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ABSTRACT 

OF THE THESIS OF 
 
 
Sara Maen Harba     for  Master of Science in Business Analytics 
   Major: Business Analytics 
 
 
 
Title: Detecting Hate Speech Across Arabic Dialects 
 
 
With the ever-increasing adoption of social network platforms, online hate speech has 
become a pressing and growing issue. Hate speech detection in English is attracting more 
and more attention, and some detection systems have shown some successful results. In 
contrast, hate speech detection in Arabic is still faced with various challenges mainly due to 
the wide variety of Arabic dialects. The main goal of this work is to build an accurate 
speech detection system that can generalize well across different Arabic dialects. Therefore, 
we conduct an extensive analysis of various preprocessing techniques (e.g., stemming, 
lemmatization, and emojis translation), feature extraction techniques (e.g., frequency-based 
and word embeddings), classification models (including Logistic Regression and Support 
Vector Machine), and combination techniques (at the data, feature, and model level). We 
fine-tune Bert models and optimize their hyperparameters for our detection tasks. Our 
experiments include six datasets containing different dialects and three datasets with 
Levantine dialect, Tunisian dialect, and a combination of several dialects. 80% of each of 
the six datasets is combined and used for model training and validation, while the 
remaining part is used for models’ evaluation. The three remaining datasets are kept for 
testing the generalization of our best models. The results on our test sets indicate that the 
scores combination of three models, logistic regression using (unigram) term frequency-
inverse document frequency (TF-IDF), logistic regression using AraVec word embedding 
features, and support vector machine using TF-IDF, achieves a good detection performance 
across all test sets, with area under the curve (AUC) of 84%, 89%, and 78% on the three 
unseen datasets. In addition, we find that using lemmatization and considering emojis’ 
meanings have a considerable impact on the results. Pre-trained AraBert model 
outperforms all other trained models with higher generalization performance and AUC 
scores of 91%, 93%, and 85% on the unseen datasets. The results denote that the same 
models' combination and AraBert are robust to data imbalance and achieve a relatively 
good generalization performance.  
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CHAPTER 1 

INTRODUCTION 

 

  With the widespread of social media, the interaction among individuals with 

different backgrounds and opinions is increasing. These platforms provide a virtual space 

for people to express their opinions freely. However, the lack of regulations associated with 

these applications promotes cyberbullying, which is the harm that is intentionally inflicted 

through technology and online devices in a repeated manner (Patchin & Hinduja, 2010). 

One specific form of cyberbullying consists of offensive language against individuals or 

groups with opposing opinions about certain social norms. This type of abusive language 

can effortlessly turn into hate speech, which has been spreading due to several factors such 

as economic difficulties, migration, political conflicts, and the ease of expressing hate on 

social media platforms (Benesch, 2014).  

  Hate speech is a general term with no universal agreement on what constitutes hate. 

Therefore, it is crucial to establish a definition of hate before attempting to combat such 

speech. One study defines hate speech as any communication intended to degrade people 

based on specific characteristics such as nationality, race, gender, and sexual orientation 

(Nockleby, 2000). Similarly, Warner & Hirschberg, (2012) consider any improper labeling 

of individuals into a particular group with the intent to harm as hate speech. In this paper, 

we define hate speech as intentionally utilizing individuals’ or groups’ characteristics in a 

degrading manner to impose verbal harm online that might trigger physical harm offline. 
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Our definition does not differentiate between hate, abusive, or offensive language towards 

an individual or group as they create a hostile online environment that leads to hate speech.  

  There are different types of hate speech. According to Al-Hassan & Al-Dossari, 

(2019), hate speech can be categorized into three types. The first type is gendered hate 

speech, which involves any hostility towards specific gender as well as misogyny and 

sexism (Al-Hassan & Al-Dossari, 2019). The second type is religious hate speech, which 

includes hostility towards a particular religion (Al-Hassan & Al-Dossari, 2019). The last 

type is racist hate speech, which includes hatred towards a specific race, color, and 

nationality (Al-Hassan & Al-Dossari, 2019). These types are considered the three main 

types of hate speech. However, other types of hate exist based on political affiliations, 

social status, age, or any other trait.  

  Hate speech is considered a threat due to its adverse impacts on targeted groups. 

According to Benesch, (2014), hate speech can affect communities directly by imposing 

fear and humiliation that plays a significant role in silencing them. Additionally, hate 

speech indirectly raises competition among groups (Benesch, 2014). These effects lead to 

violence, discrimination, and hate crimes. For example, the attacks against Coptic 

Christians in Egypt, Muslims in Burma, and immigrants in Greece were promoted by hate 

speech against the targeted communities (Benesch, 2014). According to a Special 

Rapporteur to the UN Humans Rights Council, the lack of monitoring and reaction to hate 

speech on time can strengthen the subordination of minorities which makes them 

“vulnerable to attacks” (Olteanu et al., 2018). 

  Hate speech detection is the first step to protecting vulnerable communities on 

social platforms. Thus, many researchers have deployed machine learning (ML) 
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classification algorithms to detect offensive, abusive, and hateful language. Most research 

focuses mainly on English hate speech detection with mixed results (Abro et al., 2020; 

Badjatiya et al., 2017; Burnap & Williams, 2015; Davidson et al., 2017; Gaydhani et al., 

2018; Isaksen & Gambäck, 2020a; Malmasi & Zampieri, 2017; Sevani et al., 2021; Sohn & 

Lee, 2019). As detailed in Chapter 2, these studies deploy various classical and deep 

learning ML models with several features. To our knowledge, there is no known universal 

system for hate speech detection in English. In general, non-English languages are vastly 

understudied, especially languages with non-Roman alphabets such as Arabic. Recently, 

several studies have been devoted to detecting hate speech in Arabic (A. Abozinadah & H. 

Jones, Jr, 2016; Abozinadah et al., 2015; Abozinadah & Jones, 2017; Abu-Farha & Magdy, 

2020a; Abuzayed & Elsayed, 2020; Alakrot et al., 2018b; Albadi et al., 2018; Alharbi & 

Lee, 2020; Alshalan & Al-Khalifa, 2020; Djandji et al., 2020; Elmadany et al., 2020; 

Guellil et al., 2020; B. Haddad et al., 2020; Hassan et al., 2020; Husain, 2020; Husain & 

Uzuner, 2021a; Keleg et al., 2020; Mulki et al., 2019; Ousidhoum et al., 2019; Saeed et al., 

2020). 

  Similar to the English language, there are many attempts to find a universal 

detection system for Arabic hate speech. However, no such system exists since the Arabic 

language consists of colloquial dialects with no standard orthographies. These colloquial 

dialects are represented in Figure 1 and include Maghreb, Nile Basin, Levantine, Gulf, 

Yemeni (Salameh & Bouamor, 2018), and other dialects. The colloquial dialects of Arabic 

have different manners of vocalizing the letters, which affect how users write these letters. 

For example, the word “say” is written as “ل  in Tunisian or Egyptian, while it can be ”ق
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written as “ل  in Levantine due to the different vocalization of the word in offline ”ئ

conversations. Additionally, some words can mean the same thing but are written 

differently. For example, the term Black is written as “د  in the Levantine dialect, while ”أس

it is written as “ل  in the Tunisian dialect. This makes it difficult for classifiers to ”أك

generalize well across several dialects. Hence, existing research mainly includes attempts to 

use one dialect or Modern Standard Arabic (MSA) to classify hateful content, which fails to 

generalize well on other dialects.  

 

 

Figure 1: A map of the different Arabic dialects  

 

  Therefore, it is crucial to direct our attention to finding a detection system that can 

generalize well across several Arabic dialects. This is highly needed as most social media 

users write in different dialects. Most research does not consider the differences in dialects 
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when detecting hate speech on social platforms. Therefore, it is essential to enhance hate 

speech detection systems in Arabic to identify hate regardless of the difference across 

dialects. The following section discusses the objectives and methodology of this research 

work. 

 

1.1 Research Objective and Methodology 

  In this study, our aim is to build ML models to detect hate speech and generalize 

well across several Arabic dialects. The goal is to identify an ML system that can be used 

as a general system for detecting hate speech across different dialects. To achieve this, we 

propose the following methodology, as displayed in Figure 2. 

 

 

Figure 2: A summary of the research methodology 
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  The first step is gathering our data. We combine six datasets extracted from social 

media that might represent more than six spoken dialects. Additionally, we obtain three 

datasets that contain Levantine, Tunisian, and mixed dialects for models' evaluation. The 

first part of our methodology involves training classical ML algorithms. We conduct 

extensive experiments with several preprocessing techniques on our augmented data. We 

test techniques such as stemming, lemmatization, normalization of Arabic letters, removal 

of diacritics, removal of repeated characters, and emojis translation.  

  Additionally, we evaluate these preprocessing techniques using various feature 

extraction approaches. For instance, we use unigram, bigram, and a combination of 

unigram and bigram of term frequency-inverse document frequency (TF-IDF) along with 

AraVec (Soliman et al., 2017) word embedding features, and their combination. Moreover, 

we experiment with several classical ML models such as Naïve Bayes (NB), Random 

Forest (RF), Decision Tree (DT), K-Nearest Neighbors (KNN), Logistic Regression (LR), 

and Support Vector Machine (SVM). We select LR and SVM because they are extensively 

used in literature and achieve good results compared to other classification algorithms, as 

described in Chapter 2. Furthermore, the best models are combined using Avg, Max, Min, 

and Median operators at the score level. The second part of our methodology involves fine-

tuning pre-trained language models such as Bidirectional Encoder Representations from 

Transformers (Bert). Bert is a pre-trained language model designed to pre-train deep 

bidirectional representation for unlabeled text, making it simple to fine-tune by adding task-

specific layers (Devlin et al., 2018). For our research, we use the same augmented dataset 

to fine-tune Bert models for hate speech detection. 
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  The remainder of this paper is organized as follows. Chapter 2 reviews some work 

related to hate speech detection. Chapter 3 describes the experimental procedure followed 

in this research. Chapter 4 details the results of our experiments, reports the best system to 

detect hate speech, and presents error analysis. Finally, Chapter 5 presents the conclusion 

and recommendations to further expand on this research. 
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CHAPTER 2 

LITERATURE REVIEW 

  The first step in this study is presenting an overview of the existing literature to 

understand previous work and identify the gaps to define our contribution. This section 

highlights the research done for hate speech detection in the English context. It moves on to 

address the research that is done for hate speech detection in the Arabic language. Finally, 

we specifically highlight the existing research in transferring the detection capabilities from 

one language to another or dialect to another.  

 

2.1 Hate Speech Detection in English 

  There have been several studies that aim to detect hate speech on social media in 

several languages. Almost all available literature uses Twitter data either by collecting the 

tweets or using publicly available datasets, which are mainly imbalanced (Abro et al., 2020; 

Badjatiya et al., 2017; Burnap & Williams, 2015; Davidson et al., 2017; Gaydhani et al., 

2018; Isaksen & Gambäck, 2020a; Malmasi & Zampieri, 2017; Sevani et al., 2021; Sohn & 

Lee, 2019). In contrast, few authors, such as Kwok & Wang, (2013), collect balanced 

Twitter datasets. Most studies focus on lower casing and removing all non-alphabetic 

characters, such as URLs, mentions, stop words, symbols, and emojis, as the main 

preprocessing techniques (Abro et al., 2020; Burnap & Williams, 2015; Davidson et al., 

2017; Gaydhani et al., 2018; Kwok & Wang, 2013; Malmasi & Zampieri, 2017; Sevani et 

al., 2021; Sohn & Lee, 2019). Furthermore, stemming is used to reduce words into their 

stem (Abro et al., 2020; Burnap & Williams, 2015; Davidson et al., 2017; Gaydhani et al., 
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2018; Sevani et al., 2021). Sohn & Lee, (2019) convert non-English words and emojis into 

English text as a preprocessing technique and split hashtags into words.  

