
AMERICAN UNIVERSITY OF BEIRUT

ANALYSIS AND IMPLEMENTATION FOR AN
IN TIME EULER IMPLICIT - SPACE FINITE

ELEMENT APPROXIMATION
TO A HASEGAWA-MIMA PLASMA MODEL

by

ADEL MOUNZER SALEH

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Engineering
to the Department of Electrical and Computer Engineering

of Maroun Semaan Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
January 2022



AMERICAN UNIVERSITY OF BEIRUT

ANALYSIS AND IMPLEMENTATION FOR AN
IN TIME EULER IMPLICIT - SPACE FINITE

ELEMENT APPROXIMATION
TO A HASEGAWA-MIMA PLASMA MODEL

by

ADEL MOUNZER SALEH

Approved by:

Dr. Nabil Nassif, Professor Advisor

Mathematics

Dr. Sophie Moufawwad, Assistant Professor Member of Committee

Mathematics

Dr. Bassam Shayya, Professor Member of Committee

Mathematics

Dr. Ghassan Antar, Professor Member of Committee

Physics

Date of thesis defense: Jan 27, 2022

�����������+%OUBS



AMERICAN UNIVERSITY OF BEIRUT

THESIS RELEASE FORM

Student Name:
Last First Middle

I authorize the American University of Beirut, to: (a) reproduce hard or electronic copies of my
thesis; (b) include such copies in the archives and digital repositories of the University; and (c) make
freely available such copies to third parties for research or educational purposes

As of the date of submission of my thesis

After 1 year from the date of submission ofmy thesis .

After 2 years from the date of submission ofmy thesis .

After 3 years from the date of submission ofmy thesis .

Signature Date

This form is dated and signed when asked to submit the final document to ScholarWorks. DELETE THIS
NOTE WHEN SIGNED



Acknowledgements

First and foremost, I thank my family and friends for being very patient and support-
ive during these rough times in the last two years. I wouldn’t have been able to finish
without them and I owe my health and well-being to them the most.

Second, I would like to thank the research team on the Hasegawa-Mima equation,
namely my advisor Dr. Nabil Nassif, my co-advisor Dr. Sophie Moufawwad, and Mr.
Hagop Karakazian, for introducing me to this very interesting and challenging topic, and
for their wonderful and inspiring contributions to the problem. In particular, I thank
my advisor Dr. Nassif and co-advisor Dr. Moufawwad for being very patient, helpful
and available during the writing process. I am very grateful to their coaching, which
set me on the right track, and very much our lengthy discussions, from which I learned
quite a lot. They have taught me to enjoy all aspects of PDEs, all the way from the
theoretical background in Functional Analysis to the numerical implementation of the
Finite Element Method. I also thank Dr. Antar for introducing me the physics behind
the problem, constantly providing feedback to the simulations, and mostly for inviting to
the 2020 summer school on Plasma Physics in Tunis.

Third, I would like to thank some professors who essentially shaped my mathematical
path: Dr. Bassam Shayya, Dr. Giuseppe Della Sala and Dr. Richard Aoun for teaching
me Analysis, Measure Theory and Topology. I enjoyed very much their enthusiastic lec-
turing and teaching style, and learned even more from our (quite lengthy!) mathematical
discussion.

v



An Abstract of the Thesis of

Adel Mounzer Saleh for Master of Science
Major: Mathematics

Title: Analysis and Implementation for an Time Euler Implicit - Space Finite Element
Approximation To a Hasegawa-Mima Plasma Model

In Magnetohydrodynamics, the Hasegawa-Mima equation appears as a model for
pseudo three-dimensional turbulence of a confined plasma inside a tokamak reactor. The
Hasegawa-Mima equation, bearing close resemblence with the 2d Navier-Stokes equation
for an incompressible fluid, is given

∂

∂t
(∆u− u)− ((∇u× ẑ) · ∇)

(
∆u− ln

n0

ωic

)
= 0.

In this thesis, we apply an in time Euler implicit - space Finite Element Galerkin
method to obtain solutions to this equation that satisfy periodic boundary values over
the square Ω = [0, L]×[0, L]. Furthermore, we use the method to build a numerical scheme
for simulation. We prove the convergence of this scheme with minimal constraints on the
time step τ as a function of the mesh size h.

Furthermore, we search for initial data u0 for which the solution u is a traveling wave in
y-direction. Those initial data turn out to be solutions for a semi-linear elliptic equation,
which can be simulated using Newton-Galerkin method, which is a discretization of the
Newton method in Banach spaces. We then use these initial data as input in the numerical
scheme to showcase that they indeed correspond to traveling waves.

vi



Contents

Acknowledgements v

Abstract vi

Notation ix

1 Introduction 1
1.1 Origins of the problem in plasma physics . . . . . . . . . . . . . . . . . . 1
1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Mathematical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 On the convergence of the fully implicit numerical Scheme 9
2.1 Deriving the numerical scheme . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 A priori estimates and convergence of fully-implicit system . . . . . . . . 14

3 Periodic traveling waves of the Hasegawa-Mima equation 24
3.1 Traveling waves as solutions to a semi-linear elliptic equation . . . . . . . 24
3.2 Existence of traveling waves in H2

P (Ω). . . . . . . . . . . . . . . . . . . . 26
3.3 Suggesting Newton-Galerkin numerical scheme . . . . . . . . . . . . . . . 28
3.4 Localised traveling waves on R2 . . . . . . . . . . . . . . . . . . . . . . . 31

4 Algorithm and Numerical Simulations 36
4.1 Semi-linearized approach for fully-implicit scheme . . . . . . . . . . . . . 36
4.2 Testing Newton-Galerkin method . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Simulation of traveling waves . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Concluding Remarks 45

Bibliography 46

vii



List of Figures

2.1 A uniform triangular mesh of Ω. . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The space V h

P (Ω) visualized with Ω = [0, 1]2. . . . . . . . . . . . . . . . . 10

3.1 Examples of solutions of (3.18) corresponding to eigenvalue λ = −11 . . 35

4.1 Newton-Galerkin method applied to −∆Ψ + Ψ = − arctan(Ψ− cξ)− k̂ξ. 38
4.2 Newton-Galerkin method applied to −∆Ψ + Ψ = −(Ψ− cξ)2 − k̂ξ. . . . 39
4.3 Newton-Galerkin method applied to −∆Ψ + Ψ = −(Ψ− cξ)3 − k̂ξ. . . . 40
4.4 Simulation of traveling wave on Ω = [0, 10] × [0, 10] with h = 1/64 and

with with initial data u0 = Ψh,4 obtained by applying 4 Newton-Galerkin

iterations to the equation −∆Ψ + Ψ = arctan(Ψ− cξ)− k̂ξ. . . . . . . . 42
4.5 Simulation of traveling wave on Ω = [0, 4]× [0, 4] with h = 1/64 and with

with inital data Ψh,15 obtained by applying 15 Newton-Galerkin interations

to the equation −∆Ψ + Ψ = −(Ψ− cξ)2 − k̂ξ. . . . . . . . . . . . . . . . 43
4.6 Simulation of traveling wave on Ω = [0, 1]× [0, 1] with h = 1/64 and with

with inital data Ψh,5 obtained by applying 5 Newton-Galerkin interations

to the equation −∆Ψ + Ψ = −(Ψ− cξ)2 − k̂ξ. . . . . . . . . . . . . . . . 44

viii



Notation

a.e Almost everywhere
PBCs Periodic boundary conditions over a square (defined in (1.6))
X? Topological dual of a Banach space X
L(X, Y ) All linear maps from X to Y .
B(X) All bilinear forms on X ×X.
Wm,p(Ω) Sobolev space of m times weakly differentiable Lp functions
Hm(Ω) Shorthand for the Sobolev space Wm,2(Ω)
| · |Hm The Hm semi-norm
C∞c (Ω) Smooth functions that are compactly supported in Ω
H1

0 (Ω) The completion of C∞c (Ω) in H1(Ω)
H−1(Ω) The dual space of H1

0 (Ω)
Tr The trace operator Tr : H1(Ω) ! H1/2(Ω)
C∞P (Ω) Smooth functions over a square that satisfy PBCs
H1
P (Ω) The closure of C∞P (Ω) in H1(Ω)

Hm
P (Ω) Functions in Hm(Ω) whose first derivatives are in Hm−1

P (Ω)
Lp(0, T ;X) Bochner space of p-integrable X-valued maps on [0, T ]
L∞(0, T ;X) Bochner space of essentialy bounded X-valued maps on [0, T ]
‖ · ‖Lp,X The norm of the space Lp(0, T,X)
C(I,X) X-valued continuous maps on an interval I
{f, g} Poisson bracket of two differentiable functions f and g
~V (f) Perpendicular gradient of f , usually written as ∇⊥f
X ↪! Y X injects continuously in Y

⇀,
?
⇀ Weak and weak? convergence respectively.

ix



Chapter 1

Introduction

1.1 Origins of the problem in plasma physics

The Charney-Hasegawa-Mima equation (1.3) arises in the context of plasma physics,
and in particular during the process of magnetic plasma confinement used in a tokamak
reactor. In short, this relatively novel method uses very powerful magnetic fields to heat a
plasma to temperatures of over 100 million ◦C while keeping it confined in space [1]. This
allows for fusion to take place and thus generating immense amount of thermonuclear
power with relatively low hydrogen fuel consumption.

However, this confinement process is difficult to maintain as plasma can become eas-
ily turbulent and unstable at such high energy levels. Furthermore, any impurity in the
plasma can destroy the entire process. The record for longest running plasma confinement
is held by the Tore Supra tokamak at 6 minutes and 30 seconds [2]. With this important
challenge in mind, numerous efforts have been devised for the development of mathemat-
ical models describing plasma during it’s confinement in order to better understand the
evolution of turbulence and instabilities.

One of these models is the Hasegawa-Mima equation. It was derived in 1977 by
Hasegawa and Mima [3] from the continuity and ion momentum balance equations, under
the assumption that the plasma behaves like a cold fluid. But instead of describing the
velocity field of the ions, the term u in (1.1) describes the electrostatic potential of the
plasma, which can be shown related to the total velocity through perturbation theory, as
noted in [4]. In it’s original normalized from, the Hasegawa-Mima equation in the plane
is written as

∂

∂t
(−∆u+ u) +

(
(∇u× ẑ) · ∇

)
(∆u− p) = 0, (1.1)

where ẑ is the unit normal to the ambient magnetic field and we are given p := ln(n0/ωic)
with n0 being the background particle density and ωic the ion-cyclotron frequency. It
is important to note that the solution u describes pseudo-three-dimensional turbulence,
and therefore it is a function of two spatial variables only. The Hasegawa-Mima equa-
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tion equation is closely related to the two dimensional Navier-Stokes equation for an
incompressible fluid which is given by

∂

∂t
(∆u)− [(∇u× ẑ) · ∇]∇2u = 0.

The extra terms in the Hasegawa-Mima equation (1.1) are due to the presence of com-
pressibilty induced by the parallel electron motion [3]. Furthermore, the Hasegawa-Mima
and Navier-Stoke’s description of the plasma are identical under certain conditions on
the perpendicular wave number. Another common form of (1.1) is obtained by noticing

that ∇u× ẑ = −~V (u) = −∇⊥u so that (1.1) becomes

∂

∂t
(−∆u+ u)− {u,∆u} − {u, p} = 0, (1.2)

where {·, ·} is the Poisson bracket. Throughout this thesis, we will study equation (1.3)

under the assumption background particle density is given by n0(x, y) = ek̂x+γ, a function
of x only. In this case, (1.2) becomes

∂

∂t
(−∆u+ u) = {u,∆u}+ k̂

∂u

∂y
. (1.3)

Except for in literature review where each source studies some variation of the Hasegawa-
Mima equation, (1.3) will be the equation under consideration throughout the thesis.

1.2 Literature review

Since it’s derivation in 1977, the Hasegawa-Mima equation and it’s variants have been sub-
ject to numerous mathematical, numerical, physical and experimental investigations. In
the following list, unless otherwise stated, the domain Ω of the solutions of the Hasegawa-
Mima equation is assumed to be the entire plane R2.

