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ABSTRACT
OF THE THESIS OF

Sara Abou Hala for Master of Engineering
Major: Engineering Management

Title: Profit Optimization in the News-Vendor model with Poisson Demand

The Price Setting Newsvendor (PSN) model is one of the fundamental models
for Operations Research and Management Science. In its most basic version, the
Price Setting News-Vendor model allows retailers, who sell their products over a
single selling period, to determine the optimal ordering quantity and selling price
that maximize their expected profits. The set of products covered by the News-
Vendor model can range from perishable food and bakery items to short life cycle
items such as seasonal fashion goods or even electronics. In our model, we rep-
resent the demand on these products by a Poisson distribution, as some of them
can face a low customer appeal due to their availability in a wide assortment or
their occasional use. We also consider substitutable retail products, that are hor-
izontally differentiated variants, under an additive-multiplicative demand setting
and a logit consumer choice model. Under these settings, we propose a coordinate
ascent algorithm that finds a local maximum of the profit function. Moreover, we
devise optimality conditions that allow for checking whether the computed solu-
tion is a local or global optima. These conditions are used to develop a method
that allows escaping local solutions that are not global. We validate our results
by conducting various numerical experiments with random inputs of the model
parameters. Finally, we evaluate the effectiveness of our approach compared to
existing optimization heuristics applied under similar problem settings, and we
suggest areas for improvement in future research.
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Chapter 1

Background and Motivation

The newsvendor model has been used since the eighteenth century in analysing
inventory systems with perishable products (Morse & Kimball, 1951). In sup-
ply chain management, perishable products are products that lose their value
or cannot be sold after a period of time such as newspapers, airplane tickets,
fashion goods, food, and many more. The newsvendor model allows the retailers
of perishable products to make informed inventory management decisions in or-
der to maximize their profits. In its basic structure, the newsvendor model can
run given little information such as the demand and the costs of over or under-
stocking. Decision makers who implement this model can then maximize their
profits; they are able to determine the optimal product quantity to order prior
to the selling season. The significance of the newsvendor model and its insightful
solutions have inspired researchers and students in the inventory management
field throughout the years. (Arrow, Harris, & Marschak, 1951) amended the
original model to run in the case where the demand on the perishable products
is unknown. Since then, the demand on the products, that is uncertain in real
life, was represented by a random variable in the newsvendor model. Thereafter,
(Whitin, 1955), motivated by the significance of the product’s selling price on the
consumer’s behavior, studied the newsvendor model with price effects, known as
the Price Setting newsvendor (PSN) model. The (PSN) model allows decision
makers to simultaneously determine the optimal inventory level and the selling
price of their products to maximize their profits.

The (PSN) model has gained significant attention since then and was further
extended in various directions. In this paper, we study the (PSN) problem with
Poisson demand. First of all, we use the Poisson distribution to model the de-
mand in cases where the inventory levels are discrete quantities. In this case,
a continuous approximation of the discrete demand might yield to non integer
values of the optimal inventory levels , which may be not feasible, whereas the
discrete version of the (PSN) always yields to integer values, as shown in Figure
1.1.
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Figure 1.1: Optimal inventory level in the cases of Poisson and normal demand

Moreover, we find the Poisson distribution very useful in modelling the demand
on some products under the newsvendor type inventory setting. We mainly note
products in wide assortments, such as bakery or grocery items, and we also con-
sider slow moving items such as seasonal fashion goods or apparel. Second, as
discrete inventory quantity limits supply flexibility and requires additional de-
mand shaping, the role of the selling price in matching supply and demand under
the Poisson demand setting is greater than it is in the continuous case (Schulte &
Sachs, 2019). For instance, under the Poisson demand setting, the optimal price
exhibits discontinuous jumps when the problem parameters are varied as shown
in Figure 1.2.
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Figure 1.2: Discontinuous jumps in the optimal price subject to change in the
problem’s parameters

Note that these effects are hardly observable in the case of high demand rates
and inventory levels, but they can be significant when the demand is sparse and
consists of a few items (Schulte & Sachs, 2019). In addition to that, using the
Poisson distribution allows us to combine the characteristics of additive and mul-
tiplicative demand models at the same time. Most of the literature on the (PSN)
considers either an additive demand model, where the standard deviation is in-
dependent of the price, or a multiplicative model, where the demand coefficient
of variation is not depending on the price. In that sense, our model under the
Poisson demand setting can be seen as “additive-multiplicative” where both the
demand variance and coefficient of variation are functions of the price. Finally,
using the Poisson distribution in the (PSN) problem can sometimes lead to a non
typical behavior of the profit function. For instance, the expected profit function
in the (PSN) problem with Poisson demand is not continuous nor unimodular in
the price as shown in Figure 1.3.
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(a) (b)

Figure 1.3: (a) Discontinuity of the profit function (b) Non unimodularity of the
profit function

This behavior has led some researchers on the topic to avoid working with cum-
bersome functions, hence they approximate the discrete demand by continuous
distributions. However, (Axsäter, 2013) shows that continuous (normal) distri-
butions can fail in approximating discrete demand models in case of low demand
mean, specifically when the mean is smaller than ten units per period. Conse-
quently, much of the literature on the (PSN) model focuses on continuous rather
than discrete demand models.

Our contribution is to study the (PSN) problem under the Poisson demand
setting and logit choice model in a multiple product assortment. We first apply
the Coordinate Ascent Algorithm on the expected profit function to reach a
local maximum in the price, and we then develop a heuristic to escape the local
maximum into a higher maximum value. We finally demonstrate the efficiency of
our proposed methods by running multiple numerical experiments and analysing
our results.
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Chapter 2

Literature Review

In this section, we discuss some previous work on the (PSN) model from three
different research streams based on the demand models. We first start by the
research on the (PSN) problem under the continuous demand setting and the
additive or multiplicative demand models. We then discuss the literature done
on more general demand models, such as the mixture of both additive and mul-
tiplicative demand settings, in the single and multi-product cases of the (PSN)
model. At the end of this section, we discuss the recent research done on the
(PSN) model under discrete (Poisson) demand setting.

