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Abstract

of the Thesis of

Julien Joseph Semaan for Master of Engineering Management
Major: Industrial Engineering and Management

Title: Tra�c Management Considering Congestion-Based Flow Reductions

The cell transmission model (CTM) is widely used in studying optimal tra�c man-
agement strategies. Since the CTM does not properly model the e↵ect of congestion
on tra�c flows, a generalized linear model accounting for congestion-based flow re-
ductions is considered. Therefore, the di↵erent linearized frameworks will be studied
and discussed with their respective properties, as well as the tra�c management
tools (TMTs) used by these linear programs to obtain optimal solutions. Out of
these five TMTs, three rely on tra�c holding which is the result of linearizing the
CTM model. Because tra�c holding is an undesired phenomenon, we discuss a
heuristic that eliminates tra�c holding on ordinary links, where tra�c holding is
most unrealistic. Finally, through two numerical examples, we find that strategies
under the (realistic) setting of congestion-based flow reduction (produced using the
generalized CTM) can di↵er greatly from those produced using the CTM framework
that predominates in the literature, and that the heuristic proposed is an e↵ective
tool that yields realistic optimal solutions.
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Chapter 1

Introduction

The cell transmission model by Daganzo [10, 9] is a very e↵ective tool to study
tra�c flows through a certain network over time. The model helps in analyzing
macroscopic tra�c streams and in visualizing the relation between tra�c density
and the characteristics of the network. Linearizing the CTM by Ziliaskopoulos [36]
certified the use of the model in producing system optimal tra�c flows, that is, flows
that minimize the sum of time that each vehicle spends in the system before reaching
the sink cell. This framework which solves for system optimal tra�c flows became
widely used in dynamic tra�c assignments (DTA) (e.g. Waller and Ziliaskopoulos
[31]) and in planning for evacuation strategies (e.g. Bish, Sherali, and Hobeika [4]
and Bish and Sherali [3]).

To solve for system optimal-dynamic tra�c assignment (SO-DTA) solutions, a
controllable and realistic linear model should be used. The linearized model by
Ziliaskopoulos [36] considers five tra�c management tools to obtain an optimum
solution. All five of these tools, however, have various levels of control, di�culty
in implementation, and can be used in a manner that does not ”make sense,” as
we discuss in this paper. Two of the tools are implicit in the original CTM [10,
9], and the other three tools are based on tra�c holding, which is the result of the
linearization of the CTM for the LP framework. Linearizing the CTM required the
relaxation of some non-linear equations accounting for less complexity in the problem
formulation. This relaxation, however, caused an unrealistic phenomenon known as
tra�c holding, whereby tra�c flow is held at an upstream cell even though there
is enough capacity in the downstream cell to advance the tra�c forward. Solving
this issue has gained wide interest in the literature; however, most of the proposed
approaches consider the original CTM, which does not account for congestion-based
flow reductions.

Tra�c flow usually increases with density (i.e., the free-flow state) until a critical
point is reached, after which flow starts to decrease (i.e., congested state), reaching
a value of zero at jam density [21]. This reduction in flow due to congestion is
an important feature of tra�c systems and has been observed in various empirical
studies [1, 12, 6, 8]. The original CTM model is capable of displaying this e↵ect of
congestion on tra�c, where a backward shockwave at the inflow of a congested cell
is demonstrated by a reduction in tra�c flow. The original CTM, however, does not
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consider any e↵ect on tra�c discharge from a congested cell. A reduction in tra�c
outflow, especially at bottlenecks, is critical in modeling realistic optimum tra�c
solutions. A reduction could have severe e↵ects on evacuation strategies knowing
that the various bottlenecks in a roadway network are one of the most important
network features for determining the performance of the system. This reduction
in tra�c discharge is due to a delay in a vehicular acceleration when the tra�c
is at a congested state and is discussed in several researches [1, 12, 6, 8]. Bish,
Chamberlayne, and Rakha [2] studied congestion-based tra�c flow reductions and
proposed a generalized CTM that better models the impact of congestion on tra�c
discharge at bottlenecks.

We make the following contributions in this paper: 1) we define five tra�c
management tools used by the LP framework that considers the generalized CTM;
2) we provide structural properties of the optimal solutions from the LP framework
that uses the generalized CTM; 3) we use these tools to analyze the strategy from
the LP framework with and without congestion-based flow reductions and show that
the strategies under congestion-based flow reductions are often better structured; 4)
we show that eliminating the unrealistic tra�c holding management tools is more
di�cult under the congestion-based flow reduction setting and provide a heuristic
that eliminates tra�c holding at ordinary links; and 5) we provide a numerical
analysis on a large network from the literature.

The remainder of the paper is structured as follows: Section 2 discusses the
literature of dynamic tra�c assignment and presents various solutions proposed
in the literature to solve tra�c holding. Section 3 reviews the CTM proposed
by Daganzo [10, 9], as well as a generalization presented in Bish, Chamberlayne,
and Rakha [2], and discusses the Linear Programming implementation proposed by
Ziliaskopoulos [36]. Section 4 describes the tra�c management tools that are used
by these models to obtain optimal solutions. Section 5 provides some important
structural properties of the optimal solutions. In Section 6, we propose a heuristic
that eliminates the unrealistic tra�c management tool, tra�c holding, at ordinary
links. Section 8 illustrates the previous sections using two numerical examples.
Finally, section 9 presents the research conclusions.
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Chapter 2

Literature Review

With the increase in urban growth and its relative impact on tra�c congestion, tra�c
management models have become crucial to forecast realistic tra�c demands. They
o↵er the ability to capture tra�c realism and its dependency on human behavior.
Dynamic tra�c assignment approaches have become an e↵ective tool in modeling
tra�c flow and have substantially evolved, especially after the work of Merchant and
Nemhauser [22, 23], who proposed a mathematical nonlinear discrete-time model
for single destination DTA problems. Several methodological DTA approaches have
been used in the past years and can be divided into four categories: optimal control,
mathematical programming, variational inequality, and simulation-based [26].

The reliability and e↵ectiveness of the DTA depend on two factors, the travel
choice principle and the tra�c-flow component [29]. The travel choice principle
considers the traveler’s choice, which is dependent on the travel time required by
each path, and the traveler’s departure time and destination. On the other hand, the
tra�c-flow component describes the performance of the network under consideration
with respect to time and is represented as a series of constraints. Being reliant on
time, tra�c patterns vary across di↵erent time frames along the network, and what
makes DTA diverse from static tra�c assignments is its ability to deal with time-
varying flows [26]. DTA has been widely used in many areas of transportation
systems and problems including advanced traveller information systems (ATIS),
advanced tra�c management system’s (ATMS), telecommunication and computer
science [14], and evacuation planning.

Planning for evacuation strategies is one main purpose for utilizing and studying
DTA models, especially the Cell Transmission model. The e↵ectiveness of the DTA
models in solving for realistic strategies that could be implemented when natural
or man-caused disasters occur has been widely examined in the literature. Yan,
Liu, and Song [32] argue that models usually focus on minimizing the total time
needed to evacuate all vehicles from the network without taking into consideration
social fairness. That is, people in areas with the highest risk might be required to
sacrifice their evacuation priority in response to improving the system’s e�ciency.
Therefore, Yan, Liu, and Song [32] proposed an extended cell transmission model
with a weight function that considers a risk evaluation index as a variable and an
emphasis degree of managers on the social fairness principle as a coe�cient. On the

8



other hand, [15] consider human behavior in an emergency evacuation by presenting
an extended CTM that includes parameters accounting for three characteristics of
human behavior: the inertial e↵ect, the unadventurous e↵ect, and panic psychol-
ogy. Studying the e↵ect of the parameters on the model, an emergency evacuation
scenario of a crowd in a supermarket was implemented and it was determined that
the parameters considered had a great influence on the evacuation strategy.

Therefore, since it was first suggested by Daganzo [10, 9], the CTM has been
widely studied and examined in the literature, with various modifications to the
model being proposed. Liu et al. [17] argue that the CTM does not capture the
e↵ect of moving bottlenecks, that is, buses travelling in the network. Because mov-
ing bottlenecks have great implications on the strategies suggested by the model,
Liu et al. [17] provide an analytical formulation which accounts for a mixed tra�c
system that includes busses and cars. Modifying the CTM, free-flow speed di↵er-
entials between buses and cars, as well as, capacity reduction caused by buses were
incorporated in the CTM resulting in more realistic tra�c strategies. Furthermore,
Carey [5] proposes a CTM that accounts for varying free-flow speeds. Carey [5]
explains that the cell’s length in the CTM network is determined by considering the
distance covered during one time interval at a specific free-flow speed, and that this
length is held constant over time. Carey [5] suggests, however, that the free-flow
speed varies with time, depending on factors such as time of day, tra�c type or
tra�c lane, and speed limits that vary over time or space. He proposes that, at cells
with a free-flow speed less than that used to determine the length of the cell, tra�c
should move forward at their free-flow speeds and not at the speed determined by
the CTM solution.

