

AMERICAN UNIVERSITY OF BEIRUT

DETECTING HATE SPEECH ACROSS ARABIC DIALECTS

by
SARA MAEN HARBA

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Business Analytics
to the Suliman S. Olayan School of Business

at the American University of Beirut

Beirut, Lebanon

April 2022

AMERICAN UNIVERSITY OF BEIRUT

DETECTING HATE SPEECH ACROSS ARABIC DIALECTS

by
SARA MAEN HARBA

Approved by:

 [Signature]
__
[Dr. Full Name, rank] Advisor
[Department]
(as listed in AUB Catalogue of current year)
 [Signature]
__
[Idem] Member of Committee

 [Signature]
__
[Idem] Member of Committee

 [Signature]
__
[Idem] Member of Committee

Date of thesis/dissertation defense: [April 28, 2022]

Dr. Wael Khreich, Assistant Professor, OSB Wael Khreich

WS
Dr. Wissam Sammouri, Assistant Professor of Practice, OSB

AMERICAN UNIVERSITY OF BEIRUT

THESIS RELEASE FORM

Student Name: ___Harba________________Sara_____________Maen________
 Last First Middle

I authorize the American University of Beirut, to: (a) reproduce hard or electronic copies of
my thesis; (b) include such copies in the archives and digital repositories of the University;
and (c) make freely available such copies to third parties for research or educational
purposes:

 As of the date of submission

 One year from the date of submission of my thesis.

 Two years from the date of submission of my thesis.

 Three years from the date of submission of my thesis.

___________________________________April 29, 2022_______________

Signature Date

1

ACKNOWLEDGMENTS

This project would not have been possible without the support of many people. Many
thanks to my adviser, Dr. Wael Khreich for his support and guidance throughout this
project, for his advice, and immense knowledge. Special thanks to Dr. Wissam Sammouri
as the second reader of this project. I am grateful for his comments and insights. Finally,
thanks to my family and numerous friends who endured this long process with me, always
offering support and love.

2

ABSTRACT

OF THE THESIS OF

Sara Maen Harba for Master of Science in Business Analytics
 Major: Business Analytics

Title: Detecting Hate Speech Across Arabic Dialects

With the ever-increasing adoption of social network platforms, online hate speech has
become a pressing and growing issue. Hate speech detection in English is attracting more
and more attention, and some detection systems have shown some successful results. In
contrast, hate speech detection in Arabic is still faced with various challenges mainly due to
the wide variety of Arabic dialects. The main goal of this work is to build an accurate
speech detection system that can generalize well across different Arabic dialects. Therefore,
we conduct an extensive analysis of various preprocessing techniques (e.g., stemming,
lemmatization, and emojis translation), feature extraction techniques (e.g., frequency-based
and word embeddings), classification models (including Logistic Regression and Support
Vector Machine), and combination techniques (at the data, feature, and model level). We
fine-tune Bert models and optimize their hyperparameters for our detection tasks. Our
experiments include six datasets containing different dialects and three datasets with
Levantine dialect, Tunisian dialect, and a combination of several dialects. 80% of each of
the six datasets is combined and used for model training and validation, while the
remaining part is used for models’ evaluation. The three remaining datasets are kept for
testing the generalization of our best models. The results on our test sets indicate that the
scores combination of three models, logistic regression using (unigram) term frequency-
inverse document frequency (TF-IDF), logistic regression using AraVec word embedding
features, and support vector machine using TF-IDF, achieves a good detection performance
across all test sets, with area under the curve (AUC) of 84%, 89%, and 78% on the three
unseen datasets. In addition, we find that using lemmatization and considering emojis’
meanings have a considerable impact on the results. Pre-trained AraBert model
outperforms all other trained models with higher generalization performance and AUC
scores of 91%, 93%, and 85% on the unseen datasets. The results denote that the same
models' combination and AraBert are robust to data imbalance and achieve a relatively
good generalization performance.

3

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... 1

ABSTRACT .. 2

ILLUSTRATIONS .. 5

TABLES .. 6

INTRODUCTION ... 7

1.1 Research Objective and Methodology ... 11

LITERATURE REVIEW .. 14

2.1 Hate Speech Detection in English .. 14

2.2 Hate Speech Detection in Arabic ... 18

2.3 Transfer Learning in Hate Speech Detection ... 23

METHODOLOGY .. 30

3. 1 Data Gathering ... 30

3. 2 Data Splitting and Data Combination .. 34

3. 3 Data Cleaning and Preprocessing ... 35

3.4 Feature Engineering and Features Combination .. 37

3.4.1 Term Frequency-Inverse Document Frequency (TF-IDF) 37

3.4.2 Pre-trained AraVec Word Embedding .. 37

3.4.3 Features Combination ... 38

3.5 Traditional Models’ Training and Evaluation .. 39

4

3.5.1 Logistic Regression (LR) .. 39

3.5.2 Support Vector Machine (SVM) ... 39

3.5.3 Training and evaluating the models .. 39

3.6 Data Imbalance ... 41

3.7 Pre-trained Models Training and Evaluation ... 42

RESULTS AND DISCUSSION ... 45

4.1 Impact of Preprocessing Techniques ... 45

4.2 Impact of Data Combination on Models Performance .. 48

4.3 Impact of Features on Model Performance .. 49

4.4 Impact of Model Combination on Model Performance ... 51

4.5 Impact of Imbalance on Model Performance ... 54

4.6 Impact of Pre-trained Models ... 55

4.7 Generalization of AraBert on Test Sets ... 59

4.8 Error Analysis .. 61

CONCLUSION AND FUTURE WORK .. 65

BIBLIOGRAPHY ... 67

5

ILLUSTRATIONS

Figure

1. A map of the different Arabic dialects .. 10

2. A summary of the research methodology ... 11

3. A summary of the data splitting and combination process 34

4. Feature combination process .. 38

5. Percentage difference in preprocessing results for Baseline 1 47

6. Percentage difference in preprocessing results for Baseline 2 48

7. The results of different operators on LR+TF-IDF/LR+AraVec 53

8. The results of different operators on LR+TF-IDF/LR+AraVec/SVM+TF-IDF 53

9. AUC scores with the increase in batch size .. 57

10. AUC scores with the increase in dropout rate .. 58

11. AUC scores with the increase in layers' freezing ... 58

12. ROC_AUC curves on test sets .. 60

13. ROC_AUC curves on test sets .. 61

6

TABLES

Table

1. Previous work on hate speech detection in English .. 16

2. Previous work on hate speech detection in Arabic ... 26

3. Data Summary .. 33

4. Confusion Matrix .. 40

5. AUC Scores before and after applying preprocessing techniques on valid_all 47

6. AUC scores on test sets .. 48

7. AUC scores of features combination on test sets ... 50

8. The AUC scores on the best models’ combination on test sets 52

9. AUC scores on models’ combination with imbalanced data 55

10. AraBert AUC results on test sets .. 59

11. AUC scores of AraBert on test sets .. 61

7

CHAPTER 1

INTRODUCTION

 With the widespread of social media, the interaction among individuals with

different backgrounds and opinions is increasing. These platforms provide a virtual space

for people to express their opinions freely. However, the lack of regulations associated with

these applications promotes cyberbullying, which is the harm that is intentionally inflicted

through technology and online devices in a repeated manner (Patchin & Hinduja, 2010).

One specific form of cyberbullying consists of offensive language against individuals or

groups with opposing opinions about certain social norms. This type of abusive language

can effortlessly turn into hate speech, which has been spreading due to several factors such

as economic difficulties, migration, political conflicts, and the ease of expressing hate on

social media platforms (Benesch, 2014).

 Hate speech is a general term with no universal agreement on what constitutes hate.

Therefore, it is crucial to establish a definition of hate before attempting to combat such

speech. One study defines hate speech as any communication intended to degrade people

based on specific characteristics such as nationality, race, gender, and sexual orientation

(Nockleby, 2000). Similarly, Warner & Hirschberg, (2012) consider any improper labeling

of individuals into a particular group with the intent to harm as hate speech. In this paper,

we define hate speech as intentionally utilizing individuals’ or groups’ characteristics in a

degrading manner to impose verbal harm online that might trigger physical harm offline.

8

Our definition does not differentiate between hate, abusive, or offensive language towards

an individual or group as they create a hostile online environment that leads to hate speech.

 There are different types of hate speech. According to Al-Hassan & Al-Dossari,

(2019), hate speech can be categorized into three types. The first type is gendered hate

speech, which involves any hostility towards specific gender as well as misogyny and

sexism (Al-Hassan & Al-Dossari, 2019). The second type is religious hate speech, which

includes hostility towards a particular religion (Al-Hassan & Al-Dossari, 2019). The last

type is racist hate speech, which includes hatred towards a specific race, color, and

nationality (Al-Hassan & Al-Dossari, 2019). These types are considered the three main

types of hate speech. However, other types of hate exist based on political affiliations,

social status, age, or any other trait.

 Hate speech is considered a threat due to its adverse impacts on targeted groups.

According to Benesch, (2014), hate speech can affect communities directly by imposing

fear and humiliation that plays a significant role in silencing them. Additionally, hate

speech indirectly raises competition among groups (Benesch, 2014). These effects lead to

violence, discrimination, and hate crimes. For example, the attacks against Coptic

Christians in Egypt, Muslims in Burma, and immigrants in Greece were promoted by hate

speech against the targeted communities (Benesch, 2014). According to a Special

Rapporteur to the UN Humans Rights Council, the lack of monitoring and reaction to hate

speech on time can strengthen the subordination of minorities which makes them

“vulnerable to attacks” (Olteanu et al., 2018).

 Hate speech detection is the first step to protecting vulnerable communities on

social platforms. Thus, many researchers have deployed machine learning (ML)

9

classification algorithms to detect offensive, abusive, and hateful language. Most research

focuses mainly on English hate speech detection with mixed results (Abro et al., 2020;

Badjatiya et al., 2017; Burnap & Williams, 2015; Davidson et al., 2017; Gaydhani et al.,

2018; Isaksen & Gambäck, 2020a; Malmasi & Zampieri, 2017; Sevani et al., 2021; Sohn &

Lee, 2019). As detailed in Chapter 2, these studies deploy various classical and deep

learning ML models with several features. To our knowledge, there is no known universal

system for hate speech detection in English. In general, non-English languages are vastly

understudied, especially languages with non-Roman alphabets such as Arabic. Recently,

several studies have been devoted to detecting hate speech in Arabic (A. Abozinadah & H.

Jones, Jr, 2016; Abozinadah et al., 2015; Abozinadah & Jones, 2017; Abu-Farha & Magdy,

2020a; Abuzayed & Elsayed, 2020; Alakrot et al., 2018b; Albadi et al., 2018; Alharbi &

Lee, 2020; Alshalan & Al-Khalifa, 2020; Djandji et al., 2020; Elmadany et al., 2020;

Guellil et al., 2020; B. Haddad et al., 2020; Hassan et al., 2020; Husain, 2020; Husain &

Uzuner, 2021a; Keleg et al., 2020; Mulki et al., 2019; Ousidhoum et al., 2019; Saeed et al.,

2020).

 Similar to the English language, there are many attempts to find a universal

detection system for Arabic hate speech. However, no such system exists since the Arabic

language consists of colloquial dialects with no standard orthographies. These colloquial

dialects are represented in Figure 1 and include Maghreb, Nile Basin, Levantine, Gulf,

Yemeni (Salameh & Bouamor, 2018), and other dialects. The colloquial dialects of Arabic

have different manners of vocalizing the letters, which affect how users write these letters.

For example, the word “say” is written as “ل in Tunisian or Egyptian, while it can be ”ق

10

written as “ل in Levantine due to the different vocalization of the word in offline ”ئ

conversations. Additionally, some words can mean the same thing but are written

differently. For example, the term Black is written as “د in the Levantine dialect, while ”أس

it is written as “ل in the Tunisian dialect. This makes it difficult for classifiers to ”أك

generalize well across several dialects. Hence, existing research mainly includes attempts to

use one dialect or Modern Standard Arabic (MSA) to classify hateful content, which fails to

generalize well on other dialects.

Figure 1: A map of the different Arabic dialects

 Therefore, it is crucial to direct our attention to finding a detection system that can

generalize well across several Arabic dialects. This is highly needed as most social media

users write in different dialects. Most research does not consider the differences in dialects

11

when detecting hate speech on social platforms. Therefore, it is essential to enhance hate

speech detection systems in Arabic to identify hate regardless of the difference across

dialects. The following section discusses the objectives and methodology of this research

work.

1.1 Research Objective and Methodology

 In this study, our aim is to build ML models to detect hate speech and generalize

well across several Arabic dialects. The goal is to identify an ML system that can be used

as a general system for detecting hate speech across different dialects. To achieve this, we

propose the following methodology, as displayed in Figure 2.

Figure 2: A summary of the research methodology

12

 The first step is gathering our data. We combine six datasets extracted from social

media that might represent more than six spoken dialects. Additionally, we obtain three

datasets that contain Levantine, Tunisian, and mixed dialects for models' evaluation. The

first part of our methodology involves training classical ML algorithms. We conduct

extensive experiments with several preprocessing techniques on our augmented data. We

test techniques such as stemming, lemmatization, normalization of Arabic letters, removal

of diacritics, removal of repeated characters, and emojis translation.

