
AMERICAN UNIVERSITY OF BEIRUT

ACCELERATING GENOME ANALYSIS
USING PROCESSING-IN-MEMORY

by

SAFAA YOUSEF DIAB

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Science
to the Department of Computer Science

of Faculty of Arts and Sciences
at the American University of Beirut

Beirut, Lebanon
April 2022

AMERICAN UNIVERSITY OF BEIRUT

ACCELERATING GENOME ANALYSIS
USING PROCESSING-IN-MEMORY

by

SAFAA YOUSEF DIAB

Approved by:

Dr. Izzat El Hajj, Assistant Professor Advisor

Computer Science

Dr. Haidar Safa, Professor Member of Committee

Computer Science

Dr. Wassim El Hajj, Professor Member of Committee

Computer Science

Date of thesis defense: April 29, 2022

AMERICAN UNIVERSITY OF BEIRUT

THESIS RELEASE FORM

Student Name:
Last First Middle

I authorize the American University of Beirut, to: (a) reproduce hard or electronic copies
of my thesis; (b) include such copies in the archives and digital repositories of the University;
and (c) make freely available such copies to third parties for research or educational purposes

As of the date of submission of my thesis

After 1 year from the date of submission ofmy thesis .

After 2 years from the date of submission ofmy thesis .

After 3 years from the date of submission ofmy thesis .

Signature Date

Safaa
Typewriter
Diab

Safaa
Typewriter
Safaa

Safaa
Typewriter
Yousef

Safaa
Typewriter
X

Safaa
Typewriter
May 9 2022

Acknowledgements

All praise is due to God.
My greatest thanks have to go to Professor Izzat El Hajj for the support and

help he has given me not only throughout this thesis, but over the course of my
entire graduate studies. I’m grateful for all that I’ve learned from him on both
the academic and personal levels. This thesis wouldn’t have happened without
his guidance.

I would like to thank ETH Zürich SAFARI research group, especially Professor
Onur Mutlu, Juan Gómez Luna, and Mohammed Alser for their continuous advice
and help over the past year. Thanks also to the committee, Professor Haidar Safa
and Professor Wassim El Hajj.

I would like to thank my parents, family, and friends for supporting me and
giving me the motivation to carry on. I wouldn’t be the person I am without
their love and support. Finally, I would like to thank Jalal for all his love and
support and for always being there when I needed him.

1

Abstract
of the Thesis of

Safaa Yousef Diab for Master of Science
Major: Computer Science

Title: Accelerating Genome Analysis using Processing-in-Memory

Data movement between memory and the CPU is a bottleneck in data-
intensive applications. The cause of this problem is the need for the comput-
ing unit to access data frequently in memory through a limited-bandwidth and
high-latency memory bus. Processing-in-memory (PIM) architectures solve this
problem by bringing computing units closer to the memory on the same memory
chip. The aim of this thesis is to show that genome sequence analysis can be ef-
fectively accelerated using PIM architectures. We perform high-throughput read
pair alignment using the Needleman-Wunsch, Smith-Waterman-Gotoh, GenASM,
and the Wave Front Alignment algorithms on a real PIM architecture. The per-
formance was evaluated in terms of speedup and energy against a server-grade
multi-threaded CPU baseline. The results show that most PIM implementations
can achieve higher throughput for different read lengths and edit distance thresh-
olds. The state-of-the-art algorithm, WFA-adaptive, has up to 2-3× speedup for
all datasets, even when aligning large reads of length 5Kbp and 10Kbp, and
achieves even higher speedup when the CPU-DPU communication time is not
included.

2

Table of Contents

Acknowledgements 1

Abstract 2

1 Introduction 7

2 Background 9
2.1 UPMEM PIM Architecture . 9
2.2 Genome Sequencing Analysis . 11
2.3 Pairwise Alignment Algorithms 13

2.3.1 Needleman-Wunsch . 13
2.3.2 Smith-Waterman-Gotoh 14
2.3.3 Wavefront Alignment Algorithm 16
2.3.4 GenASM . 18

3 Methods 19
3.1 Overall Workflow . 19
3.2 Using WRAM vs. MRAM for Alignment Data 19
3.3 Needleman-Wunsch DPU Implementation 22
3.4 Smith-Waterman-Gotoh DPU Implementation 23
3.5 GenASM DPU Implementation 24
3.6 Wavefront Algorithm DPU Implementation 25

3.6.1 Custom Dynamic Memory Allocator 25
3.6.2 WFA using WRAM vs. MRAM for Alignment Data 27

4 Evaluation 29
4.1 Experimental Setup . 29

4.1.1 Baselines . 29
4.1.2 Evaluation Platform . 29
4.1.3 Datasets . 29

4.2 Execution Time Results . 30
4.2.1 Thread-scale CPU Experiments 30
4.2.2 MRAM and WRAM DPU Implementations Comparison . 32

3

4.2.3 Thread-scale DPU Experiments 34
4.2.4 DPU-scale Experiments 34
4.2.5 Full-scale DPU and Full-scale CPU Comparison 36
4.2.6 Large Reads DPUs and CPUs Comparison 38

4.3 Energy Consumption Results . 38

5 Related Work 40

6 Conclusion and Future Work 42

A Abbreviations 43

Bibliography 44

ILLUSTRATIONS

2.1 PIM R-DIMM Module [1] . 10
2.2 Host attached to UPMEM-DIMMs Illustration [1] 10
2.3 Genome analysis pipeline and read mapping phases [2] 12
2.4 Needleman-Wunsch example and recurrence equation 14
2.5 Smith-Waterman-Gotoh equation 15
2.6 SWG example . 15
2.7 WFA equation [3] . 16
2.8 WFA example and flowchart . 17

3.1 High-throughput read pair alignment on UPMEM 20
3.2 Example of using WRAM for alignment data 21
3.3 Example of using MRAM for alignment data 21
3.4 WFA’s data structure example . 25
3.5 Custom memory allocator on UPMEM 26

4.1 Execution time CPU thread-scaling 31
4.2 MRAM vs. WRAM DPU implementations timing results 33
4.3 DPU thread-scaling timing results 35
4.4 Number of DPUs scaling timing results 36
4.5 Full-scale DPU and full-scale CPU timing results 37
4.6 WFA adaptive on large reads DPUs and CPUs 38
4.7 Energy Consumption on DPUs and CPUs 39

5

TABLES

4.1 Datasets . 30

6

Chapter 1

Introduction

Following Moore’s law, the number of transistors in processors has been doubling
about every two years, leading to an exponential increase in the power of the
processor cores. However, memory performance did not scale comparably which
has made the cost of transferring data between the memory and the CPU in some
cases more expensive than the computations to be performed on the data [4,
5]. Data-intensive workloads, such as genomics, spend a considerable portion
of execution time and energy moving data between memory and the computing
units [4, 6].

Processing-in-Memory (PIM) architectures aim to alleviate the data move-
ment bottleneck of existing systems by providing the memory with computing
competencies [4, 5, 7]. UPMEM were the first to commercialize a real PIM sys-
tem [8]. The UPMEM PIM architecture integrates conventional DRAM arrays
and general-purpose cores called DPUs into the same chip, which eventually re-
duces energy and time consumption imposed by data movement. UPMEM PIM
is a memory-centric solution that can be used to accelerate memory-bounded ap-
plications such as genomics, database index search, compression/decompression,
3D image reconstruction, and many others [1, 9, 10, 11, 12, 13, 14, 15, 16, 17].

Genome sequencing analysis involves data-intensive computational techniques
to extract and analyze genomic features such as DNA and RNA sequences. These
features play a pivotal role in understanding the properties of species and ana-
lyzing out-breaking diseases such as COVID-19. Nowadays, high-throughput
sequencing technology is used to extract the sequence of bases that form a DNA
fragment [2]. Even with current sequencing technological advancements, it is hard
to read the genome as a whole sequence for most organisms. Thus, the DNA is
broken into many smaller fragments, and later each fragment is sequenced into
small chunks called reads. However, these reads lack information such as the or-
der and the location they originated from. Therefore, genome analysis main goal
is to reconstruct the entire genome from many reads. It starts with a computa-
tional process called read alignment or read mapping. The goal of read mapping
is to find where these reads are most likely to be located by comparing each read

7

against multiple subsequences of a known reference genome, and detecting the
differences between the read and the reference segments at these locations. Then,
a variant calling method processes the mapping results to find the best location
of the read, and make decisions whether the variations detected are caused by
genetic mutations or sequencing errors.

Read mapping is a major bottleneck in the genome analysis pipeline since
finding many mappings of these short reads, up to billions of them, while toler-
ating differences or sequencing errors in each read and performing at a very fast
rate is challenging [2]. Due to the large number of reads that need to be mapped,
a read mapper performs a large number of data transfers between the processor
and main memory which is extremely costly in terms of time and energy [2, 4, 5].

Read mappers compute the sequence alignments using an approximate string
matching (ASM) algorithms which use computationally expensive dynamic pro-
gramming (DP) algorithms. Needleman-Wunsch (NW) [18] and Smith-Waterman
(SWG) [19] are widely used DP-based alignment algorithms since they provide
the best alignment accuracy. However, these algorithms have quadratic time and
memory complexity [20]. Thus, over the years, many heuristics and techniques
were developed to improve these algorithms, but most of them sacrifice accuracy
for execution time [2, 20]. One of the most recent algorithms is the wavefront
alignment algorithm (WFA), which has proven to outperform other state-of-the-
art methods while consuming less memory and providing accurate alignments [3].

All of the previously mentioned ASM algorithms are memory-bounded since
they have low data reuse. These algorithms have been accelerated using hard-
ware accelerators such as GPUs, FPGAs, and processing-in-memory [2]. For
example, GenASM [21] is a related work that improves and accelerates an ASM
algorithm called Bitap [22], by implementing the modified algorithm on a cus-
tomized processing-in-memory hardware. However, the designed framework is a
prototype that has been specially designed for the GenASM algorithm, unlike
the general purpose real UPMEM-PIM system that we are using.

In this work, we propose to accelerate read mapping by implementing the
state-of-the-art pairwise alignment algorithms such as NW, SWG, GenASM, and
WFA on the first real PIM architecture, the UPMEM PIM architecture. We
implement a high-throughput read alignment framework on the UPMEM-PIM
system. We dispatch a large number of read sequences across the DPUs, and
within each DPU we have the DPU threads aligning the reads using one of the
implemented ASM algorithms. We compare the throughput and energy con-
sumption of these algorithms on the UPMEM system to that on a server-grade
multi-threaded CPU system. We show that genome sequence analysis can be
effectively accelerated using PIM architectures.