• In 1976, Larichev and Reznik [5] were amongst the first to prove the existence of
exact traveling wave solutions called dipole vortices or Modons.

• In 1987, Nycander [6] proved the existence of a larger class of dipole and monopole
vortices as solutions to a two boundary value problem involving a semi-linear elliptic
equation on a bounded domain and a linear equation on the complement of that
domain.

• In 1989, Shivamoggi [7] proved the existence of exact solutions in R2 assuming that
the vorticity is proportional to u. This assumption on u linearizes equation (1.1)
and the obtained solutions exhibit traveling wave behaviour.
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• In 1998, Grauer [8] gave an energy estimate of a perturbed Hasegawa-Mima equation
with periodic boundary values on a rectangular domain Ω. His estimate predicted
energy saturation occurs after some finite time T .

• In 2003, Paumond [9] used the technique of parabolic regularization and analytic
semi-groups to prove that if u0 ∈ Hm(R2) with m ≥ 4 then for any T > 0 there is
a unique u ∈ L∞(0, T ;Hm(R2)) ∩ C([0, T ];H1(R2)) that solves (1.1).

• In 2004, Guo and Han [10] proved that given u0 ∈ Hm(R2) ∩W 2,∞(R2) with m ≥
3, then there exists a unique classical solution u ∈ L∞(0, T ;Hm(R2)) with ut ∈
L∞(0, T ;Hm−1(R2)) for any T > 0. However, if u0 ∈ H2(R2), then only a weak
solution of (1.3) is obtained with the same regularity as the case m ≥ 3 (but with
m = 2 of course), but with the additional information that u ∈ L∞(0, T ;W 2,p(R2))
for all 2 ≤ p < ∞. This weak solution is unique if u0 also belongs to W 2,∞(R2),
and if in addition k = 0 in (1.3) then u ∈ L∞(0, T ;H2(R2) ∩W 2,∞(R2)).

• In 2008, Hounkonnou and Kabir [11] implemented the Lie Symmetry reduction
method to obtain existence of many families of exact global solutions that can be
expressed in terms of Bessel functions and trigonometric functions.

• In 2009, Boling and Daiwen [12] proved the existence and stability of steady wave
solutions to a variant of the Hasegawa-Mima equation given by ∂t(∆u − u) +
{u,∆u − u} = 0, with u going to zero as |x|, |y| ! ∞. A steady wave so-
lution u for such an equation satisfies u = f(∆u − u), for some function f .
These steady waves correspond to critical points of the Casimir energy functional
I(u) =

∫
R2 (|∇u|2 + |u|2) +

∫
R2 F (∆u− u), where F is the anti-derivative of f .

• In 2016, Karakazian [13] in their MS thesis proved using methods similar to [9], [10]
that a unique solution u ∈ L2(0, T ;Hm

P (Ω)) ∩ C([0, T ];L2(Ω)) to (1.3) exists given
that the initial data is in Hm

P (Ω) with m ≥ 4, where Ω = [0, L]× [0, L]. See section
1.3 for the definition of the spaces Hm

P (Ω).

• In 2018, Karakazian and Nassif [14] used a Petrov-Galerkin approach based on
the Fourier basis of H1

P (Ω) with Ω = [0, L] × [0, L] to obtain local existence of a
local solution u ∈ L2(0, T ;H2

P (Ω)) to a weak formulation of (1.3) knowing that
u0 ∈ H3

P (Ω) and (I − ∆)u0 ∈ L∞(Ω). See section 1.3 for the formulation. Even
though regularity results using this approach are not stronger than the ones in [15],
this approach paved the way for a robust numerical scheme to be implemented later.

• In 2018, Guo, Li, and Han [16] studied the stochastic Hasegawa-Mima equation
with additive noise over a square, with the solution satisfying periodic boundary
values. This equation generates a continuous random dynamical system for which
they have shown the existence of a global attractor in H3

P (Ω) ∩W 2,∞
P (Ω).
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• In 2021, Karakazian, Moufawad, and Nassif [17] used a Petrov-Galerkin approach
based on the Finite Element Method to obtain both an existence result and a
numerical scheme for simulation. Since this thesis is essentially a continuation of
their work, a rather lengthy discussion about their results is found in Section 1.3.

This literature review is most likely not exhaustive, but covers moderately well the
research done on this equation.

1.3 Mathematical framework

In this section we set up the framework of the thesis by defining all the needed function
spaces for the variational approach and the Petrov-Galerkin scheme based on the finite
element method. Let us write (1.3),which will be the equation under consideration for
the rest of the thesis, in the form used in [14], [17]. In particular, we are interested in
solutions on the square Ω = [0, L] × [0, L] which are periodic on the boundary of the
square at each time t.

Definition 1.1. Let Ω = [0, L] × [0, L] and Γ = ∂Ω =
⋃4
j=1 Γj, where the Γj’s are the

sides of the square ordered by tracing the Γ counterclockwise starting from the bottom
side. A function f : Ω ! R is said to said to satisfy periodic boundary conditions, or
PBCs for short, if f|Γ satisfies the following

(f|Γ)|Γ1 = (f|Γ)|Γ3 and (f|Γ)|Γ2 = (f|Γ)|Γ4 . (1.4)

So we want a T > 0 and a function u = u(x, y, t) : Ω × [0, T ] ! R that solves (1.3)
such that u(t), ∂xu(t) and ∂yu(t) satisfy PBCs for all t ∈ [0, T ]. Second, we can write
equation (1.3) as a coupled elliptic-hyperbolic system as follows. Let w := −∆u+ u and
replace in (1.3) to obtain

∂w

∂t
= ~V (u) · ∇w + k̂

∂u

∂y
, on Ω× [0, T ],

−∆u+ u = w, on Ω× [0, T ],

u(t), ∂xu(t), and ∂y(t) satisfy PBCs, for all t ∈ [0, T ].

(1.5)

Notice that the first equation is hyperbolic in w and the second is elliptic in u. Now to
apply the Galerkin method, we need to put (1.5) in variational form, and therefore we
introduce the needed function spaces.

Definition 1.2 (Periodic Sobolev spaces). Let C∞P (Ω) be the set of all function in C∞(Ω)
that satisfy PBCs. We define

H1
P (Ω) := C∞P (Ω) = {u ∈ H1(Ω) : Tr(u) satisfies PBCs a.e on Γ}. (1.6)

4



where Tr : H1(Ω) ! H1/2(Ω) is the trace operator For m ≥ 2 we have

Hm
P (Ω) :=

{
f ∈ Hm(Ω) :

∂|α|f

∂xα
∈ Hm−1

P (Ω), for all multiindex α with |α| = m

}
.

These spaces are Hilbert spaces with usual inner products and mimic all the desired
properties of their parent spaces, cf. [13]. We also need the well known Bochner spaces.

Definition 1.3 (Bochner spaces). Let X be a Banach space. For 1 ≤ p ≤ ∞, we define
Lp(0, T ;X) as the space of almost everywhere defined functions from [0, T ] to X, equipped
with the norm

‖u‖Lp,X :=


(∫ T

0

‖u(t)‖pX
) 1

p

, if 1 ≤ p <∞,

essupt∈[0,T ]‖u(t)‖X , if p =∞.
(1.7)

When using a Galerkin approach to seek a solution for the Hasegawa-Mima equa-
tion, one of the desired consequences of periodicity is that the elliptic equation can be
put variational form without boundary terms. Indeed, one can readily show that the
H1
P (Ω) variational formulation of (1.5), obtained by multiplying (1.5) by v ∈ H1

P (Ω) and
integrating over Ω for each t, is stated as follows.

Strong-time weak-space formulation. Given initial data u0 ∈ H2
P (Ω), seek u : [0, T ] !

H1
P (Ω) and w : [0, T ] ! L2(Ω) such that for all (v, t) ∈ H1

P (Ω)× [0, T ] one has
〈
dw

dt
(t), v

〉
L2

= −
〈
~V (u(t)) · ∇w(t), v

〉
L2

+ k̂

〈
∂u(t)

∂y
, v

〉
L2

,

〈u(t), v〉H1 = 〈w(t), v〉L2 .

(1.8)

In this form, one would look for w ∈ C1([0, T ];L2(Ω))∩L2(0, T ;H1
P (Ω)). These regulari-

ties are difficult to obtain directly through the Galerkin method, and therefore we weaken
them by integrating the first equation on [0, t] for t ∈ [0, T ] and using Fubini’s theorem
to get 〈w(t)− w(0), v〉L2 = −

∫ t

0

〈
~V (u(s)) · ∇w(s), v

〉
L2

+ k̂

〈
∂u(s)

∂y
, v

〉
L2

ds,

〈u(t), v〉H1 = 〈w(t), v〉L2 , ∀(v, t) ∈ H1
P (Ω)× [0, T ].

(1.9)

Therefore, a solution w that satisfies the hyperbolic equation in (1.9) has to be in
L2(0, T ;H1

P (Ω)). However, as a consequence of periodic boundary values, the regular-
ity of w can be weakened even further. This is due to the following fact.
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Proposition 1.1 (Skew-symmetry). For all (u, v, w) ∈ H2
P (Ω) × H1

P (Ω) × H1
P (Ω), we

have that 〈
~V (u) · ∇w, v

〉
L2

= −
〈
~V (u) · ∇v, w

〉
L2
. (1.10)

Proof. Sobolev embeddings with Holder’s inequality guarantee that the above quantities
are well defined. Indeed, recall that H1(Ω) ⊂ Lr(Ω) for all 1 ≤ r < ∞ in dimension

two and Ω bounded. Since ~V (u) ∈ H1(Ω)2, v, w ∈ H1(Ω) and ∇u,∇v ∈ L2(Ω)2 then
Holder’s inequality implies that for any p, q such that 1/p+ 1/q + 1/2 = 1 we have that∣∣∣〈~V (u) · ∇w, v

〉∣∣∣ ≤ ‖~V (u)‖p‖∇w‖2‖v‖q. Also, by equality of the second mixed weak

derivatives of u, it is clear that ~V is divergence free, ie ∇ · ~V (u) = 0. Without loss
of generality, one can assume that u ∈ C∞P (Ω) and the general case follows by density.

Applying Green’s formula to the vector field Γ := w~V (u) gives (1.10).

With equation (1.10) in mind, we could replace the non-linear term in (1.9) with

〈~V (u(s)) · ∇v, w(s)〉L2 , and ask for the weaker regularity w ∈ L2(0, T ;L2(Ω)). However,
this term is no longer guaranteed to be finite. To resolve this, we choose a more regular
test space, namely we assume that v ∈ W 1,∞

P (Ω) instead of H1
P (Ω), so that the non-

linear term makes sense for all v ∈ W 1,∞
P (Ω). Finally, we arrive at the main variational

formulation of the thesis, which we write as an evolution problem as follows.

Weak-time weak-space with skew-symmetry . Given u0 ∈ H2
P (Ω) and w0 = (I −∆)u0 ∈

L2(Ω), seek u,w : [0, T ] ! H1
P (Ω) with initial conditions u(0) = u0 and w(0) = w0 such

that for all v ∈ W 1,∞
P (Ω) and t ∈ [0, T ] one has 〈w(t)− w(0), v〉L2 =

∫ t

0

〈
~V (u(s)) · ∇v, w(s)

〉
L2

+ k̂

〈
∂u(s)

∂y
, v

〉
L2

ds,

〈u(t), v〉H1 = 〈w(t), v〉L2 .

(1.11)

With this formulation, one would can readily discrtize (1.11) using a FEM based Galerkin
method for which a priori estimates are now much easier to obtain.(1) Indeed, starting
with spacial discretization, we pick a small mesh size h > 0 and restrict the test space
in (1.11) to the finite dimensional space V h

P (Ω) ⊂ W 1,∞
P (Ω) of all periodic finite element

corresponding to a uniform triangulation Th of Ω, as introduced in Definition 2.1. As
for temporal discretization, we pick a small time step τ > 0 and consider the following

(1)As opposed (1.8) where one would need to assume that w0 ∈ H1
P (Ω) and find bounds on the H1-norm

of w(t), which is not obvious without additional assumptions on w0, c.f [13] where the authors further
assume that w0 ∈ L∞(Ω).
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integral approximations∫ t+τ

t

〈
~V (u(s)) · ∇v, w(s)

〉
ds = τ

〈
~V (u(t+ τ)) · ∇v, w(t+ τ)

〉
+ ε(v, τ),∫ t+τ

t

k̂

〈
∂u(s)

∂y
, v

〉
ds = τ k̂

〈
∂u(t+ τ)

∂y
, v

〉
+ δ(v, τ).