Another issue with the CTM is tra�c holding. Tra�c holding in system optimal
dynamic tra�c assignments (SO-DTA) has gained wide interest in literature over
the past years, as researchers have propositioned various approaches to solve that
undesirable phenomenon. Linearizing the Cell Transmission Model, Ziliaskopoulos
[36] justifies tra�c holding as a tool applied by the LP to optimize the flow and
discusses the use of a penalty to eliminate tra�c holding. The suggested penalty
is based on subtracting a weighted expression from the objective function. Lin
and Wang [16] also penalize tra�c holding by formulating a lexicographic objective
function, which stimulates the advancement of flow. This approach by Lin and
Wang [16] will be further elaborated, as it will be used in the proposed heuristic.
Similarly, Zhu and Ukkusuri [35] applied a cell-dependent penalty on the occupancy
of the cells, with the penalty decreasing as the network moves from the source cell
to the sink cell. Such formulation provides a linear approach to remove the tra�c
holding by giving an incentive for the LP to push tra�c forward towards the cell
with the lower penalty.

On the other hand, Zheng and Chiu [34] formulated an algorithm that solves for
the earliest arrival flow on a time expanded network. The algorithm proposed elim-
inates tra�c holding on ordinary and merging links for single-destination networks.
Mixed-integer programs have also been widely used by researchers [25, 33, 20, 2];
however, the use of binary variables was proven to be highly ine�cient, especially
for large networks, because of the high number of binary variables existing in the
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formulation.
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Chapter 3

The Modeling Framework

In this section, we review the cell transmission model by Daganzo [10, 9], including a
generalization (see, Bish, Chamberlayne, and Rakha [2]) that allows a more realistic
response to congestion, that is, a reduction in flow discharge from a congested cell.
We then review a linear programming implementation of the CTM (Ziliaskopoulos,
2000), modified for the generalized CTM.

The CTM utilizes a discrete time-expanded network of cells and links (C,L)
to represent the roadway system of interest. Cells can be either source cells (set
So), sink cells (set Se), or roadway cells (set R). In this paper, we study a single
commodity flow problem, and thus if there are multiple sinks, the model determines
the flow sent to each sink. Links represent allowable movements between cells. When
a roadway cell has two incoming links, these links are merge links (Lm); likewise,
when a roadway cell has two outgoing links, these links are diverge links (Ld). We
use the convention of calling a roadway cell having incoming merge links a merge
cell, and a roadway cell having outgoing diverge links a diverge cell. All other links
are ordinary links (Lo); an ordinary link is the only outgoing and incoming link for
two adjacent cells. Each source cell has only one outgoing link, while each sink cell
has only one incoming link.

1 2

3 4

5 6

7 8

Figure 3.1: A small network example to illustrate the network components used in
the CTM

Figure 3.1 illustrates these network components; cell 1 is a source cell, cell 8 is
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a sink cell, and cells 2-7 are roadway cells; likewise, links (4,7) and (6,7) are merge
links, links (2,3) and (2,5) are diverge links, and links (1,2), (3,4), (5,6) and (7,8)
are ordinary links. The planning horizon is divided into T time intervals of length
⌧ , and a roadway cell represents a section of a roadway of length ` such that vehicles
traveling at free-flow speed (uf ) traverse the section in one time interval; that is
` = uf ⇥ ⌧ . Additional notation follows:

Decision Variables:
xt

i
: number of vehicles in cell i at the beginning of time interval t, 8i 2 C, t =

1, ..., T
yt
ij

: number of vehicles flowing from cell i to cell j during time interval t,
8(i, j) 2 L, t = 1, ..., T

Parameters:
Ni : maximum number of vehicles that cell i can hold, which is related to the

concept of jam density, 8i 2 R
Qi : maximum attainable flow into or out of cell i, 8i 2 R
⌦i : maximum allowable flow out of cell i when (xt

i
= Ni), 8i 2 R

�i : tra�c flow parameter for cell i, 8i 2 R
dt
i

: number of vehicles flowing out of source cell i during time interval t,
8i 2 So, t = 1, ..., T

The parameters Ni, Qi, ⌦i, and �i will be considered to be independent of time;
however, it is easy to include time-varying parameters. These parameters have the
following relationships for any roadway cell i: 0 < �i  1, Qi  Ni, 0 < ⌦i  Qi.

CTM⌦Q CTM⌦=Q CTM⌦<Q

Q

Q N

fl
ow

density

(a)

St

i

xt

i

Qi

Qi

⌦i

Ni

(b)

Rt

j

xt

j

Qj

Nj

(c)

Figure 3.2: (a) a trapezoidal flow-density diagram and the CTM diagram for (b) St

i

and (c) Rt

j
for CTM⌦=Q and CTM⌦<Q.

Figure 3.2 shows that as the density of cell i increases, the flow into cell i increases
as well (free-flow state, where xt

i
 Qi), until the critical point is reached (xt

i
= Qi),

after which cell i becomes at the congested state. At the congested state (xt

i
> Qi),

the original CTM considers the flow out of cell i to be equal toQi; however, under the
generalized CTM, congestion-based flow reductions are considered where the flow
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out of cell i becomes equal to Qi � (xt

i
�Qi)(Qi � ⌦i)/(Ni �Qi). This relationship

is enforced over a link using St

i
, the maximum flow from the sending or upstream

cell, as defined in Eq. (3.1). We note that if Qi = ⌦i, Eq. (3.1) simplifies to
St

i
= min{xt

i
, Qi}, which is the expression used in the original CTM (see Daganzo

[10, 9]. Henceforth, we refer to the original CTM as CTM⌦=Q, the generalized CTM
as CTM⌦Q, and the CTM with congestion-based flow reductions as CTM⌦<Q. On
the other hand, the flow into the receiving cell j is limited by Qj when cell j is in
the free-flow state (xt

j
 Qj) and by �j(Nj�xt

j
) when cell j is in the congested state

(xt

j
> Qj). This relationship is represented by Eq. (3.2), where Rt

j
is the maximum

flow into the receiving or downstream cell .

St

i
= min{xt

i
, Qi � (xt

i
�Qi)(Qi � ⌦i)/(Ni �Qi)} (3.1)

Rt

j
= min{Qj, �j(Nj � xt

j
)} (3.2)

When cell i is in the congested state (xi > Qi), St

i
= Qi � (xt

i
� Qi)(Qi �

⌦i)/(Ni � Qi) which is equal to Qi when xt

i
= Qi (critical point), and decreases to

⌦i when cell i reaches jam density (xt

i
= Ni). Likewise, if cell j is in the free-flow

state, the flow into j should only be limited by min{St

i
, Qj}, that is, in the free-flow

state Qj  �j(Nj � xt

j
), else tra�c cannot flow freely (another restriction on the

relationship between Qi, Ni, and �i).
Knowing that the flow out of the upstream cell cannot exceed the flow into the

downstream cell, the following equations are used, accounting for the link type. The
flow over an ordinary link (i, j) during time interval t is determined by Eq. (3.3).
The flow over two merge links (i, k) and (j, k) must adhere to Eq. (3.4); when
St

i
+St

j
> Rt

k
, Eq. (3.4) allows the model to determine merge priorities for the flows

on these links. The flow over two diverge links (i, j) and (i, k) must adhere to Eq.
(3.5).

yt
ij
= min{St

i
, Rt

j
}

= min{xt

i
, Qi � (xt

i
�Qi)(Qi � ⌦i)/(Ni �Qi), Qj, �j(Nj � xt

j
)} (3.3)

yt
ik
+ yt

jk
= min{St

i
+ St

j
, Rt

k
} (3.4)

yt
ij
+ yt

ik
 min{St

i
, Rt

j
+Rt

k
} ^ (yt

ij
= Rt

j
_ yt

ik
= Rt

k
_ yt

ij
+ yt

ik
= St

i
) (3.5)

The original CTM was linearized by Ziliaskopoulos [36], allowing the usage of
the CTM in finding optimal tra�c flows. The LP formulated minimizes the total
time that vehicles are in the system (i.e., before they reach a sink node) for single
commodity flows (i.e., for networks having a single sink or multiple sinks where flows
are not specified for a particular sink). The following notations for the LP will be
used throughout the paper, where LP⌦=Q, LP⌦Q, and LP⌦<Q refer to CTM⌦=Q,
CTM⌦Q, and CTM⌦<Q respectively. The linearization by Ziliaskopoulos [36] will
be expanded, as follows, to accommodate for the generalized CTM⌦Q:
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Minmize
TX

t=1

X

i2C/Se

xt

i
(3.6)

subject to:

xt

j
= xt�1

j
+

X

i:(i,j)2L

yt�1
ij
�

X

k:(j,k)2L

yt�1
jk

, 8j 2 C/Se, t = 2, ..., T (3.7)

X

j:(i,j)2L

yt
ij
 xt

i
, 8i 2 C, t = 1, ..., T (3.8)

