,48], the
PERIMETER 8 [49], and the Quaternium [50].
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1.7 Control of Complex Robotic Systems

It is desired to keep a controller simple, yet effective, even when dealing with com-
plex robotic systems. The effectiveness and simple architecture of proportional-
integral-derivative (PID) control systems has lead to their wide adoption in real-
world industrial applications [51]. Furthermore, PID controllers can be tuned
intuitively based on basic concepts that relate system performance characteristics
to each one of its three gains [52], or systematically following certain equivalence-
based gain selection and tuning techniques [53,54], amongst other methods. How-
ever, PID controllers suffer from their inability to address the needs of increased
precision and complexity of advanced nonlinear systems due to their oversimplifi-
cation amongst other issues [55], which lead to the continuous evolution of other
control system designs.

The stability and tuning of PID controllers are critical aspects of their de-
ployment. To automate the tuning process of control systems, several self-tuning
methods have been proposed by relying on Lyapunov’s stability theory, such as
designing self-tuning PID controllers for a class of linear and nonlinear PID con-
trol systems [51,56]. A set of PID gains that guarantee stability was determined
for single-input single-output (SISO) systems in [57], by considering the system’s
minimum-phase property and Lyapunov stability theory. Furthermore, the track-
ing problem for second-order nonlinear time-invariant systems was studied in [58]
to arrive at a PID controller design based on dynamic linearization models, where
stability was again proven based on Lyapunov’s stability theory.

Still, PID controllers cannot meet the requirements of complex real-life sys-
tems and applications, thus more advanced control system designs continued to
evolve [59]. However, the complexity and required deep theoretical knowledge of
advanced control systems, among-which is backstepping control that is a common
method when dealing with nonlinear systems [60], presented a challenge towards
their wide adoption. Backstepping control has numerous variants that evolved
to achieve additional desired characteristics on top of its basic asymptotic stabil-
ity [60] and exponential stability [61]. Complex backstepping-based controllers
suffer from an intricate tuning process that is required to achieve the desirable
system performance. For that, optimal tuning methods have been proposed,
such as the particle swarm optimization (PSO) technique [62], but such methods
require exact knowledge of the system’s parameters, which is not always feasible.

1.8 Thesis Statement

Leveraging the technological advances in UAVs technology in terms of robustness,
accuracy, operational cost, and lately, power efficiency, and motivated by appli-
cations requiring fast action with minimal water surface disruption (e.g., [26]),
we are proposing the employment of a quadrotor UAV to manipulate a passive
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floating object via a cable, whereby the quadrotor performs the function of a
locomotive. Aside from hybrid-electric propulsion, the umbilical power line so-
lution naturally integrates into this system, where the cable can be used for
both force and power transmission, thus adding another option to address the
power limitation of UAVs. The hereby proposed problem generalizes the fixed-
point tether described in [14] to a moving-frame tether, namely planar motion
in the horizontal and vertical directions, and is subject to additional constraints
such as maintaining contact with the water surface. The formulated problem
and proposed solution pave the way in front of numerous UAV−USV interaction
applications, some of which are described next.

The proposed marine locomotive UAV system can be used in coordination
with nearby ships and marine structures to increase their maneuverability and
decrease their response time, as well as nearshore and other water surfaces such
as rivers and across waterfalls. The proposed system can help in performing a
variety of tasks including rescue operations, floating objects recovery, building
and inspecting marine structures, water samples collection, delicately placing
and relocating marine sensors and buoys with minimal water surface disruption,
fishing activities, and water surface clean-up efforts, to name a few. In this
context, we are motivated by the marine application in [26], which proposed
a sensor for measuring oil slick thickness during marine oil spill events. The
proposed sensor is fixed to a floating buoy that is pulled by another vessel to
skim the water surface. One main challenge in the proposed solution lies in the
vessel’s motion ahead of the sensor, which tends to disturb the oil layer and thus
reduces the measurement’s accuracy. Note that while USV-based solutions offer
extended mission time, the proposed hybrid system offers a faster response with
an aerial view that provides additional critical information about the mission,
such as the tethered UAV system described in [63] that is used to visually detect
and localize oil spills.

To address the control problem of this robotic system, we propose a special
Surge Velocity Control System (SVCS). The SVCS is based on a control structure
named Integrated Control System (ICS) design. The ICS is a robust adaptive
backstepping control system design in an inner- and outer-loop configuration that
employs the estimates of the model parameters within the control design problem
for enhanced robustness using a model-based simplified estimation law. We note
that even though perfectly accurate parameter estimation cannot be achieved,
the close approximation of the system parameters provided by the simplified es-
timation law is considered valuable for the control system, since it increases the
robustness bounds and simplifies the tuning process. We also formulate the inte-
grated control and estimation system in a compact two-degrees-of-freedom form,
which has a PID feedback component and a feedforward model compensation
component, then draw the similarity link between the backstepping controller
gains and the PID gains. This proposition opens the door for researchers to use
well-established PID tuning rules to tackle the problem of tuning Lyapunov-based
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adaptive backstepping controllers.

1.9 Contributions

This dissertation offers technical contributions to two scientific fields: marine
robotics and control systems. In marine robotics, first, the novel problem of
the marine locomotive UAV is formulated, which paves the way for further re-
search into the interaction between UAVs and the marine environment. Second,
the system is defined in a sea/ocean environment that accounts for the pres-
ence of gravity waves and surface current, which naturally extends to wave-free
water mediums. Third, the buoy and quadrotor UAV coupled dynamics are
modelled with high fidelity using the Lagrangian formulation with appropriate
constraints for the tethered UAV−buoy system. Fourth, the attainable equi-
librium states are derived with a proper definition of the system’s operational
limits and constraints in terms of cable tension, water surface contact, and buoy
velocity. Fifth, we design and validate a buoy surge velocity control system,
supervised by a state machine that switches between operational modes, which
results in accurate tracking performance even in the presence of disturbing waves,
water currents, and feedback noise, while reducing the system’s energy consump-
tion by maintaining a constant UAV altitude [64]. The controller relies on polar
coordinates with respect to the buoy’s reference frame to realize correlated track-
ing, which outperforms traditional Cartesian-based and unsupervised UAV-only
velocity controllers that do not lend themselves well to this application. The
system is first presented in the two-dimensional (2D) vertical plane to facilitate
the understanding of its complex elements and dynamics, then presented in the
full-scale three-dimensional (3D) space for real life application. Lastly, we make
available a physics engine that can be used for simulating tethered UAV−buoy
locomotives via a custom-built simulator1.

On the control systems front, we present a compact formulation of the adap-
tive backstepping control law, which consists of two components: PID feedback
and feedforward model compensation, for a class of second-order nonlinear sys-
tems, which cover a wide spectrum of real-life practical systems [65]. The practi-
cality of this work lies in the unique link that it establishes between backstepping
controller gains and the PID gains, whereby tuning the adaptive backstepping
gains can be achieved by standard PID tuning rules (e.g., Ziegler−Nichols). The
contributions are presented in details in the introductory sections of each chapter.

1github.com/AUBVRL/Marine-Locomotive-UAV
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1.10 Thesis Structure

This dissertation is comprised of three chapters in addition to the introductory
and concluding chapters. In Chapter 2, the two-dimensional (2D) problem of the
tethered UAV−buoy system is introduced, with elaboration on multiple aspects
of the system including, detailed modeling, buoy oscillation behavior, surge ve-
locity controller design with state-machine supervision, simulation, and practical
considerations. The purpose of the 2D model is to motivate and facilitate the
understanding of this complex robotic system, while establishing general con-
cepts and descriptions with minimal complexity. After the establishment of the
basic 2D-model, the extended full-scale three-dimensional version of the tethered
UAV−buoy system is presented in Chapter 3. This chapter describes the water
environment in a more realistic way, and presents the models of UAV and the
buoy as 6-Degrees-of-Freedom (DOF) rigid bodies. In addition the controller is
extended to allow directional surge velocity control in the horizontal plane. In
Chapter 4, the theory of the used ICS for tethered UAV−buoy system is pre-
sented in detail, and the findings on the PID and backstepping gains similarity
are elaborated. Finally Chapter 5 concludes the dissertation and provides an
outlook into future work.
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Chapter 2

TWO DIMENSIONAL MARINE
LOCOMOTIVE UAV

2.1 Introduction

For simplicity and clarity purposes before leaping into the the three-dimensional
(3D) space, this chapter presents the two-dimensional (2D) planar model of the
tethered UAV−buoy system, and it is structured as follows. A detailed descrip-
tion of the tethered UAV−buoy system dynamical model is presented in Sec-
tion 2.2. The designed control system is detailed in Section 2.3. Section 2.4
presents numerical simulation results that demonstrate the validity of the de-
rived system model and the effectiveness of the designed controller. Section 2.5
discusses some practical considerations for the implementation of the proposed
system, and finally Section 2.6 concludes this chapter and paves the way in front
of the 3D system that is the subject of next chapter.

2.2 System Modeling

The dynamic model of the tethered UAV−buoy system requires the integration
of multiple domains including the fluid medium; the dynamics of the floating
buoy, the UAV, and the cable; and the combined system of rigid bodies. In this
chapter, we introduce the required subsystems to formulate the problem on hand.

2.2.1 Preliminaries

This section introduces some of the critical notations that are used throughout
the paper. We let the set of positive-real numbers {x ∈ R |x > 0} be denoted as
R>0, and the set of non-negative real numbers {x ∈ R |x ≥ 0} be denoted as R≥0.
Also, let s•, c•, and t• respectively be the sine, cosine, and tangent functions for
some angle (•). In addition, let ∥ · ∥ denote the L2 norm. Finally, note that the
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Figure 2.1: Planar model of a quadrotor UAV pulling a floating buoy through a
tether.

symbol u refers to velocity’s x-component entities, whereas the symbol u refers
to control effort entities.

2.2.2 Problem Definition

Consider the two-dimensional (2D) space in the water vertical plane where the
problem is set up as shown in Fig. 2.1, and let W = {x, z} represent the inertial
frame of reference whose origin, OI, is at the local mean sea level horizontal line.
Considering the tethered UAV−buoy system depicted in Fig. 2.1, the buoy is
physically connected to the UAV by means of a cable of length l ∈ R>0, forming
an angle α ∈ (0, π) with the positive x-axis, which is defined as the elevation
angle. Let rb = [xb, zb]

⊺ ∈ R2 and ru = [xu, zu]
⊺ ∈ R2 respectively be the

coordinates of the buoy’s center of mass, (Ob), and that of the UAV, (Ou), in W ;
for ease of use, we set V := ẋb to depict the buoy’s horizontal velocity. Let Bb and
Bu be the body-fixed reference frames of the buoy at Ob, and of the quadrotor
at Ou, respectively. The floating buoy has a volume ⋎b ∈ R>0, a bounded mass
mb ∈ (0, ρw⋎b), and a moment of inertia Jb ∈ R>0 in Bb; the quadrotor UAV
has a mass mu and a moment of inertia Ju ∈ R>0 in Bu. Also let the orientation,
measured clockwise, of Bb and Bu with respect to W be described by the angles
θb and θu ∈ (−π, π], respectively. Let Vb = [ub, wb]

⊺ ∈ R2 and Ωb ∈ R be the
linear and angular velocities of the buoy in Bb, respectively. Furthermore, let the
translational rotation matrix from any body frame to W be described as:

R• =

[
c• −s•
s• c•

]
. (2.1)

Both the buoy and the UAV are subject to gravitational acceleration, g, and
cable tension, T,∈ R≥0. Moreover, the buoy is subjected to hydrostatic and
hydrodynamic forces that are described later, and the UAV propulsion can be
simplified to only include the total thrust u1 ∈ R≥0, and a single torque that
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induces a pitch motion u3 ∈ R since the motion of the system is restricted under
the scope of this work to the vertical plane. Considering the relatively faster
response of the UAV actuators as compared to the UAV itself, their dynamics
are neglected in modeling.

Remark 1. The scope of this work covers the manipulation of a floating buoy,
thus the buoy’s average density should not exceed the density of water, which is
achieved with the constraint mb ∈ (0, ρw⋎b).

Assumption 1. The cable is inextensible; it is attached to the buoy’s center of
mass at one end and to the UAV’s center of mass at the other via revolute joints
to prevent moment transmission; and for relatively small systems considered in
this work, it can be of negligible mass. Considerations for heavy cables (slung
payload) are provided in Section 2.5.

2.2.3 Polar Coordinates

We let W ′ = {r′, α′} be a rectilinear moving polar frame fixed to Ob, shown in
Fig. 2.1; this frame does not rotate, and it is parallel to the inertial frame W .
The position of the UAV in W with respect to W ′ is defined as: r = ru−rb ∈ R2,
and we let its coordinates in W ′ be r′ = {r, α}, such that:

r = ∥r∥, α = atan2(zu − zb, xu − xb). (2.2)

We also let the rates vector, ṙ′, be:

ṙ′ :=

[
ṙ
rα̇

]
= R⊺

α

[
ẋu − ẋb
żu − żb

]
, (2.3)

where R⊺
α is the transformation matrix that rotates vectors in W to W ′, and we

finally let the acceleration vector, r̈′ be:

r̈′ :=

[
r̈− rα̇2

rα̈ + 2ṙα̇

]
= R⊺

α

[
ẍu − ẍb
z̈u − z̈b

]
. (2.4)

2.2.4 Water Medium Model

The water medium under consideration here is the sea/ocean, where the main
aspects of interest are gravity waves and water surface current.

Gravity Wave Model

Assumption 2. In the considered problem environment, the water depth is as-
sumed to be much larger than the wavelength of gravity waves, which are as-
sumed to be of moderate height. This permits adopting linear wave theory in this

23



work [66]. In addition, the wave direction is limited to be in the vertical (x-z)
plane.

Based on Assumption 2, the water elevation variation, ζ, at time t and hori-
zontal position x due to gravity waves is statistically described as:

ζ(x, t) =
N∑
n

An sin(ωnt− dnknx+ σn), (2.5)

where An, ωn, kn ∈ R≥0, dn ∈ {−1, 1}, and σn ∈ (−π, π] are respectively the
wave amplitude, circular frequency, wave number, wave direction coefficient, and
random phase angle of wave component number n ∈ Sn with Sn = {1 ≤ n ≤
N |N ∈ N}. Furthermore, based on Assumption 2, the wave number in deep
water is given by the dispersion relation as kn = ω2

n/g. The horizontal and
vertical fluid particles’ wave-induced velocities can be prescribed as [66]:

uw(x, z, t) =
N∑
n

ωnAne
knz sin(ωnt− dnknx+ σn),

ww(x, z, t) =
N∑
n

ωnAne
knz cos(ωnt− dnknx+ σn).

(2.6)

where ωn relates to the wave period, Tn, via ωn = 2π/Tn. We note that lin-
ear wave theory is not applicable near breaking waves, which usually develop
nearshore and in undeveloped seas with strong winds (white horses).

Finally, the water surface plane at point {x, ζ} has a tilt angle in pitch with
respect to the inertial frame, which is calculated by differentiating (2.5) with
respect to x:

θw(x, t) = atan
( N∑

n

−Andnkn cos(ωnt− dnknxb + σn)
)
. (2.7)

Water Current

For brevity purposes, a simple yet comprehensive model of the water current is
adopted. The water surface current, acting in the horizontal x-direction, is given
as:

uc = us + ul, (2.8)

where ul ∈ R is the lumped sum of different water current components, and us ∈ R
is the component generated from Stokes drift [67]. The Stokes drift velocity is
one component that emerges from nonlinear wave theory, and is defined as the
average transport velocity of a wave over one period:

us(z) =
N∑
n

dnA
2
nωnkne

2knz. (2.9)
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2.2.5 Buoy’s Dynamic Model

A floating buoy is subjected to different types of forces, with the main ones being
radiation, damping, and restoration forces. These forces substantially depend
on the immersed volume of the buoy, ⋎im ∈ [0,⋎b], which is a function of the
buoy’s elevation, defined as ∆h = ζ(xb, t) − zb(t). The buoyancy force in W ,
FB = [0, ρwg⋎im]

⊺, and the cable’s tension in W ′, T ′
b = [T, 0]⊺, are assumed to

be applied at Ob. The radiation forces consist of the added mass and added
damping. In this section, a detailed description of the buoy model is presented
after introducing the following assumptions.

Assumption 3. The axes of the buoy’s body frame coincide with its principle
axes of inertia, which is a common practice to simplify the modeling of marine
vehicles [67].

Assumption 4. The water-buoy friction dominates the energy dissipation in the
system, and the system is assumed to operate under moderate weather conditions,
thus energy losses due to air drag are neglected.

Considering the buoy dynamics in Bb with the state vector, νb = [ub, wb,Ωb]
⊺,

and applying Newton’s second law of motion yields:

M′
bν̇b +C′

bνb +D′
bν̃b +G′

b = τ ′
b, (2.10)

where M′
b, C′

b, and D′
b ∈ R3×3 are respectively the buoy’s inertia, Coriolis,

and damping matrices expressed in Bb; the relative velocity vector is defined as
ν̃b = νb − [uc + uwcθb − wwsθb , wwcθb + uwsθb , 0]

⊺; G′
b ∈ R3 is the gravitational

forces and moments vector; and τ ′
b ∈ R3 includes external forces and moments.

The inertia matrix is M′
b = diag(mb+ a11,mb+ a33, Jb+ a55), where a11, a33,

and a55 ∈ R≥0 are the surge, heave, and pitch rate components of the generalized
added mass matrix. The added mass can be described as the amount of fluid that
is accelerated with the body, and can be written as a function of the buoy’s mass
and moment of inertia. Furthermore, for low frequency motion, a11 ≈ 0.05mb,
and a33 ≈ mb [67]. Given M′

b, the Coriolis matrix is calculated as follows:

C′
b =

 0 0 (mb + a33)wb

0 0 −(mb + a11)ub
−a33wb a11ub 0

 . (2.11)

The total damping term of the buoy in Bb is expressed as:

D′
b = DP +DS +DW, (2.12)

where DP = diag(b11, b33, b55) ∈ R3×3 is the radiation induced poten-
tial damping matrix with surge, heave, and pitch components, and DS =
diag(DS,1, DS,2, DS,3) ∈ R3×3 is the skin friction matrix, calculated as:

DS,i = CS,iAwt
1

2
ρw|ν̃b,i|, i = 1, 2, (2.13)
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where CS,i ∈ R>0 is a constant, Awt ∈ R≥0 is the buoy’s wetted area, and DS,3 ∈
R≥0. DW ∈ R3×3 is the wave drift damping matrix, which will be dropped
from (2.12) since its effect is already included in the Stokes drift velocity in (2.9).
Assuming that the buoy, with a mean immersed height h̄im, vertically oscillates in
the {x, z} plane at ωo,3 ∈ R≥0, such that ωo,3 < 0.2

√
g/h̄im, which is practical for

the problem on hand, we have b33 ≈ 2mbωo,3. Moreover, the potential damping
coefficients in the horizontal plane vanish at both limits 0 and ∞ of the oscillation
frequency, thus the potential damping in the x-direction is b11 ≈ 0 [67].

Referring to Assumption 1, the buoy dynamics in (2.10) can be expressed in
W with the state vector, ηb = [xb, zb, θb]

⊺, as:

Mbη̈b +Cbη̇b +Db
˜̇ηb +Gb = τb, (2.14)

where Mb, Cb, and Db ∈ R3×3 are respectively the buoy’s inertia, Coriolis,
and damping matrices expressed in W ; the relative velocity vector is defined as
˜̇ηb = [˜̇ηb,1, ˜̇ηb,2, ˜̇ηb,3]

⊺ = η̇b − [uc + uw, ww, 0]
⊺; Gb and τb are respectively the

vectors of the buoy’s gravitational and other external forces and moments in W
expressed as:

Gb = [0,mbg, 0]⊺, τb = [Tcα, ρwg ⋎im +Tsα, Frs]
⊺, (2.15)

where Frs = fpsθu is the pitch restoring moment with fp ∈ R being the buoy’s
pitch restoring moment coefficient. We also define:

Mb = (R−1
θb
)⊺M′

bR
−1
θb
,

Db = (R−1
θb
)⊺D′

bR
−1
θb
,

Cbη̇b :=
1

2
Ṁbη̇b,

(2.16)

where Ṁb = η̇⊺
b(∂Mb/∂ηb) [67]. An explicit description of Mb and Db is given

by:

Mb =

 M ′
b,11c

2
θb
+M ′

b,22s
2
θb

s2θb(M
′
b,22 −M ′

b,11)/2 0
s2θb(M

′
b,22 −M ′

b,11)/2 M ′
b,11s

2
θb
+M ′

b,22c
2
θb

0
0 0 M ′

b,33

 , (2.17)

where M ′
b,ii, i = 1, 2, 3 are elements of the buoy inertia matrix in Bb, M′

b. The
buoy’s damping matrix in the inertial frame W is defined as:

Db =

 D′
b,11c

2
θb
+D′

b,22s
2
θb

s2θb(D
′
b,22 −D′

b,11)/2 0
s2θb(D

′
b,22 −D′

b,11)/2 D′
b,11s

2
θb
+D′

b,22c
2
θb

0
0 0 D′

b,33

 , (2.18)

where D′
b,ii, i = 1, 2, 3 are elements of the buoy damping matrix in Bb, D′

b. We
also let Mb,ij, Db,ij, and Cb,ij, i, j = 1, 2, 3 be elements of Mb, Db, and Cb,
respectively.
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2.2.6 UAV’s Dynamic Model

We let the UAV’s thrust vector in the Cartesian frame, fu,C = [ux, uz]
⊺, be

calculated as:
fu,C = Rθufu, (2.19)

with its elements being explicitly represented as:

ux = u1sθu ,

uz = u1cθu .
(2.20)

In the polar frame, the UAV’s thrust vector, fu,P = [ur, uα]
⊺, is expressed as:

fu,P = R⊺
αfu,C

= R⊺
αRθufu,

(2.21)

with its elements being explicitly represented as:

ur = u1sα+θu ,

uα = u1cα+θu .
(2.22)

The tether’s tension on the UAV expressed in W ′, T ′
u = [−T, 0]⊺, is applied

at Ou. Finally, the local wind speed that disturbs the UAV’s motion is defined
in W as Uwd = [uwd, 0]

⊺ .
Referring to Assumption 1, and applying Newton’s second law of motion on

the UAV quadrotor system in W with the state vector, ηu = [xu, zu, θu]
⊺, yields:

Muη̈u +Du
˜̇ηu +Gu = τu, (2.23)

where Mu = diag(mu,mu, Ju) ∈ R3×3
>0 and Du = diag(Du,1, Du,2, Du,3) ∈ R3×3

≥0

are the UAV’s inertia and damping friction matrices, respectively; the UAV’s
relative velocity vector is ˜̇ηu = [˜̇ηu,1, ˜̇ηu,2, ˜̇ηu,3]

⊺ = η̇u − [uwd, 0, 0]
⊺; and Gu and

τu ∈ R3 are vectors of the UAV’s gravitational and other external forces and
moments in W , respectively, expressed as:

Gu = [0,mug, 0]⊺, τu = [ux − Tcα, uz − Tsα, u3]
⊺. (2.24)

The damping matrix element of interest, Du,1, is approximated as:

Du,1 = Cu,1A
u
cs,1

1

2
ρa|˜̇ηu,1|, (2.25)

where Cu,1 ∈ R>0 is a constant, Au
cs,1 ∈ R≥0 is the UAV’s cross-sectional area

across the {zy}-plane, and ρa is the air density. For more details on the quadrotor
UAV model, see [68].
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Figure 2.2: Depiction of the UAV−buoy system in violation of three constraints:
(a) slack cable, (b) hanging buoy, and (c) ‘fly-over’ phenomenon.

2.2.7 System Constraints

In order to fully define the marine locomotive problem as a coupled UAV−buoy
system, specific constraints are required and are presented hereafter, with their
violations depicted in Fig. 2.2.

Taut-Cable Constraint

This section introduces the resulting coupled dynamics of the UAV−buoy system,
which is achieved when the tether links the two bodies and holds positive tension,
i.e. with a taut-cable constraint that is opposite to what is shown in Fig. 2.2a.

Definition 1. Based on Assumption 1, the cable remains taut, i.e. it maintains
tension, at time t if r(t) = l. The taut-cable condition is expressed as:

T > 0, (2.26)

under which the UAV−buoy system is labeled as ‘coupled’, otherwise it is labeled
as ‘decoupled’. If the cable is considered extensible, then the taut cable constraint
is achieved for 0 ≤ r(t)− l ≤ ϵl, where ϵl is the cable’s elastic stretching length.

With Assumption 1 and the taut-cable condition in (2.26), we have r = l,
and the polar coordinates of the UAV can be defined with respect to the buoy’s
center of mass, Ob, as:

xu = xb + lcα, zu = zb + lsα, (2.27)

and its velocity can be obtained as:

ẋu = ẋb − (lsα)α̇, żu = żb + (lcα)α̇. (2.28)

No Buoy-Hanging Constraint

The buoy is required to remain at the water surface level at all times, that is, the
UAV must not lift the buoy into the air by means of the cable tension alone, as
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shown in Fig. 2.2b. This constraint can be forced by limiting the allowed cable
tension by the following inequality, deduced from (2.14) and (2.15) as:

T < mbg/sα. (2.29)

As noted in Remark 1, the buoy floats by itself, which means that no minimum
cable tension is required to maintain the buoy at the water surface.

No ‘Fly-Over’ Constraint

The buoy is required to remain in contact with the water surface at all times,
that is, the UAV must not force it to ‘fly-over’ the waves, as in Fig. 2.2c, when it
encounters them within a specific frequency range. This constraint is described
as:

⋎im > 0, (2.30)

which guarantees keeping the buoy partially immersed at all times. ‘Fly-over’
is a phenomenon that marks the flight of a planing hull over the waves level,
thus losing contact with the water surface [69]. This phenomenon appears when
the wave encounter frequency is near the resonant frequency of the hull, and is
related to its Froude number [70].

To detect the occurrence of this phenomenon, the following analysis is pre-
sented. If the discontinuity in the buoyant force is neglected, the buoy’s heave
dynamics can be simplified and expressed as a second-order transfer function with
natural frequency, ωb, and damping ratio, µb, deduced from (2.14) as:

ωb =
ρwgAb

cs,3

mb + a33
, µb =

Db,33

2
√

(mb + a33)ρwgAb
cs,3

, (2.31)

where Ab
cs,3 is the mean horizontal cross-sectional area of the buoy at the water

surface level. We also define ωe,n, the wave encounter frequency for the nth wave
component, as [66]:

ωe,n = ωn − dn
ω2
nV

g
, n ∈ Sn. (2.32)

The ‘fly-over’ phenomenon occurs at an exciting frequency where the increase in
oscillations amplitude due to dynamic magnification, ∆hamp, exceeds the mean
immersed height of the buoy, h̄im, that is:

∆hamp :=
N∑
n

An

( 1√(
1− ω̄2

n

)2
+ (2µbω̄n)2

− 1
)
> h̄im, (2.33)

where ω̄n = ωe,n/ωb. Further elaboration on the implications of this condition on
the system modeling and performance requires knowledge of the buoy character-
istics in terms of shape and weight, as well as wave characteristics in terms of
height and wave length, which are presented in Section 2.4.
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Conflict of Constraints

Given the constraints in (2.26) and (2.29), and the cable tension at equilibrium
that can be determined from (2.14), as to be detailed in Section 2.3.1, as T̄ =
D̄b,11V̄r/cᾱ, we consider the case when:

mbg/sα < D̄b,11V̄r/cᾱ,

in which both the taut-cable constraint and the no buoy-hanging constraints
conflict with each other, which simplifies to:

D̄b,11V̄rtα
mbg

> 1. (2.34)

The inequality in (2.34) restricts the design and application of the marine loco-
motive UAV system, since it can be interpreted as not being suitable for large
buoy velocity-to-weight ratios.

Another constraint conflict might arise if the cable is very heavy, which results
in slacking at the middle of the cable and disparate nonzero tension at each
extremity of the cable. To check if a conflict exists, the tension at equilibrium
can be calculated by applying the methodology described in [21] for any relative
UAV−buoy position and cable weight, which is then compared to the resulting
minimal tension at the buoy side with constraint (2.29).

2.2.8 The Tethered UAV-Buoy System Model

The formulation of the tethered UAV−buoy system, in its coupled form, is ob-
tained via the Euler-Lagrange formulation, while incorporating the results of Sec-
tions 2.2.5, 2.2.6, and 2.2.7. The Lagrangian function is obtained from the kinetic
(K(q, q̇) ∈ R≥0) and potential (U(q) ∈ R) energies as L(q, q̇) = K(q, q̇)− U(q),
where q = [xb, zb, α, θu, θb]

⊺ ∈ R5 is the generalized coordinates vector. The
motion equations of the UAV−buoy system can then be derived as:

d

dt

(∂L
∂q̇

)
− ∂L
∂q

+
∂P
∂q̇

= τ , (2.35)

where τ ∈ R5 is the external forces vector; P ∈ R is a power function that
captures dissipative forces, such that ∂P

∂q̇
:= D˜̇q, where D is the global damping

matrix that can be formulated based on (2.16) without including a wind-induced
component per Assumption 4; and ˜̇q is defined as:

˜̇q = [Vrel, żb − ww, α̇, θ̇u, θ̇b]
⊺. (2.36)

To facilitate the derivation of the Euler-Lagrange equations, the kinetic energy
of the system is expressed as the sum of that of the buoy and that of the UAV:

K =
1

2
q̇⊺Mq̇ :=

1

2
η̇⊺
bMbη̇b +

1

2
η̇⊺
uMuη̇u, (2.37)
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where M is the global inertia matrix of the UAV−buoy system, which can be
formulated by referring to (2.28) and using the elements of Mb and Mu. The
system’s potential energy and external forces and moments vector can be formu-
lated based on (2.15) and (2.24) as:

U = mug(zb + lsα) +mbg zb,
τ = [ux, uz + ρwg⋎im, luα, u3, fpsθu ]

⊺.
(2.38)

Finally, the following equations of motion that result from Euler-Lagrange
formulation (2.35) are obtained:

Mq̈ +Cq̇ +D˜̇q +G = τ , (2.39)

where Cq̇ := 1
2
Ṁq̇ is the Coriolis matrix with Ṁ = q̇⊺ ∂M

∂q
, and the global vector

of gravity forces G is:

G :=
∂U
∂q

= [0, (mb +mu)g,mu g lcα, 0, 0]⊺. (2.40)

Assumption 5. Based on assumption 4, the air effect on the tether element is
neglected.