  Moreover, TF-IDF is widely used to extract features (Abro et al., 2020; Badjatiya et 

al., 2017; Burnap & Williams, 2015; Davidson et al., 2017; Gambäck & Kumar Sikdar, 

2017; Gaydhani et al., 2018; Kwok & Wang, 2013; Malmasi & Zampieri, 2017). Some 

studies use Doc2Vec (Le & Mikolov, 2014), Word2vec (Abro et al., 2020; Badjatiya et al., 

2017; Gambäck & Kumar Sikdar, 2017; Sevani et al., 2021), random vectors (Badjatiya et 

al., 2017; Gambäck & Kumar Sikdar, 2017), and GloVe vectors as features (Badjatiya et 

al., 2017; Gambäck & Kumar Sikdar, 2017; Sohn & Lee, 2019). Only Burnap & Williams, 

(2015)  experiment with hate terms n-grams and typed dependencies n-grams features 

extracted from Stanford Parser. In contrast to other studies, Part of Speech (POS) tags and 

the number of hashtags, mentions, retweets, URLs, words, characters, and syllabus are 

applied as features (Davidson et al., 2017).  

  In general, various studies train classical ML models to detect hate speech, such as 

LR and SVM (Abro et al., 2020; Badjatiya et al., 2017; Burnap & Williams, 2015; 

Davidson et al., 2017; Gaydhani et al., 2018; Malmasi & Zampieri, 2017), along with NB 

(Abro et al., 2020; Davidson et al., 2017; Gaydhani et al., 2018; Kwok & Wang, 2013), RF, 

DT (Davidson et al., 2017), RFDT (Burnap & Williams, 2015), and Gradient Boosted 

Decision Tree (GBDT) (Badjatiya et al., 2017). Only Abro et al., (2020) deploy KNN, 

Multi-layer Perceptron (MLP), and AdaBoost models for hate speech detection. In contrast, 

Badjatiya et al., (2017) and Gambäck & Kumar Sikdar, (2017) experiment with 

Conventional Neural Network (CNN) for hate speech detection. In addition, Badjatiya et 

al., (2017) expand with deep neural networks such as FastText and long short-term memory 
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(LSTM). Similarly, Sohn & Lee, (2019) use LSTM and Bidirectional-LSTM (Bi-LSTM) to 

detect hate. In terms of evaluation metrics, several studies calculate precision (P), recall 

(R), and F1 scores for model evaluation (Badjatiya et al., 2017; Burnap & Williams, 2015; 

Davidson et al., 2017; Gambäck & Kumar Sikdar, 2017; Gaydhani et al., 2018) as well as 

accuracy (ACC) (Kwok & Wang, 2013; Malmasi & Zampieri, 2017). 

  However, the results of these studies are incomparable since each study experiments 

with a different dataset. In contrast, Malmasi & Zampieri, (2017) use the dataset collected 

in (Davidson et al., 2017) to train SVM using character 4-grams features, which achieves 

an ACC of 78%. Furthermore, only Gaydhani et al., (2018) use a combination of three 

datasets (Davidson et al., 2017; Waseem & Hovy, 2016; Watanabe et al., 2018), applied to 

train LR using TF-IDF and L2 normalization. This model outperforms other studies with an 

F1 score of 96% (Gaydhani et al., 2018). As a result, it is generalized as an application to 

filter hateful tweets posted by the user. Still, this application has limitations since Twitter 

API has a request read limit of 15 minutes (Gaydhani et al., 2018). Table 1 summarizes the 

hate speech detection methodology used from data collection to results for the work that 

focuses on the English language. 

 

Table 1: Previous work on hate speech detection in English 

Reference Data Preprocessing Features Models Best 
Performance  

Eval 
Metric1 

(Burnap & 
Williams, 
2015) 

Collected 
1901 
imbalanced 
tweets, 
Hate/Benign 

Lower casing 
Remove all 
non-alphabetic 
characters 
Stemming 

Words, hate 
terms, typed 
dependency n-
grams/ their 
combination 

Bayesian LR 
/RFDT/SVM/ 
voting 
ensemble, 10-
fold cross 
validation  

n-Gram 
reduced typed 
dependency + 
hate terms 
with all 
models  

F1=77%  

 
1 Test set scores 
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Reference Data Preprocessing Features Models Best 
Performance  

Eval 
Metric1 

(Gaydhani 
et al., 
2018) 

(Davidson et 
al., 2017; 
Waseem & 
Hovy, 2016; 
Watanabe et 
al.,2018) 
datasets 
Hate/Offensiv
e/ Clean 

Lower casing 
Remove all 
non-alphabetic 
characters  
Stemming 

TF-IDF 
unigram/bigra
m/trigram with 
normalization 

LR/NB/SVM, 
10-fold cross 
validation 

LR + TF-IDF 
(1,3) +L2 
normalization 

P=96%, 
R=96 
F1=96%
ACC= 
95% 

 

(Malmasi 
& 
Zampieri, 
2017) 

(Davidson et 
al., 2017) 
14,509 
imbalanced 
tweets, Hate 
/Offensive/ 
Ok  

Lower casing 
Remove all 
non-alphabetic 
characters 

Character and 
word n-
grams/skip 
word bigram 

SVM, stratified 
10-fold cross 
validation 

SVM + 
character 4-
grams 

ACC = 
78% 

(Gambäck 
& Kumar 
Sikdar, 
2017) 

(Waseem, 
2016), 6,909 
imbalanced 
tweets.  
Racism/ 
Sexism/Both/
None 

None Random/word
2vec/character 
n-grams/ 
word2vec + 
character n-
grams 

CNN, 10-fold 
cross validation 

CNN + 
word2vec 

P= 85%,  
R= 72% 
F1=78% 

 

(Davidson 
et al., 
2017) 

Collected 
24,802 
imbalanced 
tweets. 
Hate/ 
Offensive/ 
None 

Lower casing 
Remove all 
non-alphabetic 
characters 

TF-IDF, POS 
tags, numbers 
extracted per 
tweet 

LR/NB/DT/RF/ 
SVM,5-fold 
cross-validation 

 

LR with L2 
normalization 

P= 91%,  
R= 90% 
F1=90% 

 

(Badjatiya 
et al., 
2017) 

(Waseem & 
Hovy, 2016) 
16K 
imbalanced 
Sexist/Racist/
None 

None Character n-
grams/ 
TF-IDF/ bag 
of word 
(BOW)/ 
Random/ 
GloVe 

LR/SVM/GBD
T/ CNN/ Fast 
Text/ LSTM, 
10-fold cross 
validation 

LSTM + 
Random 
Embedding + 
GBDT 

P= 93%,  
R= 93% 
F1=93% 

(Kwok & 
Wang, 
2013) 

Collected 
24582 
balanced 
tweets 
Racist/None 

Lower casing 
Remove all 
non-alphabetic 
characters 

Unigrams  NB, 10-fold 
cross validation 

NB + 
unigrams 

ACC 
=76% 

(Abro et 
al., 2020) 

14509 tweets, 
imbalanced, 
hate/offensive
/ not 
offensive 

Lower casing, 
remove all non-
alphabetic 
characters and 
stop words, 
stemming, 
tokenization 

TF-IDF n-
grams/ 
Word2Vec/ 
Doc2Vec 

NB/SVM/KNN/
DT/RF/ 
AdaBoost/MLP
/ LR 

SVM with 
bigram TF-
IDF  

P= 77%,  
R= 79% 
F1=77% 
ACC = 
79% 
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Reference Data Preprocessing Features Models Best 
Performance  

Eval 
Metric1 

(Sevani et 
al., 2021) 

13169 tweets, 
713 tweets, 
imbalanced, 
hate/not-hate 

Lower casing, 
remove all non-
alphabetic 
characters, 
normalization, 
stemming, 
tokenization 

Word2Vec SVM with 
parameters 
optimization  

SVM with C = 
10 

P= 64%,  
R= 91% 
F1=75% 
ACC = 
70% 

(Sohn & 
Lee, 
2019)  

24,783 
Tweets, 
imbalanced, 
Hate/ 
Offensive/No
ne 

Lower casing, 
remove user, 
URLs, separate 
hashtags, 
convert non-
English words 
and emojis to 
text 

Pre-trained 
GloVe 
embedding 

LSTM/Bi-
LSTM/ 
DistilBert/Bert/
GPT-2 

Bi-LSTM P= 70%,  
R= 68% 
F1=82% 
ACC = 
93% 
AUC= 
82%  

 
 
2.2 Hate Speech Detection in Arabic 

  The studies related to hate speech detection are extended to other languages, such as 

Arabic. Most studies collect general Arabic datasets from Twitter (Abozinadah et al., 2015; 

Albadi et al., 2018; Alshalan & Al-Khalifa, 2020; Mulki et al., 2019; Ousidhoum et al., 

2019). Few studies focus on detecting hate on YouTube by collecting YouTube comments 

(Alakrot et al., 2018b; Guellil et al., 2020). Additionally, some studies use the 4th 

Workshop on Open-Source Arabic Corpora and Processing Tools Arabic (OSACT4)2 2020 

Shared Task dataset. The dataset consists of Twitter data collected by the organizers of the 

task (Abu-Farha & Magdy, 2020; Abuzayed & Elsayed, 2020; Alharbi & Lee, 2020; 

Djandji et al., 2020; Elmadany et al., 2020; Haddad et al., 2020; Hassan et al., 2020; 

Husain, 2020; Keleg et al., 2020; Saeed et al., 2020).  

  The main preprocessing techniques include removing all non-Arabic characters, 

such as URLs, mentions, hashtags, spaces, diacritics, stop words, and letter sequences that 

 
2 https://edinburghnlp.inf.ed.ac.uk/workshops/OSACT4/ 
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are repeated for emphasizes or emotions (Abozinadah et al., 2015; Abozinadah & Jones, 

2017; Alakrot et al., 2018b; Albadi et al., 2018; Alshalan & Al-Khalifa, 2020; Husain, 

2020; Husain et al., 2020; Mulki et al., 2019; Saeed et al., 2020). Some studies remove non-

Arabic characters, diacritics, punctuation, and repeated letters (Abu-Farha & Magdy, 

2020b; Abuzayed & Elsayed, 2020; Alharbi & Lee, 2020; Hassan et al., 2020). 

Additionally, normalization is a common preprocessing technique for the Arabic language. 

It converts multiple letters with multiple forms into one form, such as Alif (أ،آ،إ) to (ا), Alif 

Maqsura (ي،ئ) to (ى), and Ta Marbouta (ة) to ( ه) (Abozinadah et al., 2015; Abu-Farha & 

Magdy, 2020b; Abuzayed & Elsayed, 2020; Alakrot et al., 2018b; Albadi et al., 2018; 

Alharbi & Lee, 2020; Alshalan & Al-Khalifa, 2020; Elmadany et al., 2020; Husain, 2020; 

Husain et al., 2020; Saeed et al., 2020).  

  Moreover, few studies translate emojis into their respective meaning as a 

preprocessing method (Alharbi & Lee, 2020; Alshalan & Al-Khalifa, 2020; Husain, 2020; 

Husain et al., 2020). Haddad et al., (2020) deploy all the above preprocessing techniques in 

their study. In addition, Alharbi & Lee, (2020) segment the phrases that start with “Ya”/” یا” 

for better word representation. Djandji et al., (2020) use Farasa segmentation, remove user 

tokens, retweets and URLs, and split hashtags. On the other hand, Husain, (2020) deploys 

segmentation based on dividing hashtags into words, combines nouns with similar 

meanings, and combines animals’ names to become “animal”. Elmadany et al., (2020) 

replace hashtags, usernames, URLs, and numbers with their symbol. The study uses byte-

pair encoding (PBE) as a text tokenizer (Elmadany et al., 2020). 

