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ABSTRACT
OF THE THESIS OF

Tarek Nabil Naous for Master of Engineering
Major: Electrical and Computer Engineering

Title: Few-shot Learning for Conversational Bots in Low-Resource Settings

Open-domain dialogue agents are systems that can converse with users on any
topic of user’s choice. Having such types of agents has been a long standing objec-
tive in Artificial Intelligence as they can make the human-computer interaction ex-
perience much more engaging. Recent advances in English open-domain dialogue
have leveraged state-of-the-art Large Language Models (LLMs) for Natural Language
Generation (NLG). Such LLMs are massively pre-trained on unlabeled data in a self-
supervised mode to learn abstract representations of the language. They also require
large amounts of labeled open-domain dialogue data for fine-tuning to achieve the chal-
lenging task of dialogue response generation. In low-resource settings such as Arabic
and its dialects, such pre-trained LLMs and large labeled dialogue datasets are often
non-existent, hindering the development of open-domain chatbots for those languages.
Such limited resource modeling problem is known as the few-shot learning problem.

In this thesis, we address multiple aspects of the few-shot learning problem for
open-domain Arabic conversational bots. The first contribution is a solution to over-
come the unavailability of LLMs with large amounts of labeled dialogue data for Ara-
bic MSA. To address the response generation problem, we propose a model that trans-
fers knowledge from a pre-trained BERT encoder to an encoder-decoder model for
dialogue response generation. The second contribution addresses a more extreme case
of limited resources with Arabic dialects. To address the LLM and NLG challenges
for Arabic dialects, we propose a three-stage learning framework based on warm-
starting, self-supervised pre-training, and few-shot fine-tuning. The third contribution
focuses on addressing the challenge of ensuring generated responses are relevant to
user’s query for both English and Arabic. We propose a new decoding algorithm that
considers increased samples in response generation then chooses the response with
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highest similarity to user’s query. The fourth contribution is in the development of
new data resources for Arabic with one message-response dataset in Modern Standard
Arabic (MSA) and three datasets for the most widely spoken Arabic dialects (Lev-
antine, Egyptian, and Gulf). The experiment results showed success of the proposed
methods and achieved state of the art performance for Arabic open-dialogue systems.
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CHAPTER 1

INTRODUCTION

Open-domain conversational models aim to seamlessly blend knowledge and intelli-
gence while satisfying users’ need for communication and social belonging [1]. A
long-standing goal of Artificial Intelligence (AI) has been to build intelligent open-
domain conversational models that can understand the semantics of input utterances
and provide coherent and relevant responses [2].

An important aspect of developing human-like chatbot models is enabling their
sense of empathy. Empathy is described as the ability of recognizing others’ state of
mind and making sense of their feelings such as acknowledging others’ pain, showing
interest, gratitude, being supportive, or providing encouragement [3], [4]. Empathy
is an innate capacity in most human beings, and is also described as a responsive and
spontaneous act of copying an implied feeling. It triggers a sense of concern for others,
leading to appropriate emotional reactions that instills a positive effect on interacting
individuals. For instance, empathetic behavior is applicable to situations .

Conversational models with empathetic responding capabilities are crucial in mak-
ing human-machine interactions closer to human-human interactions, as they can lead
to increased engagement, more trust, and reduced frustration [5]. An important factor
towards developing human-like chatbots is enabling their empathetic capability [6].
These characteristics are particularly desirable in open-domain conversational models
as they can boost user satisfaction and make chatbots look less boorish. To this end,
there has been a significant interest in developing empathetic conversational models
[1], [2], [7], [8], where the models infer the emotions of a human user and provide a
suitable empathetic response. The desired behavior is illustrated in Figure 1.1, where
the empathetic agent recognizes that the user is feeling proud and, thus, generates an
empathetic response that congratulates the user with enthusiasm.

Recent work on open-domain empathetic conversational models have adopted neural-
based sequence generation approaches [9]. These approaches are based on encoder-
decoder neural network architectures such as Sequence-to-Sequence (Seq2Seq) recur-
rent neural network models [10], or transformers [11]. The English literature also
benefits from pre-trained language generation models and pre-trained conversational
datasets that help in transferring knowledge and achieving high performance [12].
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!لقد تم تلقيت ترقية في عملي اليوم

!الترقيةتستحق هذه أنت فعلا ! تهانينا

؟رقيتكلماذا قاموا بت

User

Arabic 

Empathetic bot

Feeling

proud

Figure 1.1: Example of empathetic behavior in an Arabic open-domain chatbot.

Despite the existence of valuable resources to build open-domain conversational
models, most of them are in English, making it challenging to produce similar mod-
els for other languages, especially for languages that have many dialects. The low-
resource challenge has been previously studied in the literature for task-oriented con-
versational models [13], machine translation [14], part-of-speech tagging [15], question-
answering [16], and other NLP applications [17]. However, very little work targeted
the issue of low-resources in open-domain conversational models.

Specifically for Arabic and its dialects, research on Arabic conversational models
is still in its infancy mainly due to the lack of resources in terms of datasets and pre-
trained models. Despite the availability of Arabic pre-trained language models such as
AraBERT [18], which have proven useful for Arabic NLU tasks, the lack of pre-trained
models for Arabic NLG makes the development of neural-based Arabic conversational
models a challenging task. Hence, existing works on Arabic chatbots have mainly
focused on retrieval-based methods [19] or rule-based approaches [20], [21]. While
these approaches work well on task-oriented objectives, they are limited by the size
of manually crafted rules they follow or the richness of the database they can retrieve
responses from. This makes it difficult for such types of models to operate well in
open-domain conversational settings, where generative neural-based models would be
more suitable.

The aim of this thesis is to address low-resource challenges hindering the develop-
ment of neural open-empathetic domain dialogue models in Modern Standard Arabic
and Arabic dialects. The key research challenges to be addressed can be summarized
as follows:

1. Limited Data Samples: There exist no previous datasets for open-domain di-
alog in both MSA or in dialects, which makes it difficult to learn dialogue re-
sponse generation models.

2. Learning Semantic and Syntactic Information of the Language: Given the
lack of good pre-trained models for Arabic dialects, it will be extremely chal-
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lenging for the learning algorithm to capture the language semantic and syntactic
information, which enables it to capture the meaning in the user’s input.

3. Learning Response Generation Skills: Given the lack of conversational data to
work with it is challenging for the model to learn how to provide a topic-relevant
response from the small datasets it is trained on.

4. Learning to Provide Empathetic Responses: The bot is required to develop
an empathetic behaviour. Hence, it needs to be able to recognize the emotion in
the user’s utterance and reply with an emotionally appropriate and topic-relevant
response.

5. Arabic-specific Challenges: A main challenge specific to the Arabic language
is the existence of multiple dialects with no standard orthography to follow and
limited to no dialect-specific resources.

6. Decoding Technique: There exists several decoding algorithms to select from
for sequence generation. Deterministic approaches results in repetitive and bor-
ing responses while probabilistic approaches provide more richness at the risk
of potential increased irrelevancy in the output.

The objective of this thesis is to develop models, learning strategies, and decoding
techniques for open-domain empathetic response generation in the Arabic language,
including both MSA and DA. We adopt a Seq2Seq generative approach for response
generation which has shown promise in the English literature for open-domain empa-
thetic chatbots. However, different approaches to train the model need to be followed
depending on the nature of Arabic that the model needs to deal with (MSA or DA), the
size of the labeled dataset that it will be trained on, and the availability of resources that
can be used for knowledge transfer. In what follows, an overview of the components
used to develop our models are described.

The components that summarize the main methods proposed in this thesis are il-
lustrated in Fig. 1.2. The main block is a Seq2Seq model that is made up of an encoder
and a decoder. The encoder part is responsible for Natural Language Understanding
(NLU), which enables the bot to understand the topic in the input utterance and rec-
ognize the emotion of the user. For Natural Language Generation (NLG), the decoder
part uses the encoding provided by the encoder to generate a topic-relevant response
in Arabic while exhibiting an empathetic behavior.

In order for the Seq2Seq model to perform well, it needs to be trained on a dataset
of open-domain empathetic message-response pairs. Hence, the second important
component of the system is the Dataset Creation part. When considering MSA, a
large enough dataset (e.g., 40K samples) can be translated from an existing dataset in
English using automatic translation tools such as the Google Translate API. Hence,
given the translated labeled dataset, we can use it to perform regular supervised learn-
ing of the Seq2Seq model. This would result in a model that can generate open-domain
responses in MSA while showing empathetic behavior.
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Translating an 
English dataset

Encoder

Few-shot Dataset

Supervised 
Learning

Self-Supervised Pre-training
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NLU: NLG:
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Figure 1.2: Diagrammatic view of the approaches proposed in this thesis

Training the model from scratch on the labeled dataset may not be enough to obtain
very good results since the model would need to learn semantic and syntactic informa-
tion of the language and the skill to generate topic-relevant and empathetic responses
from the provided dataset, which may be relatively small in size. To overcome this
issue, we perform transfer learning by initializing the encoder and decoder parts of the
Seq2Seq model by the parameters of a pre-trained language model. This step transfers
semantic and syntactic information of the language to Seq2Seq model so that it does
not have to learn it from scratch. The model can then be fine-tuned in a supervised
learning manner on the labeled dataset to learn the skill of response generation. By
leveraging prior knowledge of the language, the model will perform better compared
with from-scratch training on the labeled dataset.

The above mentioned approaches would work well for datasets in MSA. However,
if the bot were expected to operate using a specific Arabic dialect, different approaches
would need to be adopted both on the level of dataset creation and model training.
First, no accurate tools for translation to DA are available which prevents us from
directly translating an English dataset to DA. Second, pre-trained language models
available in Arabic have been pre-dominantly trained on corpora in MSA, hence they
do not perform very well on tasks in DA. To overcome these issues, we resort to two
additional approaches in the dataset creation module. First, a dataset of utterance-
response pairs is manually developed by writing equivalent samples from an English
dataset. Since this procedure is manually done, this would result in a few-shot dataset
that would have a very small size (e.g., 1K samples) and would not be useful for
training a Seq2Seq model from scratch. Second, an unlabeled dataset of sentences
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in DA can be obtained by web-scraping social media platforms such as Twitter, where
most of the content generated by users is written in DA. The unlabeled dataset obtained
can be fairly large in size (e.g., 1 million samples) since the scraping process is done in
an automated manner. Thus, this dataset can be used to pre-train the Seq2Seq model in
a self-supervised manner, helping the model acquire prior knowledge of the language
semantic and syntactic information. After self-supervised pre-training, the model is
then fine-tuned on the few-shot dataset to learn response generation in DA.

Finally, a decoding technique needs to be selected to generate the response from
the model. Existing deterministic approaches such as greedy search or beam search
result in highly repetitive and ”boring” responses. On the other hands, using introduc-
ing randomness through probabilistic approaches such as top-k or top-p sampling with
temperature would provide more rich and exciting responses. This, however, raises an
additional risk of going off-topic. The selection of the hyper-parameters such as p and
t are is also an ad-hoc process. We provide a way to automatically select those param-
eters and enhance relevance through a maximum similarity decoder which leverages
knowledge from the training data using a retrieval module.

The rest of this report is organized as follows: In Chapter 2, we first provide back-
ground on the problem in learning from little data, define some learning paradigms that
address this issue, and review existing methods to solve this problem. In Chapter 3,
the first work on open-domain empathetic dialogue response generation in MSA is
presented, providing a description on the dataset creation process and results achieved
after training a baseline model. In Chapter 4, we address the problems faced in the
earlier work where poor performance was achieved by adopting a transfer learning
approach for sequence generation using warm-started transformers. In Chapter 5, we
propose a learning framework based on three stages of warm-starting, self supervised
pre-training, and fine-tuning to learn open-domain dialog models in low-resource Ara-
bic dialects. In Chapter 6, we address the problems observed with the usage of existing
decoding techniques and propose a new algorithm for decoding that is targeted at en-
hancing response relevance in open domain dialog. Concluding remarks and future
directions are discussed in Chapter 7.
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CHAPTER 2

LEARNING FROM LITTLE DATA:
BACKGROUND

A key aspect of human intelligence is the ability to establish their cognition to novelty
only from a few examples. While this task is easy for humans to do, it is very challeng-
ing for machine learning algorithms. Supervised learning methods require thousands
of labeled data samples to achieve generalization. Achieving generalization from a
handful of data samples with supervised information remains a challenge for machine
learning models. In this regard, there exist many learning approaches beyond vanilla
supervised learning to handle the problem of few samples. Many real world problems
can benefit from those learning methods, such as learning for rare cases, learning for
low-resource languages, in addition to the reduction of data collection and annotation
costs [22].