8

Chapter 2

Background

2.1 UPMEM PIM Architecture

Data movement between main memory and processor cores is a bottleneck for
many data-intensive workloads. These workloads spend a significant portion
of execution time and energy moving data through the high-latency and low-
bandwidth memory bus [6, 23]. PIM architectures are a new system paradigm
to solve the data movement bottleneck, by integrating computing abilities into
memory. The goal of PIM is to perform operations while the data remains in the
memory, without the need to move it to the CPU, perform the computation, and
then send it back to the memory. If the data can be updated without transfers,
time and energy can be saved without affecting the result [4, 1].

The UPMEM PIM architecture is the first real general-purpose processing
in DRAM engine [8]. A UPMEM system consists of regular DDR4-2400 DIMM
modules, where each module has a large number of DRAM arrays combined
with general-purpose processing cores called DRAM Processing Units (DPUs),
as shown in Fig. 2.1. UPMEM DIMMs work as a parallel co-processor connected
to the main memory of a host CPU (e.g., x86, ARM64, or Power9). A UPMEM
system can have up to 20 UPMEM DIMMs plugged into an x86 platform. Each
module consists of 16 PIM-enabled chips, and within each chip, there are 8 DPUs.
DDR4 DIMMs coexist with UPMEM DIMMs on a server, where the server can
perform both regular memory processing and/or PIM. The host side will be
responsible of dispatching the input across DPUs, launching the DPU kernels,
and retrieving the results.

Fig. 2.2 represents a server with one host CPU attached to multiple UPMEM
DIMMs, main memory, and with an illustration of the internal representation of
the DPUs.

A DPU has a 32-bit RISC processor that can potentially run at 500 Mhz with a
customized Instruction Set Architecture (ISA) [24]. Each DPU has 24 hardware
threads, called tasklets, that share a 24KB instruction memory IRAM, 64KB
working memory WRAM, and a 64MB main memory MRAM. The CPU transfers

9

Figure 2.1: PIM R-DIMM Module [1]

Figure 2.2: Host attached to UPMEM-DIMMs Illustration [1]

data from the host’s main memory to the DPUs’ MRAM, and copies back the
results from the MRAM to the main memory when the DPUs finish execution.
These transfers can be done in parallel using the programming interface [24]
if the buffers sent/retrieved are of the same size among all DPUs. The DPU
pipeline consists of 14 stages, as shown in Fig. 2.2, but for the same thread only
three of these stages ALU4, MERGE1, and MERGE2 may run in parallel with
the DISPATCH and FETCH stages of the next instruction. As a result, the
pipeline efficiency is maximized when at least 11 threads are used, because every
11 cycles only one instruction can be dispatched from the same thread [1]. In
total, a PIM-enabled server can have up to 2560 DPUs with 160GB MRAM.

UPMEM follows the Single Program Multiple Data (SPMD) programming
model, in which threads run the same program but work on distinct data, and
can execute alternative control-flow paths at runtime. Within the same DPU,
threads can synchronize and share data. Meanwhile, threads across different
DPUs cannot synchronize or share data, since DPUs work independently and
asynchronously [15]. The host CPU manages intermediate data transfers between
DPUs and combines partial results with final findings.

The PIM architecture uses a tool-chain centered on the LLVM-based C-
compiler and including Linux drivers for x86 servers. It also has an SDK [24]

10

that provides a full-featured runtime library for the DPU, libraries to manage
the communication from the host to DPUs operations, and LLDB-based debug-
ger.

The provided programming interface allows programmers to program DPUs
in the familiar C programming language. However, implementing DPU programs
is challenging for multiple reasons. DPUs do not have cache memories, so the
transfers between the WRAM and MRAM are explicitly declared. These transfers
are DMA instructions that need to be aligned manually. Also, a programmer must
ensure an efficient partitioning of the workload across many DPUs and threads
within DPUs, so that the DPU pipeline can be fully utilized [1, 24].

The design of UPMEM DIMMs overcomes the data movement bottleneck
by integrating processing into DRAM engines. Memory-bounded applications,
such as genomics, can be accelerated using the UPMEM PIM architecture, which
reduces the cost of data movements [15].

2.2 Genome Sequencing Analysis

Genome analysis as defined by Nature [25] is “the identification, measurement or
comparison of genomic features such as DNA sequence, structural variation, gene
expression, or regulatory and functional element annotation at a genomic scale.
Methods for genomic analysis typically require high-throughput sequencing or
microarray hybridization and bioinformatics”.

The genome analysis pipeline begins by sequencing a genomic sample into
small sequences called reads using high-throughput sequencing machines. HTS
technology can sequence millions of DNA samples in parallel [2]. For example, No-
vaSeq 6000 generates up to 1012 sequence bases every 44 hours [26]. These reads
vary in length and error rate depending on the sequencing machine used. For
example, Illumina sequencing machine outputs short reads of 100-300bp length
with low error rate (∼0.1%), whereas ONT & PacBio generates large reads of
500-2Mbp with high error rate (∼15%) [27]. These reads lack information such
as their location and order in the original genome. Therefore, the main goal
of genome analysis is to reassemble the entire genome from many reads while
accounting for different variations and mutations.

The read mapping phase of the genome analysis pipeline finds one or more
potential locations for each read within a known reference genome, based on the
similarity between the read and the reference subsequence at these locations.
Finally, the read mapping results are processed using variant calling algorithms
Fig. 2.3.

Read mapping can be performed in a brute force manner by comparing each
read against every subsequence of the reference genome (the human reference
genome is about 3.2 billion bases) to find the best similar locations. However,
this brute-force approach is expensive. For this reason, read mapping is typically

11

divided into a three-step procedure as shown in Fig. 2.3. The first two, indexing
and filtering, are used to reduce the number of pairwise alignment algorithms
that need to be performed between the reference genome segments and each read
in the third step.

Figure 2.3: Genome analysis pipeline and read mapping phases [2]

In the first step, an index of the reference genome is created using substrings
called seeds or k-mers. This step facilitates querying over the full reference
genome and helps to reduce the memory footprint by storing the redundant
segments of the reference genome only once. The most used technique for in-
dexing the reference genome is hashing [28], where a hash table stores the seeds
and their corresponding locations in the reference genome. After building the
index, the mapping algorithm extracts the seeds from each read and uses them
as a key to query the index structure and retrieve potential mapping locations of
each read in the reference genome. The main challenge with indexing is choosing
the convenient length and number of seeds. Short seed queries retrieve a large
number of mapping positions that need to be aligned, and when long reads are
used, requires extracting from each read a large number of seeds. This eventu-
ally impacts the number of times the index table is queried and the number of
mapping locations retrieved.

After obtaining one or more potential mapping locations of the read within
the reference genome, the read mapper computes the similarity between each read
and every subsequence at these locations. However, the read and the segments
may be similar or dissimilar, even if they share the same seed. Thus, in the second
step, pre-alignment filters are used to avoid computationally expensive sequence
alignment algorithms on dissimilar sequences. These filters need to quickly decide
whether the computationally expensive alignment algorithms are needed or not
by estimating the number of edits between two given sequences. If the estimated

12

number is above a certain edit distance threshold, then they are dissimilar and
there is no need to perform the computationally expensive alignment [2].

The last step of reading mapping uses alignment algorithms to verify the sim-
ilarity and compute the optimal alignment between the read sequence and the
reference subsequences at each mapping location. Alignment algorithms can be
either DP-based, such as Smith-Waterman and Needleman-Wunsch, or non-DP-
based such as Hamming Distance. DP-based algorithms are the most used, as
they provide the most accurate alignments [28]. However, DP-based based algo-
rithms have quadratic time and memory complexity, so applying them to millions
of reads slows down the performance of the entire pipeline. Alignment algorithms
can be accelerated either by applying software modifications or by using hard-
ware accelerators to accelerate the DP-based algorithms without changing their
behavior [2]. For example, traditional DP-based algorithms are improved by com-
puting bands (diagonal vectors) of the DP table instead of computing the full
table, as proposed in Ukkonen’s banded algorithm [29]. Although these heuris-
tics methods enhance the computational time, they deteriorate the accuracy of
the alignment. The wavefront alignment algorithm is a recent algorithm that
performs better than other state-of-the-art alignment algorithms and provides
exact alignments [3]. However, these alignment algorithms are data-intensive
and perform more data movements than computation. For this reason, hard-
ware accelerators, such as PIM architectures, are promising for mitigating the
memory bandwidth bottleneck. The DP-based algorithms can have the DP ma-
trices stored in memory and the recurrence equation applied within the memory
without the expensive data transfers.

2.3 Pairwise Alignment Algorithms

The goal of sequence alignment algorithms, also known as approximate string
matching ASM, is to compare two sequences and find their similarities and dif-
ferences. Given a read pair, the alignment algorithm attempts to compute the
smallest number of edits required to match two sequences with the best score,
where the score is determined by a scoring scheme. The edits can be substitu-
tions, deletions, or insertions. The scoring scheme defines the rules to score an
alignment. It takes as an input the match and mismatches scores and the gap
penalty. For any two sequences, there is a possibility to find multiple alignments.
Thus, the algorithm usually includes a traceback step to obtain the location and
type of each edit. In the following sections we explain the alignment algorithms
that we will use in our work.

2.3.1 Needleman-Wunsch

Needleman-Wunsch (NW) [18] computes exact pairwise alignment using dynamic
programming. The algorithm finds the best alignment of sequences by keeping

13

track of the optimized alignments of subsequences. As a result, NW requires
quadratic time and memory complexity O(mn), where m and n are the sequences
length.

The algorithm takes as an input the two sequences (read pairs) and the scoring
schema including the match, mismatch penalty and gap scores {a, x, e}. The
algorithm then outputs the best alignment score and operations. NW uses a
linear gap function w(n) = n.e to compute consecutive gap score, where n is the
gap length and e is the gap cost. Using linear gap functions does not take into
consideration the cost of opening a new gap. It computes the alignment of a read
pair p = p1p2...pn and text t = t1t2...tm by tabulating the optimized alignments
of the sub-sequences, from (1,1) to (n,m) (Fig. 2.4). For example, a cell Dv,h has
the best alignment score of the sub-sequences p1..v and t1..h. The algorithm starts
by initializing the first row and column of the table as defined by the scoring
model. Next, using the recursion equation, the optimal solution is computed and
stored in the last cell Dm,n. At the end, the DP-table can be traced back to find
the operations of the optimal solution from (m,n) to (1,1), where any cell Dv,h is
either the result of a previous mismatch/match (upper diagonal cell), insertion
(left cell), or deletion (upper cell).