(1.12)

Under these approximations, we obtain a fully implicit finite element discretization of
(1.11) as follows.

Fully implicit discrete-time FE formulation. Given the following:

(i) initial data u0 ∈ H2
P (Ω) and w0 = (I −∆)u0 ∈ L2(Ω),

(ii) h > 0 denoting the mesh size of the FEM triangulation,

(iii) τ > 0 a denoting the time step,

seek uh, wh : [0, T ] ! V h
P (Ω) such that uh(0) = πh(u0) and wh(t) = πh(w0), for all

v ∈ V h
P (Ω), and for all v ∈ V h

P (Ω) one has
〈wh(t+ τ)− wh(t), v〉L2 = τ

〈
~V (uh(t+ τ)) · ∇v, wh(t+ τ)

〉
+ τ k̂

〈
∂uh(t+ τ)

∂y
, v

〉
,

〈uh(t), v〉H1 = 〈wh(t), v〉 , for all t ∈ [0, T − τ),

uh(t) = uh(τ) and wh(t) = wh(τ) for all t ∈ (0, τ ].
(1.13)

Before we conclude the introduction with the thesis outline, let us mention the follow-
ing regularity result for elliptic problems over domains with corners which will be used
frequently throughout the thesis.

Theorem 1.1 (Grisvard [18], Theorem 3.2.1.2). Let D be any convex bounded open
subset of Rn. Given f ∈ L2(D), there is a unique u ∈ H2(D) ∩H1

0 (D) such that

−∆u+ u = f.

Furthermore, there is a constant CE independent of f and u such that ‖u‖H2 ≤ CE‖f‖L2 .

With a slight modification to the proof of the above result, we also have the following
periodic equivalent of the above theorem.

Theorem 1.2 (Periodic elliptic regularity). Given f ∈ L2(Ω), where Ω = [0, L]× [0, L],
there is a unique u ∈ H1

P (Ω) ∩H2(Ω) such that

−∆u+ u = f.

One can also find a constant CE such that ‖u‖H2 ≤ CE‖f‖L2 , independently of the choice
of f and u.
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1.4 Thesis outline

In Chapter 2, we showcase and continue the work done by Karakazian, Moufawad, and
Nassif [17] on the fully implicit FE scheme.

Section 2.1 We showcase the existence of a solution to (1.13).

Section 2.2 We show the existence of a sequence of fully implicit solutions that con-
verge to a solution of (1.11).

In Chapter 3, we study traveling waves of (1.1).

Section 3.1. We derive from (1.5) an equation that produces traveling waves satisfying
PBCs.

Section 3.2. We prove the existence of traveling waves satisfying PBCs.

Section 3.3. We suggest a Newton-Galerkin numerical scheme for simulating the ini-
tial data that produces traveling waves.

In Chapter 4, we use the numerical schemes developed in previous chapters for simulation.

Section 4.1 We suggest a semi-linearized approach for solving the fully implicit nu-
merical scheme obtained in Chapter 2.

Section 4.2 We test the suggested method in Section 3.3 for various non-linearities.

Section 4.3 We check that the initial data provided by the Newton-Galerkin method
does indeed give traveling wave.
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Chapter 2

On the convergence of the fully
implicit numerical Scheme

2.1 Deriving the numerical scheme

The numerical scheme in this thesis is based on the finite element Galerkin method or
simply finite element method. With a chosen mesh size h, and a meshing Th of the domain
Ω, this method entails discretizing (1.11), so that we look for solutions (uh, wh) contained
in a finite dimensional subspace V h of H1

P (Ω), whose dimension is inversely proportional
to h. As the mesh size h goes to zero, and the corresponding finite dimensional subspace
V h becomes larger, one expects that the finite dimensional solutions (uh, vh) to converge
in some appropriate sense to the real solution (u,w).

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 2.1: A uniform triangular mesh of Ω.
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Definition 2.1 (Periodic finite elements). Choose n ∈ N corresponding to the number
of nodes (i.e vertices) on each segment of the square and let h =

√
2L/n. Consider a

uniform triangulation Th of Ω, as seen in Figure 2.1, with h the longest side of any triangle
in the mesh. Defined the space of periodic finite elements V h

P (Ω) corresponding to Th as

V h
P (Ω) :=

{
v ∈ H1

P (Ω) : v|K is linear for every triangle K ∈ Th
}
.
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(a) Typcial interior basis element.
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(b) Typical boundary basis element.
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(c) Extremal boundary basis element.
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(d) A typical periodic element.

Figure 2.2: The space V h
P (Ω) visualized with Ω = [0, 1]2.

In particular, V h
P (Ω) is the subspace of H1

P (Ω) of continuous functions that are linear
on each of the triangle in the triangulation. A typical element in V h

P (Ω) is plotted in
Figure 2.2d. It is easy to deduce from figure (4.1) and the conditions imposed by (1.6)
that there are

• (n − 2)2 elements in V h
P (Ω) such that each one equals one on some interior node

and 0 on all other nodes, as in Figure 2.2a.
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• 2(n− 2) elements in V h
P (Ω) that are equal to one on two opposing boundary nodes

and zero otherwise, as in Figure 2.2b.

• one element that is equal to one on the four corners of the domain and zero other-
wise, as in Figure 2.2c.

These elements clearly form a basis for V h
P (Ω) and hence

d := dimV h
P = (n− 2)2 + 2(n− 2) + 1 = (n− 1)2.

As usual for the Galerkin method, we look for a finite dimensional equivalent of (1.11) by
replacing the requirement (1.11) hold for all v ∈ W 1,∞

P (Ω) to holding for all v ∈ V h
P (Ω).

This insinuates looking for solutions u and v as such that u(t), w(t) ∈ V h
P (Ω) for all

t ∈ [0, T ]. Then, the semi-discrete finite dimensional equivalent of (1.11) reads as follows.

Semi-Discrete FE Formulation. Given u0 ∈ H1
P (Ω) with w0 = (I −∆)u0 ∈ L2(Ω),

seek functions uh, wh : [0, T ] ! V h
P (Ω) such that uh(0) = πh(u0) and wh(0) = πh(w0), and

for all v ∈ V h
P (Ω) one has
〈
dwh
dt

(t), v

〉
L2

=
〈
~V (uh(t)) · ∇v, wh(t)

〉
L2

+ k̂ 〈∂yuh(t), v〉L2 ,

〈uh(t), v〉H1 = 〈wh(t), v〉L2 ,

(2.1)

which implies that 〈wh(t)− wh(0), v〉 =

∫ t

0

〈
~V (uh(s)) · ∇v, wh(s)

〉
+ k̂ 〈∂yuh(s), v〉 ds,

〈uh(t), v〉H1 = 〈wh(t), v〉L2 ,

(2.2)

which is also means that for any τ > 0 and t ∈ [0, T − τ), 〈wh(t+ τ)− wh(t), v〉 =

∫ t+τ

t

〈
~V (uh(s)) · ∇v, w(s)

〉
+ k̂ 〈∂yuh(s), v〉 ds,

〈uh(t), v〉H1 = 〈wh(t), v〉 .
(2.3)

Naturally, the previous two equations require at least that u ∈ L2(0, T ;H1(Ω)) and
w ∈ L2(0, T ;L2(Ω)), so that these are the solution spaces on which we apply the Galerkin
analysis. Now using the fact that (2.1) holds for all v ∈ V h

P (Ω) if and only if it holds for
all basis elements of V h

P (Ω), letting Bh
P = {ϕ1, . . . , ϕd} be a basis of V h

P (Ω) so that we
can write

u(t) :=
d∑
i=1

ui(t)ϕi w(t) =
d∑
i=1

wi(t)ϕi, uh(0) = πh(u0),

then one obtains the matrix form of (2.1) as follows.
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Semi-discrete matrix form. Given u0 ∈ H2
P (Ω) with w0 = (I −∆)u0 ∈ L2(Ω), and

h > 0, seek functions Uh,Wh : [0, T ] ! Rdh such that

Uh(0) =
(
π

(1)
h u0, . . . , π

(d)
h u0

)
and Wh(0) =

(
π

(1)
h w0, . . . , π

(d)
h w0

)
and such that for all t ∈ [0, T ] we haveM

dWh

dt
(t) = S(Uh(t))Wh(t) + kRUh(t),

KUh(t) = MWh(t).
(2.4)

where M = [〈ϕi, ϕj〉]di,j=1 is the mass matrix, K =
[
〈ϕi, ϕj〉H1

]d
i,j=1

is the sum of the mass

and stiffness matrices, R = [〈∂yϕi, ϕj〉]di,j=1, and S : Rd ! Rd×d is the matrix valued
linear map given by

S(x) =

[
d∑

k=1

xk

〈
~V (ϕk) · ∇ϕi, ϕj

〉]d
i,j=1

, x = (x1, . . . , xd).

It has been already shown in [17] using the Picard-Lindelöf theorem that such a
pair (Uh,Wh) satisfying (2.4) exists for each h and that there is a sequence of solution
pairs {(Uhn ,Whn)}n≥1 satisfying (2.4) for each n, such that the corresponding sequence
of solutions pairs {(uhn , whn)}n≥1 converges to a solution pair (u,w) of equation (1.11).
However, to obtain a numerical scheme, one would still need to discretize (2.1) and (2.4)
with respect to time. Therefore, we go to (2.3) and use the approximations given by
(1.12) to obtain (1.13), which we rewrite here for the sake of convenience.

Fully implicit discrete-time FE formulation. Given the following:

(i) initial data u0 ∈ H2
P (Ω) and w0 = (I −∆)u0 ∈ L2(Ω),

(ii) h denoting the mesh size of the FEM triangulation,

(iii) τ denoting some time step,

seek uh, wh : [0, T ] ! V h
P (Ω) such that uh(t) = πh(w0) and wh(t) = πh(w0), and for all

v ∈ V h
P (Ω) one has
〈wh(t+ τ)− wh(t), v〉L2 = τ

〈
~V (uh(t+ τ)) · ∇v, wh(t+ τ)

〉
L2

+ τ k̂ 〈∂yuh(t+ τ), v〉L2 , for all t ∈ (τ, T − τ ],

〈uh(t), v〉H1 = 〈wh(t), v〉L2 , for all t ∈ (τ, T − τ ],

uh(t) = uh(τ) and wh(t) = wh(τ), for all t ∈ (0, τ ].
(2.5)
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This last condition defines uh and wh as left-continuous-right-limit step functions, ie

uh(t) =


∑
j

uh(jτ) · 1Ej(t), t 6= 0,

πh(u0), t = 0,

wh(t) =


∑
j

wh(jτ) · 1Ej(t), t 6= 0,

πh(w0), t = 0.

(2.6)

where 1Ej is the indicator function of the set Ej := ((j − 1)τ, jτ ]. In matrix form, this is
equivalent to the following.

Fully-implicit-time FE-space, matrix formulation. Given initial data u0 ∈ H2
P (Ω), h > 0

denoting the mesh size of the FE triangulation, and τ > 0 denoting a time step, seek
functions Uh,Wh : [0, T ] ! Rd such that Uh(0) = U

(0)
h and the following hold

(a) For all t ∈ [0, T ] one has that KUh(t) = MWh(t).

(b) For all t ∈ (τ, T − τ ] one has

MWh(t+ τ) = MWh(t) + τS(Uh(t+ τ))Wh(t+ τ) + τ k̂RUh(t+ τ), (2.7)

(c) For all t ∈ (0, τ ] one has Uh(t) = Uh(τ).

The existence and uniqueness of (Uh,Wh) satisfying (2.7), and therefore the existence of
(uh, wh) satisfying, is shown by writing (2.7) in fixed point format through

Wh(t+ τ) = G(Wh(t+ τ)), where

G(x) := M−1A−1
(
z + τM−1S(K−1Mx)

)
x, with

A := I − τ k̂RK−1, z := W (t).