2.1 Learning Paradigms and Definitions

We define some learning paradigms that are used to address the problem of learning
with little data. It is noted that in the literature, some of those learning paradigms are
used interchangeably.

• Few-shot Learning: Few-shot learning is a learning paradigm that has been pro-
posed to tackle this challenge [23]. Few-shot learning methods leverage prior
knowledge to generalize from the few labeled samples available. Prior knowl-
edge is any information the learning algorithm has about the unknown hypothe-
sis before being trained on the few data samples. Prior knowledge may be in the
form of datasets from related tasks, pre-trained models, etc.

• Transfer Learning: Transfer learning leverages information learned from a
source task to perform better on a related target task by providing good parame-
ter initialization. Transfer learning can be used to solve certain few-shot learning
problems [24], [25].
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• Meta Learning: Meta learning approaches leverage meta-knowledge extracted
by a meta-learner across several tasks to improve performance on a task-specific
dataset [26]. Meta-learning, as will be discussed in a later section, has been
used an an approach to solve few-shot learning problems where the task-specific
dataset only has a few examples.

• Weakly-supervised Learning: Weakly-supervised learning methods deal with
classification or regression problems where data samples are incomplete, noisy,
or inaccurate. Semi-supervised learning is a weakly-supervised learning ap-
proach where a small number of data samples have supervised information and
a much larger amount of data samples are unlabeled [27].

2.2 Few-shot Learning in Computer Vision

2.2.1 Multi-task Learning

In multi-task learning, models are trained to perform multiple related tasks at once,
making them suitable for adoption in few-shot learning scenarios. Consider a source
task for image classification of several species of monkey, where a dataset is available
containing a large number of labeled images for each of the species. On the other
hand, consider the target task of classifying rare species of monkeys for which only
a few labeled images are available. Multi-task models learn both task-generic and
task-specific information by joint training on both tasks. Multi-task learning through
parameter sharing is a strategy, shown in Fig. 2.1, that shares parameters across the
tasks by using shared layers at the beginning to learn common information, and then
task-specific layers at the end to deal with different outputs for each task [28]. By
leveraging prior knowledge from related datasets at the level of the shared layers, per-
formance on classifying samples from the few-shot classes is improved.

Few-shot Dataset Prior Knowledge

Task-specific Layers Task-specific Layers

Shared Layers

Target Task Source Task

Target Task
Prediction

Source Task
Prediction

Figure 2.1: Addressing the Few-shot Learning Problem by Multi-task Learning
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2.2.2 Embedding Learning

Embedding learning, also referred to as distance-metric learning in some of the litera-
ture, is an approach that aims at transforming samples x ∈ X to a lower-dimensional
embedding z ∈ Z in which samples that are similar can be easily identified. This
approach, ilustrated in Fig. 2.2 is based on three key components: a function f(.) that
embeds the training samples, a function g(.) that embeds a test samples, and a simi-
larity function s(.) that measures how similar the embeddings of the test samples and
the training samples. The embedding functions g(.) and f(.) are learned from prior
knowledge, and in some approaches can learn information from the few-shot dataset.
Many approaches have been proposed in the literature such as Matching Networks
[29], Prototypical Networks [30], Relation Networks [31], and many others [22].

Few-shot Dataset

Test Sample

𝑓(. )

𝑔(. )

𝑠(. ) Prediction

Prior Knowledge

Figure 2.2: Addressing the Few-shot Learning Problem by Embedding Learning

2.2.3 Refining Existing Parameters

The aim of this strategy is to find good initialization parameters for the model prior
to training on the few-shot dataset. Consider a model with initial parameters θ. Prior
knowledge is leveraged from large related datasets that are used to pre-train the model
in a supervised manner. This pre-training process results in refined parameters θ0 that
capture general structures from the large source datasets. At this point, the model can
now be adapted to the few-shot dataset by training for a few iteration to reach the
optimal θ∗ that perform well on the few-shot task [32]. This process is illustrated in
Fig. 2.3. A similar approach for parameters refined is the aggregation of the weights
of several models pre-trained on similar tasks, which can be useful when θ0 cannot be
directly obtained from a very close and large dataset [33]–[35].
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Initial Model
𝜃

Pre-trained Model
𝜃0

Fine-tuned Model
𝜃∗

Few-shot DatasetPrior Knowledge

Prediction

Test Sample
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Figure 2.3: Addressing the Few-shot Learning Problem by Refining Existing Parame-
ters

2.3 Few-shot Learning in NLP

2.3.1 Unsupervised Feature Embedding Representation

Consider an input text sequence x composed of tokens {x0, x1, . . . , xL} where L is the
sequence length. The aim is to extract from x a smaller discriminative representation z
of size N that carries the necessary information to perform tasks such as classification.
As we are dealing with a very limited data regime, x is first transformed into an embed-
ding representation e = {e0, e1, . . . , eL} where ei ∈ RK represents theK-dimensional
word embedding of the token xi. The embedding representation e transfers semantic
knowledge of the language, helping deal with the lack of supervised examples in the
few-shot dataset. These embeddings can be directly obtained using pre-trained word
embedding models such as GloVe [36] or Word2Vec [37]. Finally, a parameter-free
operation P is computed on e to extract the critical information required for the de-
sired task. This approach, illustrated in Figure 2.4, has been shown beneficial to text
classification purposes where limited support examples are available such as Chinese
text, [38], biomedical documents [39], and dialectal Arabic text [40].

Several operations for P have been proposed in the literature. In [41], pooling
mechanisms were introduced to obtain z from e. These pooling mechanisms include
mean, max, concatenated, and hierarchical pooling.

Mean Pooling: In mean pooling every word contributes to the prediction, hence
the pooled representation is obtained through averaging the K-dimensional embed-
dings:

zmean =
1

L

L∑
i=0

ei (2.1)

Max Pooling: Contrary to mean pooling, max pooling filters out unimportant
words by extracting salient features from the embedding representation, given the fact
that irrelevant words would have smaller amplitudes. Thus, only important keywords
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Figure 2.4: Addressing the Few-shot Learning Challenge by Unsupervised Feature
Embedding Representation

contribute to the prediction:

zmax = maxLi=0{ei}
zmaxj = maxLi=0{eji}

(2.2)

Concatenated Pooling: Mean and max pooling account for different types of in-
formation in a text sequence. Concatenated pooling is a combination of both where
zmean and zmax are concatenated to form the final representation:

zconcat = [zmean; zmax] (2.3)

Hierarchical Pooling: Hierarchical pooling is a more sophisticated strategy that
takes into account word order and spatial information. In hierarchical pooling, a sliding
window of size n is defined and used to compute the mean pooled representation of a
set of local windows, over which a global max pooling operation is the computed. The
local window is represented by:

ei:i+1−n = [ei, ei + 1, . . . , ei + 1− n] (2.4)

A modified hierarchical pooling mechanism was proposed in [38], where the order
of the hierarchical pooling approach was reversed so that local information is first ex-
tract using a max pooling sliding window, and then mean pooling is applied for a global
representation of the sentence. The modified approach was to better in representing the
semantics of the text as well as providing higher performance on documents with large
sizes.
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2.3.2 Learning from Label Descriptors

Consider the task of classifying an input text sequence x given a pre-defined and fixed
set of N labels. We denote by L = [L1, L2, . . . , LN ] a vector of label descriptions
where Li = [l1, l2, . . . , lL] is a sequence of tokens that provide a description of the i-th
label. When learning form label descriptors, the aim is to leverage prior knowledge
of each label’s natural language description to better discriminate input samples that
belong to labels that rarely or never occur in the dataset. The input x and label de-
scriptors L are first transformed into an embedding representation denoted by e and u
respectively. Each embedding representation is then encoded using a neural layer of
choice, resulting in the encoded representations ze for the input, and zu for the label
descriptors. To capture the relevant content in the input text sequence that can provide
relevant information for the prediction, label-wise attention is computed between ze
and zu:

ci = softmax(zezui) (2.5)

where ci measures how informative each part of the input sequence to the i-th label.
The prediction is then finally computed at the output layer which takes in takes in c
and zu to produce ŷ. This procedure is illustrated in Figure 2.5.
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Figure 2.5: Addressing the Few-shot Learning Challenge by Learning from Label De-
scriptors

This approach has been applied in [42] for few-shot multi-label text classification
where graph convolutional neural networks were also used to extract hierarchical in-
formation of the medical descriptors that are structured in nature prior to being fed to
the output layer. Similar approaches were proposed in [43], [44] for few-shot charge
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prediction where the dataset suffered from highly imbalanced and confusing labels,
classification of clinical text [45] and legal documents [46], sequence labeling [47].

2.3.3 Generating with Pre-trained Language Models

Consider the task of generating a sequence y provided a few m samples of semi-
structured data which is in the form of key-value pairs {Ki : Vi}mi=1 where Vi =
[v0, v1, . . . , vL] is a value sequence of length L that corresponds to the key Ki. The
problem has been of particular interest for few-shot natural language generation in
task-oriented dialogue agents where the key-value pairs would be extracted slots for
domains with limited data samples. Training supervised models to handle these rarely
occurring or emerging domains would not yield good performance. Recent attempts in
few-shot natural language generation leverage the innate language skill of pre-trained
language models to address this challenge [48]. Additionally, pre-trained word embed-
ding representations are used to overcome the small vocabulary size of the few-shot
dataset, helping achieve better generalization with tokens unseen during training. In
[49], the authors proposed a switch policy framework where the model learns to jointly
copy tokens from the key-value pairs and use a pre-trained GPT model as an off-the-
shelf generator to form coherent sentences. Authors in [50] propose a table transfor-
mation module to model the key-value pairs structure as input to a GPT-2 model. A
similar approach for knowledge graph-to-text is proposed in [51] where representation
alignment is introduced to bridge the semantic gap between knowledge graph encod-
ings and pre-trained language models.

2.3.4 Unsupervised Pre-training & Fine-tuning

This approach aims at finding initialization parameters upon which the model can be
fine-tuned with minimal labeled examples to achieve good generalization. Consider
the few-shot dataset Dfew−shot of the target task T and a corpus D with a large num-
ber of unlabeled examples that are much easier to collect than labeled examples for
the target task T . We start off by a randomly initialized model with parameters θ0.
This model is then pre-trained in an unsupervised/self-supervised manner using a spe-
cific loss function for pre-training Lpre−train to find better initialization parameters
θp. The model is then adapted to T by fine-tuning it with a task-specific loss func-
tion Lfine−tune to find to best possible task-specific parameters θ∗. The procedure is
illustrated in Figure 2.6.

This approach has been applied in the literature for various applications. In [52],
the authors address low-resource response generation by unsupervised pre-training on
large corpora of Chinese text. The pre-training step helps the model learn semantic and
syntactic information about the language before being fine-tuned on the response gen-
eration task using a smaller set of utterance-response pairs. Similar approaches have
been applied in [53] for task-oriented dialogue generation where an additional step of
pre-training on labeled examples from domains with abundant data is applied before
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Figure 2.6: Addressing the Few-shot Learning Challenge by Unsupervised Pre-
training & Fine-tuning

fine-tuning on the few-shot emerging domains where limited samples are available.
Similar approaches that benefit from pre-trained model representations for text gener-
ation in task-oriented dialogue agents are presented in [54], [55] Few-shot intent clas-
sification is done by leveraging conversational knowledge from a model pre-trained on
large amounts of conversational in [56], or from pre-trained language models in [57].

2.3.5 Meta-Learning

Meta-learning is commonly referred to as ”learning to learn” where the aim is to im-
prove a learning algorithm over several learning episodes. In traditional learning, a
learning algorithm is trained to solve a task using a task-specific dataset and an objec-
tive function. In meta-learning, a meta-learning extracts meta-knowledge from multi-
ple source tasks to update an inner learning algorithm in a way to learn a model can
achieve a certain objective.