NW is memory-bounded since to compute each new cell in the DP-table, it
needs to load three previous cells while performing little computation to compute
the new cell.

Figure 2.4: Needleman-Wunsch example and recurrence equation

2.3.2 Smith-Waterman-Gotoh

Smith-Waterman-Gotoh (SWG) [19] is an improvement of Needleman-Wunsch
algorithm. It computes pairwise alignment using dynamic programming under
the affine gap model which gives more realistic results. The affine gap model is
defined by scoring penalties {a, x, o, e}, a and x are the matching and mismatch-
ing score respectively, and a linear function for gap weight w(n) = o+n.e, where

14

the weight for a gap of length n is the sum of a gap opening penalty (o) and a gap
extension penalty (e) multiplied by the length of the gap (n). Thus, having a long
consecutive gap of insertions or deletions costs less than having multiple small
gaps with the same total length, assuming that a single large gap is biologically
more likely to occur than many small gaps. The algorithm is widely used due to
its ability to provide accurate optimal alignments under the gap affine model [28].

Figure 2.5: Smith-Waterman-Gotoh equation

SWG uses three matrices M, I and D as shown in Fig. 2.6 to compute the
minimum score needed to align a query p = p1p2...pn and text t = t1t2...tm
from (1,1) to (n,m). The cell Mv,h has the best alignment score achieved for the
subsequences p1..v and t1..h, the cell Iv,h represents the best score achieved while
assuming that the alignment ends with an insertion (gap in t), and similarly the
cell Dv,h assumes that the alignment ends with a deletion (gap in p). Given a
scoring schema and using the recurrence equation 2.5 on the three DP tables, the
global alignment score be found at the cell Mn,m. Then, the DP tables can be
traced back to obtain the optimal solution.

SWG provides more realistic results under the gap-affine model. However, It
is more memory-intensive than NW, as it consumes more memory and requires
more data movements to get the alignment.

Figure 2.6: SWG example

15

2.3.3 Wavefront Alignment Algorithm

The Wavefront Alignment Algorithm (WFA) [3] is the state-of-the-art exact pair-
wise alignment algorithm. It computes the alignment of sequences using the
gap-affine model. Unlike traditional dynamic programming algorithms, WFA
considers the similarity of sequences to compute the alignment efficiently. The
algorithm computes increasing-score partial alignments until reaching the opti-
mal alignment. As a result, its time complexity O(ns) depends on the sequence
length n and the alignment score s.

WFA improves SWG and redefines its equation in terms of furthest reaching
points and wavefronts as shown in Fig. 2.7. The furthest reaching point Fs,k is the
DP-cell on the diagonal k with score s, which is the furthest from the beginning
of the diagonal. Also, Ms,k, Is,k, and Ds,k are the offsets of the f.r. point Fs,k

in diagonal k in each of three SWG matrices M ,I, and D respectively. The s-
wavefront WFs is defined as the set of all furthest reaching points with score s
for all k, and Ms, Is and Ds are defined as the components of the wavefront,
where Ms is the set of offsets Ms,k for all k. The wavefront length is defined
by the number of diagonals spanned in the wavefront component. As the score
increases, the size of the wavefront components increases, resulting in a better
memory consumption O(s2). Also, it takes advantage of extending matching
characters along the diagonal. This step plays a major role in accelerating the
algorithm. WFA exceeds in performance other other algorithms while using less
memory [3].

Figure 2.7: WFA equation [3]

The optimal alignment is found when any furthest point of WFs reaches DP-
cell (n,m) with minimal score s. Figure 2.8 is an illustrative example of the
wavefront algorithm. The physical view is how the wavefront components are
physically present in memory, and the logical view is a theoretical representation
of the DP-matrices. The algorithm takes as an input the read pair and scoring
penalties. After initializing the first component, WFA starts by extending the
furthest reaching points of the matching characters along the diagonal. After

16

that, it checks if any of the furthest reaching points of WFs reaches the last cell.
If so, the score s is the alignment score, and it performs the traceback. Otherwise,
the score is increased, and it computes the new wavefront component using the
recurrence equation in Fig. 2.7. Then, the same steps are performed until any of
the f.r. points reach the sequence end.

Figure 2.8: WFA example and flowchart

The size of wavefront components grows as the score increases and the compo-
nent spans over more diagonals as shown in Fig. 2.8. As the size of the wavefront
component grows, more execution time is spent processing unpromising paths
of the outer diagonals. Thus, a heuristic version of the algorithm, called WFA-
adaptive, can be used to avoid unpromising furthest reaching points that are
unlikely to lead to the solution. If the distance between the main diagonal and
the outer diagonals goes beyond a certain threshold, it prunes them and reduces
the wavefront length. WFA-adaptive gives much better performance but may
lead to non-optimal alignments.

WFA provides better alignment quality than NW since it uses the gap-affine
model. It also has lower time and memory complexity than both NW and SWG.
However, WFA is more memory-bounded due to its lower data reuse and the
need to perform more memory accesses, particularly for managing its irregular
data structures.

17

2.3.4 GenASM

GenASM [21] accelerates ASM by designing a near-memory framework. It is
based on the Bitap algorithm [22]. Bitap performs approximate string match-
ing using fast bitwise operations, but it fails to align long reads and generate
the traceback operations. GenASM improves and accelerates Bitap to support
highly parallel and scalable read alignments and adds a bit vector-based trace-
back algorithm. It designs a near-memory framework to accelerate ASM, which
can significantly speed up multiple use cases of genome sequence analysis such as
read alignment, pre-alignment filtering, and edit distance calculation.

GenASM takes advantage of the high memory bandwidth and the logic-layer
of 3D-stacked memory to design a low-power and area-efficient hardware ac-
celerator that performs the modified highly parallel ASM in the DRAM chip
itself. 3D-stacked memory combines DRAM layers with a logic layer that can
have computational logic, which interacts with the DRAM cells as well as the
processor. This method is known as processing-near-memory (PNM), where pro-
cessing elements are added or embedded close to or inside the memory [4, 1]. The
near-memory hardware used in GenASM is a prototype that has been specially
customized to accelerate GenASM. We will accelerate GenASM’s algorithm on a
real general purpose programmable PIM system.

18

Chapter 3

Methods

3.1 Overall Workflow

In our work, we perform high-throughput read alignment on the UPMEM-PIM
system. Fig. 3.1 describes our overall workflow. In Step (1), the host CPU loads
the read pairs from the input file to the main memory. In Step (2), the reads are
evenly distributed and transferred from the host’s main memory to the attached
DPUs’ MRAM using parallel transfers [24] to hide the communication overhead.
DPU kernels are then launched, and threads in each DPU work independently
to avoid the expensive inter-thread synchronization [1]. In Step (3), each DPU
thread fetches one read pair at a time from MRAM to WRAM. In Step (4), the
DPU thread computes the alignment using an alignment algorithm of interest
(NW, SWG, GenASM, or WFA), and extracts the alignment operations using
traceback. In Step (5), the DPU thread writes the alignment score and operations
to the MRAM. Steps (3), (4), and (5) are repeated by each thread to process the
next read. In Step (6), after the DPUs finish execution, the CPU copies the
results back from the DPUs’ MRAM. In Step (7), the CPU writes the results to
an output file.

In the rest of this Chapter, we describe how each of the different alignment
algorithms were implemented on the DPU and the challenges that were faced
when implementing it.

3.2 Using WRAM vs. MRAM for Alignment Data

Recall that the WRAM has 64KB of memory which is shared among 24 DPU
threads. Hence, WRAM can act as a limiting factor to parallelism. For each
combination of algorithm, read size, and error rate, we need to find the maximum
number of threads such that the algorithm will not run out of WRAM memory.
For a given read length and error rate, we can compute the exact amount of
memory needed for NW, SWG, and GenASM, and set the number of threads

19

>CCGGG
<CCGGGT
>GTACGC
<GTACGC
>GTACAG
<GTACA
>GCTGCA
<GCTGC
>GACGGG
<GACGGGA
>GATGGTT

score 5, 4M1I2M
score 3, 4M1X2M
score 0, 5M
score 5, 4M1D2M
score 5, 4M1D2M
score 0, 6M
score 5, 4M1I2M
score 3, 4M1X2M
score 0, 5M

Input File

Output File

read pair #1

read pair #1
read pair #2
read pair #3
read pair #4

.

.

.
read pair #n.

result #1
result #2
result#3
result#4

.

.
result#n

Main Memory

MRAM

CPU

.MRAM

DPU #1

.MRAM
DPU #2

.MRAM
DPU #3

.MRAM
DPU #2555

Get reads

Return results

Transfer
 reads to MRAM

Copy results
back from MRAM

DPU

DPU #1

MRAM

WRAM

Each DPU thread aligns
multiple read pairs using

WFA/GenASM/SWG/NW, and
return results

thread #i

thread #i

1

2

3

4

5

5

6

Figure 3.1: High-throughput read pair alignment on UPMEM

accordingly. In the case of WFA, we can only estimate the upper limit since the
memory consumed by WFA depends on the alignment similarity, and it varies
from one read pair to another even if they have the same read length. As we
scale the read length and error rate, more memory will be needed per thread, so
we will necessarily use fewer threads.

In cases where reads are large, we will not be able to perform the alignment
even for one thread. For example, the NW DP-table will not fit the WRAM
capacity if the read length goes beyond 150. For this reason, we have implemented
a WRAM and MRAM version for each alignment algorithm. The WRAM version
places the algorithm’s data in WRAM only. The MRAM version places data in
MRAM, and transfers the data back and forth between the WRAM and MRAM
during the computation. The MRAM version allows us to use more threads
and align longer reads than the WRAM version, but adds the overhead of the
WRAM-MRAM transfers.

Fig. 3.2 shows an example of the WRAM version. Before launching the DPU
kernel, we allocate a segment of the MRAM to store the input read pairs and their
alignments. We used the DPU MRAM HEAP POINTER [24], which defines the
base address at which the MRAM can be freely used to perform MRAM dynamic
allocation. We define the MRAM PTR variable to keep track of the last available
address in MRAM. Each thread gets one read pair at a time from the MRAM
to the WRAM, performs the alignment inside the WRAM, and writes the result
to the MRAM. The WRAM version avoids the latency of using DMA transfers
while computing. However, the WRAM is limited by its capacity (64KB) which
prevents fitting the alignment data of many threads. Consequently, the WRAM
version utilizes a few DPU threads which can lead to reduced pipeline efficiency.