X

j:(i,j)2L

yt
ij
 Qi � (xt

i
�Qi)(Qi � ⌦i)/(Ni �Qi), 8i 2 R, t = 1, ..., T (3.9)

X

i:(i,j)2L

yt
ij
 Qj, 8j 2 R, t = 1, ..., T (3.10)

X

j:(j,i)2L

yt
ij
 �j(Nj � xt

j
), 8i 2 R, t = 1, ..., T (3.11)

The objective function, Eq. 3.6, minimizes the total system time (TST), that
is, the sum of the total time each vehicle spends in the network before reaching a
sink cell. Constraint 3.7 is the flow conservation constraint. In this constraint, x1

i
is

the total demand at source cell i 2 So or the initial number of vehicles on roadway
i 2 R. We note that constraint 3.7 can be easily modified to account for a time
variant demand (dt

i
) at the source cell; however, accounting for this time variant

parameter, an additional constraint should be added for each source cell i 2 So, to
ensure that flow is equivalent to Qj, where j : (i, j) 2 L (source cells have only one
outgoing link). This additional constraint eliminates any possible staging of vehicles
(see Bish and Sherali [3] and Bish, Chamberlayne, and Rakha [2]). On the other
hand, constraints 3.8 and 3.9 are the limits for the flow out of the upstream cell i as
specified by Eq. (3.1), while constraints 3.10 and 3.11 are the limits for the flow into
the downstream cell j as specified by Eq. (3.2). Finally, the logical non-negativity
constraints on the x and y variables are required.
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Chapter 4

Traffic Management Tools

For the LP⌦Q framework , we describe the solution strategy in terms of five tra�c
management tools that are used to control the tra�c flows.

Under the CTM, flows should be governed by Eq. (3.3)-(3.5). These equations
form a non-convex feasible solution; thus, they were linearized into constraints 3.8,
3.9, 3.10, and 3.11. This linearization could result in a flow value, over link (i, j),
which is less than all the limits imposed by those 4 constraints aforementioned
instead of setting the flow equal to their minimum. In other words, tra�c will be
held in the upstream cell i, although there is enough capacity to move that tra�c
forward into the downstream cell j. This phenomenon is known as tra�c holding
[36] and is used by the LP as a tool to optimize the tra�c flow solution. Given this,
we describe the five tra�c management tools (TMTs) that can be used by the LP
to minimize the objective function.

TMT 1: Prioritizing at merge links. Considering merge links (i, k) and
(j, k), when flows yt

ik
and yt

jk
are constrained be Eq. (3.4), and Rt

k
is the minimizer,

the model has the freedom to prioritize flows into cell k.
TMT 2: Routing at diverge links. Considering diverge links (i, j) and

(i, k), when flows yt
ij

and yt
ik

are constrained be Eq. (3.5), the model has the
freedom to route flows into cells j and k.

TMT 3: Tra�c holding at merge links. Considering merge links (i, k) and
(j, k), when yt

ik
+ yt

jk
< min(St

i
+St

j
, Rt

k
), then tra�c holding before the merge cell

k is used.
TMT 4: Tra�c holding at diverge links. Considering diverge links (i, j)

and (i, k), when yt
ij
+ yt

ik
< min(St

i
, Rt

j
+ Rt

k
), then tra�c holding at the diverge

cell i is used.
TMT 5: Tra�c holding at ordinary links. Considering ordinary link (i, j),

when yt
ij
< min(St

i
, Rt

j
), then tra�c holding on the roadway cell i is used.

TMTs 1 and 2 are allowed under Eq. (3.4) and Eq. (3.5), respectively, while the
TMTs 3, 4, and 5 are based on tra�c holding, and thus, they violate their respective
equations in 3.3-3.5. Tra�c holding is justified in Ziliaskopoulos [36] as a possible
set of tra�c controls that could be implemented to optimize flows, while Liu, Lai,
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and Chang [18] considers tra�c holding an unrealistic behavior. Tra�c holding
was classified into three di↵erent TMTs because the type of the cell has important
implications; merge and diverge cells are natural locations for tra�c controls, and
hence tra�c holding might be more realistic at these points (for instance, ramp
metering is an example of a merge control that might be analogous to tra�c holding).
On the other hand, tra�c holding at ordinary links is more problematic; ordinary
links are a modeling construct, and there are probably no analogous tra�c controls
available at these locations. For that, a heuristic will be proposed to eliminate
tra�c holding at ordinary links. Moreover, one of the objectives of this paper is to
demonstrate how the LP⌦Q uses these tools to optimally manage tra�c flows.
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Chapter 5

Important Properties

In this section, we discuss important properties of the CTM and LP modeling frame-
work that will help better understand the structure of optimal solutions.

Before discussing these properties, we define an important network feature, the
bottleneck. If a link (i, j) 2 L has Qi > Qj, then cell j is a bottleneck. Other
more complex bottlenecks can be defined, where a merge cell j is considered a bot-
tleneck when

P
i:(i,j)2Lm

Qi > Qj. Without loss of generality, however, we simplify
the discussion of bottlenecks assuming the simple Qi > Qj condition. Because Qi

is larger than Qj, under su�cient demand, cell i will enter the congested state. If a
network does not have any bottlenecks, then no congestion will form; and, if a net-
work does have bottlenecks, a bottleneck (or a set of bottlenecks) will determine the
performance of the system and will a↵ect how tra�c flows are optimally managed.

Under CTM⌦=Q, St

i
is not reduced when cell i is in the congested state (xt

i
> Qi),

even if the number of vehicles in i reachesNi, the holding capacity of the cell (i.e., the
cell’s jam density), which is not consistent with the tra�c flow theory. Conversely,
CTM⌦<Q reduces the flow below Qi when cell i is in the congested state, a much
more realistic tra�c flow behavior. This observation follows directly from Eq. (3.1).
This has profound e↵ects on the realism of the tra�c flow and on the solution
generated. To begin this discussion, Proposition 1 describes how cells transition
from the free-flow state to the congested state.

Proposition 1. Under CTM⌦Q, any roadway cell i in the free-flow state, i.e.,

xt

i
 Qi, will remain in the free-flow state unless the flow out of i is limited to below

Qi by a downstream adjacent cell(s).

Proof. The flow out of cell i is determined by St

i
and Rt

j
of the adjacent downstream

cell(s) j, j : (i, j) 2 L. Because of the requirement that Qi  �i(Ni � xt

i
) when

xt

i
 Qi, Eq. (3.2) allows at most Qi vehicles to enter cell i in interval t. In the

free-flow state, by Eq. (3.1), we have St

i
= xt

i
, and thus the flow out of cell i in

interval t will be equal to the number of vehicles in cell i at the beginning of interval
t (i.e., xt

i
) unless flow is inhibited by the cell(s) j, that is, unless the flow is set by

Rt

j
as either yt

ij
= Qj < Qi or ytij = �j(Nj � xt

j
) < Qi.

For a link (i, j) 2 L, Rt

j
can inhibit the flow out of cell i if yt

ij
= Qj < Qi, which

is based on the structure of the network (e.g., going from a three-lane road to a
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two-lane road) and is thus a bottleneck, or if yt
ij
= �j(Nj � xt

j
) < Qi, which is based

on congestion (the expression �j(Nj � xt

j
) can only be less than Qj if cell j is in the

congested state). Proposition 2 describes congestion and flow under CTM⌦=Q.

Proposition 2. Under CTM⌦=Q, congestion on any roadway cell i (xt

i
> Qi) does

not reduce the flow out of cell i below Qi, the maximum attainable flow.

Proof. St

i
is the function that limits the flow out of cell i based on the state and

characteristics of cell i, see Eq. (3.1). Under CTM⌦=Q, this is simplified to St

i
=

min{xt

i
, Qi}, thus when cell i is in the congested state, St

i
does not limit the flow

below Qi, its maximum value.

Proposition 2 does not state that if cell i is congested, then the flow out of cell
i must be Qi, but it simply proposes that if the flow is less than Qi, then it is
due to the downstream adjacent cell j, (i, j) 2 L, and not congestion in cell i. It
is important to note that, when considering congestion and bottlenecks, the flow
into cell j, the bottleneck, will not go below Qj as a result of cell i being in the
congested state. Therefore, if cell i is at the highest density allowable or is highly
congested (even up to jam density, xt

i
= Ni), the bottleneck performance will not

be a↵ected, and cell j will remain in the free-flow state. Of course the flow into cell
j could be limited below Qj, if cell j became su�ciently congested, but this would
only happen if the flow out of cell j was restricted below xt

j
by a downstream cell

k, k : (j, k) 2 L, because either cell k is also a bottleneck (Qj > Qk), or cell k is
su�ciently congested, such that xt

j
> �k(Nk � xt

k
).