(Arrow et al., 1951) introduce a model to derive the optimal inventory level
and the reordering point for finished goods under exogenous pricing settings, the
Classic News-Vendor model. In their model, they represent the demand by a
random variable following a specified distribution, and they determine the opti-
mal ordering quantity that maximizes the profit function. (Whitin, 1955) then
introduces the Price Setting News-Vendor (PSN) model, that addresses the joint
decision of setting the selling price and the inventory level in a single product as-
sortment. For the single product case, (Whitin, 1955) adopts the continuous and
linear-demand model D(p)=ap+b where p represents the selling price, and a and b
are given constants. As an extension to (Whitin, 1955)’s work, (Mills, 1959) stud-
ies the effect of uncertainty for a monopolist producing a single commodity, and
making short-run price decisions under static conditions. He considers an additive
demand model D(p, u), obtained by incorporating an additional random variable
u to the original demand function D(p, u) as follows: D(p, u)=D(p) + u, where
u follows a known distribution independent of p. He then concludes that under
the continuous and additive demand setting, the optimal selling price of a single
product in a (PSN) model is lower than the deterministic price, corresponding to
the risk free case where the demand is deterministic. Afterwards, (Ernst, 1971) &
(Thowsen, 1975) prove the uniqueness of the optimal policy under the continuous
additive demand setting. They base their results on reasonable assumptions for
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the single and multiple period inventory problems, where the demand function
follows a second order Polya frequency distribution. Then, (Lau & Lau, 1988) &
(Polatoğlu, 1991) show similar profit unimodularity results for demand functions
that follow a uniform continuous distribution. On another hand, (Karlin & Carr,
1962) study the single product (PSN) model under the continuous and multi-
plicative demand setting where D(p, u)=D(p).u. They prove that the optimal
selling price in their case is greater than the deterministic price. In that same
context, (Nevins, 1966) shows that for each positive inventory level, there exists a
unique price that maximizes the expected profit for normally distributed demand
functions. Moreover, (Zabel, 1970) shows similar profit unimodularity results for
exponential and uniform demand distributions.

As a generalization of these works, (Young, 1978) amends the (PSN) model
for the continuous additive-multiplicative demand setting. The author represents
the demand by a random variable of the form D(p) = α(p)ε+β(p) where α(p) and
β(p) are deterministic functions of price p, and ε is a random variable with a fixed
density function Φ(ε). (Young, 1978) proves the existence and uniqueness of the
optimal policy when Φ(ε) is log-concave or log-normal. The author explains that
approximating the optimal policy of stochastic demand inventory problems with
that of deterministic demand problems can lead to contrasting results between
the additive and multiplicative cases, due to the way in which randomness is in-
corporated in the demand function. Thereafter, (Petruzzi & Dada, 1999) expand
(Young, 1978)’s work by developing a unique framework of the (PSN) model for
both the additive and multiplicative demand settings. The authors introduce a
benchmark price variable that, when added to a premium price, will be equal
to the optimal price value maximizing the expected profit at a fixed inventory
level. Besides, they use a stocking factor variable, first introduced by (Silver,
Pyke, Peterson, et al., 1998), that represents the number of standard deviations
by which the stocking quantity deviates from the expected demand. They also
address the multi-period models, thus revive the research on the (PSN) model to
cover more general demand models. Subsequently, (Roels, 2013), (Kocabıyıkoğlu
& Popescu, 2011), and (Lu & Simchi-Levi, 2013) derive concavity and monotonic-
ity results for the single product (PSN) model under the additive-multiplicative
demand setting. Nevertheless, (Yao, Chen, & Yan, 2006) also establish a general
demand model that solves the joint pricing and assortment decision without using
specific demand functions. They consider the demand D(p, ξ) to consist of two
parts: The mean y(p) being continuous, non-negative, and twice differentiable
with increasing price elasticity, and the stochastic factor ξ being a random vari-
able independent of the price and having a generalized strict increasing failure
rate. In a more general framework, (Raz & Porteus, 2006) develop a model, that
is not necessarily a mixture of additive and multiplicative demand models, to
solve the joint pricing and ordering problems. They approximate the demand
distribution function by a number of representative fractiles, being linear piece-
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wise functions of the price. Going forward, they determine the optimal price and
inventory level values for each eligible fractile problem. Finally, they enumerate
along the fractiles subproblems to determine the optimal selling price and inven-
tory level.

In a slightly different context, (Maddah, Bish, & Tarhini, 2014) attempt to
tackle the (PSN) model for discrete demand models. They approximate the
Poisson distribution with a normal distribution with mean µ = λ and a variance
σ2 = λ under an additive-multiplicative demand setting. They use a Taylor series
approximation for the inventory cost, and show that the expected profit function
is unimodular in the selling price. However, (Axsäter, 2013)’s numerical study
proves that discrete demand distributions can not be sufficiently well approxi-
mated by continuous distributions for relatively low mean values. Motivated by
(Axsäter, 2013)’s results, (Schulte & Sachs, 2019) develop an analytical approach
to solve the (PSN) problem under the Poisson demand setting. They cover a
broad class of demand models, mainly linear and logit models. (Schulte & Sachs,
2019) prove the unimodality of the expected profit function at a fixed inventory
level in a single product assortment subject to a Poisson demand. Following from
that, they obtain the optimal price value for each inventory level using standard
optimization techniques. However, they use enumeration to determine the opti-
mal solution, amongst the different solutions at fixed inventory levels, which is
computationally exhaustive for large values of demand rates and multi-product
scenarios.

The vast majority of the literature on the Price Setting News-Vendor (PSN)
model covers the cases where the demand is represented by a continuous ran-
dom variable. Nonetheless, the contributors to the existing literature body cover
a wide range of distribution models to represent the continuous demand. We
mainly note the normal, uniform, and exponential distribution models. More-
over, the existing literature body is very rich in terms of the different ways used
to incorporate the price, as a variable, into the continuous demand’s expression.
We mainly note the additive, multiplicative, and even the mixture of both as a
price-demand relationship model. However, little work is done here on the (PSN)
model under discrete demand settings. (Maddah et al., 2014) determine an op-
timal solution for the discrete demand (PSN) problem, under the multi-product
setting, by approximating the Poisson demand to a Normal distribution. On an-
other hand, (Schulte & Sachs, 2019) also derive a solution for this problem, while
preserving the discrete properties of the Poisson distribution, but they limit their
results to the single product case and an acceptable range of demand rates. Con-
sequently, no results had yet been derived to solve the discrete demand (PSN)
model for scenarios of multiple products and various demand rates at the same
time.
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Chapter 3

Model Overview

In this section, we develop a generic model for the (PSN) problem with Poisson
demand in a multi-product assortment. By using the Poisson distribution, we
combine the characteristics of both additive and multiplicative demand settings.
Moreover, we adopt (Maddah et al., 2014)’s logit choice model in determining
the purchase probabilities.