20

MRAM

H
ea

de
r#

1

H
ea

de
r#

0

Start thread#0
current
offset

thread#1
current
offset

WRAM

DPU_MRAM_HEAP_POINTER

Read Pairs Input Alignment Output

R
ea

d
Pa

ir#
1

R
ea

d
Pa

ir#
2

R
ea

d
Pa

ir#
3

A
lig

nm
en

t#
0

A
lig

nm
en

t#
1

A
lig

nm
en

t#
2

A
lig

nm
en

t#
3

R
ea

d
Pa

ir#
4

R
ea

d
Pa

ir#
5

A
lig

nm
en

t#
4

A
lig

nm
en

t#
5

R
ea

d
Pa

ir

R
ea

d
Pa

ir

A
lig

nm
en

t

A
lig

nm
en

t

Alignment
Algorithms

Data

Alignment
Algorithms

Data

R
ea

d
Pa

ir#
0

MRAM_PTR

Figure 3.2: Example of using WRAM for alignment data

Thus, the pipeline efficiency ratio depends on the memory usage pattern of each
algorithm and the used input read length, e.g. when the read length increase, or
the applied alignment algorithm has high memory consumption by design, the
WRAM cannot fit the allocated alignment data for a large number of threads, or
even for a long read, the alignment data might not fit at all.

H
ea

de
r#

1

H
ea

de
r#

0

Start thread#0
current
offset

thread#1
current
offset

WRAM

R
ea

d
Pa

ir

R
ea

d
Pa

ir

A
lig

nm
en

t

A
lig

nm
en

t

R
ea

d
Pa

ir

A
lig

nm
en

t

H
ea

de
r#

2

MRAM

Read Pairs Input Alignment Output

R
ea

d
Pa

ir#
1

R
ea

d
Pa

ir#
2

R
ea

d
Pa

ir#
3

A
lig

nm
en

t#
0

A
lig

nm
en

t#
1

A
lig

nm
en

t#
2

A
lig

nm
en

t#
3

R
ea

d
Pa

ir#
4

R
ea

d
Pa

ir#
5

A
lig

nm
en

t#
4

A
lig

nm
en

t#
5

R
ea

d
Pa

ir#
0

thread#2
current
offset

M
R

A
M

 H
ea

de
r#

0

Alignment
Algorithms Data

M
R

A
M

 H
ea

de
r#

1

M
R

A
M

 H
ea

de
r#

2

Alignment
Algorithms Data

Alignment
Algorithms Data

D
at

a
C

ac
he

D
at

a
C

ac
he

D
at

a
C

ac
he

DPU_MRAM_HEAP_POINTER MRAM_PTR

Figure 3.3: Example of using MRAM for alignment data

To overcome the limited capacity of WRAM, we also study storing the align-
ment data on the slower MRAM space. As shown in Fig. 3.3, similar to the
WRAM version, the host allocates the space for the read pairs input and the
alignment output in the MRAM. After launching the DPU kernel, each thread

21

asynchronously allocates and manages its own alignment data segment in the
MRAM. The thread is aware of its MRAM segment range, which depends on the
number of the used DPU threads and the available MRAM space. The WRAM
is segmented across the threads: a WRAM segment holds the needed space to
store a read pair input, its alignment output, and a data cache for the required
elements of the alignment data. Each thread fetches its read pairs input at a time
from the MRAM input segment to its WRAM segment, computes the alignment
by actively loading the needed alignment data to its WRAM cache using DMA
before updating and writing it back to the thread alignment data segment in
the MRAM, and transfers the resulting alignment output to the MRAM. After
every alignment iteration, each thread reuse its WRAM and MRAM segment to
process the next alignment data.

The MRAM version utilizes more threads, since the size of the data cache is
much less than the size of the alignment data, allowing more threads to fit their
data in the WRAM even if the read length is large. The size of the WRAM data
cache depends on the alignment algorithm used, the input read length, and the
edit distance threshold. It uses a large number of DMA transfers to apply the
alignment algorithm which adds a latency overhead to the DPU pipeline. How-
ever, the latency of the DMA transfers can be mitigated if enough DPU threads
are used. We consider the tradeoff of having more DPU threads (MRAM) vs.
fewer DMA transfers (WRAM) in our study.

3.3 Needleman-Wunsch DPU Implementation

NW uses a DP-table to compute the alignment of sequences as described in Sec-
tion 2.3.1. The size of the DP-table is mn where m and n are the length of the
pattern and text sequences respectively. NW uses the linear gap model to com-
pute the alignment score. In our implementation, we set the scoring penalties pa-
rameters to a = 0 (match cost), x = 3 (mismatch cost), e = 4 (deletion/insertion
cost), and the data type of the DP-cells to int16.

In the NW WRAM version, each thread allocates its DP-table in the WRAM,
fills the DP-table, computes the traceback, and send the alignment output to the
MRAM. It reuses the DP-table to process the next read pair. We specify the
number of DPU threads by computing the memory consumed given the read
length. The WRAM memory consumption of each thread includes the DP-table
(mn ∗ sizeof(int16)), one input read pair, and the traceback operations. We
find the maximum number of threads such that the total memory consumption
fits in the WRAM capacity. The maximum read length that can be used to fit
the DP-table in the WRAM for one thread is 175bp (61KB). Consequently, the
NW WRAM version can be only applied for short reads and few number of DPU
threads.

We use the NW MRAM version to align longer reads by storing the DP-table

22

of each thread in the MRAM. Each thread allocates 4 DP-cells in the WRAM
which will be used as a data cache. To compute a new cell in the DP-table, 3
DP-cells are loaded from the MRAM to the WRAM cached cells (upper, left, and
upper diagonal cells), and the fourth WRAM DP-cell is computed by processing
the three loaded DP-cells, then the result is added to the DP-table in the MRAM.
Similar approach is used to compute the traceback operations. This process is
done nm times for each thread resulting a large number of small sized DMA
transfers, which saturates the DPU pipeline with DMA instructions and lowers
its efficiency even if a large number of threads is launched.

Since the DMA transfers are aligned at 8-bytes [24, 1], a DP cell of size
int16 cannot be accessed directly without memory alignment. To overcome this
memory alignment issue, we read 8-bytes memory chunks (4 DP-cells) from the
DP-table in the MRAM to the WRAM data cache, then we extract the required
cell. Consequently, the DP-cell cache size is 8 bytes. The WRAM memory
consumption of each thread includes the 4 DP-cell caches, one input read pair,
and the traceback operations. We find the maximum number of threads such
that the total WRAM memory consumption fits in the WRAM capacity, and we
also consider fitting the DP-tables, all input reads and their alignments into the
MRAM (64MB).

3.4 Smith-Waterman-Gotoh DPU Implementation

SWG provides more realistic results than NW by following the gap-affine model,
as shown in Section 2.3.2. It utilizes three DP-tables Matching (M), Insertion (I),
and Deletion (D) tables, each of size mn, to compute the alignment under the
gap-affine model. In our implementation, we represent the three DP-tables as one
DP-table with each cell defined as a struct of the three elements (int16) M, I, and
D to reduce the number of data accesses needed to compute the DP-table. We
use the following scoring penalties a = 0 (match cost), x = 3 (mismatch cost),
o = 4 (deletion/insertion opening cost), and e = 1 (deletion/insertion extension
cost).

Similar to the NW WRAM implementation, SWG have the DP-tables of each
thread allocated in the WRAM, where the alignment and traceback takes place.
SWG consumes more memory as it needs to store the alignment data of 3 DP-
tables. As a result, it uses fewer threads and aligns shorter reads. For example,
SWG WRAM cannot align reads longer than 100bp due to the limited WRAM
capacity.

We provide the SWG MRAM implementation to align longer reads and utilize
more DPU threads. This method stores the DP-tables in the MRAM for each
thread and allocates the required DP-cells cache in the WRAM to transfer data
back and forth between the MRAM and WRAM. The DP-table is filled by actively
reading the needed DP-cells from the MRAM to the WRAM cache, computing

23

the new DP-cell, and writing the result into the MRAM. Similarly, the traceback
is performed by transferring the required DP-cells between the MRAM and the
WRAM to trace the alignment operations. Consequently, the alignment requires
large number of DMA transfers, and applying it for a large number of read pairs
by many threads reduces the DPU pipeline efficiency.

NW and SWG DPU implementations can be further optimized in the future
work by: (1) using the optimized NW and SWG banded implementations [29] to
compute the alignment using bands (diagonals) instead of the full table, (2) paral-
lelizing the alignment computation among multiple threads, (3) and changing the
caching method we’re using to enable cache reuse, such as caching anti-diagonals
instead of cells.

3.5 GenASM DPU Implementation

GenASM [21] uses bitvectors to compute sequences alignment. It modifies and
adds a traceback method to the bitap alignment algorithm [22], as discussed in
Section 2.3.4. GenASM uses the gap-affine model and takes as an input the
maximum number of edit distances (k) allowed while computing the alignment.
We use the following scoring penalties {a = 0, x = 3, o = 4, e = 1}, and we set k
according to the used read length and error rate.

In our WRAM implementation, each thread uses the WRAM to store the
pattern bit-mask for each character in the alphabet (A, C, G, and T), two status
bit-vectors (R0 and R1) to hold the partial alignment between subsequences of
the text and the pattern with maximum number of errors, and four intermediate
bit-vectors for each edit case (Matching, Substitution, Deletion, and Insertion).
While iterating the text to compute the alignment, GenASM saves the generated
intermediate bit-vectors of each text iteration in the traceback matrix to compute
the alignment operations later. The traceback matrix is large in size, so we store
it in the MRAM, and we use DMA transfers to add and update its elements as
needed. GenASM WRAM consumes less memory than the DP-based approaches
since it replaces the DP-tables by small-sized bit-vectors, so more threads can fit
their data in the WRAM. As a result, GenASM WRAM can be used on longer
reads compared to the DP-based WRAM implementations, and with enough
threads to utilize the DPU pipeline efficiency.