Proposition 2 has some important implications and provides the rational for
studying CTM⌦Q: we want to properly penalize congestion in the sense that con-
gestion on cell i can inhibit flow discharge (i.e., St

i
), which is consistent with the

tra�c flow theory. Daganzo [10] displays a trapezoidal flow density diagram for the
CTM (see Figure 3.2(a)),where congestion (i.e., xt

i
> Qi) first reduces tra�c speed

and then flow. These congestion e↵ects occur under CTM⌦=Q due to congestion
on the adjacent downstream cell j, not cell i itself. In the case of a bottleneck,
however, cell j does not become congested (unless this is caused by a downstream
bottleneck), and thus, there is nothing additional to hinder the flow from cell i as
congestion builds. By introducing the generalized CTM, however, flow discharge is
reduced at the congested cell i. This leads to the question ”how does this gener-
alization a↵ect flows at non-bottleneck cells?”. We examine this in Proposition 3.
Note that, for notational simplicity, we will define ⌦⇤ ⌘ (Q� ⌦)/(N �Q).

Proposition 3. Consider a roadway segment, initially in the free-flow state, rep-

resented by n identical ordinary cells (Qi = Q, Ni = N, ⌦i = ⌦ < Q, and �i =
�, i = 1, ..., n). For this roadway segment, under CTM⌦Q, the flow on the n-1 links

connecting these cells is governed by yt
ij
= min{St

i
, Rt

j
} = min{xt

i
, Q, �(N � xt

j
)},

that is, the term Q� (xt

i
�Q)⌦⇤

is redundant in Eq. (3.3).

Proof. Consider an arbitrary link (i, j). The expression Q � (xt

i
� Q)⌦⇤ cannot

restrict flows on link (i, j) while in the free-flow state. Suppose that t is the first

18



time interval where Q � (xt

i
� Q)⌦⇤ limits the flow over link (i, j), yielding the

following:

yt
ij
= Q� (xt

i
�Q)⌦⇤ < �(N � xt

j
) (5.1)

This can only occur if xt

i
> Q (i.e., cell i is in the congested state), which, by

Proposition 1, implies that yt
ij
= �(N � xt�1

j
), that is, in the previous time interval

t� 1, the congestion in cell j was su�cient to limit the flow over (i, j) and force cell
i to become congested such that Eq. (5.1) holds. Substituting yt

ij
= �(N � xt�1

j
)

into Eq. (3.7) for cell j yields xt

j
= xt�1

j
+ �(N � xt�1

j
)� yt�1

jk
or:

yt�1
jk

= (1� �)xt�1
j

+ �N � xt

j
(5.2)

Also by Eq. (3.7), we have xt�1
j

= xt

j
�yt�1

ij
+yt�1

jk
; substituting xt

j
�yt�1

ij
+yt�1

jk
in Eq.

(5.2) yields yt�1
jk

= (1� �)xt

j
� (1� �)yt�1

ij
+(1� �)yt�1

jk
+ �N �xt

j
= �(N �xt

j
)� (1�

�)yt�1
ij

+(1��)yt�1
jk

, and then, the rearranging yields �yt�1
jk

= �(N �xt

j
)� (1��)yt�1

ij

or �(N � xt

j
) = �yt�1

jk
+ (1� �)yt�1

ij
and thus by Eq. (5.1) we get:

yt
ij
< �yt�1

jk
+ (1� �)yt�1

ij
(5.3)

Using yt�1
ij

= �(N � xt�1
j

) and yt�1
hi
 �(N � xt�1

i
) (this holds by Eq. (3.3)) in Eq.

(3.7) yields xt

i
 xt�1

i
+ �(N �xt�1

i
)� �(N �xt�1

j
) or xt

i
 (1� �)xt�1

i
+ �xt�1

j
, which

we substitute into Eq. (5.1) to get yt
ij
� Q � ((1 � �)xt�1

i
+ �xt�1

j
� Q)⌦⇤, which

when combined with Eq. (5.3) yields:

(Q� (1� �)xt�1
i

+ �xt�1
j
�Q)⌦⇤ < �yt�1

jk
+ (1� �)yt�1

ij
(5.4)

Once again, by Eq. (3.3), we have yt
pq
 Q � (xt

p
� Q)⌦⇤ 8(p, q) 2 L; replacing

the y-variables in the RHS of Eq. (5.4) with this expression yields �yt�1
jk

+ (1 �
�)yt�1

ij
 �(Q � (xt�1

j
� Q)⌦⇤) + (1 � �)(Q � (xt�1

i
� Q)⌦⇤), which simplifies to

�yt�1
jk

+ (1 � �)yt�1
ij
 Q + ⌦⇤Q � �⌦⇤xt�1

j
� (1 � �)⌦⇤xt�1

i
. The LHS of Eq. (5.4)

also simplifies to Q + ⌦⇤Q � �⌦⇤xt�1
j
� (1 � �)⌦⇤xt�1

i
;thus, we have for Eq. (5.4)

LHS=RHS, which contradicts the strict inequality of Eq. (5.4) and completes the
proof.

This proposition states that flows on cells that are not before a bottleneck be-
have the same under CTM⌦<Q and CTM⌦=Q. We note that at bottlenecks, the
generalized constraint also gives a trapezoidal flow-density curve, as the density in
cell i (the cell before the bottleneck) must increase until the flow becomes governed
by Qi � (xt

i
� Qi)(Qi � ⌦i)/(Ni � Qi) < Qj after which flow is reduced, and thus

there is a level of congestion for which there is no reduction in flow. While Proposi-
tion 3 states that the CTM generalization only impacts tra�c flows at bottlenecks,
this is not the case in the LP (remember there is no tra�c holding under CTM;
this only occurs for the LP). The tra�c management tools using tra�c holding,
TMTs 3, 4, and 5, can cause congestion that reduces flow under CTM⌦<Q, unlike
CTM⌦=Q. The lack of flow reduction at a bottleneck under CTM⌦=Q naturally
leads to Proposition 4.
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Proposition 4. For LP⌦=Q there exists an optimal solution that does not have

tra�c holding.

Proof. See Bish and Sherali [3];Nie [24];Shen, Nie, and Zhang [27].

Empirically we observe that the optimal solutions to LP⌦=Q (found using com-
mercial solver), almost always have tra�c holding, at least in the interesting case
where a bottleneck exists. By Proposition 4 this is just one of the possible alter-
nate optimal solutions. Proposition 4 is intuitive, tra�c holding can help improve
the solution when tra�c congestion reduces the flow rate, because it can be used
to mitigate congestion at the bottlenecks; but, when congestion has no negative
e↵ect on flows, tra�c holding does not improve the solution. Conversely, Bish,
Chamberlayne, and Rakha [2] provides examples where tra�c holding is required
for an optimal solution to LP⌦<Q. Despite this, we will demonstrate that solutions
to LP⌦Q use tra�c holding in an undesirable and unrealistic manner. To deploy
tra�c holding as a tool, we would like to generate solutions that only include tra�c
holding that improves the system’s performance and further uses tra�c holding in
a sensible manner. Zheng and Chiu [34] developed an algorithm that generates a
solution with no tra�c holding for single commodity problems under CTM⌦=Q, but
this algorithm will not work under CTM⌦<Q because an earliest arrival flow (EAF)
solution does not necessarily exist under CTM⌦<Q as we later show. Lin and Wang
[16] suggested the use of the following lexicographic objective function to remove
tra�c holding:

Minimize
TX

t=1

X

i2C/Se

xt

i
+ ✏

TX

t=1

X

(i,j)2L

tyt
ij

(5.5)

where ✏ is a number small enough to optimize the two expressions in preemptive
order; Lin and Wang [16] did not elaborate on the appropriate ✏-value. The sec-
ondary objective,

P
T

t=1

P
(i,j)2L ty

t

ij
, which we denote as f2, rewards advancement

of the flow and penalizes tra�c holding. In Proposition 6, we show how to derive
an appropriate ✏-value; but, first, we consider the following proposition to help with
this endeavour.

Proposition 5. The objective function min
P

T

t=1

P
i2C/Se

xt

i
is equivalent to min

P
T

t=1

P
i:(i,j)2Se

tyt
ij
.

Proof. Consider a unit of flow (i.e., a vehicle) that leaves the system (i.e., enters
a sink cell) in interval t. The contribution to

P
T

t=1

P
i2C/Se

xt

i
for this unit of flow

is t (note that all the demand is in the system in the beginning of the first time
interval), which is also its contribution to

P
T

t=1

P
i:(i,j)2Se

tyt
ij
. As this is true for

every unit of flow, the two objective functions are equivalent.

Proposition 5 assumes that the time horizon T is large enough to allow ev-
ery vehicle in the system to reach a sink cell, and we note that the constraintP

T

t=1

P
i:(i,j)2Se

tyt
ij
=

P
T

t=1

P
i2C/Se

xt

i
must be added to force the vehicles from the
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system. This proposition still holds when the demand at the source cells is a time-
dependent parameter; in that, the solutions to the two objectives would be identical,
but with a constant di↵erence between the values of the objective functions.