Assumption 6. Since floating objects are stable by design, we can safely consider
that the buoy’s pitch dynamics are damped and stable, that is: Db,33 ̸= 0 and
fp < 0. As a result, the buoy is assumed to remain tangent to the water surface
at all times.

With Assumption 6 and the dominance of waves with relatively long wave
period and moderate wave height, the time derivative of the buoy pitch angle, θ̇b,
is small and thus its effect can be neglected in Ṁ, which yields a Coriolis matrix
that is a function of α only.

With constraints (2.26) and (2.30) satisfied, the dynamic model equations in
the coupled form are given by:

(Mb,11 +mu)ẍb +Mb,12z̈b +Db,11Vrel +Db,12
˜̇zb

−mul(cαα̇
2 + sαα̈) = ux,

(2.41a)

(Mb,22 +mu)z̈b +Mb,21ẍb +Db,22
˜̇zb +Db,21Vrel

−mul(sαα̇
2 − cαα̈) + (mu +mb − ρw⋎im)g = uz,

(2.41b)

mul
2α̈ +mul(−sαẍb + cαz̈b) +mug(lcα) = luα, (2.41c)

Juθ̈u = u3, (2.41d)

Mb,33θ̈b +Db,33θ̇b = fpsθb , (2.41e)

where ˜̇zb := ˜̇ηb,2. The UAV’s position and velocity vectors can then be obtained
from (2.27) and (2.28), respectively.
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Remark 2. If the taut-cable constraint (2.26) is not satisfied, the system in (2.41)
decouples into (2.14) and (2.23) with T = 0, and the polar states r′, ṙ′, and r̈′ are
calculated from (2.2), (2.3), and (2.4), respectively. On the other hand, if the fly-
over constraint (2.30) is not satisfied, the buoy’s inertia matrix in (2.17) reduces
to Mb = diag(mb,mb, Jb), the buoy’s damping matrix Db in (2.18) reduces to a
null matrix, and fp becomes zero.

2.3 Control System Design

The control system design problem is defined as manipulating the surge velocity
of the buoy, V , to track a desired reference and to maintain the UAV’s elevation,
zu, at a constant level, while ensuring that the dynamics of the UAV−buoy system
remain stable and contact between the buoy and water is maintained.

2.3.1 Attainable Setpoints

The control objective is to attain a steady-state mean velocity of the buoy, (V̄ ),
and mean UAV’s elevation, (z̄u), such that limt→∞(1

t

∫
zu(t)dt,

1
t

∫
V (t)dt) =

(z̄u, V̄ ). Next, we seek to find the set of other system states, namely, θ̄u and
⋎̄im, and control inputs, ū1 and ū3, that will achieve the control objective. Other
nonzero mean system variables in a steady-state surge motion are: T̄ , D̄b,11, and
D̄b,21. Note that the bar sign (•̄) refers to the mean values of the variables at
equilibrium, ⋎̄im implicitly represents z̄b, and the buoy’s pitch angle, θb, is not
considered in the setpoint analysis per Assumption 6.

Definition 2. Under specific sea conditions, namely uc and ζ(An, ωn) with
n ∈ Sn, and certain safety margins ϵT (uc, ζ) ≥ 0 for the cable’s tension, which
guarantees the coupled state of the system; and ϵ⋎ ∈ (0, 1) for the buoy’s immersed
volume, to ensure a minimum buoy immersion that is suitable to the desired sys-
tem application; the set of admissible configurations consists of the equilibrium
points (V̄ , ⋎̄im, ᾱ, θ̄u), such that:

T̄ := T̄ (V̄rel, ᾱ) > ϵT , ⋎̄im := ⋎̄im(V̄rel, ᾱ) > ϵ⋎⋎b, (2.42)

where V̄rel = V̄ − uc.

Assumption 7. The equilibrium state is analyzed under the no-wave condition:
An = 0 with n ∈ Sn, that is, uw = ww = 0.

Theorem 1. Consider the system described in (2.41), subject to constraints
(2.26) and (2.30), and the margins specified in (2.42); by Assumptions 6 and
7, the set of attainable equilibrium states is the union of all (V̄ , ⋎̄im, ᾱ, θ̄u) that
satisfy:

θ̄u(V̄rel, ᾱ) = atan
( D̄b,11V̄relcᾱ
mu g cᾱ + D̄b,11V̄relsᾱ

)
, (2.43)
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and the steady-state thrust value and immersed volume are calculated as:

ū1 =

{
any R>0, if ᾱ = π

2

D̄b,11V̄rel/sθ̄u , otherwise,
(2.44a)

⋎̄im =


mb+mu

ρw
− ū1

ρwg , if ᾱ = π
2

mb

ρw
− V̄rel

ρwg

(
D̄b,11tᾱ − D̄b,21

)
, otherwise.

(2.44b)

Given ⋎̄im, we can solve for z̄b per specific buoy geometry. In addition, the cable
tension at equilibrium is a function of V̄rel and ᾱ, and expressed as:

T̄ =

{
any R>0, if ᾱ = π

2

D̄b,11V̄rel/cᾱ, otherwise.
(2.45)

Proof. The dynamic equilibrium of system (2.41) is attained when ẍb = z̈b =
θ̈u = θ̇u = θ̈b = θ̇b = α̈ = α̇ = 0, and since we are considering surface motion
of the buoy along with Assumption 7, we additionally have żb = 0. Thus, we
conclude that u1 = ū1, and u3 = ū3 := 0, and by substituting in (2.41), we get:

D̄b,11V̄rel − ū1sθ̄u = 0, (2.46a)
D̄b,21V̄rel + (mb +mu)g − ū1cθ̄u − (ρw⋎̄im)g = 0, (2.46b)
mugcᾱ − ū1cᾱ+θ̄u = 0. (2.46c)

θ̄u(V̄rel, ᾱ) in (2.43) is obtained by rearranging and dividing (2.46a) by (2.46c); in
the case when ᾱ ̸= π

2
, ū1 can be subsequently obtained from (2.46a). As for ⋎̄im,

it can be obtained after substituting for ū1 from (2.44a) and for θ̄u from (2.43) in
(2.46b). Finally, the cable tension at equilibrium can be obtained from the first
row of (2.14) by canceling the zero-valued states. Note that when ᾱ = π

2
, the

system of equations (2.46) has a solution only if V̄rel = θ̄u = 0, while ū1 can be
any R>0 that respects the system constraints, and can be chosen to manipulate
⋎̄im based on the first case of (2.44b).

Now we seek to define the set of possible attainable steady-state velocities, SV̄ ,
under Assumption 7, that satisfy the safety margins specified in (2.42). The cable
tension at equilibrium, T̄ , can be obtained from (2.45); then we can determine
the minimum absolute surface velocity, V̄ , under a specific sea state, i.e. current
and waves, that guarantees the taut-cable condition. In addition, the maximum
absolute limit of SV̄ is attained from (2.42) and (2.44b). Finally, we get SV̄ =
SV̄ n ∪ SV̄ p, such that:

SV̄ p =
( ϵT cᾱ
D̄b,11

+ uc,
(mb +mu − ϵ⋎ρw)g tθ̄u

D̄b,11

+ uc

)
, if ᾱ ≤ π

2

SV̄ n =
((mb +mu − ϵ⋎ρw)g tθ̄u

D̄b,11

+ uc,
ϵT cᾱ
D̄b,11

+ uc

)
, if ᾱ >

π

2
.

(2.47)
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Remark 3. In practice, the maximum attainable absolute velocity can be limited
by the UAV’s maximum thrust, which can be derived from (2.43) and (2.44a), and
the tether’s yield strength. It is also noted that the motion across waves of various
characteristics may alter the velocity bounds as to be discussed in Section 2.4.2.
In addition, the violation of the buoy’s velocity upper bound can be alternatively
prevented by referring to constraint (2.29) and the cable tension calculation from
(2.23), and limiting the UAV’s maximum thrust such that:

u1 <
mb(1− ϵm)g

tαsθu
, (2.48)

where ϵm ∈ [0, 1) is a safety margin that represents a fraction of the buoy’s mass,
and accounts for the unmodeled dynamic forces affecting the buoy’s heave motion
that might violate the system constraints in (2.29) and (2.30).

2.3.2 Operational Modes and State Machine

To achieve acceleration and deceleration motions, the UAV−buoy system is re-
quired to manipulate the cable tension, switch between coupled and decoupled
states, and achieve bidirectional velocity control; hence, the UAV must change
its positioning with respect to the buoy back and forth. Thus, the locomotive
UAV control system is to be designed to operate in both position control and
velocity control modes, which necessitates the use of a state machine to achieve
an autonomous performance of the UAV−buoy system. Note that a cable can
only transmit tensile forces, thus allowing only pulling actions.

Next, we provide the required definitions to describe the system states, present
a complete cycle of the system’s operational states to achieve the control objec-
tives, and we introduce a state machine that allows the execution of appropriate
commands.

Operational Modes

Definition 3. The UAV’s location with respect to the buoy is assigned one of the
following two configurations:

• We call ‘front’ the configuration at which the UAV is positioned to the front
of the buoy, i.e. α ∈ (0, π

2
).

• We call ‘rear’ the configuration at which the UAV is positioned to the rear
of the buoy, i.e. α ∈ (π

2
, π).

We let r̄ be the reference radial position of the UAV with respect to the buoy.
The UAV−buoy system can be in one out of four operational modes shown in
Fig. 2.3:
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Figure 2.3: UAV−buoy system operational states in the locomotion task: (a)
free UAV motion around the buoy within the cable limit, used in initializing
the system, (b) ready to pull forward (or backward), the UAV is in the right
position to generate tension in the cable when asked to do so, (c) switching
UAV’s positioning between front and rear, while following the trajectory marked
in dashed blue to avoid cable entanglement, and (d) coupled and pulling forward
(or backward) to manipulate the buoy surge velocity.

(a) We call ‘free’ the mode during which the UAV is allowed to move freely
around the buoy, while r < l.

(b) We call ‘ready to pull ’ the mode during which the UAV is commanded
to maintain a specific elevation (z̄u), and a reference standby radius, rsb,
which is slightly less than the cable length l to consume any cable slack.
The elevation angle is α0 if the configuration is ‘front’ and (π − α0) if the
configuration is ‘rear’.

(c) We call ‘repositioning ’ the mode during which the UAV moves from one side
of the buoy to the other (fore/aft), travels a total arc of (π − 2α0), while
maintaining a constant reference radius with respect to the buoy, r̄ = rsb,
until it returns to the initial elevation, z̄u.

(d) We call ‘pulling ’ the mode during which the UAV is performing a pulling
action on the buoy with a reference elevation, z̄u, and radius, r = l. The
resulting elevation angle is α′

0 if the configuration is ‘front’ and (π − α′
0) if

the configuration is ‘rear’.

State Machine

The UAV−buoy system is supervised by a state machine that governs switching
between different control modes and commanded actions. Fig. 2.4 illustrates a
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Figure 2.4: Demonstrative diagram showing the modes’ transition behavior and
the buoy’s velocity tracking performance during a theoretical scenario. The doted
boundary lines govern the actions of the state machine.

typical velocity profile, with a hypothetical tracking performance, and threshold
lines that govern the state machine actions to showcase the state switching mech-
anism. Let the threshold levels be denoted by p1 and p2 for the top two lines, and
n1 and n2 for the bottom two lines. The first and second velocity error thresholds
are denoted by ϵth1 and ϵth2 respectively.

The proposed state machine benefits from the threshold velocity lines to
choose the suitable mode of action as described in Definition 3, in a way that
respects the system dynamics and insures the system safety [71], with a pseudo-
code provided in Algorithm 1.

2.3.3 Controller Design

The control system of the tethered UAV−buoy system consists of an outer-loop
and an inner-loop controller in a cascaded structure. The outer-loop controller
has two functions: 1) it controls the UAV’s relative position when the system
mode is ‘free’, ‘ready to pull’, or ‘repositioning’ by controlling r and α, with
setpoint (z̄u0, r̄0); and 2) it controls the buoy’s velocity when the system mode is
‘pulling’, by regulating the elevation angle, α, and the cable tension, T , which are
two flat outputs of the coupled system [39], with setpoint (z̄u0, V̄0). On the other
hand, the inner-loop controller controls and stabilizes the UAV’s pitch angle, θu.
The proposed controller (SVCS) incorporates the state machine in Section 2.3.2,
and it is designed based on polar coordinates. The SVCS architecture is presented
in Fig. 2.5, which can be summarized as follows:

• A setpoint is defined and the state machine returns the system mode.

• A preprocessing unit generates 1) an elevation angle ᾱ that accounts for
the actual buoy elevation variation, 2) a reference radial distance r̄, 3) a
smoothed reference velocity V̄ , and 4) an estimate for the required cable
tension, T̂c, to compensate for water drag, if applicable.
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Algorithm 1 State machine for the locomotive UAV’s control system
Input: V , V̄ , configuration
Output: MODE

Initialization :
MODE ⇐ ‘free’
LOOP Process

1: if (V < V̄ − ϵth1) and configuration == ‘front’ then
2: MODE ⇐ ‘pulling’
3: else if (V > V̄ + ϵth1) and configuration == ‘front’ then
4: MODE ⇐ ‘ready to pull’
5: else if (V > V̄ + ϵth2) and configuration == ‘front’ then
6: MODE ⇐ ‘repositioning’
7: else if (V > V̄ + ϵth1) and configuration == ‘rear’ then
8: MODE ⇐ ‘pulling’
9: else if (V < V̄ − ϵth1) and configuration == ‘rear’ then

10: MODE ⇐ ‘ready to pull’
11: else if (V < V̄ − ϵth2) and configuration == ‘rear’ then
12: MODE ⇐ ‘repositioning’
13: end if
14: return MODE
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Figure 2.5: Architecture of the Surge Velocity Control System (SVCS) for the
tethered UAV−buoy system.

• The outer-loop controller generates radial and tangential components of the
desired force that is needed for cable tension control, uvr , in case of velocity
control or simply radial force, upr , in case of position control (radial), and the
elevation angle control, uα (tangential). Note that the switching between
upr and uvr is governed by the operational mode of the system such that:

ur =
(
1− fplG(s)

)
upr + fplu

v
r , (2.49)

where G(s) is the transfer function of a low-pass filter, and fpl ∈ {0, 1} is
the ‘pulling’ mode flag.

• The outer-loop controller outputs are decoupled into a command total
thrust, u1, and a desired pitch angle, θu,c.

• Finally, the inner-loop attitude controller stabilizes the pitch angle of the
UAV and produces the moment command input, u3.

Reference Signals and Velocity Setpoint

It is desired for the UAV to maintain the same altitude during operation in or-
der to respect aviation safety margins and save energy by reducing unnecessary
vertical motion [64]. The cable length and nominal elevation angle are chosen
accordingly. However, due to the vertical oscillatory motion of the buoy in accor-
dance with the encountered waves, we must actively provide the controller with
suitable elevation angle, ᾱ, to hold the desired UAV elevation, which is computed
as:

ᾱ = asin
(
(z̄u − zb)/r̄

)
. (2.50)

Note that the preprocessing unit outputs the supplementary angle of ᾱ, i.e. ᾱ ⇐
π − ᾱ, if the system configuration is ‘rear ’. Furthermore, the velocity setpoint,
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V̄0, and the radial position, r̄0, are smoothed by second-order and fourth-order
low-pass filters, respectively, in order to respect the system dynamics in terms of
buoy−water friction and the UAV’s maximum thrust, thus preventing excessive
coupling and decoupling of the system [39]. Finally, in order to improve the
performance of the state machine, V̄ is sent to the controller only when the UAV
is ready to enter the ‘pulling’ mode.

UAV-Buoy Relative Position Control Law

To design the relative position control law, we must refer to the UAV dynamics
in W ′ where the states of interest are explicitly expressed. By differentiating r
twice then multiplying it by mu, we get:

mur̈ = mur̈u −mur̈b. (2.51)

Referring to Definition 1, we must have r(t) = l for the system to be coupled,
that is ṙ = r̈ = 0. Thus, by referring to (2.4), r̈ reduces to the form:

r̈ = Rα

[
−rα̇2

rα̈

]
. (2.52)

Referring to (2.23), and combining it with (2.51), then projecting along the radial
and tangential directions of (2.52) by means of R⊺

α, we can write the equations
of motion of the UAV in W ′ in the polar coordinates notation as:

mu(r̈− rα̇2) = mu(−ẍbcα − z̈bsα)−mugsα + ur − T,

mu(r
2α̈ + 2rṙα̇) = mur(ẍbsα − z̈bcα)−mugrcα + ruα.

(2.53)

Consider the UAV−buoy’s relative position dynamics in (2.53) for the generic
case, i.e. nonzero tension, and the UAV’s attitude dynamics in (2.23), with
states vector X1 = [r, α, θu]

⊺ and X2 = [ṙ, α̇, θ̇u]
⊺, and control input vector

U = [upr , uα, u3]
⊺, and subject to unknown external disturbances like wind gusts,

gravity waves, and water currents. Note that the relation between upr and ur
was given in (2.49). When represented as a nonlinear second-order time-varying
system, the state space form is described as:

Ẋ1 = X2,

Ẋ2 = H +ΦΘ+ bU + δ,
(2.54)

where b = diag(mu, mur, Ju)
−1 is the input-multiplied matrix, Φ =

[−1/(mucα), 0, 0]
⊺ is the regressor vector, Θ = T̂ is the parameters vector;

δ = [δr, δα, δθ]
⊺ is the vector of lumped system disturbances and modeling errors
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across each channel, where δ̂ = [δ̂r, δ̂α, δ̂θ]
⊺ is its estimate; and H ∈ R3 denotes

the nonlinear and gravitational terms vector defined as:

H =

 rα̇2 − ẍbcα − z̈bsα − gsα
(−2ṙα̇ + ẍbsα − z̈bcα − gcα)/r

0

 .
Assumption 8. The modeling errors and external disturbances and their deriva-
tives are bounded.

Assumption 9. The lumped error vector δ is constant or slowly varying during
a finite time interval, that is: limt1<t<t2 δ̇α, δ̇r, δ̇θ ≈ 0.

Let θ′u,c be the desired UAV pitch angle to be generated by the outer-loop
controller along with the total thrust command, u1, which are calculated as:

u1 =
√
u2α + u2r , θ′u,c =

π

2
− α− arctan(uα, ur). (2.55)

Let θu,c = θu,m tanh
(
θ′u,c/θu,m

)
be a smooth and bounded version of θ′u,c, with

θu,m ∈ (0, π
2
) being the absolute upper limit of the UAV’s attitude angle. The

reference state vector to be followed is defined as X̄1 = [̄r, ᾱ, θu,c]
⊺. Let the state

error vector be defined as:
e1 = X1 − X̄1. (2.56)

The proposed control law including the radial and tangential thrust com-
ponents for the outer-loop UAV’s relative position controller, and the UAV’s
pitching torque, is defined as [72]:

U = b−1
[
− kPe1 − kIe

I
1 − kDė1 +

¨̄X1 −H −ΦΘ
]
,

ėI1 = e1 + k−1
1 ė1,

(2.57)

where kP , kD, kI , and k1 ∈ R3×3
>0 are controller gains that are defined next.

Theorem 2. Consider the UAV−buoy’s relative position dynamics in (2.53), and
the state space representation of the system in (2.54). Suppose that Assumptions
8 and 9 hold true; the control law in (2.55) and (2.57) generates the total thrust,
u1, and the UAV’s desired pitch angle, θu,c, that can stabilize the system, and
reduce the tracking error to zero in finite time for a set of gains k1, k2, and
γ ∈ R3×3

>0 , such that kP = I3 + k1k2, kI = γk1, kD = k1 + k2, with I3 being the
identity matrix. If Assumption 9 does not hold, the tracking error reduces to a
small region neighboring the origin in finite time.

Proof. The backstepping control design, involving two steps, is employed, and
the Lyapunov function V1 = 1

2
e⊺
1e1 is proposed. Its derivative is expressed as:

V̇1 = e⊺
1ė1. Since ė1 does not explicitly include a control input, we continue the
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control design process for a second step. The virtual control input to stabilize
e1 is defined as: Υ = ˙̄X − k1e1. Next, we define the virtual rates error as:
e2 = Ẋ1 −Υ.

By defining a second Lyapunov function:

V2 =
1

2
e⊺
1e1 +

1

2
e⊺
2e2 +

1

2
δ̃⊺γ−1δ̃,

where δ̃ = δ̂ − δ, then by differentiating and combining it with V1, we get:

V̇2 = e⊺
1ė1 + e⊺

2ė2 + δ̃⊺γ−1 ˙̂δ

= e⊺
1(e2 − k1e1) + e⊺

2(H + bU +ΦΘ+ δ − Υ̇) + δ̃⊺γ−1 ˙̂δ.

Next, we choose the control inputs and the lumped modeling and disturbances
errors’ update rates such that V̇2 becomes negative semi-definite:

U = b−1
(
−H −ΦΘ− δ̂ + Υ̇− e1 − k2e2

)
,

˙̂
δ = γe2, (2.58)

and we get V̇2 = −e⊺
1k1e1 − e⊺

2k2e2. Thus, the asymptotic convergence of V2 to
zero can be obtained via Barbalat’s lemma under Assumption 9. If strong wind
and wave disturbances exist, meaning the violation of Assumption 9, the control
law will still achieve stability and finite tracking error, which can be reduced
by increasing the controller gains up to a level that overcomes the disturbances
mismatch effect on V̇2. Finally, by substituting Υ̇ and e2 in (2.58), and setting
eI1 := δ̂(γk1)

−1, the PID-like control law in (2.57) is obtained.

Buoy Surge Velocity Control Law

If the cable is taut, its length becomes constant and ṙ and r̈ can be set to zero.
The UAV’s motion equations in W ′ in polar coordinates notation become:

−mulα̇
2 = mu(−ẍbcα − z̈bsα)−mugsα + ur − T,

mul
2α̈ = mul(ẍbsα − z̈bcα)−muglcα + luα.

(2.59)

Consider the UAV dynamics in W ′, while following the polar coordinates
notation as presented in (2.59) and (2.53), and let the buoy’s velocity error be
defined as eV = V − V̄ . The buoy velocity model can be expressed in the generic
case, i.e. variable radial position, as:

V̇ = HV − T/(mucα) + uvr /(mucα), (2.60)

where HV = (rα̇2 − r̈ − z̈bsα − g sα)/cα. A control law can be designed for the
surge velocity in a similar fashion as described in Section 2.3.3, with a difference
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that only one step is required in the backstepping process. The resulting control
law is given by:

uvr = T̂c +mucα
(
−HV + ˙̄V − kPV eV − kIV e

I
V

)
, ėIV = eV , (2.61)

where kPV and kIV ∈ R>0 are controller gains. The results of Theorem 2 relative
to stability and tracking apply.

Remark 4. Cable tension can be either directly measured (e.g. load cell) to
improve the tracking performance and the system’s overall safety, or it can be
estimated via an observer design based on cable disturbance estimation methods.
However, this internal force, T , and its estimate, T̂ , should not be confused with
the term T̂c used in the control law (2.61), and representing the required tensile
force to manipulate the buoy. One simple realization is obtained based on (2.45),
such that:

T̂c = Db,11,0V̄ /cα, (2.62)

where Db,11,0 = C̄S,1Awt,0
1
2
ρw|V̄ |, with Awt,0 being the zero-tension whetted area,

and C̄S,1 being the surge skin friction coefficient at V̄ , which yields a fair, yet not
very accurate, estimate. However, the proposed controller can compensate for the
estimation error as will be proven next. For a sample cable tension estimation
based on disturbance observation, readers are referred to [73].

Remark 5. Practically, robust performance of the proposed control laws is guar-
anteed by choosing large-enough k2 gains for a wide operating range, even if
Assumption 9 is violated [74].

2.3.4 Parameter Estimation

Let Vrel := ˜̇ηb,1 = V − uc − uw represent the buoy−water relative surge velocity.
If the condition in (2.26) holds, the cable tension is expressed as:

T =


(
Mb,11ẍb +Mb,12z̈b +Db,11Vrel +Db,12

˜̇ηb,2

+Cb,11ẋb + Cb,12żb

)
/cα, |α− π

2
| > ϵα,

(u1cθu −mug −muz̈u)/sα, |α− π
2
| ≤ ϵα,

(2.63)

where ϵα ∈ R≥0 is a constant that prevents singularity in a small region near α =
π
2
. The cable tension can be determined from the first row of the buoy dynamics

in (2.14), so that its expression is more relevant to the coupled UAV−buoy system
since it shows a direct link with Vrel, which yields the first case of (2.63). However,
this form is not applicable near the vertical cable configuration (α = π/2) due to
singularity, thus the actual cable tension, T , is computed via (2.23), which yields
the second case of (2.63).
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Table 2.1: Tethered UAV−buoy model parameters

Parameter Value Unit Parameter Value Unit
lb 0.8 m mu 1.8 kg
hb 0.25 m Ju 0.03 kgm2

mb 12.5 kg θu,m π/4 rad
a11 0.625 kg l 7 m
a33 12.5 kg ϵT 5 N
b11 0 Ns/m ϵ⋎ 0.05 -
b33 27.5 Ns/m ϵm 0.1 -
νw 1.787×10−6 m2/s ρw 1000 kg/m3

g 9.81 m/s2 ρa 1.22 kg/m3

2.4 Simulations

In this section, we provide simulation results that demonstrate the fidelity of
the tethered UAV−buoy system model and the performance of the designed con-
troller. We first define the settings and parameters used for the devised simulation
scenarios, which include various operating conditions to validate the proposed
system. To challenge the control law’s performance towards real-life implemen-
tation, the tethered UAV−buoy system model is incorporated in the simulator
developed in this work, while including deviation from the described model used
by the control law, including the UAV’s propellers motor dynamics, wind gusts,
and non-exact state feedback.

2.4.1 Simulation Settings

To validate the proposed UAV−buoy system with the designed SVCS, a series of
simulations is performed in the MATLAB Simulink ® environment. We consider
a mini-quadrotor UAV and a small-sized simplified homogeneous cuboid buoy
with the dimensions and parameters listed in Table 2.1. We note that manipu-
lating small-sized buoys, nets, debris, and surface sensors are few applications of
this baseline configuration, which make it practical to implement and deploy the
hereby marine locomotive UAV system. More details on the system components
sizing are provided later in Section 2.5.2. The quadrotor UAV motor dynamics
are modeled as a first-order low-pass filter with a time constant τm = 0.05 s,
and its total thrust and pitch torque are bounded such that ∥u1∥ ≤ 160N, and
∥u3∥ ≤ 11.2Nm. The mass of the buoy is chosen such that the buoy is one quarter
immersed under no external loads based on the balance between the gravitational
and buoyancy forces, that is mb := ρw ⋎b /4. The buoy’s immersed volume is
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then defined as:

⋎im (∆h) =


⋎b if ∆h > hb

2
,

0 if ∆h < −hb
2
,

⋎b/2 + lbhb∆h otherwise,
(2.64)

The wetted area is calculated as:

Awt(∆h) =


4lbhb if ∆h > hb

2
,

0 if ∆h < −hb
2
,

lbhb + 2lb(
hb
2
+∆h) otherwise.

(2.65)

The resulting added mass and damping are calculated as described in Sec-
tion 2.2.5, and their values are presented in Table 2.1. The buoy’s skin fric-
tion coefficients in its body x- and z-directions can be estimated as CS,i =

0.075/(log10 Re − 2)2, where Re = |Vr|lb
νw

∈ R≥0 is the Reynolds number, limited
to turbulent flows (Re > 105), with νw being the water’s kinematic viscosity [75].
To detect the coupling state of the system (coupled / decoupled), we rely on the
tension estimation in the second case of (2.63).

To properly evaluate the performance of the proposed SVCS design, a
Cartesian-based nominal controller (CBNC) that uses a PID control law in its
outer-loop, and without supervision of a state-machine, is implemented for bench-
marking purposes. It consists of a velocity (ẋ) controller and an elevation (z) con-
troller, with gains kP,CBNC = diag(7, 3), kI,CBNC = diag(1.2, 1), and kD,CBNC =
diag(5, 2), respectively. The SVCS gains are selected as k1 = diag(16.9, 4.6, 7.5),
k2 = diag(2.6, 2.4, 2.5), γ = diag(0.5, 0.3, 0.3), kPV = 25, and kIV = 12.

The feedback signals are assumed to be available from sensor measurements
and estimations, and are modeled as follows: the UAV’s pose is virtually ob-
tained from an on-board Global Positioning System / Inertial Navigation System
(GPS/INS) module, and the elevation angle and the radial distance are virtually
obtained from a stereo camera system. In simulation, this is mimicked by aug-
menting the feedback states by a filtered Gaussian noise with the corresponding
state-of-the-art accuracy of each sensor before being used by the controller. With
mav(•̃) denoting the mean absolute value of the estimation error of entity (•),
we set mav(x̃u) = 0.02m = mav(z̃u) = 0.02m, mav(θ̃u) = 0.5°, mav(α̃) = 0.16°,
and mav(r̃) = 0.02m. Subsequently, the buoy’s states are determined from (2.2),
(2.3), and (2.4). More details on state estimation is given in Section 2.5.1.