(2.8)

provided that A is invertible, which is indeed the case when a constraint is added to
τ . Therefore, existence becomes a matter of applying the Leray-Shauder fixed point
theorem, as showcased in the next proposition.

Proposition 2.1 (Karakazian, Moufawad, and Nassif [17]). For τ ≤ (2k̂)−1, the fixed
point problem (2.8) has a solution.

Proof. A straightforward argument shows that the bilinear form a : H1(Ω)×H1(Ω) ! R
defined by

a(u, v) = 〈u, v〉H1 − τ k̂ 〈∂yu, v〉L2 ,

is coercive when τ ≤ (2k̂)−1 and in particular it is coercive when restricted finite di-
mensional subspace V h

P (Ω). Now let w ∈ V h
P (Ω) with coordinate vector w ∈ Rd. The
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Lax-Milgram theorem guarantees the existence of a unique u ∈ V h
P (Ω) with coordinate

vector u ∈ Rd such that

a(u, v) = 〈w, v〉 , for all v ∈ V h
P (Ω), i.e (K − τ k̂R)u = Mw.

This implies that K − τ k̂R is invertible and therefore A = (K − τ k̂R)K−1 is also
invertible. Hence, (2.7) can be put in fixed point format through (2.8).
Now we prove the existence of a fixed point of G. Indeed, let x ∈ Rd be such that
x = λG(x) for some 0 ≤ λ ≤ 1. This means that

(I − τ k̂RK−1)Mx = λ(Mz− τS(K−1Mx))x.

Multiplying by xT on both sides, using the fact that S(v) is skew-symmetric for all
v ∈ Rd, and the triangle inequality, we obtain

‖x‖2
M − τ k̂

∣∣xTRK−1Mx
∣∣ = λ‖x‖M‖z‖M . (2.9)

Now let y ∈ Rd be such that y = K−1Mx so that ‖y‖K ≤ ‖x‖M by elliptic regularity.
Then x and y are the coordinate vectors of two elements vx and uy in V h

P (Ω) which satisfy
the following

|xTRy| = | 〈∂yuy, vx〉 | ≤ ‖uy‖H1‖vx‖L2 = ‖y‖K‖x‖M ≤ ‖x‖2
M ,

so that for τ ≤ (2k̂)−1 equation (2.9) implies

‖x‖M ≤
λ

1− τ k̂
‖z‖M ≤

1

1− τ k̂
‖z‖M ≤ 2‖z‖M .

Therefore, the set of all such x is bounded in the ‖ · ‖M norm by 2‖z‖M , and hence the
Leray-Schauder fixed point theorem applies to give a fixed point x of G.

Remark. When τ ≤ Ch5/2 with C depending on k̂−1 and ‖z‖−1
M = ‖W (t)‖−1

M , the function
G defined in (2.8) becomes a contraction, and hence the obtained fixed point is unique.
For a proof of this see [17].

2.2 A priori estimates and convergence of fully-implicit

system

In this section, we exploit periodicity to derive a priori estimates and use them to prove
the existence of a pair (u,w) satisfying (2.2), which will be the limit of a sequence of
pairs (un, wn) satisfying (2.5) for some (hn, τn). More precisely, we prove the following
theorem.
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Theorem 2.1. There are real sequences {hn} and {τn} with τn ∈ Θ(hn), a sequence
{(un, wn)} of solution pairs that solve (2.5) for the given (hn, τn), and a pair

(u,w) ∈ L∞(0, T ;H1
P (Ω))× L∞(0, T ;L2(Ω))

that solves (1.11) such that un
?
⇀ u and wn

?
⇀ w.

We note that the method to be used in the sequel is almost identical to the one used
in [17], and is more or less standard in the Galerkin method, which dictates finding a
priori estimates from the finite dimensional equation (2.5) and extracting a subsequence
that converges to a solution of the original equation (2.2). First of all, let us mention the
”skew-symmetry” property of the Poisson term for elements in V h

P (Ω).

Theorem 2.2 (Karakazian, Moufawad, and Nassif [17]). For all u, v, w ∈ V h
P (Ω) we have

that 〈
~V (u) · ∇v, w

〉
= −

〈
~V (u) · ∇w, v

〉
,

and in particular this implies that
〈
~V (u) · ∇w,w

〉
= 0.

Proposition 2.2. There is a constant Ca = Ca(T, ‖w0‖L2 , k̂) and an N ∈ N such that
for all n ≥ N , for any h ∈ R+, and given the solution pair (u,w) satisfying (2.5) for h
and τn = T/n, one has

‖u(t)‖H1 ≤ ‖w(t)‖L2 ≤ Ca. (2.10)

Proof. The fact that ‖u(t)‖H1 ≤ ‖w(t)‖L2 follows from simply plugging v = u(t) in (2.5)
and using Cauchy-Shwarz. On the other hand, plugging v = w(t + τ) ∈ V h

P (Ω) in the
first equation of (2.5) and using Theorem 2.2 to cancel the Poisson bracket term, one has
that

‖w(t+ τ)‖2
L2 = 〈w(t), w(t+ τ)〉L2 + τ k̂

〈
∂u(t+ τ)

∂y
, w(t+ τ)

〉
L2

,

then use triangle inequality and Cauchy-Shwarz to obtain

‖w(t+ τ)‖L2 ≤ ‖w(t)‖L2 + τ k̂

∥∥∥∥∂u(t+ τ)

∂y

∥∥∥∥
L2

≤ ‖w(t)‖L2 + τ k̂‖w(t+ τ)‖L2 ,

where we have used ∥∥∥∥∂u(t+ τ)

∂y

∥∥∥∥
L2

≤ ‖u(t+ τ)‖H1 ≤ ‖w(t+ τ)‖L2 .

Now since t ∈ [(j − 1)τ, jτ) for some 1 ≤ j ≤ n, we have that

‖w(t)‖L2 ≤ ‖w(0)‖L2

(1− τ k̂)j
≤ ‖w(0)‖L2

(1− τ k̂)n
=
‖w(0)‖L2

(1− T
n
k̂)n
≤ 2k̂T‖w(0)‖L2︸ ︷︷ ︸

:=Ca

,

where the last inequality in the above equation holds whenever τ ≤ (2k̂)−1, as desired.
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Notation. Before we start with the proof of convergence of the numerical scheme, we
introduce some notation to be used as shorthands in the following.

(i) For n ∈ N and v ∈ H1
P (Ω) set

hn =
√

2L/n and πnv := πhnv ∈ V hn
P (Ω), (2.11)

where πhn(v) is the interpolant of vn in V h
P (Ω).

(ii) For m ∈ N, set τm = T/m. For fixed t ∈ [0, T ], we let km = km(t) and δm = δm(t)
be the numbers such that

t ∈ ((km − 1)τm, kmτm] and δm := kmτm − t. (2.12)

(iii) Given (un, wn) satisfying (2.5) for some (hn, τm), we define set each 0 ≤ j ≤ km, we
define

u(j)
n :=

{
un(jτm), if j < km,

un(t), if j = km.
w(j)
n :=

{
wn(jτm), if j < km,

wn(t), if j = km.
(2.13)

(iv) For (u, v, w) ∈ H1(Ω)×W 1,∞(Ω)× L2(Ω), define the following

Pv(u,w) :=
〈
~V (u) · ∇v, w

〉
, Lv(u) :=

〈
∂u

∂y
, v

〉
,

and we have

|P (u, v, w)| ≤ ‖u‖H1‖v‖W 1,∞‖w‖L2 and |L(u, v)| ≤ ‖u‖H1‖v‖L2 .

Lemma 2.1 (Error estimation). Let t ∈ [0, T ] and v ∈ W 1,∞
P (Ω) ∩W 2,∞(Ω). With the

N given in Proposition 2.2, define a sequence {(hn, τn)}n≥N by

hn :=

√
2L

n
and τn ∈ Θ(hn).

Let πnv be the interpolant of v in V hn
P (Ω) and let (un, wn) be the solution pair of (2.5)

corresponding to (hn, τn). Then we have that

〈wn(t)− wn(0), v〉L2 =
kn∑
j=1

〈
w(j)
n − w(j−1)

n , πnv
〉
L2 + αn, (2.14)

where αn, βn ∈ O
(
‖v − πnv‖L2

)
and γn ∈ O

(
‖v − πnv‖W 1,∞

)
.
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Proof. For equation (2.14), one has that

〈wn(t)− wn(0), v〉L2 =
〈
w(kn)
n − w(0)

n , v
〉
L2

=
〈
w(kn)
n − w(0)

n , πnv
〉
L2 +

〈
w(kn)
n − w(0)

n , v − πnv
〉
L2

=
kn∑
j=1

〈
w(j)
n − w(j−1)

n , πnv
〉
L2 + αn,

where αn = 〈w(kn)
n − w(0)

n , v − πnv〉L2 . Furthermore, by a priori estimate (2.10) and
Cauchy-Shwarz one has

|αn| ≤ (‖w(kn)
n ‖L2 + ‖wn(0)‖L2)‖v − πnv‖L2 ≤ 2Ca‖v − πnv‖L2 ∈ O

(
‖v − πnv‖L2

)
.

Lemma 2.2. Let t ∈ [0, T ] and v ∈ W 1,∞
P (Ω). With the N given in Proposition 2.2 and

{(hn, τn)}n≥N given as in Lemma 2.1, and (un, wn) a solution pair of (2.5) corresponding
to (hn, τn), we have that∫ t

0

L(un(s), v)ds = τn

kn∑
j=1

L(u(j)
n , πnv) + βn, (2.15)

where βn ∈ O
(
‖v − πnv‖L2

)
.

Proof. From the definition of un in (2.5) as a step function on [0, T ], and using the
notation (2.11)-(2.13), we infer that equation (2.15) holds because∫ t

0

L(un(s), v)ds =

∫ knτn

0

L(un(s), v)ds−
∫ knτn

t

L(un(s), v)ds

=

∫ knτ

0

L

(
n∑
j=1

u(j)
n · 1Ej(s), v

)
ds− εnL(u(kn)

n , v)ds

=
n∑
j=1

∫ knτn

0

1Ej(s)L
(
u(j)
n , v

)
ds− εnL(u(kn)

n , v)ds

=
kn∑
j=1

τnL(u(j)
n , v)− εnL(u(kn)

n , v)

=
kn∑
j=1

τnL(u(j)
n , πnv) + βn

where βn is given by

βn =
kn∑
j=1

τnL(u(j)
n , v − πnv)− εnL(u(kn)

n , v).
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Now observe that by the definition of kn one has knτn ∈ Θ(h−1
n )Θ(hn) = Θ(1). Therefore,

we have that

|βn| ≤ τn

kn∑
j=1

∣∣L (u(j)
n , v − πnv

)∣∣+ εn|L(u(kn)
n , v)|

≤ τn‖v − πnv‖L2

kn∑
j=1

∥∥∂yu(j)
n

∥∥
L2 + εn

∥∥∂yu(kn)
n

∥∥
L2 ‖v‖L2

≤ τn‖v − πnv‖L2 knCa + εnCa‖v‖L2

∈ O
(
‖v − πnv‖L2

)
+O(εn) = O

(
‖v − πnv‖L2

)
.

Lemma 2.3. Let t ∈ [0, T ] and v ∈ W 1,∞
P (Ω) ∩W 2,∞(Ω). With the N given in Proposi-

tion 2.2 and {(hn, τn)}n≥N given as in Lemma 2.1, and (un, wn) a solution pair of (2.5)
corresponding to (hn, τn), we have that

∫ t

0

P (un(s), v, wn(s))ds = τn

kn∑
j=1

P
(
u(j)
n , πnv, w

(j)
n

)
+ γn, (2.16)

where γn ∈ O
(
‖v − πnv‖W 1,∞

)
.