We denote by Ω={1,2,3,...n} the set of horizontally differentiated variants
from which retailers can compose their product line. Let K ∈ Ω be the as-
sortment stocked by the store. We also denote by yi the fixed inventory level of
product i ∈ K, p and c the selling price and the cost of buying one unit of product
i ∈ K respectively. We denote by λ the given demand rate, it is usually obtained
from historical demand data. We also adopt (Maddah et al., 2014)’s model of
“popular sets”, which are shown to be optimal under both exogenous and en-
dogenous pricing by (Mahajan & van Ryzin, 1999) and (Maddah & Bish, 2007).
We assume, in a product line of n products, the customer’s reservation prices
to satisfy α1 ≥ α2 ≥ ...αn, which implies that we only consider assortments
Sk = {1, 2, ..., k}, k = 1, ..., n. Moreover, we work with logit demand models
where a customer decides on buying product i ∈ K to maximize the utility Ui of
buying the product over the no purchase utility Uo. We define Ui = α − p + ε,
and Uo = εo; with αi being the customer’s reservation price and εi, εo being in-
dependent and identically distributed Gumbel random variables with mean zero
and shape factor one (Guadagni & Little, 1983). Thus, the probability that one
customer will buy product i ∈ K is given by qi(p) = Pr{Ui = maxj∈K∪{0} Uj},
and the no purchase probability is given by qo(p) = 1−

∑
i∈K qi(p) as follows:

qi(p) =
eαi−p

1 +
∑

i∈K e
αi−p

∀ i ∈ K

and

q0(p) =
1

1 +
∑

i∈K e
αi−p

∀ i ∈ K
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We represent the demand on product i ∈ K by the price dependent random
variable Di(p) that follows a Poisson distribution at a rate λqi(p). Without loss
of generality, we assume the products to have no salvage value and no holding
costs. We then write the sales’ expression of product i ∈ K as the minimum
between the ordered quantity yi and the demand Di(p) as follows:

Si(p, yi) = min(Di(p), yi). (3.1)

The expected sales’ expression of product i ∈ K follows as such:

E(Si(p, yi)) = λqi(p)Θ(yi, λqi(p) + yi(1−Θ(yi, λqi(p)), (3.2)

where Θ represents the Poisson cumulative distribution function. By expanding
the above expression, we obtain

E(Si(p, yi)) =

j=yi∑
j=0

je−λqi(p)
[λqi(p)]

j

j!
+ yi

j=∞∑
j=yi+1

e−λqi(p)
[λqi(p)]

j

j!
. (3.3)

We then simplify the equation above as follows:

E(Si(p, yi)) = λqi(p)

j=yi−1∑
j=0

e−λqi(p)
[λqi(p)]

j

j!
+ yi

j=∞∑
j=yi+1

e−λqi(p)
[λqi(p)]

j

j!
. (3.4)

Finally, we express the Poisson Cumulative Distribution function by Θ and write
the expression of E(Si(p, yi, K)) as follows:

E(Si(p, yi)) = λqi(p)Θ(yi − 1, λqi(p)) + yi(1−Θ(yi, λqi(p))). (3.5)

In the remaining of this report, we assume, without loss of generality, negligible
holding costs and salvage values, and we write the expression of the expected
profit function for product i ∈ K, Πi(p, yi) as the difference between the revenue
from selling Si(p, yi) units at a unit price p and the cost of buying yi units at a
unit cost c as follows:

Πi(p, yi) = pλqi(p)Θ(yi − 1, λqi(p)) + pyi(1−Θ(yi, λqi(p)))− cyi. (3.6)

However, since our research aims to determine the optimal selling price and inven-
tory level of product i ∈ K, we need to consider the inventory level as a variable
rather than a fixed quantity. Based on well known results of the news-vendor
model under discrete demand settings (Hadley & Whitin, 1963), we calculate
the optimal inventory level, under the Poisson demand setting, as the smallest
integer y that satisfies the following inequation:

j=y∑
j=1

Φ(j) ≥ p− c
p

, (3.7)
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where p and c are the product’s price and purchasing cost, and Φ is the probability
density function of the Poisson distribution. Following on from that, we write
the expression of the optimal inventory level y∗i (p) for product i in assortment K
as follows:

y∗i (p) = Θ−1(1− c

p
, λqi(p)), (3.8)

where Θ−1 is the inverse of the Poisson Cumulative Distribution function and 1− c
p

is the critical fractile’s expression. We now define the total profit function in an
assortment K, Π(p), as the the sum of the individual products’ profit functions
as follows:

Π(p) = Π(p, Y ∗(p) =
∑
i∈K

Πi(p, y
∗
i (p)), (3.9)

where Y ∗(p) =
[
y∗1(p) y∗2(p) . . . y∗K(p)

]
is the optimal inventory level vector

in an assortment of K products. Finally, based on the property of the optimal
inventory level, being the inventory level that maximizes the profit function, we
rewrite the expression of the expected profit function, Π(p), of equation (3.9) as
follows:

Π(p) =
∑
i∈K

Πi(p, argmax
yi

Πi(p, yi))) =
∑
i∈K

max
yi

Πi(p, yi)), (3.10)

where Πi(p, yi) is the profit function of product i ∈ K, at an inventory level
yi ∈ N. In Figure 3.1, we show the breakdown of the expected profit function,
Π(p), in a 3 product assortment as a function of the individual products’ profit
functions.

(a) (b)

Figure 3.1: Break down of the expected profit function in a 3 product assortment

We now reduce the (PSN) problem with Poisson demand to solving equation
3.11.

max
p≥0

Π(p) = max
p≥0

∑
i∈K

max
yi

Πi(p, yi). ∀yi ∈ N (3.11)
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Chapter 4

Solution Approach

In this section, we develop a solution approach to solve the problem in equation
(3.11) in 3 steps. First, we find a local maximum of Π(p) using the coordinate
ascent algorithm. We then devise optimality conditions that allow for checking
whether the computed solution is a local or global optima. Finally, we develop a
method that allows escaping local solutions that are not global.

Local Optimization of Π(p)

In this part, we develop an algorithm that finds a local maximum of the expected
profit function Π(p). Before proceeding, we state the following Lemma on the
existence of a local maximum of Π(p).