2.4.2 Velocity Bounds

The constraints’ bounds (ϵT , ϵ⋎, and ϵm) presented in Table 2.1 are mainly
based on the expected buoy−water relative velocity, in addition to the buoy’s
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Figure 2.6: Buoy’s heave dynamic amplification, ∆hamp,n, under excitation of
different fully-developed single wave components {An,Tn} of the sets A =
{0.27, 0.61, 1.2, 1.5, 3.3}/2m, and T = {3, 4, 5, 5.7, 8} s. The mean buoy’s im-
mersed height, h̄im, draws the boundary dome for the ‘fly-over’-free region.

shape, weight, and skin friction. A possible command velocity range of SV̄ =
(−19.0,−3.1) ∪ (2.1, 18.0)m s−1 is calculated from (2.47) under no-wave condi-
tion (Assumption 7).

In the presence of waves, the feasible working velocity with no violation of
constraint (2.30) reduces from above, and can be quantified by referring to (2.33)
and (2.44b) as follows. We solve for ⋎̄im to get h̄im, then find ∆hamp for some
(V̄ , ᾱ), under different wave conditions. Fig. 2.6 provides the buoy’s heave dy-
namic amplification results under excitation of a single fully-developed wave com-
ponent [76], with ᾱ = 45° and uc = 0. To have a unified representation of h̄im,
the Stokes drift effect is neglected in calculating V̄rel. The natural frequency of
the buoy, calculated from (2.31), is ωb = 8.9 rad s−1.

Fig. 2.6 can be interpreted as follows: for a given sea condition with wave
amplitude and period {An,Tn}, the buoy hops over the waves (‘fly-over’ con-
dition) when its horizontal (forward or backward) velocity, V , falls outside the
shaded area (dome) formed by the h̄im curve, for a given ∆hamp,n (colored plots
corresponding to various wave amplitudes and periods). Sample zones, where the
buoy ‘fly-over’ condition does not occur, are marked on top of the figure as Sfo

V̄ ,n
.

The comprehensive results captured by Fig. 2.6 show that the system operation is
direction-dependent, and they also serve as a reference for predicting the perfor-
mance of the buoy in terms of heave oscillation and ‘fly-over’ phenomenon under
different wave conditions, ranging from high-frequency low-amplitude waves to
low-frequency high-amplitude ones, and even for superposition of various waves,
as will be demonstrated in the subsequent sections. We note that the above anal-
ysis is provided for a buoy of known characteristics (Table 2.1), and serves as a
guideline for the system performance.
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2.4.3 Simulation Scenarios

We validate the fidelity of the derived system model and evaluate the performance
of the designed controller in five cases: C1, C2, C3, C4, and C5. All cases include
a wind gust of uwd = −3m s−1 and a water current component ul = −0.5m s−1

(except for C5). The scenarios are described as follows:

• C1: wind gust and water current only.

• C2: wind gust, water current, and moderate waves with two wave compo-
nents (N = 2), such that: A1 = 0.135m, d1 = 1, T1 = 3 s, and σ1 = π;
A2 = 0.75m, d2 = 1, T2 = 5.7 s, and σ2 = 0.

• C3: high-frequency small-amplitude waves (head-seas), with A1 = 0.135m,
d1 = −1, T1 = 3 s, and σ1 = 0.

• C4: high-amplitude low-frequency waves (head-seas), with A1 = 1.65m,
d1 = −1, T1 = 7 s, and σ1 = 0.

• C5: buoy motion damping in the presence of a wind gust and strong water
current of ul = −5m s−1.

Note that the wave components definitions in each scenario is independent from
the other scenarios. Sample visual illustrations of the environments in C1 and
C2 are given in Fig. 2.7, which are generated via the custom-built simulator that
we specifically developed to serve as a physics engine and provide live animations
for tethered UAV−buoy locomotives. In both cases, C1 and C2, the buoy is
commanded to accelerate to reach an inertial velocity V̄ = 5m s−1, after which
it gradually decelerates to 0m s−1 then to −4m s−1. The desired reference mean
sea level altitude is z̄u = 5.0m, which corresponds to a mean elevation angle
of ᾱ0 = 45◦. The system is initiated in the decoupled state, and its velocity
is initiated to be equivalent to the zero-time water velocity via (2.6) and (2.8).
Based on Assumption 2.39, the buoy’s pitch angle is set as θb = θw.

While cases C1 and C2 provide a baseline evaluation of the proposed robotic
system and its controller, cases C3, C4, and C5 challenge its performance in
extreme cases, i.e. under fast oscillations (C3), high amplitude undulations (C4),
and large water current speeds (C5). A low-slope ramp velocity input (V = 0.25 t)
is applied in C3 and C4 to carefully capture the performance of the system at
different velocities, and head-seas are considered to emphasize and validate the
universality of the buoy’s dynamic heave performance captured in Fig. 2.6. In
C5, the system is applied in a river-like environment, with an objective to fix
the buoy’s location with respect to the riverbank as the river streams at a high
velocity. Two initial conditions are considered: 1) buoy with zero initial velocity,
and 2) buoy that is initially moving at the water current speed. Note that even
though the SVCS is not a position controller, C5 validates its application to such
cases.
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Figure 2.7: Sample screenshots from animations of two simulation scenarios (C1
and C2) in true scale. Animations are generated via a custom-built simulator
that is specifically developed to serve as a physics engine for tethered UAV−buoy
locomotives.

2.4.4 Simulation Results and Discussion

The simulation results for C1 and C2 are shown in Fig. 2.8a and Fig. 2.8b, re-
spectively. In both cases, the quadrotor UAV equipped with the SVCS is able to
pull the buoy at the desired velocities (V ) without overshoot, with minimal fluc-
tuations in velocity (V ) and elevation (zu), while not violating constraint (2.30)
as indicated by the immersed volume plot (⋎im/⋎b), and without unnecessarily
decoupling the system (as seen in the r subplot). The resulting commands to
the UAV, u1c and u2c, are bounded and free of high-frequency chattering. On
the other hand, the Cartesian-based controller without state machine supervision
(CBNC) results in significantly larger velocity (V ) and elevation (zu) fluctuations,
reaching up to 2m s−1 and 2.2m, respectively, in the wavy environment (C2).

The proposed controller adjusts the elevation angle, α, while the buoy el-
evation, zb, changes − driven by the contour-following behaviour of the buoy
under long waves excitation − to prevent unnecessary UAV vertical motion (zu)
as evident in Fig. 2.8b. The adjustments are such that ᾱ varies in response to
changes in the buoy’s elevation, zb, which is proportional to the wave encounter
frequency. It is also observed that the elevation angle (α) and pitch angle (θu)
are smooth and stable, and exhibit small tracking error for the SVCS. We note
that the reference UAV pitch angle, θu,c, for the CBNC is not plotted for figure
clarity purposes, since both systems possess the same inner-loop controller, in
addition to the fact that CBNC has no reference elevation angle, ᾱ, and radial
position, r̄.

The SVCS-controlled UAV achieves the desired surge velocity of the buoy by
adjusting the cable tension, T , in an appropriate and relatively smooth manner as
seen in (T ). Contrarily, the CBNC has no direct control of the cable tension and
the radial position of the UAV, which leads to repeated large input pulses that
deteriorate the transient performance. Finally, it is observed that the change in
the immersed volume of the buoy greatly depends on the encounter frequency. It
is also noticed that the buoy remains in contact with the water surface ((⋎im/⋎b))
for both controllers.
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Figure 2.8: States and control inputs for the simulation scenarios C1 and C2,
with both the state machine-supervised surge velocity control system (SVCS)
and a standard Cartesian-based nominal UAV controller (CBNC). The region in
red marks when the mode is not ‘pulling’, and the region in green marks when
the mode is ‘repositioning’.
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Table 2.2: Tracking Error and Consumed Energy

Case
V , mean tracking zu, mean tracking Total consumed

error (m/s) error (m) energy (kJ)
CBNC SVCS CBNC SVCS CBNC SVCS

C1 0.36 0.05 0.28 0.03 111.8 58.9
C2 0.61 0.06 0.43 0.06 93.4 61.2

To quantify the performance of the two controllers, the trajectory tracking
errors of V and zu, and the energy consumed by the UAV (calculated per [77])
are reported in Table 2.2. The SVCS results in an average reduction in the
tracking error of 88% and in energy consumption of 42% versus the CBNC.

Remark 6. Expressing the SVCS in polar coordinates yields a correlated control
performance, which means that each control channel, (ur and uα), independently
affects one control parameter (α or V ). However, this is not the case for the
Cartesian-based controller (CBNC), where each of the ẋ- and z-control channels
has a dual effect on each control parameter, which results in a degraded perfor-
mance.

In summary, the CBNC does not cope with the introduction of waves to pre-
vent them from disturbing the system in an unpredictable manner, nor it respects
the system configuration, whereas the SVCS shows its disturbance-rejection prop-
erty in significantly attenuating the waves’ effect even without knowing their char-
acteristics. All of the above factors, combined, justify the design of the relatively
complex SVCS for the proposed marine locomotive UAV system.

The performance of the SVCS-equipped locomotive system against high-
frequency and high-amplitude waves are shown in Fig. 2.9a and Fig. 2.9b, re-
spectively. The first separation of the buoy from the water surface occurs at
t = 21 s and V = 5ms−1 in C3, and t = 41 s and V = 11m s−1 in C4, which are
marked by the yellow strips in their respective subplots. The tracking accuracy
in V and zu demonstrates that the proposed SVCS performs well in the consid-
ered extreme scenarios, as long as they are within the working zones established
in Fig. 2.6. Beyond these zones, i.e. after the instances marked by the yellow
strips in Fig. 2.9, the buoy ‘fly-over’ deteriorates the system performance, which
manifests as jumps of the buoy above the waves as exhibited in the z subplot.

The validation of the system in missions that require damping the buoy’s
motion under strong water current conditions is shown in Fig. 2.10. We notice
that the SVCS is able to achieve the desired objective of fixing the buoy’s location
with respect to the riverbank as the river streams at a high velocity, with minimal
error. The SVCS is superior to the CBNC in terms of both tracking performance
and stability, where CBNC cannot prevent the quadrotor from crashing in C5.1,
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conditions. The blue strip marks the crash of the CBNC-controlled UAV.

which is marked by the blue strips in Fig. 2.10(a). It is also observed that the
CBNC system does not not respect the cable length constraint, which may lead
to jamming and/or fooling of the cable.

2.4.5 Extended Simulations

For further validation of the system, we present a series of simulations that vary
a) the sizing of the system components (UAV, buoy, and cable) and b) the waves
environment. Let Si represent the physical system index where i = {1, 2, 3, 4},
and let Ej represent the environment index where j = {1, 2, 3}, the variations
are captured as follows:

(a) System size variants (UAV, buoy, and cable):

1. Baseline mini-quadrotor and a small-sized buoy, as described in Ta-
ble 2.1, with cable length l = 7m (S1) and l = 12m (S2).

2. Medium-sized system with the GAIA-160 multirotor [47] that has the
following characteristics: mu = 19.5 kg, and Ju = 1.52 kgm2; and
a medium-sized buoy of the following characteristics: hb = 0.3m,
lb = 1.5m, and mb = 33.75 kg; with cable lengths of l = 15m (S3)
and l = 20m (S4).

(b) Wave environment variants:
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Here, we consider the same environment as C2, but with different combi-
nations of wave components, such that:

E1. (N = 2), A1 = 0.305m, d1 = 1, T1 = 4 s, and σ1 = π; A2 = 0.6m,
d2 = 1, T2 = 5 s, and σ2 = 0.

E2. (N = 2), A1 = 0.305m, d1 = 1, T1 = 4 s, and σ1 = π; A2 = 1.65m,
d2 = 1, T2 = 8 s, and σ2 = 0.

E3. (N = 2), A1 = 0.6m, d1 = 1, T1 = 5 s, and σ1 = π; A2 = 1.65m,
d2 = 1, T2 = 8 s, and σ2 = 0.

For brevity purposes, only the velocity tracking error of the extended simulation
validation is reported in Table 2.3, albeit the full state results of the medium-
sized system are given in Fig. 2.11. Failed cases, which entail the UAV’s height
dropping below the water surface level, are designated with the letter ‘F’ in
Table 2.3, and the remaining simulation scenarios resulted in stable tracking
performance that is similar to Fig. 2.8. The complete set of simulation data and
results can be found in the project’s online repository.

From Table 2.3, it is noticed that the baseline system is only able to handle
the wave environment E1, and fails to deal with the high amplitude waves of E2
and E3. The performance is enhanced by using a longer cable, as seen from the
results of S2 and S4, as compared to S1 and S3, respectively. Furthermore, the
medium-sized system with a longer cable achieves better performance in terms
of tracking velocity, as seen by comparing S3 and S4 to S1 and S2, respectively.
Additionally, Fig. 2.11 demonstrates a better performance of S4 in the high-
amplitude wave environment E3, as can be seen from the α, r, and zu subplots.
We can also notice smaller spikes in thrust, u1c, and tension, T , when a longer
cable is used (S4), which is due to lower variations in the elevation angle, α.

The extended simulations demonstrate that the UAV−buoy system can be
sized to fit specific physical environmental constraints. For instance, a longer
cable allows the system to handle higher amplitude waves, but at the expense of
increased cable weight and higher flying altitudes.

2.5 Practical Considerations

For the proposed system to lend itself well to physical implementation, we target
in this Section critical aspects that are essential to experimentally validate the
proposed system, in preparation for its deployment in real-life.

2.5.1 States Estimation

The SVCS requires the following states for feedback: r, ṙ, r̈, α, α̇, θu, θ̇u, V ,
ẍb, and z̈b. Unlike most applications of the tethered UAV problem, the tether
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Table 2.3: Velocity tracking error (cm/s) of the extended simulations. ‘F’ refers
to failed cases.

Case
E1 E2 E3

A1 = 0.305m A1 = 0.305m A1 = 0.6m
A2 = 0.6m A2 = 1.65m A2 = 1.65m

S1 14.9 F F
S2 15.2 22.1 23.1
S3 14.4 21.0 17.7
S4 20.7 18.7 16.6

of the UAV−buoy system is not anchored to a fixed point as in [14, 39, 78];
furthermore, knowing that the system is allowed to decouple, resulting in a slack
cable, observer-based methods that target system state estimation in the taut-
cable case, as in [71], cannot be solely employed for state feedback. However, since
the UAV−buoy system works above the water surface, it is practical to assume
that GPS coverage is available, which allows for UAV pose estimation in the
inertial frame using a GPS sensor and an inertial measurement unit (IMU) that
is equipped with a magnetometer [71]. We also note that if the system is designed
to operate in the vicinity of a marine structure, Real-Time Kinematic (RTK) GPS
solutions can also be utilized to attain more accurate inertial state estimation [79].
To solve the state estimation problem when the cable is slack, the UAV can be
equipped with a stereo camera to detect and estimate the buoy location in the
camera frame using special-purpose algorithms [80, 81], from which the UAV’s
relative radial coordinates to the buoy (r and α), and the buoy’s velocity (V )
can be estimated [82]. We note that a monocular camera can provide adequate
accuracy for the control problem on hand only if the buoy’s dimensions are known
a priori [83]. As for laser-baser sensory equipment, they are susceptible to sun
rays exposure and water surface refraction, which deems them unsuitable for
such applications. Last but not least, using encoders placed on the UAV can
help with measuring the cable’s length and elevation angle in the taut-cable case,
and a force sensor (e.g. load cell) allows measurement of the cable’s tension [71],
thus providing the control system with additional information to improve its
performance.

2.5.2 Power Considerations

To make the system more energy efficient, it can be designed to allow the UAV
to land on the buoy, or to float directly on the water surface, during long standby
periods [43]. Several multirotor platforms with extended flight times have been
designed using hybrid-electric technology [84], which answers the possible need for
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large power of the hereby proposed system. Another alternative to further extend
the work-time of the system is to integrate an umbilical power cable within the
tether, which is commercially available and integrated with mutirotor UAVs [35].
Furthermore, using an umbilical power line with power banks stationed on the
buoy can be more efficient than increasing the on-board power capacity of the
UAV under specific conditions related to system design and mission requirements.
Also, a small relative buoy−water velocity and a streamlined buoy shape can
result in better energy efficiency.

We note that in case of large umbilical power transmission cables, their mass
cannot be neglected and must be compensated for in the control law of the coupled
dynamics model as in [12] and [85]; and in the decoupled form, the UAV controller
should be modified to compensate for the cable mass as in [86]. For illustration
purposes, in the example presented in this work, a 7m long 1000W power cable
weighs less than 0.5 kg, which adds to the main tensile wire of similar weight to
get a total of about 1 kg.

To get a better assessment of the power and energy needs, we present a basic
and practical power solution for the proposed tethered UAV−buoy system. To
address the system’s power requirement, the buoy can be equipped with a gasoline
power generator with a fuel tank [87] or a battery power bank [88]. Assuming an
average UAV thrust of 40N and a flight time of 30min, the required energy would
be about 5MJ as per [77], which can be supplied either by 0.15 L of gasoline or
9 kg of Li-Po batteries. Note that a small 1000W generator with its accessories
weighs about 3 kg [87]. Given the dimensions and overall weight of the baseline
buoy with specifications given in Table 2.1, the generator-based solution can easily
fit within the buoy, while the Li-Po batteries-based solution cannot. Finally, we
note that the choice of a suitable power solution is naturally application-specific.

2.5.3 Platform

The locomotive UAV system can be deployed from ships and marine structures.
It can be an independent system, and if designed and equipped to work au-
tonomously, it can link itself to the target floating object using an on-board
cable and perform manipulation afterward. Such designs have higher mobility,
easier deployability, and independence from potentially-bulky buoys.

2.5.4 Extension to 3D Space

This subsection defines the problem of the tethered UAV−buoy problem with
reasonable assumptions that limit the representation of the system to the 2D
vertical space, which facilitates the understanding of the problem. The extension
of this work to the 3D space is attainable, given that the proposed system is
a combination of currently available technologies that have been employed in
various real-life applications, which include hybrid UAVs [84], tethered UAVs
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[13, 22, 89], umbilical power cables to UAVs [35, 88], integration of the umbilical
power cable to USVs [21,63], visual pose stabilization of tethered UAVs [90], and
finally extended oversea multirotor UAV flight [48].

On the dynamic modeling and control system design side, we note that in
the 3D space, the wave and current models should be modified to be multi-
directional [66, 67], which induce lateral disturbances on the system that the
controller needs to be upgraded to account for. From a motion perspective, the
UAV could experience new patterns of motion in 3D space, other than moving
backward and forward, to compensate for sideways disturbances and follow curved
trajectories. Last but not least, the 2D polar coordinates used in the system
definition and control law derivation need to be extended to the 3D space as done
in [71,91], which merely increases the mathematical complexity of the problem.

2.6 Conclusion

The novel problem of a marine locomotive UAV system is defined, in which
a quadrotor UAV is tethered to a floating buoy to control its surge velocity.
The system dynamics are separately modeled for each subsystem including the
water medium, the buoy, and the UAV, then combined via the Euler-Lagrange
formulation. The attainable setpoints and constraints of the proposed system are
defined, then a precision motion control system (SVCS) is designed to manipulate
the surge velocity of the buoy within certain limits, which require maintaining
the cable in a taut state and keeping the buoy in contact with the water surface.
A simulation environment is defined, and the proposed SVCS is validated and
compared to a nominal Cartesian-based UAV controller, while showing superior
tracking performance and disturbance rejection in various wave, surface current,
and wind conditions.

The proposed system paves the way in front of a wide variety of novel marine
applications for multirotor UAVs, where their high speed and maneuverability,
as well as their ease of deployment and wide field of vision, give them a superior
advantage. It best suits applications that require remote and fast manipulation
with minimal water surface disruption.
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Chapter 3

THREE DIMENSIONAL MARINE
LOCOMOTIVE UAV

3.1 Introduction

The 2D-planar model of the tethered UAV−buoy system that was proposed in
Chapter 2 presented a thorough analysis of the subsystem’s dynamics and the
systems’ stability, the effect of waves, the proposed working bounds, steady-state
values of the system states, and several practical considerations for implementing
the system [31]. However, the 2D tethered UAV−buoy model does not capture
the complete dynamics of the real system. For instance, the 2D model has limited
representations of the Euler angles of both the UAV and the buoy, it does not
encompass composite waves and currents with varying directions, and it does not
allow the system to follow trajectories that are in the the three-dimensional (3D)
space. In addition, the orientation of the buoy is not captured in the 2D-planar
model, which can deviate from the actual direction of the tether. Furthermore,
the Surge Velocity Control System (SVCS) designed in Chapter 2 does not include
the tether’s azimuth angle within its controlled state variables, thus the controller
is unable to provide directional manipulation of the buoy in the horizontal plane if
deployed on a 3D model. Therefore, for real-world applications, it is necessary to
extend the 2D planar model of the tethered UAV−buoy system to the 3D space,
so that it includes all position and orientation states of the UAV, the buoy, and
the tether, as well as the surface water model.

The contributions of this chapter are presented next. First, we extend the
model of the 2D-planar tethered UAV−buoy system dynamics to the 3D space
by incorporating the full six degrees-of-freedom (6-DOF) rigid-body model for
each of the UAV and buoy, and a 2-DOF model of the tether, to arrive at a
11-DOF dynamical model that allows for a more realistic representation of the
system’s physics. Second, the ocean/sea environment is modeled to include not
only the surface water current, but also the full effect of oscillating gravity waves,
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even in the vertical direction. Third, a rigorous mathematical derivation of the
composite system is presented through the Lagrangian formulation, while defining
the required conditions and constraints to regulate the system’s motion. Fourth, a
spherical coordinates-based dual controller is designed to allow the free movement
of the UAV around the buoy while the tether is slack, and to manipulate the
buoy’s surge velocity while the tether is taut. This controller allows the UAV to
apply directional tension through the tether on the buoy so that it can trigger
motion in all directions of the water surface.

The remainder of this Chapter is organized as follows. Section 3.2 presents
a multi-physics description of the 3D tethered UAV−buoy system components
and the water environment. Section 3.3 introduces the control system design
for controlling the relative UAV−buoy position and the buoy’s surge velocity.
Comprehensive numerical co-simulation results of the derived system model and
designed control system are presented in Section 3.4. Section 3.5 concludes the
chapter and identifies future development tracks.

3.2 System Modeling

The heterogeneous marine robotic system of a tethered UAV−buoy system has
multi-physics elements, which must be integrated with a proper definition of the
marine environment that it operates in. This section defines the system compo-
nents and their interconnection including the water environment, the USV/buoy,
the tether, and the UAV, and it finally culminates with the coupled dynamical
model of the tethered UAV−buoy system.

3.2.1 Preliminaries

Before defining the problem, we briefly specify general notations to support the
model derivation process. For some angle (•), we let c•, s•, and t• respectively
be the cosine, sine, and tangent functions. Also, we define R>0 to be the set
of positive-real numbers such that {x ∈ R | x > 0}, and R≥0 to be the set of
non-negative real numbers such that {x ∈ R | x ≥ 0}.

3.2.2 Problem Definition

Consider the 3D space above the water surface in which the problem is defined
as shown in Fig. 3.1. Let OI be the origin of the inertial frame of reference,
W = {x, y, z}, located at the horizontal plane of the local mean sea level. Let ru =
{xu, yu, zu} ∈ R3 and rb = {xb, yb, zb} ∈ R3 be the coordinates of the quadrotor
UAV’s center of mass, (Ou), and that of the buoy, (Ob), in W , respectively.
Let Bu and Bb be the body-fixed reference frames of the UAV at Ou, and of
the buoy at Ob, respectively. The UAV is physically connected to the buoy by
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Figure 3.1: Three-dimensional model of a tethered quadrotor UAV−buoy system
with tensile force interaction in a marine environment.

means of an inextensible massless cable of length l ∈ R>0, and the connections
to the cable are modeled as two frictionless revolute joints. The quadrotor UAV
has a mass mu and a moment of inertia tensor Ju = diag(Ju,xx, Ju,yy, Ju,zz) ∈
R3
>0 in Bu. Let the floating buoy have a volume ⋎b ∈ R>0, a bounded mass

mb ∈ (0, ρw⋎b), with ρw being the water density, and a moment of inertia tensor
Jb = diag(Jb,xx, Jb,yy, Jb,zz) ∈ R3

>0 in Bb. Also, let the orientation of Bu and
Bb with respect to W be described by the Euler angles Ξu = [ϕu, θu, ψu]

⊺ and
Ξb = [ϕb, θb, ψb]

⊺ ∈ (−π, π]3, respectively. Let Vu = [uu, vu, wu]
⊺ ∈ R3 and Ωu =

[pu, qu, ru]
⊺ ∈ R3 be the UAV’s linear and angular velocities in Bu, respectively;

and let Vb = [ub, vb, wb]
⊺ ∈ R3 and Ωb = [pb, qb, rb]

⊺ ∈ R3 be the buoy’s linear
and angular velocities in Bb, respectively. Furthermore, let the translational
velocity transformation matrix from any body frame, B•, to W be described as:

R1,• =

cθ•cψ• − sϕ•sθ•sψ• −cϕ•sψ• sθ•cψ• + sϕ•cθ•sψ•

cθ•sψ• + sϕ•sθ•cψ• cϕ•cψ• sθ•sψ• − sϕ•cθ•cψ•

−cϕ•sθ• sϕ• cϕ•cθ•

 , (3.1)

and the rotational velocity transformation matrix from W to any body frame be
described as:

R2,• =

cθ• 0 −cϕ•sθ•
0 1 sϕ•
sθ• 0 cϕ•cθ•

 . (3.2)

We also define the rotation matrix about the vertical z-axis only (yaw) from one
body frame, B•, to W as:

Rz• =

cψ• −sψ• 0
sψ• cψ• 0
0 0 1

 . (3.3)
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Both the UAV and the buoy are subject to cable tension, T ∈ R≥0, and to
gravitational acceleration, g. The tensile force is applied on the tether hinge in
each platform located at distances, rGH,u and rGH,b, for the UAV and the buoy,
measured in their individual body frames, respectively. Moreover, the UAV’s
propulsion is described by the input vector uu = [u1, u2, u3, u4]

⊺ ∈ R4 including
the thrust force vector fu = [0, 0, u1]

⊺ ∈ R3
≥0, and three torques that induce a

rotational motion about each of the body frame axes such that τu = [u2, u3, u4]
⊺ ∈

R3. The dynamics of the UAV actuators (motor propellers) are neglected in the
modeling given that their response time is considerably smaller than that of the
UAV (> 10X). Finally, the buoy is subjected to hydrodynamic and hydrostatic
forces that are subsequently described.

3.2.3 Spherical Coordinates

The spherical coordinates system for the tethered UAV−buoy system, W ′, is
illustrated in Fig. 3.2. The Cartesian position of the UAV in W with respect
to W ′ is defined as: rrel = [xrel, yrel, zrel]

⊺ = ru − rb ∈ R3, where the subscript
(rel) denotes ‘relative.’ We let its spherical coordinates in W ′, r = [r, 0, 0]⊺, be
represented by the triplet {r, α, φ} with unit vectors {êr, êα, êφ}, such that the
elevation angle α ∈ [−π/2, π/2] is defined between r and the horizontal plane,
and the azimuth angle φ ∈ (−π, π] is defined between the projection of r on the
{x, y} plane and the positive x-axis, which is mathematically represented as:

r =
√
x2rel + y2rel + z2rel,

α = atan(zrel/
√
x2rel + y2rel),

φ = atan2(yrel, xrel).

(3.4)

To transform vectors from spherical to Cartesian coordinates, two consecutive
rotations are needed such that:

RS2C = RφRα =

cαcφ −sαcφ −sφ
cαsφ −sαsφ cφ
sα cα 0

 , (3.5)

where Rφ and Rα are defined in C.1 and C.2, by which the Cartesian coordinates
can be retrieved from the spherical coordinates such that:

rrel = RS2Cr, (3.6)

which expands to:

rrel =

rcαcφrcαsφ
rsα

 . (3.7)
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Conversely, the spherical coordinates can be retrieved from the Cartesian coor-
dinates such that:

r = RC2Srrel, (3.8)

where RC2S = R⊺
S2C.

Hence, the UAV’s inertial coordinates can be obtained from the buoy’s inertial
coordinates and the relative spherical coordinates as follows:

ru = rb +RS2Cr. (3.9)

Similarly, the UAV’s velocity and acceleration vectors are calculated via:

ṙu = ṙb +RS2Cṙ, (3.10a)
r̈u = r̈b +RS2Cr̈, (3.10b)

where ṙ and r̈ are explicitly given in C.4.

3.2.4 Water Medium Model

Consider the water medium of an ocean/sea environment, as visually depicted in
Fig. 3.3, with two main elements that are detailed next: the water surface current
and gravity waves.