  Furthermore, few studies use word and character n-grams as features (Alakrot et al., 

2018b; Albadi et al., 2018; Alshalan & Al-Khalifa, 2020; Husain, 2020; Husain et al., 
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2020). While others use Bag of Word (BOW) as features (A. Abozinadah & H. Jones, Jr, 

2016; Abozinadah & Jones, 2017; Ousidhoum et al., 2019). Other studies experiment with 

TF-IDF vectors as features (Abuzayed & Elsayed, 2020; Djandji et al., 2020; Hassan et al., 

2020; Husain, 2020; Keleg et al., 2020; Mulki et al., 2019; Saeed et al., 2020). 

Additionally, some studies experiment with character level embedding from CNN feature 

extractor (Hassan et al., 2020), Mazajak Word Embedding (Alharbi & Lee, 2020; Farha & 

Magdy, 2019; Hassan et al., 2020), and a combination of character and word features 

(Hassan et al., 2020). Keleg et al., (2020) use a list of profanity words as features. 

  Moreover, many studies use pre-trained word embedding features, such as 

Word2Vec (Abu-Farha & Magdy, 2020b; Albadi et al., 2018; Alshalan & Al-Khalifa, 

2020; Guellil et al., 2020; Husain et al., 2020; Saeed et al., 2020) and AraVec with 

SkipGram (SG) and Continuous Bag of Word (CBOW) (Abuzayed & Elsayed, 2020; 

Albadi et al., 2018; Alharbi & Lee, 2020; Alshalan & Al-Khalifa, 2020; Guellil et al., 2020; 

B. Haddad et al., 2020; Husain et al., 2020; Keleg et al., 2020; Saeed et al., 2020). Both 

methods are used as word embedding features for hate detection (Albadi et al., 2018; 

Alshalan & Al-Khalifa, 2020; Guellil et al., 2020; Husain et al., 2020). Alharbi & Lee, 

(2020) and Saeed et al., (2020) use FastText embedding. Only Ousidhoum et al., (2019) use 

Babylon multilingual word embedding with multilingual models. However, Abozinadah et 

al., (2015) apply three different types of features. The first is profile-based, which are 

statistical features extracted from the accounts such as followers, followings, and the 

number of tweets. The second is tweet-based, which are statistical and n-grams features 

extracted at the tweet level (Abozinadah et al., 2015). Lastly, social graph-based, which are 

obtained from the social graph theory such as eigenvector that measures user’s influence on 
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the network, in-degree measures the number of connections to the user, and out-degree 

measures the number of connections from the user (Abozinadah et al., 2015). In contrast to 

other studies, Saeed et al., (2020), use Multilingual BERT embeddings as features.  

  In addition, one study implements a statistical approach based on three algorithms 

for features extraction. The first one is the word PageRank (PR) (US6285999, 2001), which 

is an algorithm that ranks the importance of websites and is used to identify how accounts 

reflect abusive language (Abozinadah & Jones, 2017). The second approach is Word 

Semantic Orientation (SO) (Turney, 2002), which defines the association of the word to a 

positive or negative word and uses the total SO of each word to get the total, Max, Min, 

Avg, and standard deviation per tweet (Abozinadah & Jones, 2017). The third approach 

applies the statistics used with SO to different components of each tweet (Abozinadah & 

Jones, 2017).   

  For model training, several studies train classical ML models such as SVM (A. 

Abozinadah & H. Jones, Jr, 2016; Abozinadah et al., 2015; Abozinadah & Jones, 2017; 

Abuzayed & Elsayed, 2020; Alakrot et al., 2018b; Albadi et al., 2018; Alshalan & Al-

Khalifa, 2020; Guellil et al., 2020; B. Haddad et al., 2020; Hassan et al., 2020; Husain, 

2020; Mulki et al., 2019; Saeed et al., 2020), LR (Abuzayed & Elsayed, 2020; Albadi et al., 

2018; Alharbi & Lee, 2020; Alshalan & Al-Khalifa, 2020; Guellil et al., 2020; B. Haddad 

et al., 2020; Hassan et al., 2020; Husain et al., 2020; Keleg et al., 2020; Ousidhoum et al., 

2019; Saeed et al., 2020), and NB (Abozinadah et al., 2015; Abu-Farha & Magdy, 2020b; 

Guellil et al., 2020; Hassan et al., 2020; Mulki et al., 2019; Saeed et al., 2020) to detect hate 

speech. Only Abuzayed & Elsayed, (2020) and Saeed et al., (2020) use RF. Abuzayed & 

Elsayed, (2020) use extra trees, gradient boosting, and DT. Abuzayed & Elsayed, (2020) 
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and; Alharbi & Lee, (2020) use XGBoost Classifier to detect hate speech. Furthermore, 

Haddad et al., (2020) utilize Ridge classifier for classification. While Ousidhoum et al., 

(2019) train single task single language (STSL), single task multilingual (STML), and 

multitask multilingual models (MTML).  In contrast to other studies, Albadi et al., (2018) 

deploy a simple sentiment score approach where hate is detected based on the sum score of 

hateful terms per tweet. 

  Some studies apply deep learning algorithms such as CNN (Abuzayed & Elsayed, 

2020; Alshalan & Al-Khalifa, 2020; B. Haddad et al., 2020; Keleg et al., 2020), Gated 

recurrent units (GRU) (Abuzayed & Elsayed, 2020; B. Haddad et al., 2020; Husain et al., 

2020; Saeed et al., 2020), Bi-LSTM (Abu-Farha & Magdy, 2020b; Abuzayed & Elsayed, 

2020; Guellil et al., 2020; Husain et al., 2020; Saeed et al., 2020), and MLP (Guellil et al., 

(2020). Some studies use Recurrent Neural Network (RNN) (Abuzayed & Elsayed, 2020; 

Husain et al., 2020), Bidirectional-GRU (Bi-GRU) (Husain et al., 2020; Saeed et al., 2020), 

and LSTM (Alharbi & Lee, 2020; Husain et al., 2020). Other studies deploy Feed-forward 

Neural Network (FFNN), FastText (Hassan et al., 2020), and CNN with Bi-LSTM (Abu-

Farha & Magdy, 2020b; Hassan et al., 2020; Saeed et al., 2020). 

  Additionally, various studies combine different models for Arabic hate speech 

detection. One study applies a majority voting combination of CNN with Bi-LSTM, BERT, 

and two SVM models with Mazajak embedding, character, and word features (Hassan et 

al., 2020). Haddad et al., (2020) use CNN with attention along with GRU with attention. 

Saeed et al., (2020) use an ensemble of CNN, Bi-LSTM, Bi-GRU, and BiLSTM+CNN. 

While Abuzayed & Elsayed, (2020) combine CNN with RNN. Finally, Abu-Farha & 

Magdy, (2020) experiment with two multitask learning (MLT), designed to learn from 
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multiple tasks to improve each task (Caruana et al., 1997). The authors deploy CNN with 

Bi-LSTM architecture, Mazajak sentiment analyzer output (MLT-S), and masked Mazajak 

sentiment analyzer output (MLT-S-N) (Abu-Farha & Magdy, 2020).  

 

2.3 Transfer Learning in Hate Speech Detection 

  Transfer learning refers to transferring knowledge from a general task to a specific 

task. This concept is extensively deployed across hate detection research using pre-trained 

language models. Most studies experiment with Bert models. Sohn & Lee, (2019) 

experiment with DistilBert, Bert, and GPT-2 for hate speech detection. Multilingual BERT 

is fine-tuned for hate speech detection in several studies (Alharbi & Lee, 2020; Alshalan & 

Al-Khalifa, 2020; Elmadany et al., 2020; Hassan et al., 2020; Keleg et al., 2020). Similarly, 

Elmadany et al., (2020) fine-tune four Bert models. These models are original Bert, Bert 

pre-trained on binary Arabic sentiment dataset, Bert pre-trained on Arabic emotion 

classification, and the latter is fine-tuned on combined dataset. Additionally, AraBert is 

used in several studies (Djandji et al., 2020; Keleg et al., 2020). Djandji et al., (2020) 

deploy AraBert with weighted loss, balanced batch sampling, and both. Furthermore, 

Multitask and Multilabel learning are combined with AraBert by keeping AraBert as the 

standard part with task-specific layers for task-related classification (Djandji et al., 2020). 

Abdellatif & Elgammal, (2020) fine-tune ULMFiT, a transfer learning model based on a 

language model and text classifier (Howard & Ruder, 2018), for hate detection. 

  In general, social media hate speech data is expected to be imbalanced, impacting 

models' performance. Some papers address this by taking a sub-sample of the data (A. 
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Abozinadah & H. Jones, Jr, 2016; Abozinadah et al., 2015; Abozinadah & Jones, 2017; 

Abuzayed & Elsayed, 2020; Djandji et al., 2020; B. Haddad et al., 2020; Husain, 2020). 

Guellil et al., (2020) experiment with both balanced and imbalanced corpora and find that 

evaluation results on imbalanced corpus outperform the balanced one. Elmadany et al., 

(2020) generate random data from an offensive lexicon extracted from the OSACT4 dataset 

and assign a negative sentiment to increase training labels to account for the imbalance in 

the data. 

  However, the results of these studies are incomparable since most studies use 

different datasets. On the contrary, few researchers use the same dataset. For instance, 

Alshalan & Al-Khalifa, (2020) utilize the 600 tweets used in (Albadi et al., 2018) to test 

their trained models. The results indicate that Albadi et al., (2018) model outperforms the 

one introduced by Alshalan & Al-Khalifa, (2020). Moreover, A. Abozinadah & H. Jones, 

Jr, (2016) attempt to expand on their previous study (Abozinadah et al., 2015) by creating a 

system to correct misspelled words based on edit distance and experimenting with several 

preprocessing techniques on different datasets. The data is divided into eight subsamples. 

Each sample has its preprocessing techniques (A. Abozinadah & H. Jones, Jr, 2016). The 

preprocessing includes four sets of techniques; removing all non-Arabic characters is the 

first one (A. Abozinadah & H. Jones, Jr, 2016). The second contains the first set with 

normalization, while the third includes the second set with word correction based on one 

edit distance, and the fourth includes the third set after correcting all words (A. Abozinadah 

& H. Jones, Jr, 2016). The other four samples are similar to the first four with the addition 

of stemming (A. Abozinadah & H. Jones, Jr, 2016). Similarly, Abozinadah & Jones, (2017) 
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attempt to improve the results of their previous work (Abozinadah et al., 2015) by sampling 

the data and training a different model, which outperforms their previous model.  

  In addition, the OSACT4 organizes a shared task for offensive language and hate 

speech detection. Several studies participate in this shared task using different techniques. 

Hassan et al. (2020) rank first for offensive language detection with their system combining 

SVM with deep learning algorithms, achieving a macro F1 score of 90.51%. On the other 

hand, Husain, (2020) deploys an SVM model with extensive analysis of the preprocessing 

techniques, which outperforms other systems in hate speech detection with a macro F1 

score of 95%. Table 2 summarizes the hate speech detection methodology used from data 

collection to results for the work on the Arabic language. However, The above studies did 

not consider Arabic dialects, limiting the ability to generalize the models to several dialects. 

This is highly needed as most social media users write in different dialects. Therefore, it is 

vital to enhance hate speech detection systems in Arabic to identify hate in various dialects. 