 Additionally, we evaluate these preprocessing techniques using various feature

extraction approaches. For instance, we use unigram, bigram, and a combination of

unigram and bigram of term frequency-inverse document frequency (TF-IDF) along with

AraVec (Soliman et al., 2017) word embedding features, and their combination. Moreover,

we experiment with several classical ML models such as Naïve Bayes (NB), Random

Forest (RF), Decision Tree (DT), K-Nearest Neighbors (KNN), Logistic Regression (LR),

and Support Vector Machine (SVM). We select LR and SVM because they are extensively

used in literature and achieve good results compared to other classification algorithms, as

described in Chapter 2. Furthermore, the best models are combined using Avg, Max, Min,

and Median operators at the score level. The second part of our methodology involves fine-

tuning pre-trained language models such as Bidirectional Encoder Representations from

Transformers (Bert). Bert is a pre-trained language model designed to pre-train deep

bidirectional representation for unlabeled text, making it simple to fine-tune by adding task-

specific layers (Devlin et al., 2018). For our research, we use the same augmented dataset

to fine-tune Bert models for hate speech detection.

13

 The remainder of this paper is organized as follows. Chapter 2 reviews some work

related to hate speech detection. Chapter 3 describes the experimental procedure followed

in this research. Chapter 4 details the results of our experiments, reports the best system to

detect hate speech, and presents error analysis. Finally, Chapter 5 presents the conclusion

and recommendations to further expand on this research.

14

CHAPTER 2

LITERATURE REVIEW

 The first step in this study is presenting an overview of the existing literature to

understand previous work and identify the gaps to define our contribution. This section

highlights the research done for hate speech detection in the English context. It moves on to

address the research that is done for hate speech detection in the Arabic language. Finally,

we specifically highlight the existing research in transferring the detection capabilities from

one language to another or dialect to another.

2.1 Hate Speech Detection in English

 There have been several studies that aim to detect hate speech on social media in

several languages. Almost all available literature uses Twitter data either by collecting the

tweets or using publicly available datasets, which are mainly imbalanced (Abro et al., 2020;

Badjatiya et al., 2017; Burnap & Williams, 2015; Davidson et al., 2017; Gaydhani et al.,

2018; Isaksen & Gambäck, 2020a; Malmasi & Zampieri, 2017; Sevani et al., 2021; Sohn &

Lee, 2019). In contrast, few authors, such as Kwok & Wang, (2013), collect balanced

Twitter datasets. Most studies focus on lower casing and removing all non-alphabetic

characters, such as URLs, mentions, stop words, symbols, and emojis, as the main

preprocessing techniques (Abro et al., 2020; Burnap & Williams, 2015; Davidson et al.,

2017; Gaydhani et al., 2018; Kwok & Wang, 2013; Malmasi & Zampieri, 2017; Sevani et

al., 2021; Sohn & Lee, 2019). Furthermore, stemming is used to reduce words into their

stem (Abro et al., 2020; Burnap & Williams, 2015; Davidson et al., 2017; Gaydhani et al.,

15

2018; Sevani et al., 2021). Sohn & Lee, (2019) convert non-English words and emojis into

English text as a preprocessing technique and split hashtags into words.

 Moreover, TF-IDF is widely used to extract features (Abro et al., 2020; Badjatiya et

al., 2017; Burnap & Williams, 2015; Davidson et al., 2017; Gambäck & Kumar Sikdar,

2017; Gaydhani et al., 2018; Kwok & Wang, 2013; Malmasi & Zampieri, 2017). Some

studies use Doc2Vec (Le & Mikolov, 2014), Word2vec (Abro et al., 2020; Badjatiya et al.,

2017; Gambäck & Kumar Sikdar, 2017; Sevani et al., 2021), random vectors (Badjatiya et

al., 2017; Gambäck & Kumar Sikdar, 2017), and GloVe vectors as features (Badjatiya et

al., 2017; Gambäck & Kumar Sikdar, 2017; Sohn & Lee, 2019). Only Burnap & Williams,

(2015) experiment with hate terms n-grams and typed dependencies n-grams features

extracted from Stanford Parser. In contrast to other studies, Part of Speech (POS) tags and

the number of hashtags, mentions, retweets, URLs, words, characters, and syllabus are

applied as features (Davidson et al., 2017).

 In general, various studies train classical ML models to detect hate speech, such as

LR and SVM (Abro et al., 2020; Badjatiya et al., 2017; Burnap & Williams, 2015;

Davidson et al., 2017; Gaydhani et al., 2018; Malmasi & Zampieri, 2017), along with NB

(Abro et al., 2020; Davidson et al., 2017; Gaydhani et al., 2018; Kwok & Wang, 2013), RF,

DT (Davidson et al., 2017), RFDT (Burnap & Williams, 2015), and Gradient Boosted

Decision Tree (GBDT) (Badjatiya et al., 2017). Only Abro et al., (2020) deploy KNN,

Multi-layer Perceptron (MLP), and AdaBoost models for hate speech detection. In contrast,

Badjatiya et al., (2017) and Gambäck & Kumar Sikdar, (2017) experiment with

Conventional Neural Network (CNN) for hate speech detection. In addition, Badjatiya et

al., (2017) expand with deep neural networks such as FastText and long short-term memory

16

(LSTM). Similarly, Sohn & Lee, (2019) use LSTM and Bidirectional-LSTM (Bi-LSTM) to

detect hate. In terms of evaluation metrics, several studies calculate precision (P), recall

(R), and F1 scores for model evaluation (Badjatiya et al., 2017; Burnap & Williams, 2015;

Davidson et al., 2017; Gambäck & Kumar Sikdar, 2017; Gaydhani et al., 2018) as well as

accuracy (ACC) (Kwok & Wang, 2013; Malmasi & Zampieri, 2017).

 However, the results of these studies are incomparable since each study experiments

with a different dataset. In contrast, Malmasi & Zampieri, (2017) use the dataset collected

in (Davidson et al., 2017) to train SVM using character 4-grams features, which achieves

an ACC of 78%. Furthermore, only Gaydhani et al., (2018) use a combination of three

datasets (Davidson et al., 2017; Waseem & Hovy, 2016; Watanabe et al., 2018), applied to

train LR using TF-IDF and L2 normalization. This model outperforms other studies with an

F1 score of 96% (Gaydhani et al., 2018). As a result, it is generalized as an application to

filter hateful tweets posted by the user. Still, this application has limitations since Twitter

API has a request read limit of 15 minutes (Gaydhani et al., 2018). Table 1 summarizes the

hate speech detection methodology used from data collection to results for the work that

focuses on the English language.

Table 1: Previous work on hate speech detection in English

Reference Data Preprocessing Features Models Best
Performance

Eval
Metric1

(Burnap &
Williams,
2015)

Collected
1901
imbalanced
tweets,
Hate/Benign

Lower casing
Remove all
non-alphabetic
characters
Stemming

Words, hate
terms, typed
dependency n-
grams/ their
combination

Bayesian LR
/RFDT/SVM/
voting
ensemble, 10-
fold cross
validation

n-Gram
reduced typed
dependency +
hate terms
with all
models

F1=77%

1 Test set scores

17

Reference Data Preprocessing Features Models Best
Performance

Eval
Metric1

(Gaydhani
et al.,
2018)

(Davidson et
al., 2017;
Waseem &
Hovy, 2016;
Watanabe et
al.,2018)
datasets
Hate/Offensiv
e/ Clean

Lower casing
Remove all
non-alphabetic
characters
Stemming

TF-IDF
unigram/bigra
m/trigram with
normalization

LR/NB/SVM,
10-fold cross
validation

LR + TF-IDF
(1,3) +L2
normalization

P=96%,
R=96
F1=96%
ACC=
95%

(Malmasi
&
Zampieri,
2017)

(Davidson et
al., 2017)
14,509
imbalanced
tweets, Hate
/Offensive/
Ok

Lower casing
Remove all
non-alphabetic
characters

Character and
word n-
grams/skip
word bigram

SVM, stratified
10-fold cross
validation

SVM +
character 4-
grams

ACC =
78%

(Gambäck
& Kumar
Sikdar,
2017)

(Waseem,
2016), 6,909
imbalanced
tweets.
Racism/
Sexism/Both/
None

None Random/word
2vec/character
n-grams/
word2vec +
character n-
grams

CNN, 10-fold
cross validation

CNN +
word2vec

P= 85%,
R= 72%
F1=78%

(Davidson
et al.,
2017)

Collected
24,802
imbalanced
tweets.
Hate/
Offensive/
None

Lower casing
Remove all
non-alphabetic
characters

TF-IDF, POS
tags, numbers
extracted per
tweet

LR/NB/DT/RF/
SVM,5-fold
cross-validation

LR with L2
normalization

P= 91%,
R= 90%
F1=90%

(Badjatiya
et al.,
2017)

(Waseem &
Hovy, 2016)
16K
imbalanced
Sexist/Racist/
None

None Character n-
grams/
TF-IDF/ bag
of word
(BOW)/
Random/
GloVe

LR/SVM/GBD
T/ CNN/ Fast
Text/ LSTM,
10-fold cross
validation

LSTM +
Random
Embedding +
GBDT

P= 93%,
R= 93%
F1=93%

(Kwok &
Wang,
2013)

Collected
24582
balanced
tweets
Racist/None

Lower casing
Remove all
non-alphabetic
characters

Unigrams NB, 10-fold
cross validation

NB +
unigrams

ACC
=76%

(Abro et
al., 2020)

14509 tweets,
imbalanced,
hate/offensive
/ not
offensive

Lower casing,
remove all non-
alphabetic
characters and
stop words,
stemming,
tokenization

TF-IDF n-
grams/
Word2Vec/
Doc2Vec

NB/SVM/KNN/
DT/RF/
AdaBoost/MLP
/ LR

SVM with
bigram TF-
IDF

P= 77%,
R= 79%
F1=77%
ACC =
79%

18

Reference Data Preprocessing Features Models Best
Performance

Eval
Metric1

(Sevani et
al., 2021)

13169 tweets,
713 tweets,
imbalanced,
hate/not-hate

Lower casing,
remove all non-
alphabetic
characters,
normalization,
stemming,
tokenization

Word2Vec SVM with
parameters
optimization

SVM with C =
10

P= 64%,
R= 91%
F1=75%
ACC =
70%

(Sohn &
Lee,
2019)

24,783
Tweets,
imbalanced,
Hate/
Offensive/No
ne

Lower casing,
remove user,
URLs, separate
hashtags,
convert non-
English words
and emojis to
text

Pre-trained
GloVe
embedding

LSTM/Bi-
LSTM/
DistilBert/Bert/
GPT-2

Bi-LSTM P= 70%,
R= 68%
F1=82%
ACC =
93%
AUC=
82%

2.2 Hate Speech Detection in Arabic

 The studies related to hate speech detection are extended to other languages, such as

Arabic. Most studies collect general Arabic datasets from Twitter (Abozinadah et al., 2015;

Albadi et al., 2018; Alshalan & Al-Khalifa, 2020; Mulki et al., 2019; Ousidhoum et al.,

2019). Few studies focus on detecting hate on YouTube by collecting YouTube comments

(Alakrot et al., 2018b; Guellil et al., 2020). Additionally, some studies use the 4th

Workshop on Open-Source Arabic Corpora and Processing Tools Arabic (OSACT4)2 2020

Shared Task dataset. The dataset consists of Twitter data collected by the organizers of the

task (Abu-Farha & Magdy, 2020; Abuzayed & Elsayed, 2020; Alharbi & Lee, 2020;

Djandji et al., 2020; Elmadany et al., 2020; Haddad et al., 2020; Hassan et al., 2020;

Husain, 2020; Keleg et al., 2020; Saeed et al., 2020).

 The main preprocessing techniques include removing all non-Arabic characters,

such as URLs, mentions, hashtags, spaces, diacritics, stop words, and letter sequences that

2 https://edinburghnlp.inf.ed.ac.uk/workshops/OSACT4/

19

are repeated for emphasizes or emotions (Abozinadah et al., 2015; Abozinadah & Jones,

2017; Alakrot et al., 2018b; Albadi et al., 2018; Alshalan & Al-Khalifa, 2020; Husain,

2020; Husain et al., 2020; Mulki et al., 2019; Saeed et al., 2020). Some studies remove non-

Arabic characters, diacritics, punctuation, and repeated letters (Abu-Farha & Magdy,

2020b; Abuzayed & Elsayed, 2020; Alharbi & Lee, 2020; Hassan et al., 2020).

Additionally, normalization is a common preprocessing technique for the Arabic language.

It converts multiple letters with multiple forms into one form, such as Alif (أ،آ،إ) to (ا), Alif

Maqsura (ي،ئ) to (ى), and Ta Marbouta (ة) to (ه) (Abozinadah et al., 2015; Abu-Farha &

Magdy, 2020b; Abuzayed & Elsayed, 2020; Alakrot et al., 2018b; Albadi et al., 2018;

Alharbi & Lee, 2020; Alshalan & Al-Khalifa, 2020; Elmadany et al., 2020; Husain, 2020;

Husain et al., 2020; Saeed et al., 2020).

 Moreover, few studies translate emojis into their respective meaning as a

preprocessing method (Alharbi & Lee, 2020; Alshalan & Al-Khalifa, 2020; Husain, 2020;

Husain et al., 2020). Haddad et al., (2020) deploy all the above preprocessing techniques in

their study. In addition, Alharbi & Lee, (2020) segment the phrases that start with “Ya”/” یا”

for better word representation. Djandji et al., (2020) use Farasa segmentation, remove user

tokens, retweets and URLs, and split hashtags. On the other hand, Husain, (2020) deploys

segmentation based on dividing hashtags into words, combines nouns with similar

meanings, and combines animals’ names to become “animal”. Elmadany et al., (2020)

replace hashtags, usernames, URLs, and numbers with their symbol. The study uses byte-

pair encoding (PBE) as a text tokenizer (Elmadany et al., 2020).