Gravity Wave Model

Assuming a large water depth compared to the wavelength of gravity waves, at
time t and horizontal position {x, y}, the water elevation variation, ζ, due to
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gravity waves is described statistically as [66]:

ζ(x, y, t) =
N∑
n

An sin
(
− knx cosψn,w − kny sinψn,w + ωnt+ σn

)
, (3.11)

where An, kn, ωn ∈ R≥0, ψn,w, and σn ∈ (−π, π] are respectively the wave
amplitude, wave number, circular frequency, wave propagation angle with respect
to the inertial frame’s x-axis, and random phase angle of wave component number
n ∈ Sn with Sn = {1 ≤ n ≤ N | N ∈ N}, and N being the total number of
active wave components. Furthermore, referring to the dispersion relation in
deep water, the wave number is given as kn = ω2

n/g. The wave-induced velocity
vector of the fluid particles in W , Uw = [uw, vw, ww]

⊺ ∈ R3, has its components
described as [66]:

uw(x, y, z, t) =
∑N

n ωnAne
knz sin(−knx cosψn,w − kny sinψn,w + ωnt+ σn) cosψn,w,

vw(x, y, z, t) =
∑N

n ωnAne
knz sin(−knx cosψn,w − kny sinψn,w + ωnt+ σn) sinψn,w,

ww(x, y, z, t) =
∑N

n ωnAne
knz cos(−knx cosψn,w − kny sinψn,w + ωnt+ σn),

(3.12)

where ωn relates to the wave period, Tn, via ωn = 2π/Tn.
Finally, the water surface plane at point {x, y, ζ} has tilt angles in roll and

pitch with respect to the inertial frame, which are calculated by differentiating
(3.11) with respect to x and y, respectively:

ϕw(x, y, t) = atan
(∑N

n −Ankn sinψn,w cos(ωnt− knx cosψn,w − kny sinψn,w + σn)
)
,

θw(x, y, t) = atan
(∑N

n −Ankn cosψn,w cos(ωnt− knx cosψn,w − kny sinψn,w + σn)
)
.

(3.13)
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Water Current

The water surface current acts in the {x, y} (horizontal) plane of W , such that
Uc = [uc, vc, 0]

⊺ ∈ R3, and is given as:

Uc = Us +Ul, (3.14)

where Us = [us, vs, 0]
⊺ ∈ R3 is generated from Stokes drift [67], with its compo-

nents in the inertial frame, W , defined as:

us(z) =
N∑
n

cosψn,wA
2
nωnkne

2knz,

vs(z) =
N∑
n

sinψn,wA
2
nωnkne

2knz,

(3.15)

and Ul = [ul, vl, 0]
⊺ ∈ R3 is the resulting sum of other water current components,

determined as follows:

ul = Ul cosψl,

vl = Ul sinψl,
(3.16)

where Ul and ψl are the average velocity and direction of the current in W ,
respectively.

3.2.5 Buoy’s Dynamic Model

Various types of forces affect the buoy’s motion, with a major contribution
from restoration, damping, and radiation forces. These forces substantially de-
pend on the immersed volume of the buoy, ⋎im ∈ [0,⋎b], which is a func-
tion of the buoy’s elevation, defined as ∆h = ζ(xb, yb, t) − zb. Let the vector
from the buoy’s center of gravity to its center of buoyancy in W be defined
as rGB = [xGB, yGB, zGB]

⊺ ∈ R3, where the buoyancy force is applied such that
FB = [0; 0; ρwg⋎im]. Additionally, let the tether hinge location with respect to the
buoy’s center of gravity be defined in Bb as rGH,b = [xGH,b, yGH,b, zGH,b]

⊺ ∈ R3, as
seen in Fig. 3.1, where the cable tension is applied to the buoy in W ′, such that
T ′
b = [T, 0, 0]⊺.

Assumption 10. The water-buoy friction dominates the air-buoy friction, thus
we neglect the air drag on the buoy.

Consider the buoy dynamics in Bb, and let its state vector be νb = [ν1,b;ν2,b],
where ν1,b = Vb and ν2,b = ωb. Applying Newton’s second law of motion gives:

M′
bν̇b +C′

bνb +D′
bν̃b +G′

b = τ ′
b, (3.17)
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where M′
b, D′

b, and C′
b ∈ R6×6 are respectively the buoy’s inertia, damping,

and Coriolis matrices expressed in Bb; ν̃b = [ν̃1,b; ν̃2,b] is the relative veloc-
ity vector, with ν̃1,b = ν1,b − (Uw + R⊺

ψw
Us + R⊺

ψl
Ul), and ν̃2,b = ν2,b; the

gravitational forces and moments vector are included in G′
b ∈ R6; and the

external forces and moments are captured in τ ′
b ∈ R6. The inertia matrix

expands as M′
b = [M′

1,b,O3;O3,M
′
2,b], where O3 ∈ R3×3 is the null matrix,

M′
1,b = mbdiag(1, 1, 1) + a1,b, M′

2,b = Jb + a2,b, with a1,b = diag(a11, a22, a33)
and a2,b = diag(a44, a55, a66) ∈ R3×3 being the generalized added mass ma-
trices. The Coriolis matrix, which depends on M′

b, is calculated as C′
b =

[O3,C
′
12,b;C

′
21,b,C

′
2,b], where:

C′
12,b = C′

21,b =

 0 (mb + a33)wb −(mb + a22)vb
−(mb + a33)wb 0 (mb + a11)ub
(mb + a22)vb −(mb + a11)ub 0


C′

2,b =

 0 (Jzz,b)rb −(Jyy,b)qb
−(Jzz,b)rb 0 (Jxx,b)pb
(Jyy,b)qb −(Jxx,b)pb 0

 .
(3.18)

The buoy’s total damping in Bb is expressed as:

D′
b = DP +DS +DW, (3.19)

where the generalized radiation-induced potential damping matrix is expanded
as DP = [b1,b,O3;O3,b1,b] ∈ R6×6, with b1,b = diag(b11, b22, b33) and b2,b =
diag(b44, b55, b66), and DS = diag(DS,1, ..., DS,6) ∈ R6×6 is the skin friction matrix,
calculated as:

DS,i = CS,iAwt
1

2
ρw

∣∣ν̃1,b,i

∣∣ , i = {1, 2, 3}, (3.20)

where CS,i ∈ R>0 is the drag coefficient, Awt ∈ R≥0 is the wetted area of the
buoy, and DS,4−6 ∈ R≥0 can be approximated by considering the moments effect
of DS,1−3 over the buoy’s surface. The effect of the wave drift damping matrix,
DW ∈ R3×3, is already included in the Stokes drift velocity in (3.15), thus it will
be dropped from (3.19).

The buoy dynamics in (3.17) are expressed in W with the state vector, ηb =
[η1,b;η2,b] where η1,b = rb and η2,b = Ξb, as:

Mbη̈b +Cbη̇b +Db
˜̇ηb +Gb = τb, (3.21)

where Mb, Db, and Cb ∈ R6×6 are the buoy’s inertia, damping, and Coriolis
matrices, respectively, expressed in W ; ˜̇ηb = [˜̇η1,b; ˜̇η2,b] is the relative velocity
vector, with ˜̇η1,b := [˜̇xb, ˜̇yb, ˜̇zb]

⊺ = η̇1,b − (Uw +Uc); Gb and τb are respectively
the vectors of the gravitational and external forces and moments on the buoy in
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W given by:

Gb = [0, 0,mbg, 0, 0, 0]⊺,
τb = [τ1,b; τ2,b],

τ1,b = RS2CT
′
b + FB

= [Tcαcϕ, T cαsϕ, T sα + ρwg⋎im]
⊺,

τ2,b = rGB × FB + (R1,brGH,b)× (RS2CT
′
b).

(3.22)

We also define:

Mb = RbM
′
bR

−1
b ,

Db = RbD
′
bR

−1
b ,

Cbη̇b :=
1

2
Ṁbη̇b,

(3.23)

where Rb = [R1,b,O3;O3,R
−1
2,b], Ṁb = η̇⊺

b(∂Mb/∂ηb) [67]. Finally, we let Mb,ij,
Cb,ij, and Db,ij, i, j = {1, ..., 6} be elements of Mb, Cb, and Db, respectively.

3.2.6 UAV’s Dynamic Model

We let the UAV’s thrust vector in the Cartesian frame, fu,C = [ux, uy, uz]
⊺, be

calculated as:
fu,C = R1,ufu, (3.24)

with its elements being explicitly represented as:

ux = u1(sθucψu + sϕucθusψu),

uy = u1(sθusψu − sϕucθucψu),

uz = u1(cϕucθu).

(3.25)

In the spherical frame, the UAV’s thrust vector, fu,S = [ur, uα, uφ]
⊺, is expressed

as:
fu,S = RC2Sfu,C, (3.26)

with the element ur, uα, and uφ being explicitly represented in C.5.
The tether’s tension on the UAV expressed in W ′, T ′

u = [−T, 0, 0]⊺, is applied
at location rGH,u = [xGH,u, yGH,u, zGH,u]

⊺ ∈ R3 in Bu, representing the distance
from the UAV’s center of gravity to its tether hinge. Finally, the local wind
speed that disturbs the UAV’s motion is defined in W as Uwd = [uwd, vwd, 0]

⊺ .
The quadrotor UAV system dynamics in W are obtained from Newton’s sec-

ond law of motion with the state vector ηu = [η1,u;η2,u], where η1,u = ru and
η2,u = Ξu, yields:

M1,uη̈1,u +C1,uη̇1,u +D1,u
˜̇η1,u +G1,u = τ1,u + δ1,u,

M2,uη̈2,u +C2,uη̇2,u +D2,u
˜̇η2,u +G2,u = τ2,u + δ2,u,

(3.27)
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where:

M1,u = mudiag(1, 1, 1), D1,u = R1,uD
′
1,uR

⊺
1,u,

C1,uη1,u := O3, G1,u = [0, 0,mug]⊺,

and

M2,u = JuR2,u, D2,u = D′
2,uR2,u, G2,u = [0, 0, 0]⊺,

C2,uη̇u := Ωu × (JuΩu) + Ju

(∂R2,u

∂ϕu

ϕ̇u +
∂R2,u

∂θu
θ̇u

)
η̇2,u.

D′
1,u = diag(Du,1, Du,2, Du,3) and D′

2,u = diag(Du,4, Du,5, Du,6) ∈ R3×3
≥0 are the

UAV’s translational and rotational damping friction matrices, respectively. The
relative velocity vectors of the UAV are ˜̇η1,u := [˜̇xu, ˜̇yu, ˜̇zu]

⊺ = η̇1,u − Uwd in
translation and ˜̇η2,u := [ ˜̇ϕu,

˜̇θu,
˜̇ψu]

⊺ = η̇2,u in rotation. τ1,u and τ2,u ∈ R3 are
vectors of other external forces in W and moments in Bu of the UAV, respectively,
and they include the rotors’ thrust and tether tension effects, expressed as:

τ1,u = fu,C +RS2CT
′
u

=

ux − Tcαcφ
uy − Tcαsφ
uz − Tsα

 ,
τ2,u = τu + (rGH,u)× (R⊺

1,uRS2CT
′
u). (3.28)

The damping matrix elements, Du,i, i ∈ {1, ..., 3}, are approximated as:

Du,i = Cu,iA
u
cs,i

1

2
ρa

∣∣∣˜̇νu,i∣∣∣ , (3.29)

where Cu,i ∈ R>0 is a drag coefficient, Au
cs,i ∈ R≥0 is the UAV’s cross-sectional

area in the respective plane, ρa is the air density and ˜̇νu,i is the UAV-wind relative
velocity in the respective body frame axis. The adopted model captures the major
elements required to represent the quadrotor in a tethered UAV−buoy system
with slow-to-moderate dynamics, thus acrobatic maneuvers and their influence
on the system dynamics are not considered. For more details on the quadrotor
UAV model, readers can refer to [68].

3.2.7 System Constraints

In this section, we generalise the system’s 2D constraints presented in [31] to the
3D space. These constraints help establish the bounds and operating conditions
for when the coupled model of the tethered UAV−buoy system is applicable.
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Taut-Cable Constraint

Since the cable is assumed inextensible, it remains under tension (taut) at time
t if r(t) = l, which is equivalent to:

T > 0. (3.30)

We label the tethered UAV−buoy system as ‘coupled ’ when (3.30) is satisfied,
and ‘decoupled ’ otherwise.

No Buoy-Hanging Constraint

To keep the buoy floating on top of the water surface, the vertical tension compo-
nent transmitted from the UAV through the tether must not exceed the weight
of the buoy, otherwise it will be lifted into the air and the system will reduce to
a UAV with a slung payload. This is prescribed by:

T < mbg/sα, (3.31)

as deduced from (3.21) and (3.22) at steady-state.

No ‘Fly-Over’ Constraint

‘Fly-over’ occurs when the buoy starts hopping over wave crests [69]. This phe-
nomenon is avoided if:

⋎im > 0, (3.32)

which means that the buoy remains partially immersed at all times. The ‘fly-over’
phenomenon is related to the total surface velocity of the buoy, described as:

V =
√
u2b + v2b,

ψV = arctan(vb/ub),
(3.33)

where V and ψV are its magnitude and direction in the horizontal plane, respec-
tively. Next, we define the wave encounter frequency for the nth wave component,
ωe,n, as [66]:

ωe,n = ωn −
ω2
nV

g
cψw,n−ψV

, n ∈ Sn. (3.34)

The excitation of the buoy’s heave dynamics at ωe,n induces ‘fly-over’ if it ap-
proaches the heave’s natural frequency, as interpreted in [31].
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3.2.8 The Tethered UAV−Buoy System Model

In a coupled form, the tethered UAV−buoy system dynamics can be formulated
by referring to the Euler-Lagrange formulation, which leverages the results in
Sections 3.2.3, 3.2.5, 3.2.6, and 3.2.7. First, we define the Lagrangian function as
L(q, q̇) = K(q, q̇)−U(q), where K(q, q̇) ∈ R≥0 and U(q) ∈ R are the kinetic and
potential energies of the system, with q = [xb, yb, zb, α, φ, ϕu, θu, ψu, ϕb, θb, ψb]

⊺ ∈
R11 being the generalized coordinates vector. The equations of motion of the
UAV−buoy system are obtained via:

d

dt

(∂L
∂q̇

)
− ∂L
∂q

+
∂P
∂q̇

= τ , (3.35)

where τ ∈ R11 is the external forces and moments vector. Per Assumption 10, let
D be the global damping matrix formulated based on (3.23) without including a
wind-induced component, and the dissipative forces are captured by the power
function, P ∈ R, such that ∂P

∂q̇
:= D˜̇q. ˜̇q is defined as:

˜̇q = q̇ − [uc + uw, vc + vw, ww, 0, 0, 0, 0, 0, 0, 0, 0]
⊺

= [ẋb − uc − uw, ẏb − vc − vw, żb − ww, α̇, φ̇, ϕ̇u, θ̇u, ψ̇u, ϕ̇b, θ̇b, ψ̇b]
⊺.

(3.36)

If tether is assumed to have a negligible mass, the coupled system’s kinetic
energy is obtained as the sum of the individual energies of the UAV and the buoy
as follows:

K =
1

2
q̇⊺Mq̇ :=

1

2
η̇⊺
uMuη̇u +

1

2
η̇⊺
bMbη̇b, (3.37)

where the global inertia matrix of the UAV−buoy system, M, is formulated by
using the elements of Mu and Mb, as described in (C.8). Next, the potential
energy of the system can be formulated by referring to (3.22) and (3.2.6) as:

U = mbg zb +mug(zb + lsα). (3.38)

The details of the Euler-Lagrange formulation in (3.35) are detailed in Ap-
pendix D, which finally leads to the following equations of motion:

Mq̈ +Cq̇ +D˜̇q +G = τ , (3.39)

where C represents the global Coriolis matrix, and G is the global vector of
gravity forces and moments.

Assumption 11. The design of a stable buoy is beyond the scope of this work,
and only buoys with inherited stability are considered. Thus, we assume that the
buoy’s center of buoyancy always lies above its center of gravity, and that the
roll and pitch dynamics of the buoy are damped and stable, which indicates that
Db,44 > 0 and Db,55 > 0. Thus, we assume that the buoy remains tangent to the
water surface.
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With Assumption 11 and the dominance of waves with relatively long periods
and moderate heights, the time derivatives of the buoy’s roll and pitch angles, ϕ̇b

and θ̇b, are small and thus their effects can be neglected in Ṁ.
Since the tether joints are considered revolute and frictionless, there is no

coupling between the tether’s rotational motion and the UAV and buoy’s rota-
tional dynamics, whereas their translational dynamics are coupled through (3.9).
Additionally, as can be deduced by inspecting the elements of (3.35), the UAV
and buoy’s rotational dynamics are independent of each other, and can still be
described by the dynamic models of their individual systems in (3.27) and (3.21),
respectively. This is further elaborated in Appendix D. Given this, the tethered
UAV−buoy system coupled dynamics can be represented by the first fives states:
xb, yb, zb, α, and φ, which are independent of other rigid body orientation states
that concern either the UAV’s or the buoy’s dynamics alone. Hereafter, we limit
the representation of the coupled system to the first five state variables mentioned
above, while the UAV and buoy’s rotational dynamics can still be described by
η2,u in (3.27) and η2,b in (3.21), respectively. The inertia matrix for the coupled
system is explicitly represented as M1−5 = [M1;M2;M3;M4;M5], where:

M1 = [Mb,11 +mu Mb,12 Mb,13 −mulsαcφ −mulcαsφ],

M2 = [Mb,21 Mb,22 +mu Mb,23 −mulsαsφ mulcαcφ],

M3 =
[
Mb,31 Mb,32 Mb,33 +mu mulcα 0

]
,

M4 =
[
−mulsαcφ −mulsαsφ mulcα mul

2 0
]
,

M5 =
[
−mulcαsφ mulcαcφ 0 0 mul

2c2α

]
.

(3.40)

The Coriolis matrix is explicitly represented as:

C1−5 = mul


0 0 0 −cαcφα̇ + 2sαsφφ̇ −cαcφφ̇
0 0 0 −cαsφα̇− 2sαcφφ̇ −cαsφφ̇
0 0 0 −sαα̇ 0
0 0 0 0 lsαcαφ̇
0 0 0 −2lsαcαφ̇ 0

 , (3.41)

and the damping matrix is explicitly represented as:

D1−5 =


Db,11 Db,12 Db,13 0 0
Db,21 Db,22 Db,23 0 0
Db,31 Db,32 Db,33 0 0
0 0 0 0 0
0 0 0 0 0

 . (3.42)

Additionally, the gravitation force vector and external forces and torques vector
are explicitly represented as:

G1−5 = [0, 0, (mb +mu)g,mu g lcα, 0]⊺, (3.43)
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and
τ1−5 = [ux, uy, uz, luα, luφ]

⊺, (3.44)

respectively. If constraints (3.30) and (3.32) are satisfied, the coupled form of the
dynamic model equations is given by:

(Mb,11 +mu)ẍb +Mb,12ÿb +Mb,13z̈b +Db,11
˜̇xb +Db,12

˜̇xb +Db,13
˜̇zb

−mul
(
cαcφα̇

2 − 2sαsφα̇φ̇+ cαcφφ̇
2 + sαcφα̈ + cαsφφ̈

)
= ux,

(3.45a)

Mb,21ẍb + (Mb,22 +mu)ÿb +Mb,23z̈b +Db,21
˜̇xb +Db,22

˜̇yb +Db,23
˜̇zb

−mul
(
cαsφα̇

2 + 2sαcφα̇φ̇+ cαsφφ̇
2 + sαsφα̈− cαcφφ̈

)
= uy,

(3.45b)

Mb,31ẍb +Mb,32ÿb + (Mb,33 +mu)z̈b +Db,31
˜̇xb +Db,32

˜̇yb +Db,33
˜̇zb

−mul(sαα̇
2 − cαα̈) + (mu +mb − ρw⋎im)g = uz,

(3.45c)

mul(−sαcφẍb − sαsφÿb + cαz̈b + lsαcαφ̇
2) +mul

2α̈ +mug(lcα) = luα,
(3.45d)

mul(−cαsφẍb + cαcφÿb − lsαcαα̇φ̇) +mul
2c2αφ̈ = luφ. (3.45e)

After solving the above differential equations, the UAV’s position and velocity
vectors can then be computed from (C.6) and (C.8), respectively. We note that
if the tether’s weight is to be considered, the tethered system’s model should be
updated as per [85].

3.3 Control System Design

The control system design problem is defined as manipulating the surge velocity
of the buoy, ub, to track a desired reference, while orienting the cable in the
desired elevation angle, α, and azimuth angle, φ. This allows for applying a
tension force in any required direction, while tracking the desired surge velocity.
As an extension to the Surge Velocity Control System (SVCS) presented in [31],
which was designed to only control ub and α, the controller will be dubbed herein
as Directional Surge Velocity Control System (DSVCS), given that it adds the
pulling force direction (azimuth angle, φ) to its controlled states.

We note that solely controlling these states via setpoint tracking does not
yield inertial velocity tracking. For example, external forces that result in sway
motion (in the direction of the buoy’s body-fixed y-axis) are not rejected by the
controller. That said, the controller with the reduced states can be equipped with
a path planner, which can apply lateral tension by choosing a specific azimuth
angle to counter the external forces in the sway direction. Such an architecture
would give the system the ability to track reference trajectories in the inertial
frame, but this is beyond the scope of this work, thus we stick with the design of
the DSVCS.
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3.3.1 Operational Modes and State Machine

To complement the surge velocity controller, a UAV−buoy relative position con-
troller is required to control the radial distance of the UAV in W ′, r, instead of ub.
Both controllers are part of the DSVCS. In [92], a state machine was proposed
to allow the system to switch between the coupled and decoupled states by al-
ternating between the two controllers. In addition, the state machine can trigger
a change in the positioning of the UAV with respect to the buoy between front
and rear to change the pulling direction. Contrarily, in the 3D problem of this
work, we only consider the forward motion of the buoy, while the velocity vector
steering will be handled by changing the cable’s azimuth angle. The purpose of
the state machine is to allow the system to smoothly couple and decouple when
requested by the controller, which will be sufficient to achieve the goals of the
controller in this work. For that, we adopt the same state-machine of [92], with
the exclusion of the ‘repositioning ’ maneuver trigger part.

3.3.2 Controller Design

With the inner-loop/outer-loop cascaded structure shown in Fig. 3.4, the DSVCS
allows tracking of the states ub, α, and φ by orienting and scaling the UAV’s
thrust vector. The setpoint for the controller is (ūb0, z̄u0, φ̄0) in the buoy’s surge
velocity control mode, and (r̄0, z̄u0, φ̄0) in the UAV’s relative position mode. A
prepocessing unit then generates the resulting ᾱ based on z̄u0, and a smoothed
signal for the tracking setpoints ūb0, r̄0, and φ̄0. When the control mode changes,
a fast and smooth transition function handles the switching between the two
control laws [31].

The resulting force vector with its three components along êr, êα, and êφ is
transformed to the inertial frame to determine the desired UAV’s thrust vector
magnitude and orientation. At this point, the problem reverts to a basic UAV
thrust decoupling problem, where the resulting thrust vector magnitude and tilt
angles can be easily computed, as shown later, while the yaw angle remains free
to set. Since the UAV is expected to maintain visual tracking of the buoy, the
controller sets the desired yaw angle to equal the tether’s azimuth angle.

In summary, and as shown in Fig. 3.5, the proposed DSVCS can control
three main variables: 1) the relative position between the UAV and the buoy
(outer-loop), 2) the buoy’s surge velocity (outer-loop), and 3) the UAV’s attitude
(inner-loop). A state machine selects which of the two outer-loop controllers to
activate based on the coupling between the UAV and buoy.

Reference Signals and Velocity Setpoint

The UAV’s desired motion during a buoy manipulation task is limited to a hori-
zontal plane of constant elevation (z̄u0), which reduces the UAV’s power consump-

71



DSVCS

Preprocessing

Setpoint

r ub

State machine

Outer-loop
UAV-buoy

relative position
Buoy's surge

velocity

Tethered UAV-buoy

Inner-loop
(UAV attitude)

u,c

Decoupling
θu,c1,c

u,cτ

Measurements

u,cϕ

α,α,r, r, φ,φ,

η2,u 2,uη,

position / velocity control
Outputs:

Outputs:

Outputs:

>> zu0 ub0r0φ

>>

>>

α Tφ
ψu,c

ub b, v u, z , zu,1,bη,bψ

>>

>> α, φ, uψ

>>

,,>>
>>

u

, ,

,,,,

,

r

φ
α

φ
α

ub

Water medium
effect

Wind effect

Figure 3.4: Architecture of the proposed Directional Surge Velocity Control Sys-
tem (DSVCS) for the tethered UAV−buoy system.

tion [64] and results in safer and more predictable paths. This can be achieved
by computing the resulting reference elevation angle, α, based on the desired
reference elevation, z̄u, as:

ᾱ = asin
(
(z̄u − zb)/r̄

)
. (3.46)

The azimuth angle is chosen to set the pulling direction, and the UAV’s yaw
angle can be independently manipulated without affecting the other states; here,
we set it equal to azimuth angle in order to keep the UAV directed forward while
an onboard camera can still point towards the buoy at all times:

ψ̄u = φ̄. (3.47)

Note that the steady-state velocity vector of the buoy in the horizontal plane
of W , ψ̄V , does not necessarily point in the same direction as φ̄, since the buoy
is free to slide sideways, such that:

ψ̄V = φ̄+ ϵψ, (3.48)

where ϵψ is an error angle that is related to the sideslip angle of the buoy, βu. Fi-
nally, the radial position, r̄0, and the velocity setpoint, ūb0, are smoothed by low-
pass filters of fourth- and second-order, respectively, which results in a smoother
performance due to respecting the system dynamics [39].

UAV−Buoy Relative Position Control Law (Outer-Loop)

To design the relative position control law, we must refer to the UAV dynamics
in W ′ where the states of interest are explicitly expressed. If we reorder the
realization of r̈u in (3.10b) and multiply both sides by mu, we get:

mur̈ = RC2S(mur̈u)−mu(RC2Sr̈b). (3.49)
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The first right-hand side term of (3.49) can be seen as the mapping of the trans-
lational terms of (3.27) into W ′ (kinetics), and the second one can be seen as
the mapping of the buoy’s linear accelerations into W ′ (kinematics). Expanding
(3.49) yields:

mu(r̈− rα̇2 − rc2αφ̇
2) = ur − T −mugsα −mu(cαcφẍb + cαsφÿb + sαz̈b),

mu(r
2α̈ + 2rṙα̇ + r2sαcαφ̇

2) = ruα −mugrcα −mur(−sαcφẍb − sαsφÿb + cαz̈b),

mu(r
2cαφ̈+ 2rcαṙφ̇− 2r2sαα̇φ̇) = ruφ −mur(−sφẍb + cφÿb).

(3.50)

Consider the case of nonzero tension for the relative position dynamics of
the UAV−buoy system’s in (3.50), with states vectors X1 = [r, α, φ]⊺ and
X2 = [ṙ, α̇, φ̇]⊺, control input vector U = [ur, uα, uφ]

⊺, subject to unknown
external disturbances including water currents, gravity waves, and wind gusts.
The equations of motion in the kinetic form are expressed as:

MdcẌdc = Hdc +ΦdcΘdc + bdcU + δdc, (3.51)

where the subscript (dc) refers to the decoupled dynamics, Ẍdc = Ẍ1, the inertia
matrix Mdc = mudiag(1, r

2, r2cα), the parameter vector Θdc = T , the regressor
vector Φdc = [−1; 0; 0], and bdc = diag(1, r, r). δdc represents the vector of lumped
modeling errors and disturbances, and the vector Hdc = [Hdc,1;Hdc,2;Hdc,3] rep-
resents all of the nonlinear Euler, Coriolis, centrifugal, and gravitational forces
and moments, and is given by:

Hdc,1 = mu(rα̇
2 + rc2αφ̇

2 − cαcφẍb − cαsφÿb − sαz̈b − gsα),
Hdc,2 = mur(−2ṙα̇− rsαcαφ̇

2 + sαcφẍb + sαsφÿb − cαz̈b − gcα),
Hdc,3 = mur(−2ṙφ̇cα + 2rα̇φ̇sα + sφẍb − cφÿb).

The state-space model in (3.51) is formulated as the following time-varying
second-order nonlinear system:

Ẋ1 = X2,

Ẋ2 = H +ΦΘ+ bU + δ,
(3.52)

where

b = M−1
dc bdc, Φ = M−1

dc Φdc, Θ = Θdc,

δ = M−1
dc δdc, H = M−1

dc Hdc.

Assumption 12. The external disturbances and modeling errors are bounded
along with their derivatives.
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Assumption 13. The tethered UAV−buoy system is expected to be deployed in
relatively calm weather conditions, thus we can state that the lumped error vector
δ is constant or slowly varying during a finite time interval, that is:

lim
t1<t<t2

δ̇r, δ̇α, δ̇φ ≈ 0.

Let X̄1 = [̄r, ᾱ, φ̄]⊺ be the reference state vector, and e1 = X1 − X̄1 be
the respective state error vector. The UAV’s relative position (outer-loop) is
controlled by a backstepping control law, which includes the thrust components
(radial, elevation, and azimuth) in spherical coordinates, and it is given by [72]:

U = b−1
[
− kPe1 − kIe

I
1 − kDė1 +

¨̄X1 −H −ΦΘ̂
]
,

ėI1 = e1,
(3.53)

where kP , kI , and kD ∈ R3×3
>0 are controller gains that are defined next, and Θ̂

is the estimate of Θ.

Theorem 3. Consider the state-space representation in (3.52) of the
UAV−buoy’s relative position dynamics in (3.50). If Assumption 12 holds true,
the control law in (3.53) generates the thrust vector element in W ′, {ur, uα, uφ},
that can stabilize the outer-loop dynamics of the system and reduce the tracking
error to a small region neighboring the origin in finite time for a set of gains k1,
k2, and γ ∈ R3×3

>0 , such that kP = I3+k1k2+γ, kI = γk1, and kD = k1+k2, with
I3 being the identity matrix. Additionally, if Assumption 13 holds, the tracking
error vanishes to zero in finite time.