Lemma 1 If there exists a price value p such that Π(p)|p>c > 0, then Π(p) has
at least one local maximum at a price value p > c.

Proof 1 We know from equation (3.6) that Πi(p, yi)|yi=0 = 0. Moreover, since
y∗i (p)|p=c = 0 and limp 7→∞y

∗
i (p) = 0, ∀i ∈ K, we can easily show that Π(p)|p=c = 0

and limp→∞Π(p) = 0. Therefore, if Π(p) is positive at a price value p > c, then
the function has at least one local maximum to the right of the unit cost c.

Following on from that, we now develop an algorithm that converges to a lo-
cal maximum of Π(p) in the price p. In figure 3.1, we see that the functions,
Σi∈KΠi(p, yi), are well behaved and continuous in the price p, for different non-
negative integer values of yi. Moreover, numerical experiments show that in an
assortment K, Σi∈KΠi(p, yi) is not only continuous, but also unimodular in the
price p for values of p > c. Therefore, we develop the following assumption to
proceed with our solution approach.

Assumption 1 In a given assortment K, the sum of the products’ individual
profit functions, Σi∈KΠi(p, yi), is continuous and unimodular in the price p, if
there exists at least one product i, with a non-negative integer value yi.
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Remark 1 We theoretically validate Assumption 2 in a single product assort-
ment, as an application of (Schulte & Sachs, 2019)’s Theorem 3.7 for logit de-
mand models. The unimodularity proof of Σi∈KΠ(p, yi) in a single product as-
sortment, where K = 1, is available in Appendix A.

Following from that, we can now use an optimization technique from the group
of Majorization-Minimization (Minorization-Maximization), also known as MM,
algorithms. The MM class of algorithms consists of iterative optimization tech-
niques that operate by creating a surrogate function that majorizes (minorizes)
the objective function. At each iteration, the surrogate function is minimized
(maximized), and the objective function is driven downhill (uphill). A special
class of the MM algorithms, known as the Expected Minimization (Maximiza-
tion) or EM algorithms, can be used to optimize the expected profit function
Π(p) in the problem of equation equation (3.10). At each iteration, the EM algo-
rithm maximizes the lower bound and updates the initial guess on the objective
function in an upward direction, unless the gradient is zero. In this case, the
algorithm stops at a stationary point of the objective function.

Figure 4.1: Lower bound optimization vs gradient ascent (Harpaz & Haralick,
2006)

Under our problem settings, we can determine the lower bounds on the objective
function Π(p), at any price p, as the sum of the individual profit functions using
equation (4.1). ∑

i∈K

Πi(p, y
∗
i (p)). (4.1)

At a starting point p0, we first compute the lower bound on the objective using
equation (4.1). Second, since the functions in equation (4.1) are continuous and
unimodular in the price at a fixed inventory level (Assumption 1), we can use
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standard optimization techniques, such as the gradient ascent, to reach their max-
imum values. We then update the initial price value on the objective function,
and finally stop when the gradient on the objective is equal to zero as illustrated
in 4.2.

(a)

(b)

Figure 4.2: EM as a lower bound maximization: (a) First Iteration (b) Second
iteration

On the assumption that the lower bounds on the objective are unimodular
functions in the price (Assumption 1), the EM algorithm, detailed above, con-
verges to a local maximum of the expected profit function Π(p) (Wu, 1983). In the
next step, we divise optimality conditions to check whether the local maximum is
an optimal solution, we then develop a heuristic to escape the local solutions that
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are not global. Note that in order to develop the optimality conditions and escape
the local solution, we need the local maximization algorithm to operate on one
side of the curve, i.e., we need to update the price in a consistent direction over
the objective at each iteration. Given that the EM algorithm does not guarantee
consistency in the price variation over the objective, as shown in Figure 4.2, we
apply one of its extensions, the coordinate descent (ascent) algorithm, to reach a
local maximum of Π(p). The coordinate descent (ascent) allows us to move on one
side of the objective function determined by the starting point. The algorithm
uses an iterative methodology in which each iterate is obtained by fixing most
components of the variable vector at their values from the current iteration, and
approximately minimizing (maximizing) the objective over the other components
(Wright, 2015). Since our objective function is essentially a function of the price
and the inventory levels (equation (3.9)), the coordinate ascent operates by fixing
one variable and maximizing over the other at each iteration. Starting at price
value p0 & c, we maximize over the inventory level by computing y∗i (p0) for each
product i ∈ K. We then fix the inventory levels at y∗i (p0) ∀i ∈ K, and apply one
gradient step on the function Σi∈KΠ(p, y∗i (p0)). At each iteration, we update the
price in an increasing direction, when the gradient is not zero, and repeat the
same procedure. Finally, we stop at a price value where the gradient of objective
is equal to 0. In the following, we want to converge to the first local maximum
of Π(p) to the right of the unit cost c. Therefore, we start at a price value, p0,
slightly greater than the unit cost c. We define by s > 0 and ξ ≈ 0, the step size
and the precision parameters respectively to terminate the algorithm.
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Algorithm 1 Coordinate Ascent CA (p0, s,ξ, K)

Require: p0 & c, s ≥ 0, ξ ≈ 0

for j = 0, . . . , do

Compute y∗i (pj) = Θ−1(1− c
pj
, λqi(pj))

Compute ∇Π(p)|p=pj =
∑
i∈K
∇Πi(p, y

∗
i (pj))

Update pj+1 = pj + s [∇ Π(p)|pj ]

if ∇Π(p)|p=pj ≤ ξ then

Break

end if

end for

Return pj

Theorem 1 Local maximization
In a multi-product assortment of the (PSN) problem covering a logit choice model
under the Poisson demand setting, Algorithm 1 converges to a local maximum of
Π(p).

Proof 1 The EM algorithm converges to a stationary point of the objective func-
tion under the following conditions (Wu, 1983):

1. Unconstrainted optimization problem

2. Unimodularity of the lower bound functions

Based on Assumption 1, the lower bounds on the objective functions computed
by Algorithm 1 are unimodular in the price p. Therefore, the EM algorithm
converges to the global maximum of one of the unimodular lower bounds, hence a
local maximum of the objective Π(p).

