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An Abstract of the Dissertation of

Abbas Mohamad Sidaoui for Doctor of Philosophy
Major: Electrical and Computer Engineering

Title: Human-Robot Interaction Through Mixed-Initiative Supervised Autonomoy

Achieving full autonomy in robotic tasks is the ultimate goal for researchers and designers.
This goal is motivated by the rapid advancements in automation algorithms and the decreasing
cost of robotic hardware. However, full autonomy is still faced by challenges due to unplanned
changes and unexpected situations that can occur anytime in the robot’s workspace. Due to
various factors, robots might not be able to fully perceive their environments, which increases
the possibility of errors and decreases the efficiency of performing the tasks. To overcome such
challenges, this thesis proposes to combine the unique and complementary traits of both humans
and robots by allowing a human to supervise autonomy tasks and intervene when needed. This
intervention is based on the human Situation Awareness (SA) and judgment, or upon requests
that are triggered by the robot’s ‘self-confidence’ (SC) in being able to successfully perform the
task. In short, the aim of this research is to propose a Mixed-Initiative Supervised Autonomy
(MISA) framework and validate its applicability in different robotics applications.

To evaluate the applicability and utility of MISA, it is implemented in three different proof-
of-concept (POC) applications: grid-based collaborative simultaneous localization and mapping
(SLAM), automated jigsaw puzzle reconstruction, and autonomous robot grasping. Augmented
Reality (AR) (for SLAM) and two-dimensional graphical user interfaces (GUI) (for puzzle re-
construction and autonomous robot grasping) are custom-designed to enhance human SA and
allow intuitive interaction between the human and the agents.

The superiority of the MISA framework is demonstrated through experiments. In SLAM,
the superior maps produced by MISA preclude the need for post processing of any SLAM stock
maps; furthermore, MISA reduces the required mapping time by approximately 50% versus the
traditional baseline approach. In automated puzzle reconstruction, the MISA framework out-
performs both fully autonomous solutions, as well as those resulting from on-demand human
intervention prompted by the agent. In robot grasping, applying MISA results in a marked per-
formance improvement by increasing the end-to-end success rate of the learning-based baseline
approach from 35.0% to 87.6% .
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Chapter 1

Introduction

1.1 Background and Rationale of the Thesis

When automation was first introduced, its use was limited to well-structured and controlled
environments in which each automated agent performed a very specific task [1]. Nowadays,
with the rapid advancements in automation and the decreasing cost of hardware, robots are
being used to automate more tasks in unstructured and dynamic environments. However, as
the tasks become more generic and the environments become more unstructured, full autonomy
is challenged by the limited perception, cognition, and execution capabilities of robots [2].
Furthermore, when robots operate in full autonomy, the noise in the real world increases the
possibility of making mistakes [3], which could be due to certain decisions or situations that the
robot is uncertain about, or due to limitations in the software/hardware abilities. In some cases,
the robot is able to flag that there might be a problem (e.g., high uncertainty in object detection
or inability to reach a manipulation goal); while in other cases, the robot may not even be aware
that errors exist (e.g., LiDAR not detecting a transparent obstacle).

In recent years, human-robot interaction has been gaining more attention from robotics re-
searchers [4]. First, robots are being deployed to automate more tasks in close proximity with
humans [5, 6]; second, the challenges facing autonomous robots may not perplex humans, ow-
ing to their superior cognition, reasoning, and problem-solving skills. This has lead researchers
in the HRI community to include humans in the decision-making loop to assist and provide
help, as long as autonomous systems are not fully capable of handling all types of contingen-
cies [7–9]. Including a human in the loop can mitigate certain challenges and limitations facing
autonomy, by complementing the strength, endurance, productivity, and precision that a robot
offers on one hand, with the cognition, flexibility, and problem-solving abilities of humans on
the other. In fact, studies have shown that combining human and robots skills can increase the
capabilities, reliability, and robustness of robots [10]. Thus, creating successful approaches to
human-robot interaction and human-autonomy teaming is considered crucial for developing ef-
fective autonomous systems [11, 12], and deploying robots outside of controlled and structured
environments [13, 14].

One approach to human-autonomy teaming is having a human who helps the autonomous

1



agents when necessary. In fact, seeking and providing help to overcome challenges in perform-
ing tasks has been studied by human-psychology researchers for many decades. When uncertain
about a situation, people tend to gather missing information, assess different alternatives, and
avoid mistakes by seeking help from more knowledgeable persons [15]; for example, sometimes
junior developers consult senior colleagues to help in detecting hidden bugs in a malfunctioning
code, or students ask teachers to check an assignment answer that they are not certain about.

Help is also considered indispensable to solve problems and achieve goals that are beyond a
person’s capabilities [15]. When aware of their own limitations, people seek help to overcome
their disadvantaged situations; for instance, a shorter employee may ask a taller colleague to
hand them an object that is placed at a high shelf. In some cases, people might not be aware
of the situation nor their limitations; here, another person might have to intervene and provide
help to avoid problems or unwanted outcomes. For example, a supervisor at work may step in
to correct a mistake that an intern is not aware of, or when a passer-by helps a blind person
avoid an obstacle on the sidewalk. Moreover, exchanging help has been shown to enhance
the performance and effectiveness of human teams [16–18], especially in teams with members
having different backgrounds, experiences, and skill sets.

With the above in mind, Figure 1.1 summarizes the motivation behind the proposed MISA
framework from various perspectives. First, the human psychology literature indicates that
although humans think of themselves as being autonomous [19], they always seek and receive
help to achieve their goals and overcome uncertain situations and limited capabilities. Second,
robotics literature states that autonomous robots are still facing challenges due to limitations in
hardware, software, and cognitive abilities. These challenges lead to mistakes and problems;
some of which can be detected and flagged by the robot, while others may go undetected by the
robot. Third, research in HRI and human-autonomy interaction illustrates that having a human
to interact with and assist autonomous agents is a must.

From the three different lines of research, it can be concluded that there is a need for a
new HRI framework that takes advantage of the complementary skills of humans and robots
on one hand, and adopts the general idea of help-seeking and helping behaviors from human-

Figure 1.1: The proposed MISA framework is motivated by needs from three areas: autonomous
robots, human psychology, and human-robot interaction. The grey block in the middle shows
an illustration of the proposed MISA system. The autonomous agent(s) perform the tasks au-
tonomously and send the human supervisor their internal states, tasks results, and SC-based
assistance requests through a user interface. The supervisor can assist the robot or intervene
either directly or through the user interface.
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human interaction on the other hand. While state-of-the-art frameworks focus mainly on how
to allocate and exchange tasks between humans and robots, there is no generalized framework,
as far as I know, that considers including a human in the loop to support autonomous systems
in which a human cannot completely take over the tasks execution. For this reason, MISA
is proposed as a framework for HRI that allows a human to supervise autonomous tasks and
provide help to avoid mistakes during autonomy, without a complete takeover of these tasks.
Human assistance can be requested by the robot in tasks where it can reason about its SC. In
tasks where the robot is not aware of its limitations, or does not have the means to measure its
SC, human assistance is based on the human’s SA. Moreover, the type, timing, and extent of
interaction between the human supervisor and the robot are governed within MISA through a
MISA-based user interface.

1.2 Contributions

The main contribution of this thesis is to propose and validate a Mixed-Initiative Supervised
Autonomy framework for Human-Robot Interaction, which leverages the robot’s SC and the
human’s SA in order to improve the performance of automated tasks and mitigate full auton-
omy limitations. Through the proposed framework, this thesis provides a guideline and generic
flowchart to help researchers apply MISA in any automated application. To validate the pro-
posed framework, it is tailored and applied to three different POC applications, as follows:

1. MISA in collaborative SLAM:
The proposed application of MISA in collaborative SLAM allows three co-located het-
erogeneous types of agents (robot, AR head mount device AR-HMD, and human) to
contribute to the grid-based SLAM process.

Whenever an agent’s self-confidence drops, it prompts the human supervisor to approve
or correct its pose estimation. In addition, the human can view the map being built su-
perposed on top of the real environment through a custom-developed AR interface, and
apply edits to this map in real-time based on his/her SA. Moreover, when the robot is
unable to reach a certain navigation goal, it prompts the human to assist in mapping the
area corresponding to this goal, either through editing the map him/herself or through
activating the AR-HMD collaborative mapping feature.

2. MISA in automated puzzle reconstruction:
This application of MISA in automated puzzle reconstruction addresses the challenges
presented in solving image puzzles with square pieces of unknown locations and orienta-
tions, using the greedy approach.

Whenever the agent’s self-confidence drops, it prompts the human supervisor to ap-
prove/decline the merging of puzzle pieces through a custom-developed GUI. Further-
more, the GUI allows the human supervisor to monitor the puzzle reconstruction results,
and intervene to correct mismatched pieces and the final puzzle frame based on his/her
SA.
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3. MISA in robot grasping:
The application of MISA in robot grasping aims to address the challenges and limitations
affecting end-to-end, learning-based robot grasping.

Whenever the agent’s self-confidence drops, it requests the supervisor’s assistance in ap-
proving/correcting the proposed grasp pose through a custom-developed GUI. In addi-
tion, the agent notifies the supervisor when the target object is out-of-reach. The human
supervisor can also assist the robot in eliminating execution errors through defining the
arm-camera calibration offset based on his/her SA.

Experimental validation provides empirical evidence that applying the proposed MISA frame-
work outperforms full autonomy in the three POC applications. Moreover, this work presents
the following additional contributions:

• Designing and implementing an intuitive MISA-based AR interface for SLAM applica-
tions. This interface allows a human supervisor to view the robot’s map augmented on
top of the real environment and interact with it in real-time. The proposed AR interface
could be easily integrated in any grid-based SLAM technique.

• Designing and implementing two intuitive MISA-based GUIs for HRI in puzzle recon-
struction and robot grasping. The GUIs allows the human supervisor to monitor the
autonomous agent, intervene when needed, and/or provide assistance upon requests.

• Defining self-confidence metrics for: robot pose estimation, clusters merging in puzzle
reconstruction, and grasp pose estimation in data-driven robot grasping.

• Modeling of a virtual AR sensor to produce two dimensional (2D) occupancy grid maps
from the mesh built by an AR-HMD.

• Online solution that allows merging of 2D occupancy grid maps produced by a robot,
AR-HMD, and human supervisor.

1.3 Thesis Related Work

Researchers in the HRI community have been advocating bringing back humans to the au-
tomation loop through different approaches and methods. Below is a discussion of the most
common approaches.

The term ‘Mixed-initiative (MI)’ was first introduced in 1970 in the context of computer-
assisted instruction (CAI) systems [20]. This was followed by several definitions in the domain
of Human-Computer Interaction (HCI) [21–23], where MI was proposed as a method to enable
both agents and humans to contribute in planning and problem-solving based on their knowl-
edge and skills. Motivated by the previous definitions, Jiang and Arkin [24] presented the first
clear definition for mixed-initiative human-robot interaction (MI-HRI) as follows:
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“A collaboration strategy for human-robot teams where humans and robots oppor-
tunistically seize (relinquish) initiative from (to) each other as a mission is being
executed, where initiative is an element of the mission that can range from low-
level motion control of the robot to high-level specification of mission goals, and
the initiative is mixed only when each member is authorized to intervene and seize
control of it.”

According to this definition, the term ‘initiative’ in MI-HRI systems refers to a task of the
mission that could be performed and seized by either the robot or the human. This means
that both agents (robot and human) may have tasks to perform within a mission, and both can
completely take over tasks from each other. Unlike MI-HRI, in MISA the term ‘initiative’ is
used to refer to ‘initiating the human assistance,’ and initiatives are considered mixed since this
assistance is initiated either by the autonomous agent’s request or by the human supervisor.
Another difference between MISA and MI-HRI is that all tasks within a MISA system are
performed by the robot; albeit, human assistance is requested/provided to overcome certain
challenges and limitations.

Another method that enables the contribution of both humans and agents in an automated
task is ‘adjustable autonomy’ that was defined by Zieba et al. [25] as:

“The property of an autonomous system to change its level of autonomy while the
system operates. The human operator, another system, or the autonomous system
itself can adjust the autonomy level.”

Thus, a system with adjustable autonomy allows switching autonomy states between two ex-
tremes: full autonomy and manual control. This adjustment enables the user to help the system
avoid some errors and failures through assisting in some tasks or taking control of the system in
certain conditions. In literature, there are different approaches to applying adjustable autonomy,
some of which are: teamwork-centered, supervised, degree-based, level-based, sliding, policy-
based, and predictive approaches [26]. These approaches define different rules and conditions
that govern the autonomy level change in a system. However, the common factor among them
is that whenever the autonomy is adjusted, some tasks are re-allocated between the human and
the agents, and certain conditions have to be met in order to re-adjust the system back to the
full-autonomy state. In the hereby proposed framework, the tasks are not re-allocated between
the human and the agent but rather the human is acting as a supervisor to assist the autonomous
agent and intervene when needed. Since no additional tasks are re-allocated to the human in
MISA, he/she can supervise multiple agents at once with, theoretically, less mental and physical
strain as compared to re-assigning tasks to the human himself.

It is important to mention that MISA is not proposed to replace these previous approaches,
but rather to expand the spectrum of HRI to autonomous systems where it is not feasible for a
human to ‘completely takeover’ the mission tasks. Examples of such tasks are real-time local-
ization of a mobile robot, motion planning of multiple degrees-of-freedom robotic manipulators,
path planning of racing autonomous ground/aerial vehicles, among others. In fact, every HRI
approach has use-cases where it performs better in. Adjustable autonomy and MI-HRI focus
mainly on how to allocate functions between the robot and the human to enhance the perfor-
mance of a collaborative mission. However, MISA is proposed to enhance the performance,
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decrease uncertainty, and extend capabilities of robots that are initially fully autonomous by
including a human in the loop to assist the robot without taking over any task execution.

Setting the Level of Robot Autonomy (LORA) was also considered by researchers as a
method for HRI. The concept of levels of autonomy was first introduced by Sheridan and Ver-
plank [27] in 1978, where 10 levels of machine autonomy were defined, ranging from “the
human executes all actions” to “the computer executes all actions.” This was a general taxon-
omy that did not consider the inputs of the action functions such as information acquisition and
analysis. In 2000, Parasuraman et al. [28] extended the taxonomy to be applied in 4 stages of
automation: (1) information acquisition, (2) information analysis, (3) decision and action selec-
tion, and (4) action implementation. Most recently, and being inspired by the previous works,
Beer et al. [29] proposed a new taxonomy for levels of autonomy that considers the perspective
of HRI and the roles of both the human and the robot. This taxonomy consists of 10 Levels of
Robot Autonomy (LORA) that are defined based on the allocation of functions between robot
and human in each of the sense, plan, and act primitives. Among the continuum, there are two
levels of relevance to the work in this thesis:

• Shared Control with Human Initiative: “The robot autonomously senses the environment,
develops plans/goals, and implements actions. However, the human monitors the robot’s
progress, and may intervene and influence the robot with new goals/plans if the robot is
having difficulty.”

• Shared Control with Robot Initiative: “Robot performs all aspects of the task (sense,
plan, act). If the robot encounters difficulty, it can prompt the human for assistance in
setting new goals/plans.”

Although these two levels allow for human assistance, it is limited to the sense and plan
primitives. In addition, the continuum does not contain a level which allows interaction based
on both human judgment and requests from the robot. To mitigate the limitations of these two
LORAs, the MISA framework proposes a new level labelled as ‘Mixed-Initiative Supervised
Autonomy (MISA) Level,’ stated as follows:

The robot performs all three primitives (sense, plan, act) autonomously, but can ask for
human assistance based on a pre-defined internal state. In addition, the human can intervene
to influence the output of any primitive when s/he finds it necessary.

Moreover, and unlike LORA, MISA provides a clear framework for implementation.