In conventional supervised learning, given a dataset D = {xi, yi}mi=1 we are in-
terested in finding a hypothesis function hθ parameterized by θ that minimizes a loss
function L that measures the error between the ground-truth labels y and the predic-
tions produced by hθ. This function is learned by solving:

θ∗ = argmin
θ
L(D, θ, w) (2.6)

where w specifies the assumptions on how the model will learn, which includes
the optimization strategy, the initialization parameters, the function class for h, or the
entire learning algorithm. In conventional learning, models are trained from scratch
on D with pre-defined knowledge of w. The main issue with the pre-definition of w is
that it could affect the model’s performance and sample efficiency. In few-shot learning
settings, using meta-learning approaches to extract meta-knowledge of w from source
tasks can help improve performance on the target few-shot task. In this regard, we
define a meta-training as the stage of learningw from a set ofK source datasetsDsource

as follows:
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w∗ = argmin
w

K∑
i=1

L(D(i)
source;w) (2.7)

In the meta-testing stage, the base model is trained on the few-shot datasetDfewshot

given prior knowledge of w∗ extracted by the meta-learner. Hence, the meta-testing
stage becomes:

θ∗ = argmin
θ
L(Dfew−shot; θ, w

∗) (2.8)

Therefore, by leveraging the knowledge gained of w in the meta-training stage,
performance on the few-shot dataset can be improved compared with from-scratch
training. In this regard, meta-learning approaches have been adopted in various NLP
applications including neural machine translation [58], dialogue-state tracking [59],
user intent classification [60], dialog generation [61], event detection [62], named en-
tity recognition [63], and others [64], [65].
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CHAPTER 3

MESSAGE-RESPONSE DATASET FOR

MSA AND BASELINE SEQ2SEQ MODEL

3.1 Objectives

Despite the various works presented in the literature on open-domain empathetic chat-
bots for English, no work has previously addressed the problem of building such mod-
els for the Arabic language. An important reason is the scarcity of resources available
for Arabic compared with the English language, including datasets and pre-trained
language generation models. In this work, we create a dataset of empathetic utterance-
response pairs in MSA by translating the EmpatheticDialogues dataset available for
English. We train a Seq2Seq model with Long Short-Term Memory (LSTM) units on
the translated dataset. The developed model successfully exhibited empathetic behav-
ior and provided emotional responses to the input of users in MSA.

3.2 Related Work

3.2.1 Open-Domain English Chatbots

Conventional Approaches: Early attempts in building open-domain empathetic bots
relied on developing NLP modules and a dialog manager to switch between mod-
ules [66]–[68]. The general architecture of the conventional approach is illustrated in
Fig. 3.1. First, a user understanding module handles in the user input utterance, where
multiple classification models are used to identify the user’s intent and emotional state.
This module also identifies the current context of the chatting session and keeps track
of user-related information to create a user profile. The information collected from the
user understanding module is then passed on to a response generation module. At this
stage, the response is obtained either through retrieval-based or generative approaches.
To maintain a consistent personality for the chatbot, a personality setting module is
used to control the language of the chatbot. Additionally, to make sure an bias and
inappropriate responses are provided by the bot, an ethical design module is used to
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handle such issues. However, such approaches remained limited in their capabilities
and fail to generalize beyond a specific set of domains. In this regard, such archi-
tectures have been extremely useful in industrial applications, such as task-oriented
chatbots like Apple’s Siri or Amazon’s Alexa, where they are expected to perform
very well in specific domains only.

User Understanding
• Message Understanding
• Emotion & sentiment tracking
• Session content modeling
• User profiling

Response Generation
• Language Generation and 

personalization
• Topic guidance
• Style and sentiment generation

Ethical Design
• Identifying and filtering 

inappropriate content
• Unbiased and non-

discriminative behaving

Personality Setting
• Age and gender
• Language style and voice 

accent
• Area of expertise

User’s Input

Bot’s Response

Figure 3.1: Architecture of the conventional approach for open-domain empathetic
bots based on NLP modules

End-to-End Generative Approach: With the advances in AI techniques and com-
putation power, researchers recently showed that open-domain conversational models
developed using end-to-end neural network-based approaches, such as Sequence-to-
Sequence (Seq2Seq) models, generalize well to unforeseen domains without relying
on complex architectures of hand-crafted modules [6]. These approaches, however,
require training on large corpora of open-domain conversational data [69]. Addition-
ally, Seq2Seq models benefit from the availability of pre-trained language generation
models that can be fine-tuned for downstream generation tasks [70]–[72]. As such,
those models can acquire a solid representation of the language, and of language gen-
eration skills before being adapted to the task-specific task such as dialogue response
generation. The availability of massively pre-trained language generation models also
help address the issue of data scarcity whereby less task-specific labeled data would
be needed to reach reasonable performance.

Empathetic Open-Domain Conversational Models: English empathetic chat-
bots have been of interest over the last few years. Recently, the first dataset for empa-
thetic conversations dubbed EmpatheticDialogues was introduced by Rashking et al.
[9]. In their work, the authors gathered the dataset through the use of Amazon Turk
Workers and then implemented retrieval-based and generative-based models. Overall,
they observed higher levels of empathy in the chatbot’s responses compared with mod-
els trained on conventional non-empathetic datasets. The same dataset would later be
used as the main benchmark for assessing empathetic models. For instance, in [11],
the authors proposed an improved model which employed a Generative Pre-trained
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Transformer (GPT). This model was pre-trained on the BooksCorpus dataset [73] that
contains over 7000 unpublished books, thus improving the Natural Language Under-
standing (NLU) ability of the transformer. They also pre-trained on the PersonaChat
dataset [74] to give the chatbot a certain persona and enhance its engagingness. Fol-
lowing this pre-training procedure, the model was fine-tuned on EmpatheticDialogues
with results showing significant improvements in the empathetic responding capability
of the model.

In a different approach [10], the authors modeled empathetic responding as a rein-
forcement learning problem where they defined a reward function for a Seq2Seq model
based on Gated Recurrent Units (GRU) and attention. Their approach named “Senti-
ment Look-ahead” is also shown to be effective in generating empathetic responses
when tested on the EmpatheticDialogues dataset. In [75], the authors approached the
problem from a different perspective, splitting it into an emotion recognition and a
response generation problem. Inspired by Affect Control Theory, they map every user
sentence to an EPA (Evaluation Potency Activity) vector using a BiLSTM network
with attention and then prescribe a corresponding EPA response vector which they use
for conditioning the response generation. Both Conditional Variable Auto Encoders
and Seq2Seq models are considered for the generation. They are seen to yield simi-
lar results. In [76], the authors also make use of a Seq2Seq model for their chatbot’s
general chitchat. They represent empathy through the use of two empathy vectors, one
which represents the user (including sentiment, opinion, and contextual information)
and one which represents the chatbot (including its opinion and personality). They
condition the decoder on these empathy vectors and learn the best replies for each
situation using data from interactions with over 660 million users.

3.2.2 Arabic Chatbots

Arabic is a complex language and thus the development of Arabic chatbots has been
a great challenge to the research community. To date, only a handful of works have
attempted to build Arabic chatbots. One such work is ArabChat: a rule-based chatbot
capable of pattern matching and providing suitable answers to queries by the users
[20]. Another work is BOTTA, a retrieval-based model supporting specifically the
Egyptian dialect [19]. For the medical domain, Ollobot is another rule-based chatbot
which presents health tracking and support [21]. Overall, in[77], it was seen that
Arabic chatbots are still in their infancy. Their development being mainly hindered by
a lack of available datasets. Some works have managed to break through this limitation
by leveraging translation tools: an example is the question answering system [78],
another one is the Arabic language model [18]. The success of these works, as well
as the work in [79] demonstrate the potential of neural models in understanding the
Arabic language and motivates us to look into neural solutions for the open challenge
of Arabic empathetic response generation.
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3.3 Proposed Method

3.3.1 Arabic Dataset for Empathetic Chatbots

The proposed model requires training on a dataset of empathetic conversations. A
sample input in this dataset would be a statement of a speaker describing personal
experience in which they felt a specific emotion. The corresponding output would be
the empathetic response of a listener, which infers the emotional state of the speaker
and provides an appropriate reply. The proposed model needs to be trained on these
input-output pairs so that it could generate human-like empathetic responses.

Since no such dataset is available in the Arabic language, we translated the Empa-
theticDialogues dataset [9], which is the only available dataset in English for building
empathetic chatbots. EmpatheticDialogues consists of 24,850 English conversations
obtained via crowd-sourcing. These conversations are between a speaker that describes
a certain situation they went through and a listener who infers the emotional state of
the speaker and provides a suitable emotional response, thus creating an empathetic di-
alogue. We make use of the Googletrans1 API to perform the translations from English
to Arabic. Data utterance-response pairs for various emotional contexts are provided
in Table 3.1.
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Table 3.1: Samples of utterances and empathetic responses from the ArabicEmpathet-
icDialogues dataset for three emotion labels: Excited, Furious, and Embarrassed

To evaluate the quality of the dataset, we chose 100 random translated samples and
compared them with the original English samples to assess the quality of the transla-
tion. Our interest in the dataset is not to obtain accurate translations, but rather to create
dialogues that are meaningful even if they were not perfect translations. As a result,
our evaluation of the dataset focused on checking whether the translated conversation
makes sense in Arabic. The results indicated that only 6 of the 100 randomly chosen
samples were found to be unreasonable while the rest of the samples were deemed
reasonable. Therefore, we considered the dataset to be of high quality for the purpose

1https://pypi.org/project/googletrans/
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of training the proposed empathetic conversational model. A few unreasonable sam-
ples are shown in Table 3.2. Such poor translations are mainly due to idioms of the
English language, where the individual words do not represent the literal meaning. For
instance, by looking at the sample “Planning out my new home has turned out to be
a blast!” the word “blast”, in the context of the sentence, means “exciting” while its
literal meaning is “explosion”. Another reason for unreasonable translations are slang
words, which are commonly found in informal conversations. These types of errors are
rare in the generated conversation dataset and the translation system was thus deemed
to be sufficiently accurate (94%) for the purpose of model development.

Planning out my new home has turned out to be a blast!
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Table 3.2: Examples of unreasonable translations.

3.3.2 Proposed Arabic Encoder-Decoder Model

The purpose of the model is to infer an emotional state in an input sequence, that is
the user’s statement, and generate a sequence in Arabic representing the empathetic
response that the chatbot needs to reply with. The proposed model, illustrated in
Fig. 3.2, is a Seq2Seq model with LSTM units combined with Attention. The com-
ponents and parameters of the proposed model were obtained following a process of
hyperparameter tuning that determined the combination of choices that will deliver the
best performance on the validation set. The hyperparameters tuned were the number
of encoder/decoder layers (1, 2, or 3 layers), unit type (LSTM or GRU), embedding
dimensions (100, 200, or 300), and choice of optimization algorithm (Stochastic Gradi-
ent Descent (SGD), Adam, or Adagrad). After trying all combinations and comparing
performance on the validation set, the resulting choices of hyperparameters were two
layers for each the encoder and decoder, LSTM units, an embedding dimension of 500,
and SGD as the optimizer during training and validation. A dropout probability of 0.3
was chosen after each layer to avoid over-fitting.

We consider the empathetic conversations to be alternating sequences between the
user and the chatbot. Let w = [w1, w2, . . . , wnx ] be the input one-hot representations
of a sequence of nx words, corresponding to the utterance said by the user. We use the
Farasa [80] Arabic text processing toolkit for pre-processing and tokenizing Arabic
sentences. The obtained tokens are then fed into an embedding matrix E ∈ Rd×V

where d is the dimension of the embedding vector, and V is the vocabulary size. We
set d to be 500 and obtain a vocabulary size V of 12900. The output of the embedding
layer results in x = [x1, x2, . . . , xnx ] where xi is the embedding vector of the i-th word
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Figure 3.2: Architecture of the proposed Seq2Seq model with Attention

wi. The target output sequence is the sentence containing an empathetic response by
the chatbot and which we represent by y = [y1, y2, . . . , yny ].

The encoder consists of two bidirectional layers with LSTM units for better extrac-
tion of complicated features. Each unit computes a hidden state hli where l is the layer
index. To avoid the problem of fixed-length vectors in encoder-decoder models [81],
we used an attention mechanism which generates a context vector c = [c1, c2, . . . , cny ]
given the hidden states h2i from the second layer of the encoder. The context vector c is
then fed as input to the decoder that consists of two layers with LSTM units. Each unit
computes the hidden state sli. The sequence y representing the empathetic response
can then be generated by the second layer of the decoder, where a decoding strategy is
used such as beam search or random sampling. The mathematical details of the model
are provided here for completeness.