Although GenASM utilizes the WRAM more efficiently than a DP-based
alignment algorithm, the WRAM capacity is still a bottleneck for longer read
lengths. We provide an MRAM version where the pattern bit-mask, status bit-
vectors, and the traceback matrix are stored in the MRAM. The intermediate bit
vectors are allocated in the WRAM since they are of small size (the total size of
the bit-vectors is m/32 where m is the pattern read length) and to reduce the
large number of DMA transfers needed to compute the alignment. Therefore,
GenASM MRAM version can align longer reads with more DPU threads.

24

In our work, we don’t implement the Divide and Conquer (DQ) method used
in GenASM, which can be addressed by a future work. The DQ reduces the mem-
ory consumption by dividing the pattern and text into overlapping windows and
performing the traceback for each window instead of storing the entire traceback
matrix.

3.6 Wavefront Algorithm DPU Implementation

WFA computes exact pairwise alignments efficiently using the wavefront com-
ponents and furthest reaching points under the gap-affine model, as described
in Section 2.3.3. It considers sequences similarity while computing, so the time
complexity O(ns) depends on the alignment score s and read length n. As the
alignment score increases, WFA consumes more memory as it will span over more
diagonals. WFA-adaptive provides a heuristic method to reduce the number of
the spanned diagonals by eliminating outer diagonals that unlikely lead to the
optimal alignment. We provide a DPU implementation for both WFA and WFA-
adaptive. Fig. 3.4 shows an example of the data structure that’s used to align one
read pair using WFA. Unlike NW, SWG, and GenASM, we can’t compute the
actual memory consumption of the WFA alignments since it’s heavily dynamic,
and it changes at runtime according to the read pair length, edit distance, loca-
tion and type of these edits. Consequently, we faced more memory-management
challenges while implementing WFA on the UPMEM-PIM architecture.

Figure 3.4: WFA’s data structure example

3.6.1 Custom Dynamic Memory Allocator

The WFA algorithm uses dynamic memory allocation to allocate the wavefront
components because these components vary in size at run time depending on the
read length and similarity, as discussed in Section 2.3.3. However, the provided
dynamic memory allocators in the UPMEM SDK [24] fall short to meet the
requirments of our workloads. The SDK has three memory allocators: fixed-size
block, incremental (mem alloc), and buddy memory allocator. The fixed-size
block allocator needs to allocate before the beginning of the program a fixed
number of blocks with fixed block size, which does not work with the WFA

25

components that vary at run time. The incremental allocator can allocate the
variable size of WRAM segments at run time, but it can only reset the heap
memory for all threads since it has no memory deallocation function. Resetting
the heap can be a performance bottleneck in parallel read pairs alignment where
for every alignment iteration, threads need to synchronize in order to reset the
WRAM before starting a new iteration. The buddy allocator has allocation and
deallocation functions, but it initializes the heap memory at the beginning of the
program with a maximum size of 32KB, which corresponds to half of the WRAM
size of 64KB and leads to underutilization of the WRAM capacity. Therefore, we
define a custom memory allocator that efficiently utilizes the WRAM capacity
and resets memory without thread synchronization.

H
ea
de
r#
1

WRAM

H
ea
de
r#
0

H
ea
de
r#
2

H
ea
de
r#
3

H
ea
de
r#
1

H
ea
de
r#
0

H
ea
de
r#
2

H
ea
de
r#
3

Start

Start

Start

WRAM_PTR

WRAM_PTR

WRAM_PTR

thread#0
current
offset

thread#1
current
offset

thread#2
current
offset

thread#3
current
offset

thread#0
current
offset

thread#1
current
offset

thread#2
current
offset

thread#3
current
offset

WRAM

WRAM

1

2

3

Figure 3.5: Custom memory allocator on UPMEM

The custom memory allocator is a thread-level incremental allocator. Fig. 3.5
shows an example. We use the term WRAM PTR to indicate the WRAM pointer
offset, which is only accessible by the SDK memory allocators. At the beginning
of the program, a portion of the WRAM is occupied by the stack memory of
each thread, whereas the range from WRAM PTR to the end of the WRAM can
be used freely (Step 1 in Fig. 3.5). Each thread first allocates its own memory
slab in WRAM using mem alloc, which returns the header pointer of the segment
(Step 2 in Fig. 3.5). The size of the memory slab is the free range in the WRAM
divided by the number of tasklets.

26

Then, each thread increments its current offset to allocate memory when
needed, reducing the overhead of the software-defined memory allocators (Step
3 in Fig. 3.5). Threads can reset their current offset independently after every
alignment iteration without synchronization. The custom memory allocator also
aligns the segments on the DMA-transfer size, allowing them to be transferred
back and forth between the MRAM and WRAM.

The downside of this approach is that it equally assigns all threads with the
same amount of memory. So, in case one thread requires a lot more memory
and another is under utilizing its memory capacity, the custom memory allocator
won’t accommodate since it’s a per-thread incremental allocator unlike other per-
DPU allocators. The custom memory allocator works with use cases where the
workload is evenly distributed among DPU threads.

3.6.2 WFA using WRAM vs. MRAM for Alignment Data

We use the custom memory allocator to allow multiple threads dynamically al-
locate wavefront components in parallel without the overhead of inter-thread
synchronization. In our experiments, we use the following scoring penalties
{a = 0, x = 3, o = 4, e = 1}.

Each thread uses its allocated segment in the WRAM to add the wavefront
components of one read pair alignment and reuses it to process the next read
pair. The size of the wavefront components depends on the maximum alignment
score of the input read length and edit distance threshold per read. Given the
read length and the maximum alignment score (s), we estimate the number of
threads needed to align the read pairs without running out of WRAM memory.
In the worst case, each thread allocates s wavefronts and each wavefront has the
three wavefront components Ms, Is, Ds allocated with their length incrementing
every iteration (s iterations), so the upper limit memory consumption of WFA
WRAM will be the summation of this arithmetic sequence. Similarly, the memory
consumption of WFA-adaptive is estimated, where WFA-adaptive sets a threshold
for the maximum wavefront length, so it uses much less memory than WFA. This
method may overestimate the memory consumption but guarantees that threads
won’t run out of WRAM memory. When the read length and error rate increase,
we’ll be using fewer threads, and the wavefronts may not fit in the WRAM
memory.

Consequently, we store the wavefront components in the MRAM to align
longer reads. Each thread uses its MRAM segment to dynamically allocate wave-
front components and stores the MRAM addresses of these components in the
WRAM so that they can be accessed when required. To compute a new wave-
front component WFs, the thread first loads from the MRAM to the WRAM: the
component of a previous mismatch (Ms−x), the components of an extended gap
(Is−e, Ds−e), and the components of an opened gap (Ms−o−e, Is−o−e, Ds−e). Then,
WFs is computed in the WRAM, and the thread allocates space in the MRAM

27

to transfer the resulted WFs from the WRAM to the MRAM. This process is
repeated to reach the optimal alignment. The traceback uses DMA transfers
to load the required wavefront components from the MRAM and compute the
alignment operations. In this approach, the upper limit of the WRAM mem-
ory consumption depends on the wavefront length reached when computing the
maximum score’s wavefront components. We estimate that in the worst case, the
maximum wavefront length reached is 2 ∗ s where s is the maximum score in case
of WFA and the max distance threshold in case of WFA-adaptive. The WRAM
segment should fit the required wavefront components of maximum wavefront
length. WFA and WFA-adaptive MRAM versions align longer reads and higher
edit distances with more DPU threads which utilizes the DPU pipeline efficiently.
WFA-adaptive can align even longer reads with more DPU threads due to its re-
duced memory consumption. These WFA DPU implementations can be further
optimized in the future work by parallelizing the alignment computation across
multiple threads

In the next chapter, we provide a thorough evaluation to study the efficiency
of our DPU implementations.

28

Chapter 4

Evaluation

4.1 Experimental Setup

4.1.1 Baselines

We provide MRAM and WRAM DPU implementations for NW, GenASM, SWG,
WFA, and WFA-adaptive alignment algorithms. We compare our DPU imple-
mentations against a mutli-threaded CPU baseline. We make no modifications to
the original CPU implementations where NW, SWG, and WFA implementations
are taken from the original WFA repository [3], and GenASM is cloned from its
repository [3] . We use OpenMP to align multiple reads in parallel.

4.1.2 Evaluation Platform

We evaluate our DPU implementations on a UPMEM system with 2560 DPUs
(20 UPMEM-DIMMs) running at 425MHz and 150GB MRAM. We evaluate the
CPU implementations on a dual socket Intel® Xeon® E5-2697 v2 processor, 48
threads in total, with 30GB memory and 60MB L3 cache.

4.1.3 Datasets

We use real and synthetic datasets to evaluate our work. The real datasets are
short (Illumina [26]) read-reference pairs of length 100bp, 150bp, and 250bp with
0-5% edit distance threshold, generated using minimap2 [30] by mapping the
datasets mentioned in Table 4.1 to the human reference genome GRCh37 [31].
We simulate long read pairs of lengths 500bp, 1000bp, 5Kbp, and 10Kbp with
0-5% edit distance threshold, using the synthetic data generator provided in the
original WFA repository [3]. Each dataset has 5 million read pairs.

29

Read Length Edit Distance% Description

100 0-5% Real, Accession# ERR240727 [32]
150 0-5% Real, Accession# SRR826460 [32]
250 0-5% Real, Accession# SRR826471 [32]
500 0-5% Synthetic

1,000 0-5% Synthetic
5,000 0-5% Synthetic
10,000 0-5% Synthetic

Table 4.1: Datasets

4.2 Execution Time Results

In this work, we aim to study the efficiency of applying the alignment algorithms
on the PIM accelerator. We perform different scaling experiments to detect the
peak throughput in which these implementations are efficient. We scale different
configurations such as the number of CPU threads for the CPU implementations
(Section 4.2.1), and the number of DPU threads per DPU (Section 4.2.3) as
well as the total number of DPUs (Section 4.2.4) for the PIM implementations.
We compare the performance of the MRAM and WRAM PIM implementations
(Section 4.2.2). Finally, we compare the speedups using the best configurations
at fullscale (Section 4.2.5).

4.2.1 Thread-scale CPU Experiments

We apply high-throughput read alignment on a multi-threaded CPU system.
Fig. 4.1 shows the execution time of NW, SWG, GenASM, WFA, and WFA-
adaptive when scaling the number of CPU threads from 1 to 48 on all datasets.
We make four observations about the CPU thread scaling experiments. First,
we observe that when using more than 16 threads, the performance saturates
for all runs due to the memory bandwidth limitation. This observation shows
that these workloads are memory-bounded and do not scale when increasing the
computational power, which motivates the need to use PIM to further accelerate
them. Second, as the read length increases, the algorithms spend more execution
time on the alignment because the time complexity of these algorithms depends on
the read length. Third, the performance of WFA, WFA-adaptive, and GenASM
changes relative to the edit distance threshold of the read pairs (ED%) since
these algorithms consider the similarity of the read pairs while computing the
alignment, as mentioned in Sections 2.3.3 and 2.3.4. Fourth, WFA-Adaptive
performs the best even when scaling the read length and ED% due to its efficient
memory consumption (Section 2.3.3).