In addition to the general approaches discussed above, several application-oriented methods
were presented in which human help is exploited to overcome autonomy challenges and limi-
tations. Certain researchers focused on the idea of having the human decide when to assist the
robot or change its autonomy level. For instance, systems that allow the user to switch auton-
omy level in a navigation task were proposed in [30, 31]. Although these methods allow the
human to switch between autonomy levels, the definition of the levels and the tasks allocated to
the human in each level are different and mission-specific. In [32], a human operator helps the
robot in enhancing its semantic knowledge by tagging objects and rooms via voice commands
and a laser pointer. In such human-initiated assistance approaches, helping the robot and/or
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changing the autonomy level is solely based on the human judgment; thus, the human has to
closely monitor the performance in order to avoid failures or decaying performance, which
results in additional mental/physical workload.

Other researchers investigated approaches where interaction and human help is based on the
robot’s request only. In [10], a framework that allows the robot to request human help based on
the value of information (VOI) theory was proposed. In this framework, the human is requested
to help the robot by providing perceptual input to overcome autonomy challenges. In [33], time
and cost measures, instead of VOI, were used to decide on the need for interaction with the
human. In [34] and [35], human assistance is requested whenever the robot faces difficulties or
unplanned situations while performing navigation tasks. Instead of requesting human help in
decision-making, [36] proposed a mechanism that allows the robot to switch between different
autonomy levels based on the ‘robot’s self-confidence’ and the modeled ‘human trust in the
robot.’ In this approach, the robot decreases its autonomy level, and thus increases its depen-
dency on the human operator, whenever its confidence in accurately performing the task drops.
In these robot-initiated assistance approaches, the human interaction is requested either directly
through an interface or by the agent changing its autonomy level; thus, any failure to detect the
need for human assistance would lead to performance deterioration and potentially catastrophic
consequences.

Other methods considered humans assisting robots based on both human judgment and
robots requests. In [37], an interactive human-robot semantic sensing framework was proposed.
Through this framework, the robot can pose questions to the operator, who acts as a human sen-
sor, in order to increase its semantic knowledge or assure its observations in a target search
mission. Moreover, the human operator can intervene at any moment to provide useful infor-
mation to the robot. Here, human assistance is limited to the sensing primitive. In the context
of adjustable autonomy, [38] proposed a remotely operated robot that changes its navigation au-
tonomy level when a degradation in performance is detected. In addition, operators can choose
to change autonomy levels based on their own judgment. In [39], a human can influence the
robot autonomy via direct control or task assignment, albeit the proposed controller allows the
robot to take actions in case of human error. Some researchers refer to MI as the ability of the
robot to assist in or takeover the tasks that are initially performed by the human [40], or combine
human inputs with automation recommendations to enhance performance [41]. Finally, in [42]
the concept of MI is used to decide what task to be performed by which agent in a human-robot
team. In contrast to such systems where the human is a teammate who performs tasks, the
MISA framework proposes the human as a supervisor who intervenes to assist the autonomous
agent as needed: either on-demand or based on SA.
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Chapter 2

Proposed Methodology

In the proposed MISA framework, HRI systems consisting of a human supervisor and au-
tonomous agent(s) are considered, where MISA is defined as:

”A Mixed-Initiative Supervised Autonomy framework that allows a robot to sense,
plan, and act autonomously, but can ask for human assistance based on its internal
self-confidence. In addition, the human supervisor can intervene and influence the
robot sensing, planning, and acting at any given moment based on his/her SA.”

According to this definition, the robot operates autonomously but the human supervisor is al-
lowed to help in reducing the robot’s uncertainty and increasing its capabilities through SC-
based and SA-based assistance. The application of MISA in HRI systems relies on the following
assumptions:

1. The human is aware of the application being performed and its automation limitations.

2. The autonomous agent has a defined self-confidence based mechanism that it can use to
prompt the supervisor for help. Through this mechanism, the robot requests the human
supervisor to approve, decline, or edit the decisions it is not certain about. Moreover, this
mechanism is used to inform the supervisor if the robot is unable to perform a task.

3. When the autonomous agent seeks help, the human is both ready to assist and capable of
providing the needed assistance.

4. The MISA system is equipped with an intuitive communication channel (MISA-based
interface) that allows the agent to ask for help and the human to assist and intervene in
the tasks.

5. The human has adequate expertise and SA, supported by the MISA-based interface, to
intervene in the supervised task.

The proposed framework consists of a guideline and block diagram to help researchers apply
MISA in any automated system. Figure 2.1 presents the MISA guideline, which is discussed
below.
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Figure 2.1: Guideline to apply the proposed MISA framework in autonomous applications with
four main modules.

1. Define tasks to be supervised by human: the first step that is necessary to implement
MISA is for one to define the tasks in which human supervision is needed based on the chal-
lenges and limitations of autonomy in the given system/application. These tasks depend on the
robot’s hardware/software, mission type, and the environment in which the robot is operating.

To understand the challenges and limitations of autonomy in the given system/application,
the MISA system designer can run the application in full autonomy mode, and compare the
obtained performance and results with those that are expected. Another way is to find common
challenges and limitations for similar systems/applications from the literature. After that, the
MISA system designer has to define the tasks affected by these challenges and limitations, in
which a human could help. For example, some challenges that face an autonomous mobile robot
in a SLAM application can be present in obstacles that the robot cannot detect; these challenges
affect the mapping task. while other challenges that affect the picking task in a pick-and-place
application can be present in objects that are out of the manipulator’s reach.

The output of this step is a list of all the tasks that should be supervised by the human. It is
important to mention here that not all tasks in the autonomous application need to be supervised,
as some tasks result in better performance when being fully autonomous.

2. Define the robot’s self-confidence attributes: this step is concerned with the SC mech-
anism used by the robot to reason about when to ask the human for help and what happens if
the human does not respond. Depending on the type of task, available internal-states of the
robot, and full-autonomy experiments, the robot SC state could be toggled between ”confident”
and ”not-confident” either through (1) detecting certain events (SC-events), and/or through (2)
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monitoring certain metric/s (SC-metrics) within the supervised task and comparing them to a
confidence threshold that is defined experimentally. Examples of events that could be used to
set robot SC to ”not-confident” are the loss of sensor data, inability to reach the goal, failure in
generating motion plans; while examples of monitored metrics are performance, battery level,
dispersion of particles in a particle filter, among others.

Depending on the task and how critical it is to get human assistance once requested, a ‘no-
response’ strategy should be defined. Examples of such strategy are: wait, request again, wait
for defined time before considering the decision approved/declined, put request on hold while
proceeding with another task, among others.

For each task to be supervised, the MISA system designer has to determine whether or
not it is possible to define events/metrics to be used to set the SC state. Thus, the outputs of
this step include (1) SC-based tasks: tasks of which human assistance is requested through SC
mechanism, (2) SC metrics and/or SC events, (3) ‘no response’ strategy for each SC-based task,
and (4) supervised tasks that human assistance could not be requested through a SC mechanism.

3. Define the human situation awareness attributes: this step is crucial for supervised
tasks in which robot SC attributes could not be defined. In such tasks, the assistance has to
depend solely on the human SA. Given that on one hand the human is aware of the system’s
limitation, and on the other is endowed with superior situational and contextual awareness, s/he
can determine when it is best to intervene at a task to attain better results where SC attributes
could not be defined. However, the MISA system designer should define the needed tools to
enhance human SA and help them better assess the situation. Examples of SA tools include
showing certain results of the performed task, and communicating the status of the task plan-
ning/execution, to name a few.

The outputs of this step are (1) SA-based tasks: tasks in which assistance depends on human
SA, (2) tools that would enhance human SA.

4. Choose the corresponding MISA-based user interface: after defining the tasks to be
supervised and the SC/SA attributes, a major challenge lies in choosing the proper MISA-based
UI that facilitates interaction between the human and the agent. The interface, along with the
information to be communicated highly depend on the tasked mission, the hardware/software
that are used, and the tasks to be supervised. Thus, the MISA-based UI must be well-designed
in order to (1) help both agents communicate assistance requests/responses and human inter-
ventions efficiently, (2) maximize the human awareness through applying the SA tools, and (3)
govern the type of intervention/assistance so that it does not negatively influence the entire pro-
cess. MISA-based UIs include, but are not limited to graphical user interfaces, AR interfaces,
projected lights, vocals, gestures, etc.

The desired output from this step is choosing/designing a MISA-based UI.

In addition to the discussed guideline, Figure 2.2 presents a block diagram to help apply
MISA in any automated system. This diagram consists of two main blocks: the Autonomous
System block and the MISA Coordinator (MISAC) block. The autonomous system block con-
tains modules that correspond to the tasks performed by the autonomous agent; as mentioned
in the guideline, some of these tasks are supervised, while others are fully autonomous.

10



Figure 2.2: Generic diagram of the proposed MISA framework with its main blocks and mod-
ules.

The MISAC block contains three main modules: SC-Interaction handler, SA-Interaction
handler, and the MISA-based UI. Interaction based on robot SC is handled through the SC-
Interaction handler. This module monitors the SC-events/metrics defined through the ‘robot SC
attributes’ and sends assistance requests to the human supervisor through the MISA-based UI.
When the human responds to the request, SC-Interaction handler performs the needed opera-
tions and sends back the results to the corresponding supervised task. If no response from the
human is received, the SC-Interaction handler applies the no-response strategy along with the
needed operations.

Since an operator monitors the system through the SA tools provided in the MISA-based
UI, s/he can intervene at any time based on SA. The SA-Interaction handler receives the human
input/intervention, applies the needed operations, and sends the results to the corresponding
supervised task. It is important to mention that both SC- and SA-Interaction handlers can be
connected to several supervised tasks; and thus could handle different types of interactions
and operations. Moreover, the MISAC block could contain other modules that handle some
operations not directly related to the SC- SA- interaction handlers.

To validate the generality and utility of the proposed framework, it is applied to three au-
tonomous applications as previously mentioned. For each application, the tasks to be super-
vised are defined through analyzing the performance of the fully autonomous system, and spot-
ting common challenges from the literature. Then the robot SC attributes and the human SA
attributes are defined through experimentation for each system separately. As for the MISA-
based UI, custom-designed AR interfaces and 2D graphical interfaces are developed to enhance
the human’s awareness and communicate information and requests efficiently.
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Chapter 3

POC 1: MISA in collaborative SLAM

3.1 Introduction

Simultaneous localization and mapping (SLAM) plays an important role in a number of in-
door and outdoor applications. For instance, industrial mobile robots heavily rely on SLAM to
accomplish their tasks while autonomously navigating their environments. Moreover, SLAM
is used for tasks such as autonomous aerial surveillance [43, 44], underwater reef monitor-
ing [45, 46], 3D reconstruction of underwater morphologies [47], and underground mine ex-
ploration [48, 49]. SLAM can be implemented in 2D or 3D using sensors such as LiDARs or
cameras. Even though the proposed framework is applied to 2D SLAM, the proposed method
is extendable to 3D.

A main challenge of SLAM is that its estimates are affected by sensory errors, modeling
errors, localization errors, and map representation errors. Localization errors could be caused
by hardware faults, wheels slippage, inaccurate modeling, inaccurate map, and other causes
related to the environment where the mission is being performed. When considering map rep-
resentation errors, it is important to distinguish between two types of errors: those affecting the
localization, and those affecting the real environment’s representation. Noisy range measure-
ments, changes in the environment being mapped, and the presence of dynamic obstacles are
possible causes of map errors that could affect localization. Figure 3.1 shows an example of
certain conditions that lead to errors affecting the real environment representation. Objects of
Type 1 are obstacles that are lower or higher than the LiDAR and thus cannot be detected. Type
2 objects are transparent obstacles, such as glass panels. Type 3 objects represent un-navigable
areas such as stairs or holes in the ground. Although not detecting these types of obstacles has
little impact on the localization part of SLAM, the robot might consider such areas as acceptable
for navigation, and thus might plan a path through them. Finally, Type 4 objects are obstacles
that the user might want not to include in the output map. Figure 3.2 shows a comparison be-
tween the map obtained by a robot running SLAM in a sample environment (Figure 3.2a), and
a map that provides more accurate representation of the real environment, in which the four
mentioned error types are taken into account (Figure 3.2b). This sample scenario emphasizes
the importance of evaluating and assessing the quality of the robot’s map, especially when the
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Figure 3.1: Conditions that affect map representation

robot is operating in an environment that is shared with humans.

To mitigate these challenges, most maps today are post-processed, however this is a long
and dull process that is difficult to perform after the navigation is complete. Even worse, map
edits usually require several trips to the mapped site for the sake of re-measuring and correct-
ing dimensions, as well as marking forbidden areas that were not flagged by the robot during
navigation. A much better approaches can entail having a human in-the-loop to assist the robot
in SLAM, or even having multiple agents that contribute to the mapping process. Through
collaborative mapping, global maps could be built by merging sub-maps obtained by different
agents [50], or by directly fusing sensory data from these agents [51]. Moreover, one agent
can localize itself in a map built by another [52]. In all cases, better mapping accuracy can
be achieved through redundancy or through the fact that one agent can depend on the comple-
mentary beneficial properties of the other (being an autonomous agent or a human supervisor).
Building on these concepts, the MISA framework is applied to collaborative SLAM.

Recent advances in AR have widened the HRI and human-in-the-loop scenarios where the
operator can program [53], share control [54], or collaborate with a robot to enhance its per-
formance [55]. Moreover, the latest AR-HMDs (such as Microsoft HoloLens HL) have built-in
Visual SLAM algorithms that perform spatial mapping to produce 3D meshes of the operating
environments [55]. Using AR-HMD in SLAM would allow for intuitive human supervision and
interaction with the agent/s performing localization and mapping. Moreover, having a human in
the loop, who can intervene to correct errors and supervise the collaboration between different
agents based on superior awareness and judgment skills, would enhance the performance and
help overcome autonomy challenges.

The proposed application of MISA in collaborative SLAM allows three co-located hetero-
geneous types of agents (robot, AR-HMD, and human) to contribute to the SLAM process.
Applying MISA here allows for real-time pose and map correction. Whenever an agent’s self-
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Figure 3.2: The Map obtained from traditional SLAM (a) versus the map that reflects the real
environment more accurately (b).

confidence drops, it asks the human supervisor to approve/correct its pose estimation. In addi-
tion, the human can view the map being built superposed on the real environment through an
AR interface that was specifically developed for this purpose, and apply edits to this map in
real-time based on his/her SA. Moreover, when the robot is unable to reach a certain navigation
goal, it prompts the human to assist in mapping the area corresponding to this goal; the human
here is free to choose between mapping the area through editing the map him/herself or through
activating the AR-HMD collaborative mapping feature. In the latter case, the AR-HMD con-
tributes to the map building process by adding obstacles that are not detected by the robot and/or
map areas that the robot cannot traverse.

The rest of the chapter is structured as follows: Section 3.2 presents previous related work.
Section 3.3 gives an overview on the baseline SLAM approach and how the proposed framework
is implemented in collaborative SLAM, while Section 3.4 describes the experimental setup,
experiments, and results.

3.2 Related Work

Developing HRI systems where the efficiency and perception of humans aid the robot in
SLAM has gained interest in literature. For instance, [56] showed that augmenting the map
produced by a robot with human-labelled semantic information increases the total map accu-
racy. However, this method required post processing of these maps. A similar approach was
developed by Diosi et al. [57], who presented interactive mapping, which uses human input
to semi-autonomously create a labelled map of the environment. [58] proposed to correct scan
alignments of 3D scanners through applying virtual forces by a human via a GUI. since this
method lacks localization capability, it cannot produce large accurate maps. Sprute et al. [59]
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proposed a system where a robot performs SLAM to map an area; when the robot is finished
with mapping, the user can preview the environment through a tablet, equipped by an RGBD
camera, and can manually add virtual borders to define forbidden areas. These borders are then
added to the robot’s map as navigation-forbidden areas. Although these systems proved superior
over full-autonomy methods by being more efficient in increasing map accuracy and navigation
performance, they totally depend on human awareness and do not consider requesting help from
the human in case of challenging situations.