The solution computed in Algorithm 1 can then be used to determine a price
value that maximizes the expected profit function in a certain interval to the
right of the unit cost c. Consequently, we can determine the inventory level at
the local maximum using equation (3.8). However, we know that the price value
obtained in Algorithm 1, is not necessarily the optimal solution that a decision
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maker is looking for. Therefore, we develop in the next section an optimality
condition to check whether the local maximum obtained using Algorithm 1 is an
optimal solution for equation (3.11).

Global Optimization of Π(p)

In this section, we generate a heuristic to determine Π(p)’s global maximum. We
first start by analyzing the bahavior of Π(p)’s local maxima in a single product
assortment and develop an optimality condition to check whether a local maxi-
mum is an optimal solution. We then generalize the optimality condition to the
multi-product case under a set of reasonable assumptions. Finally, we develop a
technique to escape the local maxima that are not global to higher values.

Optimality condition on the local maximum

Numerical experiments show that in some cases, the expected profit function
Π(p) can have more than one local maximum. We show an example in Figure 4.3
for a 3 product assortment, where the expected profit function Π(p) has 2 local
maxima.

Figure 4.3: Case where Π(p) has two maxima

Next, we analyze the behavior of the local maxima in a single product assortment
and we develop a technique to check the optimality of a local solution based
on (Schulte & Sachs, 2019)’s analytical results. We then prove the validity of
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our proposed technique in a multi-product assortment via numerical results and
generalize it to the multi-product case.

Case of a single product assortment

In a single product assortment, the optimal prices, p∗j , of the expected profit
functions, Π1(p, j), decrease in the inventory level j, for all j ∈ N∗ (Schulte &
Sachs, 2019). Therefore, if p1 = CA(p0 & c, s, ξ, 1) is the first local maximum of
Π(p), to the right of the unit cost c, then a second local maximum might only
occur at a price value p2, such that p2 > p1 and y∗1(p2) < y∗1(p1).

Figure 4.4: Optimal prices decreasing in the inventory level: case of a single
product assortment

Given that Π1(p, j) is unimodular in the price for all j ∈ N (Schulte & Sachs,
2019), we can check whether p1 = CA(p0 & c, s, ξ, 1) is an optimal solution by
comparing Π(p)|p=p1 to the maxima of Π1(p, j) for all nonnegative integer values
of j < y∗1(p1). Besides, since we are moving in a consistent direction to the right
of the unit cost c, we can avoid enumerating over all the values of j ∈ N∗ and
escape to the first value that is higher than the local maximum. Therefore, we
can start by checking the maximum of the function Π(p, y∗1(p1)− 1), obtained by
decreasing the optimal inventory level at p1 by 1 unit. If the maximum of this
function, at a price p2 > p1, is greater than the local maximum at p1, then we
escape the local maximum and move to p2. We then apply the same procedure
starting from p2, and we only consider a local maximum, at a price p2, to be a
global solution when Π(p)|p=p2 > max

p
Π1(p, j) for all j < y∗1(p2).
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Case of a multi-product assortment

In a multi-product assortment, we write the expected profit function, Π(p), as the
sum of the products’ individual profit functions: equation (3.10). Therefore, we
can extend the optimality condition from the single product case, by checking the
maxima of the individual profits’ summation functions following the methodology
detailed in this section. First of all, since the property of the optimal price
decreasing in the inventory level does not apply in the multi-product scenario, we
need to check the maxima of the individual profits’ summation functions obtained
by increasing and decreasing the optimal inventory level of each product at the
local maximum by 1 unit. For a local maximum at a price p1, we determine these
functions using equation (4.2).

Π(p, Y ∗r±(p1)) =
∑

i∈K,i6=r

Πi(p, y
∗
i (p1)) + Πr(p, y

∗
r(p1)± 1) ∀r ∈ K (4.2)

where Y ∗r±(p1) is the inventory level vector obtained by increasing/decreasing the
optimal inventory level of product r at p1, y

∗
r(p1), by 1 unit.
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(a) (b)

(c)

Figure 4.5: Numerical example in a 3 product assortment: (a) Π(p, Y ∗1±(p1) (b)
Π(p, Y ∗2±(p1) (c) Π(p, Y ∗3±(p1)

In the next step, we develop a function to compute the maxima of the func-
tions in equation (4.2). Given that these functions are continuous and unimodular
in the price p (Assumption 1), we can apply a well known optimization technique,
the gradient descent (ascent), to find their maxima. We build our function to
take as inputs a starting price value, which is a local maximizer of Π(p), say pj,
and a product index r ∈ K. We also add the parameters of the gradient ascent
algorithm, s and ξ for the step size and precision, respectively. For an input price
pj, a product index r, we denote by GA±(pj, s, ξ,K, r) our maximization function
that operates on the following objective:∑

i∈K,i6=r

Πi(p, y
∗
i (pj)) + Πr(p, y

∗
r(pj)± 1).

Similar to the single product case, our numerical results imply that, a local max-
imum at a price p1 = CA(p0 & c, s, ξ, 1) is a global maximum of Π(p) when
Π(p)|p=p1 is greater than the maxima of the functions Π(p, Y ∗r±(p1)) in equation
(4.2) for all the products r ∈ K. Following on from that, we next develop an
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Algorithm 2 GA±(pj, s,ξ, K, r)

Require: pj > c, s ≥ 0, ξ & 0, r ∈ K

Compute y∗r(pj) = Θ−1(1− c
pj
, λqr(pj))

Compute ∇Temp(p) = ∇[Σi∈K,i6=rΠi(p, y
∗
i (pj)) + Πr(p, y

∗
r(pj)± 1)]

Set pj+1 = pj

for j = 0, . . . do

Set pj = pj+1

Update pj+1 = pj +∇Temp(p)|pj

if ∇Temp(p)|p=pj ≤ ξ then

Break

end if

end for

Return pj
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assumption to determine whether a local maximum of Π(p) is a global maximum.

Assumption 2 A local maximum of Π(p) at p1 is a global maximum iff

Π(p)|p=p1 > Π(p)|p=GA±(p1,s,ξ,K,i) ∀i ∈ K

Heuristic to determine the global maximum of Π(p)

Based on the above, we now provide a heuristic approach to find Π(p)’s global
maximum in 3 steps.