  Some studies attempt to generalize hate speech detection systems from one 

language to another (Isaksen & Gambäck, 2020b; Mossie, 2020; Mozafari et al., 2019; 

Rizoiu et al., 2019; Wang & Zheng, 2015; Wiedemann et al., 2018). In particular, Husain & 

Uzuner, (2021) investigate transfer learning across four datasets representing Arabic 

dialects to detect offensive language. This work is the closest to ours as it combines all 

datasets into one to fine-tune AraBert model and test it on different parts of each dataset 

(Husain & Uzuner, 2021). Moreover, the authors fine-tune the model on each dataset and 

test it on all datasets. The results demonstrate that the highest performance is achieved 

when the model is trained and tested on the same data, and fine-tuning AraBert on 

concatenated data is not improving the result on test sets (Husain & Uzuner, 2021). 
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However, the authors don’t test the generalization ability on new dialects not used for fine-

tuning. In contrast, we develop an ML system that can generalize well across several 

Arabic dialects, as shown in Chapter 4. 

 

Table 2: Previous work on hate speech detection in Arabic 

Reference Data Preprocessing Features Models Best 
Performance  

Eval Metric 

(Abozinadah 
et al., 2015) 

Collected 500 
balanced 
accounts. 
Abusive/Non-
abusive 

Remove all 
non-Arabic 
characters, 
repeated 
letters, 
normalization 

Profile/Tweet/ 
Social graph 
based features 

NB/SVM/DT, 
10-fold cross 
validation 

NB with 10 
tweets and 
100 features. 

ACC = 90%, 
P = 91%, 
R =90%, 
F1=90% 

 

(Ousidhoum 
et al., 2019) 

Collected 
3,353 
imbalanced 
tweets. 
Different 
classes for 
several tasks3 

None  BOW/ 
Babylon 
multilingual 
word 
embedding 

LR/STSL/ST
M/ MTML 
 

MTML 
LR 

Macro 
F1=35% 
Micro 
F1=48% 
 

(Alshalan & 
Al-Khalifa, 
2020) 

Collected 
8,964 
imbalanced 
tweets. 
Hate/None 
(Albadi et al., 
2018) 600 
tweets for 
testing 

Remove all 
non-Arabic 
characters, 
Spam 
filtering, 
lemmatization
, 
normalization, 
translate 
emojis 

Character n-
grams/ 
Word2Vec  

LR/SVM/CN
N/ GRU/CNN 
+ GRU/BERT 
5-fold cross 
validation  

CNN + 
word2vec 

ACC = 70%,  
P = 72%,  
R =69%, 
F1=69%, 
AUC=79%4 

(Albadi et al., 
2018) 

Collected 
6,600 
imbalanced 
tweets 
Hate/None 

Remove all 
non-Arabic 
characters and 
repeated 
letters, 
lemmatization
, 
normalization 

N-grams 
features/ 
AraVec  

Sentiment 
scores 
model/LR/SV
M/ GRU  

GRU + 
AraVec  

ACC = 79%,  
P = 76%,  
R= 78%, 
F1=77%,  
AUC= 84%  

(Guellil et al., 
2020) 

Collected 
3,384 
YouTube 

None Word2Vec/Fa
st Text 
SG/CBOW 

NB/ LR/RF/ 
SGD/ SVC/ 

Linear SVC + 
Word2Vec 
(SG) 

P = 91%,  
R = 91% 
F1 = 91%  

 
3 we will only report the experiments on hostility detection in Arabic 

4 we report the results on the test set by [16] 
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Reference Data Preprocessing Features Models Best 
Performance  

Eval Metric 

comments 
(C1/C2) 
Hate/None 

CNN/ Bi-
LSTM/MLP 

  P= 87% 
R = 87%, 
F1=87% 

(Mulki et al., 
2019) 

Collected 
5,846 
imbalanced 
tweets 
Hate/Abusive/ 
Normal 

Remove all 
non-Arabic 
characters 
 

TF-IDF 
unigrams/bigr
am/ trigrams 

SVM/NB, 
binary/multi 
classification  

NB + TF-IDF  ACC = 90% 
P = 90% 
R = 89% 
F1=89% 

(Husain et al., 
2020) 

(Zampieri et 
al., 2020) 
1,000 
imbalanced 
tweets. 
Offensive/ 
None 

Remove all 
non-Arabic 
characters and 
repeated 
letters, 
normalization, 
translate 
emojis 

Character n-
grams   TF-
IDF/ AraVec 
CBOW 

LR/RNN/GR
U/ Bi-GRU 
/LSTM/ Bi-
LSTM, 10- 
fold cross 
validation 

Bi-GRU + 
TF-IDF 

P = 87%, 
R = 79% 
Macro F1 = 
83% 
Weighted 
F1=84% 

(Alakrot et al., 
2018b) 

Collected 
15,050 
imbalanced 
YouTube 
Offensive/No
ne 

Remove all 
non-Arabic 
characters, 
tokenization, 
normalization, 
stemming 

Word n-grams  SVM, 10-fold 
cross 
validation 

SVM + n-
grams + 
preprocessing 
+ stemming  

P = 88%,  
R = 77% 
F1 = 82% 
 

(Abozinadah 
& Jones, 
2017) 

(Abozinadah 
et al., 2015) 
812 balanced 
accounts.  
Abusive/None  

Remove all 
non-Arabic 
characters and 
repeated 
letters 

Statistical 
approach/ 
BOW 

SVM, 10-fold 
cross 
validation 

SVM + 
statistical 
approach 

P = 96%,  
R = 96% 
F1 = 96%,  
AUC =96% 

(A. 
Abozinadah & 
H. Jones, Jr, 
2016) 

(Abozinadah 
et al., 2015), 
sub-sampled 8 
datasets 

8 different 
preprocessing  

BOW SVM SVM+ 
BOW+ no-
stemming + 
correction 

ACC = 96%,  
P = 96%, 
R = 96%, 
F1=96% 

(Hassan et al., 
2020) 

10,000 tweets 
OSACT 
Shared Task, 
imbalanced 
Hate/Non, 
Offensive/No
n 

Remove all 
non-Arabic 
characters, 
repeated 
letters, 
punctuation, 
diacritics   

Character/wor
d n-grams TF-
IDF 
Mazajak word 
embedding 
CNN based 
features 

SVM/LR/NB/
FFNN/ CNN 
with Bi- 
LSTM/BERT/
ensemble of 
best models 

Combination 
of two SVM 
models with 
different 
features/ CNN 
with Bi- 
LSTM/BERT 

Task1:5 
ACC=94%, 
P=90%, R= 
91%, F1=91% 
Task26: 
ACC=97%, 
P=84%, R= 
78%, F1=81% 

(B. Haddad et 
al., 2020) 

10,000 tweets 
OSACT 
Shared Task, 
imbalanced 

Remove all 
non-Arabic 
characters, 
punctuation, 
diacritics, stop 
words, 

TF-
IDF/BOW/ 
AraVec 

SVM/LR/Rid
ge/CNN/ 
GRU/ CNN 
with 
attention/Bi-

Bi-GRU with 
attention 

Task1: 
ACC=91%, 
P=88%, R= 
83%, F1=85% 
Task2: 
ACC=95%, 

 
5 Task 1: refer to the OSACT task for detecting offensive language 

6 Task 2: refer to the OSACT task for detecting hate language 
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Reference Data Preprocessing Features Models Best 
Performance  

Eval Metric 

Hate/Non, 
Offensive/No
n 

repeated 
letters, 
normalization 

GRU with 
attention 

P=75%, R= 
74%, F1=75% 

(Keleg et al., 
2020) 

10,000 tweets 
OSACT 
Shared Task, 
imbalanced 
Hate/Non, 
Offensive/No
n 

Remove 
repeated 
letters 
Farasa 
tokenization 

TF-IDF/ 
AraVec/ 
augmented list 
of profanity 
words 

LR/CNN/Bi-
LSTM/ 
Multilingual 
BERT/ 
AraBert 

AraBert with 
augmented list 
of profanity 
words 

Task1: 
F1=90% 
Task2: 
F1=81% 

(Alharbi & 
Lee, 2020) 

10,000 tweets 
OSACT 
Shared Task, 
imbalanced 
Hate/Non, 
Offensive/No
n 

Remove all 
non-Arabic 
characters, 
punctuation, 
diacritics 
Normalization 
Segmenting 
words 

AraVec/Maza
jak/ Trained 
char n-gram 
FastText 

LR/XGBoost/
LSTM 

Task1: LSTM 
Task2: 
XGBoost 

Task1: 
ACC=92%, 
P=90%, R= 
85%, F1=87% 
Task2: 
ACC=96%, 
P=86%, R= 
69%, F1=74% 

(Elmadany et 
al., 2020) 

10,000 tweets 
OSACT 
Shared Task, 
randomly 
collected data.  
imbalanced 
Hate/Non, 
Offensive/No
n 

Replace 
URLs, 
hashtags, 
numbers, and 
users with 
their symbols 

None BERT/BERT 
fine-tuned on 
sentiment 
data/BERT 
fine-tuned on 
emotion/ 
BERT fine-
tuned on 
emotion with 
augmented 
data 

BERT fine-
tuned on 
emotion with 
augmented 
data 

Task1: 
ACC=90%, 
F1=83% 

(Abu-Farha & 
Magdy, 
2020b) 

10,000 tweets 
OSACT 
Shared Task, 
imbalanced 
Hate/Non, 
Offensive/No
n 

Remove 
repeated 
letters, non-
Arabic 
characters, 
punctuation, 
URLs, and 
diacritics. 

Mazajak  NB/Bi-
LSTM/ CNN-
Bi-
LSTM/BERT/
MTL/ MLT-
S/ MTL-S-N 

Task1: 
MTL-S-N 
Task2: MTL 

Task1: 
F1=88% 
Task2: 
F1=76% 

(Djandji et al., 
2020) 

10,000 tweets 
OSACT 
Shared Task, 
imbalanced 
Hate/Non, 
Offensive/No
n 

Remove 
URLs, 
usernames, 
retweet 
symbols, 
diacritics, and 
emojis 
Farasa 
tokenization 
Separate 
hashtags  

None AraBert/ 
AraBert with 
balanced 
sample, 
weighted loss, 
and 
both/Multilab
el AraBert/ 
Multilabel 
AraBert with 
balanced 
sample/Multit
ask AraBert 

Multitask 
AraBert 
 

Task1: 
F1=90% 
Task2: 
F1=82% 
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Reference Data Preprocessing Features Models Best 
Performance  

Eval Metric 

(Saeed et al., 
2020) 

10,000 tweets 
OSACT 
Shared Task, 
imbalanced 
Hate/Non, 
Offensive/No
n 

Remove 
URLs, 
usernames, 
emojis, 
punctuation, 
non-Arabic 
character, and 
numbers, 
normalization 

TF-
IDF,Word2Ve
c, pre-trained 
FastText, 
AraVec, and 
combination 
of the best 
two. 
Multilingual 
Bert 

SVM/LR/NB/
RF/CNN/ Bi-
LSTM/Bi-
GRU/ Bi-
LSTM with 
CNN/ 
ensemble of 
LR, 
SVM,NB,RF, 
and nearest 
neighbor   

The 
ensembled 
model 

Task1: 
F1=87% 
Task2: 
F1=80% 

(Husain, 
2020) 

10,000 tweets 
OSACT 
Shared Task, 
imbalanced 
Hate/Non, 
Offensive/No
n 

Translate 
emojis. 
Replace nouns 
and animal 
names with 
their 
respective 
MSA nouns. 
Normalization
. Hashtag 
segmentation. 
Remove 
diacritics 

Character 
count 
vectorizer/ 
TF-IDF  

SVM without 
preprocessing/ 
SVM with 
preprocessing 

SVM with 
preprocessing  

Task1: 
ACC=90%, 
P=89%, R= 
90%, F1=89% 
Task2: 
ACC=95%, 
P=95%, R= 
95%, F1=95% 

(Abuzayed & 
Elsayed, 
2020) 

10,000 tweets 
OSACT 
Shared Task, 
imbalanced 
Hate/Non 

Remove all 
non-Arabic 
characters, 
punctuation, 
diacritics 
Normalization 

TF-
IDF/AraVec 

SVM/LR/RF/
XGBoost/ 
Extra 
Trees/DT 
/Gradient 
Boosting/ 
RNN/CNN/L
STM/Bi-
LSTM/GRU/
CNN with 
LSTM 

CNN with 
LSTM 
without 
oversampling 

Task2: 
F1=69% 
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CHAPTER 3 

METHODOLOGY 

3. 1 Data Gathering 

  In this research, we gather nine publicly available datasets from several sources. 