Proposition 6. The objective function (5.5) will minimize
P

T

t=1

P
i2C/Se

xt

i
and

P
T

t=1

P
(i,j)2L ty

t

ij
in a preemptive order if ✏ < 1/(max

P
T

t=1

P
(i,j)2L ty

t

ij
).

Proof. Consider two objective functions, f1 and f2, to be minimized over a bounded
region for which an optimal solution exists; Sherali [28] shows that min f1+ ✏f2 will
be minimized in a preemptive order if

✏ < min(
1

f1max � f1min

,
1

f2max � f2min

)

Setting f1 =
P

T

t=1

P
i2C/Se

xt

i
and f2 =

P
T

t=1

P
(i,j)2L ty

t

ij
and observing that these

functions are bounded and always have non-negative objective function values, we
have

min(
1

f1max

,
1

f2max

)  min(
1

f1max � f1min

,
1

f2max � f2min

)

Using Proposition 5, we have

TX

t=1

X

i2C/Se

xt

i
,

TX

t=1

X

i:(i,j)2Se

tyt
ij
<

TX

t=1

X

(i,j)2L

tyt
ij

Thus, setting ✏ < 1/(max
P

T

t=1

P
(i,j)2L ty

t

ij
) will minimize {f1, f2} in preemptive

order.

Proposition 7. Objective function (5.5), with an ✏ that ensures a lexicographic

ordering of the two objectives, produces a solution to the LP⌦Q that only has tra�c

holding that is required to optimize objective function (3.6).

Proof. Based on the lexicographic property (see Proposition 6), objective function
(5.5) will always give the optimal solution to (3.6). Objective function (5.5) will then
try to minimize the secondary objective f2 =

P
T

t=1

P
(i,j)2L ty

t

ij
. This expression

provides a time based penalty for movement on the links; if we consider a solution
where all demand reaches the sinks on or before time interval T , then every unit of
flow has a given path from its source cell to a sink cell, and thus a set number of
link traversals. To minimize f2, flow will be advanced as much as possible on its
given path considering the network configuration and the primary objective, and
thus tra�c holding will only exist if it reduces the primary objective function.

Thus, objective function (5.5) eliminates tra�c holding for LP⌦=Q, but does
not necessarily do so for LP⌦<Q, as we see in the numerical examples in Section 8.
Under LP⌦=Q, Lo [20], Shen, Nie, and Zhang [27], and Zheng and Chiu [34] provide
methods to eliminate tra�c holding; but, the methods used either do not work under
⌦ < Q or are computationally too expensive. For LP⌦<Q, Bish, Chamberlayne, and
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Rakha [2] propose a mixed binary program (thus adding binary variables to the
LP; we denote this formulation as BP⌦Q) to eliminate TMT 5, tra�c holding on
ordinary cells; we use this model in the numerical section.

The objective function becomes more interesting under LP⌦<Q. Zheng and Chiu
[34] show that an Earliest Arrival Flow (EAF) solution exists under LP⌦=Q. An

EAF solution maximizes
P

t
0

t=1

P
(j:s)2L y

t

js
, 8t0 = 1, ..., T , and it is equivalent to

minmizing objective function (3.6). Likewise, Jarvis and Ratli↵ [13] show that
without congestion-based flow reductions, EAF solutions exist, and these solutions
also minimize the network clearance time (NCT), the time interval when the last
flow enters a sink cell (note, an EAF solution in a multi-commodity may not exist
Fleischer [11]). The NCT is an important objective for evacuation problems. For
LP⌦<Q, an EAF solution does not necessarily exist, and thus to minimize NCT, a
di↵erent objective function is required. We can formulate this objective function as
follows, including additional constraints.

Minimize
TX

t=1

Et (5.6)

✏t � 1�
P

i2Se
xt

iP
i2So

x1
i

(5.7)

✏t 2 {0, 1}, t = 1, ..., T (5.8)
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Chapter 6

Solution Heuristic

In this section we provide a heuristic for determining tra�c management strategies
under LP⌦Q considering restrictions on the allowable TMTs. If we allow all five
TMTs, then the solution can be obtained directly from the LP⌦Q, and by using the
objective function (5.5), we can eliminate all tra�c holding (i.e., TMTs 3, 4 and 5)
under CTM⌦=Q and limit unnecessary tra�c holding under CTM⌦<Q. Eliminating
all tra�c holding under CTM⌦<Q, however, is more di�cult, as this requires the
addition of nonlinear constraints to the LP or the addition of binary variables (i.e.,
BP⌦Q, Bish, Chamberlayne, and Rakha [2]). As mentioned in section 4, the tra�c
holding TMTs (i.e., TMTs 3, 4, and 5) violate the CTM equations (3.3)-(3.5), and
thus they might not be desirable tools to use. Adding to that, merge and diverge
cells can be natural locations for tra�c controls, such as ramp metering at merge
cells or routing at diverge; thus, tra�c holding might be realistic at these cells, unlike
tra�c holding at ordinary cells that are an artifact of the modeling framework and
do not necessarily align with any controllable section of roadway. For that reason,
the proposed heuristic will only focus on eliminating tra�c holding on ordinary links
(i.e., TMT 5).

The heuristic proposes a new objective function, which replaces objective func-
tion (3.6) and accommodates for the secondary objective suggested by Lin and Wang
[16]. This alternation requires some additional constraints, yielding the following
LPHeuristic:

Maximize
TX

t=1

X

i2CBM

xt

i
� ✏

TX

t=1

X

(i,j)2L

tyt
ij

(6.1)

subject to:

xt

j
= xt�1

j
+

X

i:(i,j)2L

yt�1
ij
�

X

k:(j,k)2L

yt�1
jk

, 8j 2 C/Se, t = 2, ..., T (6.2)

X

j:(i,j)2L

yt
ij
 xt

i
, 8i 2 C, t = 1, ..., T (6.3)

X

j:(i,j)2L

yt
ij
 Qi � (xt

i
�Qi)(Qi � ⌦i)/(Ni �Qi), 8i 2 R, t = 1, ..., T (6.4)
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X

i:(i,j)2L

yt
ij
 Qj, 8j 2 R, t = 1, ..., T (6.5)

X

j:(j,i)2L

yt
ij
 �j(Nj � xt

j
), 8i 2 R, t = 1, ..., T (6.6)

x1
i
= 0, 8i 2 C/So (6.7)

TX

t=1

X

i2C/Se

xt

i
� TSTm, (6.8)

xNCTn
i

= 0, 8i 2 C (6.9)

As mentioned in section (4), tra�c holding is used by the LP as a tool to yield
optimal solutions by usually preventing tra�c from building up at the bottlenecks.
The primary objective function in Eq. (6.1) targets that issue by forcing the tra�c
at cells from which merge links branch to be maximized. The set of these cells will
be noted as CBM and will include all cells that are directly before merge cells, as a
result, tra�c will be forced to build up at the bottleneck, and thus, reduce tra�c
holding. The secondary objective function has the same impact as discussed previ-
ously, which is, rewarding the advancement of flow and penalizing tra�c holding.
The two objective functions will be optimized in a preemptive order when ✏ has a
value less than that discussed in proposition (6). On the other hand, constraints
(6.2)-(6.6) are the same constraints (3.7)-(3.11) used in the generalized model (i.e.,
LP⌦Q). Constraint (6.6) ensures that all cells, except source cells, initially (i.e.,
t = 1) do not hold any tra�c. Constraint (6.8) ensures that TSTHeuristic is greater
or equal to the TSTm set by the algorithm, with index m representing the num-
ber of the iteration (i.e., m=0,1,2,3,4,...). Constraint (6.9) forces the flow to end
at an NCTn assigned by the algorithm, with index n representing the number of
the iteration (i.e., n=0,1,2,3,4,...). Finally, the logical non-negativity constraints on
the x and y variables are required. In order to initiate the heuristic, the initial
conditions are set by defining TST0 and NCT0 as the solution that is obtained by
solving LP⌦Q. That is, first, LP⌦Q is solved, and the optimal solution obtained
(i.e., TST0 and NCT0) will be set as initial conditions in LPHeuristic.