The idea of collaborative SLAM is not new. An online pose-graph SLAM for multiple mo-
bile robots using 3D LiDARS was proposed in [51]. This approach is based on a master-agent
that receives odometry and scans matching factors from the robots in order to perform pose-
graph optimization. Schmuk and Chli [50] presented a collaborative keyframe-based SLAM
architecture consisting of multi UAV agents. In their work, each agent is performing short-
memory SLAM, and a central station takes care of fusing sub-maps into a global optimized
map and sending it back to the agents. Since these method adopts a centralized approach for
map merging, any connectivity loss will cause major errors in SLAM estimates. [60] proposed
a collaborative SLAM method that merges point clouds from a camera and rotating 2D LiDAR
in order to localize a mobile robot in a map produced by a UAV, and Fankhauser et al. [52] lo-
calized a legged robot in a map produced by another robot. The problem with such approaches
is that one agent fails to localize when navigating in an area that is not yet mapped by the sec-
ond agent. In the proposed implementation of MISA framework in collaborative SLAM, delays
and short communication losses are not a limitation since each agent runs SLAM on its own.
Moreover, the proposed system benefits from one agent (e.g. AR-HMD) to correct the mapping
errors of the other agent (e.g. robot) under the supervision of a human operator, who can also
intervene based on the agents’ requests or his/her judgment.

Integrating AR technology in human-robot interaction is relatively new but is gaining more
interest with the advancement of AR hardware. In [54], a HoloLens is used to control a robotic
arm in a pick-and-place application. AR was also used in [61] to train a robot to open bottles
via a virtual gripper. Moreover, an AR-HMD was used to program robots and view their plans
in [53] and [62]. In the context of navigation, Zolotas et al. [63] proposed an AR system to help
users control their wheelchairs. Finally, [64] proposed the use of AR in collaborative search-
and-rescue missions. The system consists of a robot running SLAM and communicating with
HL to display paths for the operator when the robot finds its goal. The implementation of MISA
in SLAM makes use of AR-HMD to (1) visualize the map created by a robot performing SLAM
aligned on the physical environment, (2) evaluate the map correctness, and (3) edit the map
in real-time through intuitive gestures. Moreover, the system benefits from the visual SLAM
capabilities of the HoloLens to collaborate with the robot in map building tasks.

3.3 System Overview

This section presents a brief description of OpenSLAM Gmapping, the SLAM baseline
approach, followed by an overview of MISA’s implementation on top of this baseline.
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3.3.1 Baseline Approach: OpenSLAM Gmapping

To establish a baseline, OpenSLAM gmapping [65] is adopted. OpenSLAM gmapping is a
SLAM technique that applies Rao-Blackwellized particle filter (RBPF) to build grid maps from
laser range measurements and odometry data [65]. RBPF was first introduced by Murphy et al.
[66]. It consists of N particles in set Rt where each particle R(i)

t = (ζ
(i)
t , η

(i)
t , w

(i)
t ) is presented

by a proposed map η(i)t , pose ζ(i)t inside this map, and an importance weight w(i)
t . OpenSLAM

can be summarized by five main steps [65], shown in Figure 3.3 and briefly discussed below.

Pose Propagation: At every iteration, odometry ut is calculated through the motion model and
used to propose the new poses from the previous poses ζt−1. Each particle R(i)

t is sampled from
R

(i)
t−1 by giving it an initial pose ζ

′(i)
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(i)
t−1 ⊕ ut, where ⊕ is the standard pose compound

operator [67].

Scan Matching: For every particle with pose ζ
′(i)
t , scan-matching between the new observation

zt and the previous map η(i)t−1 is applied, and a score is given to this pose based on matching per-
centage. Each particle’s pose is then adjusted within a predefined window until the maximum
scan matching score is achieved for this single particle, resulting in a new corrected pose ζ(i)t
for each particle.

Importance Weighting: The observation model p(z|ζ, η) and observations zt are used to cal-
culate an updated importance weight wit for each particle according to the importance sampling
principle given by equation (3.1).
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Adaptive Resampling: This step is important for replacing particles of low importance weights
by those of high weights. First, dispersion of the particles’ importance weights is measured
through the effective sample size Neff , which is given by equation 3.2. If Neff drops below a

Figure 3.3: Flowchart representing the different modules in OpenSLAM gmapping baseline.
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pre-defined threshold, resampling is done by replacing particles with w̃t < 0.5 by duplicates of
the particles with w̃t > 0.8, where w̃t is the normalized importance weight of particle R(i)

t .

Neff =
1∑N

i=1(w̃t
(i))2

, (3.2)

Map update: Each map η(i)t is updated based on the particle’s new pose ζ(i)t and observation
zt. The map representation technique used is Occupancy Grid Mapping (OGM), which was
first introduced first by Moravec and Elfes [68]. In OGM, maps are formed out of cells with
assigned occupancy probabilities where a probability between 0 and the occupancy threshold
thoc means that the cell is Free, probability between thoc and 1 means that it is Occupied, and a
probability of -1 means that this cell is still Undiscovered.

The pose and map corresponding to the particle with the highest weight are considered as
the robot pose PR and robot map MR in the remaining of this chapter.

3.3.2 Applying MISA in Collaborative SLAM

This section describes how the proposed MISA framework is applied in collaborative SLAM,
following the generic methodology presented in Chapter (2). Table 3.1 summarizes the inputs
form the SLAM problem, which are used to satisfy the MISA framework.

• Tasks to be supervised by the human:
Based on the surveyed literature and the full-autonomy experiments presented in Section
3.4.2, the main challenges facing SLAM are inaccurate map representation and inaccurate
localization. In SLAM, mapping and localization are performed simultaneously, and thus
any error that happens in one affects the other; similarly, increased accuracy in any of the
two tasks enhances the accuracy of the other. Thus, the human should be able to supervise
and intervene in the following tasks: (1) map building by the robot, (2) map building by
the AR-HMD, (3) robot pose estimation, (4) AR-HMD pose estimation, (5) global map
merging, and (5) the ability of the robot to acheive a given navigation goal.

Table 3.1: MISA attributes in collaborative SLAM.

Tasks to be supervised Attributes
SC-based tasks SA-based tasks SC Attributes SA Attributes MISA-based UI

• Robot pose estima-
tion

• AR-HMD pose esti-
mation

• Ability to reach navi-
gation goal

• Map building by
robot

• Map building by AR-
HMD

• Global map merging

• Confidence in pose

• Confidence in reach-
ing navigation goals

• SC-metric: Neff

• SC-event: HoloLens
tracking feature

• Maps quality

• SA-tools: Augment
the map on physical
world

• AR interface

• 2D GUI
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• Robot SC attributes:
The robot’s SC in the pose estimation is calculated through theNeff metric which reflects
the dispersion of the particles’ importance weights. This metric serves as an estimation
of how well the particles represent the true pose of the robot [65]; thus, Neff is employed
as SC-metric to reason about when the robot should prompt the human for assistance
in localizing itself. The robot prompts the human to approve or correct the estimated
pose whenever Neff drops below a threshold that was obtained experimentally. As for
the HoloLens, the human supervisor is requested to help in the pose estimation based
on a built-in feature that flags the HoloLens localization error event. Since any error in
localization affects the whole map accuracy, the selected ‘no response‘ strategy forces the
robot to pause its operation until human response is received. Moreover, when the robot
is given a navigation goal that it is not able to find a valid path to, it prompts the human
supervisor to help in mapping the area corresponding to this goal. For this task, the robot
proceeds into its next goal even if the human does not respond to the request directly.

• Human SA attributes:
Since SC attributes could not be defined in the map building task (for both robot and
HoloLens), the applied MISA system benefits from the human perception and SA in
assessing the quality of maps built by both agents. To help the human supervisor compare
the map built by the agents with the real physical environment and apply edits, the SA
tool proposed is augmenting the map on the physical world. The human is allowed to edit
the robot’s map by toggling the status of cells between ‘Occupied’ and ‘Free’. Moreover,
the human can choose to activate the collaboration feature to assist the robot in mapping
whenever he finds it necessary.

• MISA-based user interface:
To maximize the human’s SA and provide an intuitive way of interaction, an augmented
reality interface (ARI) running on HoloLens is developed. Through this interface, humans
can see the augmented map superposed over the real environment and can interact with it
through their hands. Moreover, and upon request, humans can influence the robot’s pose
estimation through a GUI.

Figure 3.4 presents the block diagram of MISA framework applied in Collaborative SLAM.
Since OpenSLAM gmapping block is already described in section (3.3.1), the MISAC block
only is discussed below.

3.3.2.1 SC-Interaction handler

When the HoloLens SC-event is triggered, this module prompts the human supervisor to
re-localize the HoloLens manually or through an AR marker placed on the robot. When the
robot is unable to generate a valid path for a navigation goal, the module notifies the supervisor
to map it manually or through activating the AR-HMD Map Builder feature. As for the robot
pose estimation, this module replaces the Adaptive Resampling module that was discussed in
section (3.3.1). It represents the mechanism applied to check the robot’s SC and prompt the
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Figure 3.4: Block diagrams of MISA in collaborative SLAM.

human supervisor for help. The new ‘human augmented’ set of particles At, where A(i)
t =

(a
(i)
t , η

(i)
t , w

(i)
t ), is sampled from Rt through the following steps:

1. Self-confidence check:
The robot’s self-confidence is based on the Neff metric that is given in equation (3.2). At
this step, if Neff > rth, where rth is a resampling threshold obtained through emperical
testing, no human assistance is requested; thus steps 2 to 5 are ignored and Rt is passed
as-is to the OpenSLAM gmapping block (At = Rt). If cth < Neff < rth, where cth is a
confidence threshold that is obtained experimentally, resampling is done as described in
Section 3.3.1 and no human assistance is required.

2. Acquiring human assistance:
When Neff < cth, the human is requested to approve or correct the pose estimation
through the GUI. When the new human-corrected pose is acquired, an augmented pose át
is calculated as:

át = PR ⊕ d̆t, (3.3)

where d̆t is the pose difference vector between the human-corrected pose and the robot
pose PR. A Gaussian approximation a∗t ∼ N (µ, Σ) is then computed to propose the new
particles distribution around the human augmented pose; resulting in a new sampled pose
a
∗(i)
t for each particle. This approximation is applied here since the human correction

itself may include errors as well. The mean of the distribution µ is equal to át, and
variance Σ is set to be (0.1m, 0.1m, 0.08rad), which is obtained through experimentation.

3. Scan matching:
A scan-matcher based on the CARMEN Toolkit [69] is implemented to find the best pose
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that maximizes the scan-matching score. For each particle, the algorithm searches for
the best pose a(i)t within a pre-defined window in map η(i)t−1 starting from the initial guess
a
∗(i)
t .

4. Importance weighting:
Same as described in section (3.3.1).

5. Setting the new poses:
In this step, the set of particles is updated with the corrected poses a(i)t and sent back to
the OpenSLAM gmapping block (Rt = At).

3.3.2.2 SA-Interaction handler

This module is responsible for handling interactions that are based on human SA; it main-
tains an updated global map MG, that is used by all agents, through fusing the human edits
and the AR-HMD map MHL with the most recent robot map MR through the following two
functions:

1. AR Map Merger: when the human supervisor requests to check the map, this function
activates, acquires the most recent MR, and visualize it through the ARI as Mmerged.
Initially, Mmerged = MR, where MR is a 1D occupancy grid of size Q:

MR = {m1,m2,m3. . . .mQ}, (3.4)

Every element mi has a value equals to the occupancy probability of the corresponding
map’s cell.

When the supervisor edits the map or activates the AR-HMD Map Builder, this function
updates Mmerged through comparing the the corresponding cells of the acquired MR with
the human-edited cells and/or the updated cells from MHL which is constructed through
the AR-HMD Map Builder module. The function always prioritizes human edits over
both the robot map and the AR-HMD map, and it prioritizes Occupied status over Free
whenever the cell status is not consistent between the acquired robot map and the AR-
HMD map.

2. Global Map Updater: when Mmerged is received from the AR Map Merger, this module
activates to fuse Mmerged with the most recent MR resulting in a global map MG. This
is done since the robot might update its map while the human is performing the edits.
To avoid collision between the robot and undetected obstacles, cells that are set to be
Occupied by the AR Map Merger, but found to be Free by the robot, are set as Occupied
through this function.

The SA-Interaction handler module maintains same map size for all agents and replaces the
maps associated with all particles with the updated global map, η(i)t = MG.
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3.3.2.3 AR-HMD Map Builder

This module is activated by the supervisor to produce an AR-HMD occupancy grid map
MHL in two steps: (1) raycasting to detect the obstacles, and (2) map updating to build and
update the AR-HMD occupancy grid map. The producedMHL has the same size and resolution
asMR, and its frame is aligned with the robot’s map frame. The AR-HMD device is assumed to
be able to create a 3D mesh or point cloud of the environment, and the relative transformation
between the robot’s map frame and the AR-HMD frame is known. Therefore, the pose of the
human operator, pa, and the heading vector in the robot’s map frame, va, are known in real-time.
All poses and distances are calculated in the map’s frame.

Raycasting: is a well-known technique that is used to detect heading and distance to obstacles.
By considering the AR-HMD as a virtual 3D LiDAR that transmits a series of rays originating
from pa = (xa, ya, za)

T with defined directions, the proposed raycasting approach is presented
in Algorithm 1 and illustrated in Figure 3.5. Each set of rays has a frame that is rotated by an
angle α around the vertical axis of the AR-HMD. Then in each set, each ray’s direction vr is
calculated by rotating the ray’s frame by angle β around the set’s frame. The direction of each
ray can be calculated through the function (RayDirection) as:

vr = Rv,α ×Rh,β × va, (3.5)

where

Rv,α =

 cosα sinα 0
− sinα cosα 0

0 0 1

 , (3.6)

Rh,β =

1 0 0
0 cos β sin β
0 − sin β cos β

 , (3.7)

Each ray is then sent through the function (CastRays) that returns a true value to the flag hit and
the hit point ph = (xh, yh, zh)

T , if the ray intersects with the 3D mesh. The horizontal distance
d between pa and ph is then calculated through (Horizontal distance):

d =
√

(xh − xa)2 + (yh − ya)2, (3.8)

Only the hit corresponding to the minimum Horizontal distance dmin recorded for this specific
set is registered in the hit points list H L as 3D Cartesian point Phit = (xhit, yhit, zhit)

T . In other
words, only the nearest hit to the AR-HMD from each set is obtained. Finally, the registered
points list H L is sent to the Map Updater module.

Map Updater: this module handles updating the MHL when it receives H L. For every Phiti in
H L, the elevation component, zhit, is checked against the predefined ground height, zground.
This step is added to avoid detecting the ground as an obstacle. If zhit is not equal to zground ±
error tolerance, i.e. the detected obstacle is not ground, Phiti is added to the obstacles list O L,
then each cell c in the map is updated according to:

l(c | z1:t) = l(c | z1:t−1) + l(c | z1:t), (3.9)
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Algorithm 1: Raycasting: H L = Raycasting(pa, va)
Result: H L
Input: AR-HMD pose (pa), Heading vector (va) ;
initialization;
H L to zeros;
dmin to maximum ray length;
for α = αmin to αmax step θ1 do

for β = βmin to βmax step θ2 do
vr= RayDirection (α, β, va);
hit =CastRays(Vr).hit;
if hit then

ph = CastRays(Vr).point ;
d = Horizontal distance(pa, ph);
if d < dmin then

dmin = d;
Phit = ph ;

else
pass;

end
else

pass;
end

end
end
add Phit to H L

where l(c | zt) is the inverse sensor model (ISM) defined as:

l(c | zt) =

{
locc, for cells in O CL

lfree, for cells in F CL
(3.10)

with locc ∈ ] 0, 1 ] and lfree ∈ [ −1, 0 [ . Moreover, l(c | zt) is limited between minimum and
maximum occupancy bounds to avoid over-confidence.

3.4 Implementation and Experiments

3.4.1 Experimental Setup

The proposed MISA framework is implemented using Robot Operating System (ROS), and
the ARI is developed using Unity3D. The SLAM baseline approach is deployed through Gmap-
ping ROS package, which implements OpenSLAM’s Gmapping [70], and the move base ROS
package [71] is used for autonomous navigation. This package implements Dijkstra’s algorithm
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Figure 3.5: Illustration of the raycasting unit in the proposed method. (a) shows the map and
AR-HMD frames alongside the operator’s heading vector. (b) shows how the virtual rays are
casted from the AR-HMD. (c) shows a top-view of the ray sets where each set is deviated from
the other by θ1 and from the heading vector by α. (d) shows the rays contained in each set,
where each ray is rotated by angle β around the horizontal axis of the corresponding set; also
shown are the nearest hit point and Horizontal distance.

to generate global plans for the robot navigation. The communication with the ARI is handled
through RosBridge Suite [72] ROS package and HoloToolkit.Sharing library [73]. The imple-
mentation and experiments were performed on a Microsoft HoloLens as an AR-HMD, and a
Clearpath Husky A200 Explorer robot with installed 2D LiDAR and wheel encoders.