Four of these datasets represent specific dialects, while the others contain random tweets in 

Arabic that might belong to several dialects. The dialects cannot be inferred from the 

datasets. Each dataset is initially labeled to identify the hateful or abusive language reported 

without any re-labeling from our side. We only merge all negative labels such as offensive 

or abusive into one class, which is hate, since we focus on binary classification. Table 3 

contains a summary of the datasets. Moreover, A description of each dataset is presented 

below: 

x Alshalan & Al-Khalifa, (2020) present a Twitter-based dataset that contains 

different types of hate speech. The authors use terms that refer to specific tribes to 

obtain the region’s particular tweets (Alshalan & Al-Khalifa, 2020). As a result, 

10K Saudi dialect tweets are sampled for annotation by crowed workers, Saudi 

annotators, and three freelancers familiar with the Saudi dialect (Alshalan & Al-

Khalifa, 2020). The data is published as Tweet IDs and labels. Therefore, we 

employ Twitter API to extract the text from the IDs, which leads to losing some 

tweets that have become obsolete.  

x Mubarak et al., (2017) present two datasets. The first is a Twitter dataset collected 

based on a list of obscene words (Mubarak et al., 2017). The result is 1,100 tweets 

that do not focus on a specific dialect and is submitted to CrowdFlower to be 
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annotated by three annotators from Egypt (Mubarak et al., 2017). Mubarak et al., 

(2017) release a second dataset consisting of comments from the Aljazeera news 

website, consisting of MSA and several undefined dialects. The data contains 32K 

comments annotated using CrowdFlower (Mubarak et al., 2017). Both datasets are 

labeled as obscene, offensive, and normal. In this research, we combine obscene and 

offensive to be considered hate.  

x Alakrot et al., (2018) present a dataset extracted from YouTube comments based on 

selected channels that contain controversial videos. A sample of 16K comments, 

which does not focus on specific dialect, is presented to three annotators from Iraq, 

Libya, and Egypt to be labeled positive or negative (Alakrot et al., 2018).  

x Ousidhoum et al., (2019) present a Twitter dataset collected using English, French, 

and Arabic terms. The Arabic tweets represent mixed dialects of 3,353 tweets 

annotated by public annotators who are native speakers (Ousidhoum et al., 2019). 

Each tweet is labeled with five labels targeting directness, hostility, the target of 

discrimination, group, and annotator feeling. This research focuses on the hostility 

label that includes six separate classes and a combination of these classes depending 

on the annotators’ point of view. We combine hateful, disrespectful, offensive, 

abusive, fearful, and their mix into hate while keeping the normal class as it is.  

x Albadi et al., (2018) present a Twitter dataset collected using Arabic religious-

related terms. The data is mixed dialects of 6,600 tweets annotated using 

CrowdFlower and Arabic-speaking annotators (Albadi et al., 2018). The data is 
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published as Tweet IDs and labels. Therefore, we employ Twitter API to extract the 

text from the IDs, which leads to losing some tweets that have become obsolete.  

x Mulki et al., (2019) present a Twitter dataset constructed out of four specific 

dialects, which are Lebanese, Syrian, Jordanian, and Palestinian (Levantine). Three 

annotators use a sample of 6K tweets for annotation (Mulki et al., 2019). In this 

research, we obtain the publicly available dataset and merge the abusive and hate 

into one class, which is hate. 

x Hadj Ameur & Alian (2021) present a Twitter dataset to detect COVID-19 

pandemic fake news using a set of keywords. A sample of 10,828 tweets was 

chosen for annotation by one annotator, who chose ten labels for each tweet (Hadj 

Ameur & Aliane, 2021). The dataset consists of 4,782 tweets written in MSA, 1,227 

North African dialects, 3,494 Middle Eastern dialects, and the rest can not be 

inferred. The labels identify whether a tweet contains hate, talks about a cure, gives 

advice, raises moral, news or opinion, dialect, blame and negative speech, is factual, 

is worth fact-checking, and contains fake information (Hadj Ameur & Aliane, 

2021). A cannot decide class is present for each label if the annotator could not 

choose the tweet’s label (Hadj Ameur & Aliane, 2021). The data is obtained as 

Tweet IDs. Therefore, we employ Twitter API to extract the text from the IDs, 

which leads to losing some tweets that have become obsolete. In this research, we 

only use the hate labels, and we remove the tweets that are labeled as cannot decide.  

x H. Haddad et al., (2019) present a dataset constructed from comments in the 

Tunisian dialects using keywords. Three annotators annotate a sample of 6,075 to 
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be classified as hate, abusive, and normal (H. Haddad et al., 2019). In this research, 

we obtain the publicly available dataset and merge the abusive and hate into one 

class, which is hate 

 

Table 3: Data Summary 

Dataset 
name 

Labels Size7 Labels used 
in this paper 

Size of 
positive 
label 8 

Dialect Dataset 
ID 

(Alshalan & 
Al-Khalifa, 
2020) 

Hate/Not-
hate 

5333 
tweets 

Hate/Normal 1435 
tweets 
 

Saudi Dialect 𝐷𝑎𝑡𝑎  
 

(Mubarak et 
al., 2017) 

Obscene/ 
Offensive/ 
Clean 

31692 
tweets 

Hate/Normal 26039 
tweets 

General Tweets  𝐷𝑎𝑡𝑎  
 

(Mubarak et 
al., 2017) 

Obscene/ 
Offensive/ 
Clean 

1100 
tweets 

Hate/Normal 647 tweets General Tweets  𝐷𝑎𝑡𝑎  
 

(Alakrot et 
al., 2018) 

Positive/Neg
ative 

11268 
tweets 

Hate/Normal 2438 
tweets 

General Tweets 𝐷𝑎𝑡𝑎  
 

(Ousidhoum 
et al., 2019) 

Six different 
labels  

3353 
tweets 

Hate/Normal 2438 
tweets 

General Tweets 𝐷𝑎𝑡𝑎  
 

(Albadi et 
al., 2018) 

Hate/Not-
hate 

3542 
tweets 

Hate/Normal 1460 
tweets 

General Tweets  𝐷𝑎𝑡𝑎  
 

(Mulki et 
al., 2019) 

Hate/ 
Abusive/ 
Normal 

5846 
tweets 

Hate/Normal 
 

2196 
tweets 

Levantine  𝐷𝑎𝑡𝑎  
 

(Hadj 
Ameur & 
Aliane, 
2021) 

Hate/Not 
hate 

9711 
tweets 

Hate/Normal 
 

971 
tweets 

MSA, Maghrebi, 
Levantine, 
General Tweets 

𝐷𝑎𝑡𝑎  
 

(H. Haddad 
et al., 2019) 

Hate/Abusiv
e/Normal 

6024 
tweets 

Hate/Normal 2203 
tweets 

Tunisian  𝐷𝑎𝑡𝑎  
 

 

 
7 The indicated size is the number used in this paper as some datasets require extraction of Tweets using 

Twitter API 

8 The indicated size is the number obtained after we combined labels together to obtain the target classes 
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3. 2 Data Splitting and Data Combination 

  The first six datasets in Table 3 are utilized in our experiments, while 𝐷𝑎𝑡𝑎 , 

𝐷𝑎𝑡𝑎 , and 𝐷𝑎𝑡𝑎  are kept for testing the generalization performance of our best 

models on unseen datasets. For each of the six datasets, we deploy 80% split for training 

and 20% for testing. The test set of each data is preserved for models’ evaluation. On the 

other hand, the training sets of each dataset are combined to constitute one augmented 

dataset with several dialects (𝐷𝑎𝑡𝑎 ). This combination aims to test the ability of the 

models to detect hate when several datasets are concatenated at the data level. The size of 

our combined corpus is 45,028 tweets; 29,386 are labeled as hate, while 15,642 are labeled 

as non-hate. The ratio of hate to non-hate is 1.8, which is considered a slight imbalance in 

the data.  

  Additionally, we split the augmented dataset into 50% for training (𝑡𝑟𝑎𝑖𝑛 ), 30% 

for validation (𝑣𝑎𝑙𝑖𝑑 ), and 20% for testing (𝑡𝑒𝑠𝑡 ). We use 𝑡𝑟𝑎𝑖𝑛  and 𝑣𝑎𝑙𝑖𝑑  as the 

basis to train our models, while 𝑡𝑒𝑠𝑡  is kept for evaluation. A summary of the splitting 

methodology applied to these datasets is presented in Figure 3. 

 

 

Figure 3: A summary of the data splitting and combination process 
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3. 3 Data Cleaning and Preprocessing 

  We experiment with different cleaning and preprocessing techniques with the 

training and validation set of each of the six datasets. We apply LR using TF-IDF features 

(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ) and LR using AraVec word embedding features (𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ) as baselines to 

measure the improvement of the procedures on the validation set. This is done because we 

are trying to find the best preprocessing techniques that can be applied to all datasets and 

features. However, we cannot find one set of techniques that works on all datasets and 

features because each dataset uses different preprocessing techniques with each feature set. 

Hence, we decide to investigate preprocessing procedures on 𝑣𝑎𝑙𝑖𝑑  since our main 

experiments are trained on the combined dataset, the following preprocessing experiments 

are done: 

1. Remove stop words: we use a combination of NLTK stop words list and a list 

retrieved from GitHub, which can be found here Arabic stop words. 

2. Stemming: is the technique of removing the last few letters of a word. We use ISRI 

Stemmer NLTK package along with Arabic Light Stemmer tashaphyne package.  

3. Remove diacritics: diacritics are marks placed above or below letters to change 

words pronunciation. Therefore, we remove them using Araby pyarabic package.  

4. Lemmatization: is the technique of converting the words into their base form. We 

lemmatize the text using the Qalsadi lemmatizer package 

5. Normalization: we normalize Arabic characters, such as Alif (أ،آ،إ) to (ا), Alif 

Maqsura (ي،ئ) to (ى), and Ta Marbouta (ة) to ( ه) using regular expressions because 

it generates simpler words. 
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6. Remove URLs: we remove all the URLs links using regular expressions. 

7. Remove Twitter symbols: we remove the mentions (@) and retweet (RT) symbols 

from the text using regular expressions. 

8. Remove all characters: we remove all characters, punctuations, and numbers except 

those that belong to the Arabic alphabet using regular expressions. 

9. Remove special characters: we remove all characters such as #, $, \n, etc.. using 

regular expression 

10. Translate Emojis: we translate the emojis into words using the emoji package. 

11. Remove repeated letters: Some users try to emphasize and deliver their emotions by 

using repeated letters. Therefore, our data contains some words with repeated letters 

that are considered misspelled words. Since there is no Arabic spell checker 

available, we try several techniques to correct the misspelled words. First, we try 

Google translator API to check if it can be used as a spell checker. Even though it 

might provide suggestions for some misspelled words, it does not correct the words 

with extra characters.  