 Furthermore, few studies use word and character n-grams as features (Alakrot et al.,

2018b; Albadi et al., 2018; Alshalan & Al-Khalifa, 2020; Husain, 2020; Husain et al.,

20

2020). While others use Bag of Word (BOW) as features (A. Abozinadah & H. Jones, Jr,

2016; Abozinadah & Jones, 2017; Ousidhoum et al., 2019). Other studies experiment with

TF-IDF vectors as features (Abuzayed & Elsayed, 2020; Djandji et al., 2020; Hassan et al.,

2020; Husain, 2020; Keleg et al., 2020; Mulki et al., 2019; Saeed et al., 2020).

Additionally, some studies experiment with character level embedding from CNN feature

extractor (Hassan et al., 2020), Mazajak Word Embedding (Alharbi & Lee, 2020; Farha &

Magdy, 2019; Hassan et al., 2020), and a combination of character and word features

(Hassan et al., 2020). Keleg et al., (2020) use a list of profanity words as features.

 Moreover, many studies use pre-trained word embedding features, such as

Word2Vec (Abu-Farha & Magdy, 2020b; Albadi et al., 2018; Alshalan & Al-Khalifa,

2020; Guellil et al., 2020; Husain et al., 2020; Saeed et al., 2020) and AraVec with

SkipGram (SG) and Continuous Bag of Word (CBOW) (Abuzayed & Elsayed, 2020;

Albadi et al., 2018; Alharbi & Lee, 2020; Alshalan & Al-Khalifa, 2020; Guellil et al., 2020;

B. Haddad et al., 2020; Husain et al., 2020; Keleg et al., 2020; Saeed et al., 2020). Both

methods are used as word embedding features for hate detection (Albadi et al., 2018;

Alshalan & Al-Khalifa, 2020; Guellil et al., 2020; Husain et al., 2020). Alharbi & Lee,

(2020) and Saeed et al., (2020) use FastText embedding. Only Ousidhoum et al., (2019) use

Babylon multilingual word embedding with multilingual models. However, Abozinadah et

al., (2015) apply three different types of features. The first is profile-based, which are

statistical features extracted from the accounts such as followers, followings, and the

number of tweets. The second is tweet-based, which are statistical and n-grams features

extracted at the tweet level (Abozinadah et al., 2015). Lastly, social graph-based, which are

obtained from the social graph theory such as eigenvector that measures user’s influence on

21

the network, in-degree measures the number of connections to the user, and out-degree

measures the number of connections from the user (Abozinadah et al., 2015). In contrast to

other studies, Saeed et al., (2020), use Multilingual BERT embeddings as features.

 In addition, one study implements a statistical approach based on three algorithms

for features extraction. The first one is the word PageRank (PR) (US6285999, 2001), which

is an algorithm that ranks the importance of websites and is used to identify how accounts

reflect abusive language (Abozinadah & Jones, 2017). The second approach is Word

Semantic Orientation (SO) (Turney, 2002), which defines the association of the word to a

positive or negative word and uses the total SO of each word to get the total, Max, Min,

Avg, and standard deviation per tweet (Abozinadah & Jones, 2017). The third approach

applies the statistics used with SO to different components of each tweet (Abozinadah &

Jones, 2017).

 For model training, several studies train classical ML models such as SVM (A.

Abozinadah & H. Jones, Jr, 2016; Abozinadah et al., 2015; Abozinadah & Jones, 2017;

Abuzayed & Elsayed, 2020; Alakrot et al., 2018b; Albadi et al., 2018; Alshalan & Al-

Khalifa, 2020; Guellil et al., 2020; B. Haddad et al., 2020; Hassan et al., 2020; Husain,

2020; Mulki et al., 2019; Saeed et al., 2020), LR (Abuzayed & Elsayed, 2020; Albadi et al.,

2018; Alharbi & Lee, 2020; Alshalan & Al-Khalifa, 2020; Guellil et al., 2020; B. Haddad

et al., 2020; Hassan et al., 2020; Husain et al., 2020; Keleg et al., 2020; Ousidhoum et al.,

2019; Saeed et al., 2020), and NB (Abozinadah et al., 2015; Abu-Farha & Magdy, 2020b;

Guellil et al., 2020; Hassan et al., 2020; Mulki et al., 2019; Saeed et al., 2020) to detect hate

speech. Only Abuzayed & Elsayed, (2020) and Saeed et al., (2020) use RF. Abuzayed &

Elsayed, (2020) use extra trees, gradient boosting, and DT. Abuzayed & Elsayed, (2020)

22

and; Alharbi & Lee, (2020) use XGBoost Classifier to detect hate speech. Furthermore,

Haddad et al., (2020) utilize Ridge classifier for classification. While Ousidhoum et al.,

(2019) train single task single language (STSL), single task multilingual (STML), and

multitask multilingual models (MTML). In contrast to other studies, Albadi et al., (2018)

deploy a simple sentiment score approach where hate is detected based on the sum score of

hateful terms per tweet.

 Some studies apply deep learning algorithms such as CNN (Abuzayed & Elsayed,

2020; Alshalan & Al-Khalifa, 2020; B. Haddad et al., 2020; Keleg et al., 2020), Gated

recurrent units (GRU) (Abuzayed & Elsayed, 2020; B. Haddad et al., 2020; Husain et al.,

2020; Saeed et al., 2020), Bi-LSTM (Abu-Farha & Magdy, 2020b; Abuzayed & Elsayed,

2020; Guellil et al., 2020; Husain et al., 2020; Saeed et al., 2020), and MLP (Guellil et al.,

(2020). Some studies use Recurrent Neural Network (RNN) (Abuzayed & Elsayed, 2020;

Husain et al., 2020), Bidirectional-GRU (Bi-GRU) (Husain et al., 2020; Saeed et al., 2020),

and LSTM (Alharbi & Lee, 2020; Husain et al., 2020). Other studies deploy Feed-forward

Neural Network (FFNN), FastText (Hassan et al., 2020), and CNN with Bi-LSTM (Abu-

Farha & Magdy, 2020b; Hassan et al., 2020; Saeed et al., 2020).

 Additionally, various studies combine different models for Arabic hate speech

detection. One study applies a majority voting combination of CNN with Bi-LSTM, BERT,

and two SVM models with Mazajak embedding, character, and word features (Hassan et

al., 2020). Haddad et al., (2020) use CNN with attention along with GRU with attention.

Saeed et al., (2020) use an ensemble of CNN, Bi-LSTM, Bi-GRU, and BiLSTM+CNN.

While Abuzayed & Elsayed, (2020) combine CNN with RNN. Finally, Abu-Farha &

Magdy, (2020) experiment with two multitask learning (MLT), designed to learn from

23

multiple tasks to improve each task (Caruana et al., 1997). The authors deploy CNN with

Bi-LSTM architecture, Mazajak sentiment analyzer output (MLT-S), and masked Mazajak

sentiment analyzer output (MLT-S-N) (Abu-Farha & Magdy, 2020).

2.3 Transfer Learning in Hate Speech Detection

 Transfer learning refers to transferring knowledge from a general task to a specific

task. This concept is extensively deployed across hate detection research using pre-trained

language models. Most studies experiment with Bert models. Sohn & Lee, (2019)

experiment with DistilBert, Bert, and GPT-2 for hate speech detection. Multilingual BERT

is fine-tuned for hate speech detection in several studies (Alharbi & Lee, 2020; Alshalan &

Al-Khalifa, 2020; Elmadany et al., 2020; Hassan et al., 2020; Keleg et al., 2020). Similarly,

Elmadany et al., (2020) fine-tune four Bert models. These models are original Bert, Bert

pre-trained on binary Arabic sentiment dataset, Bert pre-trained on Arabic emotion

classification, and the latter is fine-tuned on combined dataset. Additionally, AraBert is

used in several studies (Djandji et al., 2020; Keleg et al., 2020). Djandji et al., (2020)

deploy AraBert with weighted loss, balanced batch sampling, and both. Furthermore,

Multitask and Multilabel learning are combined with AraBert by keeping AraBert as the

standard part with task-specific layers for task-related classification (Djandji et al., 2020).

Abdellatif & Elgammal, (2020) fine-tune ULMFiT, a transfer learning model based on a

language model and text classifier (Howard & Ruder, 2018), for hate detection.

 In general, social media hate speech data is expected to be imbalanced, impacting

models' performance. Some papers address this by taking a sub-sample of the data (A.

24

Abozinadah & H. Jones, Jr, 2016; Abozinadah et al., 2015; Abozinadah & Jones, 2017;

Abuzayed & Elsayed, 2020; Djandji et al., 2020; B. Haddad et al., 2020; Husain, 2020).

Guellil et al., (2020) experiment with both balanced and imbalanced corpora and find that

evaluation results on imbalanced corpus outperform the balanced one. Elmadany et al.,

(2020) generate random data from an offensive lexicon extracted from the OSACT4 dataset

and assign a negative sentiment to increase training labels to account for the imbalance in

the data.

 However, the results of these studies are incomparable since most studies use

different datasets. On the contrary, few researchers use the same dataset. For instance,

Alshalan & Al-Khalifa, (2020) utilize the 600 tweets used in (Albadi et al., 2018) to test

their trained models. The results indicate that Albadi et al., (2018) model outperforms the

one introduced by Alshalan & Al-Khalifa, (2020). Moreover, A. Abozinadah & H. Jones,

Jr, (2016) attempt to expand on their previous study (Abozinadah et al., 2015) by creating a

system to correct misspelled words based on edit distance and experimenting with several

preprocessing techniques on different datasets. The data is divided into eight subsamples.

Each sample has its preprocessing techniques (A. Abozinadah & H. Jones, Jr, 2016). The

preprocessing includes four sets of techniques; removing all non-Arabic characters is the

first one (A. Abozinadah & H. Jones, Jr, 2016). The second contains the first set with

normalization, while the third includes the second set with word correction based on one

edit distance, and the fourth includes the third set after correcting all words (A. Abozinadah

& H. Jones, Jr, 2016). The other four samples are similar to the first four with the addition

of stemming (A. Abozinadah & H. Jones, Jr, 2016). Similarly, Abozinadah & Jones, (2017)

25

attempt to improve the results of their previous work (Abozinadah et al., 2015) by sampling

the data and training a different model, which outperforms their previous model.

 In addition, the OSACT4 organizes a shared task for offensive language and hate

speech detection. Several studies participate in this shared task using different techniques.

Hassan et al. (2020) rank first for offensive language detection with their system combining

SVM with deep learning algorithms, achieving a macro F1 score of 90.51%. On the other

hand, Husain, (2020) deploys an SVM model with extensive analysis of the preprocessing

techniques, which outperforms other systems in hate speech detection with a macro F1

score of 95%. Table 2 summarizes the hate speech detection methodology used from data

collection to results for the work on the Arabic language. However, The above studies did

not consider Arabic dialects, limiting the ability to generalize the models to several dialects.

This is highly needed as most social media users write in different dialects. Therefore, it is

vital to enhance hate speech detection systems in Arabic to identify hate in various dialects.

 Some studies attempt to generalize hate speech detection systems from one

language to another (Isaksen & Gambäck, 2020b; Mossie, 2020; Mozafari et al., 2019;

Rizoiu et al., 2019; Wang & Zheng, 2015; Wiedemann et al., 2018). In particular, Husain &

Uzuner, (2021) investigate transfer learning across four datasets representing Arabic

dialects to detect offensive language. This work is the closest to ours as it combines all

datasets into one to fine-tune AraBert model and test it on different parts of each dataset

(Husain & Uzuner, 2021). Moreover, the authors fine-tune the model on each dataset and

test it on all datasets. The results demonstrate that the highest performance is achieved

when the model is trained and tested on the same data, and fine-tuning AraBert on

concatenated data is not improving the result on test sets (Husain & Uzuner, 2021).

26

However, the authors don’t test the generalization ability on new dialects not used for fine-

tuning. In contrast, we develop an ML system that can generalize well across several

Arabic dialects, as shown in Chapter 4.

Table 2: Previous work on hate speech detection in Arabic

Reference Data Preprocessing Features Models Best
Performance

Eval Metric

(Abozinadah
et al., 2015)

Collected 500
balanced
accounts.
Abusive/Non-
abusive

Remove all
non-Arabic
characters,
repeated
letters,
normalization

Profile/Tweet/
Social graph
based features

NB/SVM/DT,
10-fold cross
validation

NB with 10
tweets and
100 features.