In order to solve for a feasible solution that has no tra�c holding at ordinary
links, the following steps shall be followed:
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Algorithm 1:

Initialization: Set UB=1 and LB= 0;
Solve LP⌦=Q and set optimal TST and NCT values obtained as TST0 and
NCT0;
Solve LPHeuristic by setting TST0 in (6.8) and NCT0 in (6.9) ;
Check for tra�c holding at ordinary links;
if Tra�c holding at ordinary links does not exist (i.e., yt

ij
= min(St

i
, Rt

j
))

then
Stop heuristic;
NCT0 and TST0 are a feasible solution;

else
Set NCT0 as LB and iterate by increasing NCT in (6.9) by increments
of 1, while keeping TST0 in (6.8) fixed;
Solve LPHeuristic at each iteration and check whether tra�c holding at
ordinary links still exists or not;
while Tra�c holding at ordinary links exists (i.e., yt

ij
< min(St

i
, Rt

j
)) do

NCTn+1  NCTn + 1;
if Tra�c holding at ordinary links is eliminated then

Set NCTn value reached by iteration as UB;
Check whether there exists a feasible solution at NCTn�1 with a
better TST value by iterating through TST at NCTn�1:

Solve LPHeuristic at NCTn�1 and get TSTn�1,heuristic

(TSTn�1,heuristic is the
TST value obtained from solving the heuristic using

NCTn�1);
Alter constraint (6.8) intoP

T

t=1

P
i2C/Se

xt

i
 TSTn�1,heuristic;

Solve LPHeuristic while fixing NCTn�1 in (6.9) and iterating
through TST in (6.8);
while Tra�c holding at ordinary links exists (i.e.,

yt
ij
< min(St

i
, Rt

j
)) do

TSTm+1  TSTm � 1;
TST0  TSTm  TSTn�1,heuristic;
if Tra�c holding at ordinary links is eliminated at a certain

TSTm for that fixed NCTn�1 then
Repeat same process at NCTn�2, NCTn�3, ...;
Stop when tra�c holding is not eliminated for any TST
value between TST0 and TSTn�1,heuristic;

else
NCTn gives the best feasible solution with no tra�c
holding at ordinary links;
Set TSTn,heuristic as UB;

Alter constraint (6.8) into
P

T

t=1

P
i2C/Se

xt

i
 TSTn,heuristic

and iterate by TSTm+1  TSTm � 1;
Stop at a TST value where tra�c holding still exists and
set this TST as LB

end
end

end
end

end
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The heuristic proposed follows a grid search that results in a feasible solution to
LP⌦Q. The heuristic focuses on iterating between upper bound and lower bound
values for NCT and TST until a feasible solution that eliminates tra�c holding at
ordinary links is reached.
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Chapter 7

Revised Cell-Transmission

Formulation

Knowing that an e�cient optimization problem is especially important, particu-
larly with large-scale networks, Liu, Lai, and Chang [19] proposed a revised cell-
transmission formulation that allows simplification of the network as seen in Figure
7.1 and thus, reduces the run-time required to solve the LP. Accordingly, the LP
constraints are modified to account for the simplification of the network (see Liu,
Lai, and Chang [19]); the revised LP will be denoted as LPrevised.

1 2 3 4 5

1 2

Figure 7.1: Revised LP network

For �-values of 1, the LPrevised and LP⌦Q frameworks are equivalent. This can
be justified by proposition 1 which states that the flow in a certain cell can only
be limited by the downstream cell. As a result, for every stream of ordinary cells,
the formulation can be simplified by using two cells only and thus increasing the
tractability of the model.

The e�ciency of the revised LP formulation will be further examined in the
following numerical examples.
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Chapter 8

Numerical Examples

In this section, two numerical examples will be presented, where two di↵erent net-
works will be solved, using Gurobi solver, under LP⌦=Q, LP⌦<Q, and the heuristic
proposed. Analyzing the solution obtained by solving these networks will help in
illustrating the performance of the heuristic, the di↵erence in performance under
di↵erent values of ⌦, and the strategies used by the various modeling frameworks.
The first example is a simple network, which is easy to solve; however, the second
example considers a much more complex network.

Example 1: Consider the network in Figure (8.1), adapted from Bish, Chamber-
layne, and Rakha [2]. All roadway cells have Q-values of 30, N -values of 210, and
�-values of 1. Cells So1 and So2 are source cells, having x1

So1 = 750 and x1
So2 = 750.

Cell Se is the sink cell.

1 2 3 4 5 6 7 8 Se

9 10 11 12 13

So 1

So 2

Figure 8.1: Small tree, single merge network

Because the network in this example does not have diverge links, only TMT 1
(prioritizing at merge links), TMT 3 (tra�c holding at merge links), and TMT 5
(tra�c holding at ordinary links) are applicable. Furthermore, an optimal solution
never uses TMT 3 because tra�c holding at the merge (holding tra�c on cells 5
and 13) would reduce the flow through cell 6, the one and only bottleneck. Using
LP⌦=Q yields an optimal solution that has a total system time (TST) of 48,750 and
a network clearance time (NCT) of 59. Analyzing the solution obtained, LP⌦=Q

framework uses TMT 5, although there is an optimal solution that does not require
any tra�c holding (see proposition (4)). For instance, one solution pushes cell 10
to its maximum capacity, reaching a jam density of 210 vehicles, although there
is enough capacity in cell 11 to move that tra�c forward, with cell 11 holding
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only 30 vehicles. Adding to that, at some other time intervals, cell 10 reaches a
congested state, with a density of 150 vehicles, while cell 11 holds 0 vehicles. This
shows how TMT 5 can be very problematic and unrealistic, especially given that
no tra�c controls can exist at ordinary links. On the other hand, solving for a
solution using LP⌦=Q but with objective function (5.5) also yields a TST= 48,750
and an NCT= 59. As mentioned previously, however, using objective function 5.5
for LP⌦=Q eliminates tra�c holding. Therefore, TMT 5 is eliminated, and tra�c
behaves much more realistically in a continuous manner. For example, cell 10 is
never congested, remaining in a free-flow state with a density of 30 vehicles (the
maximum number in the free-flow state). This is because the downstream cell, cell
11, also does not reach a congested state. Additionally, cells 5 and 13 reach jam
density (i.e., N = 210) causing the upstream cells 4 and 12 to reach a congested
state, as well as a jam density at certain time intervals. Thus, the location of
the congestion is more realistic in this solution, where an upstream cell becomes
congested when the flow is limited by the downstream cell (see proposition (1)).
In both solutions, however, roadway cells reach the maximum density (a veritable
tra�c jam), and yet there is no reduction in tra�c flow discharge. On the other
hand, TMT 1 is used, under LP⌦=Q (3.6) and (5.5), in an erratic manner, where a
100% merge priority is given to cell 5 in some time intervals and to cell 13 in other
intervals. For instance, in one of the solutions, cell 5 is given a 100% merge priority
for 7 consecutive time intervals, after which cell 13 is given a 100% priority for only
one time interval. Interestingly, under LP⌦=Q, any particular TMT 1 strategy is
optimal since both cells 5 and 13 can supply the bottleneck at its maximum flow
rate. Given this, we would prefer a more sensible strategy, for instance, giving links
(5; 6) and (13; 6) each a 50% merge priority while eliminating tra�c holding.

Using LP⌦<Q framework, the optimal solution obtained was the same as that
for LP⌦=Q (i.e., TST= 48,750 and NCT= 59), for all values of ⌦; but, LP⌦<Q had
to use TMTs 1 and 5 to obtain an optimal solution for smaller values of ⌦. For
analysis and illustrative purposes, we will study ⌦ = 0.2Q case, which was deemed
realistic in Chamberlayne, Rakha, and Bish [7] using simulations studies. Since
both LP frameworks yielded the same TST value, tra�c holding will be studied
by comparing the value of the secondary objective function in Eq. (5.5), that is,P

T

t=1

P
(i,j)2L ty

t

ij
, which will be denoted as z2. It must be noted that the greater the

value of z2 is, the more tra�c holding exists. Table 8.1 presents the TST, z2, and
NCT values obtained for the di↵erent LP frameworks used under objective functions
(3.6) and (5.5) for Example 1.

Knowing that objective function (5.5) eliminates tra�c holding for LP⌦=Q, z2 =
309, 600 represents the value for the solution that has no tra�c holding. Therefore,
any value greater than that will account for tra�c holding. Comparing the results in
Table (8.1), we can deduce that LP⌦=0.2Q(3.6) produces the solution with the most
tra�c holding, because tra�c holding is required under that framework to minimize
the TST, especially for lower values of ⌦. Of course, under LP⌦=0.2Q, tra�c holding
can also penalize flow through flow reductions, thus TMT 5 must be used carefully.
On the other hand, LP⌦=0.2Q(5.5) accounts for less tra�c holding, where only tra�c
holding required to obtain the optimal solution is used. This is done by holding
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Table 8.1: TST, z2, and NCT values for LP⌦=Q and LP⌦=0.2Q under objective
functions (3.6) and (5.5)

Model TST z2 NCT

LP⌦=Q(3.6) 48,750 364,470 59
LP⌦=Q(5.5) 48,750 309,600 59
LP⌦=0.2Q(3.6) 48,750 378,575 59
LP⌦=0.2Q(5.5) 48,750 314,564 59

tra�c before the bottleneck, which is the most critical component of the network.
For example, in one of the solutions, cells 5 and 13 never reach jam density (i.e.,
N=210); instead, cells 4 and 12 reach a highly congested state, with tra�c densities
of 153 and 187 vehicles respectively, protecting cells 5 and 13 from excess congestion
(the maximum number of vehicles in cells 5 and 13 are 185 and 145, respectively).
In fact, the strategy balances the congestion in cells 5 and 13 and the flow out of
these cells, such that the maximum flow is maintained through the bottleneck.