The implementation flowchart is shown in Figure 3.6. The human supervisor is equipped
with a HoloLens running the ARI, and is co-located with the robot performing SLAM. When
the system is started, the set of particles Rt is initialized, and the supervisor is requested to
initialize the augmented map (Mmerged) through looking at an AR marker placed on the robot.
This is done to align the merged map augmented through the HoloLens with the robot’s map
frame. If the path planner fails to generate a valid path for a given navigation goal, it notifies the
supervisor to map the area manually or through activating the AR-HMD Map Builder. More-
over, when the HoloLens flags the SC-event, meaning that it has lost tracking, the supervisor
assistance is requested to re-initialize Mmerged by looking at the AR marker again or manually
adjusting the augmented map through the ARI. Whenever the set of particles is updated, mean-
ing that the robot is moving or the robot’s surrounding has changed, Neff is calculated and
compared against the robot’s pose confidence threshold rth. If the robot is not confident about
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Figure 3.6: Flowchart presenting the implementation logic of MISA in collaborative SLAM.

its pose (Neff < rth), navigation is paused and the human is requested to correct PR through
Rviz [74] interface. Navigation is not resumed unless the human approves or modify the pose.
Here, At is calculated and Rt is updated through the SC-Interaction handler. While SLAM is
running, the human supervisor is allowed to import the current robot’s map MR at any time to
evaluate it. Here, Mmerged is set as a duplucate ofMR through the AR Map Merger function and
is visualized through the ARI. The supervisor is allowed to edit the map manually or through
activating the AR-HMD Map Builder to produce MHL, and these edits are fused in Mmerged in
real-time. When the supervisor confirms the updated Mmerged, the Global Map Updater func-
tion compares it with the most recent MR, updates MG, and replaces all particle maps η(i)t with
the updated MG. This is done to make sure that any map updates performed by the robot while
the human is editing are being fused in the global map, and that this global map is conveyed
back to all particles.

Figure 3.7 shows real snaps of the ARI, which overlays Mmerged on the LiDAR’s plane of
the robot, and menu items are always rendered to the left of the supervisor. In the augmented
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Figure 3.7: The developed AR Interface. (a) shows the menu items, (b) shows the “tap” gesture,
(c) and (d) show samples of map augmentation.

Mmerged, white cells are considered Occupied and gray cells are considered Free/Undiscovered.
Figure 3.8 illustrates the used frames and poses:

• Map Frame FM : Placed on the bottom-left corner of the augmented map.

• World Frame FW : The HoloLens world frame, initialized and fixed by the HoloLens
when the system runs.

• Map pose PM : Pose of FM in FW , fixed at the initialization phase of the system.

• Robot pose PR: Pose of the robot in FM .

• HoloLens pose PH: Pose of the HoloLens inside FW , acquired through the HoloLens
built-in visual SLAM.

• Gaze point pose PG: the intersection between the viewing ray (gaze line) and the aug-
mented objects. The gaze line vector is acquired from the HoloLens itself in real-time.

The ARI’s Menu items, which handle sending/receiving requests and messages to/from the
robot, are discussed below:

• Import Map: Acquires the current MR and duplicates it as Mmerged, a 1D occupancy
grid array of size Q. Mmerged is converted to a 2D grid map of width W , height H , and
cell’s resolution αm. The map is visualized as an image plane of (W ×H) pixels, where
each pixel represents a cell. The plane’s dimension is (W × αm) by (H × αm).
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Figure 3.8: ARI components and the various reference frames.

• Activate/Deactivate Marker: Activates and deactivates AR marker recognition and track-
ing. A predefined AR marker is placed on the robot and used to initialize PM . Vuforia
SDK [75] for Unity is used for AR marker recognition and tracking. When the marker
recognition is enabled, and the marker is in the view field of the HoloLens, the ARI ac-
quires the most recent PR and calculates PM . To account for localization drifting or lost
tracking in the HoloLens’ visual SLAM, the supervisor can re-initialize the map’s pose
at any time. Marker deactivation capability is added to account for instability and drift-
ing in the HoloLens visual odometry that is observed when keeping the marker tracking
enabled.

• Adjust Map: allows for manual adjustment of the augmentedMmerged’s pose by applying
translations (orientation adjustment is done through the AR Marker). The supervisor
has to click on a reference cell in the map, then click on the true position of that cell
(considering the physical world).

• Draw Line: enables a set of cells that form a single straight line to be set as occupied or
free. The supervisor only has to click on the starting and end points of the line.

• Delete region: a rectangular region could be selected by clicking on two cells that form
the diagonal of the desired rectangle. All cells within this area would be set to free.

• Send Map: when the supervisor is satisfied with Mmerged, this button should be clicked
to proceed with updating MG and the maps of the particles. The 2D pixels array of the
image plane are converted back to 1D occupancy array before updating the maps of the
particles.

• Collaborative SLAM: enables the AR-HMD Map Builder.

Interaction with the augmented objects is obtained through the HoloLens-supported “tap”
gesture. When looking on the augmented menu items, a round cursor is rendered on the inter-
section point PG. However, to facilitate the map editing procedure, if the gaze line happens to
intersect with the map plane, PG is rounded to the nearest cell’s (pixel) center, and a cube is

26



Table 3.2: Experimentation sets and their parameters.

Set A B C
Lighting Day, Night Day, Night Day, Night

Laser range(m) 5.5-6.1 7.5-8.1 9.5-10.1
Number of Particles 5 50 100 5 50 100 5 50 100

rendered inside that cell of interest, so that the supervisor can tap on the cell to toggle its status
between Free and Occupied.

3.4.2 Experimental Testing and Results

Experiment-1: the first batch of experiments was conducted to test the performance of the
baseline system in full autonomy mode in order to define the MISA framework parameters. The
testing area was carefully selected in a way to introduce the common challenges that affect the
performance of SLAM (i.e., low semantic features, glass walls, object higher and others lower
than the LiDAR’s detection plane). Table 3.2 presents the parameters used in the different sets
of this batch, where each set of tests was run three times, resulting in 54 tests. In these sets,
the operator had to tele-operate the robot, following a defined trajectory for a distance of about
170m, to map the area shown in Figure 3.9.

The laser range was the lowest in Set A. Scan Matching rapidly failed in region 2 where
detection of indoor obstacles was unattainable. This increased the effect of odometry drift and
thus most maps produced had huge errors. The best map obtained in this set (A) is shown in
Figure 3.10a and the worst is shown in Figure 3.10b. In Sets B and C, the laser range was
increased to mid-range and high-range, respectively. The higher range was chosen so that the
robot detects the inner walls while navigating inside region 2. While Figure 3.11a and Figure
3.12a both show an improvement over the best map that could be achieved in Figure 3.10a, this
improvement comes at a higher computational cost due to the increased laser range. The worst
maps obtained using both ranges are also documented in Figures 3.11b and 3.12b.

Figure 3.9: Testing area at the American University of Beirut. The line in red represents the
path that should be followed by the robot while conducting the experiments. Region 1 contains
glass walls that are not detectable by the LiDAR, and Region 2 is an outdoor terrace.
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Figure 3.10: Maps obtained using Set A (low laser range). The best map obtained by
OpenSLAM gmapping is shown in (a), the worst map is shown in (b), (c) shows the map
obtained using the proposed MISA framework, and (d) overlays the ground truth map on top of
(c) to demonstrate the effectiveness of the MISA framework.

Figure 3.11: Maps obtained using Set B (medium laser range). The best map obtained by
OpenSLAM gmapping is shown in (a), the worst map is shown in (b), (c) shows the map
obtained using the proposed MISA framework, and (d) overlays the ground truth map on top of
(c) to demonstrate the effectiveness of the MISA framework.

The obtained maps were analyzed by overlaying the ground truth map on the resulting map,
visually evaluating the geometric matching, and manually labelling the map between ‘success’
and ‘fail’. Success is defined as the ability to get a robot’s map matching the ground truth map,
up to a certain extent, with no areas overlaying on top of each other. In the performed tests, 31
out of 54 runs produced ‘successful’ maps, resulting in a 57.4% success rate. However, even
successful maps requires post processing to fix some mapping errors such as undetected and/or
wrongly mapped obstacles.

From literature, it is known that the effective sampling size Neff is used to assess how well
the particles’ poses are close to the target posterior [65]; thus, this metric was evaluated as a SC-
metric for the robot’s pose estimation. Using results of the tests discussed above, the recorded
Neff , particles estimated poses ζt, and particles normalized weights w̃t were utilized in this
evaluation, and the findings are summarized in the following three scenarios:

1. When navigating in areas with non-symmetrical contours, Scan Matching can update the
estimated particle poses (resulting from Pose Propagation) with high accuracy; thus, the
dispersion of ζt and w̃t is minimal, yielding to high Neff score (see Figure 3.13a). Here,
resampling of particles is not needed.

2. When navigating in areas with high symmetry levels, Scan Matching might yield incorrect
pose updates, which results from the fact that certain contours in the map look identical to
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Figure 3.12: Maps obtained using Set C (high laser range). The best map obtained by
OpenSLAM gmapping is shown in (a), the worst map is shown in (b), (c) shows the map
obtained using the proposed MISA framework, and (d) overlays the ground truth map on top of
(c) to demonstrate the effectiveness of the MISA framework.

the contours around the true pose; this leads to higher dispersion of ζt and w̃t, and lower
Neff score as shown in Figure 3.13b. In this case, resampling replaces the particles with
low weights (inaccurate poses) with those of high weights (accurate poses).

3. In cases where no enough contours are present (i.e., open areas, transparent walls..), Scan
Matching fails and the pose estimation depends mainly on the Pose Propagation step of
Gmapping. Here, the particles pose estimation is highly affected by wheel slippage and
odometry noise/drift. Since these estimations are not corrected by Scan Matching, the
error in the estimated particle poses accumulates, resulting in high dispersion of ζt and
w̃t, and a very low Neff score as shown in Figure 3.13c. In this case, resampling is not
able to account for the accumulated error since even particles with w̃t

(i) > 0.8 might
have very low importance weights w(i)

t . This scenario is responsible for the large drifts
presented in the maps in Figures 3.10a, 3.10b,3.11a,3.11b, and 3.12b.

Based on this evaluation, two thresholds are defined: Resampling threshold rth and confi-
dence threshold cth. When cth < Neff < rth, resampling is performed as discussed in Section
3.3.1, and when Neff < cth, human assistance in the robot’s pose estimation is requested. The
numerical values of these thresholds were obtained experimentally as rth = 0.7 and cth = 0.5.

Additional tests were done to assess the HoloLens performance in spatial mapping. The
challenges detected are: fast movements, walls or objects that are low-textured, and looking at
the ground while moving. These scenarios result in drifting in HoloLens localization or/and
tracking loss error. Normally, this leads to unpredicted transformations in the augmented Holo-
grams. Thus, the proposed MISA framework solves this problem by means of the re-initializing
feature, which relocates the map in the environment based on the robot’s pose as discussed ear-
lier.

Experiment-2: additional experiments were performed to test the effect of requesting hu-
man assistance in pose estimation on the performance of SLAM. One test was done on each
set of Table 3.2, using 100 particles, while applying the SC-metrics discussed in Experiment-1.
In these experiments, the robot stops and request human assistance when Neff < cth. Figures
3.10c, 3.11c, and 3.12c shows the maps obtained through these tests, which are overlaid by the
blueprints of the area in Figures 3.10d, 3.11d, and 3.12d. The conducted experiments demon-
strate how implementing MISA to request human assistance in pose estimation can result in
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Figure 3.13: The three scenarios discussed in Neff evaluation. Red dots represent the particles.

higher quality maps, especially in areas that are considered challenging. In addition to the qual-
itative assessment, below are some quantitative results to compare the proposed implementation
of MISA framework in SLAM:

1. Run time: tests using the MISA framework took 35% − 50% less time than those per-
formed with OpenSLAM gmapping. This is due to the fact that when applying pose
correction throughout the run, there is no need to revisit areas and check for loop clo-
sures.

2. Computational Costs: since no computational complexity is added by the MISA system,
no significant added computational costs were recorded.

3. Success rate: when using OpenSLAM gmapping, 31 out of 54 runs produced useful
maps, all of which required post processing, resulting in a 57.4% success rate. Through
the MISA framework, maps with no overlaying areas were produced in 100% of the tests.
However, all of the maps required post-processing to account for minor mapping errors.

4. Human workload: Throughout the tests that involved pose correction, the operator needed
to change the robot’s pose 9.5% of the time when the robot’s self-confidence dropped
below the specified threshold. In 91.5% of the time, the supervisor only had to confirm
the robot’s pose estimation.

Experiment-3: this experiment was conducted to test the performance of full MISA inte-
gration in collaborative SLAM. Figure 3.14 shows a blueprint of the testing site. Region I was
staged to include: (1) objects higher and others lower than the LiDAR’s detection plane, (2)
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glass walls, and (3) reflective objects. Moreover, it was separated from Region II by an exit
that is too narrow for the robot to pass through. Region II is a narrow corridor with poorly
textured walls, and region Region III features two glass walls facing each other. The resolution
of both the robot’s and augmented occupancy grid maps were set to 0.1m × 0.1m with an
initial size of 10m × 10m. The map’s update rate is set to 0.5s, the LiDAR’s measurement
range to 5m, and the HoloLens raycasting rays length to 2m. For the experiment, the human su-
pervisor is asked to map the entire area in the fastest/most accurate manner. The supervisor was
instructed to initialize the augmented map by looking at the AR-Marker placed on the robot,
and then s/he is free to:

• move inside the entire test area,

• send navigation goals or tele-operate the robot using a joystick,

• import the most recent map from the robot at any time,

• edit any part of the map whenever s/he finds errors,

• send the merged map to the robot where it is used to update the global map,

• choose when to use AR-HMD mapping through the HoloLens,

• re-initialize the augmented map to align it with the physical environment in cases of
drifting or when the HoloLens confidence in its pose estimate drops, and

• correct or approve the robot’s pose when requested.

Figure 3.14: Blueprint of the testing arena and photos of the experimental setup. Region I
contains obstacles higher/lower that the LiDAR’s detection plane, glass walls, and reflective
objects. Region II is a corridor with poorly textures walls, and Region III has two glass walls
facing each other. The robot starts in Region I and cannot traverse to Regions II and III since
the exit is narrow.

31



After initializing the map, the supervisor started from Region I where she tele-operated the
robot in order to map the area. Figure 3.15a shows the resultant map and Figure 3.15b shows
the map overlaid on the blueprint. Although the robot succeeded to map the walls accurately,
it failed to correctly map the couches, glass, and the objects because they do not intersect with
the LiDAR’s 2D plane; objects 1 to 5 in Figure 3.15a are examples of obstacles that were not
mapped. Given that the supervisor can see the map superposed over the physical environment,
she can activate the HoloLens AR-HMD Map Builder module and walk around the unmapped
objects to allow the HoloLens to improve the map. Figure 3.15c shows the automatic real-time
updates performed by the HoloLens on the merged map (blue color), and Figure 3.15d shows
the merged map overlaid on the blueprint.

Figure 3.15: Produced maps during the experiments: (a) shows the map obtained by the robot
where it was not able to detect the objects numbered 1 to 5, which is overlaid on the blueprint
in (b). (c) shows the automatic real-time updates performed by the HL on the augmented map
(blue color) merged with the robot’s map, which is overlaid on the blueprint in (d).