ACC = 90%,
P = 91%,
R =90%,
F1=90%

(Ousidhoum
et al., 2019)

Collected
3,353
imbalanced
tweets.
Different
classes for
several tasks3

None BOW/
Babylon
multilingual
word
embedding

LR/STSL/ST
M/ MTML

MTML
LR

Macro
F1=35%
Micro
F1=48%

(Alshalan &
Al-Khalifa,
2020)

Collected
8,964
imbalanced
tweets.
Hate/None
(Albadi et al.,
2018) 600
tweets for
testing

Remove all
non-Arabic
characters,
Spam
filtering,
lemmatization
,
normalization,
translate
emojis

Character n-
grams/
Word2Vec

LR/SVM/CN
N/ GRU/CNN
+ GRU/BERT
5-fold cross
validation

CNN +
word2vec

ACC = 70%,
P = 72%,
R =69%,
F1=69%,
AUC=79%4

(Albadi et al.,
2018)

Collected
6,600
imbalanced
tweets
Hate/None

Remove all
non-Arabic
characters and
repeated
letters,
lemmatization
,
normalization

N-grams
features/
AraVec

Sentiment
scores
model/LR/SV
M/ GRU

GRU +
AraVec

ACC = 79%,
P = 76%,
R= 78%,
F1=77%,
AUC= 84%

(Guellil et al.,
2020)

Collected
3,384
YouTube

None Word2Vec/Fa
st Text
SG/CBOW

NB/ LR/RF/
SGD/ SVC/

Linear SVC +
Word2Vec
(SG)

P = 91%,
R = 91%
F1 = 91%

3 we will only report the experiments on hostility detection in Arabic

4 we report the results on the test set by [16]

27

Reference Data Preprocessing Features Models Best
Performance

Eval Metric

comments
(C1/C2)
Hate/None

CNN/ Bi-
LSTM/MLP

 P= 87%
R = 87%,
F1=87%

(Mulki et al.,
2019)

Collected
5,846
imbalanced
tweets
Hate/Abusive/
Normal

Remove all
non-Arabic
characters

TF-IDF
unigrams/bigr
am/ trigrams

SVM/NB,
binary/multi
classification

NB + TF-IDF ACC = 90%
P = 90%
R = 89%
F1=89%

(Husain et al.,
2020)

(Zampieri et
al., 2020)
1,000
imbalanced
tweets.
Offensive/
None

Remove all
non-Arabic
characters and
repeated
letters,
normalization,
translate
emojis

Character n-
grams TF-
IDF/ AraVec
CBOW

LR/RNN/GR
U/ Bi-GRU
/LSTM/ Bi-
LSTM, 10-
fold cross
validation

Bi-GRU +
TF-IDF

P = 87%,
R = 79%
Macro F1 =
83%
Weighted
F1=84%

(Alakrot et al.,
2018b)

Collected
15,050
imbalanced
YouTube
Offensive/No
ne

Remove all
non-Arabic
characters,
tokenization,
normalization,
stemming

Word n-grams SVM, 10-fold
cross
validation

SVM + n-
grams +
preprocessing
+ stemming

P = 88%,
R = 77%
F1 = 82%

(Abozinadah
& Jones,
2017)

(Abozinadah
et al., 2015)
812 balanced
accounts.
Abusive/None

Remove all
non-Arabic
characters and
repeated
letters

Statistical
approach/
BOW

SVM, 10-fold
cross
validation

SVM +
statistical
approach

P = 96%,
R = 96%
F1 = 96%,
AUC =96%

(A.
Abozinadah &
H. Jones, Jr,
2016)

(Abozinadah
et al., 2015),
sub-sampled 8
datasets

8 different
preprocessing

BOW SVM SVM+
BOW+ no-
stemming +
correction

ACC = 96%,
P = 96%,
R = 96%,
F1=96%

(Hassan et al.,
2020)

10,000 tweets
OSACT
Shared Task,
imbalanced
Hate/Non,
Offensive/No
n

Remove all
non-Arabic
characters,
repeated
letters,
punctuation,
diacritics

Character/wor
d n-grams TF-
IDF
Mazajak word
embedding
CNN based
features

SVM/LR/NB/
FFNN/ CNN
with Bi-
LSTM/BERT/
ensemble of
best models

Combination
of two SVM
models with
different
features/ CNN
with Bi-
LSTM/BERT

Task1:5
ACC=94%,
P=90%, R=
91%, F1=91%
Task26:
ACC=97%,
P=84%, R=
78%, F1=81%

(B. Haddad et
al., 2020)

10,000 tweets
OSACT
Shared Task,
imbalanced

Remove all
non-Arabic
characters,
punctuation,
diacritics, stop
words,

TF-
IDF/BOW/
AraVec

SVM/LR/Rid
ge/CNN/
GRU/ CNN
with
attention/Bi-

Bi-GRU with
attention

Task1:
ACC=91%,
P=88%, R=
83%, F1=85%
Task2:
ACC=95%,

5 Task 1: refer to the OSACT task for detecting offensive language

6 Task 2: refer to the OSACT task for detecting hate language

28

Reference Data Preprocessing Features Models Best
Performance

Eval Metric

Hate/Non,
Offensive/No
n

repeated
letters,
normalization

GRU with
attention

P=75%, R=
74%, F1=75%

(Keleg et al.,
2020)

10,000 tweets
OSACT
Shared Task,
imbalanced
Hate/Non,
Offensive/No
n

Remove
repeated
letters
Farasa
tokenization

TF-IDF/
AraVec/
augmented list
of profanity
words

LR/CNN/Bi-
LSTM/
Multilingual
BERT/
AraBert

AraBert with
augmented list
of profanity
words

Task1:
F1=90%
Task2:
F1=81%

(Alharbi &
Lee, 2020)

10,000 tweets
OSACT
Shared Task,
imbalanced
Hate/Non,
Offensive/No
n

Remove all
non-Arabic
characters,
punctuation,
diacritics
Normalization
Segmenting
words

AraVec/Maza
jak/ Trained
char n-gram
FastText

LR/XGBoost/
LSTM

Task1: LSTM
Task2:
XGBoost

Task1:
ACC=92%,
P=90%, R=
85%, F1=87%
Task2:
ACC=96%,
P=86%, R=
69%, F1=74%

(Elmadany et
al., 2020)

10,000 tweets
OSACT
Shared Task,
randomly
collected data.
imbalanced
Hate/Non,
Offensive/No
n

Replace
URLs,
hashtags,
numbers, and
users with
their symbols

None BERT/BERT
fine-tuned on
sentiment
data/BERT
fine-tuned on
emotion/
BERT fine-
tuned on
emotion with
augmented
data

BERT fine-
tuned on
emotion with
augmented
data

Task1:
ACC=90%,
F1=83%

(Abu-Farha &
Magdy,
2020b)

10,000 tweets
OSACT
Shared Task,
imbalanced
Hate/Non,
Offensive/No
n

Remove
repeated
letters, non-
Arabic
characters,
punctuation,
URLs, and
diacritics.

Mazajak NB/Bi-
LSTM/ CNN-
Bi-
LSTM/BERT/
MTL/ MLT-
S/ MTL-S-N

Task1:
MTL-S-N
Task2: MTL

Task1:
F1=88%
Task2:
F1=76%

(Djandji et al.,
2020)

10,000 tweets
OSACT
Shared Task,
imbalanced
Hate/Non,
Offensive/No
n

Remove
URLs,
usernames,
retweet
symbols,
diacritics, and
emojis
Farasa
tokenization
Separate
hashtags

None AraBert/
AraBert with
balanced
sample,
weighted loss,
and
both/Multilab
el AraBert/
Multilabel
AraBert with
balanced
sample/Multit
ask AraBert

Multitask
AraBert

Task1:
F1=90%
Task2:
F1=82%

29

Reference Data Preprocessing Features Models Best
Performance

Eval Metric

(Saeed et al.,
2020)

10,000 tweets
OSACT
Shared Task,
imbalanced
Hate/Non,
Offensive/No
n

Remove
URLs,
usernames,
emojis,
punctuation,
non-Arabic
character, and
numbers,
normalization

TF-
IDF,Word2Ve
c, pre-trained
FastText,
AraVec, and
combination
of the best
two.
Multilingual
Bert

SVM/LR/NB/
RF/CNN/ Bi-
LSTM/Bi-
GRU/ Bi-
LSTM with
CNN/
ensemble of
LR,
SVM,NB,RF,
and nearest
neighbor

The
ensembled
model

Task1:
F1=87%
Task2:
F1=80%

(Husain,
2020)

10,000 tweets
OSACT
Shared Task,
imbalanced
Hate/Non,
Offensive/No
n

Translate
emojis.
Replace nouns
and animal
names with
their
respective
MSA nouns.
Normalization
. Hashtag
segmentation.
Remove
diacritics

Character
count
vectorizer/
TF-IDF

SVM without
preprocessing/
SVM with
preprocessing

SVM with
preprocessing

Task1:
ACC=90%,
P=89%, R=
90%, F1=89%
Task2:
ACC=95%,
P=95%, R=
95%, F1=95%

(Abuzayed &
Elsayed,
2020)

10,000 tweets
OSACT
Shared Task,
imbalanced
Hate/Non

Remove all
non-Arabic
characters,
punctuation,
diacritics
Normalization

TF-
IDF/AraVec

SVM/LR/RF/
XGBoost/
Extra
Trees/DT
/Gradient
Boosting/
RNN/CNN/L
STM/Bi-
LSTM/GRU/
CNN with
LSTM

CNN with
LSTM
without
oversampling

Task2:
F1=69%

30

CHAPTER 3

METHODOLOGY

3. 1 Data Gathering

 In this research, we gather nine publicly available datasets from several sources.

Four of these datasets represent specific dialects, while the others contain random tweets in

Arabic that might belong to several dialects. The dialects cannot be inferred from the

datasets. Each dataset is initially labeled to identify the hateful or abusive language reported

without any re-labeling from our side. We only merge all negative labels such as offensive

or abusive into one class, which is hate, since we focus on binary classification. Table 3

contains a summary of the datasets. Moreover, A description of each dataset is presented

below:

x Alshalan & Al-Khalifa, (2020) present a Twitter-based dataset that contains

different types of hate speech. The authors use terms that refer to specific tribes to

obtain the region’s particular tweets (Alshalan & Al-Khalifa, 2020). As a result,

10K Saudi dialect tweets are sampled for annotation by crowed workers, Saudi

annotators, and three freelancers familiar with the Saudi dialect (Alshalan & Al-

Khalifa, 2020). The data is published as Tweet IDs and labels. Therefore, we

employ Twitter API to extract the text from the IDs, which leads to losing some

tweets that have become obsolete.

x Mubarak et al., (2017) present two datasets. The first is a Twitter dataset collected

based on a list of obscene words (Mubarak et al., 2017). The result is 1,100 tweets

that do not focus on a specific dialect and is submitted to CrowdFlower to be

31

annotated by three annotators from Egypt (Mubarak et al., 2017). Mubarak et al.,

(2017) release a second dataset consisting of comments from the Aljazeera news

website, consisting of MSA and several undefined dialects. The data contains 32K

comments annotated using CrowdFlower (Mubarak et al., 2017). Both datasets are

labeled as obscene, offensive, and normal. In this research, we combine obscene and

offensive to be considered hate.

x Alakrot et al., (2018) present a dataset extracted from YouTube comments based on

selected channels that contain controversial videos. A sample of 16K comments,

which does not focus on specific dialect, is presented to three annotators from Iraq,

Libya, and Egypt to be labeled positive or negative (Alakrot et al., 2018).

x Ousidhoum et al., (2019) present a Twitter dataset collected using English, French,

and Arabic terms. The Arabic tweets represent mixed dialects of 3,353 tweets

annotated by public annotators who are native speakers (Ousidhoum et al., 2019).

Each tweet is labeled with five labels targeting directness, hostility, the target of

discrimination, group, and annotator feeling. This research focuses on the hostility

label that includes six separate classes and a combination of these classes depending

on the annotators’ point of view. We combine hateful, disrespectful, offensive,

abusive, fearful, and their mix into hate while keeping the normal class as it is.

x Albadi et al., (2018) present a Twitter dataset collected using Arabic religious-

related terms. The data is mixed dialects of 6,600 tweets annotated using

CrowdFlower and Arabic-speaking annotators (Albadi et al., 2018). The data is

32

published as Tweet IDs and labels. Therefore, we employ Twitter API to extract the

text from the IDs, which leads to losing some tweets that have become obsolete.

x Mulki et al., (2019) present a Twitter dataset constructed out of four specific

dialects, which are Lebanese, Syrian, Jordanian, and Palestinian (Levantine). Three

annotators use a sample of 6K tweets for annotation (Mulki et al., 2019). In this

research, we obtain the publicly available dataset and merge the abusive and hate

into one class, which is hate.

x Hadj Ameur & Alian (2021) present a Twitter dataset to detect COVID-19

pandemic fake news using a set of keywords. A sample of 10,828 tweets was

chosen for annotation by one annotator, who chose ten labels for each tweet (Hadj

Ameur & Aliane, 2021). The dataset consists of 4,782 tweets written in MSA, 1,227

North African dialects, 3,494 Middle Eastern dialects, and the rest can not be

inferred. The labels identify whether a tweet contains hate, talks about a cure, gives

advice, raises moral, news or opinion, dialect, blame and negative speech, is factual,

is worth fact-checking, and contains fake information (Hadj Ameur & Aliane,

2021). A cannot decide class is present for each label if the annotator could not

choose the tweet’s label (Hadj Ameur & Aliane, 2021). The data is obtained as

Tweet IDs. Therefore, we employ Twitter API to extract the text from the IDs,

which leads to losing some tweets that have become obsolete. In this research, we

only use the hate labels, and we remove the tweets that are labeled as cannot decide.

x H. Haddad et al., (2019) present a dataset constructed from comments in the

Tunisian dialects using keywords. Three annotators annotate a sample of 6,075 to

33

be classified as hate, abusive, and normal (H. Haddad et al., 2019). In this research,

we obtain the publicly available dataset and merge the abusive and hate into one

class, which is hate

Table 3: Data Summary

Dataset
name

Labels Size7 Labels used
in this paper

Size of
positive
label 8

Dialect Dataset
ID

(Alshalan &
Al-Khalifa,
2020)

Hate/Not-
hate

5333
tweets

Hate/Normal 1435
tweets

Saudi Dialect 𝐷𝑎𝑡𝑎

(Mubarak et
al., 2017)

Obscene/
Offensive/
Clean

31692
tweets

Hate/Normal 26039
tweets

General Tweets 𝐷𝑎𝑡𝑎

(Mubarak et
al., 2017)

Obscene/
Offensive/
Clean

1100
tweets

Hate/Normal 647 tweets General Tweets 𝐷𝑎𝑡𝑎

(Alakrot et
al., 2018)

Positive/Neg
ative

11268
tweets

Hate/Normal 2438
tweets

General Tweets 𝐷𝑎𝑡𝑎

(Ousidhoum
et al., 2019)

Six different
labels

3353
tweets

Hate/Normal 2438
tweets

General Tweets 𝐷𝑎𝑡𝑎

(Albadi et
al., 2018)

Hate/Not-
hate

3542
tweets

Hate/Normal 1460
tweets

General Tweets 𝐷𝑎𝑡𝑎

(Mulki et
al., 2019)

Hate/
Abusive/
Normal

5846
tweets

Hate/Normal

2196
tweets

Levantine 𝐷𝑎𝑡𝑎

(Hadj
Ameur &
Aliane,
2021)

Hate/Not
hate

9711
tweets

Hate/Normal

971
tweets

MSA, Maghrebi,
Levantine,
General Tweets

𝐷𝑎𝑡𝑎

(H. Haddad
et al., 2019)

Hate/Abusiv
e/Normal

6024
tweets

Hate/Normal 2203
tweets

Tunisian 𝐷𝑎𝑡𝑎

7 The indicated size is the number used in this paper as some datasets require extraction of Tweets using

Twitter API

8 The indicated size is the number obtained after we combined labels together to obtain the target classes

34

3. 2 Data Splitting and Data Combination

 The first six datasets in Table 3 are utilized in our experiments, while 𝐷𝑎𝑡𝑎 ,

𝐷𝑎𝑡𝑎 , and 𝐷𝑎𝑡𝑎 are kept for testing the generalization performance of our best

models on unseen datasets. For each of the six datasets, we deploy 80% split for training

and 20% for testing. The test set of each data is preserved for models’ evaluation. On the

other hand, the training sets of each dataset are combined to constitute one augmented

dataset with several dialects (𝐷𝑎𝑡𝑎). This combination aims to test the ability of the

models to detect hate when several datasets are concatenated at the data level. The size of

our combined corpus is 45,028 tweets; 29,386 are labeled as hate, while 15,642 are labeled

as non-hate. The ratio of hate to non-hate is 1.8, which is considered a slight imbalance in

the data.