30

1

10

100

1000

10000

100000

1 16 32 48 1 16 32 48 1 16 32 48 1 16 32 48 1 16 32 48

#Threads #Threads #Threads #Threads #Threads

100 150 250 500 1000

Read Length

Ti
m

e
in

 se
c

NW

ED=0% ED=1% ED=2% ED=3% ED=4% ED=5%

1

10

100

1000

10000

100000

1 16 32 48 1 16 32 48 1 16 32 48 1 16 32 48 1 16 32 48

#Threads #Threads #Threads #Threads #Threads

100 150 250 500 1000

Read Length

Ti
m

e
in

 se
c

SWG

ED=0% ED=1% ED=2% ED=3% ED=4% ED=5%

0.1

1

10

100

1000

10000

100000

1 16 32 48 1 16 32 48 1 16 32 48 1 16 32 48 1 16 32 48

#Threads #Threads #Threads #Threads #Threads

100 150 250 500 1000

Read Length

Ti
m

e
in

 se
c

GenASM

ED=0% ED=1% ED=2% ED=3% ED=4% ED=5%

0.1

1

10

100

1000

1 16 32 48 1 16 32 48 1 16 32 48 1 16 32 48 1 16 32 48

#Threads #Threads #Threads #Threads #Threads

100 150 250 500 1000

Read Length

Ti
m

e
in

 se
c

WFA

ED=0% ED=1% ED=2% ED=3% ED=4% ED=5%

0.1

1

10

100

1000

1 16 32 48 1 16 32 48 1 16 32 48 1 16 32 48 1 16 32 48

#Threads #Threads #Threads #Threads #Threads

100 150 250 500 1000

Read Length

Ti
m

e
in

 se
c

WFA-Adaptive

ED=0% ED=1% ED=2% ED=3% ED=4% ED=5%

Figure 4.1: Execution time CPU thread-scaling

31

4.2.2 MRAM and WRAM DPU Implementations Comparison

As mentioned in Section 3.2, we provide MRAM and WRAM DPU versions for
each alignment algorithm. The MRAM version allows using more DPU threads
and aligning longer reads, but it adds the MRAM-WRAM transfers cost. The
WRAM version fits all data in WRAM which reduces the transfers latency, but
limits the number of threads and read length. Fig. 4.2 shows timing results for
MRAM and WRAM versions using 2500 DPUs. We set the max number of
threads by estimating the data consumption of each algorithm according to the
input read length and edit distance. The DPU-Total time includes time to copy
data from and to the DPUs and time to execute the alignments on the DPUs
(DPU-Kernel).

Fig. 4.2 shows the results for NW and SWG on short reads only, since the
DP-tables do not fit in the WRAM for longer reads. We notice that for NW
with read length 100bp, the WRAM version (2 threads) performs better than
the MRAM version (24 threads). However, with read length 150bp, the WRAM
version is worse than the MRAM version (24 threads) because we are using only
1 thread in the WRAM version in order to be able to fit the DP-table into the
WRAM, so we are underutilizing the DPU pipeline [1]. On the other hand, SWG
consumes more memory than NW because of the need to store multiple matrices.
For SWG with read length 100bp, the WRAM version only uses 1 thread due
to its larger memory consumption, and performs much worse than the MRAM
version which uses 20 threads.

We show the results of GenASM MRAM and WRAM implementations in
Fig. 4.2. GenASM uses bitvectors and bitwise operations to compute the align-
ment, so it has less memory consumption. Thus, we were able to apply GenASM
WRAM for longer reads and to use more than 11 threads. In general, GenASM
WRAM performs better than the MRAM version for most of the read lengths
and edit distances. The MRAM version performs better for read length 1000 and
edit distance greater than 3%, since for these datasets, GenASM WRAM is using
lower number of threads (less than 11 threads) leading to under utilization of the
DPU pipeline.

WFA and WFA adaptive MRAM versions perform better for read length
greater than 100, as shown in Fig. 4.2. The reason behind this is that as the read
length and edit distance increase, memory consumption increases, as mentioned
in Section 2.3.3, so fewer threads will be used in WFA WRAM, and it won’t be
applied for longer reads and larger edit distances.

32

1

10

100

0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5%

ED% ED% ED%

100 150 100

Read Length Read Length

NW SWG

Ti
m

e
in

 se
c

DPU-MRAM-Total DPU-MRAM-Kernel DPU-WRAM-Total DPU-WRAM-Kernel

0.1

1

10

100

1000

10000

0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5%

ED% ED% ED% ED% ED%

100 150 250 500 1000

Read Length

GenASM

Ti
m

e
in

 se
c

DPU-MRAM-Total DPU-MRAM-Kernel DPU-WRAM-Total DPU-WRAM-Kernel

0.01

0.1

1

10

100

0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5%

ED% ED% ED% ED% ED%

100 150 250 500 1000

Read Length

WFA

Ti
m

e
in

 se
c

DPU-MRAM-Total DPU-MRAM-Kernel DPU-WRAM-Total DPU-WRAM-Kernel

0.01

0.1

1

10

100

0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5%

ED% ED% ED% ED% ED%

100 150 250 500 1000

Read Length

WFA Adaptive

Ti
m

e
in

 se
c

DPU-MRAM-Total DPU-MRAM-Kernel DPU-WRAM-Total DPU-WRAM-Kernel

Figure 4.2: MRAM vs. WRAM DPU implementations timing results

33

4.2.3 Thread-scale DPU Experiments

We perform DPU thread scaling to study the behavior of the MRAM and WRAM
versions and detect the best number of threads where the implementations are
efficient. We run the experiments using read lengths 100, 150, 250, 500, and 1000
with a 1% edit distance threshold. We observe that when the number of threads
is more than 11, the performance saturates in algorithms such as NW, SWG, and
GenASM (Fig. 4.3 since the multi-threaded DPU-pipeline is fully utilized when
at least 11 threads are launched [1] (see Section 2.1). We also notice that the
performance is getting slightly better when using more than 11 threads in the
case of WFA and WFA adaptive (Fig. 4.3). The reason is that WFA has more
irregular pattern to access the memory, so there will be more threads queued at
the DMA engine. Therefore having a larger total number of threads increases the
chance that at least 11 of them are not queued up at the DMA engine and can
fill up the DPU pipeline. Other algorithms are more regular so using at least 11
threads is enough to utilize the pipeline.

A thread-level comparison shows that the WRAM version performs better
than the MRAM version for all implementations. However, in cases where the
WRAM version uses less than 11 threads, the MRAM version performs better.
We conclude that the WRAM version performs better than the MRAM version
when it uses enough threads, and the MRAM version hides the latency of the
data transfers by using more threads.

4.2.4 DPU-scale Experiments

We provide DPU scaling experiments where we increase the number of the al-
located DPUs from 512 to 2500 and fix the number of read pairs, as shown in
Fig.4.4. The performance scale linearly as the number of DPUs increases since
the read pairs are aligned independently, and fewer read pairs are aligned by each
DPU when more DPUs are allocated. It shows that the number of read pairs is
doesn’t affect the absolute speedup of our experiments because the alignments
are done independently.

34

0.01

0.1

1

10

100

1000

10000

1 4 8
11 16 20

1 4 8
11 16 20

1 4 8
11 16 20

1 4 8
11 16

1 4 1 2 4 8
11 16 24

1 4 8
11 16 24

1 4 8
11 16 24

1 4 8
11 16

1 4 8

#threads #threads #threads #threads #threads #threads #threads #threads #threads #threads

100 150 250 500 1000 100 150 250 500 1000

Read Length Read Length

SWG NW

Ti
m

e
 in

 s
e

c
MRAM WRAM

0.1

1

10

100

1000

1 4 8 11 16 20 1 4 8 11 16 20 1 4 8 11 16 18 20 1 4 8 11 13 16 1 4 7 8 11

#threads #threads #threads #threads #threads

100 150 250 500 1000

Read Length

GenASM

Ti
m

e
 in

 s
e

c

MRAM WRAM

0.01

0.1

1

10

100

1 4 8
11 17 18

1 4 8
11 17 18

1 4 8
11 17 18

1 4 8
11 14

1 3 4 8 1 4 8
11 17 18

1 4 8
11 17 18

1 4 8
11 17 18

1 4 8
11 15

1 4 8 9

#threads #threads #threads #threads #threads #threads #threads #threads #threads #threads

100 150 250 500 1000 100 150 250 500 1000

Read Length Read Length

WFA WFA Adaptive

Ti
m

e
 in

 s
e

c

MRAM WRAM

Figure 4.3: DPU thread-scaling timing results

35

0.1

1

10

100

1000

10000

51
2

10
24

25
00 51

2
10

24
25

00 51
2

10
24

25
00 51

2
10

24
25

00 51
2

10
24

25
00 51

2
10

24
25

00 51
2

10
24

25
00 51

2
10

24
25

00 51
2

10
24

25
00 51

2
10

24
25

00 51
2

10
24

25
00 51

2
10

24
25

00 51
2

10
24

25
00 51

2
10

24
25

00 51
2

10
24

25
00

#DPUs #DPUs #DPUs #DPUs #DPUs #DPUs #DPUs #DPUs #DPUs #DPUs #DPUs #DPUs #DPUs #DPUs #DPUs

100 150 250 500 1000 100 150 250 500 1000 100 150 250 500 1000

Read Length Read Length Read Length

SWG NW GenASM

Ti
m

e i
n

se
c

0.01

0.1

1

10

51
2

10
24

25
00 51

2

10
24

25
00 51

2

10
24

25
00 51

2

10
24

25
00 51

2

10
24

25
00 51

2

10
24

25
00 51

2

10
24

25
00 51

2

10
24

25
00 51

2

10
24

25
00 51

2

10
24

25
00

#DPUs #DPUs #DPUs #DPUs #DPUs #DPUs #DPUs #DPUs #DPUs #DPUs

100 150 250 500 1000 100 150 250 500 1000

Read Length Read Length

WFA WFA-Adaptive

Ti
m

e
in

 se
c

Figure 4.4: Number of DPUs scaling timing results

4.2.5 Full-scale DPU and Full-scale CPU Comparison

We give a full-scale comparison between the DPU implementations and the multi-
threaded baseline using the best DPU version and the best CPU configuration
applied to all datasets.