  Therefore, we get a list of 94446 Arabic words from GitHub, which can be retrieved 

from Arabic Words, to check the misspelled words to estimate how they affect the 

performance. However, misspelled words are mainly written in dialects except for words 

that have repeated characters such as راااائع-amazing. As a result, we remove repeated 

characters using regular expressions where only the first character is kept. 
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3.4 Feature Engineering and Features Combination 

  This study conducts several experiments at the features level. We test TF-IDF 

features and pre-trained AraVec word embeddings on 𝑣𝑎𝑙𝑖𝑑 . Then, we conduct 

experiments with features combination. A detailed description of every experimentation is 

presented below. 

 

3.4.1 Term Frequency-Inverse Document Frequency (TF-IDF) 

  TF-IDF is a feature extraction technique widely used across classification tasks to 

represent text as vectors. It calculates the number of times the word occurs in each 

document and across all documents. This is called term frequency (TF) (Webb & Sammut, 

2010). Additionally, it calculates the words’ weights to represent the importance of the 

word in the document based on assigning a high weight to rare terms (Webb & Sammut, 

2010). We test TF-IDF unigrams, bigrams, and a combination of unigrams and bigrams 

techniques on 𝑣𝑎𝑙𝑖𝑑 .  

 

3.4.2 Pre-trained AraVec Word Embedding 

  AraVec, is an open-source pre-trained distributed word representation model based 

on the Arabic language extracted from Wikipedia, Twitter, and Common Crawl webpages 

(Soliman et al., 2017). The model is based on CBOW or SG with 100 or 300 dimensions 

(Soliman et al., 2017). We obtain the Twitter-based pre-trained AraVec since most of our 

data is extracted from Twitter and experiment with CBOW 100, CBOW 300, SG 100, and 

SG 300.  
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3.4.3 Features Combination 

  We combine the best pre-trained AraVec model with the features resulting from TF-

IDF and check the results on 𝑣𝑎𝑙𝑖𝑑 . This is done by first tokenizing each tweet, checking 

if the word exists among both TF-IDF and AraVec features, then extracting the weight 

(IDF) and multiplying it by the AraVec vector. However, we set the weight to 1 for any 

zero weight that might drop the entire vector. On the other hand, if the word exists only 

among AraVec vectors, then the vector is used. Otherwise, the term is dropped. The above 

combination experiment is done without preprocessing, after the preprocessing is done on 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , and after the preprocessing is done on 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 . Moreover, the best 

combination is evaluated on the test sets. Figure 4 represents the process of features 

combination. 

 

Figure 4: Feature combination process 
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3.5 Traditional Models’ Training and Evaluation 

  As previously discussed, we experiment with several models on Arabic hate speech 

detection and conclude that LR and SVM provide the best performance. Therefore, we 

decide to train these two models for our classification task. 

 

3.5.1 Logistic Regression (LR) 

  Logistic regression is a supervised machine learning algorithm that uses a logistic 

function to predict the probability of a binary outcome in terms of inputs (Hosmer et al., 

2013). It is widely used across literature for binary prediction and to solve less complex 

problems.  

 

3.5.2 Support Vector Machine (SVM) 

  Support Vector Machine is a supervised machine learning algorithm used for 

classification or regression. The model tries to find the best hyper-plane that can separate 

the classes with the maximum margin between the points and the hyper-plane (Cristianini 

& Ricci, 2008). In this research, we use LinearSVC, which allows us to find the “best fit” 

of the hyper-plane that separates our classes. We try to use the SVM model. However, the 

model consumes resources with lower performance than LinearSVC. 

 

3.5.3 Training and evaluating the models  

  These models are trained on 𝑡𝑟𝑎𝑖𝑛  and 𝑣𝑎𝑙𝑖𝑑  using TF-IDF and AraVec word 

embedding features. We evaluate our models on 𝑡𝑒𝑠𝑡  and each data test set. Furthermore, 
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we test the generalization performance of our best models on 𝐷𝑎𝑡𝑎 , 𝐷𝑎𝑡𝑎 , and 

𝐷𝑎𝑡𝑎 . Moreover, We conduct an error analysis of the models’ results, which can be 

compared to the actual observations using the classification matrix presented in Table 4.  

 

Table 4: Confusion Matrix 

 Predicted 

Actual Normal Hate 

Normal True Negative (TN) False Positive (FP) 

Hate False Negative (FN) True Positive (TP) 

 

  The performance criteria used in this study to evaluate the models’ performance are 

the Area Under the Curve (AUC), Precision (P), Recall (R), Accuracy (ACC), and F1 

scores. AUC measures the classifier’s confidence in predictions regardless of the chosen 

threshold and the predictions’ values. ACC is a measure of correctly classified instances 

across all instances. P is a measure of the actual correct predictions of the positive class out 

of all the models’ predictions. This measure is considered essential when having false 

positives costs more than false negatives. R measures the correct predicted positives out of 

all the actual positives, which is vital when having false negatives costs more than false 

positives. Lastly, the F1 score represents a balance between P and R and can be considered 

a good measure when the data is imbalanced. This research considers AUC the primary 

metric for evaluation and testing because it is robust to thresholds and predictions. AUC 

allows us to measure the classifier's ability to separate the classes 
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  Additionally, we combine the best models at the score level. We combine LR with 

TF-IDF, SVM with TF-IDF, LR with AraVec, SVM with AraVec, LR with TF-IDF and 

AraVec combination, and SVM with TF-IDF and AraVec combination. We create sets of 

two, three, four, five, and six models for combination. We combine the models on 𝑡𝑟𝑎𝑖𝑛  

and 𝑣𝑎𝑙𝑖𝑑  and calculate the Avg, Min, Max, and Median for each model's hate class 

probabilities per tweet. The resulting possibilities are employed to calculate the overall 

AUC, ACC, P, R, and F1 scores. The best-performing combinations are then applied to the 

test sets. 

 

3.6 Data Imbalance 

  A balanced data is a data that has the same ratio from each class. We train our 

models on a relatively balanced dataset to account for skewness in a real-world application. 

In practice, the occurrence of hate data is much lower than non-hate data. To ensure that 

our selected models are robust to imbalance, we evaluate their performances on imbalanced 

data by adding new non-hate blocks of data to our corpus, then re-evaluating our best 

models’ generalization performance on the test sets. We use the corpus collected by (El-

Khair, 2016) that contains several datasets with different dialects. The corpus includes ten 

different dialects collected from news websites. We randomly add a subset of each dialect 

to our augmented dataset, assuming that the data does not have hate words since it is 

considered general news data from news channels. Therefore, the data is deemed to be 

presented as neutral. We randomly add a subset to our corpus from each dialect. We 

experiment with a sample of 3000, 5000, and 8000 from each dialect and monitor the AUC 
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score on the test sets. We apply the same preprocessing and feature engineering techniques 

selected for our best models.  

 

3.7 Pre-trained Models Training and Evaluation 

  The emergence of pre-trained models, which can be fine-tuned to a specific task, 

provides researchers with unified architecture applicable to different tasks. Bert, a pre-

trained model developed by Google in 2018, is widely used to detect abusive and hateful 

language. Bert is based on a multi-layer bidirectional transformer encoder with self-

attention heads trained on large unlabeled datasets (Devlin et al., 2018). The model is pre-

trained on English datasets. Then, Multilingual Bert is introduced for other languages such 

as Arabic. Furthermore, Antoun et al., (2020) pre-train Bert architecture on Arabic corpora 

and release a model called AraBert for Arabic-specific tasks. Additionally, Antoun et al., 

(2020) release different versions of AraBert, such as base AraBert with 12 layers and large 

AraBert with 24 layers. Moreover, the authors release an AraBert Twitter model trained on 

60 million Tweets.  

  As a result, we experiment with fine-tuning base Multilingual-Bert and base 

AraBert Twitter model for classification due to limited resources that prevent us from 

investigating large Bert models. We optimize the hyper-parameters of the best model and 

calculate the AUC, ACC, F1, P, and R scores on 𝑣𝑎𝑙𝑖𝑑 . Additionally, we compare the 

optimized, fine-tuned model with another version to ensure that the model is the best 

possible system for hate speech detection. Finally, we evaluate our chosen model on the 

test sets.  
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  In terms of the model’s hyper-parameters, we investigate different batch sizes when 

loading the data for training. The batch size refers to the sample of training data that will be 

used to estimate gradient error before the models’ weights are updated. For small datasets, 

small batch size is considered better to enable the model to learn as much as possible from 

the data. However, a large batch size reduces training time. In our research, our dataset is 

considered relatively small. Therefore, we experiment with smaller batch sizes. The default 

batch size is 32, but we try two, three, four, five, six, seven, eight, nine, ten, 16, and 64 

batch sizes.  

  Additionally, we experiment with the shuffling argument on both 𝑡𝑟𝑎𝑖𝑛  and 

𝑣𝑎𝑙𝑖𝑑 , which returns random data samples when set to True and sequential data samples 

when set to False. Furthermore, We optimize the hyperparameters of the Bert model, such 

as the learning rate, dropout rate, and models’ weights. We investigate the learning rate of 

the model, which controls the rate at which the models’ weights are adapted to the problem. 

A small learning rate usually requires more epochs for training, while a large rate requires 

fewer epochs. In this research, the default learning rate is 5e-5. Therefore, we experiment 

with a learning rate of 10e-5 and 2e-5. On the other hand, the hidden dropout rate is the 

probability that a given node in a layer will be trained. The dropout rate prevents overfitting 

for small datasets or large architectures. The default value for the dropout rate is 0.1. We 

examine the rates ranging from 0.2 to 0.8.  

  In addition, we study the effects of freezing the encoding layers and embedding 

layers of the Bert model since the default model is not frozen and weights are adjusted as 

the model is fine-tuned. We incrementally freeze two layers until the entire model is frozen. 
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Furthermore, we try two, four, and six epochs to give the model more time to learn from 

our data. Finally, we study the effects of our previously chosen preprocessing techniques 

and the impact of Bert's preprocessing tools on our fine-tuned model.  
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Impact of Preprocessing Techniques  

  We inspect the results of our preprocessing experiments on our baseline models. 

Removing stop words and diacritics reduces the performance of both models. That is 

because negations, which constitute vital words to classify hate speech, are removed. 

However, the reduction in performance is minor, suggesting that their effect is negligible. 

Additionally, eliminating all characters, URLs, and special characters reduces the 

performance of both models because they are rare in the text since tweets can have multiple 

links and characters. This leads to higher weights with TF-IDF since it considers rare words 

more important than repeated ones. Consequently, word embedding features contain 

vectors for punctuation and special characters that might explain the decrease in 

performance, but the slight drop indicates that these characters do not have significant 

importance.  

  Furthermore, removing mentions reduces the performance of 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  and 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  but the impact in both cases is minor. On the other hand, stemming and 

lemmatization improve the performance on 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , but reduce the performance on 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 . This might be because stemming does not depend on dictionaries, unlike 

lemmatization, which results in meaningless words. Therefore, we choose lemmatization 

since it has a lower impact on word embedding features than stemming, which might 

reduce the impact with feature engineering experiments. Moreover, emojis translation 
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improves the performance of both models since emojis are translated into meaningful 

sentences. The sentences have high weights because they are considered rare, which 

explains the improvement in 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 . The improvement on 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  is due to the 

existence of emojis among the features.  

  Similarly, removing duplicate characters improves the performance of both models. 