Proof. From the definitions of un and wn in (2.5) as a step functions on [0, T ], and using
the the notation (2.12)-(2.13), we infer that equation (2.16) holds because

∫ knτn

0

P (un(s), v, wn(s))ds =

∫ knτn

0

n∑
i,j=1

1Ei(s) · 1Ej(s) · P (u(i)
n , v, w

(j)
n )ds

=

∫ knτn

0

kn∑
i,j=1

δij(s) · P (u(i)
n , v, w

(j)
n )ds

=

∫ knτn

0

kn∑
j=1

P (u(j)
n , v, w(j)

n )ds

=
kn∑
j=1

τnP (u(j)
n , v, w(j)

n )ds,
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and therefore∫ t

0

P (un(t), v, wn(t))ds =

∫ knτn

0

P (un(s), v, wn(s))ds−
∫ knτn

t

P (un(s), v, wn(s))ds

=
kn∑
j=1

τnP (u(j)
n , v, w(j)

n )− εnP (u(kn)
n , v, w(kn)

n )

=
kn∑
j=1

τnP (u(j)
n , πnv, w

(j)
n ) + γn,

where

γn =
kn∑
j=1

τnP (u(j)
n , v − πnv, w(j)

n )− εnP (u(kn)
n , v, w(kn)

n ).

With a priori estimate (2.10) and Cauchy-Shwarz, one has that

|γn| ≤ τn

kn∑
j=1

∣∣P (u(j)
n , v − πnv, w(j)

n

)∣∣+ εn|P (u(kn)
n , v, w(kn)

n )|

≤ τn‖v − πnv‖W 1,∞

kn∑
j=1

∥∥u(j)
n

∥∥
H1 ‖w(j)

n ‖L2 + εn‖v‖W 1,∞
∥∥u(kn)

n

∥∥
H1 ‖w(kn)

n ‖L2

≤ τnknC
2
a‖v − πnv‖W 1,∞ + C2

aεn‖v‖W 1,∞

∈ O
(
‖v − πnv‖W 1,∞

)
+O(εn) = O

(
‖v − πnv‖W 1,∞

)
.

Proposition 2.3. Let {(hn, τn)}n≥N be defined as in Lemma 2.1 and let {(un, wn)}n≥N be
the corresponding sequence of solution pairs of (2.5). There is a subsquence {(unm , wnm)},
an element u ∈ L2(0, T ;H1

P (Ω)), and an element w ∈ L∞(0, T ;L2(Ω)) such that

(i) wnm
?
⇀ w in the weak? topology on L∞(0, T ;L2(Ω)).

(ii) wnm ⇀ w in the weak topology on L2(0, T ;L2(Ω)).

(iii) unm
?
⇀ u in the weak? topology on L∞(0, T ;H1

P (Ω)).

(iv) unm ⇀ u in the weak topology on L2(0, T ;H1
P (Ω)).

Proof. In this proof we will need the Banach-Alaoglu and Rellich-Kondrachov theorems
(Theorems 3.16 and 9.16 resp. in [19]).

(i) Proposition 2.2 tells us that the sequence {wn} is bounded in L∞(0, T ;L2(Ω)), which
is the dual space of L1(0, T ;L2(Ω)). Therefore, the Banach-Alaoglu theorem tells us
that there is a subsequence {wm} = {wmn}n≥N and an element w ∈ L∞(0, T ;L2(Ω))

such that wmn
?
⇀ w.
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(ii) It is clear that the w obtained in (i) is in L2(0, T ;L2(Ω)). The fact that wnm
?
⇀

w means that for every v ∈ L1(0, T ;L2(Ω)), and thus in particular for all v ∈
L2(0, T ;L2(Ω)), one has that∫ T

0

〈wnm(s), v〉L2 ds!

∫ T

0

〈w(s), v〉 ds.

Then weak convergence un ⇀ u follows since every continuous linear functional on
L2(0, T ;L2(Ω)) is of the form

∫ T
0
〈·, g〉L2 ds for some g ∈ L2(0, T ;L2(Ω)),

(iii) Let {unm} be the subsequence of {un} corresponding to {wnm}. Then for each m,
consider the unique function znm : [0, T ] ! H1

P (Ω) ∩H2(Ω) such that

〈znm(t), v〉H1 = 〈wnm(t), v〉L2 , for all v ∈ H1
P (Ω) and t ∈ [0, T ].

This sequence in bounded in L2(0, T ;H2
P (Ω)) because by Theorem 1.2 and Propo-

sition 2.2 one has that

‖znm‖L2,H2 =

(∫ T

0

‖znm(t)‖2
H2

) 1
2

≤
(∫ T

0

C2
E‖wnm(t)‖2

L2

) 1
2

≤
√
TCECa.

There is a subsequence {znmk}, which we relabel as {znm}, and an element u ∈
H1
P (Ω) such that znm ! u pointwise on almost everywhere on L2(0, T ;H1

P (Ω)).
Furthermore, by part (iii) of Proposition 2.4, there is a constant K such that

‖znm(t)− unm(t)‖H1 = ‖znm(t)− πhnm (znm(t))‖H1 ≤ Khnm|znm(t)|H2

≤ KhnmCE‖wnm(t)‖L2

≤ KhnmCECa,

Hence, we also have that ‖umn − zmn‖L2,H1 ! 0 and thus unm ⇀ u.

(iv) Follow the exact same line of reasoning as in (ii).

Corollary 2.2.1. Fix any v ∈ W 1,∞
P (Ω) and consider the sequence {(unm , wnm)} obtained

in the previous proposition. Then for all t ∈ [0, T ] we have that∫ t

0

Lv(um(s)) !

∫ t

0

Lv(u(s)),

∫ t

0

Pv(um(s), wm(s)) !

∫ t

0

Pv(u(s), w(s)). (2.17)

Furthermore, there is a subsequence {wnmk}, which we relabel as {wmn}, which satisfies

〈wmk(t)− wmk(0), v〉! 〈w(t)− w(0), v〉 , for each t ∈ [0, T ]. (2.18)
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Proof. The functional u 7!
∫ t

0
L(u(s), v) is continuous on L2(0, T ;H1

P (Ω)) since∣∣∣∣∫ t

0

L(u(s), v)

∣∣∣∣ ≤ ‖v‖L2

∫ t

0

‖u(s)‖H1ds ≤ ‖v‖L2‖u‖L2,H1 .

Also, the bilinear map (u,w) 7!
∫ t

0
Pv(u(s), w(s)) is bounded and hence continuous on

the product space L2(0, T ;L2(Ω))× L2(0, T ;H1
P (Ω)) since∣∣∣∣∫ t

0

P (u(s), v, w(s))ds

∣∣∣∣ ≤ ‖v‖W 1,∞

∫ t

0

‖u(s)‖H1‖w(s)‖L2ds

≤ ‖v‖W 1,∞ · ‖u(s)‖L2,H1 · ‖w(s)‖L2,L2 .

Therefore, (2.17) follows immediately from the previous proposition since wn ⇀ w and
un ⇀ u in their respective spaces. Now define the following real valued functions on [0, T ]
as

fnm(t) =

∫ t

0

〈wnm(s), v〉 ds, f(t) =

∫ t

0

〈wnm(s), v〉 ds,

f ′nm(t) = 〈wnm(t), v〉 , f ′(t) = 〈wnm(t), v〉 .

From either parts (i) or (ii) in Proposition 2.3, one deduces that fnm ! f . Furthermore,
the conditions of the Arzela-Ascoli theorem for the sequence {f ′nm} are met since

- A priori estimate (2.10) tells us that the sequence {f ′nm} is uniformly bounded on
[0, T ] with |f ′nm| ≤ Ca‖v‖L2 .

- The sequence {f ′nm} is uniformly equicontinuous. Indeed, pick 1 ≤ s < t ≤ T , and
let j, k ∈ N be the integers such s ∈ ((j − 1)τn, jτn] and t ∈ ((k − 1)τn, kτn]. Then
we have that

|f ′nm(t)− f ′nm(s)| = | 〈wnm(t)− wnm(s), v〉 | =
∣∣〈w(k)

nm − w
(j)
nm , v

〉∣∣
=

∣∣∣∣∣τnm
k∑

i=j+1

P (u(i)
nm , v, w

(i)
nm) + L(u(i)

nm , v)

∣∣∣∣∣
≤ τnm

k∑
i=j+1

(
‖u(i)

nm‖H1‖w(i)
nm‖L2‖v‖W 1,∞ + ‖u(i)

nm‖H1‖v‖L2

)
≤ (k − j)τnm

(
C2
a‖v‖W 1,∞ + Ca‖v‖L2

)
≤ C(t− s)

(
C2
a‖v‖W 1,∞ + Ca‖v‖L2

)
.

Therefore, we can apply the Arzela-Ascoli theorem and obtain a subsequence {f ′nmk}
that converges uniformly on [0, T ] to f ′. By relabeling {f ′nmk} to {f ′nm}, equation (2.18)
readily follows.
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We also need some well-established approximation properties of finite elements, whose
proofs can be found for instance in Ciarlet [20].

Proposition 2.4 (FE approximation properties). Suppose that v ∈ H2(Ω) and let vn be
the interpolant of v defined (2.11). Then we have the following

(i) The sequence {vn} converges to v in H1(Ω).

(ii) If in addition v ∈ W 2,∞(Ω), then {vn} converges to v in W 1,∞(Ω).

(iii) If z ∈ H1(Ω) solves

〈z, φ〉H1 = 〈v, φ〉L2 , for all φ ∈ H1
P (Ω)

and zh solves

〈zh, φ〉H1 = 〈v, φ〉L2 , for all φh ∈ V h(Ω)

then z ∈ H2(Ω), πh(z) = zh, and there is constant K independent of h such that

‖z − zh‖H1 ≤ Kh|z|H2 .

Proof of Theorem 2.1. Let {(unm , wnm)} be the sequence obtained in Corollary 2.2.1 and
(u,w) be the limit pair. For the sake of convenience, we relabel this sequence as {(un, wn)}
Assume that v ∈ W 1,∞

P (Ω)∩W 2,∞(Ω). Using Lemmas 2.1-2.3, for each t ∈ [0, T ] we have
that

〈wn(t)− wn(0), v〉 =
kn∑
j=1

〈
w(j)
n − w(j−1)

n , vn
〉

+ αn, (2.19)

∫ t

0

P (un(s), v, wn(s))ds = τn

kn−1∑
j=1

P (u(j)
n , πnv, w

(j)
n ) + βn, (2.20)

∫ t

0

L(un(s), v)ds = τn

kn−1∑
j=1

L(u(j)
n , πnv) + γn. (2.21)

Subtracting (2.19) and (2.20) from (2.21) and then using the definition of (un, wn) in
(2.5) to cancel the sums, one has that

〈wn(t)− wn(0), v〉 −
∫ t

0

P (un(s), v, wn(s))ds−
∫ t

0

L(un(s), v)ds

= αn − βn − γn.
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where αn, βn and γn go to zero as n ! ∞ by Proposition 2.4. Therefore, by taking the
limit as n!∞, using Corollary 2.2.1, and Lemmas 2.1-2.3, one obtains

〈w(t)− w(0), v〉 −
∫ t

0

Pv(u(s), w(s))ds−
∫ t

0

Lv(u(s))ds = 0,

ie the pair (u, v) solves (1.11) for all v ∈ W 1,∞
P (Ω)∩W 2,∞(Ω). Since W 1,∞

P (Ω)∩W 2,∞(Ω)
is dense in W 1,∞

P (Ω), we also obtain that (u, v) solves (1.11) for all v ∈ W 1,∞
P (Ω).
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Chapter 3

Periodic traveling waves of the
Hasegawa-Mima equation

In Magentohydrodynamics, stationary traveling waves seem to be of particular interest.
For instance, several authors have studied traveling waves of the Hasegawa-Mima equa-
tion, called Modons or Dipole Vortices [4], [6], [7], [12], [21]. Therefore, our goal in this
chapter is to try and reproduce, albeit approximately, some of the results found in the
literature on traveling waves. Thus, in view of our setting, we ask the following question:
for which initial data u0 ∈ H2

P (Ω) will the solution u of (1.11) be a traveling wave?

In Section 3.1, we introduce the problem and show that traveling waves of (1.1) are
in fact solutions to a semi-linear elliptic equation. In Section 3.2, we prove the existence
of periodic traveling waves by solving the semi-linear elliptic equation. In section 3.3, we
suggest the usage of numerical scheme based on the Newton-Galerkin method and apply
it to some examples. In section 3.4, we compare and contrast some of our results to the
ones found in the literature.