1. Local maximum: converge to the first local maximum of Π(p) to the right
of the unit cost c, p1 = CA(p0 & c, s, ξ,K)

2. Optimality check: If Π(p)|p=p1 > Π(p)|p=GA±(p1,s,ξ,K,i) ∀i ∈ K, then p1 is a
global maximizer of Π(p)

3. Escaping the local maxima that are not global: If the condition in step 2
is not satisfied, then we escape the local maximum to the first higher value
that we reach by computing Π(p)|p=GA±(p1,s,ξ,K,i) among values of i ∈ K, as
detailed in Algorithm 3.

Lastly, we determine the optimal inventory levels of the products at the global
maximum, p∗, using equation (3.9) for each product i ∈ K.

Remark 2 Complexity of Algorithm 3
In an multi-product assortment of K products, the number of operations required
to reach Π(p)’s global maximum, using Algorithm 3, does not exceed 2K opera-
tions. The number of operations increases linearly with the number of products
in the assortment and is not affected by the problem’s parameters. Meanwhile,
(Schulte & Sachs, 2019)’s approach to determine Π(p)’s global maximum in a
single product assortment requires enumeration over fixed values of the inven-
tory levels below an upper limit ŷ. Note that ŷ is determined as a function of
problem’s nonzero parameters such as the average demand rate, the product’s
purchasing and holding cost, and the salvage value. Consequently, the number of
operations required in (Schulte & Sachs, 2019)’s can be very high in case of high
demand rates or various combinations of the problem’s parameters.
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Algorithm 3 PSNP (p0, s,ξ, K)

Require: p0 & c, s ≥ 0, ξ & 0

Compute p∗ = CA(p0, s, ξ,K);

for i = 1 : K do

Compute p∗i− = GA−(p∗, s, ξ,K, i)

if Π(p)|p=p∗
i−
> Π(p)|p=p∗ then

Update p∗ = p∗i−

end if

Compute p∗i+ = GA+(p∗, s, ξ,K, i)

if Π(p)|p=p∗
i+
> Π(p)|p=p∗ then

Update p∗ = p∗i+

end if

end for

Return p∗
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Numerical Experiments

We next validate the correctness of Algorithm 3 by conducting various numerical
experiments with randomly generated input parameters. We consider a multi-
ple product assortment where the product number K is set by the user. We
then randomly generate the demand rate λ, the unit cost c, and the customers’
reservation prices αi, ∀i ∈ K, as follows:

• λ is a random variable greater than or equal to 1.

• c is random variable greater than or equal to 1.

• αi’s are random variables greater than c and increasing in i.

We then apply Algorithm 3 on the expected profit function Π(p), of equation
(3.10) and converge to a price value p∗ that maximizes Π(p) in the interval

[
c ∞

]
.

We next highlight 3 different cases in which Algorithm 3 converges to Π(p)’s global
maximum.

Case where Π(p) has one local maximum

We now summarize our numerical results, in the case where Π(p) has one maxi-
mum, in a 5 product assortment with the following parameters:

• unit cost c = 3

• average demand λ = 4

• customer reservation prices α1 = 10, α2 = 11, α3 = 12, α4 = 13, α5 = 14

In this specific example, Algorithm 1 converges to a price value p∗ = 12.4028 at
the combination of inventory levels Y(p∗) =

[
0 0 1 1 3

]
. We next compute

the value of Π(p) at the local maximum, Π(p)|p∗ = 19.3879. In the next step of
our heuristic, we compute the maxima of the individual profits’ using the gradi-
ent ascent technique in Algorithm 2, and update p∗ in table 4.1.
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y1 y2 y3 y4 y5 p∗ max
p

Σi=1,2,3,4,5(Πi(p, yi))

1 0 1 1 3 12.4028 16.8897 < 19.3879
0 1 1 1 3 12.4028 17.7053 < 19.3879
0 0 0 1 3 12.4028 19.1264 < 19.3879
0 0 2 1 3 12.4028 16.8609 < 19.3879
0 0 1 0 3 12.4028 15.396 < 19.3879
0 0 1 2 3 12.4028 18.8995 < 19.3879
0 0 1 1 2 12.4028 17.5745 < 19.3879
0 0 1 1 4 12.4028 18.7944 < 19.3879

Table 4.1: Computing the global maximum of Π(p): Case of one local maximum

We then validate our results by manual computation of Π(p)’s maximum value
as shown in figure 4.6.

Figure 4.6: Maximizing Π(p): Case of one local maximum
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Case where Π(p) has 2 local maxima

We now show the validity of our algorithm in the case where Π(p) has more than
one local maximum. For this example, we consider an assortment of 3 products
with the following parameters:

• unit cost c = 10

• average demand λ = 9

• customer reservation prices α1 = 16.2362, α2 = 18.5162, α3 = 19.7369

Under these settings, Algorithm 1 converges to a price value p∗ = 17.938 and a
combination of the inventory levels Y(p∗) =

[
0 1 6

]
. We next compute the

value of Π(p) at the local maximum, Π(p)|p∗ = 35.555. In the next step of our
heuristic, we compute the maxima of the individual profits’ summation functions
using the gradient ascent technique in Algorithm 2, and update p∗ in table 4.2.
In this case, we escape the local maximum and update p∗ whenever we reach a
higher value.

y1 y2 y3 p∗ max
p

(Π1(p, y1) + Π2(p, y2) + Π3(p, y3))

1 1 6 17.938 28.544 < 35.555
0 0 6 17.938 30.6429 < 35.555
0 2 6 17.938 35.1086 < 35.555
0 1 5 18.173 35.6816 > 35.555

Table 4.2: Computing the global maximum of Π(p): Case of 2 local maxima

We validate our results by computing the values of the optimal inventory levels of
the 3 products at p∗ = 18.173 using equation (3.9). We obtain Y(p∗) =

[
0 1 5

]
,

which confirms our solution. We next repeat the same procedure starting from
p∗ = 18.173 as shown in table 4.3.

y1 y2 y3 p∗ max
p

(Π1(p, y1) + Π2(p, y2) + Π3(p, y3))

1 1 5 18.173 28.6295 < 35.6816
0 0 5 18.173 30.7285 < 35.6816
0 2 5 18.173 35.0949 < 35.6816
0 1 4 18.173 33.2527 < 35.6816
0 1 6 18.173 35.555 < 35.6816

Table 4.3: Computing the global maximum of Π(p): Case of 2 local maxima

We also verify our results by manual computation of Π(p)’s maximum value as
shown in figure 4.7.
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Figure 4.7: Maximizing Π(p): Case of two local maxima

Following the same procedure, decision makers can optimize their expected profit
functions using our algorithm by simply specifying the problem’s parameters (K,
αi∀i ∈ K, c, λ), and determining the desired accuracy (s, n, ξ).
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Chapter 5

Analytical and Numerical
Insights

In this chapter, we provide some numerical and analytical insights by comparing
our results to well known results of the (PSN) under the deterministic and normal
demand settings.