Proof. We employ the backstepping control design, which involves two steps. Let
V1 = 1

2
e⊺
1e1 be the first candidate Lyapunov function, and let V̇1 = e⊺

1ė1 be its
time derivative. We proceed to a second step as ė1 does not include an explicit
control input. To stabilize e1, we define a virtual control input as Υ = ˙̄X−k1e1,
followed by a virtual rates error as: e2 = Ẋ1 −Υ.
We then define a second Lyapunov function as:

V2 =
1

2
e⊺
1e1 +

1

2
e⊺
2e2 +

1

2
δ̃⊺γ−1δ̃,

with δ̃ = δ̂ − δ, then we differentiate it to obtain:

V̇2 = e⊺
1ė1 + e⊺

2ė2 + δ̃⊺γ−1 ˙̂δ

= e⊺
1(e2 − k1e1) + e⊺

2(H +ΦΘ̂+ bU + δ − Υ̇) + δ̃⊺γ−1 ˙̂δ.

Finally, the control inputs vector and the update rates of the lumped disturbances
and modeling errors are chosen to satisfy the negative semi-definiteness condition
of V̇2, as:

U = b−1
(
−H − δ̂ −ΦΘ̂+ Υ̇− e1 − k2e2

)
,

˙̂
δ = γe2,

(3.54)
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which results in V̇2 = −e⊺
1k1e1 − e⊺

2k2e2. Via Barbalat’s lemma with Assump-
tion 13, the asymptotic convergence of V2 to zero is guaranteed. Note that if
Assumption 13 is violated by the presence of strong wave disturbances or wind
gusts, stability and finite tracking error are still achieved by increasing the con-
troller gains, such that they overcome the disturbances mismatch effect on V̇2.
Finally, the control law in the PID-like form in (3.53) is obtained by substituting
e2 and Υ̇ in (3.54), then setting eI1 := δ̂(γk1)

−1.

Buoy Surge Velocity Control Law (Outer-Loop)

If the cable is taut, its length becomes constant and ṙ and r̈ can be set to zero.
Substituting l for r in (3.50) yields the UAV’s motion equations in W ′ in spherical
coordinates notation:

mu(−lα̇2 − lc2αφ̇
2) = ur −mugsα − T −mu(cαcφẍb + cαsφÿb + sαz̈b),

mu(l
2α̈ + l2sαcαφ̇

2) = luα −muglcα −mul(−sαcφẍb − sαsφÿb + cαz̈b),

mu(l
2cαφ̈− 2l2sαα̇φ̇) = luφ −mul(−sφẍb + cφÿb),

(3.55)

In order to control the buoy’s surge velocity, ub, it must be explicitly expressed in
(3.55). The buoy’s acceleration in the body frame is described as: ν̇1,b = R⊺

1,bη̈1,b.
When waves with relatively long periods and moderate heights are dominant,
the resulting buoy’s roll and pitch angles are small and cannot be used by the
controller unless a proper measurement technique is available for the UAV. On the
other hand, the USV/buoy heading can be visually estimated with good accuracy
as was demonstrated in [27]. For this reason, we limit the transformation of
R1,b to yaw only, such that ν̇1,b ≈ R⊺

zb
η̈1,b. Hence, ẍb and ÿb in (3.55) can be

transformed into u̇b and v̇b accordingly.
Consider the UAV dynamics in W ′ in the coupled case, while following the

spherical coordinates notation as presented in (3.55). By choosing the state vector
X ′

1 = [ub, α, φ]
⊺, we can rewrite (3.55) in the kinetic form as:

McpẌcp = Hcp +ΦcpΘcp + bcpU
′ + δcp, (3.56)

where the subscript (cp) refers to the coupled dynamics, Ẍcp = Ẍ ′
1, the control

vector U ′ = U , the parameter vector Θcp = T , the regressor vector Φcp =
[−1; 0; 0], and bcp = diag(1, l, l). δcp represents the vector of lumped modeling
errors and disturbances, the inertia matrix is expressed as:

Mcp = mu

 cα(cφcψb
+ sφsψb

) 0 0
−lsα(cφcψb

+ sφsψb
) l2 0

−l(sφcψb
− cφsψb

) 0 l2cα

 ,
and the vector Hcp = [Hcp,1;Hcp,2;Hcp,3] represents all of the nonlinear Euler,
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Coriolis, centrifugal, and gravitational forces and moments, with:

Hcp,1 = mu

(
lα̇2 + lc2αφ̇

2 − sαz̈b − gsα + cα(cφsψb
− sφcψb

)v̇b
)
,

Hcp,2 = mul
(
− lsαcαφ̇

2 − cαz̈b − gcα − sα(cφsψb
− sφcψb

)v̇b
)
,

Hcp,3 = mul
(
2lα̇φ̇sα − (sφsψb

+ cφcψb
)v̇b

)
.

The state-space model in (3.56) is formulated as a time-varying second-order
nonlinear system as:

Ẋ ′
1 = X ′

2,

Ẋ ′
2 = H ′ +Φ′Θ′ + b′U ′ + δ′,

(3.57)

where

b′ = M−1
cp bcp, Φ

′ = M−1
cp Φcp, Θ′ = Θcp,

δ′ = M−1
cp δcp, H

′ = M−1
cp Hcp.

The outer-loop velocity controller manipulates the state vector X ′
1, and a control

law for the surge velocity can be designed in a similar fashion as described in
Section 3.3.2, with a difference that only one step is required in the backstepping
process for the state ub. Let X̄ ′

1 = [ūb, ᾱ, φ̄]
⊺ be the reference state vector and

e′
1 = X ′

1− X̄ ′
1 be the respective state vector error. The control law is defined as:

U ′ = b′−1
[
− k′

Pe
′
1 − k′

Ie
I′

1 − k′
Dė

′
1 +

¨̄X ′∗
1 −H ′ −Φ′Θ̂′],

ėI
′

1 = e′
1,

(3.58)

where ¨̄X ′∗
1 = [ ˙̄ub, ¨̄α, ¨̄φ]; k′

P = diag(0, 1 + k′1,αk
′
2,α + γ′α, 1 + k′1,φk

′
2,φ + γ′φ), k′

I =
diag(γub , γαk1,α, γφk1,φ), k′

D = k′
1 + k′

2, with k′
1 = diag(0, k′1,α, k

′
1,φ), k′1,α and

k′1,φ ∈ R>0, k′
2 ∈ R3×3

>0 , and γ ′ = diag(γ′ub , γ
′
α, γ

′
φ) ∈ R3×3

>0 , are controller gains
that are defined next; and Θ̂′ is the estimate of Θ′.

Theorem 4. Consider the state-space representation in (3.57) of the
UAV−buoy’s relative position dynamics in (3.55) when the system is coupled.
If Assumption 12 holds true, the control law in (3.58) generates the thrust vector
elements in the spherical reference frame ur, uα, and uφ, that can stabilize the
outer-loop dynamics of the system, and reduce the tracking error to a small re-
gion neighboring the origin in finite time for a set of gains k′

1, k′
2, and γ ′ ∈ R3×3

≥0 ,
defined in a similar way to their counterparts in Theorem 3. Additionally, if As-
sumption 13 holds, the tracking error is reduced to zero in finite time.

Proof. We employ the backstepping control design, which involves one step for the
ub state, and two steps for the α and φ states. To keep a compact representation
of the proof in vector form, the buoy velocity states are tackled in the second
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step. First, the Lyapunov function V ′
1 = 1

2
e2α + 1

2
e2φ is proposed, and let its

derivative be expressed as V̇ ′
1 = eαėα + eφėφ. We proceed to a second step in the

control design process for the states’ rates given that ėα and ėφ do not include
an explicit control input. To stabilize e1, we define a virtual control input as:
Υ′ = ˙̄X ′∗

1 − k′
1e

′
1, where k′

1 = diag(0, k′1,α, k
′
1,φ) and ˙̄X ′∗

1 = [ūb, ˙̄α, ˙̄φ]⊺. Next, we
define the rates error as: e′

2 = Ẋ ′
1 − Υ′. Note that the rates error of the buoy

velocity’s x-component simply reduces to e′2,1 = ub − ūb.
Here, we define a second Lyapunov function as:

V ′
2 =

1

2
e2α +

1

2
e2φ +

1

2
e′⊺
2 e

′
2 +

1

2
δ̃′⊺γ ′−1δ̃′,

with δ̃′ = δ̂′ − δ′, then we differentiate to have:

V̇ ′
2 = eαėα + eφėφ + e′⊺

2 ė
′
2 + δ̃′⊺γ ′−1 ˙̂δ′

= eα(e
′
2,2 − k′1,αeα) + eφ(e

′
2,3 − k′1,φeφ)

+ e′⊺
2 (b

′U ′ +H ′ +Φ′Θ̂′ + δ′ − Υ̇′) + δ̃′⊺γ ′−1 ˙̂δ′.

Finally, the control inputs vector and the update rates of the lumped disturbances
and modeling errors are chosen to satisfy the negative semi-definiteness of V̇ ′

2, as:

U ′ = b′−1
(
−Φ′Θ̂′ −H ′ − δ̂′ + Υ̇′ − e′∗

1 − k2e
′
2

)
,

˙̂
δ′ = γ ′e′

2, e′∗
1 = [0, eα, eφ]

⊺,
(3.59)

where the tuning gain k′
2 ∈ R3×3 is a diagonal matrix, and we get V̇ ′

2 = −k′1,αe2α−
k′1,φe

2
φ − e′⊺

2 k
′
2e

′
2.

UAV’s Attitude Controller (Inner-Loop)

Let ϕu,c and θu,c be the desired roll and pitch angles of the UAV, respectively,
which can be obtained from the outputs of the outer-loop controller along with the
UAV’s total thrust command, u1,c. The transformation from thrust components
in spherical coordinates to the UAV’s thrust and tilt angles is performed by
referring to (3.25) and (3.26) in two steps. We let the command thrust vector
in the world frame, W , be UC,c = [ux,c, uy,c, uz,c]

⊺ = Ru,1[0, 0, u1,c]
⊺, and in the

spherical frame, W ′, be US,c = [ur,c, uα,c, uφ,c]
⊺ = RC2SUC,c.

In the first step, given the force commands in the spherical frame generated
from the outer-loop controller, US,c, we calculate UC,c = RS2CUS,c, which expands
to:

ux,c = cαcφur,c − sαcφuα,c − sφuφ,c,

uy,c = cαsφur,c − sαsφuα,c + cφuφ,c,

uz,c = sαur,c + cαuα,c.

(3.60)
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In the second step, we calculate ϕu,c and θu,c given that UC,c = Ru,1[0, 0, u1,c]
⊺,

which expands to:

ux,c = u1,c(sθu,ccψu,c + sϕu,ccθu,csψu,c),

uy,c = u1,c(sθu,csψu,c − sϕu,ccθu,ccψu,c),

uz,c = u1,c(cϕu,ccθu,c).

(3.61)

With mathematical manipulation, we get the following relationships:

u1,c =
√
u2x,c + u2y,c + u2z,c,

ϕu,c = arctan(ux,csψu − uy,ccψu)/uz,c,

θu,c = arcsin(ux,ccψu + uy,csψu)/u1,c.

(3.62)

Let ϕ′
u,c = ϕu,m tanh

(
ϕu,c/ϕu,m

)
and θ′u,c = θu,m tanh

(
θu,c/θu,m

)
be smooth and

bounded versions of ϕu,c and θu,c, where ϕu,m and θu,m ∈ (0, π
2
) are the absolute

upper limits of the UAV’s roll and pitch angles, respectively. The UAV’s yaw
dynamics can be be controlled independently of the buoy’s manipulation.

Consider the UAV’s rotational dynamics in (3.27) with state vectors X ′′
1 =

[ϕu, θu, ψu]
⊺ and X ′′

2 = [ϕ̇u, θ̇u, ψ̇u]
⊺, and control input vector U ′′ = [u2, u3, u4]

⊺,
subject to unknown external disturbances like wind gusts. The equations of
motion in the kinetic form is expressed as:

MurẌur = Hur +ΦurΘur + burU
′′ + δur, (3.63)

where the subscript (ur) refers to the UAV’s rotational dynamics, Ẍur = Ẍ ′′
1 ,

the inertia matrix Mur = M2,u, the parameter vector Θur = T , the regres-
sor vector Φur = (rGH,u) × (R⊺

1,uRS2C[−1; 0; 0]), and bur = diag(1, 1, 1). δur
represents the vector of lumped modeling errors and disturbances, and Hur =
−C2,uη̇2,u−D2,u

˜̇η2,u represents all the nonlinear Coriolis, centrifugal, and damp-
ing moments. The state-space model in (3.63) is formulated as the following
time-varying second-order nonlinear system:

Ẋ ′′
1 = X ′′

2 ,

Ẋ ′′
2 = H ′′ +Φ′′Θ′′ + b′′U ′′ + δ′′,

(3.64)

where

b′′ = M−1
ur bur, Φ

′′ = M−1
ur Φur, Θ′′ = Θur,

δ′′ = M−1
ur δur, H

′′ = M−1
ur Hur.

Let X̄ ′′
1 = [ϕ̄u, θ̄u, ψ̄u]

⊺ be the reference state vector, and e′′
1 = X1 − X̄ ′′

1 be
the respective state error vector. The proposed control law that stabilizes the
UAV’s rotational dynamics is defined as:

U ′′ = b′′−1
[
− k′′

Pe
′′
1 − k′′

Ie
′′I
1 − k′′

Dė
′′
1 +

¨̄X ′′
1 −H ′′ −Φ′′Θ̂′′],

ė′′I
1 = e′′

1,
(3.65)
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Figure 3.5: Detailed control map of the DSVCS for the tethered UAV−buoy
system showing the two outer-loop (position/velocity) controllers and the inner-
loop (attitude) controller.

where k′′
P , k′′

I , and k′′
D ∈ R3×3

>0 are controller gains, and Θ̂′′ is the estimate of
Θ′′. Equivalent outcomes of Theorem 3 are applicable for the UAV’s inner-loop
controller, and can be proved by replicating the procedure of Theorem 3’s proof,
which is omitted for brevity.

3.3.3 Parameter Estimation

If the taut-cable condition in (3.30) holds, the following realization of the cable
tension is given:

T =

{(
(mb + a11)u̇b +D′

b,11ub
)
/
(
cψb

cαcφ + sψb
cαsφ

)
,

∣∣α− π
2

∣∣ > ϵα(
muẇu +mug(cϕucθu)− u1

)
/
(
cψucαcφ + sψucαsφ

)
,

∣∣α− π
2

∣∣ ≤ ϵα,
(3.66)

where ϵα ∈ R≥0 is a constant that prevents singularity in a small region near
α = π

2
. The cable tension expression in (3.66) can be determined from the sum of

the first and second rows of the buoy dynamics in (3.21), which shows a direct link
with ub for the first case. The singularity near the vertical cable configuration
(α = π/2) is handled by the UAV dynamics in (3.27) to compute the actual cable
tension, T , as in the second case of (3.66). To get an estimate T̂ of T , as required
by the control laws of the DSVCS, (3.66) should be used. Here, we note that
even if T̂ is inaccurate, the controller is able to compensate for the tension effect
based on its integral term action.

3.4 Simulations

This section presents numerical simulations for validating the 3D tethered
UAV−buoy robotic system model, and for evaluating the performance of the
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Table 3.1: Three-dimensional tethered UAV−buoy system model parameters

Par. Value Unit Par. Value Unit
lb 0.8 m mu 5.0 kg
hb 0.25 m Ju diag(0.16, 0.16, 0.22) kgm2

mb 12.5 kg ϕu,m π/4 rad
Jb diag(0.07, 0.21, 0.21) kgm2 θu,m π/4 rad
a1 diag(0.625, 19.6, 12.5) kg l 7 m
a2 diag(0.065, 0.068, 0.105) kg Cu [0.2, 0.2, 0.2] -
b1 diag(0, 0, 27.5) Ns/m Au

cs [0.08, 0.08, 0.1] m2

b2 diag(0, 0, 0) Ns/m ρw 1000 kg/m3

g 9.81 m/s2 ρa 1.22 kg/m3

rGH,b [0.4; 0; 0] m rGH,u [0; 0; 0] m

proposed control system in allowing the UAV to manipulate the buoy in the hori-
zontal plane as well as the tether’s elevation and azimuth angles. We validate the
system in realistic environmental and operating conditions including wind, waves,
and water current. To increase the model’s fidelity, the UAV model includes the
motor and propeller dynamics, and the controller uses non-exact feedback signals
(e.g. noise and bias), which simulate measured outputs based on state-of-the-art
navigation sensors [31].

3.4.1 Simulation Settings

The validation of the proposed system is carried in the MATLAB Simulink ®

simulation environment. The system includes a medium-sized quadrotor UAV
tethered to a small buoy having a boat-like shape to enable self-alignment along
the pulling direction. The parameters of the system are included in Table 3.1.
The UAV’s thrust-to-weight ratio is considered about 2.5, which gives a maximum
thrust of about 120N. The motor’s model is considered a low-pass filter of the
first-order with a time constant τm = 0.05 s. The buoy’s immersed volume, wetted
area, and skin friction coefficients are calculated as per [31]. Additionally, the
added mass and damping are calculated based on the strip theory for surface
vessels at low oscillating frequencies with their values presented in Table 3.1 [67].

We note that a Cartesian-based PID controller was tested in [31] to check
whether it can control the tethered system, however, it resulted in unsatisfactory
performance relative to instability. Hence, in this work, only the DSVCS is im-
plemented and validated. The controller gains are set to kP = diag(45, 9.6, 9.6),
kI = diag(9, 5.6, 5.6), kD = diag(19.5, 1.6, 1.6), k′

P = diag(25, 9.6, 9.6),
k′
I = diag(12, 5.6, 5.6), k′

D = diag(0, 1.6, 1.6), k′′
P = diag(10, 10, 30), k′′

I =
diag(0.2, 0.2, 0.6), k′′

D = diag(5, 5, 15).
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The controller is fed with conditioned virtual measurements of the required
feedback signals. We assume that the UAV is equipped with a Global Position-
ing System / Inertial Navigation System (GPS/INS) system and a stereo camera,
which enable measuring the UAV’s pose and its position in the spherical frame.
Before being used by the controller in simulation, we apply sensor characteris-
tics (bias, linearity, resolution, and accuracy, noise), on the actual signals that
correspond to typical state-of-the-art sensing technologies. For an entity (•), we
denote the mean absolute value of its estimation error by mav(•̃), and we set
mav(ϕ̃u) = mav(θ̃u) = mav(ψ̃u) = 0.5°, mav(x̃u) = mav(ỹu) = mav(z̃u) = 0.02m,
mav(ψ̃b) = 5°, mav(α̃) = mav(φ̃) = 0.16°, and mav(r̃) = 0.02m. Subsequently,
we use (3.9) and (3.10) to obtain the buoy’s translational states.

3.4.2 Simulation Scenarios

The designed controller’s performance and the fidelity of the derived system
model are validated with different simulation scenarios. We first simulate two
cases that include constant water current, wind gust, and moderate waves. To
further validate the system in additional conditions, we offer extended simulation
scenarios (in Section 3.4.4) by varying the water current direction, the wave com-
ponents in the water environment, and other system parameters such as buoy
size and cable length.

The first two cases, C1 and C2, both include a wind gust of Uwd =
[−5, 0, 0]m s−1 and a water current component with Ul = 1m s−1 and ψl = π rad.
The two scenarios include:

• C1: water current and wind gust only.

• C2: water current, wind gust, and moderate waves with one wave compo-
nents (N = 1), such that: A1 = 0.75m, ψ1,w = 0, T1 = 5.7 s, and σ1 = π.

In both cases, the UAV is initially hovering around the buoy, it then positions
itself in a location that is suitable to start pulling the buoy at mean elevation, z̄u,
of 5.0m, which corresponds to a mean elevation angle of ᾱ0 = 45◦. In the first
stage, the UAV pulls the buoy until it reaches a surge velocity of ūb = 5m s−1. In
the second stage, the UAV gradually steers the buoy by commanding an azimuth
angle φ̄ that increases from 0 to 360°, thus completing a full rotation. The
resulting profile is shown in Fig. 3.7.

The buoy has an initial velocity that matches its surrounding water as cal-
culated via (3.12) and (3.14); by referring to Assumption 3.39, we assume that
buoy stays tangent to the water surface, such that:

ϕb = ϕw,

θb = θw,
(3.67)

while its yaw dynamics are governed by (3.17).
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Figure 3.6: States and control inputs of the directional surge velocity control
system (DSVCS) for simulation scenarios C1 (a) and C2 (b).

3.4.3 Simulation Results and Discussion

The simulation results for C1 and C2 are shown in Fig. 3.6a (left) and Fig. 3.6b
(right), respectively. Stable and accurate performance is noticed in both cases,
where the UAV is able to successfully drive the buoy at the desired velocity (ub),
while maintaining good tracking of the reference elevation (α) and azimuth (φ)
angles. As seen in the (r) subplot, the UAV first positions itself near the pulling
location, it then enters the pulling state by making the cable taut during the
entire duration of the buoy’s manipulation between [12, 100] s. Since there are
no ambient waves in C1, there is no apparent fluctuation in the buoy’s vertical
position (zb), immersed volume (⋎b), and elevation angle (α); contrarily, the
waves in C2 induce fluctuations in these three states. It is noted that the UAV
keeps a level flight in both cases, as seen in the (zu) subplot in Fig. 3.6a-b.
The UAV is commanded to remain oriented forward during the entire maneuver,
which induces large pitch angles (θu) to counteract disturbances, the roll angle
(ϕu) remains near-constant, and the yaw angle (ψu) smoothly follows the azimuth
angle of the cable (φ) in order to complete a full rotation during the course of the
motion trajectory. The full rotation in azimuth (φ) causes the buoy to encounter
the waves in different directions, where the frequency of encounter is low during
the initial phase ([20, 40] s) due to following seas, and when the buoy turns around
([50, 60] s) the encounter frequency becomes high due to head seas. The cable
tension, seen in the (T ) subplot, increases with velocity when the frequency of
encounter with waves is high, and when the rate of change of the azimuth angle
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is high. The proposed controller can compensate for the estimation error in T
through its integral term and quick performance. Finally, we note that the thrust
and torques inputs (u(1,2,3,4)c) are bounded and stable.

Even though the DSVCS achieves good tracking of the desired surge and
azimuth states, it does not necessarily translate into identical trajectories in the
world frame. This is demonstrated in Fig. 3.7, which shows the planar trajectory
of the buoy for cases C1 and C2. It is seen that the two trajectories do not
coincide, even though the results of Fig. 3.6 showed good tracking with no steady-
state errors. It is it also noticed that the final direction of the trajectory is not
exactly at zero as seen in the ‘xy’ subplot of Fig. 3.7, even though the final
azimuth angle is zero. This can be understood by observing the non-zero sway
velocity, vb, in the ‘Vel.’ subplot of Fig. 3.7. We also notice that the sway velocity
of the buoy, vb, can be as large as its surge velocity, ub, which results in a larger
absolute surface velocity of the buoy, V . Finally, we note that the buoy is prone
to having a nonzero side-slip angle, βb, as seen in Fig. 3.7, given that it does
not have any constraint on its planar dynamics. At the start of the simulation
(< 17s) when the cable is slack, the side-slip angle points to a backward motion
(βb = 180°) since ub ≈ −1m s−1 and vb ≈ 0m s−1 due to the initial water current
velocity.

As mentioned in Chapter 3.3, the above demonstration motivates the need for
a higher level path planner in the event that the buoy is required to track trajecto-
ries in the inertial frame. That said, the obtained simulation results demonstrate
the effectiveness of the DSVCS in controlling the buoy’s surge velocity, ub, and
the direction of the pulling force by manipulating the azimuth (φ) and elevation
(α) angles. This provides the system with the ability to move forward and steer
as a locomotive, which also lays the foundation for designing a path planner in
the inertial frame.

3.4.4 Extended Simulations

To further validate the system performance in different conditions, we offer ad-
ditional simulation scenarios by varying the water current direction, the wave
components in the water environment, and well as changing the system param-
eters (buoy size and tether length). The physical system index is referred to
as Si where i = {1, 2}, and the environment index is referred to as Ej where
j = {1, ..., 7}. Hence, we introduce the following system variations:

(a) System size variants (buoy and cable):

S1. Same system presented in Section 3.4.1, except for the cable length:
l = 10m (S1), and mb = 16 kg.

S2. Same system as (S1) except for cable length: l = 15m (S2).
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(b) Wave environment variants:

E1. No waves, no current.

E2. No waves, with water current Uc = 1m s−1, ψc = −π/2 rad.

E3. Same current as E2, with two wave components (N = 2): A =
[0.135, 0.305]m, T = [3, 4] s, ψw = [0, 0] rad, and σ = [0, 0] rad.

E4. No waves, with water current Uc = 1m s−1, ψc = π/2 rad.

E5. Same current as E4, with two wave components (N = 2): A =
[0.305, 0.6]m, T = [4, 5] s, ψw = [0, 0] rad, and σ = [0, 0] rad.

E6. No waves, with water current Uc = 1m s−1, ψc = 0 rad.

E7. Same current as E6, with a single high-amplitude wave components
(N = 1): A = [1.65]m, T = [8] s, ψw = [0] rad, and σ = [0] rad.

The UAV is commanded to drive the buoy at ūb = 3m s−1 while making three
turns by going from φ̄ = 0 to φ̄ = 6π with a constant slope.

Fig. 3.8 shows the resulting trajectories of the simulation in environments
E1 through E7, where system S1 is adopted with E1 through E5, and S2 is
adopted with E6 and E7. From E1, we notice that without wave and current
disturbances, the system can follow a circular trajectory by simply commanding
a constant velocity and azimuth angle with a constant ramp. If water current
exists, the buoy drifts towards the direction of the current as seen in E2, E4, and
E6. When the system is deployed in wavy seas, additional drift may occur due
to the waves’ Stokes-drift effect, which increases with wave height, as seen by
comparing the additional drift between E3 (lowest deviation with respect to the
current-only case), E5, and E7 (highest deviation with respect to the current-only
case), whereas the oscillating component of the waves’ velocity tends to cancel
out near the end. Finally, we see that the system is able to deal with relatively
large waves and reject their respective disturbances, as observed in E7.

In all cases, tracking of the controlled states is achieved with small steady-state
errors, which is practical for applications that do not require precision motion
control. One room for improvement can be achieving better trajectory tracking
in the world frame, which is sub-optimal due to the fact that the DSVCS has
no direct effect on the buoy’s sway velocity, and thus it cannot trace repetitive
trajectories in the world frame. Again, if tracking trajectories in the world frame
is desired for certain applications, that can be achieved by employing a high level
path planner by means of commanding appropriate combinations of ub and φ,
which is not within the scope of this current work.
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Figure 3.8: Trajectory and main states tracking for variants of the tethered
UAV−buoy system in different environments: (a) E1, (b) E2 and E3, (c) E4 and
E5, (d) E6 and E7. In all case, l = 10m except in E6 and E7 where l = 15m.

3.5 Conclusion

This chapter extended the 2D marine locomotive UAV problem, realized as a
tethered quadrotor UAV−buoy system, to the 3D space to enable the UAV to
steer the buoy in the horizontal plane, and not being restricted to forward and
backward motion only [93]. The buoy and the UAV were considered as 6-DOF
rigid bodies, and their dynamics were derived with a proper definition of all ef-
fective forces and moments on the system. A detailed derivation of the coupled
system dynamics was included to serve as a reference for the rigorous mathemat-
ical formulation and modeling of the heterogeneous multi-physics robotic system
under consideration, which features high order, nonlinear, and coupled dynam-
ics. Finally, the control problem for applying a tensile force via the tether with
specific magnitude and direction was solved through the proposed DSVCS, which
was realized by controlling the buoy’s surge velocity and the tether’s orientation.

Future work naturally flows into designing a path planner to control the buoy’s
location in the world frame, and studying the effects of the tether and the buoy’s
tilt dynamics on the system.
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Chapter 4

A PRACTICAL GUIDELINE FOR
DESIGNING AND TUNING

ADAPTIVE BACKSTEPPING
CONTROLLERS FOR A CLASS OF
SECOND-ORDER SYSTEMS BASED

ON PID SIMILARITY

4.1 INTRODUCTION

In this chapter, we motivate and introduce the backstepping-based Integrated
Control System (ICS) used in the control of the tethered UAV−buoy system,
and we show the advantages of employing such a controller.

4.1.1 Backstepping-PID Similarity

A similarity in the formulation of backstepping-based control laws with the PID
control law has been established. For instance, backstepping control with integral
action was used to design a robust adaptive PID controller for linear systems
in [56]. The previous formulation was later modified in [94] by incorporating the
integral action within the first backstepping error, and it was shown that the
regulation poles can be placed at any stable location. Later, various forms of
the backstepping method with integral action were applied in [95] to a class of
nonlinear second-order systems, where the resulting control law was formulated as
a feedback PID plus feedforward terms, and the characteristics of each form were
compared, albeit without making the connection of the designs to the resultant
closed-loop pole locations and overall system performance. Later works on this
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subject were mostly application-based. For instance, a backstepping-based PID
controller was designed in [96] for a quadrotor UAV system, where the form
proposed by [94] was generalized to include nonlinear terms. In addition, the
developed backstepping analysis tools were employed to design a robust PID
controller with guaranteed performance in [97], yet it was only applied to the
linearized version of a quadrotor’s inner-loop controller. Last but not least, an
explicit PID-based tuning guideline of backstepping controllers was proposed for
a class of second order nonlinear systems in [72].