Encoder: The encoder is formed by two stacked layers of bidirectional LSTM
units (BiLSTM) that compute the encoder hidden states denoted by hli where l is the
layer index. The first layer reads the input embeddings x and computes the hidden

state h1i = [
→
h1i;

←
h1i] in both directions as follows:

→
h1i =

→
LSTM(

→
h1i−1, xi)

←
h1i =

←
LSTM(

←
h1i+1, xi)

(3.1)

The obtained hidden states of the first layer are then fed as input to the second layer

to compute h2i = [
→
h2i;

←
h2i] as follows:
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→
h2i =

→
LSTM(

→
h2i−1,

→
h1i−1)

←
h2i =

←
LSTM(

←
h2i+1,

←
h1i+1)

(3.2)

Attention: We employ the attention mechanism where attention weights αji are
assigned to each hidden state h2i obtained by the encoder. These weights are computed
by:

αji =
exp(eji)∑nx

k exp(eki)
(3.3)

where the energy eji associated with each weight αji determines how significant
an encoder state hi is to a decoder state sj−1 in generating the next state sj . The energy
is computed using the alignment model given by:

eji = fNN(sj−1, hi) (3.4)

where fNN denotes a regular feed-forward neural network that is trained simulta-
neously with the rest of the system. The context vector cj can now be computed by the
weighted sum of αji and hi for j = 1, . . . , nx as follows:

cj =
nx∑
j=1

αjihi (3.5)

Decoder: The decoder consists of two stacked layers of LSTM units that compute
the decoder states slj as follows:

s1j = LSTM(cj, s
1
j−1, s

2
j−1)

s2j = LSTM(s1j , s
2
j−1, yj−1)

(3.6)

Hence, the next word in the generated empathetic response yj can be predicted
given the previously predicted words y1, y2, . . . , yj−1 and the context vector c.

p(y) =

ny∏
j=1

p(yj/y1, y2, . . . , yj−1, c) (3.7)

where y = y1, y2, . . . , yny .

3.4 Experiments & Results

3.4.1 Experimental Setup

The created dataset contains around 35K samples which are split into 80% for training,
10% for validation, and 10% for testing. We train the proposed Seq2Seq model for
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three different embedding dimensions (d) of 100, 300, and 500, to explore how this
dimension will influence the performance of the model given the vocabulary size we
have. SGD was chosen as the optimization algorithm during training. Additionally, we
applied a dropout probability of 0.3 after each layer. The models were developed using
the OpenNMT [82] toolkit which is commonly used for neural sequence learning.

3.4.2 Model Training and Evaluation

During the training and validation process, the models are evaluated using the Perplex-
ity (PPL) automated metric. The curves in Fig. 3.3 show the variation of the validation
PPL over 8000 training steps, for the three choices of d. As observed in Fig. 3.3, the
model with d = 500 achieved the best value for the PPL on the validation set, reach-
ing nearly 30, while the models with d = 100 and d = 300 showed a validation PPL
around 50. The summary performance of these models is reported on the test set in
Table 3.3, where beam search is used at inference time. We use the BLEU score as an
additional metric for evaluation. The model with an d = 500 outperforms the rest of
the models by achieving the highest BLEU score of 0.5 and lowest PPL of 38.6 on the
test set. Given these obtained values for the PPL and the BLEU score, the model de-
livered state of the art performances for Arabic. The state of the art models for English
reached a PPL level close to 10. However, the achieved results for Arabic are con-
sidered as very good given the relatively small size of the dataset used and the more
complex nature of the Arabic language. Reaching even better PPL and BLEU score
levels would require more data samples to learn from. A possible solution could be
pre-training on larger conversational datasets in Arabic, that would contain hundreds
of thousands of samples, and fine-tuning on the empathetic conversations dataset.
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Figure 3.3: Validation PPL curves for several word embedding dimensions d
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Embedding Dimension d PPL BLEU
100 53.5 0.11
300 48.7 0.32
500 38.6 0.50

Table 3.3: Performance of the models on the test set in terms of PPL and BLEU score.

3.4.3 Evaluation by Human Annotators

Automated metrics such as PPL and BLEU score do not capture all aspects of perfor-
mance of models in sequence generation and cannot be used alone to judge the quality
of the responses generated since they don’t always correlate with human judgment.
This problem is especially applicable to empathetic chatbots, where no metric exists to
evaluate how empathetic the response generated is. Thus, human ratings are an impor-
tant part of the overall evaluation. To this end, we collected ratings from 50 speakers of
the Arabic language. The raters were given samples from each model and were asked
to rate them in terms of Empathy, Relevance, and Fluency, by answering the following
questions:

• Empathy: Did the response show an ability of inferring the emotions in the given
context?

• Relevance: How relevant was the generated response to the given input context?
• Fluency: How understandable was the generated response from a language per-

spective?
The raters were asked to rate responses on a scale from 0 to 5, where 0 conveys

terrible performance and 5 conveys excellent performance. The average of the ob-
tained human ratings are reported in Table 4.3 for each model. We experimented with
two decoding strategies at inference time, which are namely beam search and random
sampling. The model with d = 500 and which uses beam search in sequence genera-
tion achieved the highest ratings in all of the specified metrics. These ratings suggest
that the model exhibits state of the art performance for Arabic with average levels of
Empathy and Fluency reaching of 3.7 and 3.92 respectively. However, the Relevance
metric was at 3.16 reflecting that the model did not always stay on topic while generat-
ing responses. Hence, it can be deduced that the model provides fluent and empathetic
responses, but could go off topic in some cases and respond with irrelevant statements.

For further analysis of the model’s performance, we show in Table 3.5 examples of
generated responses by the model on a set of context sentences that were not included
in the training dataset. We also compare these generated responses for the same model
using the random sampling decoding strategy. Several points can be deduced by ana-
lyzing the generated responses in Table 3.5. We notice that even though beam search
provides fluent and empathetic responses, the responses from beam search are limited
to a few choices. For instance, we observed that the tokens ( �

é«ðQÊË AK
) were repeated
several times for different contexts. Sometimes, a full sequence is repeated such as
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Decoding Strategy Embedding Dimension d Empathy Relevance Fluency

Beam Search
100 2.24 1.96 3.08
300 2.5 2.26 3.03
500 3.70 3.16 3.92

Random Sampling
100 2.04 1.68 2.44
300 2.03 1.69 2.57
500 2.40 1.92 2.80

Table 3.4: Average of human ratings collected for several embedding dimensions and
decoding strategies.

( @Yg. Pñ
	
m
	
¯ 	

àñº
�
K

	
à


@ I. m.

�'

 ,

�
é«ðQÊË AK
). This repetitive behavior makes the model seem

limited by only a few sequences to choose from and gives the impression that it is not
capable of generating more general sequences. In few cases, the response did not make
perfect sense or the response went totally off-topic. This issue is commonly encoun-
tered when using beam search even for English models. Another drawback of beam
search is the heavy computational load it imposes since it needs to perform exhaustive
search.

With random sampling, the next token in the sequence is generated based on the
probability distribution obtained by the softmax function. This approach, as seen in Ta-
ble 3.5, generated lengthy sequences and avoided being too generic as in beam search,
and thus offered more richness in the response choices. However, the human ratings
for the random sampling approach dropped significantly compared with the models
using beam search. This is because in random sampling, many unlikely tokens had
an increased probability of being generated, and much more training data would be
needed to learn from for the performance to improve.

Additionally, it is noticed from Table 3.5 that when the context is a simple question
that infers no emotions in the speaker such as (? Éª

	
®
�
K @

	
XAÓ) or (? ½ËAg

	
J
» AJ.kQÓ), the

model still provided a response with an unnecessary emotional state. This incapability
of the model to generate regular chit-chat responses is observed when using either
of the decoding strategies, and is mainly due to it being trained merely on a dataset of
empathetic conversations. Hence, it will always opt to generate an empathetic response
to any context it receives. Pre-training the model on standard Arabic conversational
datasets, and then fine-tuning on our proposed Arabic empathetic dialogues dataset
should help alleviate this problem.
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Table 3.5: Sample generated responses by the proposed model. Generated responses
are shown using both beam search and random sampling decoding strategies at infer-
ence.
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CHAPTER 4

BERT2BERT CONVERSATIONAL

MODEL: LEARNING ARABIC

LANGUAGE GENERATION WITH

LITTLE DATA

4.1 Objectives

To address the challenges of small dataset size and lack of conversational resources,
in terms of datasets and pre-trained models, we propose a transformer-based encoder-
decoder model initialized with AraBERT [18] pre-trained weights. This work extends
the English BERT2BERT architecture [83] to Arabic response generation. We fine-
tune our proposed model on the limited-sized dataset of empathetic responses in Ara-
bic. By using the pre-trained weights of the AraBERT language model to initialize the
encoder and decoder, our proposed BERT2BERT model leverages knowledge transfer
and shows enhanced performance in empathetic response generation compared to the
baseline Bi-LSTM model proposed in Section ?? both in terms of Numerical Evalua-
tion and Human Ratings.

4.2 Related Work

Recently, the first empathy-driven Arabic conversational model was proposed in [84]
that released ArabicEmpatheticDialogues, a dataset of Arabic utterances and their cor-
responding empathetic responses. The authors trained a Seq2Seq model with bidirec-
tional LSTM units on the dataset. While the model succeeded in generating empathetic
responses, it showed an average Relevance score which indicates that the responses can
sometimes go off-topic and may not be suitable responses for the emotional context of
the input utterance. The limitations of this work were mainly due to the limited size of
the dataset. In this work, we adopt the BERT2BERT architecture [83] and leverage the
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pre-trained AraBERT [18] model to improve the performance of empathetic Arabic
conversational models.

4.3 Proposed Method

4.3.1 Proposed BERT2BERT Model

Our proposed model for Arabic empathetic response generation is a transformer-based
Seq2Seq model [85], which has been shown to boost performance on a several Seq2Seq
tasks [86], [87]. However, such an architecture would require massive pre-training be-
fore being fine-tuned on the desired task [88]. It was shown by [83] that warm-starting
the transformer-based encoder-decoder model with the checkpoints of a pre-trained
encoder (e.g. BERT) allows the model to deliver competitive results in sequence gen-
eration tasks while skipping the costly pre-training. Inspired by this idea, and due to
the unavailability of Arabic conversational datasets that can be used for pre-training,
we adopt the BERT2BERT architecture [83], and warm-start the encoder and decoder
with the AraBERT checkpoint [18]. The encoder-decoder attention is randomly ini-
tialized. The architecture of the proposed model is illustrated in Figure 4.1.

Encoder Block

Encoder Block

Encoder Block

Encoder Block

Encoder Block

𝑥1 𝑥…𝑥2 𝑥𝑛𝑥

Decoder Block

Decoder Block

Decoder Block

Decoder Block
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𝑙1 𝑙…𝑙2 𝑙𝑛𝑦
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. . .. . .

ҧ𝑥1 ҧ𝑥…ҧ𝑥2 ҧ𝑥𝑛x

AraBERT-initialized Encoder AraBERT-initialized Decoder

Figure 4.1: Architecture of the proposed BERT2BERT model initialized with
AraBERT checkpoints for Arabic empathetic response generation.

The input to the proposed model is a sequence x = [x1, x2, . . . , xnx ] of one-hot
representations with a length of nx tokens, chosen to be 150. This sequence is fed as
input to an AraBERT initialized encoder. At the decoder side, the model generates
an empathetic response represented by a sequence y = [y1, y2, . . . , yny ], where the
maximum output length ny is also specified to be 150. We optimize the log-likelihood
loss over the output tokens.

To generate empathetic responses from our model, we adopt the Top-K Sampling
scheme [89] where, at each time step, the model randomly samples the K most likely
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candidates from the probability distribution of all words in the vocabulary. This de-
coding strategy has been found more effective than conventional approaches such as
beam search, which tends to yield common responses found repetitively in the training
set or similar, slightly-varying versions of the same high-likelihood sequences [90].

4.3.2 Dataset

We use the ArabicEmpatheticDialogues dataset [84] which was translated from the
English version introduced in [9]. ArabicEmpathicDialogues contains 36,628 samples
of speaker utterances and their corresponding empathetic responses in Arabic. Each
sample is also labeled with the emotion of the speaker’s utterance. Three examples
from the dataset for three different emotion labels are provided in Table 3.1. By train-
ing a sequence generation model on the samples of utterances and their corresponding
responses from the dataset, the model will be able to infer the emotions in input utter-
ances and provide suitable empathetic responses. Thus, the empathetic capability of
the model would be enhanced.