That is because a lot of words such as راااائع/amazing are fixed to their original form. The 

improvement indicates that these words are more representative than misspelled words. As 

noted in the results, we cannot apply the same preprocessing on both baselines. Therefore, 

we decide to use different preprocessing techniques for each feature engineering technique 

depending on the ones that improved the model's performance. As a result, the following 

preprocessing techniques are applied throughout the study. A summary of the AUC scores 

before and after using different preprocessing techniques on 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  is presented in 

Table 5. Figures 5 and 6 represent the percentage difference in applying the preprocessing 

techniques on our baselines. 

x For models with TF-IDF features: normalization, mentions removal, lemmatization, 

emojis translation, removing repeated characters.  

x For models with word embeddings vectors: normalization, emojis translation, 

removing repeated characters. 
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Table 5: AUC Scores before and after applying preprocessing techniques on valid_all  

Preprocessing 
Techniques  

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  
before 

preprocessing 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  
after 

preprocessing 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  
before 

preprocessing  

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  
after 
preprocessing  

Stop words 
removal 

0.820 0.825 0.816 0.815 

ISRI Stemmer 0.827 0.846 0.816 0.781 
Arabic Light 

Stemmer 
0.827 0.843 0.816 0.795 

Diacritics 
removal 

0.827 0.827 0.816 0.816 

Lemmatization 0.827 0.844 0.816 0.812 
Normalization 0.827 0.834 0.816 0.828 
URLs removal 0.827 0.821 0.816 0.811 

Mentions 
Removal 

0.827 0.827 0.816 0.815 

Remove all 
characters 

0.827 0.821 0.816 0.804 

Remove special 
characters 

0.827 0.827 0.816 0.807 

Emojis 
translation 

0.827 0.830 0.816 0.819 

Remove 
duplicate 
characters 

0.827 0.830 0.816 0.817 

 

 

Figure 5: Percentage difference in preprocessing results for Baseline 1 
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Figure 6: Percentage difference in preprocessing results for Baseline 2 

 

4.2 Impact of Data Combination on Models Performance  

  Training our chosen models on the combination of datasets demonstrates that the 

models perform differently on different test sets. After selecting the preprocessing and 

feature techniques for our models, we report the AUC scores on the test sets in Table 69. 

 

Table 6: AUC scores on test sets 

Models Test sets TF-IDF  AraVec 
 
 
 
 
 

𝑇𝑒𝑠𝑡  0.856 0.850 
𝑇𝑒𝑠𝑡  0.763 0.795 
𝑇𝑒𝑠𝑡  0.780 0.773 
𝑇𝑒𝑠𝑡  0.764 0.781 
𝑇𝑒𝑠𝑡  0.814 0.806 

 
9 Bold text represent the best results   
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Models Test sets TF-IDF  AraVec 
LR 𝑇𝑒𝑠𝑡  0.836 0.863 

𝑇𝑒𝑠𝑡  0.779 0.755 
 𝐷𝑎𝑡𝑎  

𝐷𝑎𝑡𝑎  
𝐷𝑎𝑡𝑎   

0.765 
0.774 
0.758  

0.760 
0.714 
0.764  

 
 
 
 
 
SVM 
 

𝑇𝑒𝑠𝑡  0.833 0.832 
𝑇𝑒𝑠𝑡  0.808 0.806 
𝑇𝑒𝑠𝑡  0.773 0.770 
𝑇𝑒𝑠𝑡  0.758 0.753 
𝑇𝑒𝑠𝑡  0.866 0.865 
𝑇𝑒𝑠𝑡  0.792 0.786 
𝑇𝑒𝑠𝑡  0.754 0.747 

 𝐷𝑎𝑡𝑎  
𝐷𝑎𝑡𝑎  
𝐷𝑎𝑡𝑎  

0.789 
0.780 
0.748 

0.783 
0.765 
0.746 

 

  As indicated in Table 6, there is not a model that outperforms other models on our 

test sets. LR with TF-IDF outperforms other models on 𝑇𝑒𝑠𝑡 , 𝑇𝑒𝑠𝑡 , and 𝑇𝑒𝑠𝑡 , while 

LR with AraVec performs best with 𝑇𝑒𝑠𝑡 , 𝑇𝑒𝑠𝑡 , and 𝐷𝑎𝑡𝑎 . On the other hand, SVM 

with TF-IDF outperforms other models on the remaining test sets, which are 𝑇𝑒𝑠𝑡 , 𝑇𝑒𝑠𝑡 , 

𝐷𝑎𝑡𝑎 , and 𝐷𝑎𝑡𝑎 .  

 

4.3 Impact of Features on Model Performance  

  The results of features engineering experiments indicate that models perform best 

using TF-IDF unigrams and pre-trained AraVec SkipGram 300. As a result, these features 

are further combined on the feature level. Our experiments reveal that the combination of 

features with the preprocessing set performed on 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  outperforms other 

preprocessing techniques. Therefore, we combine TF-IDF with AraVec features after 
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applying the preprocessing techniques chosen for 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 . The AUC scores of features 

combination on the test sets are reported in Table 7. 

 

Table 7: AUC scores of features combination on test sets 

Models Test sets AraVec +  
TF-IDF 

 
 
 
 
 
LR 

𝑇𝑒𝑠𝑡  0.822 
𝑇𝑒𝑠𝑡  0.815 
𝑇𝑒𝑠𝑡  0.764 
𝑇𝑒𝑠𝑡  0.770 
𝑇𝑒𝑠𝑡  0.840 
𝑇𝑒𝑠𝑡  0.810 
𝑇𝑒𝑠𝑡  0.750 

 𝐷𝑎𝑡𝑎  
𝐷𝑎𝑡𝑎  
𝐷𝑎𝑡𝑎   

0.781 
0.820 
0.742  

 
 
 
 
 
SVM 
 

𝑇𝑒𝑠𝑡  0.821 
𝑇𝑒𝑠𝑡  0.813 
𝑇𝑒𝑠𝑡  0.762 
𝑇𝑒𝑠𝑡  0.763 
𝑇𝑒𝑠𝑡  0.840 
𝑇𝑒𝑠𝑡  0.800 
𝑇𝑒𝑠𝑡  0.741 

 𝐷𝑎𝑡𝑎  
𝐷𝑎𝑡𝑎  
𝐷𝑎𝑡𝑎  

0.775 
0.810 
0.740 

 

  As indicated in Table 7, combining the features of TF-IDF and AraVec with our 

models has a lower performance than the performance of the individual feature set, shown 

in Table 6. Looking into the proportion of the dropped features for 𝑇𝑒𝑠𝑡 , we conclude 

that 61% of TF-IDF features are dropped because they do not have vector representations in 

AraVec. The dropped words represent important features for hate classification, such as the 

word “stab- ع ”. This explains the drop in performance across most of the test sets.  
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  On the contrary, LR with a combination of TF-IDF and AraVec features outperform 

LR with TF-IDF and SVM with TF-IDF on 𝑇𝑒𝑠𝑡  and 𝐷𝑎𝑡𝑎 , respectively. The 

proportions of dropped words from both 𝑇𝑒𝑠𝑡  and 𝐷𝑎𝑡𝑎  are 1.8% and 17%, 

respectively. Moreover, the dropped words represent general Twitter symbols and some 

translated emojis, which do not have major effects on detection. Overall, the combination 

of the features does not provide significant improvement compared to the resources 

consumed for the combination. Therefore, we will be excluding the combination from 

further experiments.  

 

4.4 Impact of Model Combination on Model Performance 

  The results of model combination experiments reveal that the scores combination of 

two LR models with TF-IDF and AraVec outperform others on Test_2, Test_4, Test_6, 

Data_new, and Data_new1. Additionally, the scores combination of three models, LR using 

TF-IDF, LR using AraVec, and SVM using TF-IDF, outperform individual models and 

other models’ combinations when tested on the test sets. However, the results on 𝑇𝑒𝑠𝑡 , 

𝑇𝑒𝑠𝑡 , 𝑇𝑒𝑠𝑡 , and 𝑇𝑒𝑠𝑡  do not change after model combination.  

  Furthermore, the combination results suggest that the individual models with the 

highest scores provide similar scores when combined. The Avg combination operator gives 

the highest AUC score compared to the other operators across all test sets. That is because 

the Avg considers all the models’ scores while the other operators rely more on the 

performance of individual models. On the contrary, the performance of Max, Min, and 

Median operators is lower or similar to the performance of the Avg operator on test sets. 
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Figures 7 and 8 represent our best models’ combination with different operators across the 

test sets. Thus, we decide to report the Avg results as the final results of the models’ 

combination on our test sets. A summary of the best combination results on the test sets is 

presented in Table 8.  

 

Table 8:The AUC scores on the best models’ combination on test sets 

Models  Test Set AUC score 
 
 
 
 
 

LR+TFIDF/LR+AraVec 

𝑇𝑒𝑠𝑡  
𝑇𝑒𝑠𝑡  
𝑇𝑒𝑠𝑡  
𝑇𝑒𝑠𝑡  
𝑇𝑒𝑠𝑡  
𝑇𝑒𝑠𝑡  
𝑇𝑒𝑠𝑡  

𝐷𝑎𝑡𝑎  
𝐷𝑎𝑡𝑎  
𝐷𝑎𝑡𝑎  

0.864 
0.810 
0.799 
0.782 
0.868 
0.837 
0.783 
0.801 
0.801 
0.775 

 
 
 
 

 
LR+TFIDF/LR+AraVec/SVM+TFDF 

𝑇𝑒𝑠𝑡  
𝑇𝑒𝑠𝑡  
𝑇𝑒𝑠𝑡  
𝑇𝑒𝑠𝑡  
𝑇𝑒𝑠𝑡  
𝑇𝑒𝑠𝑡  
𝑇𝑒𝑠𝑡  

𝐷𝑎𝑡𝑎  
𝐷𝑎𝑡𝑎  
𝐷𝑎𝑡𝑎  

0.865 
0.813 
0.796 
0.791 
0.839 
0.862 
0.781 
0.790 
0.777 
0.778 
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Figure 7: The results of different operators on LR+TF-IDF/LR+AraVec  

 

 

Figure 8: The results of different operators on LR+TF-IDF/LR+AraVec/SVM+TF-IDF 

 

  As indicated in Table 8, the models’ combinations outperform all our previous 

models. Additionally, the difference in scores between the two combinations is not 

LR+TF-IDF/LR+AraVec

Average Scores Max Score Min Score

LR+TFIDF/LR+AraVec/SVM+TFDF

Average Scores Max Score Min Score Median Score
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significant. Therefore, these models are chosen as our best models to be tested with an 

imbalanced dataset.  

 

4.5 Impact of Imbalance on Model Performance 

   We test our best models' ability to detect hate speech with imbalanced data to 

account for real-life applications. Our experiments suggest that the scores combination of 

three models, LR using TF-IDF, LR using AraVec, and SVM using TF-IDF, is considered 

the best model. The model maintained similar performance across all test sets except for 

𝑡𝑒𝑠𝑡  and 𝑡𝑒𝑠𝑡 , which has a slightly lower score than the combination on the balanced 

dataset. However, the remaining test sets, especially new dialects, have better performance 

than other models. These results show that our model is robust to data imbalance. 

Therefore, the performance of our model will not deteriorate if the ratio of hate/non-hate 

varies across different platforms. 

  Furthermore, the results of our best model are not highly affected by the change in 

sample size. The model trained on our original data with 80,000 additional data has the 

highest scores. However, the improvement across sample sizes is considered minor. Similar 

to the model combination results, the Avg operator results outperform the results of other 

operators. Therefore, we will be reporting the Avg AUC scores on our test sets in Table 9.  
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Table 9: AUC scores on models’ combination with imbalanced data 

Models  Test Set AUC score 
 
 
 
 

 
LR+TFIDF/LR+AraVec/SVM+TFDF 

𝑇𝑒𝑠𝑡  
𝑇𝑒𝑠𝑡  
𝑇𝑒𝑠𝑡  
𝑇𝑒𝑠𝑡  
𝑇𝑒𝑠𝑡  
𝑇𝑒𝑠𝑡  
𝑇𝑒𝑠𝑡  

𝐷𝑎𝑡𝑎  
𝐷𝑎𝑡𝑎  
𝐷𝑎𝑡𝑎  

0.960 
0.810 
0.773 
0.800 
0.832 
0.860 
0.780 
0.840 
0.885 
0.781 

 

4.6 Impact of Pre-trained Models  

  The results of our experiments with different Bert models indicate that Base 

AraBert Twitter outperforms Multilingual Bert on 𝑣𝑎𝑙𝑖𝑑  with the default hyper-

parameters. This might be because Base AraBert Twitter is trained on five different Arabic 

datasets and 60 million Tweets, while Multilingual Bert is trained only on Arabic 

Wikipedias. Therefore, we will be optimizing the hyperparameters of the Base AraBert 

Twitter model on our balanced dataset.  