3.1 Traveling waves as solutions to a semi-linear el-

liptic equation

Let us start by deriving from (1.5) the equation that governs traveling waves. If one looks
for traveling wave solution of (1.5) equation traveling in the y direction with constant
velocity c, one would seek a solution of the form

u(x, y, t) = Ψ(ξ, ζ), (ξ, ζ) = (x, y − ct), ∀(x, y, t) ∈ Ω× [0,∞).

The definition of w in (1.5) also implies that there is a function φ such that w(x, y, t) =

φ(ξ, ζ). Therefore, with ∇ = (∂ξ, ∂ζ) and ~V = (−∂ζ , ∂ξ), and replacing in (1.5), one
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obtains the following system{
−c∂ζφ+ ~V (Ψ) · ∇ψ = k̂∂ζΨ,

−∆Ψ + Ψ = φ.

If we define Ψc = Ψ− cξ, then we can rewrite the above system as{
~V (Ψc) · ∇φ = k̂∂ζΨc,

−∆Ψc + Ψc = φ− cξ.

Now if φk̂ = φ+ k̂ξ, then by plugging in the previous equation we obtain{
~V (Ψc) · ∇φk̂ = 0,

−∆Ψc + Ψc = φk̂ − (k̂ + c)ξ.

Now notice that for any f ∈ C1(R), one has that

~V (f(Ψc)) · ∇Ψc = f ′(Φc)~V (Ψc) · ∇Ψc = 0.

Therefore, if φk̂ = f(Ψc) for some f ∈ C1(R), then the pair (Ψc, φk̂) satisfies the previous
system of equations provided that the function Ψ = Ψc + cξ satisfies the following semi-
linear elliptic boundary values problem.

Hasegawa-Mima traveling wave form. Given an arbitrary function f ∈ C1(R) and the
strip Λ = (0, L)× (−∞, L), seek Ψ : Λ ! R such that

−∆Ψ + Ψ = f(Ψ− cξ)− k̂ξ, on Λ,

B.C’s inherited from u, on ∂Λ,

A.C’s inherited from u, as ζ ! −∞.

(HM-Travel)

The abbreviations B.C’s and A.C’s mean boundary conditions and asymptotic conditions
respectively. We remark that equation (HM-Travel) is already found in the literature [4],
[6], [21], but without showcasing how it’s derived.

Now suppose that we are looking for a traveling wave solutions that solve HM-Travel,
but we require that u(t) and ∇u(t) satisfy PBCs on Ω for all t ∈ [0,∞). Then, from the
equality u(x, 0, t) = u(x, L, t) for all (x, t) ∈ [0, L]× [0,∞) one deduces that

Ψ(x,−ct) = Ψ(x, L− ct), for all (x, t) ∈ [0, L]× [0,∞),

and therefore
Ψ(ξ, ζ) = Ψ(ξ, L+ ζ), for all ζ > 0,
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In other words, Ψ is L-periodic in the ζ variable. This reduces the problem of solving
(HM-Travel) on the semi-infinite strip Λ to solving on the square Ω = [0, L]× [0, L], and
then simply extend Ψ to the whole of Λ by L-periodicity. Therefore, equation (HM-Travel)
becomes the following{

−∆Ψ + Ψ = f
(
Ψ− cξ

)
− k̂ξ, on Ω = [0, L]× [0, L],

Ψ and ∇Ψ satisfy periodic boundary values.
(3.1)

3.2 Existence of traveling waves in H2
P (Ω).

In this section we prove the existence of a solution to equation (3.1) by putting it in fixed
point format and using the Schauder Fixed Point Theorem. More specifically, we prove
the following theorem.

Proposition 3.1. Suppose here are constants α, β, γ ∈ R+ such that the non-linearity
f ∈ C1(R) satisfies

|f(x)| ≤ α + β|x|γ, for all x ∈ R. (C1)

Then (3.1) has a weak, not necessarily unique solution.

The proof requires some basic results first.

Lemma 3.1. Suppose that u ∈ H1
P (Ω) ∩H2(Ω) such that∫

Γ

(∇u · ~n) v = 0, for all v ∈ H1
P (Ω). (3.2)

Then u ∈ H2
P (Ω), i.e ∇u ∈ H1

P (Ω)2.

Proof. Let ϕ ∈ C∞c ([0, L]) so that ϕ can be considered as a function on the curves

Γ1 = [0, L]× {0}, Γ2 = {L} × [0, L], Γ3 = [0, L]× {L},Γ4 = {0} × [0, L],

through the parametrizations

α1(t) = (t, 0), α2(t) = (L, t), α3(t) = (t, L), α4(t) = (0, t), t ∈ [0, L].

Now let v ∈ H1(Ω) be such that v|Γ1 = v|Γ3 = ϕ and v|Γ2 = v|Γ4 = 0, so that clearly we
have v ∈ H1

P (Ω). Then, equation (3.2) applied with this particular v reduces to∫ L

0

(
∂u

∂y

∣∣∣
Γ1

(t)− ∂u

∂y

∣∣∣
Γ3

(t)

)
ϕ(t)dt = 0.
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Since ϕ ∈ C∞c ([0, L]) is arbitrary, we get that ∂yu|Γ1 = ∂yu|Γ3 . A similar argument shows
that ∂xu|Γ2 = ∂xu|Γ4 almost everywhere. On the other hand, we have that∫ L

0

(
∂u

∂x

∣∣∣
Γ1

(t)− ∂u

∂x

∣∣∣
Γ3

(t)

)
ϕ(t)dt = −

∫ L

0

(
u|Γ2(t)− u|Γ4(t)

)
ϕ′(t)dt = 0,

where we have used that u ∈ H1
P (Ω). Therefore, we obtain ∂xu|Γ1 = ∂yu|Γ3 and an

identical argument shows that ∂yu|Γ2 = ∂yu|Γ4 . This concludes the proof.

We want to study the existence of solutions to this problem. We start with the
following proposition.

Proposition 3.2. For every g ∈ L2(Ω), there is a unique (weak) solution to the elliptic
problem {

−∆u+ u = g,

u ∈ H2
P (Ω).

(3.3)

Proof. Multiplying (3.3) by v ∈ H1
P (Ω), using the periodicity of the derivatives of u and

Green’s formula, we have that the variational formulation of (3.3) is

〈u, v〉H1 = 〈g, v〉L2 , for all v ∈ H1
P (Ω).

Therefore, the Lax-Milgram theorem applies and gives the unique solution u ∈ H1
P (Ω) to

(3.3). Elliptic regularity on convex polygons (ie Theorem 1.2) gives u ∈ H2(Ω). Finally,
Green’s formula yields

∫
Γ
(∇u · ~n)v = 0 for all v ∈ H1

P (Ω), so that by the previous lemma
one gets u ∈ H2

P (Ω) as desired.

Proof of Proposition 3.1. Let E : L2(Ω) ! H2
P (Ω) be the solution operator of (3.3) (ie

E : g 7! u). Then, consider the maps φk̂, φĉ ∈ L∞(Ω) and Ψk̂ ∈ H2
P (Ω) by

φk̂ : (ξ, ζ) 7! −k̂ξ, φc : (ξ, ζ) 7! −cξ, Ψk̂ = E(φk̂).

The maps φc and Ψk̂ are bounded, and hence they are in L2γ(Ω), where γ is given in
(C1). Therefore, it makes sense to define the map fk̂,c : L2γ(Ω) ! L2(Ω)

fk̂,c : u 7! f
(
u(·) + φc(·) + Ψk̂(·)

)
.

Indeed, the range of fk̂,c is L2(Ω) since

|fk̂,c(u)|2 = |f(u+ Ψk̂ + φc)|2 ≤ 4α + 4β2(u+ Ψk̂ + φc)
2γ,

and therefore

‖fk̂,c(u)‖L2 ≤
√

4α|Ω|+ 4β2‖u+ Ψk̂ + φc‖L2γ <∞, for all u ∈ L2γ(Ω).
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Furthermore, using Dominated Convergence and the continuity of f , one can show that
fk̂,c is continuous.(1) With all of the maps defined above, we can now put equation

HM-Travelin fixed point format on H2
P (Ω). By defining Φ = Ψ − Ψk̂ and plugging in

(HM-Travel), one has that

−∆Φ + Φ = fk̂,c(Φ), i.e 〈Φ, v〉H1 =
〈
fk̂,c(Φ), v

〉
L2
, ∀v ∈ H1

P (Ω). (3.4)

Now, consider the operator K : H2
P (Ω) ! H2

P (Ω) as a composition of the following maps

K : H2
P (Ω)

i
↪! L2γ(Ω)

fk̂,c−−! L2(Ω)
E−! H2

P (Ω),

where i is the continuous Sobolev embedding (Theorem , which is also compact by the
Rellich-Kondrachov theorem. Therefore, we can deduce that K is continuous and compact
since fk̂,c is continuous and E is continuous by elliptic regularity. Also, it is clear that
Φ is a fixed point of K, ie that Φ = K(Φ). Therefore, Shauder’s Fixed Point Theorem
guarantees the existence of Φ, and hence also of Ψ.

Remark. The semi-linear elliptic equation{
−∆u(x) = f(x, u(x)), x ∈ Ω ⊂ Rd,

Ω bounded or unbounded, u ∈ H1
0 (Ω),

(3.5)

has been thoroughly studied under a wide variety of assumptions on the non-linearity
f , especially in dimension d ≥ 3 where some of the above arguments fail due to the
critical Sobolev exponent. For theoretical background about existence, regularity, and
what assumptions on f are needed to guarantee them, one can refer to the books by
Badiale and Serra [22] and Ambrosetti and Malchiodi [23]. Galerkin methods have also
been applied in the study of (3.5) in [24], [25], and they have been shown to converge,
for instance, when f ′ is strictly bounded between two successive eigenvalues of −∆.

3.3 Suggesting Newton-Galerkin numerical scheme

When dealing with semi-linear problems such as (3.4) and (3.5), one possible way to
approximate the solution is through Newton-Galerkin method [26]–[28]. This method
is roughly a discretization of the Newton method in Banach spaces, where the latter
stipulates finding a root of some function F : X ! Y , for some Banach spaces X and Y ,
by using the usual Newton iterative procedure.

Given un ∈ X, seek un+1 ∈ X s.t F ′(un)(un+1 − un) = −F (un), (3.6)

(1)The operator fk̂,c is called the Nemistki operator associated with the function fk̂,c(x, u(x)) = f(u(x)+

Ψk̂(x) + φ(x)) for x ∈ R2.
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where the function F ′ : X ! L(X, Y ) is the Fréchet derivative of F . The appeal of this
method in the context of semi-linear equations is that it generates linear elliptic equations
at each iterative step, as will be apparent in the following. But before we write down
the procedure, let us point out important differences between the method suggested here
and the one found in the literature.

1. The Newton-Galerkin method is usually applied to Dirichlet problems of the form
(3.5), and so X is usually H1

0 (Ω), while in our setting we need X = H1
P (Ω).

2. Most of the proofs of convergence are based on the form −∆u = f(u) and not
(I −∆)u = f(u), as in our case.

3. A lot of the interesting results in the literature assume that f(x, 0) = 0 for all x ∈ Rd

in (3.5). This is because in that case, the (3.5) always has the trivial solution u = 0.
However, this is not the case here since fk̂,c(x, 0) = f(Φk̂(x) + φc(x)) which need

not at all be zero for all x ∈ R2.

Ideally, we should be able to work with H1
P (Ω) similarly to H1

0 (Ω) because both spaces
can be identified with their duals through a boundary value operator. Indeed, the weak
operator I−∆ : H1

P (Ω) ! H1
P (Ω)? defined by (I−∆)(u)(v) = 〈u, v〉H1 for all u, v ∈ H1

P (Ω)
is an isomorphism due to Riesz-Fréchet, so Point 1 needn’t be a problem. However, Points
2 and 3 entail the need to modify the usual arguments used in the literature. In any case,
in view of the Proposition 3.1, one is still encouraged to try to use the Newton-Galerkin
method to the current setting due to how simple it is to implement in our context.