Our WFA and WFA-Adaptive implementations have up to 2x speedup (Total)
when aligning short reads of length 100 for ED 0-5%, and up to 30x for ED=0,
26x for ED=1%, 12x for ED=2%, 7x for ED=3%, 6x for ED=4%, and 5x for
ED=5% when the CPU-DPU copy time is not accounted for (Kernel), as shown
in Fig. 4.5. As we increase the read length and edit distance, we can still observe
better performance for the Kernel time until we reach read length 1000 and ED
greater than 2% where only WFA-adap can reach up to 3x speedup since WFA-
adaptive has less memory consumption and use more threads. GenASM (Total)
shows up to 3x speedup for read length 100 and up to 2x speedup for longer reads
and all ED%. It also achieves up to 2-4x higher speedup for the DPU-Kernel time
for all datasets. Due to the low memory consumption of GenASM, it utilizes the
DPU pipeline efficiently by launching enough reads.

SWG DPU implementation achieves higher throughput (4x) for read length
greater than 500 for both total and kernel time (Fig. 4.5). We observe no speedup
for shorter reads and NW on all datasets, even though we are using more than
20 threads. After investigating this behavior, we learned that the DPU pipeline
efficiency is almost 25% due to the large number of WRAM-MRAM transfers of
small sizes (8 bytes) needed to fill up the DP table.

36

1

10

100

1000

10000

0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5%

ED% ED% ED% ED% ED%

100 150 250 500 1000

Read Length

NW

Ti
m

e
in

 se
c

CPU 48 threads DPU-Total DPU-Kernel

1

10

100

1000

10000

0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5%

ED% ED% ED% ED% ED%

100 150 250 500 1000

Read Length

SWG

Ti
m

e
in

 se
c

CPU 48 threads DPU-Total DPU-Kernel

0.01

0.1

1

10

100

1000

0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5%

ED% ED% ED% ED% ED%

100 150 250 500 1000

Read Length

GenASM

Ti
m

e
in

 se
c

CPU 48 threads DPU-Total DPU-Kernel

0.01

0.1

1

10

100

1000

0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5%

ED% ED% ED% ED% ED%

100 150 250 500 1000

Read Length

WFA

Ti
m

e
in

 se
c

CPU 48 threads DPU-Total DPU-Kernel

0.01

0.1

1

10

100

0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5%

ED% ED% ED% ED% ED%

100 150 250 500 1000

Read Length

WFA-adaptive

Ti
m

e
in

 se
c

CPU 48 threads DPU-Total DPU-Kernel

Figure 4.5: Full-scale DPU and full-scale CPU timing results

37

4.2.6 Large Reads DPUs and CPUs Comparison

WFA-adaptive scales efficiently when aligning longer reads and higher error rates
due its low memory consumption, so we apply it on large reads of length 5,000
and 10,000. Fig. 4.6 shows that our implementation keeps scaling up, where it
achieves up to 2x better performance (Total) even when increasing the error rate
(except for read length 10,000 and ED=5% where we had to use only one thread).

0.1

1

10

100

1000

0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5%

ED% ED%

5000 10000

Read Length

Ti
m

e
 in

 s
e

c

CPU-1 CPU-16 CPU-32 CPU-48 DPU-MRAM-Total DPU-MRAM-Kernel

Figure 4.6: WFA adaptive on large reads DPUs and CPUs

4.3 Energy Consumption Results

We aim to reduce the execution time and energy consumption spent by the align-
ment algorithms transferring data between the main memory and the processing
unit. We compare the energy consumption of our DPU implementations against
the multi-threaded CPU implementations. We measure the energy consumption
of the CPU implementations using the perf [33] tool. We estimate the DPUs’
energy consumption using the power estimator provided by UPMEM [24] since
the server we have access to does not currently support energy profiling. To do so,
we collect several metrics such as the instructions per cycle, the DMA transfers
ratio, the loads and stores ratio, and the average DMA transfer size. We the use
the performance counters and dputrace tool provided by the SDK [24] to collect
the metrics. We apply this on read lengths 100, 150, 250 and 500 with ED=5%
for the MRAM and WRAM DPU versions.

Fig. 4.7 shows that for read length 100 WFA, WFA-adaptive MRAM ver-
sions, and GenASM WRAM have up to 2x and 3x better energy consumption

38

respectively. SWG MRAM and WFA-adaptive MRAM consumes 4x and 3x less
energy respectively for read length 500. We notice that the energy results follow
the same trend as the timing results.

1

10

100

1000

10000

100000

1000000

100 150 250 500 100 150 250 500 100 150 250 500 100 150 250 500 100 150 250 500

Read Length Read Length Read Length Read Length Read Length

NW SWG GenASM WFA WFA-adap

En
er

gy
 J

o
u

le
s

CPU-1 CPU-16 CPU-32 CPU-48 DPU-MRAM DPU-WRAM

Figure 4.7: Energy Consumption on DPUs and CPUs

39

Chapter 5

Related Work

With the current advancements of the high-throughput sequencing machines,
genome analysis is bottlenecked by the read mapping phase. Genome analysis
can be accelerated using different hardware and software methods [2]. In this
section, we discuss recent works that managed to accelerate genome analysis
using PIM architecture.

upVC [15] introduce an optimized implementation of the variant calling pro-
cess on the UPMEM-PIM architecture. The variant calling process can be seen
as a loop that consists of 4 independent tasks. The first gets the read packets
from external storage support. The second dispatches these reads to the DPUs.
The third map reads to the reference genome using the DPUs, and the fourth
updates a variant calling data structure with the mapping results. This loop
was parallelized by pipelining the tasks on the main processor and running the
read mapping on the PIM memory concurrently. The read mapping algorithm
uses Hamming distance and banded Smith-Waterman to perform the alignment.
Their experimentation shows that the mapping task performed on the DPUs
consumes the longest time, leading to a high inactivity rate in the CPU. Never-
theless, upVC verifies the efficiency of using PIM architecture on mapping and
variant calling processes. Our work has different approach to perform read align-
ment on UPMEM. First, we perform high-throughput read pairs alignment on
the UPMEM-PIM system, while upVC’s goal is to perform variant calling and
read mapping against a reference genome. Also, we implement different align-
ment algorithms than that used in upVC. We implement NW, SWG, GenASM
and WFA global alignment algorithms, while upVC implements Smith-Waterman
local alignment and Hamming-Distance pre-alignment algorithms.

GenASM [21], as discussed in sec. 2.3.4, uses 3D-stack memory to design a
near-memory framework and accelerate ASM, which can significantly speed up
multiple use cases such as pre-alignment filtering, read alignment, and edit dis-
tance calculation. It improves and accelerates the Bitap algorithm to support
highly parallel and short and long read alignments, and adds a bit vector-based
traceback algorithm.

40

GRIM-Filter [34] is a novel seed location filtering algorithm that has been
optimized to take advantage of 3D-stacked memory systems, which include com-
puting within a logic layer stacked beneath memory layers, to perform efficient
processing near memory. Unlike GenASM and Grim Filter, which use customized
hardware designs that are still a research prototype, our work use a real pro-
grammable processing-in-memory hardware to implement state-of-the-art read
alignment algorithms.

Beyond genomics and the UPMEM PIM architecture, many PIM accelerators
have been proposed to accelerate a wide variety of memory-bound applications
such as machine learning [35, 36, 37, 38, 39, 40, 41, 42], graph processing [43,
44, 45, 46], and sparse matrix computations [10]. Our work focuses on studying
paiwise read alignment on the UPMEM PIM architecture.

41

Chapter 6

Conclusion and Future Work

In this thesis, we show that genome sequence analysis can be effectively acceler-
ated using PIM architectures. To do so, we accelerate genome analysis by im-
plementing the memory-bounded alignment algorithms such as WFA, GenASM,
SWG, and NW on the first real PIM system.

We provided a custom memory allocator and implemented MRAM and WRAM
versions for each algorithm to address the memory management challenges caused
by implementing them on UPMEM. Our workload aligns a large number of read
pairs in parallel across many DPUs.

We evaluate the performance of these implementations on the PIM system
and compared them against a server-grade multi-threaded CPU baseline. The
evaluation demonstrates that most of our implementations outperform the multi-
threaded CPU implementations in terms of speedup and energy and for different
read lengths and error rates.

In our future work, we would like to enable the alignment of longer reads on
DPUs by parallelizing the alignment of a single read pair across multiple DPU
threads and/or dividing large reads into smaller sequences.

42

Appendix A

Abbreviations

PIM Processing in Memory
GSA Genome Sequencing Analysis
HTS High Throughput Sequencing
ASM Approximate String Matching
WFA Wave Front Alignment Algorithm
NW Needleman-Wunsch
SWG Smith-Waterman-Gotoh
DP Dynamic Programming
MRAM Main Memory
WRAM Working Memory
IRAM Instruction Memory
ED Edit Distance
DMA Direct Memory Access

43

Bibliography

[1] J. Gómez-Luna, I. E. Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira, and
O. Mutlu, “Benchmarking a new paradigm: An experimental analysis of a
real processing-in-memory architecture,” arXiv preprint arXiv:2105.03814,
2021.

[2] M. Alser, Z. Bingöl, D. S. Cali, J. Kim, S. Ghose, C. Alkan, and O. Mutlu,
“Accelerating genome analysis: A primer on an ongoing journey,” IEEE
Micro, vol. 40, no. 5, pp. 65–75, 2020.

[3] S. Marco-Sola, J. C. Moure López, M. Moreto Planas, and A. Es-
pinosa Morales, “Fast gap-affine pairwise alignment using the wavefront al-
gorithm,” Bioinformatics, no. btaa777, pp. 1–8, 2020.

[4] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “Processing
data where it makes sense: Enabling in-memory computation,” 2019.

[5] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “A modern
primer on processing in memory,” 2020.

[6] G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie, “Quantifying the
energy cost of data movement in scientific applications,” in 2013 IEEE In-
ternational Symposium on Workload Characterization (IISWC), pp. 56–65,
2013.