  In terms of batch sizes, Figure 9 shows the changes in AUC scores with the increase 

in batch size. The figure suggests a slight increase in AUC score starting with a batch size 

of ten until 64, with the highest AUC score of 92% with a batch size of 64. Therefore, we 

choose a batch size of 64 as our final batch size because it provides the highest performance 

on our 𝑣𝑎𝑙𝑖𝑑  and reduces training time significantly. As for data sample shuffling, we 

conclude that shuffling the training samples randomly and keeping validation samples 

sequential provide the best performance on 𝑣𝑎𝑙𝑖𝑑 .  



56 
 

  The results with different learning rates indicate that the default learning rate of 5e-

5 is the best learning rate for our model. As for the dropout rates, Figure 11 shows the 

fluctuations in AUC scores as we increase the dropout rate. However, the highest score is 

achieved with the default dropout rate of 0.1. Moreover, our experiments with freezing the 

different layers of the model indicate that freezing the embedding layers is not highly 

affecting the performance, with a slight decrease of 0.001% in the AUC score on 𝑣𝑎𝑙𝑖𝑑 . 

This indicates that the pre-trained embedding layers are representative of the words without 

any prior fine-tuning on our task. Similarly, freezing the first eight layers has a minor effect 

on models’ performance. Moreover, freezing eight to 10 layers of the model further reduces 

performance. However, freezing the last two layers reduces the performance by 4%. This 

indicates that the final two layers of AraBert are the most task-specific layers that should be 

fine-tuned for hate speech detection or any other task. Figure 11 displays the changes in 

AUC scores as the model’s layers are frozen. 

  Furthermore, we incrementally increase the number of epochs by two until we reach 

six epochs. However, we notice that the validation loss and accuracy are consistent after the 

second epoch, indicating that the model is stuck at a local minimum and cannot learn 

further from the data. Therefore, we change the learning rates with the increase in epochs. 

However, the results do not change, indicating a need to inspect further. Additionally, we 

check the effects of AraBert preprocessing with our fine-tuned model. We tried each 

technique individually, but the performance does not vary much with any technique. 

Similarly, we apply our previously selected preprocessing technique, as indicated in section 

4.1, to the data with AraBert model. However, the performance is slightly reduced. This 

might be because AraBert is originally pre-trained on 60 million raw Tweets without prior 
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preprocessing. Finally, we check the AraBert base Twitter model against another AraBert 

Base version. AraBert Base Twitter version achieves the highest performance on 𝑣𝑎𝑙𝑖𝑑 . 

This might be because it is pre-trained on Twitter, which fits our data. 

 

 

Figure 9: AUC scores with the increase in batch size 
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Figure 10: AUC scores with the increase in the dropout rate 

 

 

Figure 11: AUC scores with the increase in layers' freezing 
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4.7 Generalization of AraBert on Test Sets 

  We test our fine-tuned model on our test sets. The results indicate that AraBert 

outperforms other models on all test sets. We report the results of AraBert on the test sets in 

Table 10. AraBert provides better generalization performance on 𝐷𝑎𝑡𝑎 , 𝐷𝑎𝑡𝑎 , and 

𝐷𝑎𝑡𝑎 . These datasets contain Levantine, Tunisian, and other dialects, revealing that 

AraBert can predict hate speech across different dialects. Figure 12 shows the ROC_AUC 

curves of our fine-tuned AraBert model using the balanced data on test sets. 

 

Table 10: AraBert AUC results on test sets 

Test Sets AUC scores 
𝑇𝑒𝑠𝑡  0.917 
𝑇𝑒𝑠𝑡  0.908 
𝑇𝑒𝑠𝑡  0.884 
𝑇𝑒𝑠𝑡  0.850 
𝑇𝑒𝑠𝑡  0.937 
𝑇𝑒𝑠𝑡  0.950 
𝑇𝑒𝑠𝑡  0.805 

𝐷𝑎𝑡𝑎  0.903 
𝐷𝑎𝑡𝑎  0.942 
𝐷𝑎𝑡𝑎  0.855 



60 
 

 

 

Figure 12: ROC_AUC curves on test sets 

 

  Similarly, we test the effect of imbalance on fine-tuned AraBert using the same 

imbalanced data used for classical ML. The results demonstrate that the model is robust to 

imbalance with slight fluctuation for some scores. However, the model still performs well 

across all test sets. Therefore, fine-tuned AraBert Twitter is considered our best system for 

hate speech detection across dialects. Table 11 shows the AUC scores of the AraBert model 

on test sets after being fine-tuned on imbalanced data. Figure 13 shows the ROC_AUC 

curves for our fine-tuned AraBert model using the imbalanced dataset on test sets. 
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Table 11: AUC scores of AraBert on test sets 

Test Sets AUC scores 
𝑇𝑒𝑠𝑡  0.980 
𝑇𝑒𝑠𝑡  0.910 
𝑇𝑒𝑠𝑡  0.880 
𝑇𝑒𝑠𝑡  0.850 
𝑇𝑒𝑠𝑡  0.930 
𝑇𝑒𝑠𝑡  0.950 
𝑇𝑒𝑠𝑡  0.800 

𝐷𝑎𝑡𝑎  0.910 
𝐷𝑎𝑡𝑎  0.930 
𝐷𝑎𝑡𝑎  0.850 

 

 

Figure 13: ROC_AUC curves on test sets 

 

4.8 Error Analysis 

  We inspect the misclassified tweets for our best model on 𝑇𝑒𝑠𝑡 , 𝐷𝑎𝑡𝑎 , 

𝐷𝑎𝑡𝑎 , and 𝐷𝑎𝑡𝑎  to examine the extent of the model’s ability to detect dialects. 

For 𝑇𝑒𝑠𝑡 , we examine false-negative tweets incorrectly predicted as non-hateful such as 

“You see, Najran and Al-Ahsa are all Shiites, why do not you slaughter them as long as you 
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do not love them?”   "@emad2566 ќѝўџѠќѝўџѠќѝўџѠ   نه دام ب ه م ت عه ل له ش اء  ان والاح ا ن ت

نه " م ت .  This tweet is written in Saudi dialect and has words such as “killing” and 

“Shiites” that are highly associated with hate. However, words such as “love them” and 

negations are represented as one letter in the Saudi dialect. This might confuse the model 

because it cannot capture some Saudi words. In contrast, false-positive tweets that are 

incorrectly predicted as hateful, such as “@AbdulB85lahBina_1 @Kaled__mh @loooolzii 

I do not need you to say a text. But anyone who reads will understand that this is the Shiite 

opinion towards…https:A104//t.co/jdKdqB2eit”  " @AbdulB85lahBina_1 @Kaled__mh 

@loooolzii اه عه ت ا ه را ال فه ان ه ا س ق ا. ل ا ش  ل ن اج تق  …ما

https:A104//t.co/jdKdqB2eit ". This tweet contains a word like “Shiites” associated with 

hate, which might lead the model to misclassify it as hate because it cannot understand 

some sentences’ context.  

  For 𝐷𝑎𝑡𝑎 , the model misclassifies a few tweets as false-negative, such as “My 

God, if you shut your mouth, it will be better, you suck” ى   " ن ارح الع الله اذا ب بلع بك

" نما از . This sentence consists of powerful dialectal hate words written in the Levantine 

dialect. This might indicate that the model still has limitations regarding extremely dialectal 

sentences. As for false-positive, a sentence such as, “Everything is in moderation. It has 

become a farce in the eyes of the world. The punishment for Wahhab Wahhab is the killer 

of Abu Diab.” ن العال العقاب   " لة بع ت مه ى نق   ص ع ای بال ل شي بال
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اب  هاب وهاب قاتل اب د "ل , is a sentence that is not considered hate by the annotators. 

However, it can be considered hate based on our definition as it contains a specific attack 

towards a person and words such as “killer”.  

  For the misclassified tweets on 𝐷𝑎𝑡𝑎 , we determine that false-negative 

sentences, such as “The weather is hot, God damn Corona ќѝўџѠ” ال ح ش الله یلع  "

رونا "ќѝўџѠ ك , are misspelled and contain the word “curse”, which is associated with hate. 

That might explain why it is labeled as hate. However, the sentence is not considered hate 

since it is directed toward a disease.  Therefore, there might be an annotation error unless a 

different context or definition is given to annotators. On the other hand, false-positive 

sentences, such as “Denmark plans to cull more than 20 million minks for carrying new 

genetic mutations in the composition of the Corona virus https://t.co/aTM4V9YzfU” " 

ام اك م  م اع ارك تع ن " 20ال ان "ال ن م ح ة  -مل ة في ت ی ة ج ات ج ف له  ل

رونا وس   ”https://t.co/aTM4V9YzfU", contain words such as “execute” and “animal ف

that can lead the model to misclassify the sentence to be hate.  

  Finally, the error analysis on 𝐷𝑎𝑡𝑎 , “The Jews of Tunisia enter the anguish” "  

ب  الیهود  ن ال خل ن ی "ت , is a false-negative sentence that might be misclassified due to 

unclear context. Additionally, “Ignorance of the people about their religion” عب  " جهل ال
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ه جهة جهة "دی , is a false-positive sentence that contains words related to hate and directed 

towards people, which might explain why the model classifies it as hate. This indicates that 

the model still has some limitations in understanding the context of a sentence, especially 

when written using extremely dialectal words. Therefore, future work should address 

labeling errors, increasing dialectal words in training, misspelled words, and context.  
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

  This research experiments with ML systems and pre-trained models to classify hate 

speech in several Arabic dialects. We select LR and SVM to perform our experiments on 

data, features, and models levels. First, we combine our six datasets to choose the best pre-

processing and feature engineering techniques. Second, we combine the best features and 

report their results on new dialects. Third, we combine the best models for further 

improvement in classification. Moreover, we fine-tune pre-trained AraBert base Twitter 

model with our augmented dataset for our detection task and optimize its hyper-parameters. 

Lastly, we test the impact of class imbalance to imitate data in practice on our best classical 

ML models and AraBert model.  

  We conclude that the scores combination of three models, LR using TF-IDF, LR 

using AraVec, and SVM using TF-IDF, outperforms all other models in classical ML 

algorithms. The combination achieves scores of 84%, 89%, and 78% on Levantine, 

Tunisian, and mixed dialects datasets. Even though our best classical ML model results 

have acceptable performance, AraBert proves to be the best system to detect and generalize 

hate speech across several dialects. The model achieves scores of 91%, 93%, and 85% on 

Levantine, Tunisian, and mixed dialects datasets. Furthermore, both traditional and pre-

trained models are robust to dataset imbalance with little to no changes in performance with 

a ratio of 0.31 hate/non-hate.  
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  Our work can be extended through further inspection of some pre-processing 

techniques such as spell-checking to prevent misclassification due to incorrect words. 

Moreover, the North African dialect is not highly represented among datasets. Therefore, 

future work needs to address adding more data in the North African dialect to ensure better 

hate detection across these regions. Additionally, deep learning models can be evaluated 

and combined with our models. Furthermore, an attempt to combine pre-trained models 

with other models can be used to build a more robust classification system. Finally, 

machine translation can be utilized to translate the Arabic dialects into English, which has 

fewer variations than Arabic, then detect hate speech in English.  
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