Analyzing the obtained solutions for LP⌦=0.2Q framework under objective func-
tions (3.6) and (5.5), cell densities have a much more smoother transitions than
that under LP⌦=Q(3.6), where adjacent cells can be at opposite extremes, one at
jam density and the other at a free-flow state.

(a) (b)

Figure 8.2: (a) Cell Densities before the bottleneck (cells 5 and 13) and (b) flows
into the bottleneck (links (5,6) and (13,6)) for LP⌦=0.2Q(3.6) and LP⌦=0.2Q(5.5)

Furthermore, examining Figure 8.2(a), which displays the densities in cells 5
and 13 for LP⌦=0.2Q(3.6) and LP⌦=0.2Q(5.5), we can deduce that, under objective
function (3.6), cells 5 and 13 do not reach high congestion levels. This can be
justified by being the LP framework with the most tra�c holding, where tra�c
is held, during di↵erent time intervals, at all the ordinary links upstream of the
bottleneck (i.e., cell 6), even at links (So1, 1) and (So2, 9). On the other hand,
by using objective function (5.5), all unnecessary tra�c holding is eliminated, and
tra�c is only held at links close to the bottleneck (i.e., links (3,4), (4,5), (11,12),
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and (12,13)). Additionally, tra�c flow reductions are considered under LP⌦=0.2Q;
thus, when a congested state is reached (i.e., xt

i
� Q = 30), tra�c outflow from the

congested cell is reduced to below the maximum outflow capacity (i.e., 30 vehicles).
For instance, in one of the solutions under LP⌦=0.2Q(5.5), at t=15, cells 5 and 13 are
congested with cell densities of 132 and 153 respectively. During that time interval,
tra�c outflow through links (5,6) and (13,6) is reduced to below 30 vehicles, 16
and 14 vehicles respectively. This justifies why under LP⌦=0.2Q(5.5), a 100% merge
priority is rarely given to either cells, as can be seen in Figure 8.2(b). Therefore,
under the lexicographic objective function (5.5), TMTs 1 and 5 are used in a more
coordinated approach. Interestingly, for Example 1, there is an optimal LP⌦=0.2Q

solution where TMT 1 uses a static 50% merge priority that has the same z2 value
as that found by LP⌦=0.2Q(5.5). Symmetry in the densities of cells that are before
the bottleneck is also exhibited under that case. This demonstrates that there are
multiple optimal solutions for LP⌦=0.2Q(5.5), in Example 1, and the solution from
the solver, with its more intricate plan, might not be the most desirable from an
implementation point of view.

Knowing that TMT 5 (i.e., tra�c holding at ordinary links) is undesirable, the
heuristic proposed in this paper will be used to eliminate that tra�c management
tool. Since LP⌦=0.2Q(5.5) does not eliminate TMT 5, the solution obtained from the
heuristic will be compared to that obtained by the binary program (BP), which also
targets TMT 5, presented in Bish, Chamberlayne, and Rakha [2].

Table 8.2 displays the solutions obtained by LPHeuristic for di↵erent ⌦ cases, as
well as the solutions by the BP proposed in Bish, Chamberlayne, and Rakha [2].

Table 8.2: Results from BP and the heuristic, for a range of values for Example 1.

⌦ 0.8Q 0.7Q 0.6Q 0.5Q 0.4Q 0.3Q 0.2Q

BP TST 48,750 48,750 48,750 48,750 50,785 56,723 67,827
NCT 59 59 59 59 63 81 108

Heuristic TST 48,750 48,750 48,750 48,750 51,583 59,242 74,887
NCT 59 59 59 59 63 73 93

Comparing the solutions obtained by solving the network, in Example 1, using
the BP and heuristic, it can be deduced that the heuristic does not provide the
optimal solution for TST; however, its does yield a better NCT value than that
obtained by the BP. Adding to that, the heuristic is more tractable than the BP,
which requires much more time to be solved due to the large number of binary
variables existing in the formulation. Thus, considering the fact that the network in
Example 1 is small and easy to solve, the BP might not be e�cient to use for large
networks.

Figure 8.3(a) shows the densities of cells 5 and 13 (i.e., cells directly before
the bottleneck) and (b) the flow on the merging links, links (5,6) and (13,6). By
analyzing the cell densities, it can be deduced that the binary program does not
balance the flow priority out of cells 5 and 13, with cell 13 reaching jam density at a
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(a) (b)

Figure 8.3: (a) Cell Densities before the bottleneck (cells 5 and 13) and (b) flows into
the bottleneck (links (5,6) and (13,6)) for the BP and the Heuristic under ⌦ = 0.2Q

certain time interval. Thus, the BP minimizes the TST by using a highly asymmetric
strategy; in this case, the BP gives precedence to flows on link (5; 6) to move the
tra�c from source S01 out of system quickly, with just enough priority given to flows
over link (13, 6) to avoid too much congestion. On the other hand, the heuristic
provides a more symmetric solution, with cells 5 and 13 holding approximately equal
densities at most intervals, and accounts for a scenario closer to a 50% merge priority.
Therefore, the solution of the heuristic is somewhat easier to implement.

Finally, the LPrevised framework, suggested by Liu, Lai, and Chang [19], will be
examined and compared to the generalized LP framework. The network in Figure
8.1 was simplified as shown in Figure 8.4.

1 2 5 Se

3 4

So 1

So 2

Figure 8.4: Small tree, single merge network

Considering proposition 1, the flow in a certain cell can only be limited by the
downstream cell. Therefore, for instance, the flow in cell 2 will be limited by the
bottleneck cell 5; the tra�c will then propagate backward to cell 1. Thus, due to
these aforementioned properties, the revised cell-transmission formulation proposed
by Liu, Lai, and Chang [18] is equivalent to the generalized LP formulation. To prove
that, LPrevised:⌦=Q and LPrevised:⌦=0.2Q were used to solve the network in figure 8.4.
The solution obtained and its e�ciency are shown in Table 8.3.

Analyzing the results in Table 8.3, the optimal solution did not change after
simplifying the network proving that both models, the generalized and the revised
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Table 8.3: TST, NCT, and Run-time values for LP⌦=Q and LP⌦=0.2Q using the
generalized and revised model

Model TST NCT Run-time (sec)

LP⌦=Q(3.6) 48,750 59 0.761
LP⌦=0.2Q(3.6) 48,750 59 0.985

LPrevised:⌦=Q(3.6) 48,750 59 0.309
LPrevised:⌦=0.2Q(3.6) 48,750 59 0.339

cell-transmission, are equivalent; however, the revised LP is much more e�cient, as
can be seen by comparing the run-times of the LP’s.

Studying and analyzing the solutions obtained under the di↵erent LP frameworks
used to solve the simple network of Example 1 aided in identifying some important
properties associated with each framework. It is of interest, however, to examine
more complex networks, accounting for multiple bottlenecks. Thus, we study next
a much larger network, considered from the literature [31], to further study the
strategies produced by the LP and the heuristic.

Example 2-a: The network presented in Figure (8.5) has freeway cells (represented
by circles), having Q = 12 and N = 36, and arterial cells (represented by squares),
having Q = 6 and N = 18. All roadway cells have � = 1. Cells 54, 55, and 56 are
source cells, having x1

54 = 500, x1
55 = 150, and x1

56 = 150. Cell 59 is the sink cell.
Unlike Example 1, this network has multiple bottlenecks with several merge and

diverge cells. Therefore, all tra�c management tools are applicable (i.e., TMTs 1-5).
Solving for the optimal solution using LP⌦=Q and LP⌦=0.2Q frameworks results in a
TST of 35,868 and an NCT of 80. Table 8.4 presents the TST, z2, and NCT values
obtained for the di↵erent LP frameworks used under objective functions (3.6) and
(5.5) for Example 2-a.

Table 8.4: TST, z2, and NCT values for LP⌦=Q and LP⌦=0.2Q under objective
functions (3.6) and (5.5)

Model TST z2 NCT

LP⌦=Q(3.6) 35,868 364,470 80
LP⌦=Q(5.5) 35,868 309,600 80
LP⌦=0.2Q(3.6) 35,868 378,547 80
LP⌦=0.2Q(5.5) 35,868 314,564 80

Analyzing the results presented in Table 8.4, we can deduce that the LP frame-
works perform the same in both examples, Examples 1 and 2-a, where under LP⌦=Q(5.5)
there is no tra�c holding, with z2 = 309, 600 representing that state. LP⌦=Q(3.6)
uses tra�c holding although there is an optimal solution that does not require tra�c
holding. On the other hand, LP⌦=0.2Q(3.6) had the most tra�c holding, where the
TMTs are required by this framework to obtain an optimal solution. Using objec-
tive function (5.5) under LP⌦=0.2Q eliminates all unnecessary tra�c holding, thus
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Figure 8.5: Large complex network with multiple bottlenecks

accounting for a smaller z2 value. Adding to that, all LP frameworks resulted in an
NCT of 80; thus, these solutions are EAF solutions. For LP solutions in general, we
make the following observation:

Observation 1 An LP⌦<Q solution will produce an EAF solution by using the

tra�c holding TMTs 3-5, provided there are su�cient cells to hold tra�c.