4.1.2 Motivation

The motivation of this work lies in the need for control systems that are easy to
design and deploy based on PID control laws, yet advanced enough to deal with
uncertainties and disturbances. Even though some prior works have established
a link between the backstepping design method and PID control, the similarity
remains underappreciated and has not been fully exploited, as evidenced by the
fact that the general implicit form of backstepping control design still dominates
newly published works in the related literature. On the other hand, a select few
robotic applications benefited from the PID representation of the backstepping
method to achieve easier controller tuning with guaranteed closed-loop system
stability [31,54,72,85,96,97].

4.1.3 Contribution

This work formulates the similarity between the gains of PID and adaptive back-
stepping controllers in a form that may enable easier and wider adoption of
this nonlinear control method. Here, we emphasize that the scope of this work
focuses on establishing an original formulation of the link between existing con-
trol techniques, not on providing a new or superior control system design. We
present a compact formulation of the adaptive backstepping control law, which
consists of two components: PID feedback and feedforward model compensation,
for a class of second-order nonlinear systems, which cover a wide spectrum of
real-life practical systems [65]. The practicality of this work lies in the unique
link that it establishes between backstepping controller gains and the PID gains,
whereby tuning the adaptive backstepping gains can be achieved by standard
PID tuning rules (e.g., Ziegler−Nichols). We also make available on GitHub the
relevant scripts that are needed to compute the gains and plot the various re-
lationships between the backstepping and PID gains. Furthermore, the hereby
presented formulation provides insight into the contents of the virtual backstep-
ping commands, which allows for a more prudent employment of filters, thus
reducing excessive time-delays. Moreover, we note that a manual tuning process
may prove useful and superior since it is based on intuitive understanding of the
control law, whereas optimization-based techniques typically require complex or
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non-intuitive efforts, as well as knowledge of exact system parameters, which is
not always feasible [62].

This work offers a unique representation of the similarity between the PID
gains structure and the adaptive backstepping gains of a class of nonlinear second-
order systems subject to uncertainties, and features multiple advantages. First,
we represent the similarity to the PID gains with the minimal number of param-
eters (three) as compared to the representations in [94, 96] that use four param-
eters. Second, we use a minimum number of dependencies between the adaptive
backstepping gains and the PID gains (one multiplication and one summation)
as compared to [56,94], which use up to two multiplications and two summations.
Third, this work offers a unique and explicit analysis of the implications on this
similarity in terms of gains selection and stability, powered by clear and easy-to-
follow guidelines in the form of tables, charts, and algorithm. Fourth, we provide
a survey on the formulations of the backstepping-PID structure similarity, which
makes it easier to choose the suitable method and directly apply it to the systems
at hand. These differences are substantiated in a comparative table that is later
provided to compare this work to similar works in the literature (Table 4.1).

4.1.4 Structure

This chapter starts with defining the problem under consideration in Section 4.2.
A baseline controller is presented in Section 4.3, followed by its reformulation
into the proposed form in Section 4.4, which also provides the tuning guidelines
after establishing the similarity link to PID control. The proposed methodology
is validated in Section 4.5 on a quadrotor UAV system in numerical simulations
as well as in experimentation. Finally, the work is summarized in Section 4.6 and
suggestions on future work are provided.

4.2 Problem Formulation

In this section, we introduce the general form of second-order systems, which
are amongst the most popular and practical system models, and that may ben-
efit from the nonlinear control law in the PID-feedback plus feedforward-model-
compensation form presented in this work.

4.2.1 Preliminaries

Notations that facilitate the formulations developed in this paper are first pro-
vided here. The set of positive-real numbers {x ∈ R | x > 0}, and the set of
non-negative real numbers {x ∈ R | x ≥ 0}, are respectively denoted by R>0

and R≥0. The mean absolute value of a signal (·) is denoted by MAV (·), and its
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L2 norm is denoted by ∥·∥. Also, for an angle (•), the cosine, sine, and tangent
functions are denoted by c•, s•, and t•, respectively.

In addition, for an estimate x̂ of x ∈ [xmin, xmax] and a signal (·), let the
projection function, Projx(·), be defined as [74]:

Projx̂(·) =


0 if x̂ = xmin and · < 0

0 if x̂ = xmax and · > 0

· otherwise.
(4.1)

4.2.2 Problem Formulation

Let X1 = [x1, ..., xn]
⊺ and X2 = [ẋ1, ..., ẋn]

⊺ represent the state vectors of a
second-order nonlinear time-varying system, and let U = [u1, ..., un]

⊺ ∈ Rn rep-
resent the control input vector, where n ∈ N+. The system is represented as:

Ẋ1 = X2,

Ẋ2 = g(X̄, t)U + ϕ(X̄)θ(t) + f(X̄) +∆(t),
(4.2)

where X̄ = {X1,X2}; g ∈ Rn×n is the input-multiplied unknown nonlinear
functions; θ ∈ Rl represents the vector of unknown linear system parameters with
l ∈ N+; ϕ ∈ Rn×l is the known nonlinear regressors matrix; f ∈ Rn is the vector
of known nonlinear functions; and vector ∆ = [∆1, ...,∆n]

⊺ ∈ Rn represents
the external disturbances and unmodeled system nonlinearities. The controller
objective is described by following the reference command X1d(t) = [x1d, ..., xnd]

⊺.

Assumption 14. It is assumed that X2 is bounded, which implies that the func-
tions g, ϕ, and f are bounded along with their first- and second-order derivatives
with respect to X2.

Assumption 15. X1d(t) is smooth and bounded up to the second order.

Assumption 16. The unmodeled nonlinearities and external disturbances term
in ∆, and the parametric uncertainties in θ and g are restricted to bounded sets
such that:

∥∆∥ ≤ ∆̄,

gij,min ≤ gij ≤ gij,max, i, j = 1, ..., n,

θi,min ≤ θi ≤ θi,max, i = 1, ..., l,

(4.3)

where ∆̄ is a positive constant, and θi and gij represent the elements of θ and g,
respectively.

With Assumptions 14, 15 and 16, we ensure that the states and signals in the
considered system are bounded.
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Remark 7. As a case-study for validating the hereby proposed algorithm, we con-
sider multirotor UAVs, which can be modelled (after proper reduction) as second-
order time-varying systems that fit the model presented in (4.2). This work offers
a contribution for this type of systems, without claiming generalization to other
system types.

4.3 Adaptive Backstepping Control System De-
sign

In this chapter, we design an adaptive backstepping control law for the second-
order nonlinear time-varying system defined in Section 4.2.2 in two steps with
virtual inputs. The control law incorporates a model-based parameter estima-
tion scheme and a robust feedback component to improve its transient response,
steady-state accuracy, and robustness. This section serves as an overview of the
adaptive backstepping control system design process leading to the similarity
with PID control laws.

4.3.1 Parameter Estimation Law

The achievement of desirable tracking performance depends on the knowledge of
the system parameters, which cannot be guaranteed using the nominal values of
θ(t) and g(X̄, t). Hence, the control law should employ their estimates, θ̂(t) and
ĝ(t), instead of their unknown (true) values. The parameter estimation algorithm
relies on a recursive least squares (RLS) adaptation law with projection mapping
to provide a model-based estimation of the system’s unknown parameters, which
tend to be faster and more accurate than error-based estimates. Since this is
outside the scope of this paper, readers are referred to [98, 99] for details on
the RLS estimator design. The parameter estimation vector includes θ and the
linear combination of unknown parameters in the term g(X̄, t)U . Note that ĝ is
conditioned to remain invertible.

4.3.2 Controller Design

In this section, and for the sake of notation simplicity and compactness, we do
not explicitly express the in-brackets vector dependencies, that we use g instead
of g(x, t). Hence, the error dynamics vector is given by:

e1 = X1 −X1d. (4.4)

Two steps are required in the backstepping control design process for second-
order systems. In the first step, we propose a candidate Lyapunov function, V1,
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based on the error dynamics, and its derivative V̇1, to be:

V1 =
1

2
e⊺
1e1,

V̇1 = e⊺
1ė1 = e⊺

1(Ẋ1 − Ẋ1d),
(4.5)

where e1 can be stabilized by employing a virtual control input, α ∈ Rn, that
substitutes Ẋ1, as follows:

α = Ẋ1d − k1e1, (4.6)

where k1 ∈ Rn×n
>0 is a diagonal matrix. In step two of the backstepping controller

design, we define the second error term relating the state vector derivative to the
virtual input as follows:

e2 = X2 −α. (4.7)

The error dynamics are obtained by differentiating (4.7) and substituting Ẋ2

from (4.2):
ė2 = f + ϕθ + gU +∆− α̇, (4.8)

which explicitly includes the control input vector U . However, due to the variable
system parameters and the presence of unknown external disturbances, (4.8) is
expressed in the following form:

ė2 = f + ϕθ̂ + ĝU + d− α̇, (4.9)

where d = [d1, ..., dn]
⊺ lumps the errors in modeling and estimation with the

external disturbances. The term d is split into two components: one for low-
frequency signals, dc, and the other for high-frequency signals, d̃∗ [98]:

d := dc + d̃∗ = −g̃U − ϕθ̃ +∆, (4.10)

where g̃ = ĝ − g and θ̃ = θ̂ − θ.

Remark 8. The system disturbances and uncertainties are bounded as per As-
sumption 16, such that ∥d∥ ≤ d̄, with d̄ ∈ R≥0. Additionally, vector ∆ includes
both disturbances and unmodeled nonlinearities, thus it can be split as per (4.10)
into low-frequency and high-frequency terms: the low-frequency terms can be com-
pensated for via an integrator, or they can be included in a parameter estimation
scheme if they were structured; and high-frequency terms are handled by a robust
control component [74] as shown next.

Finally, the proposed nominal control law possesses the form:

U = ĝ−1(α̇− ϕθ̂ − f − e1 − k2e2 + ur − d̂c),

ur = − 1

4ϵ
h2e2,

˙̂
dc = Projd̂c

(γe2),
(4.11)
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where ϵ ∈ R>0 is a design parameter that influences the error attenuation level,
steady-state accuracy, and transient response of the tracking error; and h is any
smooth function that guaranties the following [61]:

h ≥∥ϕ∥∥θmax − θmin∥+∥U∥∥gmax − gmin∥+
∥∥∆̄∥∥ , (4.12)

Projd̂c
(·) = [Projd̂c1(·1), ...,Projd̂cn(·n)]

⊺, and γ ∈ Rn×n
≥0 is a diagonal matrix that

adjusts the adaptation rate. Note that Projd̂(·) limits d̂c to the set Ωdc ≜ {d̂c :

−d̄ ≤ d̂c ≤ d̄}.

Assumption 17. It is safe to assume that ḋc = 0 given that dc includes low-
frequency signals only.

Theorem 5. Consider the system model described in (4.2) that is subject to
unknown disturbances, and whose fidelity is affected by unmodeled nonlinearities
and parametric uncertainties. Also, let Assumptions 14, 15, 16, and 17 hold true.
The stability of this system and the boundedness of its signals are guaranteed by
the control law (4.11), with α defined in (4.6) and e2 defined in (4.7), for some
gains k1 and k2 [72].

Proof. We start by defining the augmented candidate Lyapunov function, V2,
differentiating it once with respect to time, then substituting d from (4.10) and
U from (4.11) into (4.9) to obtain:

V2 =
1

2
e⊺
1e1 +

1

2
e⊺
2e2 +

1

2
d̃⊺
cγ

−1d̃c,

V̇2 = −e⊺
1k1e1 − e⊺

2k2e2 + d̃⊺
cγ

−1 ˙̂dc

+ e⊺
2(dc − d̂c + d̃∗ + ur),

(4.13)

where d̃c = d̂c − dc, and ḋc = 0 per Assumption 17. By substituting ˙̂
dc from

(4.11) in (4.13), we get: V̇2 = −e⊺
1k1e1 − e⊺

2k2e2 + e⊺
2(d̃

∗ + ur). In addition, two
robust performance conditions are to be satisfied by the robust feedback term,
ur, such that [100]:

e⊺
2ur ≤ 0,

e⊺
2(ur − d̃c + d̃∗) ≤ ϵ,

(4.14)

which is achieved by choosing ur as described in (4.11), and robust performance
under the prescribed conditions can be guaranteed [100]. This results in V̇2 be-
ing negative semi-definite, thus stability in Lyapunov’s sense is concluded. It
can also be shown that V2 is lower bounded and that V̇2 is uniformly continu-
ous by Assumptions 14 and 16; therefore, by Barbalat’s lemma, the asymptotic
convergence of V2 to zero is obtained [101].
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4.4 From Backstepping to PID Fom

In this section, we formulate the backstepping control law in a PID feedback plus
feedforward form that has two degrees-of-freedom (2-DOF), then we present a
visualization of the obtained relations with ample discussion and practical tips to
design and tune the controller gains, which justifies the adoption of the proposed
form of the control law. Finally, we relate the backstepping gains to the location
of the closed-loop system poles.

4.4.1 Expressing the Backstepping Control Law in PID
Form

First, we seek to reformulate and simplify the control law while maintaining its
practical results. In practice, a large-enough positive constant, k2,0, can produce
robust performance that is similar to that of the nonlinear robust gain, 1

4ϵ
h2, in

(4.11), such that:

k2,0,ii > nr
1

4ϵ
h2, i = 1, ..., n, (4.15)

where nr > 1 is a constant multiplier. This causes the effect of ur to be similar
to that of the linear term −k2e2. Thus, by choosing the elements of matrix k2

to be greater than some positive constants (k2 ≻Rn×n
≥0

k2,0), robust performance
can be guaranteed within a large-enough and practical operating range [74,102].
With this modification, the control law (4.11) is approximated as U ≈ U ′, where
U ′ approximates the effect of the nonlinear robust term, ur, by the high gain
feedback term, −k2e2, and can be reformulated by substituting (4.4), (4.6), and
(4.7) into (4.11):

U ′ = ĝ−1
[
(Ẍ1d − k1ė1)− ϕθ̂ − f − e1 − k2(Ẋ1 − (Ẋ1d − k1e1))− d̂c

]
= ĝ−1

[
− (k1k2 + In)e1 − (k1 + k2)ė1 − d̂c − ϕθ̂ − f + Ẍ1d

]
,

˙̂
dc = Projd̂c

(
γ
[
Ẋ1 − (Ẋ1d − k1e1)

])
= Projd̂c

(
γ(ė1 + k1e1)

)
,

(4.16)

where ė1 = Ẋ1 − Ẋ1d and In ∈ Rn×n is the identity matrix. Thus, (4.16) is
now expressed as a 2-DOF controller with a feedforward model compensation
component and a feedback PID component, designated as the Integrated Control
System (ICS):

U ′ = ĝ−1
[
− kPe1 − kIe

I
1 − kDė1 − ϕθ̂ − f + Ẍ1d

]
,

ėI
1 = ProjeI1(e1 + k−1

1 ė1),
(4.17)
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where eI
1 =

∫
ėI
1dt and the bounds of the projection function vary accordingly as

per (4.1) by a factor (γk1)
−1, and

kP = k1k2 + In,

kI = γk1,

kD = k1 + k2.

(4.18)

The control law (4.17), with its six terms, can now be seen as a combination
of an error-based PID feedback component with gains kP, kI, and kD that are
included in the first three terms, and a feedforward component based on model
compensation desired accelerations that are included in the last three terms.

When operating in the nominal region, it is safe to assume that saturation of
the integral term does not occur, which permits bypassing the projection function
representation, so that after integrating the term k−1

1 ė1, the control law in (4.17)
and the control gains in (4.18) undergo the following modifications:

ėI
1 = e1,

kP = k1k2 + γ + In.
(4.19)

Let the diagonal elements of an arbitrary single row of matrices kP, kI, kD,
k1, k2, and γ be represented by kP, kI, kD, k1, k2, and γ, respectively. By solving
the following third-order equation, which is derived from the definition of kP in
(4.19) and that of kI and kD in (4.18), for some desired values of kP, kI, and kD,
we can determine the set of equivalent k1, k2, and γ gains as follows:

k31 + (−kD)k21 + (kP − 1)k1 − kI = 0,

k2 := kD − k1,

γ := kI/k1,

(4.20)

where the solution is valid only when k1 and k2 are positive and real. To examine
the behavior of (4.20), we present a sample solution with respect to kP for kD = 5
and kI = 1 in Fig. 4.1(a), and with respect to kD for kP = 5 and kI = 1 in
Fig. 4.1(b). Note that the solutions for k1 (red), k2 (green), and γ (blue) in each
subplot is divided into three subsets, based on their change of direction at the
inflection points, as indicated by their line style (Subset #1-solid, Subset #2-
dashed, and Subset #3-dotted) to simplify the analysis and arrive at practical
recommendations:

1. Subset #1 (solid lines) has a parabola-like shape for k1 and k2 in Fig. 4.1(a),
and a hyperbola-like shape in Fig. 4.1(b), which result in a wide range of
variation for these two gains and thus offers more leverage in tuning them
to meet the system’s stability and performance requirements. On the other
hand, the value and variation of γ are minimal (near zero) as compared to
Subsets #2 and #3.
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Figure 4.1: Coupled backstepping gains, k1, k2, and γ, for specific kP, kD, and kI
values: (a) at constant kD and (b) at constant kP. Three solution subsets exist:
Subset #1 - solid lines, Subset #2 - dashed lines, and Subset #3 - dotted lines.

2. Subset #2 (dashed lines) corresponds to the smallest domain of the solu-
tion space and features large variation of all three parameters (k1, k2, and
γ). The strong dependencies amongst the parameters, combined with their
large variations in this relatively small subset, make it difficult and imprac-
tical to interpret the relationship between the backstepping and PID gains
within Subset #2. In fact, any formulated relationship is of a limited merit
since it encompasses a very small domain of coupled kP and kD values.

3. Subset #3 (dotted lines) is characterized by large γ values and a narrow
tuning range (nearly constant) for both k1 (near zero) and k2 as compared
to Subsets #1 and #2, which limits the ability to meet the stability and
performance requirements of the system.

Based on the above analysis of Fig. 4.1, it is prudent to only consider the first
subset of the solution of (4.20) given its low dependency on γ, high dependency
on k1 and k2, and the relatively larger tuning range to achieve the desired system
stability and performance requirements. The recommendation to adopt Subset
#1 is further justified in Section 4.4.4.

Remark 9. The differentiated term ė1 typically requires filtration in order to
reduce the signal’s noise level. However, ė1 is implicitly embedded within α̇ and
e2 of the control law (4.11), whereas the PID-like form of the control law in (4.17)
explicitly shows it, which makes it easier to design an appropriate filter with
minimal time delay and information loss that may arise form excessive filtration
of α̇ and e2 [103].

Remark 10. By inspecting (4.18), (4.19), and (4.20), we see that k1 and k2 can
be used interchangeably. This is achieved by solving for k2 first instead of k1 as
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was done in (4.20):

k32 + (−kD)k22 + (kP − 1)k2 − kI = 0,

k1 := kD − k2,

γ := kI/(kD − k1).

(4.21)

Note that the results in (4.21) are identical to those in (4.20), with the only
exception being that k1 and k2 values have been switched. This can be proven by
substituting the interchanged values of k1 and k2 into the definition kD in (4.18)
and the definition kP in (4.19), where the same exact control law in (4.17) can
be obtained by setting:

kI := γ(kD − k1). (4.22)

Remark 11. As seen in Fig. 4.1, k1 is larger than k2 in the gains solution
subset of interest (#1), in which k2 can have very small values. However, based
on Remark 10, k2 can be the larger gain in the {k1, k2} solution set, thus the
condition for large enough k2 gain to overtake the effect of the robust gain ( 1

4ϵ
h2)

remains valid.

Remark 12. The gain k2’s upper bound is governed with respect to the system’s
sensitivity to noise, and its robust effect is bounded by the maximum control input,
thus, the condition in (4.15) has a practical limitation.

4.4.2 Comparison to Other Formulations

To help differentiate this work and to validate the proposed PID-like adaptive
backstepping control law, Table 4.1 is provided to summarize previous works that
are found in the literature dealing with the backstepping-PID gains similarity. We
note that in order to get a clear comparison and arrive at a better interpretation
of the results, the notations of the original formulations were mathematically
manipulated to show that the various efforts lead to similar relationships, albeit
with minor differences. Note that in the PID gains column, the gains ki, i =
{1, 2, 3} refer to the Lyapunov function gains, the gains ce and ci relate to the
integral action within the control law, and the other parameters relate to the
system model.

In this work, the similarity formulation to the PID gains is simpler in the
sense that it is established based on three parameters only as shown in Table 4.1,
whereas the integral backstepping representations in [96] use four parameters
(k1,k2, ce, and ci) and two additional model-dependent constants (a0 and a1) in
[94], respectively. Furthermore, the number of dependencies between the adaptive
backstepping gains and the PID gains in this work is also minimal, where we use
only one multiplication and one summation as compared to [56, 94], which use
up to two multiplications and two summations. Therefore, an advantage of the
formulation presented in this work over other representations lies in the fact that
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Table 4.1: Backstepping-PID relationships in the literature

Reference Control method System type Control law PID gains

[56]
Backstepping

with
integral action

Minimal phase
linear system:

G(s) =
Y (s)
U(s)

=
B(s)
A(s)

=
s+b0

s2+a1s+a0

U(s) =
kDs+kI/s+kP

B(s) E(s)

+A(s)
B(s)Yd(s)

kP = k1k2 + k3(k1 + k2)

+2− a0,
kI = k1k2k3 + k1 + k3,
kD = k1 + k2 + k3 − a1.

[94] Backstepping
Second-order

system:
ẍ = b0u(t) − a1ẋ − a0x

u = 1
b0

(
− kPe

−kI
∫
edt− kDė

+a0xd + a1ẋd + ẍd

)
kP = k1k2 +

ci
ce
(k1 + k2)

+c2e − a0,
kI = k1k2

ci
ce

+ ceci,
kD = k1 + k2 +

ci
ce

− a1.

[95] Integral
Backstepping

Nonlinear mechanical
systems of degree 2:

ẋ1 = f1(x1) + g1(x1)x2
ẋ2 = f2(x̄) + g2(x̄)u + b

u = g−1
2

(
− kPe− kI

∫
edt

− kD[x2 − g−1
1 (ẋ1d − f1)]

+αx1
1 [f1 + g1x2] + αt

1 − f2
)
,

α1 = g−1
1 (−ci

∫
edt− k1e

−f1 + ẋ1d)

kP = k2g
−1
1 k1 + g−1

1 ci

+g⊺1 ,
kI = k2g

−1
1 ci,

kD = k2.

[96] Integral
Backstepping

Quadrotor rotational
subsystem:
ẋ1 = x2
ẋ2 = f + gu

u = g−1(−kPe− kI
∫
edt

−kDė+ ÿd − f)

kP = k1k2 +
ci
ce
(k1 + k2)

+c2e,
kI = k1k2

ci
ce

+ ceci,
kD = k1 + k2 +

ci
ce

.

[97] Nonlinear
Backstepping

Quadrotor rotational
subsystem:
ẋ1 = x2
ẋ2 = f + gu

u = g−1(−kPe− kI
∫
edt

−kDė+ ẍ1d)

kP = (k1k2 + k3)/mg,
kI = (k1k3)/mg,
kD = (mk1 + k2)/mg.

This work Integral
Backstepping

A class of nonlinear
systems of degree 2:

ẋ1 = x2
ẋ2 = f(x̄) + ϕ(x̄)θ(t)

+g(x̄, t)u + ∆(t)

u = g−1(−kPe− kI
∫
edt

−kDė+ ẍ1d − f − ϕθ̂)

kP = k1k2 + γ + 1,
kI = γk1,
kD = k1 + k2.

it provides a simpler method to design and tune backstepping controllers based
on PID laws and tuning rules, which makes it more practical and easier to adopt
in real-life applications.

4.4.3 Implementation of the Backstepping-PID Gains Re-
lationship

An implementation of (4.20) for four preset values of kI (kI=0,1,2,4) is shown in
Fig. 4.2, where Fig. 4.2(a) on the left shows the backstepping gains, k1 and k2, as
a function of kP with a constant kD condition, and Fig. 4.2(b) on the right shows
the gains as a function of kD with a constant kP condition. For every streamline
marking a constant kD or kP, the black asterisks mark the intersections of the
k1 and k2 curves as applicable, which correspond to the maximum kP value in
Fig. 4.2(a) and the minimum kD value in Fig. 4.2(b). Note that γ is not plotted
on the same figure in order to maintain a clear and legible representation of
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Figure 4.2: Coupled backstepping gains, k1 and k2, as a function of kP and kD
at constant kI values (kI=0,1,2,4 corresponding to four rows). The left column in
(a) shows the backstepping gains at constant kD and kI, and the right column in
(b) shows the backstepping gains at constant kP and kI.
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the analysis results, noting that it can be directly calculated from (4.20) and is
perceived as a scaled version of the inverse of k1 for each corresponding plot.

The significance of the above results lies in making the design and tuning
process of the backstepping-based ICS gains easier by allowing the application
of well-established PID tuning rules. Additionally, by excluding the unfeasible
PID gains that result in non-positive or non-real k1 and k2 roots, the tuning
interval is tightened. Furthermore, the formulation provides insight into both
the traditional stability perspective as well as the performance perspective of the
adaptive backstepping control law.

Tuning each one of the gains k1 and k2 has a dual effect on both kP and
kD, as illustrated in Fig. 4.2, yet it does not influence the system performance
directly as typically expected from tuning PID gains, which can make the tuning
process cumbersome and not straightforward. For instance, increasing any of the
backstepping gains k1 and k2 will also result in an increase in both kP and kD
simultaneously, and similarly, tuning γ affects both kP and kI.

Remark 13. To provide a more detailed analysis, we introduce the following
notes to guide the tuning process based on the results obtained in Fig. 4.2:

• For a given value of kD, the kP value that attains the desired performance
and stability margin can be obtained from Fig. 4.2(a).

• For a given value of kP, the kD value that attains the desired performance
and stability margin can be obtained from Fig. 4.2(b).

• As the value of kI increases, the shape of the solutions starts to deviate from
the uniform parabola and hyperbola contours.

• Since k1 and k2 must be positive per Lyapunov stability requirements, a
streamline stops when one of its two branches reaches the abscissa.

• The dual point (asterisk) can be the optimal solution in terms of stability,
for some preset values of kP or kD.

• kD linearly relates to the sum of k1 and k2, which manifests in Fig. 4.2(b)
as all solution sets (k1 and k2) are below the identity line (unity slope), and
their sum is equal to it (k1 + k2 = 1). As such, one can promptly compute
the value of k2 in Fig. 4.2(b) for any given k1 based on (4.20).

• While other solutions besides the ones presented in Fig. 4.2 may exist (as
per Fig. 4.1), they are disregarded due to their irrelevance to this work.
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4.4.4 Simplified Backstepping-PID Relationships

If (4.20) has a weak dependence on γ, then by referring to (4.19) and (4.20), the
following inequality holds:

k1k2 + 1 >> kI/k1, (4.23)

and (4.20) can be simplified into the following second-order form:

k21,2 + (−kD)k1,2 + (kP − γ − 1) = 0,

k1 ∼= max{k1,2},
k2 ∼= min{k1,2},
γ ∼= kI/k1,

such that: k1,2 > 0.

(4.24)

As a rule of thumb, the condition in (4.23) holds if:

kP > 10 kI/kD.

Hence, the general solution of the second order polynomial, k1,2, is given by:

k1,2 =
kD
2

±
√
(
kD
2
)2 − (kP − γ − 1). (4.25)

Note that k1 and k2 are directly obtained from solving the polynomial in (4.24),
unlike in (4.20) where only k1 is obtained. To further analyze (4.24) and determine
the behavior of k1,2 when kP and kD vary, the following analysis based on conic
representation is introduced.

The general second-order equation of conics is of the form:

κ1x
2
1 + κ2x1x2 + κ3x

2
2 + κ4x1 + κ5x2 + κ6 = 0. (4.26)

where x1 and x2 ∈ R are the variables of the equation, and κi ∈ R, i = {1, ..., 6}
are constants [104]. If κ2 ̸= 0, then the principle axes of the conic incur a
counterclockwise rotation ϑ with respect to x1, such that:

cot 2ϑ =
κ1 − κ3
κ2

. (4.27)

Conic Representation with Constant kD

If (4.24) is solved for specific kD values, as in Fig. 4.2(a), we obtain:

x1 := k1,2, x2 := kP − γ, κ1 := 1, κ2 := 0,

κ3 := 0, κ4 := −kD, κ5 := 1, κ6 := −1.
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Noticing that κ1 ̸= 0 and κ1κ3 = 0, we conclude that (4.24) becomes a horizontal
parabola that relates k1,2 to kP in the form:

x1 −
(
(
kD
2
)2 + 1

)
= −

(
x2 −

kD
2

)2

,

VP =
{
(
kD
2
)2 + 1,

kD
2

}
,

(4.28)

where Vp is the parabola’s vertex.

Conic Representation with Constant kP

Similarly, (4.24) can be solved for preset kP values, as in Fig. 4.2(b), to relate
k1,2 to kD, that is:

x1 := k1,2, x2 := kD, κ1 := 1, κ2 := −1,

κ3 := 0, κ4 := 0, κ5 := 0, κ6 := kP − γ − 1.

Noticing that κ2 ̸= 0, the rotation angle of the conic axes is calculated from (4.27)
to be ϑh = π

8
. We can then substitute x1 = x′1cϑh − x′2sϑh and x2 = x′1sϑh + x′2cϑh

in (4.24), where x′1 and x′2 are the principle axes of the rotated conic, to obtain:

x′21
a2

− x′22
b2

= 1,

VD =
{
acϑh , asϑh

}
,

(4.29)

which represent a rotated horizontal hyperbola, with VD being the hyperbola’s
vertex, a =

√
2(kP−γ−1)√

2−1
, and b =

√
2(kP−γ−1)√

2+1
.