We now introduce the method, with it’s goal being to approximate a solution of (3.4).
To do so, we need that Φ is a root of some function between Banach spaces. Indeed, let
J : H1

P (Ω) ! R be the functional given by

J(u) =
1

2
‖∇u‖2

L2 +
1

2
‖u‖2

L2 −
∫

Ω

Fk̂,c(u),

where Fk̂,c(u) = F (u + Ψk̂ + φc) and F is the anti-derivarive of the non-linearity fk̂,c ∈
C1(R). Then one can show that J is Fréchet differentiable (cf. Section 1.3.2 of [22]) and
that the Fréchet derivative J ′ : H1

P (Ω) ! H1
P (Ω)? is given by

J ′(u)v =

∫
Ω

∇u · ∇v +

∫
Ω

uv −
∫

Ω

fk̂,c(u)v, for all u, v ∈ H1
P (Ω). (3.7)

Therefore, a function Φ satisfies (3.4) if and only if it satisfies J ′(Φ) = 0, and so we
apply the Newton method in Banach spaces to approximate a root of J ′ : H1

P (Ω) !
H1
P (Ω)?. Hence, we need to compute the second derivative of J ′′. A similar argument to

the one found in [22], [23] says that J ′ is Fréchet differentiable and that J ′′ : H1
P (Ω) !
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L(H1
P (Ω), H1

P (Ω)?) ' B(H1
P (Ω))(2) is given by

J ′′(u)(v, w) =

∫
Ω

∇v · ∇w +

∫
Ω

vw −
∫

Ω

f ′
k̂,c

(u)vw, for all u, v, w ∈ H1
P (Ω). (3.8)

Therefore, the Newton iteration is given as follows.

Newton procedure for finding roots of J ′ : H1
P (Ω) ! H1

P (Ω)?. Given an approxi-
mation Φn ∈ H1

P (Ω) of Φ, find an improved guess Φn+1 ∈ H1
P (Ω) by solving the equation

J ′′(Φn)(Φn+1 − Φn) = −J ′(Φn), ie J ′′(Φn)(Φn+1 − Φn)v = −J ′(Φn)v, ∀v ∈ H1
P (Ω),

and with J ′′ identified with a bilinear form as in (3.8) this means

J ′′(Φn)(Φn+1, v) = J ′′(Φn)(Φn, v)− J ′(Φn)(v), for all v ∈ H1
P (Ω).

Then by using the definitions of J ′ and J ′′ from (3.7) and (3.8) respectively, one has that


Given Φn ∈ H1

P (Ω), seek Φn+1 ∈ H1
P (Ω) such that for all v ∈ H1

P (Ω),∫
Ω

∇Φn+1 · ∇v +

∫
Ω

(
1− f ′

k̂,c
(Φn)

)
Φn+1v =

∫
Ω

(
fk̂,c(Φn)− f ′

k̂,c
(Φn)Φn

)
v.

(3.9)

Combined with the Galerkin discretization, we obtain the following
Given Φ(h)

n ∈ V h
P (Ω), seek Φ

(h)
n+1 ∈ V h

P (Ω) such that for all v ∈ V h
P (Ω),∫

Ω

∇Φ
(h)
n+1 · ∇v +

∫
Ω

(
1− f ′

k̂,c
(Φ(h)

n )
)
Φ

(h)
n+1v =

∫
Ω

(
fk̂,c(Φ

(h)
n )− f ′

k̂,c
(Φ(h)

n )Φ(h)
n

)
v.

(3.10)

The last equation yields the so called Newton-Galerkin method. Before we showcase the
application of this method to some specific periodic boundary value problems, let us point
out some difficulties and limitations of this method. The first issue that comes to mind is
in equation (3.9), and in particular the existence and uniqueness of Φn+1 given Φn. This
can be guaranteed for instance when

f ′ ≤ 1, and therefore f ′
k̂,c
≤ 1. (C2)

so that Lax-Milgram applies in (3.9). Incidentally, this condition also implies that
J ′′(u) : H1

P (Ω) ! H1
P (Ω)? is in fact invertible, an essential condition for using convergence

theorems of the Newton method.

(2)B(H1
P (Ω)) is the collection of all continuous bilinear forms on H1

P (Ω), which is in bijection with
L(H1

P (Ω), H1
P (Ω)?).
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This brings us to the second problem to resolve and that is convergence of equations
(3.6), (3.9), and (3.10). Let us remark first that for general non-linearities f , it is well
known that the solutions of (3.4) and (3.5) are not unique, cf. [22], [23], [26], [27] and
the references therein. This poses an important challenge to the Newton method, namely
that the iterates might jump from the basin of attraction of one root to the basin of
attraction of another. Besides the obvious need to choose an initial close enough to the
desired root, a solution to this challenge is suggested in [27], [29], where damping is
applied to each Newton iterate by multiplying the term −F (un) in (3.6) with a suitable
damping parameter δn to guarantee that one remains in the attractor of the sough after
root.

Nevertheless, there are simple enough situations when (3.4) has a unique solution, for

example when f (and thus f̃) satisfies the following assumptions

f(t)t ≤ 0, and (f(t)− f(s))(t− s) ≤ 0, for all s, t ∈ R. (C3)

In this case, the functional J becomes strictly convex and coercive (cf. Theorem 1.6.6 of
[22]), and therefore it’s critical point Φ is unique. For our purpose, we will use (3.10) to
simulate Φ with f satisfying (C3).

3.4 Localised traveling waves on R2

In the physics literature, traveling wave solutions for the Hasegawa-Mima equation (1.3)
on R2 traveling in the y-direction, called Modons or Monopole/Dipole Vortices, were
obtained through a similar reasoning to that of Section 2.1. In fact, we have the following
two equations appear in the literature

[4], [6] : −∆Ψ = f(Ψ− cξ)− (v0 + c)ξ, on R2, (3.11)

[21] : −∆Ψ + Ψ = f(Ψ− cξ)− ξ. on R2. (3.12)

where c is the wave velocity and v0 is a constant depending on the particle density. We
will compare these two equations with (HM-Travel), which was derived in Section 3.1,
but we take the domain R2 instead of the strip, and we restate the problem as

−∆Ψ + Ψ = f(Ψ− cξ)− k̂ξ, on R2. (3.13)

For both equations (3.11) and (3.12), the solution Ψ was assumed to be localized, which
according to Crotinger [30] means that Ψ ! 0 as ζ ! ±∞. By fixing ξ and letting
ζ !∞ in either (3.11) or (3.12), all authors observed that f has to be linear. Implicitly
assumed in their arguments is that ∆Ψ is continuous and limξ,ζ!∞∆Ψ = 0, or else the
conclusion is obviously not true. Let us start off this section by demonstrating that the
same holds true under relaxed assumptions on Ψ.
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Proposition 3.3. Choose f ∈ C(R) satisfying (C1) and let h ∈ L1
loc(R2) be a function

of the ξ-variable only. Suppose that a function Ψ ∈ H1(R2) satisfies the following∫
R2

∇Ψ · ∇v +

∫
R2

Ψv =

∫
R2

(
f(Ψ− cξ)− h(ξ)

)
v, for all v ∈ C∞c (R2). (3.14)

Then we have that
f(ξ) = h(−ξ/c), for all ξ ∈ R.

The reason why we chose H1(R2) is because for any u ∈ H1(R2), one has that
’lim|ξ|,|ζ|!∞ u(ξ, ζ) = 0’. But first we need to make precise the notion of ’limit at in-
finity’ for functions in H1(R2).

Definition 3.1. For fixed ξ ∈ R, let Trξ : H1(R2) ! L1(R) be the trace along lines
operator such that for all ϕ ∈ C∞c (R2) and all ζ ∈ R one has that Tr(ϕ)(ζ) = ϕ(ξ, ζ).

Therefore, when we say ”limζ!∞ u(ξ, ζ)”, it is to be understood in the sense of traces
along lines. Let us now state an important property of the trace along lines for functions
in H1(R2).

Theorem 3.1 (ACL characterisation). Let u ∈ H1(R2). Then for almost all ξ ∈ R, one
has that Trξ(u) ∈ H1(R) ⊂ C(R). This implies that limζ!±∞Trξ(u)(ζ) = 0 for almost
all ξ ∈ R.

The ’ACL’ alias stands for Abolutely Continuous on almost all Lines. See Section
1.1.3 of the book by Maz’ya and Shaposhnikova [31] for a proof of this fact.

Lemma 3.2. Let u ∈ H1(R2). Then for any E ⊂ R2 of finite measure, there is a sequence
{ζn} in R with ζn ! ∞, and a function ū ∈ H1(R2) such that for all n ∈ N we have
|u(·, ·+ ζn)| ≤ ū a.e on E.

Proof of Theorem 3.3. Choose an arbitrary function ϕ ∈ C∞c (R). Fix φ ∈ C∞c (R) such
that φ > 0 on the interior of it’s support. Let ψ ∈ C∞c (R2) be given by ψ(ξ, ζ) = ϕ(ξ)φ(ζ)
and let K be the support of ψ. With u = Ψ and E = K in the above lemma, we get a
sequence {ζn} such and an function Ψ̄ ∈ H1(R2) such that ζn !∞ and

|Ψ(·, ·+ ζn)| ≤ Ψ̄, a.e on K.

Now define φn ∈ C∞c (R) and ψn ∈ C∞c (R2) by

φn(ζ) := φ(ζ − ζn) and ψn(ξ, ζ) = ϕ(ξ)φn(ζ), for (ξ, ζ) ∈ R2.

Replace v by ψn in (3.14) to obtain∫
R2

(
∂Ψ

∂ξ
φnϕ

′ +
∂Ψ

∂ζ
ϕφ′n + Ψϕφn

)
=

∫
R2

(
f(Ψ− cξ)− h

)
ϕφn. (3.15)
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Using Fubini’s theorem and integration by parts, we have that∫
R2

∂Ψ

∂ξ
ϕ′φn = −

∫
R
φn(ζ)

(∫
R

∂Ψ

∂ξ
(ξ, ζ)ϕ(ξ)dξ

)
dζ

= −
∫
R
φn(ζ)

(∫
R

Ψ(ξ, ζ)ϕ′′(ξ)dξ

)
dζ

= −
∫
R2

ϕ′′φnΨ,

and similarly one has that ∫
R2

∂Ψ

∂ζ
ϕφ′n = −

∫
R2

Ψϕφ′n.

Note that in the above we have made constant use of the fact that the integrands have
compact support and thus allowing us to cancel boundary terms. Putting everything
together one obtains

−
∫
R2

(
ϕ′′φn + ϕφ′′n − ϕφn

)
Ψ =

∫
R2

(
f
(
Ψ− cξ

)
− h(ξ)

)
ϕφn.

Using the change of variables (ξ, ζ − ζn) ! (ξ, ζ) in the above equation and letting
Ψn(ξ, ζ) = Ψ(ξ, ζ + ζn) yields

−
∫∫

R2

(
ϕ′′(ξ)φ(ζ) + ϕ(ξ)φ′′(ξ)− ϕ(ξ)φ(ζ)︸ ︷︷ ︸

:=F (ξ,ζ)

)
Ψn(ξ, ζ) dξdζ

=

∫∫
R2

φ(ζ)ϕ(ξ)︸ ︷︷ ︸
:=G(ξ,ζ)

(
f
(
Ψn(ξ, ζ)− cξ

))
dξdζ −

∫∫
R2

ϕφh(ξ)dξdζ

(3.16)

We want to apply Dominated Convergence to be able to take limits in (3.16). This is is
possible because

|FΨn| = 1K |FΨn| ≤ 1K · ‖F‖L∞|Ψ̄| ∈ L1(R2),

and with assumption (C1) on f , we have that

|Gf(Ψn − cξ)| = 1K |Gf(Ψn − cξ)| ≤ ‖G‖L∞
(
α1K + 1K β|Ψ̄|γ + 1K β|cξ|γ

)
∈ L1(R2).(3)

Hence, by taking the limits as n ! ∞ in (3.16) and applying Dominated Convergence

(3)Recall that Ψ̄ ∈ H1(R2), and therefore Ψ̄ ∈ Lγ(R2) for any γ ≥ 2 by Sobolev embeddings.
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we get

0 =

∫
R

∫
R
φ(ζ)

(
f
(

lim
n!∞

Ψ(ξ, ζ + n)︸ ︷︷ ︸
=0

−cξ)
)
− h(ξ)

)
ϕ(ξ)dξdζ

=

∫
R
φ(ζ)dζ︸ ︷︷ ︸
6=0

·
∫
R

(
f
(
− cξ)− h(ξ)

)
ϕ(ξ)dξ.