 Additionally, we split the augmented dataset into 50% for training (𝑡𝑟𝑎𝑖𝑛), 30%

for validation (𝑣𝑎𝑙𝑖𝑑), and 20% for testing (𝑡𝑒𝑠𝑡). We use 𝑡𝑟𝑎𝑖𝑛 and 𝑣𝑎𝑙𝑖𝑑 as the

basis to train our models, while 𝑡𝑒𝑠𝑡 is kept for evaluation. A summary of the splitting

methodology applied to these datasets is presented in Figure 3.

Figure 3: A summary of the data splitting and combination process

35

3. 3 Data Cleaning and Preprocessing

 We experiment with different cleaning and preprocessing techniques with the

training and validation set of each of the six datasets. We apply LR using TF-IDF features

(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒) and LR using AraVec word embedding features (𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒) as baselines to

measure the improvement of the procedures on the validation set. This is done because we

are trying to find the best preprocessing techniques that can be applied to all datasets and

features. However, we cannot find one set of techniques that works on all datasets and

features because each dataset uses different preprocessing techniques with each feature set.

Hence, we decide to investigate preprocessing procedures on 𝑣𝑎𝑙𝑖𝑑 since our main

experiments are trained on the combined dataset, the following preprocessing experiments

are done:

1. Remove stop words: we use a combination of NLTK stop words list and a list

retrieved from GitHub, which can be found here Arabic stop words.

2. Stemming: is the technique of removing the last few letters of a word. We use ISRI

Stemmer NLTK package along with Arabic Light Stemmer tashaphyne package.

3. Remove diacritics: diacritics are marks placed above or below letters to change

words pronunciation. Therefore, we remove them using Araby pyarabic package.

4. Lemmatization: is the technique of converting the words into their base form. We

lemmatize the text using the Qalsadi lemmatizer package

5. Normalization: we normalize Arabic characters, such as Alif (أ،آ،إ) to (ا), Alif

Maqsura (ي،ئ) to (ى), and Ta Marbouta (ة) to (ه) using regular expressions because

it generates simpler words.

36

6. Remove URLs: we remove all the URLs links using regular expressions.

7. Remove Twitter symbols: we remove the mentions (@) and retweet (RT) symbols

from the text using regular expressions.

8. Remove all characters: we remove all characters, punctuations, and numbers except

those that belong to the Arabic alphabet using regular expressions.

9. Remove special characters: we remove all characters such as #, $, \n, etc.. using

regular expression

10. Translate Emojis: we translate the emojis into words using the emoji package.

11. Remove repeated letters: Some users try to emphasize and deliver their emotions by

using repeated letters. Therefore, our data contains some words with repeated letters

that are considered misspelled words. Since there is no Arabic spell checker

available, we try several techniques to correct the misspelled words. First, we try

Google translator API to check if it can be used as a spell checker. Even though it

might provide suggestions for some misspelled words, it does not correct the words

with extra characters.

 Therefore, we get a list of 94446 Arabic words from GitHub, which can be retrieved

from Arabic Words, to check the misspelled words to estimate how they affect the

performance. However, misspelled words are mainly written in dialects except for words

that have repeated characters such as راااائع-amazing. As a result, we remove repeated

characters using regular expressions where only the first character is kept.

37

3.4 Feature Engineering and Features Combination

 This study conducts several experiments at the features level. We test TF-IDF

features and pre-trained AraVec word embeddings on 𝑣𝑎𝑙𝑖𝑑 . Then, we conduct

experiments with features combination. A detailed description of every experimentation is

presented below.

3.4.1 Term Frequency-Inverse Document Frequency (TF-IDF)

 TF-IDF is a feature extraction technique widely used across classification tasks to

represent text as vectors. It calculates the number of times the word occurs in each

document and across all documents. This is called term frequency (TF) (Webb & Sammut,

2010). Additionally, it calculates the words’ weights to represent the importance of the

word in the document based on assigning a high weight to rare terms (Webb & Sammut,

2010). We test TF-IDF unigrams, bigrams, and a combination of unigrams and bigrams

techniques on 𝑣𝑎𝑙𝑖𝑑 .

3.4.2 Pre-trained AraVec Word Embedding

 AraVec, is an open-source pre-trained distributed word representation model based

on the Arabic language extracted from Wikipedia, Twitter, and Common Crawl webpages

(Soliman et al., 2017). The model is based on CBOW or SG with 100 or 300 dimensions

(Soliman et al., 2017). We obtain the Twitter-based pre-trained AraVec since most of our

data is extracted from Twitter and experiment with CBOW 100, CBOW 300, SG 100, and

SG 300.

38

3.4.3 Features Combination

 We combine the best pre-trained AraVec model with the features resulting from TF-

IDF and check the results on 𝑣𝑎𝑙𝑖𝑑 . This is done by first tokenizing each tweet, checking

if the word exists among both TF-IDF and AraVec features, then extracting the weight

(IDF) and multiplying it by the AraVec vector. However, we set the weight to 1 for any

zero weight that might drop the entire vector. On the other hand, if the word exists only

among AraVec vectors, then the vector is used. Otherwise, the term is dropped. The above

combination experiment is done without preprocessing, after the preprocessing is done on

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , and after the preprocessing is done on 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 . Moreover, the best

combination is evaluated on the test sets. Figure 4 represents the process of features

combination.

Figure 4: Feature combination process

39

3.5 Traditional Models’ Training and Evaluation

 As previously discussed, we experiment with several models on Arabic hate speech

detection and conclude that LR and SVM provide the best performance. Therefore, we

decide to train these two models for our classification task.

3.5.1 Logistic Regression (LR)

 Logistic regression is a supervised machine learning algorithm that uses a logistic

function to predict the probability of a binary outcome in terms of inputs (Hosmer et al.,

2013). It is widely used across literature for binary prediction and to solve less complex

problems.

3.5.2 Support Vector Machine (SVM)

 Support Vector Machine is a supervised machine learning algorithm used for

classification or regression. The model tries to find the best hyper-plane that can separate

the classes with the maximum margin between the points and the hyper-plane (Cristianini

& Ricci, 2008). In this research, we use LinearSVC, which allows us to find the “best fit”

of the hyper-plane that separates our classes. We try to use the SVM model. However, the

model consumes resources with lower performance than LinearSVC.

3.5.3 Training and evaluating the models

 These models are trained on 𝑡𝑟𝑎𝑖𝑛 and 𝑣𝑎𝑙𝑖𝑑 using TF-IDF and AraVec word

embedding features. We evaluate our models on 𝑡𝑒𝑠𝑡 and each data test set. Furthermore,

40

we test the generalization performance of our best models on 𝐷𝑎𝑡𝑎 , 𝐷𝑎𝑡𝑎 , and

𝐷𝑎𝑡𝑎 . Moreover, We conduct an error analysis of the models’ results, which can be

compared to the actual observations using the classification matrix presented in Table 4.

Table 4: Confusion Matrix

 Predicted

Actual Normal Hate

Normal True Negative (TN) False Positive (FP)

Hate False Negative (FN) True Positive (TP)

 The performance criteria used in this study to evaluate the models’ performance are

the Area Under the Curve (AUC), Precision (P), Recall (R), Accuracy (ACC), and F1

scores. AUC measures the classifier’s confidence in predictions regardless of the chosen

threshold and the predictions’ values. ACC is a measure of correctly classified instances

across all instances. P is a measure of the actual correct predictions of the positive class out

of all the models’ predictions. This measure is considered essential when having false

positives costs more than false negatives. R measures the correct predicted positives out of

all the actual positives, which is vital when having false negatives costs more than false

positives. Lastly, the F1 score represents a balance between P and R and can be considered

a good measure when the data is imbalanced. This research considers AUC the primary

metric for evaluation and testing because it is robust to thresholds and predictions. AUC

allows us to measure the classifier's ability to separate the classes

41

 Additionally, we combine the best models at the score level. We combine LR with

TF-IDF, SVM with TF-IDF, LR with AraVec, SVM with AraVec, LR with TF-IDF and

AraVec combination, and SVM with TF-IDF and AraVec combination. We create sets of

two, three, four, five, and six models for combination. We combine the models on 𝑡𝑟𝑎𝑖𝑛

and 𝑣𝑎𝑙𝑖𝑑 and calculate the Avg, Min, Max, and Median for each model's hate class

probabilities per tweet. The resulting possibilities are employed to calculate the overall

AUC, ACC, P, R, and F1 scores. The best-performing combinations are then applied to the

test sets.

3.6 Data Imbalance

 A balanced data is a data that has the same ratio from each class. We train our

models on a relatively balanced dataset to account for skewness in a real-world application.

In practice, the occurrence of hate data is much lower than non-hate data. To ensure that

our selected models are robust to imbalance, we evaluate their performances on imbalanced

data by adding new non-hate blocks of data to our corpus, then re-evaluating our best

models’ generalization performance on the test sets. We use the corpus collected by (El-

Khair, 2016) that contains several datasets with different dialects. The corpus includes ten

different dialects collected from news websites. We randomly add a subset of each dialect

to our augmented dataset, assuming that the data does not have hate words since it is

considered general news data from news channels. Therefore, the data is deemed to be

presented as neutral. We randomly add a subset to our corpus from each dialect. We

experiment with a sample of 3000, 5000, and 8000 from each dialect and monitor the AUC

42

score on the test sets. We apply the same preprocessing and feature engineering techniques

selected for our best models.

3.7 Pre-trained Models Training and Evaluation

 The emergence of pre-trained models, which can be fine-tuned to a specific task,

provides researchers with unified architecture applicable to different tasks. Bert, a pre-

trained model developed by Google in 2018, is widely used to detect abusive and hateful

language. Bert is based on a multi-layer bidirectional transformer encoder with self-

attention heads trained on large unlabeled datasets (Devlin et al., 2018). The model is pre-

trained on English datasets. Then, Multilingual Bert is introduced for other languages such

as Arabic. Furthermore, Antoun et al., (2020) pre-train Bert architecture on Arabic corpora

and release a model called AraBert for Arabic-specific tasks. Additionally, Antoun et al.,

(2020) release different versions of AraBert, such as base AraBert with 12 layers and large

AraBert with 24 layers. Moreover, the authors release an AraBert Twitter model trained on

60 million Tweets.

 As a result, we experiment with fine-tuning base Multilingual-Bert and base

AraBert Twitter model for classification due to limited resources that prevent us from

investigating large Bert models. We optimize the hyper-parameters of the best model and

calculate the AUC, ACC, F1, P, and R scores on 𝑣𝑎𝑙𝑖𝑑 . Additionally, we compare the

optimized, fine-tuned model with another version to ensure that the model is the best

possible system for hate speech detection. Finally, we evaluate our chosen model on the

test sets.

43

 In terms of the model’s hyper-parameters, we investigate different batch sizes when

loading the data for training. The batch size refers to the sample of training data that will be

used to estimate gradient error before the models’ weights are updated. For small datasets,

small batch size is considered better to enable the model to learn as much as possible from

the data. However, a large batch size reduces training time. In our research, our dataset is

considered relatively small. Therefore, we experiment with smaller batch sizes. The default

batch size is 32, but we try two, three, four, five, six, seven, eight, nine, ten, 16, and 64

batch sizes.

 Additionally, we experiment with the shuffling argument on both 𝑡𝑟𝑎𝑖𝑛 and

𝑣𝑎𝑙𝑖𝑑 , which returns random data samples when set to True and sequential data samples

when set to False. Furthermore, We optimize the hyperparameters of the Bert model, such

as the learning rate, dropout rate, and models’ weights. We investigate the learning rate of

the model, which controls the rate at which the models’ weights are adapted to the problem.

A small learning rate usually requires more epochs for training, while a large rate requires

fewer epochs. In this research, the default learning rate is 5e-5. Therefore, we experiment

with a learning rate of 10e-5 and 2e-5. On the other hand, the hidden dropout rate is the

probability that a given node in a layer will be trained. The dropout rate prevents overfitting

for small datasets or large architectures. The default value for the dropout rate is 0.1. We

examine the rates ranging from 0.2 to 0.8.