However, the function of k1,2 with respect to kD is interpreted easier when it
has the same form as (4.24), since we seek solutions for a single value of kD one
at a time. The double roots occur at V′

D such that:

V′
D =

{
2
√
kP − γ − 1,

√
kP − γ − 1

}
. (4.30)

Interpretation

The resultant plots of the parabola and hyperbola formulations in (4.28) and
(4.29) are shown in Fig. 4.3, which can be used to promptly and clearly inter-
pret the relationship between the backstepping and the PID gains, while mainly
benefiting from the vertices’ locations. For instance, starting from an initial com-
bination of k1 and k2, one can easily find the corresponding kP, kD, and kI gains
using Fig. 4.3; at the same time, one can navigate along the curves to arrive
at the desired PID gains while keeping an eye on the resulting k1 and k2 gains.
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Figure 4.3: Coupled backstepping gains, k1 and k2, in the simplified form, for
specific kP, kI, and kD values at constant kD in (a) on the left, and at constant kP
in (b) on the right. The colored regions in red and green represent the sets of all
feasible k1 and k2 combinations, respectively. The blue line marks the boundary
between the two regions, and the grey region represents the set of unfeasible
solutions. The colored stars mark the boundaries of the solution set.
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Table 4.2: PD Gains Tuning Intervals and Effect on Backstepping Gains

(kP − γ)min (kP − γ)max kD,min kD,max

Constant kD 1 (kD

2 )2 + 1 - - →

Constant kP - - 2
√
kP − γ − 1 ∞ →

k1,min k1,max k2,min k2,max

Constant kD
kD

2 kD 0 kD

2

Constant kP
√
kP − γ − 1 ∞ 0

√
kP − γ − 1

Note that the feasible k1 and k2 solutions are marked in red and green colors,
respectively, while the unfeasible region is marked in grey.

To maximize the benefits of Fig. 4.3, we provide an explicit interpretation of
its results:

• For some preset kD, the maximum (kP − γ) value can be deduced from
(4.28) as:

(kP − γ)max =
(kD
2

)2

+ 1, (4.31)

which corresponds to the last real solution (two identical roots) of (4.28):

k1,2 =
kD
2
.

• For some preset (kP−γ), the minimum kD value can be approximated from
(4.30) as:

kD,min = 2
√
kP − γ − 1, (4.32)

which corresponds to the first real solution (two identical roots) of (4.24):

k1,2 =
√
kP − γ − 1.

• If it is desired to increase kP while maintaining a constant kD, k1 should be
decreased while k2 should be increased.

• If it is desired to increase kD while maintaining a constant kP, k1 should be
increased while k2 should be decreased.

A summary of stable tuning intervals of the PID gains as well as the backstep-
ping gains intervals is presented in Table 4.2, which serves as a practical guide
for the tuning process concerning the gains and stability bounds. In addition, a
summary of the influence of tuning the PID gains on the backstepping gains, as
well as their effect on the system performance is presented in Table 4.3.
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Table 4.3: Effects of Tuning PID Gains [2] and their Influence on the Backstep-
ping Gains

Gain variation k1 k2 γ Speed Stability Overshoot
kP increases − + + + − +
kI increases − + + − + +
kD increases + − − + + −

Remark 14. Unlike the PID gains, a single backstepping gain variation, i.e. k1,
k2, or γ, does not result in a unified effect on the system performance as per
Table 4.3, which can be verified by referring to (4.18) and (4.19).

By combining the results of Fig. 4.3 and Table 4.3, and starting from an
initial system performance, we can specify the desired performance modification,
i.e. speed, stability, or overshoot, then decide on the PID gains tuning direction
based on Table 4.3, then by referring to Fig. 4.3, the effect on the backstepping
gains can be directly assessed.

Given the above discussion, and by perceiving the seemingly complex control
law in (4.11) as a PID feedback plus feedforward terms as in (4.17), the ambigu-
ity can be clarified by a direct visual interpretation that can be obtained from
Fig. 4.3, thus reducing any complexity concerns that are typically associated with
adopting nonlinear control laws.

4.4.5 From Backstepping to Pole Placement

After substituting (4.17) and (4.19) in (4.8), the resulting error dynamics of the
system become:

E1

(
s3 + s2(k1 + k2) + s(k1k2 + γ + 1) + (γk1)

)
= D, (4.33)

where s is the Laplace operator, and E1 and D are the Laplace transforms of e1
and ∆, respectively. In the PID representation, (4.33) becomes:

E1

(
s3 + s2kD + skP + kI

)
= D. (4.34)

The error dynamics are expressed in the poles form to show the relationship
between the PID gains and the locations of the closed-loop poles in the s-plane:

E1

(
(s+ p1)(s+ p2)(s+ p3)

)
= D,

E1

(
s3 + s2(p1 + p2 + p3) + s

(
p1p2 + p3(p1 + p2)

)
+ (p1p2p3)

)
= D,

(4.35)
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where p1 and p2 ∈ C, and p3 ∈ R>0 are the roots of (4.35), such that they always
have positive real parts ∈ R>0 for a stable system performance. With a basic
analysis that compares (4.34) to (4.35), the required PID gains for a specific roots
location in the s-plane are obtained as follows:

kP = p1p2 + p3(p1 + p2),

kI = p1p2p3,

kD = p1 + p2 + p3.

(4.36)

The resulting PID gains can then be substituted in (4.18) and (4.20) to obtain
the equivalent backstepping gains, if feasible. Furthermore, a visual relationship
can be established between the system error dynamics roots to the backstepping
gains as follows:

k1k2 + γ + 1 ≡ p1p2 + p3(p1 + p2),

γk1 ≡ p1p2p3,

k1 + k2 ≡ p1 + p2 + p3.

(4.37)

Note that although a simple analytical solution cannot be attained for this prob-
lem, some similarity still exists between the backstepping gains and the error
dynamics roots. For instance, kP and kI include multiplication of the backstep-
ping gains, and kD includes summation of the gains. In addition, one can notice
the stark similarity captured in Table 4.1 between the formulations in [56,94] and
that in [96], relative to the s-plane poles in (4.36). This observation stipulates
that the backstepping gains have a close manifestation as the system closed-loop
poles, when specifically formulated to lend themselves for such analysis.

To provide a clear visual aid that illustrates the above compelling finding,
Fig. 4.4 shows an implementation of the system of equations in (4.36) for the
case when kI = 0, such that the root locus of the error dynamics is drawn in
Fig. 4.4(a) for some constant kD values, and in Fig. 4.4(b) for some constant kP
values. Note that the colored (red, green, and blue) asterisks and stars in Fig. 4.4
correspond to the exact same gains of their counterparts in Fig. 4.3. For instance,
the solution sets at the stars that mark distant values of k1 and k2 in Fig. 4.3
correspond to more-damped closed-loop system poles, but with one pole being
closer to the imaginary axis in most cases as per Fig. 4.4. Also, the solution sets
at the asterisks that mark dual (equal) values of k1 and k2 in Fig. 4.3 correspond
to less-damped closed-loop system poles, with their real-parts lying in between
the real-part of the sets marked by the stars as per Fig. 4.4. Hence, it can be
stated that moving towards the dual solution of k1 and k2 in Fig.4.3 (at the
asterisks) during the gains tuning process tends to reduce the damping ratio of
the resultant s-plane poles.

The unique combination of Fig. 4.3 and Fig. 4.4 allows for understanding and
visually expressing the relationship between backstepping gains, the PID gains,
and the poles of the closed-loop system.
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Algorithm 2 Backstepping Gains Tuning Using PID Formulation
Input: kP, kI, kD
Output: k1, k2, γ

Initialization :
Calculate k1, k2, γ from (4.20)
while stability and performance criteria not satisfied do

1: if (k1k2 + 1 >> kI/k1) then
2: Tune (kP − γ) using Table 4.3 and Fig. 4.3(c)
3: Tune kD using Table 4.3 and Fig. 4.3(d)
4: Tune kI using Table 4.3
5: Find the equivalent k1 and k2 from Fig. 4.3 or (4.24)
6: Calculate γ from (4.24)
7: else
8: Tune kP using Table 4.3 and Fig. 4.2(a)
9: Tune kD using Table 4.3 and Fig. 4.2(b)

10: Tune kI using Table 4.3 and Fig. 4.2
11: Find the equivalent k1, k2 and γ from Fig. 4.2 and (4.20)
12: end if
13: return k1, k2, γ

4.4.6 Tuning Procedure

After deriving the necessary equations, expressing them in the proper form, and
providing visual aids and practical implementation tips, we consolidate the work
in an algorithm that can be used to tune the gains of a backstepping-based
controller based on the findings of this paper, which is presented in Algorithm 2.

Note that if a primitive PID controller is designed as a baseline to get a first
assessment of the system performance, the obtained PID gains can be plugged
into Algorithm 2 for initialization. It is also possible to calculate the set of PID
gains that satisfy the design specifications given by the pole locations in (4.36).
Finally, the fine-tuning of the gains can be performed to strike a balance between
the performance or stability of the system by referring to Fig. 4.2 and Fig. 4.3.

4.5 Simulation and Experimental Validation

Among various possible applications, a quadrotor UAV platform with variable
payload is adopted to validate the hereby proposed ICS, where a motion control
system is required to achieve good tracking performance of desired trajectories
in the presence of disturbances and changing operating conditions. Collectively
achieving the aforementioned objectives is faced with several challenges including
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Figure 4.5: Control system architecture for a quadrotor UAV.

design complexity, internal and external disturbances, high frequency noise, and
applicability to various quadrotor platforms. To deal with the challenges while
achieving the performance objectives, the controller structure shown in Fig. 4.5
is adopted, which features an inner-loop for attitude control and an outer-loop
for position control, thus the proposed ICS has the advantage of reducing the
complexity of the design and tuning process.

Nonetheless, the main purpose of this validation section is to show the tuning
process for a complex robotic system using the methodology presented in this
work, and not necessarily to show the superiority of the control law. The proposed
algorithm is validated via numerical simulations on a quadrotor UAV’s dynamic
model of high-fidelity, and experimentally on the Quanser QBall-2 quadrotor
platform [105].

4.5.1 Dynamic Model

Consider the system illustrated in Fig. 4.6, where the inertial and body frames
of reference are W and B, respectively. The latter is fixed to the quadrotor’s
centroid, OB. The quadrotor’s mass and inertia tensor relative to OB are re-
spectively mu ∈ R>0 and Ju ∈ R3×3. The quadrotor’s center of mass (CoM)
coordinates in B are denoted by rcom = [xcom, ycom, zcom]

⊺ ∈ R3, its translational
position in W is ξ = [xu, yu, zu]

⊺, and its Euler angles vector for roll, pitch, and
yaw motions is η = [ϕu, θu, ψu]

⊺.
The motor and propeller dynamics are superficially modelled as a reduced

first-order transfer function, but they are not included in the controller design
process due to their relatively fast dynamics as compared to those of the quadro-
tor’s chassis. The quadrotor’s dynamics are represented by the following model:

muξ̈ = −muG+RtFB +∆ξ,

JuRrη̈ = τB + rcom × FB +∆η,
(4.38)

where R1,u and R2,u are the translational and rotational transformation matrices
between W and B [106]; G = [0, 0, g]⊺ is the gravitational acceleration vector and
g is the gravity constant; FB = [0, 0, Ft]

⊺ and τB = [T1, T2, T3]
⊺ ∈ R3 are the total
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force and torque vectors of the rotors in B; the relationship between the motor
speeds and the net thrust and torques is defined as U = ΓΩ2, and explicitly
expressed as: 

Ft

T1
T2
T3

 =


Kt Kt Kt Kt

0 0 dKt −KtL
KtL −KtL 0 0
KQ KQ −KQ −KQ



ω2
1

ω2
2

ω2
3

ω2
4

 , (4.39)

where Kt and KQ are respectively the rotor constants of thrust and torque,
L is the quadrotor’s arm length, ωi is the angular speed of the ith rotor with
i ∈ [1, 2, 3, 4], and Ω is the vector of the four rotors’ angular speeds. The control
inputs, ωi, are calculated from the above equations using matrix inversion and
square root operations.

The terms, ∆ξ and ∆η ∈ R3, respectively denote the external disturbances
and unmodeled nonlinearities (not explicitly shown for brevity purposes), and
they are assumed to be uniformly bounded. For more details on the quadrotor
modeling, readers are referred to [68,106].

4.5.2 Problem Formulation

The dynamics of the quadrotor are expressed in the form of (4.2) by choosing:

X1 = [xu, yu, zu, ϕu, θu, ψu]
⊺, X2 = [ẋu, ẏu, żu, ϕ̇u, θ̇u, ψ̇u]

⊺,

g = [m−1
u I3,O3;O3, (JuRr)

−1],

Hu = [0, 0,−g, 0, 0, 0]⊺, Φu =
[
O3×2;Φu,2

]
,

∆u = [∆ξ; ∆η], U = [FW ; τB], Θu = [xcom, ycom]
⊺,

(4.40)

where the vectors θ, g, and ∆ are the unknown entities in the system, and
O3 ∈ R3×3 is the null matrix. Acrobatic maneuvers are not considered in this
work, and the singular point of ψu = ±π

2
is not to be reached, which implies that
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g remains Lipschitz continuous. The matrix ϕ2 ∈ R3×2 is defined as:

Φu,2 =

 0 −Ftcθu/Ju,xx,0
Ft/Ju,yy,0 −Fttϕusθu/Ju,xx,0

0 Ftsθu/(cϕuJu,xx,0)

 ,
where Ju,xx,0 and Ju,yy,0 are the nominal values of Ju,xx and Ju,yy, respectively.
Choosing these nominal values is realistic and practical since the quadrotor’s iner-
tia variation is typically a small fraction of its nominal value, which simplifies the
formulation of the adaptation law. The control input vector for the translational
subsystem is calculated as follows:

FW =

sθucψu + sϕucθusψu

sθusψu − sϕucθucψu

cϕucθu

Ft. (4.41)

4.5.3 Control Inputs and Reference Signals

The aim of the controller is to achieve trajectory tracking by bring-
ing the state vector, X1, to a desired state vector, X1d = [ξd;ηd] =
[xu,d, yu,d, zu,d, ϕu,d, θu,d, ψu,d]

⊺, by generating an appropriate control input vector,
Uc = [Ftc, T1c, T2c, T3c]

⊺, denoted by the subscript (•)c. The motor’s rotational
speed can be modelled as:

ωi = Gm(s)ωi,c, i ∈ [1, 2, 3, 4], (4.42)

where Gm(s) is the motor’s transfer function, and ωi,c is the command rotational
speed that is proportional to the input pulse width modulated (PWM) signal
of each motor. ωi,c can be obtained form the inverse of the following equation:
U = ΓΩ2

c. In practice, the motor dynamics are much faster than those of the
quadrotor, thus Gm(s) can be set to one.

By dividing the quadrotor’s motion control system into two subsystems,
namely an inner-loop for attitude control (Euler angles) and an outer-loop for
position control, the complexity of the problem is considerably reduced. The
position controller generates the control signal, [ux, uy, uz], from which the total
thrust command is calculated as:

Ftc =
√
u2x + u2y + u2z, (4.43)

and the desired attitude angles, ϕu,d and θu,d, are calculated from (4.41) as follows:

ϕu,d = arctan
(
(uxsψu − uycψu)/uz

)
,

θu,d = arcsin
(
(uxcψu + uysψu)/Ftc

)
.

(4.44)
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The inner-loop commands in (4.44) are smoothed and bounded by the function:

ϕ′
u,d = ϕu,max tanh

(
ϕu,d/ϕu,max

)
,

θ′u,d = θu,max tanh
(
θu,d/θu,max

)
,

(4.45)

where ϕu,max and θu,max ∈ (0, π
2
) are the attitude angles’ upper limit. As a result,

X1d is smooth and bounded. This completes the definition of the desired state
vector, X1d, to be tracked by X1.

Note that the control law in (4.17) and its modification in (4.19) were imple-
mented with the projection function being realised as an integrator, with upper
and lower saturation bounds calculated as d̄/(γk1) based on Remark 8.

4.5.4 Simulation Model Elements

Simulation Setup

The MATLAB/Simulink® environment is used for validating the proposed con-
trol design and tuning scheme, where a high-fidelity nonlinear dynamic model
powers the flight mission. The model is augmented to include feedback delays,
force and torque disturbances, and induced sensor noise. Estimates of the ac-
tual measurement signals are used in the feedback process, where a Kalman filter
generates smooth signals from raw sensory data, and RLS algorithm provides es-
timates of the parameters mu, Ju,xx, Ju,yy, Ju,zz, xcom, and ycom. An external wind
gust is generated via the method described in [107] to disturb the quadrotor with
a magnitude of 5m/s, which results in a drag force that acts on the quadrotor’s
centroid.

Quadrotor Specifications

The Quanser QBall-2 platform [105] is used as a baseline for the quadrotor’s spec-
ifications. We set: mu = 1.76 kg, Ju,xx = Ju,yy = 0.03 kgm2, Ju,zz = 0.04 kgm2,
Kt = 13N, KQ = 0.4Nm, and L = 0.2m. Upon adding a payload, the quadro-
tor’s CoM and moment of inertia (MoI) vary as per [108], with their main effect
manifesting in the moment arm shift due to pure thrust as expressed in (4.40) by
the term (rcom ×FB). The thrust and torques feedback signals are estimated via
a battery drain model due to the unavailability of a motor speed sensor [109].

4.5.5 Testing Scenario

The controller testing scenario consists of the following actions: the quadrotor
first takes-off from the ground while picking up a payload, it executes an ∞-
shaped maneuver three times, and then performs landing on top of its starting
position. The payload has a mass mp = 0.2 kg and is placed beneath the original
CoM of the quadrotor at coordinates rp = [xp, yp, zp] = [0.05, 0.05,−0.1]m in B.
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We set Jxx,u,0 = Jxx,u, and Jyy,u,0 = Ju,yy, and a wind gust of magnitude 5m/s is
activated at t = 11 s.

4.5.6 Tuning Process

The tuning process described in Section 4.4.6 is performed for the outer loop’s
lateral motion subsystems (xu and yu components) to serve as a guideline for
utilizing the proposed tuning method. Tuning is based on the PID gains, since
it is intended in this work to move away from the abstract backstepping gains,
and the process is phased as follows:

1. The xu and yu subsystems’ gains are initially set to kP,x,y = 1.1, kD,x,y = 1.1,
and kI,x,y = 0. The results are shown in Fig. 4.7(a), where a sluggish
response with undesirable overshoot and steady-state error are obtained.

2. We attempt to improve the overshoot performance and increase the tuning
range of kP,x,y, as we notice from Fig. 4.3(c) that for kD ≈ 1, kP is limited to
a small set near unity. The specified objectives are attained by increasing
kD,x,y as per Table 4.3. We choose kD,x,y = 3. The results are shown
in Fig. 4.7(b), where we notice a significant reduction in the tracking error
and overshoot. But the system’s transient response is still slow in the initial
time interval t = [10, 19] s.

3. Next, we attempt to increase the speed of the system, which by referring to
Table 4.3 can be achieved by increasing kP,x,y. By referring to Fig. 4.3(c),
we choose kP,x,y = 3. The results are shown in Fig. 4.7(c), where we indeed
observe an improved speed of response. But the system still has a steady-
state error that is noticed at the time intervals [0, 10] s and [70, 80] s.

4. Next, we increase the integral gain to eliminate the steady-state error, which
is due to the initial drift of the quadrotor that is induced by the presence of
the eccentric payload. We gradually increase kI,x,y until we find an optimal
value, while maintaining k′P,x,y := kP,x,y − γx,y constant to reduce unwanted
effects on the previously attained performance. We set kI,x,y = 4.2. The
results are shown in Fig. 4.7(d), where we notice that the initial drift in
position has been promptly compensated for. Now, we can proceed to the
final stage of fine-tuning the gains.

5. By inspecting Fig. 4.3(b), we see that the overshoot can be improved at the
expense of reducing k2,x,y. Thus, we proceed by slightly increasing kD,x,y
and setting it to kD,x,y = 4. The results are shown in Fig. 4.7(e), where
we notice that the overshoot has been reduced (e.g. t = {19, 39, 59} s). At
this stage, the performance is deemed satisfactory and the tuning process
is terminated.
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Figure 4.7: Desired trajectory tracking of the x and y position states (left) and
their corresponding tracking errors (right) of the ICS-controlled quadrotor in each
step of the tuning process executed via numerical simulations.

114



Table 4.4: Tuning steps for the x and y subsystems of the quadrotor’s adaptive
backstepping controller starting from the selected PID gains.

kP kI kD k1 k2 γ
MAV

{|exu |+
∣∣eyu∣∣}

(cm)

1. 1.1 0 1.1 1 0.1 0 37
2. 1 0 3 2.97 0.03 0 25
3. 3 0 3 2 1 0 12
4. 3 4.2 3 2.8 0.2 1.5 7
5. 3 4.2 4 3.8 0.2 1.1 6

The tuned PID gains and their corresponding backstepping counterparts,
which are obtained in each step of the tuning process, are shown in Table 4.4
along with the respective mean absolute error of the tracking signals (MAE).
From the table, it is clearly noticed that predicting the combinations of k1, k2,
and γ that yield the desired performance improvement is not a trivial task and
may prove to be very challenging to be determined by control system engineers.
This last result shows the power of exploiting the backstepping and PID gains
relationship to speed-up the manual tuning process. On the other hand, when
a PID controller is employed for controlling a second-order system of the form
shown in (4.2), the relationships shown in Fig. 4.3 can serve as an indicator of
the stability margins of the system.

4.5.7 Simulation Results

The final controller gains are set to k1 = diag(3.8, 3.8, 2.6, 30, 30, 4), k2 =
diag(0.2, 0.2, 0.4, 0.3, 0.3, 1), and γ = diag(1.1, 1.1, 1, 0.4, 0.4, 1) by following the
proposed tuning process in conjunction with the performance results obtained
in Fig. 4.7. The quadrotor planar trajectory is shown in the ‘xy’-subplot of
Fig. 4.8 (top), where the UAV makes three laps in an ∞-shape trajectory in the
presence of wind. The quadrotor keeps oriented towards the direction of the tra-
jectory while maintaining a level flight as seen in the ‘heading’ and ‘zu’ subplots
of Fig. 4.8, respectively. Finally, the sinusoidal x- and y-signals that produce the
∞-shape trajectory are shown in the ‘xu’ and ‘yu’ subplots of Fig. 4.8 (bottom
right). Based on a mean absolute error MAV {[exu , eyu , ezu ]} of [3.0, 2.7, 1.2] cm
in position and MAV {eψu} = 1.5° in heading angle, the ICS’ overall performance
is deemed acceptable.
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Figure 4.8: Trajectory (top) and tracking states (bottom) of the quadrotor in
numerical simulations after fine-tuning the ICS per the hereby proposed Algo-
rithm 2.

4.5.8 Experimental Validation

We first note that since tuning of controllers typically produces gains that yield
sub-optimal performance, the design process is started in the simulation envi-
ronment to prevent physical damage to the quadrotor system. After arriving
at satisfactory simulation results, the experimental validation phase kicks off by
following the same tuning procedure, which further validates the proposed algo-
rithm. In the experimental validation, the ICS is tested on the Quanser QBall-2
platform [105], with specifications that are similar to those presented in Sec-
tion 4.5.4. The flight experiment is conducted inside an indoor testing facility,
where a motion capture system, depicted in Fig. 4.6, provides feedback for the
closed-loop control system.

Experimental Scenario

The quadrotor is loaded with a payload of mp = 0.2 kg, placed at coordinates
rp = [0, 0,−0.1] m in B, which is beneath its original CoM as shown in Fig. 4.9.
The flight maneuver starts by a vertical take-off, followed by a sideways motion
in the x-y plane during which the carried payload is released midway, and ends
by landing on the ground, as depicted at the top of Fig. 4.10.
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payload

Figure 4.9: Demonstration of the quadrotor platform (Quanser QBall-2) lifting
a payload inside the UAV testing laboratory.

Controller Tuning

Given the expected inaccuracies between the simulation model and the physical
quadrotor platform, fine-tuning of the obtained gains from the numerical simula-
tions is performed through multiple flight tests using the same proposed tuning
guidelines of Algorithm 2. We refrain from showing the detailed tuning step
to avoid redundancy. The resulting controller gains that were deemed adequate
in terms of performance and robustness are kP = diag(2.7, 2.7, 7.2, 32.2, 32.2, 6),
kI = diag(1.3, 1.3, 4.1, 5.6, 5.6, 5.2), and kD = diag(3.7, 3.7, 4, 16.2, 16.2, 4), which
give the following backstepping gains: k1 = diag(3.3, 3.3, 1.96, 14, 14, 2), k2 =
diag(0.4, 0.4, 2.1, 2.2, 2.2, 2), and γ = diag(0.4, 0.4, 2.1, 0.4, 0.4, 1). Note that the
ratio of change of the PID gains, as compared to those in simulation, is smaller
than that of the backstepping gains. Since the PID gains better represent the
controller’s performance, they should be considered as the starting point for eval-
uating the transition between simulation and experimentation.

Experimental Results

The final tracking performance of the quadrotor is shown at the bottom of
Fig. 4.10, which captures its position in the z-, x-, and y-directions. After ade-
quate fine-tuning, the ICS achieves stable and and accurate tracking performance,
with a mean absolute error MAV {[exu , eyu , ezu ]} of [1.3, 2.7, 1.8] cm in position.
The recorded error in position-hold is minimal in all three directions, even during
lifting the payload off the ground and while dropping it. The quadrotor recov-
ery after the sudden drop of the payload (at t = 18 s, marked by the purple
strips at the bottom of Fig. 4.10), is fairly quick, and the quadrotor successfully
and accurately completes its maneuver. The experimental results demonstrate
the efficacy of the adaptive backstepping-based ICS and the practicality of the
proposed tuning algorithm based on the established PID similarity.
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Figure 4.10: 3D trajectory tracking of the ICS-controlled quadrotor in the
payload-drop experiment. The experiment is depicted at the top, and the xu,
yu, and zu positions and tracking errors are shown at the bottom.
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4.6 Conclusion

In this chapter, we leveraged the rather underutilized similarity between back-
stepping and PID control laws for a class of second-order systems, and developed
it to formulate a specific relationship between the backstepping and PID gains in
the form of a third-order polynomial, which can be further simplified to second-
order under certain conditions. The obtained similarity provides deeper insight
into the tuning of backstepping gains and allows for a better understanding of
the backstepping control law, which can be represented as the sum of a feed-
back PID component and a feedforward model compensation component. We
provided visual and mathematical tools that facilitate the design and tuning of
the backstepping gains in a similar fashion as tuning PID controllers, which ben-
efits from the legacy of well-established PID tuning rules, while maintaining the
original stability perspective of the backstepping gains. This work contributes to
the field of control systems by promoting the adoption of nonlinear Lyapunov-
based integral backstepping controllers, which is achieved by facilitating certain
aspects of the control law design and tuning, and bridging the gap between com-
plexity and practicality. The proposed control scheme and tuning algorithm were
validated numerically on a quadrotor UAV dynamic model of high-fidelity, and
experimentally on a quadrotor platform (Quanser QBall-2), to showcase the ease
and utility of the proposed tuning process.

Future work entails the extension of the proposed method to other nonlinear
control designs, in addition to backstepping, and to consider higher-order classes
of nonlinear systems.
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Chapter 5

CONCLUSIONS AND
RECOMMENDATIONS

This dissertation presented a novel heterogeneous robotic system including a
quadrotor UAV and a floating buoy/USV linked via a tether, named as tethered
UAV−buoy system. The system’s multi-physics dynamics were modeled in detail
for both the coupled and decoupled cases, along with the design of a surge ve-
locity control system for the simplified 2D planar case, and the full scale 3D case
with the addition of the buoy’s steering ability. Detailed analysis was provided
on the system’s constraints, attained steady-state conditions, working limits, and
operational modes. A state machine was designed to manage the switching be-
tween the system’s UAV−buoy relative position control law and the buoy’s surge
velocity control law. The system was validated in numerical simulations using
a specifically designed open-source MATLAB/Simulink model that is coupled
to a Virtual Reality Modelling Language (VRML) simulator, in addition to the
development of an open-source ROS-gazebo package that allows the free space
validation and manipulation of the proposed robotic system.

In addition, an integrated control and estimation system was introduced with
application to quadrotor UAVs to provide robust and adaptive performance,
which is suitable for the marine locomotive UAV problem. The integrated con-
trol law combines an adaptive backstepping controller design with a normalized
recursive least squares estimation algorithm. The resultant backstepping design
was formulated as a two-degrees-of-freedom controller: a feedback component
in a PID-like structure and a feedforward component that provides model com-
pensation. The ICS design uncovers a special relationship between the back-
stepping and PID gains in the form of a third-order polynomial, which can be
further simplified to second-order under certain conditions. The proposed control
and estimation scheme was validated in numerical simulation via a high-fidelity
quadrotor model, where the obtained results demonstrated good tracking perfor-
mance while coping with parametric uncertainties, fast and accurate parameter
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estimation, and adequate disturbance rejection. The ICS was also tested experi-
mentally on the Quanser QBall-2 quadrotor platform.

5.1 Research Implications

The proposed tethered UAV−buoy system serves the field of marine robotics
by paving the way in front of a wide variety of novel marine applications for
multirotor UAVs, where their high speed and maneuverability, as well as their
ease of deployment and wide field of vision, give them a superior advantage. It
best suits applications that require remote and fast manipulation with minimal
water surface disruption.

This dissertation contributes to the field of control systems by promoting the
adoption of nonlinear Lyapunov-based integral backstepping controllers, which is
achieved by facilitating certain aspects of the control law design and tuning and
bridging the gap between complexity and practicality. The obtained similarity
presented in Chapter 4 between the backstepping and PID gains provides deeper
insight into the tuning of backstepping gains and allows for a better understanding
of the backstepping control law, which can be represented as the sum of a feedback
PID component and a feedforward model compensation component.