Since the robot cannot traverse Region II and Region III, the supervisor walked around
these regions while activating the AR-HMD Map Builder feature; the resulting AR-HMD map
is shown in Figure 3.16a and the merged map is shown in Figure 3.16b. Here, the supervisor’s
judgment and SA lead to mapping the new area through the HoloLens. Glass walls are also in-
visible to the HoloLens, and the red circle in Figure 3.16b shows the largest HoloLens mapping
error, which occurs because the HoloLens failed to perform tracking in this feature-deprived lo-
cation. In such a case, human intervention is needed. In fact, the supervisor performed manual
edits to correct for errors stemming from both the robot and the HoloLens. Figure 3.17a shows
the edits performed by the supervisor being fused in the robot’s map. To show the impact of the
human edits, Figure 3.18 illustrates a comparison between the map built by the robot and the
HoloLens on their own, and the same map being corrected in-situ by the human operator.
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Figure 3.16: (a) Map produced by the AR-HMD Map Builder module in Region II. (b) the
merged map of both Region II and Region III; the red circle shows a mapping error that
occurred because the HL failed to perform tracking in this location.

Figure 3.17: The final map produced by the proposed collaborative augmented SLAM system.

Quantitatively speaking, the entire experiment took 13 minutes and 50 seconds: (1) map-
ping region Region I using the robot took 6 minutes and 15 seconds, 47 seconds of which the
AR-HMD Map Builder was activated, (2) mapping Region II and Region III was completed
in 3 minutes, and (3) the final human updates were performed in 4 minutes and 35 seconds.
Moreover, all human edits and AR-HMD map updates are visualized instantly, while sending
maps between the robot and the HoloLens took an average of 1.4 seconds, which is accept-
able since the maps were sent/received based on the supervisor’s request through the ARI. That
said, performance can be improved by only sending the indices and values of the updated cells
(instead of the whole map) between the agents.

To assess the above experiment’s duration, another experiment was conducted in full auton-
omy, in which the robot was tele-operated to map Region I, then the robot was manually moved
to map Region II and Region III. This procedure alone took 11 minutes 37 seconds, without
accounting for the post-processing needed to add undetected obstacles and correct errors. The
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Figure 3.18: Final map with human augmented edits (a), and without any human edits (b)

traditional method of tape-measuring the test area was used, and the map was edited offline
using GIMP software. Measuring the test area took 8 minutes, and applying the edits in GIMP
took 27 minutes since the supervisor has to measure pixels and apply edits. In summary, the tra-
ditional mapping and post-processing method required around 46 minutes. Thus, the proposed
MISA framework eliminated post-processing of the map and needed approximately 70% less
time than the traditional method. It is worth mentioning that all of the time measurements in
the experiments were obtained by a timer that is set by the supervisor.

Although connectivity issues can pose a major challenge in collaborative SLAM, delays
or short-loss of connectivity can be well tolerated by the MISA system. The reasons are: (1)
the agents in the MISA system do not depend on each other to localize themselves, (2) the
HoloLens is autonomous relative to keeping the map in place after being initialized, and (3) the
maps are transferred between agents upon the supervisor’s request.

Through the above experiments, the efficiency of the proposed MISA framework is demon-
strated in collaborative SLAM systems by producing accurate maps in significantly less time.
While the robot can produce accurate maps, it fails when obstacles do not intersect with the
LiDAR’s detection plane. Here, the HoloLens can add these obstacles owing to its spatial map-
ping capability. Moreover, having a human supervisor can mitigate the situations when both
the robot and the HoloLens fail to accurately map undetected parts in the area of concern, and
when either agent fails to localize in the environment.
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Chapter 4

POC 2: MISA In Automated Puzzle
Reconstruction

4.1 Introduction

The Jigsaw puzzle is a problem that requires reconstructing an image from non-overlapping
pieces through examining both the shapes and/or color information of each piece . This ’game’
was known since the 18th century; however, the first computation approach to solve a puz-
zle was introduced in 1964 [76]. Although solving puzzles might seem a trivial task, [77, 78]
showed that this problem is NP-complete specially when determining adjacency through inter-
piece compatibility. In addition to being an interesting and challenging game, the jigsaw puzzle
problem could be extended to reconstructing objects that have been torn into smaller sets of
fragments. For instance, researchers have applied puzzle solving techniques in different appli-
cations such as DNA/RNA modeling [79], speech de-scrambling [80], reassembling archaeo-
logical artifacts [81, 82], and reconstructing shredded documents, paints, and photos [83–86].

Jigsaw puzzles might come in different forms, some of which are square puzzles, interlock-
ing puzzles, 3D puzzles, and others; regardless of its form, a jigsaw puzzle is generally solved
depending on functions of colors, textures, shapes, and possible inter-piece correlations; thus,
digital image processing and pattern recognition techniques are commonly used in this prob-
lem [87]. In recent years, most research on solving jigsaw puzzles has focused on image puzzles
with square non-overlapping pieces (see Figure 4.1). Since all pieces are squares, solving these
puzzles has to rely on the image information only without considering the shape. The difficulty
of such puzzles varies depending on the type: pieces with unknown orientations, pieces with
unknown locations, and pieces with unknown locations and orientations which is the hardest to
solve.

Different approaches have been proposed to solve such jigsaw puzzles; however, the most
common approaches are the global methods [88,89] and greedy methods [76,90]. Global meth-
ods, such as genetic algorithms, tend to maximize a global compatibility function to solve the
puzzle; thus the performance of such methods highly depends on the choice of the function to
be maximized. On the other hand, greedy methods starts by matching an initial pairwise of
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Figure 4.1: Example of an image puzzle with square pieces of unknown orientations and loca-
tions (right), and the result of successful reconstruction of the puzzle pieces (left).

pieces and then extending the matches till the puzzle is solved. In this method, the two funda-
mental steps are measuring pairwise compatibility scores for adjoining pairs of puzzle pieces,
and setting the strategy of reconstruction [90]. Although compatibility scores were proven to be
reliable and priority selection [90], they does guaranty correct matching between pieces [91].
Moreover, most of greedy methods are prone to stuck in local minima since they do not have
the possibility to move/rotate a piece that was already placed based on local compatibility, even
if it showed to be globally misplaced. As for the reconstruction strategies, most of them are
inspired from techniques that humans use. Some of these techniques are piece sorting, starting
from edges, and reconstructing small clusters of similar features [92].

The proposed application of MISA in automated puzzle reconstruction addresses the chal-
lenges presented in solving image puzzles with square pieces of unknown locations and orien-
tations, using the greedy approach. Through a custom-developed GUI, the human supervisor
monitors the puzzle reconstruction results in real-time, intervenes based on his/her SA to cor-
rect global errors, and receives assistance requests from the agent when its self-confidence in
local matches drops. In addition, the GUI communicates some internal states of the agent such
as the reconstruction completion percentage, pieces that are being merged, and the location of
the merged pieces in the reconstruction results. It is assumed that based on the SA, imagination,
and cognitive power of a human, s/he can look at puzzle pieces or clusters and be able to detect
errors, intervene, and asses matching options, thanks to their ability to see ‘the big picture’.

The rest of the chapter is structured as follows: Section 4.2 presents previous related work.
Section 4.3 gives an overview on the baseline puzzle reconstruction approach and how the
proposed framework is implemented in automated puzzle solving, while Section 4.4 describes
the experimental setup, experiments, and results.

4.2 Related Work

The first algorithm to solve jigsaw puzzles was proposed by Freeman and Gardner [93]
in 1964, where they focused on shape information in puzzle pieces. This was followed by
several works that also considered only the shapes of pieces. Zisserman et. al [94] solved
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puzzles through detecting ”indents” and ”outdents” in pieces and matching them based on bi-
tangents and distinguished points. Another method for matching such pieces was proposed
by [95], where they fitted ellipses to the indents and outdents and compared them to get the best
matches. Authors in [96] applied the ’start with boundary’ strategy in solving jigsaw puzzles
by identifying the pieces belonging to the edges, and then forming the puzzle reconstruction
as traveling salesman problem. All These approaches did not consider using color and image
information in influencing the matching of pieces.

Using both edge shape and color information to influence adjoining puzzle pieces was first
introduced in [97] where the authors compared the color similarity along matching edges of two
pieces to decide on the reconstruction. In [98], a method that consists of extracting the edge
features, calculating the histogram around the edge, and finally reconstruct the pieces through
histogram intersection algorithm was proposed. Although this method resulted in more accu-
rate reconstruction compared to the traditional histogram intersection methods, the experiments
were limited to very small puzzles consisting of only 12 pieces. Other approaches proposed for
such puzzles relied on isthmus global critical points [99], dividing puzzle pieces to groups of
most likely ’interconnected’ pieces [100], applying shape classification algorithms [101], and
others.

Taking the challenge a step further, several researchers proposed algorithms to solve jigsaw
puzzles of square pieces with unknown locations and orientations, thus the reconstruction of
pieces depends only on image information. This type of puzzles was proved to be NP-complete
problem [88], meaning that forming it as an optimization problem with a global energy function
is very hard to achieve [102]. Shih et. al [103, 104] proposed an algorithm based on a modified
Hausdorff distance method. In their method, they start by constructing a square of nine pieces.
Then reconstruction is continued based on a square expansion method which keeps expanding
each side alone till no more high confident matches are found for the side under reconstruction.
To check the pairwise compatibility between neighbor pieces, [105] proposed to not only use
edge color similarity, but also the content similarity. In [106], the authors proposed that the
original image is given to the system, and they applied SIFT method to extract features from
both the pieces and the original image itself and then match these two groups of features to
re-assemble the pieces correctly. In [91], the authors proposed a method that considers the
transmission relations between neighboring pieces, thus extending the compatibility check to
four neighbor pieces instead of only two.

Cho et al. [88], proposed to solve square jigsaw puzzles through a graphical model and
probabilistic approach that uses Markov Random Field and belief propagation. Through this
approach, the authors were able to handle puzzles up to 432 pieces; however, anchor pieces
should be given as prior knowledge to the system. This work claimed that most discriminative
measurement for pairwise matching is the dissimalirity-based compatibility. Gallagher [106]
also proposed a graphical model which solves puzzles through tree-based reassembly algo-
rithm. They introduced a new compatibility metric which they called Mahalanobis Gradient
Compatibility (MGC). This metric measures the local gradient near the puzzle piece edge, and
was proved to have superior performance over previously proposed metrics. Zanoci and An-
dress [76], followed the lead of [90] and formulated the puzzle problem as search for minimum
spanning tree (MST) in a graph. Moreover, they used Disjoint Set Forest (DSF) data structure
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to guarantee fast reconstruction. One of the common limitations of these approaches is that
the algorithm can’t change the position of a piece that is misplaced early in the reconstruction
process. Such mistakes lead to very poor performance of the algorithm.

There have been very few works that consider leveraging human capabilities to assist in
puzzle solving; however, these methods focused on shredded documents reconstruction. For
instance, [107] proposed a mixed-initiative approach in which the system shows a fragment to
the human through a GUI. Based on his imagination, the human can draw what the neighbor-
ing piece might look like, then the system selects the most likely matches from the fragments
set. This approach is not feasible for image-based puzzles consisting of complex shapes and
patterns. In [108, 109], the system suggests the pieces to be matched and requests human ap-
proval. Here, the system asks for every match option, which increases the workload on the
human supervisor.

4.3 System Overview

This section presents a brief description of the adopted baseline approach, which formulates
the puzzle reconstruction problem as a search for MST, followed by an overview of MISA’s
implementation on top of this baseline.

4.3.1 Baseline Approach: Automated Puzzle Solver

To establish a baseline, the methods applied in [76,89] are adopted. The baseline is referred
to as Automated Puzzle Solver, where the problem is formed as a search for MST in a graph.
The MGC metric is used for piecewise compatibility, and DSF is applied for reconstruction.
This baseline can be summarized through the modules shown in Figure 4.2 and discussed below.

Pairwise Compatibility: starting from a set of square puzzle pieces with unknown positions
and orientations, this module calculates the pairwise compatibility function for each possible

Figure 4.2: Flowchart representing the different modules in Automated Puzzle Solver baseline.
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pair of pieces in the puzzle set. The MGC metric [76] is adopted to determine the similarity
of the gradient distributions on the common boundary of the pair of pieces to be matched.
Assuming that the compatibility measure DLR(xi , xj) of two puzzle pieces xi and xj , where
xj is on the right side of xi, is to be calculated, the color gradients in each color channel (red,
green, blue) are calculated near the right edge of xi as follows:

GiL = xi(p, P, c)− xi(p, P − 1, c), (4.1)

where GiL is the gradients array with 3 columns, c represents the three color channels, and P
is the number of rows since the dimension of the puzzle piece (in pixels) is P × P . Then, the
mean distribution µiL(c) and the covariance SiL of GiL is calculated on the same side of the
same piece xi as:

µiL(c) =
1

P

P∑
p=1

GiL(p, c), (4.2)

The compatibility measure DLR(xi , xj), which calculates the gradient from the right edge of
xi to the left edge of xj , is calculated as:

DLR(xi , xj) =
P∑
p=1

(GijLR(p)− µiL)S−1iL (GijLR(p)− µiL)T , (4.3)

whereGijLR = xj(p, 1, c)−xi(p, P, c). After that, the symmetric compatibility scoreCLR(xi, xj)
is computed as:

CLR(xi, xj) = DLR(xi , xj) +DRL(xj , xi), (4.4)

where DRL(xj , xi) is calculated in a similar way to (4.3). These steps are applied to each
possible pair of pieces, for all possible orientations of each piece (0◦, 90◦, 180◦, 270◦). The
final step entails dividing each compatibility score CLR(xi, xj) with the second-smallest score
corresponding to the same edge, resulting in the final compatibility score C ′LR(xi, xj). This
step ensures that significant matches of each edge has a score that is much smaller than 1, thus
leading to re-prioritizing the compatibility scores in a way where pieces edges, which are more
likely to be a ‘correct match,’ are chosen by the reconstruction algorithm in the very early steps.

Tree-based Reconstruction (TBR): this module is responsible for reconstructing the puzzle
pieces through finding a minimum spanning tree (MST) for a graph representation of the puz-
zle G = (V,E) [76, 90]. For that, pieces are treated as vertices, and compatibility scores
(C ′LR(xi, xj)) are treated as weights of edges (eij) in the graph. Each edge has a corresponding
configuration between the two vertices (the orientation of each piece). To find the MST that rep-
resents a valid configuration of the puzzle, a modified Disjoint Set Forest (DSF) data structure
is applied as follows:

The TBR module initializes with forests (clusters) equal to the number of puzzle pieces,
and each forest having an individual vertex (vi) corresponding to a puzzle piece. Each forest
records the local coordinates and the orientation of each member puzzle piece (vertex). At
the beginning of every iteration, the edge representing the lowest compatibility score (emin) is
selected in order to join the corresponding two vertices (vi, vj) in one forest. If the two vertices
are already in the same forest (i.e., pieces belong to same cluster), or matching the pieces leads
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to collision in their corresponding clusters, the edge is discarded and appended to unused edges
list (Eunused). This step is referred to as Collision check step. If Collision check is passed
successfully, the two pieces are assembled, together with their corresponding clusters. Meaning
that the two vertices are joined into a single forest, and emin is removed from the main set of
edges E and added to the set of edges in this forest; here, the local coordinates and orientations
of each piece are updated. This step is referred to as Merging step. The process is repeated till
all pieces are assembled in one cluster F ; meaning that all vertices belong to the same forest.

Trimming: since the TBR does not take into account the original image dimensions, the re-
sulted image is not guaranteed to have a rectangular shape. To account for this error, trimming
is applied to ensure a final image with same dimensions as the original one. In this module, a
frame with size equal to the original image is moved over the assembled puzzle to determine the
location of the portion with the highest number of pieces; this frame is tested for both portrait
and landscape orientations. When the frame with most number of pieces is defined, all pieces
outside this frame are trimmed from the image, resulting in an updated puzzle cluster F ′. The
trimmed pieces forms a set Xtrimmed, which is sent along with F ′ to the Filling module.

Filling: here, pieces in Xtrimmed are used to fill all the holes in the reconstructed image F ′.
Filling starts from holes with highest number of neighbors and keeps going till all the holes are
filled. For each hole, the compatibility score (C ′LR(xt, xn)) is calculated between each edge of
each piece xt in Xtrimmed, and the edges of each of the hole neighbor pieces xn. Then the holes
are filled based on this score. In other words, each hole is filled by a piece whose edges has best
compatibility score with the adjacent edges corresponding to the hole’s neighbor pieces.