 In addition, we study the effects of freezing the encoding layers and embedding

layers of the Bert model since the default model is not frozen and weights are adjusted as

the model is fine-tuned. We incrementally freeze two layers until the entire model is frozen.

44

Furthermore, we try two, four, and six epochs to give the model more time to learn from

our data. Finally, we study the effects of our previously chosen preprocessing techniques

and the impact of Bert's preprocessing tools on our fine-tuned model.

45

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Impact of Preprocessing Techniques

 We inspect the results of our preprocessing experiments on our baseline models.

Removing stop words and diacritics reduces the performance of both models. That is

because negations, which constitute vital words to classify hate speech, are removed.

However, the reduction in performance is minor, suggesting that their effect is negligible.

Additionally, eliminating all characters, URLs, and special characters reduces the

performance of both models because they are rare in the text since tweets can have multiple

links and characters. This leads to higher weights with TF-IDF since it considers rare words

more important than repeated ones. Consequently, word embedding features contain

vectors for punctuation and special characters that might explain the decrease in

performance, but the slight drop indicates that these characters do not have significant

importance.

 Furthermore, removing mentions reduces the performance of 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 but the impact in both cases is minor. On the other hand, stemming and

lemmatization improve the performance on 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , but reduce the performance on

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 . This might be because stemming does not depend on dictionaries, unlike

lemmatization, which results in meaningless words. Therefore, we choose lemmatization

since it has a lower impact on word embedding features than stemming, which might

reduce the impact with feature engineering experiments. Moreover, emojis translation

46

improves the performance of both models since emojis are translated into meaningful

sentences. The sentences have high weights because they are considered rare, which

explains the improvement in 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 . The improvement on 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is due to the

existence of emojis among the features.

 Similarly, removing duplicate characters improves the performance of both models.

That is because a lot of words such as راااائع/amazing are fixed to their original form. The

improvement indicates that these words are more representative than misspelled words. As

noted in the results, we cannot apply the same preprocessing on both baselines. Therefore,

we decide to use different preprocessing techniques for each feature engineering technique

depending on the ones that improved the model's performance. As a result, the following

preprocessing techniques are applied throughout the study. A summary of the AUC scores

before and after using different preprocessing techniques on 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is presented in

Table 5. Figures 5 and 6 represent the percentage difference in applying the preprocessing

techniques on our baselines.

x For models with TF-IDF features: normalization, mentions removal, lemmatization,

emojis translation, removing repeated characters.

x For models with word embeddings vectors: normalization, emojis translation,

removing repeated characters.

47

Table 5: AUC Scores before and after applying preprocessing techniques on valid_all

Preprocessing
Techniques

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
before

preprocessing

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
after

preprocessing

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
before

preprocessing

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
after
preprocessing

Stop words
removal

0.820 0.825 0.816 0.815

ISRI Stemmer 0.827 0.846 0.816 0.781
Arabic Light

Stemmer
0.827 0.843 0.816 0.795

Diacritics
removal

0.827 0.827 0.816 0.816

Lemmatization 0.827 0.844 0.816 0.812
Normalization 0.827 0.834 0.816 0.828
URLs removal 0.827 0.821 0.816 0.811

Mentions
Removal

0.827 0.827 0.816 0.815

Remove all
characters

0.827 0.821 0.816 0.804

Remove special
characters

0.827 0.827 0.816 0.807

Emojis
translation

0.827 0.830 0.816 0.819

Remove
duplicate
characters

0.827 0.830 0.816 0.817

Figure 5: Percentage difference in preprocessing results for Baseline 1

48

Figure 6: Percentage difference in preprocessing results for Baseline 2

4.2 Impact of Data Combination on Models Performance

 Training our chosen models on the combination of datasets demonstrates that the

models perform differently on different test sets. After selecting the preprocessing and

feature techniques for our models, we report the AUC scores on the test sets in Table 69.

Table 6: AUC scores on test sets

Models Test sets TF-IDF AraVec

𝑇𝑒𝑠𝑡 0.856 0.850
𝑇𝑒𝑠𝑡 0.763 0.795
𝑇𝑒𝑠𝑡 0.780 0.773
𝑇𝑒𝑠𝑡 0.764 0.781
𝑇𝑒𝑠𝑡 0.814 0.806

9 Bold text represent the best results

49

Models Test sets TF-IDF AraVec
LR 𝑇𝑒𝑠𝑡 0.836 0.863

𝑇𝑒𝑠𝑡 0.779 0.755
 𝐷𝑎𝑡𝑎

𝐷𝑎𝑡𝑎
𝐷𝑎𝑡𝑎

0.765
0.774
0.758

0.760
0.714
0.764

SVM

𝑇𝑒𝑠𝑡 0.833 0.832
𝑇𝑒𝑠𝑡 0.808 0.806
𝑇𝑒𝑠𝑡 0.773 0.770
𝑇𝑒𝑠𝑡 0.758 0.753
𝑇𝑒𝑠𝑡 0.866 0.865
𝑇𝑒𝑠𝑡 0.792 0.786
𝑇𝑒𝑠𝑡 0.754 0.747

 𝐷𝑎𝑡𝑎
𝐷𝑎𝑡𝑎
𝐷𝑎𝑡𝑎

0.789
0.780
0.748

0.783
0.765
0.746

 As indicated in Table 6, there is not a model that outperforms other models on our

test sets. LR with TF-IDF outperforms other models on 𝑇𝑒𝑠𝑡 , 𝑇𝑒𝑠𝑡 , and 𝑇𝑒𝑠𝑡 , while

LR with AraVec performs best with 𝑇𝑒𝑠𝑡 , 𝑇𝑒𝑠𝑡 , and 𝐷𝑎𝑡𝑎 . On the other hand, SVM

with TF-IDF outperforms other models on the remaining test sets, which are 𝑇𝑒𝑠𝑡 , 𝑇𝑒𝑠𝑡 ,

𝐷𝑎𝑡𝑎 , and 𝐷𝑎𝑡𝑎 .

4.3 Impact of Features on Model Performance

 The results of features engineering experiments indicate that models perform best

using TF-IDF unigrams and pre-trained AraVec SkipGram 300. As a result, these features

are further combined on the feature level. Our experiments reveal that the combination of

features with the preprocessing set performed on 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 outperforms other

preprocessing techniques. Therefore, we combine TF-IDF with AraVec features after

50

applying the preprocessing techniques chosen for 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 . The AUC scores of features

combination on the test sets are reported in Table 7.

Table 7: AUC scores of features combination on test sets

Models Test sets AraVec +
TF-IDF

LR

𝑇𝑒𝑠𝑡 0.822
𝑇𝑒𝑠𝑡 0.815
𝑇𝑒𝑠𝑡 0.764
𝑇𝑒𝑠𝑡 0.770
𝑇𝑒𝑠𝑡 0.840
𝑇𝑒𝑠𝑡 0.810
𝑇𝑒𝑠𝑡 0.750

 𝐷𝑎𝑡𝑎
𝐷𝑎𝑡𝑎
𝐷𝑎𝑡𝑎

0.781
0.820
0.742

SVM

𝑇𝑒𝑠𝑡 0.821
𝑇𝑒𝑠𝑡 0.813
𝑇𝑒𝑠𝑡 0.762
𝑇𝑒𝑠𝑡 0.763
𝑇𝑒𝑠𝑡 0.840
𝑇𝑒𝑠𝑡 0.800
𝑇𝑒𝑠𝑡 0.741

 𝐷𝑎𝑡𝑎
𝐷𝑎𝑡𝑎
𝐷𝑎𝑡𝑎

0.775
0.810
0.740

 As indicated in Table 7, combining the features of TF-IDF and AraVec with our

models has a lower performance than the performance of the individual feature set, shown

in Table 6. Looking into the proportion of the dropped features for 𝑇𝑒𝑠𝑡 , we conclude

that 61% of TF-IDF features are dropped because they do not have vector representations in

AraVec. The dropped words represent important features for hate classification, such as the

word “stab- ع ”. This explains the drop in performance across most of the test sets.

51

 On the contrary, LR with a combination of TF-IDF and AraVec features outperform

LR with TF-IDF and SVM with TF-IDF on 𝑇𝑒𝑠𝑡 and 𝐷𝑎𝑡𝑎 , respectively. The

proportions of dropped words from both 𝑇𝑒𝑠𝑡 and 𝐷𝑎𝑡𝑎 are 1.8% and 17%,

respectively. Moreover, the dropped words represent general Twitter symbols and some

translated emojis, which do not have major effects on detection. Overall, the combination

of the features does not provide significant improvement compared to the resources

consumed for the combination. Therefore, we will be excluding the combination from

further experiments.

4.4 Impact of Model Combination on Model Performance

 The results of model combination experiments reveal that the scores combination of

two LR models with TF-IDF and AraVec outperform others on Test_2, Test_4, Test_6,

Data_new, and Data_new1. Additionally, the scores combination of three models, LR using

TF-IDF, LR using AraVec, and SVM using TF-IDF, outperform individual models and

other models’ combinations when tested on the test sets. However, the results on 𝑇𝑒𝑠𝑡 ,

𝑇𝑒𝑠𝑡 , 𝑇𝑒𝑠𝑡 , and 𝑇𝑒𝑠𝑡 do not change after model combination.

 Furthermore, the combination results suggest that the individual models with the

highest scores provide similar scores when combined. The Avg combination operator gives

the highest AUC score compared to the other operators across all test sets. That is because

the Avg considers all the models’ scores while the other operators rely more on the

performance of individual models. On the contrary, the performance of Max, Min, and

Median operators is lower or similar to the performance of the Avg operator on test sets.

52

Figures 7 and 8 represent our best models’ combination with different operators across the

test sets. Thus, we decide to report the Avg results as the final results of the models’

combination on our test sets. A summary of the best combination results on the test sets is

presented in Table 8.

Table 8:The AUC scores on the best models’ combination on test sets

Models Test Set AUC score

LR+TFIDF/LR+AraVec

𝑇𝑒𝑠𝑡
𝑇𝑒𝑠𝑡
𝑇𝑒𝑠𝑡
𝑇𝑒𝑠𝑡
𝑇𝑒𝑠𝑡
𝑇𝑒𝑠𝑡
𝑇𝑒𝑠𝑡

𝐷𝑎𝑡𝑎
𝐷𝑎𝑡𝑎
𝐷𝑎𝑡𝑎

0.864
0.810
0.799
0.782
0.868
0.837
0.783
0.801
0.801
0.775

LR+TFIDF/LR+AraVec/SVM+TFDF

𝑇𝑒𝑠𝑡
𝑇𝑒𝑠𝑡
𝑇𝑒𝑠𝑡
𝑇𝑒𝑠𝑡
𝑇𝑒𝑠𝑡
𝑇𝑒𝑠𝑡
𝑇𝑒𝑠𝑡

𝐷𝑎𝑡𝑎
𝐷𝑎𝑡𝑎
𝐷𝑎𝑡𝑎

0.865
0.813
0.796
0.791
0.839
0.862
0.781
0.790
0.777
0.778

53

Figure 7: The results of different operators on LR+TF-IDF/LR+AraVec

Figure 8: The results of different operators on LR+TF-IDF/LR+AraVec/SVM+TF-IDF

 As indicated in Table 8, the models’ combinations outperform all our previous

models. Additionally, the difference in scores between the two combinations is not

LR+TF-IDF/LR+AraVec

Average Scores Max Score Min Score

LR+TFIDF/LR+AraVec/SVM+TFDF

Average Scores Max Score Min Score Median Score

54

significant. Therefore, these models are chosen as our best models to be tested with an

imbalanced dataset.

4.5 Impact of Imbalance on Model Performance

 We test our best models' ability to detect hate speech with imbalanced data to

account for real-life applications. Our experiments suggest that the scores combination of

three models, LR using TF-IDF, LR using AraVec, and SVM using TF-IDF, is considered

the best model. The model maintained similar performance across all test sets except for

𝑡𝑒𝑠𝑡 and 𝑡𝑒𝑠𝑡 , which has a slightly lower score than the combination on the balanced

dataset. However, the remaining test sets, especially new dialects, have better performance

than other models. These results show that our model is robust to data imbalance.

Therefore, the performance of our model will not deteriorate if the ratio of hate/non-hate

varies across different platforms.

 Furthermore, the results of our best model are not highly affected by the change in

sample size. The model trained on our original data with 80,000 additional data has the

highest scores. However, the improvement across sample sizes is considered minor. Similar

to the model combination results, the Avg operator results outperform the results of other

operators. Therefore, we will be reporting the Avg AUC scores on our test sets in Table 9.

55

Table 9: AUC scores on models’ combination with imbalanced data

Models Test Set AUC score

LR+TFIDF/LR+AraVec/SVM+TFDF

𝑇𝑒𝑠𝑡
𝑇𝑒𝑠𝑡
𝑇𝑒𝑠𝑡
𝑇𝑒𝑠𝑡
𝑇𝑒𝑠𝑡
𝑇𝑒𝑠𝑡
𝑇𝑒𝑠𝑡

𝐷𝑎𝑡𝑎
𝐷𝑎𝑡𝑎
𝐷𝑎𝑡𝑎

0.960
0.810
0.773
0.800
0.832
0.860
0.780
0.840
0.885
0.781

4.6 Impact of Pre-trained Models

 The results of our experiments with different Bert models indicate that Base

AraBert Twitter outperforms Multilingual Bert on 𝑣𝑎𝑙𝑖𝑑 with the default hyper-

parameters. This might be because Base AraBert Twitter is trained on five different Arabic

datasets and 60 million Tweets, while Multilingual Bert is trained only on Arabic

Wikipedias. Therefore, we will be optimizing the hyperparameters of the Base AraBert

Twitter model on our balanced dataset.