Optimal price vs risk free price

From a theoretical aspect, we see that there are some key differences between our
model and the models that have been studied previously in the (PSN) problem.
First, we notice, from our literature review, that most of the existing research con-
siders demand stochasticity to be additive, multiplicative, or a mixture of both.
This implies the use of 2 distinct price functions: one that describes the position
(the mean), and the one that describes the shape of the demand distribution.
In contrast, the stochasticity of the Poisson (PSN) cannot be classified either as
additive or multiplicative nor can it be explained by a combination of the two.
Instead, there is only one demand rate, λqi(p), that defines both the position and
the shape of the demand distribution (Schulte & Sachs, 2019). Following on from
that, we now attempt to study the relationship between the optimal price p∗,
and the risk free price pr, also known as the deterministic price in problems with
deterministic demand models. Recall from the literature review section that p∗

is lower than pr for additive demand models, but its higher in the case of multi-
plicative demand models. Note that in the additive case, the demand’s variance
is independent of the price and its coefficient of variation is decreasing in the
price, whereas in the multiplicative case, the demand’s coefficient of variation is
independent of the price and its variance is decreasing in the price. For continu-
ous demand models, (Petruzzi & Dada, 1999) explain the deviation of p∗ from pr
as a way to reduce variability and mitigate risk. In other words, increasing the
price, p∗ > pr, lowers the variance without increasing the coefficient of variation,
whereas decreasing the price, p∗ < pr, lowers the coefficient of variation without
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increasing variance. However, in the case of Poisson demand, at a rate λqi(p) for
product i ∈ K, the change in the optimal price p∗ leads the variance ( λqi(p)),
and coefficient variation ( 1√

λqi(p)
), to move in opposite directions. Consequently,

the prediction in the manner explained above for the continuous demand case is
not possible under discrete demand settings. Furthermore, in discrete demand
settings, the price has the additional function of compensating for the limited
supply flexibility and, thus, improving the match between demand and supply
(Schulte & Sachs, 2019). This function of the price is highly important when we
change the problem’s parameters. Therefore, the optimal price p∗, in our prob-
lem, can be above or below pr depending on the problem’s parameters. We next
show, in figure 4.7,the optimal price p∗ and the risk free price pr as functions
of the unit cost c, average demand rate λ, and customer reservation price αi of
product i ∈ K. We use the expression of the risk free profit function, Πr(p),
defined by (Maddah et al., 2014) as follows:

Πr(p) = λ(p− c)

∑
i∈K

eαi−p

1 +
∑
i∈K

eαi−p
(5.1)

(Maddah et al., 2014) show that the function Πr(p) attains a unique maximum,
pr, and they provide a closed form expression to compute pr as a function of the
problem’s parameters.
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(a) (b)

(c)

Figure 5.1: (a) p∗ and pr vs α (b) p∗ and pr vs c (c) p∗ and pr vs λ

Based on the analysis above, we summarize the behavior of the optimal price,
p∗, and the risk free , pr, subject to changes in the problem’s parameters as shown
in table 5.1.

Parameter p∗ pr
c Fluctuating Increasing
λ Fluctuating Insensitive
αi Increase Increasing

Table 5.1: Characteristics of the optimal price p∗ and the risk free price pr

Accordingly, we conclude that there doesn’t exist a constant pattern of the
relationship between p∗ and pr in the (PSN) problem under Poisson demand
settings. We also believe that the deviation of p∗ from pr is not a predictable
behavior and varies with the problem’s parameters.
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Comparison to the normal demand setting

In order to highlight the usefulness of the (PSN) problem with Poisson demand,
we next compare our results to a common approximation in the literature: The
normal distribution. Much of the existing research considers the normal distri-
bution a good approximation to the Poisson demand in many practical cases.
However, we know that in the case of low demand rates, this approximation may
not be accurate. Therefore, we compare our results to the case with a normal
distribution under similar problem settings. Recall that under the normal de-
mand settings, (Maddah et al., 2014) prove the unimodularity of the expected
profit function, using a Taylor series approximation and under a set of reason-
able assumptions. For the purpose of this analysis, we define the expected profit
function under the normal demand setting as follows:

Πn(p) = pλqi(p)(p− c)− pφ (Φ−1(1− c

p
))
√
λqi(p) (5.2)

where φ and Φ respectively denote the probability density function and the cu-
mulative distribution function of the standard normal distribution.
In order to understand how the resulting profit function under normal demand
settings differ from the expected profit function under Poisson demand, we con-
duct a numerical study where we compare the optimal solution under both set-
tings. In our study, we relatively consider low, mid, and high values for the
parameters λ, c, and α=average(αi) ∀i ∈ K, to study their effect on the profit
functions. We summarize the data and the results from our numerical study in
table 5.2.
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λ α c Π∗(p)/Π∗n(p)
Low 0.9963

Low Mid 0.8799
High -1.5348
Low 0.9224

Low Mid Mid 0.8052
High 0.4632
Low 0.9597

High Mid 0.8775
High 0.8711
Low 0.9902

Low Mid 0.9455
High 1.2574
Low 1.0000

Mid Mid Mid 0.9505
High 2.8793
Low 1.0100

High Mid 0.9947
High 0.8715
Low 0.9982

Low Mid 0.9853
High 1.3487
Low 1.0000

High Mid Mid 0.9754
High 1.4962
Low 1.0000

High Mid 0.9746
High 0.8932

Table 5.2: Ratio between heuristic profit: Π∗(p)/Π∗n(p)

Based on the above ratio figures, we conclude that in most of the cases, the
normal approximation performs well. Nonetheless, for certain parameter combi-
nations, namely when λ is low, α is low, and c is high, the normal approximation
fails. In these cases, the optimization heuristics under normal demand settings
are either inapplicable or perform poorly. As a consequence, decision makers can
misinterpret a profitable business opportunity as an unprofitable one. Therefore,
we believe that its crucial for companies who face such parameter combinations,
due to sparse demand, low margins and high purchasing costs, to consider the
Poisson (PSN) instead of a deterministic or continuous approximation.
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Chapter 6