[7] W. H. Wen-mei, I. El Hajj, S. G. De Gonzalo, C. Pearson, N. S. Kim,
D. Chen, J. Xiong, and Z. Sura, “Rebooting the data access hierarchy of
computing systems,” in 2017 IEEE International Conference on Rebooting
Computing (ICRC), pp. 1–4, IEEE, 2017.

[8] F. Devaux, “The true processing in memory accelerator,” in 2019 IEEE Hot
Chips 31 Symposium (HCS), pp. 1–24, IEEE Computer Society, 2019.

[9] J. Gómez-Luna, I. El Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira, and
O. Mutlu, “Benchmarking memory-centric computing systems: Analysis of
real processing-in-memory hardware,” in 2021 12th International Green and
Sustainable Computing Conference (IGSC), pp. 1–7, IEEE, 2021.

44

[10] C. Giannoula, I. Fernandez, J. Gómez-Luna, N. Koziris, G. Goumas, and
O. Mutlu, “Towards efficient sparse matrix vector multiplication on real
processing-in-memory systems,” arXiv preprint arXiv:2204.00900, 2022.

[11] D. Lavenier, C. Deltel, D. Furodet, and J.-F. Roy, MAPPING on UPMEM.
PhD thesis, INRIA, 2016.

[12] D. Lavenier, C. Deltel, D. Furodet, and J.-F. Roy, BLAST on UPMEM.
PhD thesis, INRIA Rennes-Bretagne Atlantique, 2016.

[13] D. Lavenier, J.-F. Roy, and D. Furodet, “Dna mapping using processor-in-
memory architecture,” in 2016 IEEE International Conference on Bioinfor-
matics and Biomedicine (BIBM), pp. 1429–1435, IEEE, 2016.

[14] S. Diab, A. Nassereldine, M. Alser, J. G. Luna, O. Mutlu, and I. E. Hajj,
“High-throughput pairwise alignment with the wavefront algorithm using
processing-in-memory,” arXiv preprint arXiv:2204.02085, 2022.

[15] D. Lavenier, R. Jodin, and R. Cimadomo, “Variant calling parallelization on
processor-in-memory architecture,” bioRxiv, 2020.

[16] J. Nider, C. Mustard, A. Zoltan, J. Ramsden, L. Liu, J. Grossbard,
M. Dashti, R. Jodin, A. Ghiti, J. Chauzi, et al., “A case study of processing-
in-memory in off-the-shelf systems,” in 2021 USENIX Annual Technical
Conference (USENIX ATC 21), pp. 117–130, 2021.

[17] V. Zois, D. Gupta, V. J. Tsotras, W. A. Najjar, and J.-F. Roy, “Mas-
sively parallel skyline computation for processing-in-memory architectures,”
in Proceedings of the 27th International Conference on Parallel Architectures
and Compilation Techniques, pp. 1–12, 2018.

[18] S. B. Needleman and C. D. Wunsch, “A general method applicable to the
search for similarities in the amino acid sequence of two proteins,” Journal
of molecular biology, vol. 48, no. 3, pp. 443–453, 1970.

[19] O. Gotoh, “An improved algorithm for matching biological sequences,” Jour-
nal of molecular biology, vol. 162, no. 3, pp. 705–708, 1982.

[20] M. Alser, J. Rotman, K. Taraszka, H. Shi, P. I. Baykal, H. T. Yang, V. Xue,
S. Knyazev, B. D. Singer, B. Balliu, D. Koslicki, P. Skums, A. Zelikovsky,
C. Alkan, O. Mutlu, and S. Mangul, “Technology dictates algorithms: Re-
cent developments in read alignment,” 2020.

[21] D. S. Cali, G. S. Kalsi, Z. Bingöl, C. Firtina, L. Subramanian, J. S. Kim,
R. Ausavarungnirun, M. Alser, J. Gomez-Luna, A. Boroumand, et al.,
“Genasm: A high-performance, low-power approximate string matching

45

acceleration framework for genome sequence analysis,” in 2020 53rd An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pp. 951–966, IEEE, 2020.

[22] R. Baeza-Yates and G. H. Gonnet, “A new approach to text searching,”
Commun. ACM, vol. 35, p. 74–82, oct 1992.

[23] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu, R. Thakur,
D. Kim, A. Kuusela, A. Knies, P. Ranganathan, and O. Mutlu, Google
Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,
p. 316–331. New York, NY, USA: Association for Computing Machinery,
2018.

[24] https://sdk.upmem.com/2020.3.0/.

[25] https://nature.com/subjects/genomic-analysis.

[26] https://www.illumina.com/systems/sequencing-platforms/novaseq.

html.

[27] https://www.pacb.com/technology/hifi-sequencing/.

[28] M. Alser, J. Rotman, K. Taraszka, H. Shi, P. I. Baykal, H. T. Yang, V. Xue,
S. Knyazev, B. D. Singer, B. Balliu, et al., “Technology dictates algorithms:
Recent developments in read alignment,” arXiv preprint arXiv:2003.00110,
2020.

[29] E. Ukkonen, “Algorithms for approximate string matching,” Information
and Control, vol. 64, no. 1, pp. 100 – 118, 1985. International Conference on
Foundations of Computation Theory.

[30] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,” Bioinfor-
matics, vol. 34, pp. 3094–3100, 05 2018.

[31] https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/.

[32] https://www.ebi.ac.uk/ena.

[33] V. M. Weaver, “Linux perf event features and overhead,” in The 2nd In-
ternational Workshop on Performance Analysis of Workload Optimized Sys-
tems, FastPath, vol. 13, p. 5, 2013.

[34] J. S. Kim, D. S. Cali, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan,
O. Ergin, C. Alkan, and O. Mutlu, “Grim-filter: Fast seed location filter-
ing in dna read mapping using processing-in-memory technologies,” BMC
genomics, vol. 19, no. 2, pp. 23–40, 2018.

46

https://sdk.upmem.com/2020.3.0/
https://nature.com/subjects/genomic-analysis
https://www.illumina.com/systems/sequencing-platforms/novaseq.html
https://www.illumina.com/systems/sequencing-platforms/novaseq.html
https://www.pacb.com/technology/hifi-sequencing/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/
https://www.ebi.ac.uk/ena

[35] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. W. Strachan,
M. Hu, S. Williams, and V. Srikumar, “ISAAC: A Convolutional Neural
Network Accelerator with In-Situ Analog Arithmetic in Crossbars,” ACM
SIGARCH Computer Architecture News, vol. 44, pp. 14–26, 06 2016.

[36] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“PRIME: A Novel Processing-in-Memory Architecture for Neural Network
Computation in ReRAM-Based Main Memory,” ACM SIGARCH Computer
Architecture News, vol. 44, pp. 27–39, 06 2016.

[37] L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A Pipelined ReRAM-
Based Accelerator for Deep Learning,” in 2017 IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA), pp. 541–552,
2017.

[38] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S. Williams,
P. Faraboschi, W.-m. W. Hwu, J. P. Strachan, K. Roy, and D. S. Milojicic,
“PUMA: A Programmable Ultra-Efficient Memristor-Based Accelerator for
Machine Learning Inference,” in Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’19, (New York, NY, USA), p. 715–731,
Association for Computing Machinery, 2019.

[39] A. Ankit, I. Hajj, S. r. Chalamalasetti, S. Agarwal, M. Marinella, M. Foltin,
J. P. Strachan, D. Milojicic, W.-m. Hwu, and K. Roy, “PANTHER: A Pro-
grammable Architecture for Neural Network Training Harnessing Energy-
efficient ReRAM,” IEEE Transactions on Computers, vol. PP, pp. 1–1, 05
2020.

[40] S. Huang, A. Ankit, P. Silveira, R. Antunes, S. R. Chalamalasetti, I. El Hajj,
D. E. Kim, G. Aguiar, P. Bruel, S. Serebryakov, et al., “Mixed precision
quantization for reram-based dnn inference accelerators,” in 2021 26th Asia
and South Pacific Design Automation Conference (ASP-DAC), pp. 372–377,
IEEE, 2021.

[41] J. Ambrosi, A. Ankit, R. Antunes, S. R. Chalamalasetti, S. Chatterjee,
I. El Hajj, G. Fachini, P. Faraboschi, M. Foltin, S. Huang, et al., “Hardware-
software co-design for an analog-digital accelerator for machine learning,”
in 2018 IEEE International Conference on Rebooting Computing (ICRC),
pp. 1–13, IEEE, 2018.

[42] P. Bruel, S. R. Chalamalasetti, C. Dalton, I. El Hajj, A. Goldman, C. Graves,
W.-m. Hwu, P. Laplante, D. Milojicic, G. Ndu, et al., “Generalize or die:
Operating systems support for memristor-based accelerators,” in 2017 IEEE

47

International Conference on Rebooting Computing (ICRC), pp. 1–8, IEEE,
2017.

[43] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “GraphR: Accelerating
Graph Processing Using ReRAM,” in 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pp. 531–543, 2018.

[44] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in 2015 ACM/IEEE
42nd Annual International Symposium on Computer Architecture (ISCA),
pp. 105–117, June 2015.

[45] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis, and
X. Qian, “GraphP: Reducing Communication for PIM-Based Graph Process-
ing with Efficient Data Partition,” in 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pp. 544–557, 2018.

[46] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie,
and H. Yang, “GraphH: A Processing-in-Memory Architecture for Large-
Scale Graph Processing,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 38, no. 4, pp. 640–653, 2019.

48

	Acknowledgements
	Abstract
	Introduction
	Background
	UPMEM PIM Architecture
	Genome Sequencing Analysis
	Pairwise Alignment Algorithms
	Needleman-Wunsch
	Smith-Waterman-Gotoh
	Wavefront Alignment Algorithm
	GenASM

	Methods
	Overall Workflow
	Using WRAM vs. MRAM for Alignment Data
	Needleman-Wunsch DPU Implementation
	Smith-Waterman-Gotoh DPU Implementation
	GenASM DPU Implementation
	Wavefront Algorithm DPU Implementation
	Custom Dynamic Memory Allocator
	WFA using WRAM vs. MRAM for Alignment Data

	Evaluation
	Experimental Setup
	Baselines
	Evaluation Platform
	Datasets

	Execution Time Results
	Thread-scale CPU Experiments
	MRAM and WRAM DPU Implementations Comparison
	Thread-scale DPU Experiments
	DPU-scale Experiments
	Full-scale DPU and Full-scale CPU Comparison
	Large Reads DPUs and CPUs Comparison

	Energy Consumption Results

	Related Work
	Conclusion and Future Work
	Abbreviations
	Bibliography