The dataset is originally labeled with 32 emotion labels, many of which are very
similar such as “joyful” and “content”, or “angry” and “furious”. To reduce the number
of classes, we follow the tree-structured list of emotions defined in [91] to map the
32 emotion labels to their 6 primary emotions which are “Joy”, “Surprise”, “Love”,
“Surprise”, “Anger”, and “Fear”.

To reduce lexical sparsity, the utterances and responses in the dataset are segmented
using the Farasa segmenter [80]. Given the morphological complexity of the Arabic
language, segmentation is an important pre-processing step that can greatly enhance
the performance of neural-based sequence generation models. An example of this
process is shown in Table 4.1. By performing segmentation, the vocabulary size is
drastically reduced from 47K tokens to around 13K tokens.
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Table 4.1: Example of an Arabic utterance segmentation using Farasa.

4.4 Experiments & Results

We evaluate the proposed BERT2BERT model in comparison to three benchmark
models. We conduct numerical as well as human evaluation of the different conversa-
tional models.
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4.4.1 Benchmark Models

We train several neural-based sequence generation models on the ArabicEmpathetic-
Dialogues dataset and consider them as benchmarks for performance comparison. The
benchmark models are denoted as follows:

Baseline: The baseline model, illustrated in Figure 4.2, is a Seq2Seq Bi-LSTM
model with Attention following the prior state-of-the-art model proposed in [84].

EmoPrepend: In this setup, illustrated in Figure 4.2, we prepend the emotion label
to each utterance before feeding it as input to the baseline model described above, and
we denote this approach as EmoPrepend. This allows us to add supervised information
to the data, without having to introduce any modifications to the architecture. The ex-
isting emotion labels have been prepended to the utterances in the train and validation
sets. For the test set and at inference, we fine-tune AraBERT for emotion classification
using the utterances and their labels in the dataset. The fine-tuned AraBERT model is
then used as an external predictor to classify the emotion in the utterance and prepend
it as a token before being used as an input to the EmoPrepend model. We note that the
step of grouping emotion labels into 6 main labels, as discussed in Section 3, makes
the emotion classification task easier.

BERT2BERT-UN: which stands for BERT2BERT-Uninitialized. This model is
a regular transformer-based encoder-decoder model that shares the same architecture
of the BERT2BERT model shown in Figure 4.1, but is not initialized with AraBERT
pre-trained weights.

Baseline

Pre-trained 

Emotion 

Classifier

LSTM-based 

Decoder

Seq2Seq 

LSTM model

LSTM-based 

Encoder

Attention

لقد ربحت المباراة لقد ربحت المباراة

لقد ربحت المباراة Joy

Response
Response

EmoPrepend

Figure 4.2: Architectures of the Baseline and EmoPrepend models used for compara-
tive evaluation against the proposed BERT2BERT model.
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4.4.2 Experimental Setup

The proposed BERT2BERT model was developed using the Huggingface transform-
ers library1. We train the model for 5 epochs with a batch size of 322. Model training
was done on a 16GB V100 NVidia GPU. The Baseline Bi-LSTM Seq2Seq [84], Emo-
Prepend, and BERT2BERT-UN benchmark models were developed using the Open-
NMT Library [82]. A online demo is also available3.

Dataset Partitioning: All models were trained and evaluated on common data
splits of the ArabicEmpatheticDialogues. We randomly partitioned the dataset into
90% training, 5% validation, and 5% testing using a seed of 42.

4.4.3 Numerical Evaluation

Table 4.2 summarizes the perplexity (PPL) and Bilingual Evaluation Understudy (BLEU)
scores for the proposed and benchmark models when evaluated on the test set. It
is clear from the numerical evaluation results that the proposed BERT2BERT model
consistently outperforms the benchmark models. This is reflected through both a lower
PPL score and a higher BLEU score.

Model PPL BLEU
Baseline [84] 38.6 0.5
EmoPrepend 24.1 3.16
BERT2BERT-UN 159.8 0.1
BERT2BERT 17.0 5.58

Table 4.2: Performance of the models on the test set in terms of PPL and BLEU score.

With EmoPrepend, the addition of supervised information in the form of prepended
emotion labels showed performance improvements in comparison to the Baseline model,
reflected by an increase in 2.6 BLEU points and a reduction of 14.5 points in the PPL
score. Nevertheless, the PPL score of EmoPrepend at 24.1 is still considered high
and could potentially lead to sub-optimal performance. BERT2BERT showed signif-
icant performance improvements in comparison to the baseline Seq2Seq Bi-LSTM,
highlighted by a much reduced PPL value of 17.0 and an increase in 5 BLEU points.
BERT2BERT also achieved better scores than the EmoPrepend model.

The BERT2BERT-UN model resulted in a very high PPL score of 158.9 and very
low BLEU score of 0.1. These poor results are due to the nature of transformer net-
works that require huge amounts of data samples to deliver good performance. The
initialization of the BERT2BERT with pre-trained AraBERT weights showed very sig-
nificant enhancements compared with the uninitialized BERT2BERT-UN model. This

1https://github.com/huggingface/transformers
2https://github.com/aub-mind/Arabic-Empathetic-Chatbot
3https://huggingface.co/spaces/tareknaous/arabic-empathetic-response-generation
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performance boost provided by the BERT2BERT model is expected given the fact that
AraBERT’s initialization parameters have been pre-trained on a massive 24 GB Arabic
corpus.

The numerical results achieved by the BERT2BERT model are particularly im-
pressive since, despite the limited size of the ArabicEmpatheticDialogues dataset,
BERT2BERT was able to leverage knowledge transfer through fine-tuning to achieve
state-of-art performance on the task of open-domain empathetic response generation
in Arabic without requiring additional empathetic samples to train on, or pre-training
conversational data.

4.4.4 Human Evaluation

Automated metrics such as PPL and BLEU scores are not sufficient alone to evaluate
a model’s ability to exhibit empathetic behavior. Given the unavailability of specific
metrics to evaluate empathy in a conversational model, we resort to evaluation based
on the judgment of human subjects. Through human evaluation, we can evaluate the
emotional communication capability of the models, which is their ability to recognize
emotion in the input utterance and generate a suitable expression of emotion in their
corresponding response [92]. To this end, we conducted a survey to collect ratings
from 85 native Arabic speakers.

The raters were shown various utterances and their corresponding responses gener-
ated by the Baseline, EmoPrepend, and BERT2BERT models. The BERT2BERT-UN
model was excluded from the survey given its poor results in terms of numerical met-
rics. The raters were asked to evaluate each of the models’ ability to show Empathy,
Relevance, and Fluency in the generated response. The raters were asked to answer
the following questions:

• Empathy: Does the generated response show an ability to infer the emotions in
the given utterance?

• Relevance: How relevant is the generated response to the input utterance?

• Fluency: How understandable is the generated response? Is it linguistically cor-
rect?

For each question, the raters were asked to score the responses of the models on a
scale of 0 to 5, where 0 reflects extremely poor performance and 5 reflects excellent
performance.

The results of the survey are summarized in Table 4.3, where we report the average
of the collected ratings. The EmoPrepend model showed a higher average score of
Empathy and Relevance than the Baseline model. However, these scores are below 3,
meaning the EmoPrepend model was seen to deliver below-average performance.

On the other hand, the average ratings of the BERT2BERT model can be consid-
ered high and are much superior to both the Baseline and the EmoPrepend models,
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Model Empathy Relevance Fluency
Baseline [84] 2.04 1.68 2.44
EmoPrepend 2.81 2.18 3.28
BERT2BERT 4.0 3.59 4.30

Table 4.3: Average evaluation of the collected human ratings.

which indicates BERT2BERT’s ability to deliver highly empathetic responses while
abiding by linguistic correctness. This is reflected in some examples of the gener-
ated responses by BERT2BERT that can be seen in Table 4.4. The responses demon-
strate the model’s ability to express empathetic, relevant, and fluent responses when
prompted with input utterances with various emotional states and domain contexts,
which also proves its ability to handle open-domain conversations.
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Table 4.4: Examples of responses generated by the BERT2BERT model for multiple
utterances with various emotional states and domain contexts.

4.4.5 Performance on Inputs with Neutral Emotional States

Despite the promising results achieved by the BERT2BERT model in generating rele-
vant empathetic responses in open-domain settings, it was shown to poorly handle reg-
ular chit-chat utterances with neutral emotions, such as ”Hey, how are you?” or ”What
are you doing?”. Instead of providing a regular response, the BERT2BERT model will
opt to generate an empathetic response as we show in Table 4.5. This issue can be
explained by the fact that the model was fine-tuned on a dataset comprised of utter-
ances with pure emotional context and corresponding empathetic responses. Moreso,
the AraBERT-initialized parameters did not help mitigate this issue since AraBERT
is pre-trained in a self-supervised fashion on news articles and later fine-tuned on a
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task-specific dataset that does not contain regular chit-chat samples. Thus, it is clear
why the BERT2BERT model is not able to handle neutral chit-chat conversations, as
it is outside the scope of the training data and the task at hand.
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Table 4.5: Examples of responses generated by the BERT2BERT model for multiple
utterances with neutral emotions.
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CHAPTER 5

DIALOGUE RESPONSE GENERATION

IN ARABIC DIALETS WITH

SELF-SUPERVISED LEARNING

5.1 Objectives

In low resource scenarios, such as language varieties and dialects, open-domain con-
versational data is limited and very expensive to obtain. Also, pre-trained and dialect-
specific language generation models are unavailable. The lack of these resources mo-
tivates our research question: “Can we leverage pre-trained language understanding
models to develop open-domain response generation models in specific dialects of a
language, where the needed resources are not sufficient?” In this work, we aim to an-
swer this question by warm-starting a transformer with pre-trained language model
parameters, adapting the model to the target dialect via self-supervised pre-training
on a large corpus of unlabeled dialectal samples, and finally fine-tuning the adapted
model on a small number of open-domain dialectal conversational samples.

To study the effectiveness of the proposed approach, we apply it to Arabic as it
offers a rich context of linguistic variations, and since the majority of the available
resources are in Modern Standard Arabic (MSA), with very limited existing resources
for individual dialects. Arabic has many spoken dialects [93]–[95], with significant
differences to the written MSA on morphological, lexical, syntactic, and phonologi-
cal levels. Not only do samples in Dialectal Arabic (DA) include slang, idioms, and
similar expressions that deviate from the MSA norms, but they also do not follow any
standard orthography [96], creating spurious data sparseness and making it much more
challenging to process DA samples, especially for sequence generation tasks. The re-
sults show significant performance improvements on the three most widely spoken
Arabic dialects after adopting the framework’s three stages.
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5.2 Related Work

low-resource-response-generation studied the problem of low-resource response gen-
eration with 360K utterance-response pairs in Chinese. The authors proposed esti-
mating templates from large-scale unlabeled samples to aid an encoder-decoder model
in response generation. naous achieved high performance in open-domain response
generation in MSA by fine-tuning warm-started a transformer model on 36K utterance-
response samples that were automatically translated from English naous2. In our work
though, we tackle the problem of open-domain response generation in DA with only
1K utterance-response pairs. Specifically for DA, a few works have been proposed
[19], [97], all of which are closed-domain that can handle a few specific topics. Ad-
ditionally, these works rely on rule-based approaches or retrieval systems which limits
their ability to generalize on unforeseen domains, as opposed to our generation-based
approach which leverages knowledge from large-scale pre-trained language models.
To the best of our knowledge, this is the first attempt to tackle open-domain response
generation in DA.

5.3 Proposed Method

Consider the learning task T of generating an open domain response in a low-resource
language, such as DA. Let Dtrain denote the dataset used to learn the task T . Dtrain

contains I samples of dialectal utterance-response pairs {(xi,yi)}Ii=1, where x =
[x0, x1, . . . , xnx ] represents an utterance of length nx tokens and y = [y0, y1, . . . , yny ]
is the response of length ny tokens. By fitting onDtrain, the goal is to learn the weights
θ that parameterize a hypothesis h(.; θ) that best approximates the optimal hypothesis
h∗ in a hypothesis space H. However, given the low-resource setting and the insuffi-
cient amount of samples I , a reliable approximation of h∗ cannot be reached by merely
fitting the model on Dtrain. Our proposed approach, illustrated in Fig. 5.1, addresses
this challenge and consists of three stages: warm-starting the encoder-decoder model,
self-supervised pre-training on target dialect, and fine-tuning on target dialect task.