(3.17)

Since ϕ is chosen arbitrarily, it follows that f(−cξ)− h(ξ) = 0 as desired.

Since equations (HM-Travel), (3.11), and (3.12) can be put in variational formulation
in similar form to (3.14), Theorem 3.3 tells us that f is in fact linear. In the case of
equation (3.13) we have that f(ξ) = −k̂ξ/c for all ξ ∈ R, and therefore this equation
becomes

∆Ψ = (1 + k̂/c)Ψ, on R2. (3.18)

In other words, we have that Ψ is an eigenvalue of ∆ with eigenvalue λ = (1 + k̂/c).
Eigenvalues of the unbounded Laplace operator ∆ : W 2,p(R2) ⊂ Lp(R2) ! Lp(R2) for
p > 2n/(n− 1) are characterized in the following theorem due to Talenti [32].

Theorem 3.2. Consider the operator ∆ : W 2,p(Rd) ⊂ Lp(Rd) ! Lp(Rd) with p >
2n/(n − 1). If λ < 0 and Yk is any spherical harmonic(4) of degree k, the the problem
∆u = λu has a solution of the form

uλ(x) =
(
|λ|

1
2 |x|
)− d

2
+1

J d
2

+k−1

(
|λ|

1
2 |x|
)
Yk

(
x

|x|

)
, x ∈ Rd.(5) (3.19)

Applying this to our case, one sees that the solution Ψ of equation (3.18) with the
condition 1 + k̂/c < 0 is simply given by

Ψk(η) = Jk

(
|1 + k̂/c|

1
2 |η|
)
Yk

(
η

|η|

)
, η = (ξ, ζ) ∈ R2. (3.20)

In Figure (3.1), we plot two different eigenfunctions Ψ’s for the same eigenvalue (1 + k̂/c)
with k̂ = 12 and c = −1, which are values we constantly use in the simulations that are
presented in Chapter 4. In Figures 3.1a and 3.1b, we plot the eigenfunctions Ψ1 and Ψ2

corresponding to the eigenvalue λ = (1− k/c) = −11 and to the spherical harmonics

Y1 =
x+ y√
x2 + y2

, Y2 =
10x2 + 2xy − 10y2

x2 + y2
,

respectively.

(4)A spherical harmonic Yk of degree k is such that |x|kYk(x/|x|) is a homogeneous and harmonic
polynomial of degree k.

(5)Jk is the Bessel function of the first kind.
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(a) Eigenfunction Ψ1 corresponding to Y1. (b) Eigenfunction Ψ2 corresponding to Y2.

Figure 3.1: Examples of solutions of (3.18) corresponding to eigenvalue λ = −11

Remark. The eigenfunctions uλ obtained in Theorem 3.19 are not in L2(R2) for any λ < 0
and therefore do not have finite energy norm.

35



Chapter 4

Algorithm and Numerical
Simulations

4.1 Semi-linearized approach for fully-implicit scheme

In this section we describe the algorithm used for all of the simulations in the the
thesis. In order to solve the fully implicit equation (2.5), we use the following semi-linear
approach to obtain a simple computational formulation.

Computational Procedure. Given a mesh size h, time step τ , and initial data u0 ∈
H2
P (Ω), seek a sequence of pairs {(u(j)

h , w
(j)
h ) ∈ V h

P (Ω)× V h
P (Ω) : j = 0, 1, 2, . . .} such that

u
(0)
h = πhu0, for all j = 0, 1, 2, . . ., and for all v ∈ V h

P (Ω) one has
〈
w

(j+1)
h , v

〉
L2
− τ

〈
~V (u

(j)
h ) · ∇v, w(j+1)

h

〉
L2

=
〈
w

(j)
h , v

〉
L2

+ τ k̂
〈
∂yu

(j)
h , v

〉
L2
,〈

u
(j+1)
h , v

〉
H1

=
〈
w

(j+1)
h , v

〉
L2
, for all v ∈ V h

P (Ω).
(4.1)

In matrix form, this is equivalent to the following. Given U0 to be the component of
the vector of πh(u0) in V h

P (Ω), seek {(U (j)
h ,W

(j)
h ) ∈ Rdh × Rdh : j = 0, 1, 2, . . .} such that

U0
h = U0 and for all j = 0, 1, 2, . . . one has that

(
M − S(U

(j)
h )
)
W

(j+1)
h = MW

(j)
h + τ k̂RU

(j)
h ,

KU
(j)
h = MW

(j)
h .

(4.2)

Remark. We also have a priori estimates for (4.1) as long as jτ ∈ [0, T ]. In fact, by

plugging in v = w
(j+1)
h in (4.1), using Theorem 2.2 to cancel the non-linear term, and

then using Cauchy-Shwarz, one obtains

‖w(j+1)
h ‖L2 ≤ ‖w(j)

h ‖L2 + τ k̂‖u(j)
h ‖H1 ≤ (1 + τ k̂)‖w(j)

h ‖L2 ≤ Cek̂T‖w0‖L2 . (4.3)
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This computational procedure (4.1) is implemented in the software FreeFem++ [33]
and the plots are generated in Octave through the ffmatlib.

4.2 Testing Newton-Galerkin method

In this section we test the proposed Newton-Galerkin method through (3.10), which we
restate here for the sake of convenience. First of all, let v =

∑d
j=1 vjϕj ∈ V h

P (Ω) where

ϕj ∈ Bh and Bh is the basis for V h
P (Ω) defined in Section 2.1, and vj ∈ R. For a function

f : R ! R, we define a function fh : V h
P (Ω) ! V h

P (Ω) by

fh(v) =
d∑
j=1

f(vj)ϕj.

Computational Procedure. Given an initial guess Φ0 ∈ H2
P (Ω) of a function Φ that

solves (3.4) and Φh,0 = πhΦ0, seek Φh,n+1 ∈ V h
P (Ω) such that for all v ∈ V h

P (Ω) one has
that

ah,n(Φh,n+1, v) = Fh,n(v). (4.4)

where

ah,n(Φh,n+1, v) =

∫
Ω

∇Φh,n+1 · ∇v +

∫
Ω

(1− f ′h(Φh,n))Φh,n+1v,

and

Fh,n(v) =

∫
Ω

(
fh(Φh,n)− f ′h(Φh,n)Φh,n

)
v,

and
fh(·) := fh

(
·+πh(Ψk̂) + πh(cx)

)
, f ′h(·) := f ′h

(
·+πh(Ψk̂) + πh(cx)

)
.

Afterwards, we plot Ψn,h = Φn,h + πhΨk̂,

Example 1. We start with the function f(x) = − arctan(x) since f satisfies conditions
(C1), (C2) and (C3). Let us point out first that in this case, the solution Ψ is unique
by the discussion in Section 3.3. With mesh size h = 1/64 and the initial guess Φh

0 = 0,
after about 4 iterations the isovalues of stop changing.
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Figure 4.1: Newton-Galerkin method applied to −∆Ψ + Ψ = − arctan(Ψ− cξ)− k̂ξ.

Example 2. With this example, we purposely pick a function f(x) that does not satisfy
(C3), but we still obtain convergence of the Newton-Galerkin method in some cases.
Namely, we choose f(x) = −x2. With Ω = [0, 4] × [0, 4], mesh size h = 1/64 and the
initial guess Φ0 = 0, after about 15 iterations the isovalues of stop changing. The plots
are in Figure 4.2.

Example 3. With this example we intend to demonstrate the chaotic behaviour of
the Newton if condition (C2) is omitted. Pick f(x) = −x3 and Ω = [0, 1] × [0, 1] with
h = 1/64. This function satisfies (C1) and (C3) but not (C2), and therefore the Newton
iterates are not guaranteed to have a solution. Starting with the initial guess Φ0 = 0,
it becomes apparent that even after 12 iteration no convergence appears. The plots are
seen in Figure 4.3.
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Figure 4.2: Newton-Galerkin method applied to −∆Ψ + Ψ = −(Ψ− cξ)2 − k̂ξ.
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Figure 4.3: Newton-Galerkin method applied to −∆Ψ + Ψ = −(Ψ− cξ)3 − k̂ξ.
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4.3 Simulation of traveling waves

Using the Newton-Galerkin method defined in the previous section, we approximate Ψ
and check that if Ψ given as initial data to (4.1) then one indeed obtains a traveling wave.

Example 1. We choose Ω = [0, 10] × [0, 10], mesh size h = 64, time step τ = 0.1,
and f(x) = arctan(x) in (4.1). The obtained solution Ψ is then given as initial data.
For t ∈ [0, 10], the simulation does not change, so it either stationary or traveling in the
y-direction. After adding noise at t = 11, the traveling wave behaviour becomes apparent
to the naked eye, implying that u was in fact traveling in the y-direction. See Figure 4.4
for the simulation.

Example 2. We choose Ω = [0, 4] × [0, 4], mesh size h = 64, time step τ = 0.2, and
f(x) = arctan(x) in (4.1). The obtained solution Ψ is then given as initial data. The
same exact phenomena as Example 1 appears after noise is added at around t = 10. See
Figure 4.5 for the simulation.

Example 3. We choose Ω = [0, 1] × [0, 1], mesh size h = 64, time step τ = 0.2, and
f(x) = −x3 in (4.1). Notice that this function does not satisfy (C2). The obtained
solution Ψ is then given as initial data. Even though the initial data was not obtained
from converging Newton iterates, the simulated function still exhibits traveling waves
behavior. See Figure 4.6 for the simulation.
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Figure 4.4: Simulation of traveling wave on Ω = [0, 10]× [0, 10] with h = 1/64 and with
with initial data u0 = Ψh,4 obtained by applying 4 Newton-Galerkin iterations to the

equation −∆Ψ + Ψ = arctan(Ψ− cξ)− k̂ξ.
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Figure 4.5: Simulation of traveling wave on Ω = [0, 4]× [0, 4] with h = 1/64 and with with
inital data Ψh,15 obtained by applying 15 Newton-Galerkin interations to the equation

−∆Ψ + Ψ = −(Ψ− cξ)2 − k̂ξ.
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Figure 4.6: Simulation of traveling wave on Ω = [0, 1] × [0, 1] with h = 1/64 and with
with inital data Ψh,5 obtained by applying 5 Newton-Galerkin interations to the equation

−∆Ψ + Ψ = −(Ψ− cξ)2 − k̂ξ.
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Chapter 5

Concluding Remarks

We summarize Here the work done this thesis.

In Chapter 2, using similar methods to [17], we have proven the existence of a sequence
of pairs {(un, wn)} solving (2.5) with h = hn =

√
2L/n and τ = τn ∈ Θ(hn) that converge

weakly to a solution pair (u, v) of the time integral FE formulation of (1.11). However,
in the simulations we have used a semi-linearized version of (2.5) which is given by (4.1).
Since we also have a priori estimates for (4.1) given in (4.3), one could work out a sim-
ilar argument to that in Section 2.2 to show that an appropriate sequence of solutions
{(ũn, w̃n)} to (4.1) converges to a solution of (1.11).

In Chapter 3, we have obtained periodic traveling waves of the Hasegawa-Mima equa-
tion by analyzing the semi-linear elliptic equation given in (3.1), for which we have shown
existence in Proposition 3.1, following similar arguments to the ones in the literature [22],
[23]. We have used periodicity to show that we only need to solve for the initial data
on the square [0, L] × [0, L], and then we suggested the use Newton-Galerkin method
to numerically approximate the initial data. However, no proofs for convergence were
given to that method. Furthermore, as already mentioned, one needs to apply appro-
priate damping to the Newton iterates and choose appropriate initial guess to guarantee
convergence. This could be done by employing some of the ideas presented in [26], [27],
[29].

Also, we have not been able to obtain similar traveling wave behavior to the one
suggested in [4], [6], [21]. Therefore, more investigation should be done in this matter by
choosing f , k̂ and c appropriately in (3.1) to obtain dipole vortex structures or Modons
or more generally any trapped structure.
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