4.3.2 Applying MISA in Automated Puzzle Reconstruction

This section describes how the proposed MISA framework is applied in automated puzzle
reconstruction, following the generic methodology presented in Chapter (2). Table 4.1 summa-
rizes the inputs form the puzzle reconstruction problem, which are used to satisfy the MISA
framework.

• Tasks to be supervised by the human:
Based on the surveyed literature and the full-autonomy experiments presented in Section
4.4.2, the main challenges that face the baseline greedy autonomous puzzle solver are:
the high probability of incorrect matches when puzzle pieces are poorly-textured, the
inability to asses the global consistency of the reconstructed puzzle, and the possibility
of calculating wrong location/orientation of the trim frame. Thus, the human supervisor
should be able to supervise and intervene in the following: (1) matching of two pieces
with low image features (not enough texture or color variation in the piece), (2) global
puzzle consistency and correctness (detecting globally misplaced pieces), and (3) trim
frame location and orientation.

• Robot SC attributes:
As discussed later in Section 4.4.2, the possibility of having a false-positive match in-
creases as the texture complexity in a puzzle piece decreases. This texture complexity is

40



Table 4.1: MISA attributes in automated puzzle reconstruction.

Tasks to be supervised Attributes
SC-based tasks SA-based tasks SC Attributes SA Attributes MISA-based UI

• Matching of poorly
textured pieces

• Global puzzle recon-
struction

• Trim frame location
and orientation

• Confidence in local
pieces merging

• SC-metric: Piece en-
tropy

• Global puzzle consis-
tency

• SA-tools:

– Show reconstruc-
tion results

– Show pieces re-
sponsible for the
matching and their
locations in the re-
constructed cluster

– Show the pro-
posed trim frame

• 2D GUI

measured through the Entropy metric. In short, when the complexity of the texture in
the image increases, the Entropy value increases, and vice versa. Thus, the Entropy of
a puzzle piece is used as SC-metric. When this SC-metric drops below a certain threshold
that is defined experimentally, the agent asks the human supervisor to approve or decline
the match decision. In case no response is received within a pre-defined time limit, the
agent proceeds with the match. This ‘no-response’ strategy is selected because even if
merging the clusters resulted in misplaced pieces, the human can detect the error and fix
it through SA-based intervention at a later stage.

• Human SA attributes:
Since SC attributes could not be defined to capture globally misplaced pieces, the human
supervisor should leverage his/her SA and judgment abilities to assess the global consis-
tency in the reconstructed puzzle. The SA tools proposed to enhance human SA here are
summarized in showing the supervisor the reconstruction results, highlighting the pieces
responsible for merging in addition to their location in the resulted cluster, and showing
the supervisor the proposed trim frame when reconstruction is done. These tools allow
the supervisor to detect misplaced pieces and relay this information back to the agent.
Moreover, the supervisor is allowed to re-locate or re-orient the trim frame if needed.

• MISA-based user interface:
A user-friendly GUI is developed to apply the SA tools discussed above. The GUI dis-
plays the progress of the reconstruction progress to the supervisor, communicates with
him/her the system’s requests for assistance, and furnishes certain internal states that help
the supervisor intervene in the process.

Figure 4.3 presents the block diagram of MISA framework applied in the automated puzzle
solver baseline. Since Automated Puzzle Solver block is already described in section (4.3.1),
the MISAC block only is discussed below.
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Figure 4.3: Block diagrams of MISA in automated puzzle reconstruction.

4.3.2.1 SC-Interaction handler

This module modifies the structure of TBR (discussed in Section 4.3.1) to allow for SC
checking, requesting human assistance, and conveying the human response back to TBR. When
the two pieces to be merged (vi, vj), along with their corresponding clusters (Fi, Fj), pass the
Collision check, this module checks if either piece has an Entropy below the pre-defined
confidence threshold Cth,p. Entropy is obtained from the Gray Level Co-Occurrence Matrix
(GLCM ), which extracts second order statistical texture features from images. GLCM is a
square matrix where the number of rows and columns equals the number of gray levels in the
image. Each element GLCM(n,m) of the matrix is represented as a joint probability distribu-
tion function P (n,m|dpixel, θ), which is the probability of appearance of two pixels with values
kn and km, separated by distance dpixel at an orientation angle θ. After the GLCM is obtained,
the entropy is calculated as follows:

Entropy = −
M−1∑
n=o

M−1∑
m=o

P (n,m|dpixel, θ) log2 P (n,m|dpixel, θ) (4.5)

where P (n,m|dpixel, θ) = GLCM(n,m).

Since each piece of the puzzle can be placed in four different orientations, the module
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calculates the entropy corresponding to the orientation of each piece where θ = 0◦, 90◦, 180◦,
or 270◦; dpixel = 1 in all calculations.

If both pieces pass the SC check, the SC-Interaction handler commands TBR to proceed
with merging the clusters. Otherwise, this module performs a temporary merge, shows the
merging result (cluster image) to the supervisor through the GUI, and requests human assistance
in approving the merge. After requesting assistance, the SC-interaction handler awaits human
response for a defined period of time. If the human approves the temporary merge, TBR is
commanded to proceed with merging. If the human declines the merge, merging is undone and
the corresponding emin is deleted from E in TBR. In case no response is received within this
time limit, TBR is commanded to proceed with merging.

4.3.2.2 SA-Interaction handler

In addition to approving or declining the merge upon the agent’s request, the supervisor
can select pieces that s/he deems as misplaced in the resultant image based on his/her SA and
judgment. When the supervisor selects these pieces through the GUI, SA-Interaction handler
sends the deleted pieces list (Pd) to TBR in order to delete the corresponding vertices from
the shown cluster image. Here, TBR deletes the vertices from the displayed forest and forms
new forests, using corresponding edges from Eunused, where each forest contains one vertex
corresponding to one deleted piece with a specific orientation; resulting in four vertices for
every piece. The vertices of the newly formed forests are connected to the other vertices in the
graph through edges corresponding to the compatibility scores as discussed before. Allowing
the supervisor to inform the system about misplaced pieces is crucial since not all errors occur
due to low entropy, as some pieces might have complex texture (high entropy) and still be
misplaced by the system.

Moreover, this module shows the trim frame to the supervisor when reconstruction is done.
If the supervisor modifies the location/orientation of the proposed trim frame, SA-Interaction
handler sends the new frame to the Trimming module. Otherwise, it commands the trimming
module to proceed with the proposed frame.

4.4 Implementation and Experiments

4.4.1 Experimental Setup

The proposed MISA framework is implemented in Python3, and the GUI is developed in
pyQT. The implementation flowchart is shown in Figure 4.4. When the system is started, the
compatibility score C ′LR(xi, xj) is calculated for every possible pair of pieces, and the Entropy
is calculated for every piece in the puzzle set. TBR initializes with clusters of single pieces,
meaning that the number of clusters equals the number of pieces in the puzzle set. As long
as number of clusters is higher than one, edge emin with the smallest weight C ′LR is selected
from E to check its corresponding pieces for merging. If the two pieces are already in the
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same cluster, or merging them results in collision between their corresponding clusters, emin
is removed from E and appended to Eunused, a list containing all edges that are not used for
merging. Otherwise, the Entropy of each piece, given its orientation, is checked against the
confidence threshold Cth,p.

Figure 4.4: Flowchart presenting the implementation logic of MISA in automated puzzle re-
construction.
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If the Entropy of both pieces is higher than Cth,p, the clusters of the corresponding pieces
are merged, the smaller cluster is deleted, emin is deleted from E, and the resultant cluster is
visualized on the GUI. Through merging, pieces belonging to the small cluster are moved to the
larger cluster, which might require changes in orientations of the pieces. In result, every merge
decreases the number of clusters by one. If the Entropy of either piece is below Cth,p, meaning
that SC in the match option is low, the proposed merge is visualized through the GUI, and the
human supervisor is requested to approve or decline the merge. If the supervisor approves, the
same merging procedure is applied. In case the supervisor declines the proposed merge, emin is
deleted from E and the proposed merge is not applied.

Whenever a cluster is visualized on the GUI, the supervisor can select pieces that are found
to be misplaced based on his/her SA. The selected pieces are deleted from the visualized cluster
and added again as single-piece clusters in TBR. Moreover, corresponding edges in Eunused are
moved to E to be used in the reconstruction process again.

When the system arrives at one cluster only, meaning that all puzzle pieces are reconstructed
in a single cluster image, the trim frame is calculated and visualized over the resultant cluster
F through the GUI. The supervisor can either approve or re-locate/re-orient the suggested trim
frame. Either way, all pieces outside the trim frame are deleted from F and appended in list
Xtrimmed. At this step, the supervisor is allowed to select misplaced pieces in the cluster image.
These pieces are also deleted from the cluster and appended to Xtrimmed. As long as Xtrimmed

is not empty, the system searches the cluster for the hole with the highest number of occupied
neighbors (top tier hole); then it calculates the compatibility score between all edges of each
piece in Xtrimmed and the free edges of the neighbor pieces of the hole. In other words, the sys-
tem checks all orientations of each trimmed piece in the selected hole. The piece configuration
that results in the lowest compatibility score is placed in the hole and deleted from Xtrimmed.

Figure 4.5, shows the GUI developed for MISA in automated puzzle reconstruction. The
GUI displays the results of the reconstruction in real-time (a resultant cluster image is shown in
the ‘output’ in the GUI), the percentage of completion of the reconstruction process, in addition
to the logs/errors/warnings. Moreover, and to help the supervisor decide whether to decline
the merge or delete misplaced pieces, the GUI shows the supervisor the two pieces that are
responsible of merging, and the location of these two pieces in the resultant cluster image.
Below is a description of the main components of the GUI:

• Select image: allows the supervisor to select an image to be divided into puzzle pieces
and then reconstructed,

• Start reconstruction: starts the reconstruction process discussed earlier,

• Rotate CW: rotates the resultant cluster image by 90◦,

• Zoom in: zooms in the resulted cluster image (×2),

• Zoom out: zooms out the resulted cluster image (÷2),

• Show boxes: shows boxes on the cluster image highlighting the pieces responsible for
the merging,
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Figure 4.5: The MISA-based UI developed for automated puzzle reconstruction: Reconstruc-
tion phase.

• Approve: allows the supervisor to approve the proposed merge when requested,

• Decline: allows the supervisor to decline the proposed merge when requested,

• Delete: when pressed, it allows the supervisor to select misplaced pieces by moving the
square cursor on the cluster image and clicking on the pieces,

• Rotate pieces: rotates the image placed below the button by 90◦ clockwise. This image
shows only the two pieces that were responsible of merging the clusters. These pieces
are shown to help the supervisor decide whether to decline the merge or delete misplaced
pieces,

• Status: communicates the current stage of reconstruction in addition to some logs, errors,
and warnings,

• Status bar: shows the percentage of reconstruction completion based on the number of
existing clusters in TBR.

When the final cluster is obtained, the GUI displays the proposed trimming frame to be
approved or re-located/re-oriented by the supervisor, as shown in Figure 4.6. Here the Approve
button is replaced by Approve frame and the Decline button is replaced by Edit frame. The
supervisor can either approve the trim frame, or re-locate/re-orient it within the cluster image.
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Figure 4.6: The MISA-based UI developed for automated puzzle reconstruction: Trimming
phase. The suggested trim frame is visualized in red over the resultant cluster image.

4.4.2 Experimental Testing and Results

Experiment-1: the first set of experiments was conducted to test the performance of the
baseline system in full-autonomy mode in order to define the MISA framework parameters.
Tests were performed using the MIT dataset published in [88]. This dataset consists of 20
images and is used as a benchmark in most of the available references in the related literature.
In these tests, every image in the set is divided to 432 pieces with 28×28 pixels each, the pieces
are given random locations and orientations, and the fully-autonomous reconstruction process
is started. Figure 4.7 shows an example of how the clusters are merged: the reconstruction
initializes with 6 single-piece clusters. In the first iteration, C6 is rotated and merged with C1,
then it is deleted from the puzzle pieces set (forest). In the second iteration, C4 and C5 are

Figure 4.7: Demonstration of the cluster merging process. The figure shows how clusters are
being merged (rotation and translation) to form a final combined cluster image.
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merged, resulting in two clusters containing two pieces and two clusters with one piece each.
In iteration 3, C1 and C5 are merged together, resulting in C1 with four pieces; in this iteration
C1 is rotated to fit with C5. Finally, in iteration 4 the two remaining clusters are merged in one
final cluster.

To assess the reconstruction results, two types of accuracy measures are calculated. The
direct comparison metric (DCM) compares the exact position and orientation of each piece
with the original image, while the neighbor comparison metric (NCM) compares the number
of times that two pieces, which are adjacent (with the same orientation) in the original image,
are adjacent in the final reconstructed image. To better understand these metrics, Figure 4.8
presents sample results for two image puzzle reconstructions. These results shows that DCM
reports very low scores if the reconstructed image has a wrong orientation (Figure 4.8a), or if
its pieces slightly shifted in a certain direction (Figure 4.8b). In contrast, NCM shows more
robustness to such conditions. It is important to mention here that the wrong orientation in the
reconstructed image in Figure 4.8a is due to a wrong orientation of the trim frame that was
calculated autonomously. Experiment-1 row in Table 4.2 presents the average NCM and DCM
scores for the 20 images tested in this experiment.

Through carefully evaluating the baseline reconstruction performance, three main points
were concluded:

1. In cases where the pieces to be merged are low in texture and have highly similar colors
at the edges, the pairwise compatibility score will be low and TBR would merge the
two pieces although they are not adjacent in the original image. We refer to this case as
”false-positive” match, and it leads to local minima that affects the accuracy as the puzzle
is being reconstructed.

2. If two pieces were matched based on low pairwise compatibility, the system does not
have the tendency to detect if these pieces are globally misplaced, and thus it is unable to
move or rotate the misplaced pieces. In such cases, the error accumulates as the puzzle is
reconstructed.

3. Since the puzzle is reconstructed without dimension/orientation constraints, the trim frame

Figure 4.8: Two sample results of puzzle reconstruction through the fully autonomous baseline
approach.
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calculated by the system might have wrong location/orientation based on the accuracy of
the reconstructed image. Thus, the final result after re-filling the puzzle might not match
the original image.

For conclusion points (2) and (3), the system does not have the means to measure its SC in
the global puzzle consistency nor in the trim frame correctness because the baseline approach
does not have access to the original image; while point (1) indicates that the confidence in a
successful merging of puzzle pieces can be captured through measuring the texture complexity
of these pieces. Entropy of an image is a metric that measures the disorder or complexity of
textures in it; thus, Entropy was evaluated as a SC-metric. For this, 20 reconstruction test were
done using same conditions as Experiment-1. For each iteration in every test, the Entropy of
the pieces merged was recorded, and a ‘merge success’ label was given by an expert supervisor.
After collecting the data, the confidence threshold Cth,p was varied between the lowest and
highest recorded Entropy values, and the False Positive (FP) and False Negative (FN) rates
were calculated. It was found that setting Cth,p = 1.2 resulted in the lowest FP and FN rates,
which were 14.6% and 17.9% respectively. As a result,Entropy proved to be a valid SC-metric,
and Cth,p is set to 1.2.

Experiment-2: this set of experiments was conducted to test the performance of MISA in
automated puzzle reconstruction. Tests were performed using the MIT dataset [88]. In each
test, the supervisor selects an image from the set through the GUI, then the reconstruction
process is started. The supervisor was told not to approve any proposed merge unless he’s
totally confident that the match is correct. Moreover, he was instructed to select the misplaced
pieces whenever detected. Here it is important to mention that the supervisor has detailed
knowledge about the GUI and how the algorithm works. Three runs were performed on each
image from the set, resulting in 60 tests. Figure 4.9, shows an example of the effect of acquiring
human assistance on the accuracy of puzzle reconstruction. Figure 4.9a presents two clusters
that the system is suggesting to merge based on low compatibility score between two pieces,
each from one cluster. However, the two pieces have Entropy < Cth,p, so the supervisor

Figure 4.9: The effect of the supervisor’s assistance when the system’s confidence drops. (a)
shows the proposed merge with the corresponding clusters, (b) shows how the clusters are
growing separately after the supervisor declines the proposed merge, (c) shows the final recon-
structed cluster, and (d) shows how the reconstruction would end if the human had approved the
proposed merge.
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approval is requested. Figure 4.9b shows how every cluster is growing on its own after the
supervisor declined the merge. Figure 4.9c shows the final result of reconstruction, while Figure
4.9d shows how the final result would be if the supervisor was to approve the merge. Another
example that shows the effect of human SA-based assistance is presented in Figure 4.10. Figure
4.10a shows a cluster with a misplaced piece, Figure 4.10b shows the final reconstruction result
if the supervisor did not notify the system about the misplaced piece, and Figure 4.10c shows
the final result considering the human assistance in detecting the piece. Experiment-2 row in
Table 4.2 shows that the average NCM score obtained in this set of experiments is increased by
6.4%, while the average DCM score is enhanced by 11.6%.