Transformer 
encoder-decoder

Model Adapted to 
Target Dialect

Warm-starting with
pre-trained language

model parameters

BERT2BERT

Self-supervised
pre-training on 

target dialect

Fine-tuning on
target dialect

task Open-domain
response generation

model for DA

𝜃𝑒𝑛𝑐 ← 𝜃𝐿𝑆−𝐵𝐸𝑅𝑇

𝜃𝑑𝑒𝑐 ← 𝜃𝐿𝑆−𝐵𝐸𝑅𝑇
𝜃𝑡𝑟𝑎𝑛𝑠 = [𝜃𝑒𝑛𝑐; 𝜃𝑑𝑒𝑐]

ℒ𝑓𝑖𝑛𝑒𝑡𝑢𝑛𝑒ℒ𝑝𝑟𝑒−𝑡𝑟𝑎𝑖𝑛

1 2 3

Figure 5.1: Illustration of the three stages (warm-starting, self-supervision, and pre-
training) of the proposed framework for learning open-domain response generation in
DA.
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5.3.1 Warm-Starting of Encoder-Decoder for the Standard Language

At the first stage, we start with an encoder-decoder model and choose the transformer
architecture [98]. We denote by θtrans the parameters of the transformer model which
consist of the encoder parameters θenc and of the decoder parameters θdec. The model
is warm-started with pre-trained Language-Specific BERT (LS-BERT) parameters, an
approach that has shown its ability in leveraging knowledge transfer from a Natural-
language Understanding (NLU) model for sequence generation tasks naous-bert2bert,
[83]. Specifically, the weight parameters of all layers of the encoder that also exist in
the LS-BERT, such as self-attention and feed-forward layers, are initialized with LS-
BERT parameters. The same procedure is done for the decoder:

θenc ← θLS−BERT

θdec ← θLS−BERT
(5.1)

Hence, warm-starting the transformer will result in an encoder-initialized encoder
and an encoder-initialized decoder. For layers that do not co-exist in both the trans-
former encoder-decoder model and the LS-BERT, specifically cross-attention layers,
weights are randomly initialized. For Arabic, we experiment with three different lan-
guage models: AraBERT [18], ARBERT [99], and MARBERT [99]. AraBERT and
ARBERT have been pre-trained on MSA samples. Warm-starting the transformers
with the parameters of these models helps leverage lexical similarity between MSA
and DA and transfer knowledge of such words. MARBERT has been pre-trained on
both MSA and DA samples, which helps acquire prior knowledge of certain dialectal
sub-tokens.

5.3.2 Self-Supervised Pre-training on Target Dialect

In the second stage, the warm-started model is pre-trained in a self-supervised manner
on a large number J of unlabeled data dialectal sequences, denoted by Dpre−train =
{xj}Jj=1, that is closer to the distribution of the target task T . We adopt the next sen-
tence pre-training strategy, an extension of the GPT causal language modeling strategy
for encoder-decoder models. In this setup, the model is trained to generate the next part
of a DA sentence. This pre-training step adapts the model to the target dialect and learn
semantic and syntactic information it needs to generate fluent DA sequences.

5.3.3 Fine-tuning on Dialectal Response Generation Task

At the last stage, we fine-tune the model on Dtrain where the negative log-likelihood
of the target dialectal response y given the input utterance x in the data distribution
PDtrain

is minimized.
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Lfinetune = E(x,y)∼PDtrain
(− logPθ(y|x))

= E(x,y)∼PDtrain
(− log

ny∏
t=1

Pθ(yt|y<t,x))
(5.2)

where y<t represents [y0, y1, . . . , yt−1].

5.4 Datasets

5.4.1 Twitter Corpora Collection for Self-Supervised Pre-training

Collection: We collected ∼1M tweets in each dialect to perform self-supervised pre-
training. To ensure that the tweets collected are specifically in the Levantine, Egyp-
tian, and Gulf dialects and do not contain samples written in MSA, the Twitter ac-
counts were manually inspected. In each dialect, 500 Twitter accounts were selected
for scraping using Tweepy after human inspection. These accounts mainly belong to
native speakers of each area in the Arab world (LEV, EGY, GUL) with various edu-
cational and societal backgrounds where the tweets offer their personal opinions on
various topics.

Pre-processing: To have clean and meaningful sentences for pre-training, the
tweets were pre-processed to remove English sentences, duplicate tweets, non-Arabic
tokens, hashtags, symbols, numbers, and emojis. We also removed tweets that hold a
length below 5 after tokenization. The tweets are then split in half for self-supervised
pre-training with the next sentence generation objective.

5.4.2 Message-Response Pairs Datasets for Fine-Tuning

We hired three native translators from the Levantine, Egyptian, and Gulf areas of the
Arab world to translate 1K samples from the DialyDialog dataset to their specific di-
alects. DailyDialog [100] is a high-quality multi-turn dataset of ∼12K open-domain
dialogues covering ∼1.4M English words and is commonly used in the English lit-
erature on open-domain response generation. Hence, we compiled 1K open-domain
message-response samples in each dialect that we used to fine-tune our model in the
last step of the framework.

5.4.3 Vocabulary Overlap

We report in Table 5.1 the vocabulary overlap between the collected, pre-processed
tweets and the translated message-response pairs in each dialect. The results are re-
ported with and without the use of Farasa segmentation [80]. When using Farasa seg-
mentation, we notice that a very large overlap (¿90% for all dialects) exists between
the corpora in each dialect. This overlap is unsurprisingly reduced when Farasa is
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not used but is still considered good overlap (¿70% for LEV and EGY, and ¿50% for
GUL). Thus, the self-supervised pre-training of the model on the unlabeled samples is
expected to boost the performance of the model, as it would gain prior knowledge of
these tokens before being fine-tuned for response generation.

(a) With Farasa Segmentation
Tweets

LEV EGY GUL
Translated

Message-Response
Samples

LEV 90.26%
EGY 90.12%
GUL 91.25%

(b) Without Farasa Segmentation
Tweets

LEV EGY GUL
Translated

Message-Response
Samples

LEV 77.30%
EGY 76.75%
GUL 54.63%

Table 5.1: Vocabulary overlap between the translated samples and the scraped tweets
in each dialect with (a) and without (b) Farasa Segmentation.

5.5 Experiments & Results

5.5.1 Experimental Setup

Datasets: We evaluate our framework on the three most widely spoken Arabic di-
alects: Levantine (LEV), Egyptian (EGY), and Gulf (GUL). To perform self-supervised
pre-training, we resort to Twitter as a resource that is rich in DA text. For each dialect,
we scraped ∼1M tweets using Tweepy1. For fine-tuning, we hired native translators
for each dialect to create small datasets of open-domain dialectal utterances-responses
pairs in three dialects. To ensure the quality of the dataset, we randomly sampled
1K dialogues from the DailyDialog dataset [100] and asked the translators to write
equivalent utterance-response pairs in their dialect, with modifications where neces-
sary (change of English names or references such as location, etc.).

Evaluation Metrics: We perform evaluations using both automated metrics and
human judgment. For automated metrics, we use the Perplexity (PPL) and BLEU
scores which are commonly used for the evaluation of natural language generation
models. For human evaluation, we ask three well educated and native speakers in
each dialect to rate the responses (on a scale from 1 to 5) of the test set samples from
three aspects: (1) Fluency: if the response is a meaningful sentence that does not

1https://docs.tweepy.org
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contain grammatical errors, (2) Relevance: if the response is relevant to the topic in
the input message, and (3) Richness: if the response contains interesting and new
content. Details on the human evaluation process are provided in Appendix ??.

Implementation: We base our code on the Huggingface transformers library [101].
The checkpoints of the AraBERT, ARBERT, and MARBERT language models are
used to warm-start the transformer model. The Adam optimization algorithm is used
for all experiments. The fine-tuning dataset is split into 80% training, 10% validation,
and 10% testing.

Baselines: We compare our proposed approach to the following baselines: (1)
Seq2Seq [102]: the basic sequence-to-sequence recurrent neural network model with
Long Short-Term Memory (LSTM) units and Attention, (2) Transformer [98]: the
transformer sequence-to-sequence architecture that is based on attention mechanisms,
and (3) BERT2BERT [84]: the transformer architecture with encoder and decoder
layers warm-started with pre-trained BERT parameters.

5.5.2 Evaluation Results

Automatic Evaluation: The results in terms of automated metrics on the test set are
reported in Table 5.2. Training a regular Seq2Seq or Transformer model from scratch
on the utterance-response datasets yields very poor performance on all dialects due
to the small number of samples (1K in each dialect). The addition of the step of
Self-Supervised Pre-training (SSP) using the pre-processed tweets before fine-tuning
(FT) the transformer model on response generation shows improvements on both PPL
and BLEU scores but is not enough alone for good performance since the scores are
still considered poor. Warm-starting the transformer model using the pre-trained pa-
rameters of Arabic language models shows great improvements prior to performing
SSP and fine-tuning. Compared with regular fine-tuning of warm-started transformers
(BERT2BERT models), the step of SSP with warm-starting before fine-tuning shows
improvements on automated metrics for each dialect in the majority of the cases. The
obtained results vary when using different pre-trained language models for warm-
starting, depending on what data the BERT models were trained on and the vocabulary
overlap with our message-response samples, which is affected by the type of segmen-
tation used. For instance, AraBERT uses Farasa segmentation [80] while ARBERT
and MARBERT do not. It is very clear though, from all experiments, that adding SSP
and FT improves the results regardless of the dialect.
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Pre-trained
Language Model Model LEV EGY GUL

PPL (↓) BLEU (↑) PPL (↓) BLEU (↑) PPL (↓) BLEU (↑)
× Seq2seq 329.57 0.001 383.51 0.001 284.18 0.027
× Transformer 283.14 0.001 354.15 0.001 269.02 0.001
× Transformer + SSP + FT 211.86 0.284 294.18 0.137 168.53 0.202

AraBERT
BERT2BERT 231.59 0.216 260.03 0.127 91.46 0.665
BERT2BERT + SSP + FT 65.73 1.234 376.73 0.028 52.36 1.416

ArBERT
BERT2BERT 520.55 0.441 470.91 0.255 168.98 1.191
BERT2BERT + SSP + FT 321.82 0.976 435.58 0.294 83.15 1.831

MARBERT
BERT2BERT 487.27 0.629 528.68 0.640 343.52 0.320
BERT2BERT + SSP + FT 358.49 0.723 389.61 0.973 317.15 0.648

Table 5.2: Automatic evaluation results on the test set. SSP stands for Self-Supervised
Pre-training. FT stands for Fine-tuning. The results show improvements on both au-
tomatic metrics in the majority of the cases when the three stages of the framework
are used: Warm Starting (BERT2BERT) followed by SSP then FT. We note that the
models cannot be directly compared in terms of PPL due to the usage of different
segmentations in pre-trained language models. Bolded numbers indicated the highest
achieved BLEU score in each dialect.

Human Evaluation We generated 100 responses using the test set in each dialect.
For each dialect, we invited three well-educated native speakers of the dialect to rate
each response in terms of Fluency, Relevance, and Richness. The raters were given
the rating key shown in Table 5.3. The results were then averaged to report the overall
ratings in each dialect (Table 5.4).

Fluency
Rating Description

0 The response is full of grammatical mistakes and is incomprehensible
3 The response contains one or two grammatical mistakes but is somewhat comprehensible
5 The response contains no grammatical mistakes and is very comperehsible

Relevance
Rating Description

0 The response is completely irrelevant to the message and hence is off-topic
3 The response is not directly relevant to the topic of the message but captures some detail
5 The response is totally relevant to the topic of the message

Richness
Rating Description

0 The response is poor in content (repetitive words and short or yes/no answers)
3 The response contains some new content (few words related to the topic message)
5 The response contains informative content and may keep a conversation going (personal opinion, questions)

Table 5.3: Human Evaluation Rating Key

We select the models that achieve the highest BLEU score in each dialect and gen-
erate responses for the 100 samples of the test set using the top-k sampling algorithm
with k set to 50. The averaged ratings of the human evaluators are reported in Table 5.4.
These results indicate high Fluency and Richness scores on the three dialects, which
means that the models are able to generate coherent and meaningful sentences in each
dialect with interesting content. However, lower scores on Relevance are obtained,
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which indicates that the models can often generate off-topic responses. In addition to
the very small number of utterance-response pairs used in fine-tuning, poor relevance
can also be heavily influenced by the used decoding algorithm where k should be tuned
to reach a reasonable output.