5.2 Recommendations for Future Work

Future work may focus on designing a higher level path planner for the tethered
UAV−buoy system to allow tracking trajectories in the inertial frame. Energy
minimization techniques can be employed to improve the performance of the path
planner under different wave and current conditions. Additionally, the buoy’s
stability and shape effects can be studied by introducing additional constraints
to the system, and including additional analysis on the effect of the tether on the
system. Future work also entails building a prototype of the proposed system
and performing experimental validation of the proposed control system. The
rope linking mechanism can be also an interesting aspect of future work, where
the locomotive UAV can be equipped with a hook holding a sensory package,
and once catching the floating buoy can provide the buoy states measurements
required to calculate the system’s spherical states without the need for visual
sensing from the UAV. Last but not least, future work may include the extension
of the proposed ICS algorithm to other nonlinear control design techniques, in
addition to backstepping, and to higher-order classes of nonlinear systems.
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Appendix A

Buoy Inertia and Damping
Matrices

The buoy’s inertia matrix in the world frame W , Mb, is symmetric (i.e., Mij =
Mji, for i ̸= j), and has its non-zero elements explicitly given as:

Mb,11 = mb + a11(cθbcψb
− sϕbsθbsψb

)2 + a22(cϕbsψb
)2 + a33(sθbcψb

+ sϕbcθbsψb
)2,

Mb,22 = mb + a11(cθbsψb
+ sϕbsθbcψb

)2 + a22(cϕbcψb
)2 + a33(sθbsψb

− sϕbcθbcψb
)2,

Mb,33 = mb + a11(cϕbsθb)
2 + a22(sϕb)

2 + a33(cϕbcθb)
2,

Mb,12 = a11(cθbsψb
+ sϕbsθbcψb

)(cθbcψb
− sϕbsθbsψb

)− a22(c
2
ϕb
sψb

cψb
)

+ a33(sθbcψb
+ sϕbcθbsψb

)(sθbsψb
− sϕbcθbcψb

),

Mb,13 = − a11(cϕbsθb)(cθbcψb
− sϕbsθbsψb

)− a22(cϕbsψb
sϕb)

+ a33( cϕbcθb)(sθbcψb
+ sϕbcθbsψb

),

Mb,23 = a11(cϕbsθb)(cθbsψb
+ sϕbsθbcψb

) + a22(cϕbcψb
sϕb)

+ a33(cϕbcθb)(sθbsψb
− sϕbcθbcψb

),

Mb,44 = (Jb,xx + a44) +
[
(Jb,zz + a66)− (Jb,xx + a44)

]
s2θb ,

Mb,55 = (Jb,yy + a55) +
[
(Jb,xx + a44)s

2
θb
+ (Jb,zz + a66)c

2
θb

]
t2ϕb ,

Mb,66 = (Jb,zz + a66) +
[
(Jb,xx + a44)− (Jb,zz + a66)

]
s2θb/c

2
ϕb
,

Mb,45 =
[
(Jb,xx + a44)− (Jb,zz + a66)

]
sθbcθbtϕb ,

Mb,46 =
[
(Jb,zz + a66)− (Jb,xx + a44)

]
sθbcθb/cϕb ,

Mb,56 = −
[
(Jb,xx + a44)s

2
θb
+ (Jb,zz + a66)c

2
θb

]
tϕb/cϕb . (A.1)

Similarly, its damping matrix in W , Db, is symmetric (i.e., Dij = Dji, for i ̸= j),
and has its non-zero elements explicitly given as:

Db,11 = b11(cθbcψb
− sϕbsθbsψb

)2 + b22(cϕbsψb
)2 + b33(sθbcψb

+ sϕbcθbsψb
)2,

Db,22 = b11(cθbsψb
+ sϕbsθbcψb

)2 + b22(cϕbcψb
)2 + b33(sθbsψb

− sϕbcθbcψb
)2,

Db,33 = b11(cϕbsθb)
2 + b22(sϕb)

2 + b33(cϕbcθb)
2,
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Db,12 = b11(cθbsψb
+ sϕbsθbcψb

)(cθbcψb
− sϕbsθbsψb

) + b22(−c2ϕbsψb
cψb

)

+ b33(sθbcψb
+ sϕbcθbsψb

)(sθbsψb
− sϕbcθbcψb

),

Db,13 = b11(−cϕbsθb)(cθbcψb
− sϕbsθbsψb

) + b22(−cϕbsψb
sϕb)

+ b33( cϕbcθb)(sθbcψb
+ sϕbcθbsψb

),

Db,23 = b11(cϕbsθb)(cθbsψb
+ sϕbsθbcψb

) + b22(cϕbcψb
sϕb)

+ b33(cϕbcθb)(sθbsψb
− sϕbcθbcψb

),

Db,44 = b44 +
[
b66 − b44

]
s2θb ,

Db,55 = b55 +
[
b44s

2
θb
+ b66c

2
θb

]
t2ϕb ,

Db,66 = b66 +
[
b44 − b66

]
s2θb/c

2
ϕb
,

Db,45 =
[
b44 − b66

]
sθbcθbtϕb ,

Db,46 =
[
b66 − b44

]
sθbcθb/cϕb ,

Db,56 = −
[
b44s

2
θb
+ b66c

2
θb

]
tϕb/cϕb . (A.2)
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Appendix B

UAV Inertia Matrix

The UAV’s inertial matrix in W is symmetric, with elements explicitly expressed
as:

Mu,11 = mu, Mu,22 = mu, Mu,33 = mu,

Mu,12 = 0, Mu,13 = 0, Mu,23 = 0,

Mu,44 = Ju,xx +
[
Ju,zz − Ju,xx

]
s2θu ,

Mu,55 = Ju,yy +
[
Ju,xxs

2
θu + Ju,zzc

2
θu

]
t2ϕu ,

Mu,66 = Ju,zz +
[
Ju,xx − Ju,zz

]
s2θu/c

2
ϕu ,

Mu,45 =
[
Ju,xx − Ju,zz

]
sθucθutϕu ,

Mu,46 =
[
Ju,zz − Ju,xx

]
sθucθu/cϕu ,

Mu,56 = −
[
Ju,xxs

2
θu + Ju,zzc

2
θu

]
tϕu/cϕu . (B.1)
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Appendix C

Spherical Coordinates Details

The spherical coordinates transformation to Cartesian coordinates, RS2C, is made
by two ordered rotations, Rα then Rφ, where:

Rα =

cα −sα 0
0 0 1
sα cα 0

 , (C.1)

and:

Rφ =

cφ −sφ 0
sφ cφ 0
0 0 1

 . (C.2)

By differentiating r with respect to time, we find the derivatives of the spher-
ical unit vectors to be:

˙̂er = α̇êα + cαφ̇êφ,

˙̂eα = −α̇êr − sαφ̇êφ,

˙̂eφ = −cαφ̇êr + sαφ̇êα,

(C.3)

From the definition of the spherical coordinates system and from (C.3), the po-
sition, velocity, and acceleration vectors of Ou are given by:

r = rêr, (C.4a)
ṙ = ṙêr + rα̇êα + rcαφ̇êφ, (C.4b)
r̈ = (r̈− rα̇2 − rc2αφ̇

2)êr + (rα̈ + 2ṙα̇ + rsαcαφ̇
2)êα + (rφ̈cα + 2ṙφ̇cα − 2rα̇φ̇sα)êφ.

(C.4c)

The components of the UAV’s thrust vector in the spherical frame are explic-
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itly realized from (3.26) as:

ur = u1
[
cαcφ(sθucψu + sϕucθusψu) + cαsφ(sθusψu − sϕucθucψu) + sα(cϕucθu)

]
,

uα = u1
[
− sαcφ(sθucψu + sϕucθusψu)− sαsφ(sθusψu − sϕucθucψu) + cα(cϕucθu)

]
,

uφ = u1
[
− sφ(sθucψu + sϕucθusψu) + cφ(sθusψu − sϕucθucψu)

]
.

(C.5)

With the taut-cable condition in (3.30), we have r = l, and the spherical
coordinates of the UAV with respect to the buoy’s center of mass, Ob, reduced
to:

ru = rb +RS2C[l, 0, 0]
⊺, (C.6)

which expands to:

xu = xb + lcαcφ,

yu = yb + lcαsφ,

zu = zb + lsα,

(C.7)

and similarly, its velocity can be obtained as:

ṙu = ṙb +RS2Cṙ, (C.8)

which expands to:

ẋu = ẋb + (−lsαcφ)α̇ + (−lcαsφ)φ̇,
ẏu = ẏb + (−lsαsφ)α̇ + (lcαcφ)φ̇,

żu = żb + (lcα)α̇.

(C.9)
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Appendix D

Euler-Lagrange Formulation

The Kinetic energy of the tethered UAV−buoy system, K, includes the rotational
and translational energies of the UAV and that of the buoy while neglecting the
cable’s energy, and is explicitly described as:

K =
1

2

{
ẋb(Mb,11ẋb +Mb,12ẏb +Mb,13żb)

+ ẏb(Mb,21ẋb +Mb,22ẏb +Mb,23żb)

+ żb(Mb,31ẋb +Mb,32ẏb +Mb,33żb)

+ ϕ̇b(Mb,44ϕ̇b +Mb,45θ̇b +Mb,46ψ̇b)

+ θ̇b(Mb,54ϕ̇b +Mb,55θ̇b +Mb,56ψ̇b)

+ ψ̇b(Mb,64ϕ̇b +Mb,65θ̇b +Mb,66ψ̇b)

+mu(ẋ
2
u + ẏ2u + ż2u)

+ ϕ̇u(Mu,44ϕ̇u +Mu,45θ̇u +Mu,46ψ̇u)

+ θ̇u(Mu,54ϕ̇u +Mu,55θ̇u +Mu,56ψ̇u)

+ ψ̇u(Mu,64ϕ̇u +Mu,65θ̇u +Mu,66ψ̇u)
}

=
1

2

{
ẋb
[
(Mb,11 +mu)ẋb +Mb,12ẏb +Mb,13żb

]
+ ẏb

[
Mb,21ẋb + (Mb,22 +mu)ẏb +Mb,23żb

]
+ żb

[
Mb,31ẋb +Mb,32ẏb + (Mb,33 +mu)żb

]
+mu

[
(lα̇)2 + (lcαφ̇)

2

− 2(lsαcφα̇ẋb)− 2(lcαsφφ̇ẋb)

− 2(lsαsφα̇ẏb) + 2(lcαcφφ̇ẏb) + 2(lcαα̇żb)
]

+ ϕ̇b(Mb,44ϕ̇b +Mb,45θ̇b +Mb,46ψ̇b)

+ θ̇b(Mb,54ϕ̇b +Mb,55θ̇b +Mb,56ψ̇b)

+ ψ̇b(Mb,64ϕ̇b +Mb,65θ̇b +Mb,66ψ̇b)

129



+ ϕ̇u(Mu,44ϕ̇u +Mu,45θ̇u +Mu,46ψ̇u)

+ θ̇u(Mu,54ϕ̇u +Mu,55θ̇u +Mu,56ψ̇u)

+ ψ̇u(Mu,64ϕ̇u +Mu,65θ̇u +Mu,66ψ̇u)
}
. (D.1)

The kinetic energy is differentiated with respect to each state rate then with
respect to time. Only the buoy’s translational states and tether’s orientation
states are of interest, since the UAV and the buoy’s rotational states feature no
dependencies on other states, which can be seen by inspection of the expanded
K. Their corresponding results are expressed as:

d

dt

( ∂K
∂ẋb

)
= (Mb,11 +mu)ẍb +Mb,12ÿb +Mb,13z̈b

+mul(−sαcφα̈− cαcφα̇
2 − cαsφφ̈− cαcφφ̇

2 + 2sαsφα̇φ̇),

d

dt

( ∂K
∂ẏb

)
=Mb,21ẍb + (Mb,22 +mu)ÿb +Mb,23z̈b

+mul(−sαsφα̈− cαsφα̇
2 + cαcφφ̈− cαsφφ̇

2 − 2sαcφα̇φ̇),

d

dt

( ∂K
∂żb

)
=Mb,31ẍb +Mb,32ÿb + (Mb,33 +mu)z̈b

+mul(cαα̈− sαα̇
2),

d

dt

(∂K
∂α̇

)
= mu

[
l2α̈− lsα(cφẍb + sφÿb) + lcαz̈b

+ l(−cαcφα̇ẋb + sαsφφ̇ẋb − cαsφα̇ẏb − sαcφφ̇ẏb − sαα̇żb)
]
,

d

dt

(∂K
∂φ̇

)
= mu

[
l2(c2αφ̈− 2sαcαα̇φ̇) + lcα(−sφẍb + cφÿb)

+ l(sαsφα̇ẋb − cαcφφ̇ẋb − sαcφα̇ẏb − cαsφφ̇ẏb)
]
.

(D.2)

The differentiation results of the UAV and buoy’s rotational states are omitted as
they result in similar components to the rotational dynamics already introduced
in (3.27) and (3.21).

The kinetic energy of the system is differentiated with respect to the states,
(∂K
∂η

), where the resulting nonzero elements are obtained as:

∂K
∂α

= mul(−lsαcαφ̇2 − cαcφα̇ẋb + sαsφφ̇ẋb − cαsφα̇ẏb − sαcφφ̇ẏb − sαα̇żb),

∂K
∂φ

= mul(sαsφα̇ẋb − cαcφφ̇ẋb − sαcφα̇ẏb − cαsφφ̇ẏb).

(D.3)

Notice that most elements of ∂K
∂η

cancels out with elements of d
dt

(
∂K
∂η̇

)
.
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The system’s potential energy was given in (3.38), and its external forces and
moments vector can be formulated based on (3.22) and (3.2.6) as:

τ1 = u1(sθucψu + sϕucθusψu),

τ2 = u1(sθusψu − sϕucθucψu),

τ3 = u1cϕucθu + ρwg⋎im,

τ4 = u1l
[
− sαcφ(sθucψu + sϕucθusψu)− sαsφ(sθusψu − sϕucθucψu) + cα(cϕucθu)

]
,

τ5 = u1l
[
− sφ(sθucψu + sϕucθusψu) + cφ(sθusψu − sϕucθucψu)

]
,

(D.4)

Additionally, we have: τ6−8 = τ2,u and τ9−11 = τ2,b. The potential energy’s
derivative with respect the states rates then to time is obtained as:

d

dt

(∂U
∂η̇

)
= [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]⊺, (D.5)

and its first derivative with respect to states is obtained as:

∂U
∂η

= [0, 0, (mb +mu)g,muglcα, 0, 0, 0, 0, 0, 0, 0]⊺. (D.6)
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Appendix E

ROS-Gazebo Simulations

For further validation of the tethered UAV−buoy system, a customized model was
developed in the Robot Operating System (ROS) Gazebo environment. Given
that this tool is open-source and widely used by the robotics community world-
wide, having a ROS implementation of the hereby proposed system will facilitate
the accessibility and sustainability of this research topic.

E.1 Terminology

ROS uses its own terminology. The following definitions are provided for the
reader’s reference:
node: a node is a process that performs computation. It is an executable program
that runs inside of the application.
topic: topics are named buses over which nodes exchange messages.
publisher : a ROS publisher is a ROS node that publishes a specific type of ROS
messages over a given ROS topic.
subscriber : a node that subscribes to the topic so that it receives the messages
whenever any message is published to the topic.
launch file: it is an XML file that provides a convenient way to launch multiple
nodes and a master, as well as other initialization requirements such as setting
parameters.
spawn: the action of initializing a robot in the 3D Gazebo world.

E.2 Robot Model

Following standard descriptions of robots in ROS, the tethered UAV−buoy sys-
tem is formed as a chain of joints and links, as illustrated by Fig. E.1. The model
tree is detailed in Table E.1. We start with the buoy object, which is linked to
the tether via a universal joint, where the tether is modeled as a chain of n rigid
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Figure E.1: Sample structure of the links and joint architecture in ROS [1].

Figure E.2: Sample robot model for the tethered UAV−buoy system.

cylinders that are interconnected by means of revolute joints, then comes the
UAV body that is also connected to the tether via a universal joint. Finally, the
rotors are connected to the UAV body via continuous rotary joints. Note that
each universal joint is modeled as one continuous joint in the yaw orientation
followed by a revolute joint in the pitch orientation. We also note that sensory
equipment is not included in the tree. This structure increases the system’s flex-
ibility and modularity. For example, different types of buoy links or UAV links
can be used without affecting the integrity of the system model. Note that the
discretized number of the tether elements and the inertia definition of small links
affect the stability of the model.

A sample robot model is constructed as described in Table E.1, and it is
rendered in Fig. E.2. The buoy is considered of a cuboid shape, the tether is
discretized into five elements, and the quadrotor UAV is selected to be an AR-
drone [110] with increased motor power to deliver more thrust that can propel
the system forward. The supplied library makes the design of the buoy and tether
properties, including the number of discretized tether elements, easier. The UAV
model is based on the RotorS package, which offers a variety of UAV models with
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Table E.1: Links and Joints tree of the tethered UAV−buoy robot

Joint name Joint type Parent link Child link
buoy-z continuous-z buoy body buoy pitch link
buoy-y revolute-y buoy pitch link tether element 1
tether joint 1 revolute-y tether element 1 tether element 2
tether joint 2 revolute-y tether element 2 tether element 3
... ... ... ...
tether joint n revolute-y tether element n UAV yaw link
UAV-z continuous-z UAV yaw link UAV body
rotor-1 joint continuous-z UAV body rotor-1 link
rotor-2 joint continuous-z UAV body rotor-2 link
rotor-3 joint continuous-z UAV body rotor-3 link
rotor-4 joint continuous-z UAV body rotor-4 link

their proper descriptions.

E.3 Simulation Environment

The simulation environment is based on the Gazebo simulator, which generates
physical models of robots in the 3D space. Various ROS packages were used to
build the system model, some packages were readily available and others had to
be modified or developed. To include the UAV robots and their aerodynamics,
we use the RotorS package; to include the water medium and the USV dynamics,
we use the VRX package, and to design the tethered UAV−buoy system with its
controller (DSVC), we develop our own package, which is detailed next.

RotorS : The RotorS package [111] lays the infrastructure for the flying UAV
element in Gazebo, by providing multiple known multirotors with their physical
properties. It also includes the sensors needed for UAV flight and sample con-
trollers that allow direct flight in simulation. From this package, we make use of
the UAV platforms, the odometry sensors, and the inner-loop attitude and thrust
controller.

VRX : The Virtual RobotX (VRX) package [112] was developed in 2019 by
the developers of the Gazebo simulator in order to fill the gap in marine robots
simulation, where there were no available models for USVs, as compared to UAVs
and UGVs. The VRX package defines the dynamic water surfaces environment
with current and wave plugins, and handles the computation of the hydrodynamic
forces that affect any USV object, given a set of predefined hydrodynamics coef-
ficient in the Gazebo simulation environment. Both the VRX package and this
work’s methodologies follow the marine dynamic modeling presented by Fossen
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Figure E.3: Gazebo scene with independently spawned buoy (orange) and UAV
robots in a water environment with a landing pad (black).

in [67]. The wave plugin allows users to set customized wave profiles, and the
integrated Gerstner waves give the simulation environment a realistic sense. The
restoring forces are calculated at discrete locations along the vessel hull.

RotorS + VRX : The first task of modeling the tethered UAV−buoy system
in Gazebo is to build both packages together, and integrate their elements in
the same simulation environment, that is, to deploy a floating buoy robot and
a flying UAV robot in the same 3D environment. This is achieved by proper
package installation and generating one launch file to include all of the simulation
elements. To allow the UAV to properly initialize and start spinning its rotors,
it needs to be laid on a fixed ground, otherwise it would sink in the water. For
that purpose, a small (fixed) floating landing pad is required to be added to
the system model. Note that the UAV link does not need to be equipped with
the hydrodynamics plugin. To obtain sensing data for both the UAV and the
buoy, each should be equipped with an odometry plugin, which is responsible
for publishing the link’s pose and rates. With this data available, the spherical
coordinates can be easily calculated by referring to Section 3.2.3. A sample
simulation environment, with independently spawned buoy and UAV robots, is
shown in Fig. E.3.

tuav-buoy : After establishing the above software infrastructure in Gazebo,
the tethered UAV−buoy system is designed using a custom-built package that
was specifically developed for this work. First, we spawn the tethered robot
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as described in the Robot Model section, and we equip it with one odometry
plugin at the main UAV link and another at the main buoy link. Additionally,
the buoy link is equipped with a hydrodynamics plugin and proper definition of
the hydrodynamic coefficients, D′

b and a1,b. Next, the UAV is equipped with the
designed DSVC system to be enable hovering and pulling actions, and to feed it
with the correct commands and measurements of the buoy states, as is described
next.

E.4 Implementation

Below is a list of elements and generated files that are required to model the
tethered UAV−buoy system in Gazebo, with a brief description of each element’s
function:

• Buoy Gazebo dynamics plugin: the VRX wamv_gazebo_dynamics_plugin
.xacro file is upgraded to have a settable link name instead of the generic
"base_link" name, which maks it possible to plug the hydrodynamic plugin
on any link of the robot. Also, the hydrodynamic coefficients are modified
to match those of the selected buoy model.

• buoy physical model file (.xacro): it is a cuboid shape buoy model, equipped
with a hydrodynamics plugin, which can be spawned independently of the
UAV robot. We note that selecting the buoy shape is not arbitrary; for
instance, a buoy with a square-shaped vertical cross-section is not feasible.

• physical tethered UAV−buoy model file (.xacro): it is the main robot defi-
nition file that includes the UAV, the tether, and the buoy links in addition
to their joints. It can be split into multiple .xacro files for convenience. It
also includes the specific system parameters/properties, such as the buoy
mass and tether length. Here, care should be taken with the choice and
naming of the robot base link and its effect on both the RotorS and VRX
packages.

• ocean world file (.xacro): this is the world file that should include
the "ocean_waves" model from the VRX package, and the librotors_
gazebo_ros_interface_plugin.so plugin from RotorS. Additionally, one
can optionally include a landing pad for the UAV and other landmarks or
floating objects within the world file.

• spawn ml-uav launch file (.launch): it includes the specific robot parameters
and is responsible for spawning the tethered UAV−buoy system model in
Gazebo. Note that a set of related files needs to be modified to handle the
name change from the basic UAV robot name (e.g. AR-drone) to the new
tethered UAV−buoy robot name (e.g. ml-uav).
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• topics name (.h): in addition to the list of topics defined in
default_topics.h by RotorS, the buoy odometry, spherical coordinates,
and the DSVC commands topics need to be defined as well. This is achieved
by adding the topics’ names to the default_topics.h file.

• publishers: the additional publishers in the developed ROS package are the
buoy odometry, the DSVC data, the initial spherical position set-point, and
spherical way-point publishers.

• subscribers: the developed package adds a subscriber in the controller node
to the buoy odometry topic. Also, since recording the spherical coordinates
data is of interest, one can optionally subscribe a bag file to the DSVC data
topic.

• way-points file (.txt): this is a text file that includes the DSVC control
state, plus the reference radial position (m), UAV elevation (m), azimuth
angle (°), and buoy surge velocity (m/s).

• startup hovering example (.cpp): the RotorS hovering_example.cpp file
is upgraded to publish a spherical coordinates set-point data instead of a
Cartesian coordinates set-point.

• spherical way-point publisher (.cpp): the RotorS waypoint_publisher
_file.cpp is upgraded to publish a series of spherical coordinates and
buoy surge velocity trajectory points, with an indicator of the action type
whether it is a relative position motion or buoy velocity manipulation.

• DSV controller (.cpp): the RotorS lee_position_controller.cpp file is
upgraded with the DSV controller function, which is responsible for calcu-
lating the desired and actual spherical coordinates of the UAV, the com-
manded acceleration in the spherical frame, and its transformation into the
world frame.

• controller gains file (.yaml): includes the DSVC’s gains.

• Controller node: the RotorS lee_position_controller_node.cpp file is
upgraded to use the DSV controller instead of the standard Cartesian po-
sition controller, and to subscribe to the spherical setpoint and waypoints
publishers instead of their Cartesian counterparts. This node also sub-
scribes to the buoy odometry topic, initializes the DSV controller parame-
ters, and publishes the DSV controller data.

• main launch file (.launch): this file is responsible for initializing all of the
ROS nodes, and it allows the users to choose the world file, the robot and
its spawn location, in addition to the buoy’s link name. The launched nodes
are as follows: 1) Gazebo node with the specified world file and robots to
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spawn, 2) controller node, 3) initial hovering position publisher node, 4)
spherical waypoint publisher node, 5) robot state publisher node, and 6)
joint state publisher node.

After listing and defining the elements and files that are required to model
the tethered UAV−buoy system in Gazebo, a brief description of the working
principle of the developed package is provided. First, the model’s .urdf file is
prepared to include the robot’s description in terms of joints, links, and system
dimensions and parameters. The controller script includes the DSVC control law
presented in (3.53) and (3.58), which is called by the controller node, and it is
responsible for stabilizing the outer-loop dynamics of the system. The signals
required by the controller, namely the waypoints and the odometry messages,
are published by other nodes. The controller node subscribes to these published
signals and delivers them to the DSVC controller function, which in turn returns
the desired inertial acceleration as per (3.60). The predefined RotorS ’s inner-loop
controller handles the remaining computations until delivering the commands to
the motors. The launch file should include the followings steps: loading of the
tethered UAV−buoy system model with the proper USV dynamics and odometry
plugins, launching the Gazebo simulator with ocean world including the waves
plugin and a landing pad, spawning the robot such that the buoy link is above
the water surface and the UAV link is above the landing pad, launching the
controller node, and finally launching the initializer hovering node then the way-
point publisher node.

E.5 Simulation Scenario

Since the developed ROS-gazebo package is meant to serve as a multi-purpose
simulation environment, a sample simulation scenario is provided to demonstrate
the functionality and fidelity of the package. Note that the package can be up-
graded/customized with models, scripts, and plugins to fit a user’s needs.

The proposed simulation scenario considers an AR-drone quadrotor with en-
hanced thrust abilities, a buoy with a mass of 10 kg, and a tether of length 1.3m
discretized into five elements. At first, the UAV spawns above the landing pad,
while being physically connected to a floating buoy via the tether. The UAV
then takes off and hovers, while maintaining an initial position in a spherical
coordinates frame that is centered at the buoy. The UAV prepares to enter the
pulling phase by extending the tether to near its maximum length, then it starts
gradually pulling the buoy up to a specified maximum speed. A turning maneu-
ver, which consists of the buoy going straight then turning left, is executed in
order to demonstrate the steering ability of the system, while obtaining adequate
performance, bounded and practical control signals, and realistic values of the
state variables.
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Figure E.4: Gazebo scene for the tethered UAV−buoy system at different mo-
ments during the locomotion task.

E.6 Simulation Results

Preliminary simulation results in the ROS-Gazebo environment are furnished to
merely demonstrate the functionality of the developed ROS packages and the
fidelity of the system’s dynamical model and designed controller. The simulation
results of the devised scenario are shown in Fig. E.4. Notice the different stages
of the simulation maneuver, starting from (a) initial position hold, (b) tether
extension, (c-f) forward pulling (locomotion), (g) steering to the left, and finally
(h-i) decoupling and returning to a spherical position hold.

The tracking performance of the system is shown in Fig. E.5. The planar
(x−y) trajectory of the buoy is shown in the top subplot that captures the buoy’s
forward motion in the x-direction at first, then turning left for the remainder of
the simulation maneuver. The UAV exhibits good spherical position tracking in
r, α, and φ, as well as adequate buoy surge velocity tracking.

The preliminary ROS-based simualtion results demonstrate the following:

• The various ROS packages that were specifically developed for the proposed
robotic system are functional.

• The UAV−buoy robot is properly defined and it is sensibly influenced by
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Figure E.5: Gazebo simulation tracking results.
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the water environment and tether link forces.

• The proposed control system (DSVC) is implementable using the widely-
used RotorS package for UAV simulation.

• Similar overall performance is obtained as compared with with the MAT-
LAB/Simulink ® model given in Section 3.4.3.

E.7 Future Work

Given that the developed tuav-buoy ROS package is not meant to be a repli-
cate/replacement of the designed MATLAB/Simulink ® model, there is room for
further development, refinement, and additions to the package. For example, the
state machine with its different operating modes can be included, other control
system designs can be implemented, additional system dimensions and configu-
rations can be evaluated, and various buoy shapes and sizes of can be tested.
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Appendix F

Repositories

We make publicly available implementations of the proposed marine locomotive
UAV system and the ICS tuning tools. This is presented by the following open-
source GitHub [113] repositories:

1. AUBVRL/Primitive-ML-UAV: A MATLAB/Simulink implementation of the
system proposed in "A Tethered Quadrotor UAV-Buoy System for Marine
Locomotion", in ICRA 2021, by A. Kourani and N. Daher (coupled case
only).

2. AUBVRL/Marine-Locomotive-UAV: A MATLAB/Simulink implementation
of a robotic system consisting of a quadrotor UAV that pulls a floating
buoy across water. Velocity manipulation of the buoy is allowed through a
tether that links the UAV to the buoy (both coupled and decoupled cases
for the 2D model).

3. AUBVRL/3D-Tethered-UAV-buoy: A MATLAB/Simulink implementation
of the tethered UAV-buoy system (3D model).

4. AUBVRL/tuav-buoy: A ROS package for simulating the tethered
UAV−buoy system.

5. AUBVRL/Tune-Backstepping-Like-PID: Some MATLAB scripts that show
the similarity between the backstepping and the PID gains, and help tune
a backstepping control law in a similar way to PID tuning.
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