To further show the effect of having MISA, four experiments were conducted in which the
supervisor is only allowed to approve or decline the merge result when the system’s SC drops.
This means that the supervisor can only intervene upon the system’s request; so the system
cannot benefit from the supervisor’s better SA and judgment to correct errors that it cannot
detect. Visual results are shown in Fig. 4.11. The first column (left) shows results of recon-
structions from Experiment-1, the second column (middle) shows results of the supervisor only
approving/declining upon the system’s request, while the third column (right) shows results of
Experiment-2.

The presented results demonstrate that integrating MISA in automated puzzle reconstruc-
tion, where the supervisor can intervene based on his/her SA and the system’s Sc-based re-
quests, results in superior performance as compared to a fully autonomous puzzle reconstruc-
tion or a system that only asks for human assistance based on its self-confidence. Moreover, the
results in Table 4.2 shows the superior performance of the proposed MISA system compared to
results from other approaches in the literature (where the same MIT dataset [88] is used).

Figure 4.10: The effect of the supervisor’s SA-based assistance. (a) shows a cluster with a
misplaced piece, (b) shows how the final reconstruction looks like if the human did not select
the misplaced piece to be deleted, and (c) shows the final reconstructed cluster considering the
human assistance in detecting the misplaced piece .
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Figure 4.11: Visual results of sample experiments. The left column shows results using the
baseline approach, the middle column shows the results obtained through running the proposed
system but the supervisor was allowed only to approve/decline merge options upon request, and
the column to the right shows the results obtained by the proposed MISA in automated puzzle
reconstruction.

Table 4.2: Comparison of experimental results from MISA in automated puzzle reconstruction,
and four state-of-the-art approaches.

Experiment / Approach Year DCM NCM
Experiment-1 2021 84.9% 90.8%
Experiment-2 2021 96.5% 97.2%

MTS with DSF [76] 2016 88.5% 92.9%
Linear Programming [89] 2015 95.3% 95.6%
Loop Constraints [110] 2014 94.7% 94.9%
Constrained MST [90] 2012 82.2% 90.4%
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Chapter 5

POC 3: MISA in Robot Grasping

5.1 Introduction

Robot grasping is a fundamental task in a wide variety of applications such as pick-and-
place [111], bin-picking [112], stacking [113], assembly [114], and others. A grasping task
(Figure 5.1) usually consists of four main sub-tasks in the sense-plan-act paradigm: a) detecting
the target object, b) identifying the optimal grasping pose, c) generating the manipulator arm
trajectory plans, and d) executing the grasp. Although different methods have been developed
for each sub-task, end-to-end robot grasping is still considered a complex and challenging task
in robot manipulation [115,116], due to the fact that every sub-task is prone to some errors and
limitations.

Detecting the target object accurately and identifying the best grasp pose depend on the
robot’s ability to understand the object information (e.g., pose and shape) through percep-
tion. Various grasping approaches assume that perception works perfectly or with little un-
certainty [117, 118]; however, machine perception is prone to errors and might not generalize
to novel objects that have not been seen before [119, 120]. Errors in detecting the object and
identifying the grasp pose occur due to complex backgrounds, partially observed objects, illu-
mination conditions, object/background material properties, etc. Moreover, the ability of a robot
to generate a valid approach-and-grasp plan, and execute it, is hindered by several challenges
and limitations such as out-of-reach objects, presence of obstacles, kinematics inaccuracy, and
camera-arm calibration errors, among others.

Robotic manipulator suppliers minimize these challenges and limitations by using high-
precision actuators and sensors, advanced perception systems, and precise machining of com-
ponents. However, such measures increase the cost of robots and affect their adaptability outside
industrial settings. To increase robotic manipulators’ affordability and deployment, researchers
are aiming to develop low-cost robots using lower quality actuators and sensors [121–124].
Although learning-based approaches are being developed to enhance their performance and
accuracy [124, 125], low-cost manipulators still suffer from perceptual and calibration errors,
inaccurate kinematics, and manipulation execution errors [124]. These are mainly caused by
inherited system errors like manufacturing and assembly faults, backlash in gears, and compo-
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Figure 5.1: Sub-tasks of a robotic grasping task. Object detection and grasp pose identification
(top) belong to the sensing primitive of the task, arm trajectory planning (middle) belongs to
the planning primitive, and plan execution (bottom) belongs to the acting primitive.

nents wear and tear [125]. Other causes for errors in data-driven approaches are that datasets
are mostly collected using simple backgrounds in environments that does not change dynami-
cally [124], which does not reflect real-world conditions.

The proposed application of MISA in robot grasping addresses the identified challenges,
limitations, and errors that face robot grasping tasks by including a human in the loop. The
goal is to increase the success rate of robot grasping tasks by (1) increasing the accuracy of
object detection and grasp pose identification through SC-based assistance, and (2) overcoming
the limitations and challenges that face arm trajectory planning and plans execution through
SA-based assistance. Thus, this POC contributes in the steps it proposes to enhance the perfor-
mance of manipulators on one hand, and in expanding the use of low-cost manipulators beyond
research labs by making them more reliable on the other hand.
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The rest of the chapter is structured as follows: Section 5.2 presents previous related work.
Section 5.3 gives an overview on the baseline autonomous grasping approach and how the
proposed framework is implemented in robot grasping, while Section 5.4 describes the experi-
mental setup, experiments, and results.

5.2 Related Work

Accurate object detection and grasp pose identification are crucial for a successful grasp,
thus several researchers have leveraged the human’s superlative perception and cognition abil-
ities to aid robots in these challenging sub-tasks. In [126] and [127], human operators aid the
perception systems of robot manipulators by manually segmenting the target object through
a GUI. Similarly, in [128] the user sketches the target object geometry and the actions that
could be performed on that object for the robot. Such systems depend on the human input to
accurately localize the target object.

Rather than acquiring the accurate object location from human input, other approaches de-
pend on human assistance when the robot fails to detect its target object. In [129], the robot
requests more information (e.g., order, direction) if it is not able to identify the object. Instead of
explicitly requesting assistance, the robot in [130] communicates its uncertainty through slow
movement or waiting before executing the grasp plan to allow the human to correct the grasp
goal. Moreover, [131] presented a paradigm where a human corrects falsely detected objects
and identifies un-recognized objects through pointing and voice commands. Such systems ben-
efit from human assistance in confirming the object detection; however, a successful grasp is
not guaranteed since the remaining grasping sub-tasks are performed autonomously.

Other works include the human in both object detection and grasp pose identification.
Leeper et al. [132] proposed a grasping strategy that requires the human to select a general
area around the target object, then the robot generates a set of grasping poses for the human to
select from or adjust. In [133], the human is requested to approve or decline the detected ob-
ject. After successful detection, the human reviews the grasp pose options and either approves
a suitable pose, or activates an online planner to fine-tune a subset of these options. In these
methods, the robot does not reason about its confidence in proposing the grasp pose options.
Thus, the human operator is always requested to review the robot suggestions before executing
any grasp.

With the increasing interest in learning-based approaches for object grasping and manipula-
tion, researchers have been proposing HRI paradigms to correct manipulation policies through
human assistance. In [134], the robot requests human demonstration when it fails to learn how
to grasp an object. This approach only depends on the autonomous system’s ability to reason
about when to request help. Thus, any failure in detecting the need for human assistance would
lead to performance deterioration. In [135], a method was proposed to predict if a manipulation
task will fail, and thus request human assistance in correcting the policy, while also allowing the
human to intervene and correct the policy in case the robot did not predict its failure. In [136], a
human can intervene and correct the robot pose in object manipulation tasks to teach the robot
a better policy. Similarly in [137], a human decides when to intervene and correct manipulation
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policies by completely taking over robot control. These learning-based methods do not guaran-
tee successful grasping when faced with novel objects. In this POC, the aim is to enhance the
performance and success rates of end-to-end robot grasping rather than focusing on a certain
sub-task. Human assistance is based on robot requests in tasks when it can reason about its SC,
and on human SA when the robot cannot.

5.3 System Overview

This section presents a brief description of the adopted autonomous robot grasping baseline
approach , followed by an overview of MISA’s implementation on top of this baseline.

5.3.1 Baseline Approach: Autonomous Grasping

To establish a baseline, the method presented in [124] is adopted for identifying the grasp
pose from an RGB image. This method proposes learning a planar robotic grasping model
through data collected in real homes using low-cost robots. The dataset used for training con-
sists of 28k grasps, where each grasp is performed at the same height and perpendicular to the
ground. Each entry of the dataset consists of an image, performed grasp pose, and the grasp
success label. This approach combines object detection and grasp pose identification; these two
sub-tasks are referred to as the ‘perception module’. The baseline approach can be summarized
through the modules shown in Figure 5.2 and discussed below.

Perception Module: given an image I , the goal is to find the best grasp pose (xs, ys, θs) in the
image space, where xs and ys are the coordinates of the grasp center location in the image, and
θs is the roll angle of the end-effector. To predict the grasp pose from I , smaller patches Ik
are sampled with their centers being at different positions (xk, yk) around the detected object.
Since an object can be grasped from different angles, the grasp angle is discretized, for each Ik,
into N bins as θn. The architecture and modeling details are discussed in [124].

Figure 5.2: Flowchart representing the different modules in Autonomous robot grasping base-
line.
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The approach uses a patch Ik at angle θn to model the grasp success probability as P (g|Ik, θn, R)
given by:

P (g|Ik, θn, R) =
∑
Îk∈K

P (g|z = Îk, θn, R) · P (z = Îk|θn, Ik, R), (5.1)

where g represents the grasp success label and R represents the noise in the environment. Since
a given grasp might be executed at a patch neighbouring the target patch Ik due to inaccuracies
in low-cost robots, z models the latent variable of the executed patch, K is the set of possible
hypothesis patches neighbouring Ik, and Îk is a subset of K. A standard grasp network is used
to model P (g|z = Îk, θD, R), and a ‘Noise Modelling Network’ is used to model the probability
distribution over noise P (z = Îk|θD, Ik, R) [124]. The approach considers 9 hypothesis patches
around each Ik.

The above method results in a setE ofM grasp poses and their corresponding grasp success
probabilities for every image I; the estimated grasps are referred to as Em = (xm, ym, θm). The
grasp pose with the highest success probability is proposed for grasp planning and execution as
S = (xs, ys, θs).

Pose converter: since S is in the image space, the arm-camera calibration parameters (Cp) are
used to convert it into a 3D pose S ′ in the robot space through a conversion library provided
in [138].

Trajectory planning Joints controller: for the grasp trajectory planning, MoveIt library [139]
is used to generate arm trajectory plan Pt given S ′ and the arm joints positions Jp. As for
the plan execution, ROS low level joint controllers are implemented to generate motor twist
commands Mc.

5.3.2 Applying MISA in Robot Grasping

This section describes how the proposed MISA framework is applied in robot grasping,
following the generic methodology presented in Chapter 2. Table 5.1 lists the attributes and
selections made to apply the MISA framework.

• Tasks to be supervised by the human:
Based on the surveyed literature and the full-autonomy experiments presented in Section
5.4.2, the challenges that face the baseline grasping approach are identified below:

– The success rate in identifying a correct grasp pose decreases significantly when
using complex, patterned, and spectral backgrounds.

– Although the robot manipulator has an acceptable repeatability, it suffers from cali-
bration errors that yield lower accuracy in executing the grasp plan (e.g., the planned
grasp pose does not align with the actual executed pose).

– In certain conditions, the target object is out of reach, but still detectable by the
perception system, which leads to failure in generating arm trajectory plans.
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Table 5.1: MISA attributes in robotic grasping applications.

Tasks to be supervised Attributes
SC-based tasks SA-based tasks SC Attributes SA Attributes MISA-based UI

• Object detection and
grasp pose identifica-
tion

• Arm trajectory plan-
ning

• Plan/Execution align-
ment

• Successful grasp pose
estimation

• Successful plan gen-
eration

• SC metric: variance
in eq. (5.2)

• SC event: failing to
generate a valid plan

• Accurate execution of
the grasp

• SA tools:

– live-streaming of
robot’s camera

– visualizing the
proposed grasp
pose

• 2D GUI

Based on the above limitations, a human supervisor should be able to (1) evaluate the
grasp pose identification and adjust the pose if needed, (2) detect and correct any mis-
alignment between the planned and executed grasps, and (3) adjust the actual object lo-
cation in case of failure in generating arm trajectory plans.

• Robot SC attributes:
Through experimentation, it is noticed that the possibility of identifying wrong grasp
poses increases when the positions of the estimated grasps are dispersed. This behavior
is captured by calculating the variance of the distances between the estimated grasps
Em positions and the proposed grasp S position. Hence, this variance is used as the
SC metric that is required by MISA to allow the agent to ask the human supervisor to
approve, decline, or adjust its proposed grasp pose. For the arm trajectory planning, the
robot requests human assistance when if fails to generate a valid plan because the object
is out if reach. Here, the human can either push the object and reset the task, or cancel
the grasp.

Since the criticality of accurate grasp pose identification varies depending on the appli-
cation and the objects to be grasped, the supervisor can set the ‘no response’ strategy for
grasp pose assistance requests between two options: wait for a defined time and proceed
with the proposed grasp, or wait until the human responds. As for the grasp planning, the
robot pauses and waits until the human responds.

• Human SA attributes:
In the baseline approach, the robot does not have the means to reason about calibration er-
rors that lead to mismatching between the planned and executed grasps. Thus, the human
supervisor should leverage his/her SA and judgment abilities to assess the accuracy of the
grasps execution. The SA tools proposed to enhance human SA are enabled by streaming
a live feed from the robot’s camera through the MISA-based GUI, and showing the pro-
posed grasp when available. These tools helps the supervisor detect any execution error,
and thus set the calibration offset through the GUI.

• MISA-based user interface: To apply the SA-tools and allow for efficient interaction,
a user-friendly GUI is developed to display the camera feed, proposed grasp pose, and
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the state of the task. In addition, the GUI allows the supervisor to approve or correct the
proposed grasp pose when requested, and to set the calibration offset.

Figure 5.3 presents the flowchart of the MISA framework in robot grasping applications.
The modules in the Automated Robot Grasping block were discussed above in Section 5.3.1,
while the modules in MISAC block are discussed below.

5.3.2.1 SC-Interaction handler

When the planner is unable to generate a valid plan, this module triggers the SC-event and
notifies the supervisor that the planner is not able to generate a valid grasping trajectory. Here,
the human can either adjust the actual object and reset the task, or cancel the grasp. As for the
proposed grasp pose, the SC-Interaction handler visualized the proposed grasp on the image I
through the GUI, and calculates the variance V to check the robot’s SC in the proposed grasp
pose as follows:

Figure 5.3: Block diagrams of MISA in robot grasping.
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V =

∑
(d(Em, S)− µ)2

M
, (5.2)

where d(Em, S) =
√

(xm − xs)2 + (ym − ys)2 is the distance between Em and S, and µ is the
mean of distances.

If V > Vth, where Vth is a confidence threshold obtained through empirical testing, human
assistance is requested in approving, declining, or adjusting the proposed pose S via the GUI. If
S is adjusted, the updated pose is sent back to the Pose converter module. If the human declines
S, the Perception module is commanded to restart the task. If human approves the proposed
pose, it is sent back as is to the Pose converter module. In case no human response is received,
the SC-Interaction handler applies the no-response strategy set by the supervisor.