Dialect Model Fluency Relevance Richness
LEV BERT2BERT (W.S. w/ AraBERT) + SSP + FT 4.276 1.467 4.213
EGY BERT2BERT (W.S. w/ MARBERT) + SSP + FT 4.165 0.864 3.948
GUL BERT2BERT (W.S. w/ ARBERT) + SSP + FT 4.543 1.354 4.158

Table 5.4: Averaged human evaluation scores for each Arabic dialect. W.S. stands
for Warm-Started. Judgment was done on responses generated using top-k sampling
with k = 50. The results indicate high fluency and richness in the responses but lower
relevance.

5.5.3 Examples Responses

Cherry-Picked Examples: We show some cherry-picked responses from the test set
in Table A.1 that have been generated using the models achieving the highest BLEU
scores in each dialect as reported in Table 5.2. The responses were generated using
top-k sampling with k set to 50. In these examples, the model can understand the topic
in the given message and generate a relevant response without any grammatical errors.
Ideally, the response would be constructed in a way that is relevant to the message,
contains specific information, and can keep a conversation with the user going. This
is done for example in cases where questions are asked in the response (e.g., asking
why there are problems or where the user is going) of the model which will more likely
keep the user engaged compared with responses that only deliver relevant content (e.g.,
congratulating the user on winning the lottery).

Lemon-Picked Examples We show some lemon-picked responses from the test set
in Table A.2 that have been generated using the models achieving the highest BLEU
scores in each dialect as reported in Table 5.2. The responses were generated using
top-k sampling with k set to 50. These results expose various errors that the models
can face. First, the model can understand the context of the message but responds in
an incorrect manner such as in the example in LEV where the model responds Satur-
day evening whereas the message was asking about tomorrow morning. Second, the
model may provide a relevant response but would contain a grammatical error such
as in the example in GUL (I went I have an office). However, grammatical mistakes
are influenced by the value of k used in sampling and can be mitigated by lowering
k. This would help reduce these types of errors at the expense of having more repeti-
tive and boresome generations, which is a drawback of the common neural sampling
algorithms where k needs to be tuned [103]. One area of research targeting this prob-
lem is perplexity-controlled sampling algorithms [104]. Finally, in the worst cases, the
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model would provide completely irrelevant responses which have been most noticeable
in EGY samples.

5.6 Ethical Considerations

The pre-training stage of our models is based on data collected from Twitter and which
could contain toxic, offensive, and biased content since they have been produced by
third-party Internet users. The pre-trained language models used for warm-starting
may also suffer from similar problems, especially the ones that contain DA content
in their pre-training. However, our fine-tuning stage is based on manually translated
DA samples by hired translators and does not contain any offensive or biased con-
tent, which can mitigate any learned unethical behavior during warm starting and self-
supervised pre-training. Upon inspection of test-set generated responses, we also did
not notice any of these issues. However, these problems can be reduced in the pre-
training stage of the framework by using safety classifiers to filter out Twitter-collected
samples containing toxic content. Developing such classifiers for DA hate speech and
offensive language detection is an ongoing area of research [105], [106].
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CHAPTER 6

RETRIEVAL-REINFORCED MAXIMUM

SIMILARITY DECODING

6.1 Motivation and Objectives

The quality of output generated by text generation models is strongly influenced by
neural decoding algorithms. The most widely adopted decoding algorithms such as
top-k and top-p sampling with temperature require an ad-hoc parameter tuning to reach
satisfactory performance. It has been empirically observed that lowering k and p yields
coherent yet repetitive generations, while increasing k and p produces more surprising
and rich content at the risk of reduced coherence of the text. Further, in the case
of dialogue response generation, one parameter configuration that produces relevant
output for one example would not produce an irrelevant output for a different example.

MSG I forgot my wallet at home this morning!
RSP (p=0.7;t=0.9) Oh no! were you able to keep it ?
RSP (p=0.8;t=0.7) That’s so embarrassing! did you go back home?
MSG I just got promoted at work today!
RSP (p=0.8;t=0.7) Congratulations! are you alright ?
RSP (p=0.9;t=0.4) That’s awesome! did you get a raise as well ?

Table 6.1: Responses generated by BERT2BERT fine-tuned for empathetic response
generation using different parameter configurations for top-p sampling with temper-
ature (t). We observe that one configuration for decoding hyper-parameters cannot
do well for all input messages. MSG stands for Message. RSP stands for generated
response.

We show this problem in Table 6.1 where a BERT2BERT model fine-tuned for
empathetic dialogue response generation is used to generate responses for different
configurations of top-p sampling with temperature. After manually finding a hyper-
parameter configuration that produces the most relevant response for the first input
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message, using the same configuration to decode a response for another message does
not perform as well. In fact, using a different parameter configuration for the second
input result in a more relevant response. This motivates the need of a method that
tunes the sampling-based decoding technique’s hyper-parameters per input message to
generate the most relevant response possible.

In this work, we address this issue by proposing an algorithm that searches for
the optimal hyper-parameters of the decoding technique that provide the most rele-
vant response. We propose to use a retrieval-reinforced approach where the algorithm
searches for the response that maximizes a distance measure to the most likely re-
trieved candidates. We verify the effectiveness of the approach by testing it on both
English and Arabic datasets for open-domain dialogue and comparing its results to the
ones obtained by having fixed choices of hyper-parameters.

6.2 Related Work

Open-domain Dialogue Models: Recent work on open-domain dialogue can be clas-
sified into two different approaches: retrieval-based approaches which select the most
likely response from a fixed set of dialogues, and generation-based approaches that
decode responses from a learned model distribution. The success in both these ap-
proaches has been achieved by adopting neural pre-trained models that require train-
ing on a large quantity of high-quality data [107]. While retrieval-based systems can
guarantee correct grammar and accurate information, they can produce unsatisfactory
responses when the context is substantially different from the dialogues available to re-
trieve from. On the other hand, generation-based systems implicitly store knowledge
in the model’s parameters, which allows to generate novel responses from scratch.
Still, generative models can produce dull responses, inaccurate information, and poor
grammar [108].

Neural Decoding Algorithms: The performance of generative models is heavily
influence by the mechanism in which the output is decoded. Deterministic approaches
such as greedy search or beam search and its variants tend to produce repetitive re-
sponses, which results in a boring human-machine interaction experience [109]. Intro-
ducing randomness through sampling into the decoding process mitigates this problem
and allows producing more surprising responses. The most widely adopted sampling-
based decoding techniques are top-k and top-p sampling. In top-k sampling, the prob-
ability mass is redistributed among the k most likely tokens, while top-p samples from
the smallest number of tokens of which the cumulative probability exceeds p, avoid-
ing problems of very shap or flat distributions obtained in top-k. The temperature t
parameter is also often introduced in the softmax operation to control the sharpness
of the distribution. However, the selection of those parameter is done in an ad-hoc
manner since there is no clear way to select them. A recent attempt in addressing this
problem [104] for text generation proposes an adaptive top-k sampling approach that
tunes k according to a target desired surprise value. Our work addresses the tuning of
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sampling-based decoding parameters in a one-to-many setting with focus on the task
of dialogue response generation where many outputs could be reasonable.

Retrieval-Augmented Generation: A new emerging paradigm in text generation
is retrieval-augmented generation methods that aim at addressing the problems faced
with generation-based methods by fusing them with retrieval-based methods [110].
This new paradigm offers advantages over conventional generation, such as the abil-
ity to acquire information from external sources instead of relying solely on the in-
formation learned via training, offering better scalability [111]. Retrieval-augmented
generation methods have been used for dialogue generation [112]–[116], text summa-
rization [117], [118], and other text-to-text generation applications [119]–[121]. Those
works however ignore the influence of the decoding mechanism on the generated out-
put. Our work leverages retrieval to tune the sampling-based decoding parameters per
input context.

6.3 Method

We propose RRMSD1, a decoding strategy to enhance relevance in dialogue response
generation by leveraging most similar candidates from the training data.

6.3.1 Core Algorithm

The algorithm pseudo-code is presented in Algorithm 1. First, we use a pre-trained
sentence encoder µθ∗(.) that converts the training data D into vector representations
VD. We are interested in retrieving input sentences from D that are most semanti-
cally similar to the input of the algorithm. For an input message xtest, we measure
its semantic textual similarity to every input message xi ∈ Dm

i=1. This is performed
by computing a distance measure (cosine similarity s) between xtest and every xi in
the sentence encoder’s embedding space. The training set samples are then ordered
by descending order of similarity. We select the n most similar sentences xαi

from
the sorted samples and retrieve their corresponding ground-truth responses yαi

where
i ∈ {1, n}.

Next, a brute force search over the parameter ranges of top-p sampling with tem-
perature (t) is performed. At each step of the search, we use the fine-tuned response
generator model hθ(.) in inference mode to generate a response ŷp;t where the combi-
nation p and t of the search step is used as the choice of decoding hyper-parameters.
The total similarity between ŷp;t and yαi

for i ∈ {1, n} is computed, where both are
encoded by the sentence encoder and the cosine similarity is used as the distance mea-
sure. We search for the response that achieves the maximum summed similarity with
the n nearest responses retrieved in the first step, and which would be selected by the
algorithm as the optimal model output that provides a relevant response to xtest.

1RRMSD: Retrieval-Reinforced Maximum Similarity Decoding
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Algorithm 1: Retrieval-Reinforced Maximum Similarity Decoding
Given : input message xtest, training set D = {xi; yi}mi=1, response generator

hθ(.), sentence encoder µθ∗(.), and number of most similar messages
n (hyperparameter) in D

1 vtest = µθ∗(xtest)
2 VD = {vi; yi}mi=1 = {µθ∗(xi);µθ∗(yi})mi=1

3 for xi ∈ D do
4 si =

vtest.vi
||vtest||2||vi||2

5 end
6 Select n yi’s from D that correspond to xi’s with largest similarities si with

indices (α1, . . . , αn):
7 R = {ri}ni=1 = [yα1 , . . . , αn]
8 for p = 0.1; p <= 1; p = p+ 0.1 do
9 for t = 0.1; t <= 3; t = t+ 0.1 do

10 ŷp;t = hθ(xtest; p, t)

11 sp,t =
∑n

i=1
ŷ.ri

||ŷtest||2||ri||2
12 end
13 end
14 Return ŷ that result in the largest total similarity score sp,t

6.3.2 Choice of Sentence Encoder

The choice of sentence encoder is a critical part of the algorithm as it needs to map
inputs into an embedding space that allows us to efficiently find sentences that are
semantically similar. Using a regular pre-trained encoder model (e.g. BERT) would
not be sufficient because 1) instead of sentence embeddings, they provide embedding
vectors per token which would need to be mean pooled for use in measuring distance
to other sentences, and 2) their construction require large inference time which makes
them not scalable to use for retrieval on datasets with tens of thousands of samples.
Instead, we use sentence transformers, which are fine-tuned on natural language infer-
ence tasks to learn semantically meaningful sentence embeddings, and which provide
huge computational advantages over regular encoders [122]. Specifically, we select
the MPNet [123] sentence transformer that is trained on more than 1 billion training
pairs.

6.4 Experimental Results

6.4.1 Automatic Evaluation

Table 6.2 reports the results of RRMSD on the test set of the Arabic-translated version
of the Empathetic Dialogues dataset in both English and Arabic versions, compared
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to the results obtained by using fixed parameter configurations of top-p sampling with
temperature. Table 6.3 shows a similar comparison when RRMSD is used to decode re-
sponses on the English Empathetic Dialogues using a BERT2BERT model fine-tuned
on the dataset. The comparisons are done using two metrics: the BLEU score, and the
Semantic Textual Similarity (STS) score which we compute using the cosine similar-
ity on sentence transformer embeddings. The results clearly show the enhancements
provided by RRMSD on all metrics, and in both languages. This indicates that overall,
RRMSD can help mitigate cases where the generated response by the model goes off
topic, thus providing outputs which are more semantically relevant to the ground-truth
data.

Decoding Algorithm Arabic
STS BLEU

RRMSD 0.1887 0.2024
top-p sampling

with temperature
p=0.7 ; t=1.5 0.1546 0.1915
p=0.9 ; t=0.8 0.1497 0.1873

Table 6.2: Results achieved by RRMSD on the Arabic Empathetic Dialogues dataset.
STS stands for Semantic Textual Similarity measured using the cosine similarity on
sentence transformer embeddings.