This is the case for most networks, but a small network can have insu�cient space
to hold tra�c without incurring a tra�c holding penalty that reduces flow through
the network’s bottleneck.

In order to eliminate TMT5, the heuristic was utilized, and the solution obtained
was compared to the shortest path (SP) solution described in Tarhini and Bish [30].
The BP, proposed by Bish, Chamberlayne, and Rakha [2], was not used in Example 2
because it was highly ine�cient due to the large number of binary variables existing
in the formulation (the BP was not able to solve a single case within 2 hours).

As mentioned previously, there are many possible optimal solutions under LP⌦=Q
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that do not have tra�c holding. For this network, these solutions include the shortest
path (SP) solution. This optimal solution uses only the shortest path from each
source cell to the sink cell and also includes rules on merge priorities. Specifically, in
this example, the cell with a lower Q-value has 100% merge priority (remember, this
does not mean that the other cell does not send flow into the merge cell, but it can
only utilize the remaining capacity). In fact, Tarhini and Bish [30] demonstrate that,
for the network in Figure 8.5, this solution is optimal for any demand realization and
thus is the optimal policy when demand is uncertain. Here we do not study demand
uncertainty, but the SP solution is useful because the strategy is simple, and thus
can be easily adapted to the ⌦ < Q setting. For comparison purposes, however,
since this SP solution does not use TMTs 3-5, the heuristic will be applied on the
shortest path network, which would only eliminate TMT 5. Table 8.5 presents the
TST and NCT values for the heuristic and the shortest path problem at di↵erent ⌦
values for Example 2-a.

Table 8.5: Results from the heuristic and shortest path, for a range of values for
Example 2-a

⌦ 0.8Q 0.7Q 0.6Q 0.5Q 0.4Q 0.3Q 0.2Q

Heuristic TST 35,868 35,868 35,868 35,868 35,868 35,868 35,868
NCT 80 80 80 80 80 80 80

SP TST 35,868 35,868 35,868 35,868 37,409 37,511 43,735
NCT 80 80 80 80 84 85 102

Analyzing Table 8.5, the heuristic was able to eliminate tra�c holding at ordinary
links at the optimal solution at all ⌦-values, unlike under the shortest path problem,
where a feasible solution was obtained and the TST increased with the decrease in
the ⌦-value. Having a z2 value of 431,977 at ⌦ = 0.2Q, the heuristic was capable of
resulting in the optimal solution but with a higher z-value compared to z2 = 309, 600
obtained under LP⌦=Q5.5 (refer back to Table 8.4). This is because of the fact that
the heuristic targets only tra�c holding at ordinary links.

Having a large network with a small number of vehicles at the source cells al-
lowed the heuristic to diverge tra�c into di↵erent paths, facilitating the goal of the
heuristic in eliminating tra�c holding at ordinary links. On the other hand, forcing
tra�c flow into only three separate paths (i.e., shortest path from each source cell
to the sink cell) constrained the performance of the heuristic and resulted in larger
TST at smaller ⌦ values. Therefore, in order to further examine the performance of
the heuristic, Example 2-b will consider the network in Figure 8.5 but with a larger
number of vehicles at the source cells.

Example 2-b: The network presented in Figure (8.5) will also be considered with
freeway cells (represented by circles) having Q = 12 and N = 36 and arterial cells
(represented by squares) having Q = 6 and N = 18. All roadway cells have � = 1.
Cells 54, 55, and 56 are source cells, having x1

54 = 600, x1
55 = 600, and x1

56 = 600.
Solving the linear problem using LP⌦Q framework gave an optimal solution of
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TST = 155, 700 and NCT = 164.
Table 8.6 presents the TST and NCT values for the heuristic and the shortest

path problem at di↵erent ⌦ values for Example 2-b.

Table 8.6: Results from the heuristic and shortest path, for a range of values for
Example 2-b

⌦ 0.8Q 0.7Q 0.6Q 0.5Q 0.4Q 0.3Q 0.2Q

Heuristic TST 155,700 155,700 155,700 155,700 156,919 183,402 196,241
NCT 164 164 164 164 178 182 195

SP TST 155,700 155,700 155,700 155,700 178,862 198,850 262,105
NCT 164 164 164 164 187 216 288

As discussed previously, increasing the initial number of vehicles at the source
cells restrained the heuristic from eliminating TMT5 at the optimal solution for
lower ⌦-values. The feasible solution obtained by performing the heuristic on the
network in Figure 8.5, however, was still superior to the solution obtained from
applying the heuristic on the shortest path, as can be analyzed from Table 8.6.

The LPrevised model by Liu, Lai, and Chang [18] will be tested on the network
of example 2-b. Simplifying the network and modifying the LP formulation ac-
cordingly, LPrevised:⌦=Q and LPrevised:⌦=0.2Q will be solved and compared to LP⌦=Q

and LP⌦=0.2Q. Table 8.7 presents TST, NCT, and the run-times required by the
generalized and revised LP models.

Table 8.7: TST, NCT, and Run-time values for LP⌦=Q and LP⌦=0.2Q using the
generalized and revised model for example 2-b

Model TST NCT Run-time (sec)

LP⌦=Q(3.6) 155,700 164 51.281
LP⌦=0.2Q(3.6) 155,700 164 52.439

LPrevised:⌦=Q(3.6) 155,700 164 11.723
LPrevised:⌦=0.2Q(3.6) 155,700 164 13.889

The results in Table 8.7 show that both, revised and generalized, LP models
are equivalent due to proposition 1 as explained in example 1. On the other hand,
comparing the run-times of both models, it can be deduced that LPrevised is much
more e�cient compared to the generalized. Therefore, applying the revised model
on the heuristic proposed in this paper will greatly reduce the run-time required by
the heuristic to find a feasible solution.
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Chapter 9

Conclusion

The generalized CTM, CTM⌦Q, follows a trapezoidal flow-density relationship;
thus, this framework is capable of capturing the e↵ect of tra�c congestion on up-
stream cells by accurately modeling queue spill backs. Moreover, under CTM⌦Q,
a cell only becomes congested when the downstream cell is also congested. Under
CTM⌦=Q, however, this only works well at non-bottleneck locations, because at
a bottleneck the downstream cell is never congested and thus, the flow reduction
mechanism of CTM⌦=Q does not work properly, where flow through the bottleneck
is not adversely a↵ected by the congestion. On the other hand, under the generalized
CTM, CTM⌦Q, tra�c flow reductions through the bottleneck are enforced when
congestion builds before a bottleneck. This reduction in flow is one of the defining
characteristics of tra�c flows. There is a large body of literature that uses the CTM
embedded in a linear program (LP) framework (first proposed in Ziliaskopoulos [36]),
which also su↵ers from the same lack of flow reduction in response to congestion
before a bottleneck.

In this paper, we explore the LP⌦Q framework, which produces an optimal
solution, that is a set of tra�c flows. To better understand these flows, we illustrate
five tra�c management tools that describe any solution. These tools are prioritizing
at merge links, routing at diverge links, tra�c holding at merge links, tra�c holding
at diverge links, and tra�c holding at ordinary links. The tra�c management tools
have various levels of realism and can be used in more or less sensible ways. Only the
first two tools are allowed under CTM, while the tra�c holding tools are produced
because of the linearization of the CTM. We show that for LP⌦=Q there are many
optimal solutions; all a solution must do to be optimal is to ensure su�cient demand
at the network’s bottlenecks so that flows through the bottlenecks are maintained
at there maximum level. Because of this, solutions often use the tra�c management
tools in undesirable ways. While this is still a problem under LP⌦Q, it is less so, as
the number of optimal solutions is reduced, and the solution must ensure su�cient
demand at the bottlenecks, as before, but also must control congestion before the
network’s bottlenecks in order to maintain maximum flows, if possible. Because of
the issues with how the LP framework uses the tra�c management tools and their
varying realism, we explore how to reduce or eliminate the use of these tools. This
can increase the complexity of the problem, requiring alternative objective functions
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and/or the inclusion of binary variables. Because adding binary variables quickly
reduces the tractability of the framework, we provide a heuristic for developing
solutions. The heuristic proposed targets tra�c holding at ordinary links, as it is
the most unrealistic tool since no tra�c controls can exist at these links. Analyzing
the heuristic by studying networks from the literature, we deduced that the heuristic
is e�cient and e↵ective to use and that it yields feasible solutions accounting for
realistic tra�c flow scenarios.

Future research into further enhancing the CTM’s realism is of interest. Finding
solutions to the linearized framework with more controllable tra�c management
tools can be examined. Analyses on the implementation of the CTM on signalized
intersections can also be targeted in order to improve the model under multi-class
signalized control and to enhance the model’s ability in simulating better queue
formation and dissipation. Finally, with the emergence of automated vehicles, it
is of great importance to analyze and integrate the e↵ect of such vehicles in tra�c
management models.
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