5.3.2.2 SA-Interaction handler

This module handles the interaction based on the human’s SA. If the supervisor detects a
fixed execution offset that is not corrected through the calibration routine, s/he can relay this off-
set to the Pose converter module by setting the offset parametersCoffset = (xoffset, yoffset, θoffset)
in the GUI. Thus, the Pose converter module is adjusted to account for this offset when calcu-
lating the final grasp pose G = S ′ + Coffset = (x, y, θ). As an additional functionality, the
SA-Interaction handler allows the supervisor to pause the task and adjust the proposed pose
even without any robot request.

5.4 Implementation and Experiments

5.4.1 Experimental Setup

The proposed MISA framework is implemented on top of PyRobot [125], an open-source
research platform built on top of ROS. PyRobot provides an implementation of the baseline
method, and an arm-camera calibration library using Adam optimizer [140]. In addition, the
platform provides interfaces to MoveIt [139], which is used for trajectory planning, and the
low-level joints controllers are implemented in ROS. The implementation and experiments were
perfromed on LoCoBot [141], a low-cost robot manipulator that has a Trossen WidowX robotic
arm [142] mounted on a Kobuki mobile base [143], which was fixed throughout the entire exper-
imentation procedure. For perception, an Intel Realsense D435 RGBD camera [144] mounted
on the robot at a fixed height and orientation is used.

The implementation flowchart is shown in Fig. 5.4. When the system is started, the GUI
launches to allow the supervisor to monitor the robot’s performance and interact with it. When
the perception system detects an object, it generates the estimated grasp poses Em, and the
proposed grasp pose S is visualized on the GUI. If the SC threshold is exceeded (V > Vth),
a notification appears requesting human assistance. Here, the human can approve, decline, or
adjust the proposed pose. The system waits for a human response for 20s. If the human does
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Figure 5.4: Flowchart presenting the implementation logic of MISA in robot grasping.

not respond, the ‘no response’ strategy activates. The default strategy is to wait until response
is received; however, the supervisor can change it to a waiting time (factor of 20s) before the
system proceeds with the proposed grasp.

If V < Vth, the system is confident about the proposed grasp pose, and this pose is displayed
for 5s before the system proceeds with the grasp. This waiting-time is implemented to allow the
supervisor to check the pose, and edit it if s/he finds it necessary based on SA. In case of invalid
trajectory plan, a notification appears requesting the human to either adjust the object or cancel
the grasp attempt. Moreover, through monitoring the robot, either directly or via the GUI, the
human can decide whether the planned grasp pose is being accurately executed or not. If the
supervisor detects an execution error, s/he can set the calibration offset, in mm and degrees,
through the GUI. The calibration offset is C = (0mm, 0mm, 06◦) by default.

Figure 5.5, shows the GUI developed for MISA in robot grasping. The snapshot shows an
example of a wrongly proposed pose (rectangle with green and red sides). The GUI displays the
proposed grasp pose when available, in addition to the logs, errors, notifications, and warnings.
Moreover, the GUI allows the supervisor to adjust the proposed grasp pose upon the robot’s
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request, and to set the no-response strategy in addition to the calibration offset. Below is a
description of the main components of the GUI:

• APPROVE: allows the supervisor to approve the suggested grasp pose,

• DECLINE: allows the supervisor to decline the proposed grasp pose,

• EDIT: allows the supervisor to edit the proposed grasp pose. When clicked, the editing
mode is activated in which the APPROVE button is changed to DONE EDITING, and
the DECLINE is changed to CANCEL EDIT. When in editing mode (the case shown
in Figure 5.5), the supervisor can click on the correct object (dry erase marker) location
in the image to set the new grasp pose, shown by the overlaid red line. The orientation of
the pose can be adjusted through the ROTATE LEFT/RIGHT buttons,

• ROTATE LEFT: Shown when in editing mode and allows the supervisor to rotate the
newly set grasp pose in a counter-clockwise direction. Each click on the button applies a
rotation of 5◦.

• ROTATE RIGHT: Shown when in editing mode and allows the supervisor to rotate the
newly set grasp pose in a clockwise direction. Each click on the button applies a rotation
of 5◦,

Figure 5.5: The GUI developed for MISA in robot grasping. The snapshot shows an example of
a wrongly proposed pose (rectangle with green and red sides), after the supervisor had pressed
EDIT To adjust the proposed grasp pose, the supervisor clicks on the correct object (dry erase
marker) location in the image and edits the pose, shown by the overlaid red line. The orientation
of the pose can be adjusted through the Rotate Left/Right buttons, which change the orientation
of the pose by 5◦ increments/decrements.
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• Calibration Offset: allows the supervisor to set the calibration offset in mm and degree,

• No Response Strategy: allows the supervisor to set the no-response strategy. When the
value is kept Zero, the default no-response strategy is applied. However, the supervisor
can specify the factor of 20s to allow the system to wait longer for the response.

5.4.2 Experimental Testing and Results

The first set of experiments (Experiment-1a and Experiment-1b) was conducted to test the
performance of the baseline system in full autonomy mode in order to define the MISA frame-
work parameters.

Experiment-1a: Repeatability tests showed an acceptable error (<1mm), which aligns
with the repeatability error obtained in [125]. To evaluate the perception module, we conducted
experiments using 10 different backgrounds (shown in Figure 5.6) and three novel objects. It
is important to mention that in [124], the presented results were also based on novel objects in
unseen environments. For each object-background pair, we ran 20 trials with the object placed
in random orientations and locations. A human evaluated the results to be a success or fail based
on SA; for instance, image (1) in Figure 5.6 shows an example of a ‘fail’ proposed pose and
image (9) is a ‘success.’ Table 5.2 summarizes all of the obtained results. Examining the results
in the Experiment-1 column, we notice that the baseline system achieved acceptable success
rates (above 70%) for simple and Lambertian backgrounds (2, 6, and 8); however, the rates
decreased drastically with complex, patterned, and spectral backgrounds. The average success
rate for all tests was 50.8%.

Through these experiments, it was noticed that the possibility of proposing a wrong grasp
pose increases as the dispersion of the estimated grasp poses increases. Figure 5.7 (upper row)
shows examples of wrong ‘proposed grasp pose’, where the estimated grasp poses (in blue) are
more dispersed than the estimated poses in cases of successful proposed grasp poses (Figure
5.7, lower row). Given that the perception module generates a set of estimated grasp poses
with their success probabilities, three parameters were evaluated to select a suitable SC-metric
for grasp pose identification: (1) success probabilities, (2) variance of success probabilities,
and (3) variance of the distances between the estimated grasp poses and the proposed grasp
pose. Using the results of Experiment-1, and for each of the three parameters, the threshold
was varied between the parameter’s minimum and maximum values, calculated the FN and
FP rates, and constructed the Receiver Operating Characteristic (ROC) curve. The first two
parameters had high FP rates, which indicates high probability of predicting success while the
grasp pose is wrong; and low area under the ROC curve (AUC) score, which measures how
well the parameter can distinguish between successful and failed grasps. The third parameter
had a high AUC score (91.9%), and thus it is adopted as the SC-metric. The value of Vth was
experimentally defined to minimize both FP and FN rates, resulting in Vth = 334, FP = 16.4%,
and FN = 16.6%.

Experiment-1b: the same experimental procedure was performed to evaluate the base-
line system’s full autonomy performance in end-to-end grasping, where success is defined as
being able to identify a correct grasp pose and successfully grasp the object. Results in the
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Figure 5.6: The 10 different backgrounds used in the MISA in robot grasping experiments.

Experiment-1b column in Table 5.2 show that even when the system achieves good success
rates in grasp pose identification, actual grasping suffers from low accuracy (average of 35%)
due to execution errors.

To evaluate the execution error on the LoCobot, we conducted additional tests using five
different files of calibration parameters that were obtained using the calibration routine pro-
vided in [125]. Each calibration file was generated by using different parameters for the Adam
optimizer. For each calibration file, red marks were placed on the robot’s work space, and these
marks were selected, one by one, as grasp locations through the GUI; the grasp orientation was
given a random value in each test. To visualize the execution error, a blue marker was fixed at
the center of the LoCobot gripper in a way that it marks the executed grasp location. As shown
in Figure 5.8, it was noticed that a fixed execution offset is obtained for each calibration file,
irrespective of the location and orientation of the target pose. The minimum attained offset was
C = (20mm, 2mm, 0◦).
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Figure 5.7: Sample results visualizing the dispersion of the estimated grasp poses in cases of:
successful grasp pose (lower row), and wrong grasp pose (upper row).

Experiment-2: The second set of experiments was conducted to test the success rate of
end-to-end robot grasping through MISA. The tests were conducted with the same conditions
as Experiment-1; however, the three objects to grasp were changed. In these tests, the human
supervisor was instructed to adjust the proposed grasp pose upon SC requests only. Upon the
experiments’ start, the supervisor adjusted the calibration offset three times within the first six
runs until reaching a specified execution accuracy (<2mm, <2mm, <5◦). The calibration
routine was performed every 100 runs, and the supervisor was free to adjust the calibration
offset based on SA. However, the offset was not changed once set for each calibration routine.
As shown in the Experiment-2 column in Table 5.2, the average success rate increased to 87.6%
in these tests. This experiment demonstrates that augmenting the baseline system with MISA
significantly improves its end-to-end success rate, which increased from 35.0% to 87.6%.

Experiment-3: Additional 10 runs on each object-background pair were conducted. In
these tests, the supervisor was allowed to intervene and adjust the proposed grasp pose even
without the robot’s request, resulting in 100% success rate, as one would expect. However,
this comes at the cost of requiring full attention from the human throughout the entire process,
which is not practical for all grasping applications.
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Figure 5.8: A sample result of the execution error experiments. Red dots represents grasp
locations that were selected by the supervisor through the GUI, these dots were drawn on the
robot’s work space at the beginning of each experiment. Blue dots represent the actual executed
grasp location, these dots were obtained through fixing a blue marker at the center of the gripper.
Green lines visualize the offset between the target poses and actual poses.

Table 5.2: Experimental Results for MISA in robot grasping.

Success Rate
Background (See

Fig. 5.6)
Experiment-1a:

Baseline (Perception
Module Only)

Experiment-1b:
Baseline

(End-to-End)

Experiment-2:
MISA-based System

(End-to-End)

1 25.0% 16.7% 83.3%
2 77,7% 44.4% 92.2%
3 41.7% 33.3% 86.7%
4 58.3% 38.3% 86.7%
5 46.7% 32.2% 88.8%
6 70.0% 46.7% 91.7%
7 51.7% 38.3% 83.3%
8 86.7% 66.7% 93.3%
9 35.6% 24.4% 86.7%

10 14.4% 8.9% 83.3%
Average 50.8% 35.0% 87.6%
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Chapter 6

Conclusion and future work

The aim of this research is to propose and validate a mixed-initiative supervised autonomy
framework for human-robot interaction. Unlike other frameworks that focus on the allocation
of functions between humans and robots, MISA is proposed to extend the spectrum of HRI
to autonomous systems where it is not feasible for a human to ‘completely takeover’ the auto-
mated mission tasks. In the proposed MISA framework, the autonomous agent (robot) performs
tasks in an autonomous fashion, but can ask a human supervisor for assistance based on its self-
confidence. In addition, the human can intervene and influence the autonomous sensing, plan-
ning, and acting based on his/her SA. This framework aims to overcome autonomy challenges
and enhance its performance by combining the cognition, flexibility, and problem solving skills
of humans with the the strength, endurance, productivity, and precision of robots. As a proof-
of-concept, the proposed MISA framework is applied in three different systems: collaborative
grid-based SLAM, automated jigsaw puzzle reconstruction, and autonomous robot grasping.
In the three POC systems, the following are defined: (1) the challenges and limitations affect-
ing full autonomy performance, (2) the confidence measure that triggers the robot’s request for
human assistance, (3) the type and level of intervention that the human can perform. In addi-
tion, an augmented reality interface (for SLAM) and 2D GUIs (for puzzle reconstruction and
robot grasping) are custom-designed to enhance the human situation awareness and efficiently
communicate information and requests.

Through experimental validation, it was shown that applying the MISA framework in fully
autonomous systems can help overcome several autonomy limitations and enhance the overall
system performance. In fact, MISA outperformed full autonomy in the three implemented
systems. In collaborative SLAM, post processing of grid maps was eliminated and the MISA
system produced more accurate maps in less number of trials and less run-time for each trial. In
automated puzzle reconstruction, results showed that the MISA system outperforms both fully
autonomous systems and systems where the human merely intervenes (accepts/rejects) upon the
agent’s requests only. Finally, in robot grasping, MISA showed an ability to increase end-to-end
success rate of learning-based grasping by more than 50%.

Since this is a first step towards mixed-initiative supervised autonomy, there are some lim-
itations that need to be addressed in any future evolution of MISA. First, the cost of each in-
teraction over its benefit is not evaluated in this work. This is a crucial component that could
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be included in the SC/SA attributes to reason about when it is best to request/get assistance
through measuring: (1) the cost of interrupting the human supervisor, which is most important
when the human is supervising multiple robots; and (2) the cost of waiting for human response,
which is important in missions where the robot needs to make rapid decisions and actions. An-
other limitation is that MISA assumes the human to be available and ready to provide assistance
whenever needed, which is not always the case. This assumption could be relaxed by includ-
ing a module to estimate the human’s availability and evaluate his/her capability to provide the
needed help. Third, the number of help requests within a mission could be reduced if the robot
has a learning-from-interaction capability. Agent learning would lead to extending the types
of human assistance to include providing demonstrations, information, and preemptive advice.
Finally, to relax the assumption that the human always has superiority over the robot decisions,
a human performance evaluation module could be included to reason about whether to accept
the human assistance, negotiate it, or refuse it.
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Appendix A

Abbreviations

AR Augmented Reality
AR-HMD Augmented Reality Head Mounted Device
ARI Augmented Reality Interface
AUC Area Under Curve
CAI Computer Assisted Instruction
DCM Direct Comparison Metric
DSF Disjoint Set Forest
FN False Negative
FP False Positive
FP GUI Graphical User Interface
GLCM Gray Level Co-Occurrence Matrix
HCI Human-Computer Interaction
LORA Levels of Robot Autonomy
MI Mixed Initiative
MI-HRI Mixed-Initiative Human-Robot Interaction
MISA Mixed-Initiative Supervised Autonomy
MGC Mahalanobis Gradient Compatibility
MST Minimum Spanning Tree
NCM Neighbour Comparison Metric
OGM Occupancy Grid Mapping
POC Proof of Concept
RBPF Rao-Blackwellized particle filter
ROS Robot Operating System
ROC Receiver Operating Characteristic
SC Self-Confidence
SA Situation Awareness
SLAM Simultaneous Localization and Mapping
TBR Tree Based Reconstruction
URB University Research Board
VOI Value of Information
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[52] P. Fankhauser, M. Bloesch, P. Krüsi, R. Diethelm, M. Wermelinger, T. Schneider,
M. Dymczyk, M. Hutter, and R. Siegwart, “Collaborative navigation for flying and walk-
ing robots,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 2859–2866, IEEE, 2016.

[53] C. P. Quintero, S. Li, M. K. Pan, W. P. Chan, H. M. Van der Loos, and E. Croft, “Robot
programming through augmented trajectories in augmented reality,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 1838–1844,
IEEE, 2018.

[54] D. Krupke, F. Steinicke, P. Lubos, Y. Jonetzko, M. Gorner, and J. Zhang, “Comparison
of multimodal heading and pointing gestures for co-located mixed reality human-robot
interaction,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 1–9, IEEE, 2018.

[55] M. Pollefeys, “Microsoft hololens,” Jun 2018.

[56] E. A. Topp and H. I. Christensen, “Tracking for following and passing persons,” in 2005
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2321–2327,
IEEE, 2005.

[57] A. Diosi, G. Taylor, and L. Kleeman, “Interactive slam using laser and advanced sonar,”
in Proceedings of the 2005 IEEE International Conference on Robotics and Automation,
pp. 1103–1108, IEEE, 2005.

[58] P. Vieira and R. Ventura, “Interactive mapping in 3d using rgb-d data,” in 2012 IEEE In-
ternational Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1–6, IEEE,
2012.
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