Decoding Algorithm English
STS BLEU

RRMSD 0.2561 0.139
top-p sampling

with temperature
p=0.7 ; t=1.5 0.1832 0.12
p=0.9 ; t=0.8 0.195 0.125

Table 6.3: Results achieved by RRMSD on the Empathetic Dialogues dataset. STS
stands for Semantic Textual Similarity measured using the cosine similarity on sen-
tence transformer embeddings.

6.4.2 Example Responses

Table 6.4 shows some responses decoded by RRMSD in Arabic and compares them
with the responses obtained through vanilla top-p with temperature where p is set to
0.7 and t is set to 1.4. It can be clearly observed in those samples that the quality
obtained through RRMSD is much better and provides better relevance to the input
message. For example, in the first example where the message signals that the user’s
daughter is suffering from an infection, the output obtained through regular sampling
asks the user if she will take her daughter to the vet, confusing her with a certain animal
such as a cat. On the other hand, RRMSD avoided such a situation and she asked if
the user thinks her daughter will be alright. This is because the output obtained by
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regular sampling would likely have a low similarity score with the retrieved response
candidates where the reference to a veterinarian should not appear.

top-p sampling with
temperature (p=0.7; t=1.4) RRMSD Input
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Table 6.4: Example generated results by RRMSD compared to choosing a fixed hyper-
parameter configuration of top-p sampling with temperature.

6.4.3 Computational Time

While the proposed algorithm provides enhanced relevance in the generated responses,
it suffers from a larger computational time since it needs to search over a wide range of
sampling parameter configurations. However, this time is constant since the combina-
tions are fixed and the inference time inside the loop is also fixed but is a subject of the
hardware it is running on. Using an NVIDIA Tesla K80, the algorithm takes around
90 seconds to provide a response to one input, which is very large. Running the al-
gorithm on more powerful GPUs (NVIDIA P100) leads to a decrease in its running
time to around 60 seconds, but is still considered high. Ultimately, we would need this
running time to be below the 5 seconds margin to make it applicable for usage in a
real-time chatbot application, because users cannot wait for long periods of time for a
response as it will make the human-computer interaction experience a boring one.

As future directions, we aim to mitigate computational time by reducing the search
space of the algorithm while still obtaining similar performance. Specifically, we aim
to analyze which parts of the distributions would it make sense to search for the maxi-
mum similarity. For example, decoding using small probability values (e.g. 0.1, 0.2, or
0.3) would make the algorithm greedy and usually results in almost the same responses
even when temperature is varied. In such cases, the algorithm would be wasting time
considering the same outputs for similarity. Additionally, in such small probability
values for decoding, the response is usually brief and generic which we want to avoid.
It would make better sense not to search when using such probabilities, but rather
when using higher probabilities, where more tokens are considered and the more rich-
in-content and relevant response could be generated at the expense of more risk of
going-off-topic and introducing irrelevant words.
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CHAPTER 7

CONCLUSION

Open-domain dialog agents are systems that are expected to engage coherently and
engagingly in conversations with human users. Being ”open-domain”, such types of
agents are not restricted to specific domains such as medical advice, customer support,
or other industrial setting, where agents aim to achieve a specific goal that is serving
the user. Rather, open-domain dialog systems have a more open-ended goal where they
are required to converse on any potential topic in a fluent human-like language. De-
veloping such types of agents could offer huge enhancements to the human-computer
interaction experience. While this objective is a challenging one, the recent advances
in deep learning and natural language processing applied to conversational artificial
intelligence have resulted in exciting and promising results in open-domain dialog.
Recent attempts have leveraged large-scale unlabeled data to develop pre-trained text
generation models, which are then fine-tuned on crowd-sourced open-domain conver-
sations, or used in a zero-shot manner to produce responses. While such approaches
have shown success for resource rich languages such as English, low-resource lan-
guages such as Arabic and its dialects that do not have such pre-trained models or
dialog datasets still lag behind.

This thesis targets the development of open-domain conversational bots in low-
resource settings with a focus on the Arabic language and its dialects. Previous work
in Arabic conversational AI proposed rule-based or retrieval-based approaches that are
designed specifically for special applications and that cannot generalize to any domain.
The main challenges in developing open-domain dialogue response generation models
in Arabic is the lack of resources in terms of pre-trained language generation models
and datasets of message-response pairs for training. This problem is augmented with
dealing with Dialectal Arabic (DA) which suffers from a more severe lack of resources
compared with Modern Standard Arabic (MSA).

In this thesis, we addressed those low-resource challenges and achieved state-of-
the-art performance on dialogue response generation for both MSA and DA. First,
we created a dataset in MSA of empathetic messages-response pairs by automatically
translating samples from an English dataset for empathetic dialogue generation. The
dataset was used to train a recurrent neural network model for sequence-to-sequence
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generation and achieved average performance, with human judgement indicating that
the model often does not produce relevant responses although the output is fluent in
terms of language. Training a model from scratch on the message-response pairs was
not enough since this task-specific dataset is considered small in size (38K samples).
With the lack of pre-trained model for text generation that can be fine-tuned directly,
we adopted transfer learning strategies for response generation by leveraging pre-
trained checkpoints of a natural language understanding model (AraBERT) to initial-
ize the parameters of a transformer-based encoder-decoder model. This model, named
BERT2BERT, was then fine-tuned on our task of open-domain empathetic dialogue
response generation and achieved state-of-the-art performance in MSA on automated
metrics, which was also validated by human evaluation that confirmed the ability of
the model to provide topic and emotion-relevant responses to the user’s queries.

While the previous BERT2BERT model works well for MSA, it does not work
well for DA since the AraBERT model used for initialization was predominantly pre-
trained on MSA data. Additionally, open-domain message-response pairs in specific
dialects were not available for fine-tuning. To extend the work done in MSA to DA,
we proposed a three-stage learning framework based on warm-starting, self-supervised
pre-training, and fine-tuning, which produced models that generate fluent response in
DA. The approach first starts by initializing the encoder-decoder model by pre-trained
checkpoints of BERT-based models, a step that helps in leveraging lexical similar-
ity between MSA and DA. The model was then adapted to specific dialects by self-
supervised pre-training on large-scale unlabeled data in the desired dialect. For self-
supervised pre-training, 1M tweets in three dialects (Levantine, Egyptian, and Gulf)
were scraped. For the last step of few-shot fine-tuning, small message-response pairs
datasets in those dialects were manually crafted using the help of native speakers from
those areas. The three-stage approach was implemented and tested using a variety of
BERT models for initialization and showed enhanced performance in open-domain re-
sponse generation in DA compared with multiple baselines. Specifically, models were
able to generate coherent responses in multiple dialects, but still suffered from poor
relevance.

Finally, the last part of thesis presents a decoding algorithm targeted at enhancing
relevance in open-domain dialogue response generation. It was empirically observed
that the relevance and content-richness of the response generated by such type of mod-
els are heavily influence by the choice of sampling parameters used. The most popular
algorithms for decoding are top-k and top-p sampling with temperature, where the pa-
rameters of those algorithms are selected to a fixed configuration in an ad-hoc manner.
However, we noticed that for one configuration that offers an optimal response for one
input message, it does the opposite for a different message where a different parame-
ter configuration provides an optimal response for it. This motivated the creation of a
decoding algorithm that searches for the optimal parameters at each input message to
provide the optimally relevant response. The approaches leverages a state-of-the-art
sentence transformer model that measures semantic textual similarity to retrieve the re-
sponses of most similar candidates in the training set. The algorithm then searches in

57



a brute-force manner through different sampling parameter configurations to find the
response that maximizes a distance measure (cosine similarity) to the retrieved candi-
dates. This retrieval-reinforced maximum similarity decoding algorithm showed very
promising results on automated metrics, indicating that it can provide overall more
relevant responses, which was also observed through human error analysis.

Future work will expand on the developed decoding algorithm to further showcase
its wide applicability by testing it on a wide range of open-domain dialogue datasets
in English, and by using a variety of pre-trained state-of-the-art language generation
models. In addition, the models will be evaluated using more automated metrics that
measure various aspects of performance such as diversity. We also plan to design a
human-evaluation scheme to assess and compare the performance of the models based
on human judgement from various aspects. However, before such evaluations can be
made on test sets with thousands of example, the running time of the algorithm needs
to be decreased significantly to a reasonable level. Further, the algorithm in its current
form does not consider the fact that at each run of the sampling algorithm, a different
response is obtained, especially when sampling is being done from a larger vocabulary.
We aim to incorporate this aspect in the algorithm in future work as it can capture more
interesting responses that might be missed when just performing a single run.

Additionally, the datasets developed in this thesis consist only of a single message
and its corresponding response per sample. When using the models trained on those
dataset for a chatbot application, it will be difficult for the bot to make sense of the
whole conversation history since it will only be conditioned on the previous user ut-
terance to generate the response (in a single-turn manner). To overcome this, future
work will focus on creating a high-quality multi-turn dataset that truly encapsulates
human dialogue rather than relying only on a single turn-based dataset. Such type
of dataset is difficult to obtain through manual crafting or automatic translation and
would need to be gathered via crowd-sourcing, which presents challenges of its own
in under-resourced languages.
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APPENDIX A

ABBREVIATIONS

BERT Bidirectional Encoder Representations from Transformers
BLEU Bilingual Evaluation Understudy
DA Dialectal Arabic
GPT Generative Pre-trained Transformer
GRU Gated Recurrent Unit
LSTM Long Short-Term Memory
MSA Modern Standard Arabic
NLG Natural Language Generation
NLU Natural Language Understanding
PPL Perplexity
Seq2Seq Sequence-to-Sequence

59



A.1 Example Responses in Dialectal Arabic
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Message:
I won the lottery I’m gonna be rich!
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Generated Response:
Alright congratulations on winning
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Generated Response:
I’m not following any news, why ? I’m sure there’s a lot of stuff
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Message:
You look quite happy
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Generated Response:
Thank God I’m watching a nice movie
ñÊg ÕÎJ




	
¯ Qå

	
�m�'

. Ñ« Õ»YªK. é<ËYÒmÌ'@

Message:
This country is full of problems that never end
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Generated Response:
What happened with you ? Don’t worry! The important is that we eat
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What’s this beautiful dress that you’re wearing ?
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Generated Response:
Really I felt it looks fabulous on me
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Message:
Today you’re invited to our evening gathering
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Generated Response:
No I’m not in the mood for anyone. Where are you going ?
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Message:
Can you study with the radio on ?
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Generated Response:
I can’t. I can’t. What do I do ?
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GUL Message:
Hey, I’m David
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Generated Response:
Hello! I saw you once here
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Message:
Where did you go yesterday ?
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Generated Response:
I was waiting for the appointment so I went to the park
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Table A.1: Cherry-picked examples generated using top-k sampling with k = 50.
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Message:
We bought a new cat today
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Generated Response:
She’s really nice don’t rely on her a lot
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Can we go have breakfast together tomorrow morning ?
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Generated Response:
Sure Saturday evening. Saturday is the best
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Message:
Can you study with music on ?
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Generated Response:
Good luck because I won the artificial intelligence contest
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Message:
I really wanna travel!
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Generated Response:
No thanks! we need to go ?
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You’re lying to me as well ?
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Generated Response:
No I don’t wanna see. What happened with you ?
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Message:
Where are you going to watch el classico ?
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Generated Response:
There’s nothing specific at all
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Every nation should face history
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Generated Response:
What happened 30 years ago and how much exactly ?
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Are you free today ?
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Generated Response:
I’m very busy. I went I have an office
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Message:
What are you planting in your garden ?
? ½
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Generated Response:
I’m busy studying. I’m learning some academic subjects
�
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Öß
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Table A.2: Lemon-picked examples generated using top-k sampling with k = 50.

62



BIBLIOGRAPHY

[1] M. Huang, X. Zhu, and J. Gao, “Challenges in building intelligent open-domain
dialog systems,” ACM Transactions on Information Systems (TOIS), vol. 38,
no. 3, pp. 1–32, 2020.

[2] S. Roller, Y.-L. Boureau, J. Weston, A. Bordes, E. Dinan, A. Fan, D. Gun-
ning, D. Ju, M. Li, S. Poff, et al., “Open-domain conversational agents: Current
progress, open problems, and future directions,” arXiv preprint arXiv:2006.12442,
2020.

[3] M. Czerwinski, J. Hernandez, and D. McDuff, “Building an AI that feels: AI
systems with emotional intelligence could learn faster and be more helpful,”
IEEE Spectrum, vol. 58, no. 5, pp. 32–38, 2021.
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