 In terms of batch sizes, Figure 9 shows the changes in AUC scores with the increase

in batch size. The figure suggests a slight increase in AUC score starting with a batch size

of ten until 64, with the highest AUC score of 92% with a batch size of 64. Therefore, we

choose a batch size of 64 as our final batch size because it provides the highest performance

on our 𝑣𝑎𝑙𝑖𝑑 and reduces training time significantly. As for data sample shuffling, we

conclude that shuffling the training samples randomly and keeping validation samples

sequential provide the best performance on 𝑣𝑎𝑙𝑖𝑑 .

56

 The results with different learning rates indicate that the default learning rate of 5e-

5 is the best learning rate for our model. As for the dropout rates, Figure 11 shows the

fluctuations in AUC scores as we increase the dropout rate. However, the highest score is

achieved with the default dropout rate of 0.1. Moreover, our experiments with freezing the

different layers of the model indicate that freezing the embedding layers is not highly

affecting the performance, with a slight decrease of 0.001% in the AUC score on 𝑣𝑎𝑙𝑖𝑑 .

This indicates that the pre-trained embedding layers are representative of the words without

any prior fine-tuning on our task. Similarly, freezing the first eight layers has a minor effect

on models’ performance. Moreover, freezing eight to 10 layers of the model further reduces

performance. However, freezing the last two layers reduces the performance by 4%. This

indicates that the final two layers of AraBert are the most task-specific layers that should be

fine-tuned for hate speech detection or any other task. Figure 11 displays the changes in

AUC scores as the model’s layers are frozen.

 Furthermore, we incrementally increase the number of epochs by two until we reach

six epochs. However, we notice that the validation loss and accuracy are consistent after the

second epoch, indicating that the model is stuck at a local minimum and cannot learn

further from the data. Therefore, we change the learning rates with the increase in epochs.

However, the results do not change, indicating a need to inspect further. Additionally, we

check the effects of AraBert preprocessing with our fine-tuned model. We tried each

technique individually, but the performance does not vary much with any technique.

Similarly, we apply our previously selected preprocessing technique, as indicated in section

4.1, to the data with AraBert model. However, the performance is slightly reduced. This

might be because AraBert is originally pre-trained on 60 million raw Tweets without prior

57

preprocessing. Finally, we check the AraBert base Twitter model against another AraBert

Base version. AraBert Base Twitter version achieves the highest performance on 𝑣𝑎𝑙𝑖𝑑 .

This might be because it is pre-trained on Twitter, which fits our data.

Figure 9: AUC scores with the increase in batch size

58

Figure 10: AUC scores with the increase in the dropout rate

Figure 11: AUC scores with the increase in layers' freezing

59

4.7 Generalization of AraBert on Test Sets

 We test our fine-tuned model on our test sets. The results indicate that AraBert

outperforms other models on all test sets. We report the results of AraBert on the test sets in

Table 10. AraBert provides better generalization performance on 𝐷𝑎𝑡𝑎 , 𝐷𝑎𝑡𝑎 , and

𝐷𝑎𝑡𝑎 . These datasets contain Levantine, Tunisian, and other dialects, revealing that

AraBert can predict hate speech across different dialects. Figure 12 shows the ROC_AUC

curves of our fine-tuned AraBert model using the balanced data on test sets.

Table 10: AraBert AUC results on test sets

Test Sets AUC scores
𝑇𝑒𝑠𝑡 0.917
𝑇𝑒𝑠𝑡 0.908
𝑇𝑒𝑠𝑡 0.884
𝑇𝑒𝑠𝑡 0.850
𝑇𝑒𝑠𝑡 0.937
𝑇𝑒𝑠𝑡 0.950
𝑇𝑒𝑠𝑡 0.805

𝐷𝑎𝑡𝑎 0.903
𝐷𝑎𝑡𝑎 0.942
𝐷𝑎𝑡𝑎 0.855

60

Figure 12: ROC_AUC curves on test sets

 Similarly, we test the effect of imbalance on fine-tuned AraBert using the same

imbalanced data used for classical ML. The results demonstrate that the model is robust to

imbalance with slight fluctuation for some scores. However, the model still performs well

across all test sets. Therefore, fine-tuned AraBert Twitter is considered our best system for

hate speech detection across dialects. Table 11 shows the AUC scores of the AraBert model

on test sets after being fine-tuned on imbalanced data. Figure 13 shows the ROC_AUC

curves for our fine-tuned AraBert model using the imbalanced dataset on test sets.

61

Table 11: AUC scores of AraBert on test sets

Test Sets AUC scores
𝑇𝑒𝑠𝑡 0.980
𝑇𝑒𝑠𝑡 0.910
𝑇𝑒𝑠𝑡 0.880
𝑇𝑒𝑠𝑡 0.850
𝑇𝑒𝑠𝑡 0.930
𝑇𝑒𝑠𝑡 0.950
𝑇𝑒𝑠𝑡 0.800

𝐷𝑎𝑡𝑎 0.910
𝐷𝑎𝑡𝑎 0.930
𝐷𝑎𝑡𝑎 0.850

Figure 13: ROC_AUC curves on test sets

4.8 Error Analysis

 We inspect the misclassified tweets for our best model on 𝑇𝑒𝑠𝑡 , 𝐷𝑎𝑡𝑎 ,

𝐷𝑎𝑡𝑎 , and 𝐷𝑎𝑡𝑎 to examine the extent of the model’s ability to detect dialects.

For 𝑇𝑒𝑠𝑡 , we examine false-negative tweets incorrectly predicted as non-hateful such as

“You see, Najran and Al-Ahsa are all Shiites, why do not you slaughter them as long as you

62

do not love them?” "@emad2566 ќѝўџѠќѝўџѠќѝўџѠ نه دام ب ه م ت عه ل له ش اء ان والاح ا ن ت

نه " م ت . This tweet is written in Saudi dialect and has words such as “killing” and

“Shiites” that are highly associated with hate. However, words such as “love them” and

negations are represented as one letter in the Saudi dialect. This might confuse the model

because it cannot capture some Saudi words. In contrast, false-positive tweets that are

incorrectly predicted as hateful, such as “@AbdulB85lahBina_1 @Kaled__mh @loooolzii

I do not need you to say a text. But anyone who reads will understand that this is the Shiite

opinion towards…https:A104//t.co/jdKdqB2eit” " @AbdulB85lahBina_1 @Kaled__mh

@loooolzii اه عه ت ا ه را ال فه ان ه ا س ق ا. ل ا ش ل ن اج تق …ما

https:A104//t.co/jdKdqB2eit ". This tweet contains a word like “Shiites” associated with

hate, which might lead the model to misclassify it as hate because it cannot understand

some sentences’ context.

 For 𝐷𝑎𝑡𝑎 , the model misclassifies a few tweets as false-negative, such as “My

God, if you shut your mouth, it will be better, you suck” ى " ن ارح الع الله اذا ب بلع بك

" نما از . This sentence consists of powerful dialectal hate words written in the Levantine

dialect. This might indicate that the model still has limitations regarding extremely dialectal

sentences. As for false-positive, a sentence such as, “Everything is in moderation. It has

become a farce in the eyes of the world. The punishment for Wahhab Wahhab is the killer

of Abu Diab.” ن العال العقاب " لة بع ت مه ى نق ص ع ای بال ل شي بال

63

اب هاب وهاب قاتل اب د "ل , is a sentence that is not considered hate by the annotators.

However, it can be considered hate based on our definition as it contains a specific attack

towards a person and words such as “killer”.

 For the misclassified tweets on 𝐷𝑎𝑡𝑎 , we determine that false-negative

sentences, such as “The weather is hot, God damn Corona ќѝўџѠ” ال ح ش الله یلع "

رونا "ќѝўџѠ ك , are misspelled and contain the word “curse”, which is associated with hate.

That might explain why it is labeled as hate. However, the sentence is not considered hate

since it is directed toward a disease. Therefore, there might be an annotation error unless a

different context or definition is given to annotators. On the other hand, false-positive

sentences, such as “Denmark plans to cull more than 20 million minks for carrying new

genetic mutations in the composition of the Corona virus https://t.co/aTM4V9YzfU” "

ام اك م م اع ارك تع ن " 20ال ان "ال ن م ح ة -مل ة في ت ی ة ج ات ج ف له ل

رونا وس ”https://t.co/aTM4V9YzfU", contain words such as “execute” and “animal ف

that can lead the model to misclassify the sentence to be hate.

 Finally, the error analysis on 𝐷𝑎𝑡𝑎 , “The Jews of Tunisia enter the anguish” "

ب الیهود ن ال خل ن ی "ت , is a false-negative sentence that might be misclassified due to

unclear context. Additionally, “Ignorance of the people about their religion” عب " جهل ال

64

ه جهة جهة "دی , is a false-positive sentence that contains words related to hate and directed

towards people, which might explain why the model classifies it as hate. This indicates that

the model still has some limitations in understanding the context of a sentence, especially

when written using extremely dialectal words. Therefore, future work should address

labeling errors, increasing dialectal words in training, misspelled words, and context.

65

CHAPTER 5

CONCLUSION AND FUTURE WORK

 This research experiments with ML systems and pre-trained models to classify hate

speech in several Arabic dialects. We select LR and SVM to perform our experiments on

data, features, and models levels. First, we combine our six datasets to choose the best pre-

processing and feature engineering techniques. Second, we combine the best features and

report their results on new dialects. Third, we combine the best models for further

improvement in classification. Moreover, we fine-tune pre-trained AraBert base Twitter

model with our augmented dataset for our detection task and optimize its hyper-parameters.

Lastly, we test the impact of class imbalance to imitate data in practice on our best classical

ML models and AraBert model.

 We conclude that the scores combination of three models, LR using TF-IDF, LR

using AraVec, and SVM using TF-IDF, outperforms all other models in classical ML

algorithms. The combination achieves scores of 84%, 89%, and 78% on Levantine,

Tunisian, and mixed dialects datasets. Even though our best classical ML model results

have acceptable performance, AraBert proves to be the best system to detect and generalize

hate speech across several dialects. The model achieves scores of 91%, 93%, and 85% on

Levantine, Tunisian, and mixed dialects datasets. Furthermore, both traditional and pre-

trained models are robust to dataset imbalance with little to no changes in performance with

a ratio of 0.31 hate/non-hate.

66

 Our work can be extended through further inspection of some pre-processing

techniques such as spell-checking to prevent misclassification due to incorrect words.

Moreover, the North African dialect is not highly represented among datasets. Therefore,

future work needs to address adding more data in the North African dialect to ensure better

hate detection across these regions. Additionally, deep learning models can be evaluated

and combined with our models. Furthermore, an attempt to combine pre-trained models

with other models can be used to build a more robust classification system. Finally,

machine translation can be utilized to translate the Arabic dialects into English, which has

fewer variations than Arabic, then detect hate speech in English.

67

BIBLIOGRAPHY

A. Abozinadah, E., & H. Jones, Jr, J. (2016). Improved Micro-Blog Classification for
Detecting Abusive Arabic Twitter Accounts. International Journal of Data Mining &
Knowledge Management Process, 6(6), 17–28.
https://doi.org/10.5121/ijdkp.2016.6602

Abdellatif, M., & Elgammal, A. (2020, May). Offensive language detection in Arabic using
ULMFiT. In Proceedings of the 4th Workshop on Open-Source Arabic Corpora and
Processing Tools, with a Shared Task on Offensive Language Detection (pp. 82-85).

Abozinadah, E. A., & Jones, J. H. (2017). A statistical learning approach to detect abusive
twitter accounts. ACM International Conference Proceeding Series, Part F130280, 6–
13. https://doi.org/10.1145/3093241.3093281

Abozinadah, E. A., Mbaziira, A. v., & Jones, J. H. Jr. (2015). Detection of Abusive
Accounts with Arabic Tweets. International Journal of Knowledge Engineering-
IACSIT, 1(2), 113–119. https://doi.org/10.7763/IJKE.2015.V1.19

Abro, S., Shaikh, S., Ali, Z., Khan, S., Mujtaba, G., & Khand, Z. H. (2020). Automatic
Hate Speech Detection using Machine Learning: A Comparative Study. In IJACSA)
International Journal of Advanced Computer Science and Applications (Vol. 11, Issue
8). www.ijacsa.thesai.org

Farha, I. A., & Magdy, W. (2020, May). From arabic sentiment analysis to sarcasm
detection: The arsarcasm dataset. In Proceedings of the 4th Workshop on Open-Source
Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language
Detection (pp. 32-39).

Farha, I. A., & Magdy, W. (2020, May). Multitask learning for Arabic offensive language
and hate-speech detection. In Proceedings of the 4th workshop on open-source Arabic
corpora and processing tools, with a shared task on offensive language detection (pp.
86-90).

Abuzayed, A., & Elsayed, T. (2020, May). Quick and simple approach for detecting hate
speech in Arabic tweets. In Proceedings of the 4th workshop on open-source Arabic
Corpora and processing tools, with a shared task on offensive language detection (pp.
109-114).

Alakrot, A., Murray, L., & Nikolov, N. S. (2018a). Dataset Construction for the Detection
of Anti-Social Behaviour in Online Communication in Arabic. Procedia Computer
Science, 142, 174–181. https://doi.org/10.1016/j.procs.2018.10.473

68

Alakrot, A., Murray, L., & Nikolov, N. S. (2018b). Towards Accurate Detection of
Offensive Language in Online Communication in Arabic. Procedia Computer Science,
142, 315–320. https://doi.org/10.1016/j.procs.2018.10.491

Albadi, N., Kurdi, M., & Mishra, S. (2018). Are they our brothers? analysis and detection
of religious hate speech in the Arabic Twittersphere. 2018 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE,
69–76. https://doi.org/10.1109/ASONAM.2018.8508247

Alharbi, A. I., & Lee, M. (2020, May). Combining character and word embeddings for the
detection of offensive language in Arabic. In Proceedings of the 4th Workshop on
Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive
Language Detection (pp. 91-96).