Conclusion and
Recommendations

In this paper, we develop a heuristic to maximize the profit of retailers selling
from a product line under the News-Vendor type inventory setting and consumer
choice. We consider the price and the inventory levels as decision variables, and
the assortment size to be predetermined by the retailers. We prove that the ex-
pected profit function has at least one local maximum at a price value greater
than the unit cost c, and under reasonably accepted assumptions, we apply clas-
sic optimization techniques to reach the local maximum value. We then show
that in some cases, the expected profit function can have more than one local
maximum, and we devise optimality conditions to check whether a local solution
is global. As a result, we develop a heuristic approach to reach the expected
profit function’s global maximum, and we validate our results by numerical ex-
amples. We also show that the optimal price follows a discontinuous pattern,
and we conclude that, there doesn’t exist a predictable relationship between the
optimal price and the risk free price. In addition, we accentuate the usefulness of
the (PSN) problem with Poisson demand, by comparing our optimal profit with
the profit that results from heuristically assuming demand to be deterministic or
continuous (normal) when determining the selling price. Accordingly, we believe
that several extensions of our model deserves further analysis. First, we can con-
sider more general demand functions, especially discrete functions to represent
the sparse demand on perishable products (e.g., the compound Poisson distribu-
tion) (Schulte & Sachs, 2019). Moreover, we cal also generalize the horizontally
differentiated product line to a situation where the items in a product line may be
classified into groups of horizontally differentiated items (Maddah et al., 2014).
Finally, we can relax the assumption of horizontal differentiation by considering
items with distinct unit costs and prices (Maddah et al., 2014).
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Appendix A

Unimodularity of Πi(p, yi)

As per (Schulte & Sachs, 2019), a demand function D(p) at a rate λ(p) is said to
be admissible if it satisfies the following conditions:

1. λ(p) is monotonically decreasing in the price;

2. limp→∞ pλ(p) = 0;

3. λ(p) has an inverse λ(p)−1 that is log-concave on [0 ∞].

In this section, we represent λqi(p) by the letter z. For a fixed non-negative
inventory level y, we write the sales function, of any product i ∈ K, in terms of
z as follows:

Sy(z) = min(D(z), y) (A.1)

where D(z) represents a random variable following a Poisson distribution at a
rate z. Thus, we can rewrite the sales function’s expression as follows:

Sy(z) =

x=y∑
x=0

x.e−z.zx

x!
+

x=∞∑
x=y+1

y.e−z.zx

x!
(A.2)

By replacing the summation expressions with the Poisson cumulative distribution
function Φ, we can get the following expression of Sy(z):

Sy(z) = zΦ(y − 1, z) + y(1− Φ(y, z)) (A.3)

Next, we calculate Sy(z)’s first derivative with respect to z being equal to:

d(Sy(z))

dz
= Φ(y − 1, z) (A.4)

We then calculate its second derivative with respect to z:

d2(Sy(z))

dz2
= −ϕ(y − 1, z), (A.5)
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where ϕ represents the Poisson distribution density function.
As its second derivative with respect to z will be always negative, we can prove
Sy(z) to be concave in z.
In what follows, we want to prove the price function p(z) to be concave in z by
calculating its second derivative as well. As z is an invertible function in p, we
write the function p(z) as follows:

p(z) = α− ln(
z

λ− z
) (A.6)

We now calculate its first derivative with respect to z and obtain the following:

dp(z)

dz
= −1

z
− 1

λ− z
(A.7)

We then compute its second derivative in z as follows:

d2p(z)

dz2
=

1

z2
− 1

(λ− z)2
(A.8)

In this case, the concavity result of p(z) with respect to z holds for values of
p lower than the consumer reservation price α; an assumption that we adopted
throughout our study.
Therefore, as concavity implies log-concavity, we now have Sy(z) and p(z) to be
log-concave in z, ∀ p ≤ α. Next, we develop an expression for the profit function
at a fixed inventory level in terms of z as follows:

Πy(z) = Sy(z)p(z)− cy (A.9)

As the second term of the above equation consists of constant values, independent
of z, we can prove Πy(z) to be log-concave in z as it is the product of two
functions proven log-concave in z. Not only does the log-concavity property of
Πy(z) prove existence and uniqueness of the optimal solution z∗, it also allows
us to obtain z∗ using standard convex optimization techniques as explained by
(Boyd & Vandenberghe, 2004). Consequently, as z is invertible in the price p, we
determine the optimal price p∗ as p∗=z−1(z∗).
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Polatoğlu, L. H. (1991). Optimal order quantity and pricing decisions in single-
period inventory systems. International Journal of Production Economics ,
23 (1-3), 175–185.

Raz, G., & Porteus, E. L. (2006). A fractiles perspective to the joint
price/quantity newsvendor model. Management science, 52 (11), 1764–
1777.

Roels, G. (2013). Risk premiums in the price-setting newsvendor model. Available
at SSRN 2285243 .

Schulte, B., & Sachs, A.-L. (2019). The price-setting newsvendor with poisson
demand. European Journal of Operational Research, 283 (1), 125–137.

Silver, E. A., Pyke, D. F., Peterson, R., et al. (1998). Inventory management
and production planning and scheduling (Vol. 3). Wiley New York.

Thowsen, G. T. (1975). A dynamic, nonstationary inventory problem for a
price/quantity setting firm. Naval Research Logistics Quarterly , 22 (3),
461–476.

Whitin, T. M. (1955). Inventory control and price theory. Management science,
2 (1), 61–68.

Wright, S. J. (2015). Coordinate descent algorithms. Mathematical Programming ,
151 (1), 3–34.

Wu, C. F. J. (1983). On the Convergence Properties of the
EM Algorithm. The Annals of Statistics , 11 (1), 95 – 103.
Retrieved from https://doi.org/10.1214/aos/1176346060 doi:
10.1214/aos/1176346060

Yao, L., Chen, Y. F., & Yan, H. (2006). The newsvendor problem with pricing:
Extensions. International Journal of Management Science and Engineering
Management , 1 (1), 3–16.

Young, L. (1978). Price, inventory and the structure of uncertain demand. New
Zealand Operations Research, 6 (2), 157–177.

Zabel, E. (1970). Monopoly and uncertainty. The Review of Economic Studies ,
37 (2), 205–219.

41