Al-Hassan, A., & Al-Dossari, H. (2019). DETECTION OF HATE SPEECH IN SOCIAL
NETWORKS: A SURVEY ON MULTILINGUAL CORPUS. 83–100.
https://doi.org/10.5121/csit.2019.90208

Alshalan, R., & Al-Khalifa, H. (2020). A deep learning approach for automatic hate speech
detection in the saudi twittersphere. Applied Sciences (Switzerland), 10(23), 8614.
https://doi.org/10.3390/app10238614

Antoun, W., Baly, F., & Hajj, H. (2020). Arabert: Transformer-based model for arabic
language understanding. arXiv preprint arXiv:2003.00104.

Badjatiya, P., Gupta, S., Gupta, M., & Varma, V. (2017). Deep learning for hate speech
detection in tweets. 26th International World Wide Web Conference 2017, WWW
2017 Companion, 759–760. https://doi.org/10.1145/3041021.3054223

Benesch, S. (2014). Defining and diminishing hate speech. In State of the world’s
minorities and indigenous peoples 2014 (pp. 18–25). http://dangerousspeech.org/wp-
content/uploads/2014/07/mrg-state-of-the-worlds-minorities-2014-chapter02.pdf

Burnap, P., & Williams, M. L. (2015). Cyber Hate Speech on Twitter: An Application of
Machine Classification and Statistical Modeling for Policy and Decision Making.
Policy & Internet, 7(2), 223–242.
https://onlinelibrary.wiley.com/doi/full/10.1002/poi3.85

Caruana, R., Pratt, L., & Thrun, S. (1997). Multitask Learning * (Vol. 28). Kluwer
Academic Publishers.

Cristianini, N., & Ricci, E. (2008). Support Vector Machines. In Encyclopedia of
Algorithms (pp. 928–932). Springer US. https://doi.org/10.1007/978-0-387-30162-
4_415

69

Davidson, T., Warmsley, D., Macy, M., & Weber, I. (2017). Automated Hate Speech
Detection and the Problem of Offensive Language. Proceedings of the International
AAAI Conference on Web and Social Media, 11(1).
https://ojs.aaai.org/index.php/ICWSM/article/view/14955

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding.
http://arxiv.org/abs/1810.04805

Djandji, M., Baly, F., Antoun, W., & Hajj, H. (2020, May). Multi-task learning using
AraBert for offensive language detection. In Proceedings of the 4th Workshop on
Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive
Language Detection (pp. 97-101).

El-Khair, I. A. (2016, November). .5 billion words Arabic Corpus. ArXiv Preprint
ArXiv:1611.04033. https://arxiv.org/ftp/arxiv/papers/1611/1611.04033.pdf

Elmadany, A., Zhang, C., Abdul-Mageed, M., & Hashemi, A. (2020). Leveraging affective
bidirectional transformers for offensive language detection. arXiv preprint
arXiv:2006.01266.

Gambäck, B., & Sikdar, U. K. (2017, August). Using convolutional neural networks to
classify hate-speech. In Proceedings of the first workshop on abusive language online
(pp. 85-90). https://aclanthology.org/W17-3013.pdf

Gaydhani, A., Doma, V., Kendre, S., & Bhagwat, L. (2018). Detecting Hate Speech and
Offensive Language on Twitter using Machine Learning: An N-gram and TFIDF
based Approach. http://arxiv.org/abs/1809.08651

Guellil, I., Adeel, A., Azouaou, F., Chennoufi, S., Maafi, H., & Hamitouche, T. (2020).
Detecting hate speech against politicians in Arabic community on social media.
International Journal of Web Information Systems, 16(3), 295–313.
https://doi.org/10.1108/IJWIS-08-2019-0036

Haddad, B., Orabe, Z., Al-Abood, A., & Ghneim, N. (2020, May). Arabic offensive
language detection with attention-based deep neural networks. In Proceedings of the
4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared
Task on Offensive Language Detection (pp. 76-81).

Haddad, H., Mulki, H., & Oueslati, A. (2019). T-HSAB: A Tunisian Hate Speech and
Abusive Dataset. Communications in Computer and Information Science, 1108, 251–
263. https://doi.org/10.1007/978-3-030-32959-4_18

Hadj Ameur, M. S., & Aliane, H. (2021). AraCOVID19-MFH: Arabic COVID-19 Multi-
label Fake News & Hate Speech Detection Dataset. Procedia CIRP, 189, 232–241.
https://doi.org/10.1016/j.procs.2021.05.086

70

Hassan, S., Samih, Y., Mubarak, H., Abdelali, A., Rashed, A., & Chowdhury, S. A. (2020,
May). ALT submission for OSACT shared task on offensive language detection. In
Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing
Tools, with a Shared Task on Offensive Language Detection (pp. 61-65).

Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression.
Wiley. https://doi.org/10.1002/9781118548387

Howard, J., & Ruder, S. (2018). Universal Language Model Fine-tuning for Text
Classification. http://arxiv.org/abs/1801.06146

Husain, F. (2020). OSACT4 shared task on offensive language detection: Intensive
preprocessing-based approach. arXiv preprint arXiv:2005.07297.

Husain, F., Lee, J., Henry, S., & Uzuner, Ö. (2020). SalamNET at SemEval-2020 Task 12:
Deep Learning Approach for Arabic Offensive Language Detection. In Proceedings of
the Fourteenth Workshop on Semantic Evaluation, 2133–2139.
https://aclanthology.org/2020.semeval-1.283.pdf

Husain, F., & Uzuner, O. (2021a). Transfer Learning Approach for Arabic Offensive
Language Detection System BERT-Based Model. 2021 4th International Conference
on Computer Applications & Information Security (ICCAIS) - Contemporary
Computer Technologies and Applications.
https://arxiv.org/ftp/arxiv/papers/2102/2102.05708.pdf

Husain, F., & Uzuner, O. (2021b). Transfer Learning Approach for Arabic Offensive
Language Detection System BERT-Based Model. https://huggingface.co/

Isaksen, V., & Gambäck, B. (2020a). Using Transfer-based Language Models to Detect
Hateful and Offensive Language Online. Proceedings of the Fourth Workshop on
Online Abuse and Harms, 16–27. https://doi.org/10.18653/v1/P17

Isaksen, V., & Gambäck, B. (2020, November). Using transfer-based language models to
detect hateful and offensive language online. In Proceedings of the Fourth Workshop
on Online Abuse and Harms (pp. 16-27).

Keleg, A., El-Beltagy, S. R., & Khalil, M. (2020, May). ASU_OPTO at OSACT4-
Offensive Language Detection for Arabic text. In Proceedings of the 4th Workshop on
Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive
Language Detection (pp. 66-70).

Kwok, I., & Wang, Y. (2013, June). Locate the Hate: Detecting Tweets against Blacks.
Twenty-Seventh AAAI Conference on Artificial Intelligence.
https://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6419/6821

71

Le, Q., & Mikolov, T. (2014, June). Distributed representations of sentences and
documents. In International conference on machine learning (pp. 1188-1196). PMLR.

Malmasi, S., & Zampieri, M. (2017). Detecting Hate Speech in Social Media.
http://arxiv.org/abs/1712.06427

Mossie, Z. (2020). Social Media Dark Side Content Detection using Transfer Learning
Emphasis on Hate and Conflict. The Web Conference 2020 - Companion of the World
Wide Web Conference, WWW 2020, 259–263.
https://doi.org/10.1145/3366424.3382084

Mozafari, M., Farahbakhsh, R., & Crespi, N. (2019). A BERT-Based Transfer Learning
Approach for Hate Speech Detection in Online Social Media. International Conference
on Complex Networks and Their Applications, 928–940.
http://arxiv.org/abs/1910.12574

Mubarak, H., Darwish, K., & Magdy, W. (2017). Abusive Language Detection on Arabic
Social Media. In Proceedings of the first workshop on abusive language online (pp.
52–56). http://alt.qcri.org/

Mulki, H., Haddad, H., Bechikh Ali, C., & Alshabani, H. (2019). L-HSAB: A Levantine
Twitter Dataset for Hate Speech and Abusive Language. Proceedings of the Third
Workshop on Abusive Language Online, 111–118. https://aclanthology.org/W19-
3512.pdf

Nockleby, J. T. (2000). HATE SPEECH (2nd ed., Vol. 3).
https://link.gale.com/apps/doc/CX3425001193/GVRL?u=aub&sid=bookmark-
GVRL&xid=eda1109b

Olteanu, A., Castillo, C., Boy, J., & Varshney, K. R. (2018). The Effect of Extremist
Violence on Hateful Speech Online. Proceedings of the International AAAI
Conference on Web and Social Media, 12(1). http://arxiv.org/abs/1804.05704

Ousidhoum, N., Lin, Z., Zhang, H., Song, Y., & Yeung, D.-Y. (2019, August 29).
Multilingual and Multi-Aspect Hate Speech Analysis. ArXiv Preprint
ArXiv:1908.11049. http://arxiv.org/abs/1908.11049

Patchin, J. W., & Hinduja, S. (2010). Cyberbullying and Self-Esteem *. Journal of School
Health , 80(12), 614–621. http://www.ashaweb.org/continuing

Rizoiu, M.-A., Wang, T., Ferraro, G., & Suominen, H. (2019, June 10). Transfer Learning
for Hate Speech Detection in Social Media. Http://Arxiv.Org/Abs/1906.03829.
http://arxiv.org/abs/1906.03829

Saeed, H. H., Calders, T., & Kamiran, F. (2020, May). OSACT4 shared tasks: Ensembled
stacked classification for offensive and hate speech in Arabic tweets. In Proceedings

72

of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a
Shared Task on Offensive Language Detection (pp. 71-75).

Salameh, M., Bouamor, H., & Habash, N. (2018, August). Fine-grained arabic dialect
identification. In Proceedings of the 27th International Conference on Computational
Linguistics (pp. 1332-1344).

Sevani, N., Soenandi, I. A., Adianto, & Wijaya, J. (2021). Detection of Hate Speech by
Employing Support Vector Machine with Word2Vec Model. 7th International
Conference on Electrical, Electronics and Information Engineering: Technological
Breakthrough for Greater New Life, ICEEIE 2021.
https://doi.org/10.1109/ICEEIE52663.2021.9616721

Sohn, H., & Lee, H. (2019). MC-BERT4HATE: Hate speech detection using multi-channel
bert for different languages and translations. IEEE International Conference on Data
Mining Workshops, ICDMW, 2019-November, 551–559.
https://doi.org/10.1109/ICDMW.2019.00084

Soliman, A. B., Eissa, K., & El-Beltagy, S. R. (2017). AraVec: A set of Arabic Word
Embedding Models for use in Arabic NLP. Procedia Computer Science, 117, 256–
265. https://doi.org/10.1016/j.procs.2017.10.117

Turney, P. D. (2002). Thumbs up or thumbs down? Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics, 1–8.
https://doi.org/10.3115/1073083.1073153

Page, L. (2001). United States Patent: 6285999 - Method for node ranking in a linked
database. 6285999. Sep. 4, 2001.

Wang, D., & Zheng, T. F. (2015). Transfer Learning for Speech and Language Processing.
2015 Asia-Pacific Signal and Information Processing Association Annual Summit and
Conference (APSIPA), 1225–1237. http://arxiv.org/abs/1511.06066

Warner, W., & Hirschberg, J. (2012). Detecting Hate Speech on the World Wide Web.
Proceedings of the Second Workshop on Language in Social Media, 19–26.
https://aclanthology.org/W12-2103.pdf

Waseem, Z. (2016). Are You a Racist or Am I Seeing Things? Annotator Influence on Hate
Speech Detection on Twitter. Proceedings of the First Workshop on NLP and
Computational Social Science, 138–142. https://aclanthology.org/W16-5618.pdf

Waseem, Z., & Hovy, D. (2016). Hateful Symbols or Hateful People? Predictive Features
for Hate Speech Detection on Twitter. Proceedings of the NAACL Student Research
Workshop, 88–93. https://aclanthology.org/N16-2013.pdf

73

Watanabe, H., Bouazizi, M., & Ohtsuki, T. (2018). Hate Speech on Twitter: A Pragmatic
Approach to Collect Hateful and Offensive Expressions and Perform Hate Speech
Detection. IEEE Access, 6, 13825–13835.
https://doi.org/10.1109/ACCESS.2018.2806394

Webb, G. I., & Sammut, C. (Eds.). (2010). TF–IDF. In Encyclopedia of Machine Learning
(pp. 986–987). Springer US. https://doi.org/10.1007/978-0-387-30164-8_832

Wiedemann, G., Ruppert, E., Jindal, R., & Biemann, C. (2018). Transfer Learning from
LDA to BiLSTM-CNN for Offensive Language Detection in Twitter. Proceedings of
GermEval 2018, 14th Conference on Natural Language Processing (KONVENS
2018), 1–10. http://arxiv.org/abs/1811.02906

Zampieri, M., Nakov, P., Rosenthal, S., Atanasova, P., Karadzhov, G., Mubarak, H.,
Derczynski, L., Pitenis, Z., & Çöltekin, Ç. (2020, June 12). SemEval-2020 Task 12:
Multilingual Offensive Language Identification in Social Media (OffensEval 2020).
Proceedings of the International Workshop on Semantic Evaluation.
http://arxiv.org/abs/2006.07235

