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An Abstract of the Dissertation
of

Mohammad Hussein Nassralla for Doctor of Philosophy
Major: Electrical and Computer Engineering

Title: Low Complexity Data Processing and Learning over Single-Agents and
Distributed Networks

An enormous amount of data is generated every second across a wide range
of sectors around the globe. Learning from the available data for given use cases
requires full data access, which can be challenging due to privacy considerations
in addition to communications, storage and computational constraints. For these
reasons, it is highly attractive to enable devices to process and learn from data
locally to train a global model while exchanging only selected parameters with
other devices over the network, and without the need to share and store the com-
plete data set. This reduces the risk of privacy leakage and the communication
load over the network. However, it transfers the computational burden to the
end devices or local agents, which normally have energy and processing speed
limitations. This PhD thesis deals with designing low complexity and effective
algorithms for data processing, optimization, and learning over both single agents
and networks. The thesis work is divided into three main parts. In the first part,
we propose two methods for learning over networks; the first one addresses the
problem of learning over heterogeneous networks and, in particular, how collabo-
ration among heterogeneous agents can improve the overall learning performance,
and the second one presents a novel low complexity approximation method for
the gradient descent algorithm. Theoretical proofs of the convergence, complex-
ity analysis, and performance results are provided and analyzed to demonstrate
effectiveness and generate insights. In the second part, we present an efficient
two-step design methodology for low complexity finite-impulse response (FIR)
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filters. In the first step, the filter design is formulated as an optimization prob-
lem to find the minimum number of coefficients. In the second step, a mapping
approach is proposed to compensate for the mean square error (MSE) that results
from the approximation in the first step. Simulation results show that the de-
signed filter has flat response in the passband, a narrow transition band, and high
attenuation in the stopband. The proposed design leads to a better performance-
computational complexity tradeoff compared to other state-of-the-art digital filter
design methods. Finally, in the third part, a dynamic compression algorithm for
EEG biomedical data is proposed. The algorithm applies a sequence of com-
pression/decompression operations in order to find an optimized lossless/lossy
compression combination that provides high compression ratio while preserving
the signal integrity. Performance evaluation results on real datasets demonstrate
an effective compression performance while maintaining a distortion level below
a target threshold and low computational overhead.
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Chapter 1

Introduction

Big data is increasing daily from mobile devices, call centers, web servers, so-
cial networks, sensors, etc. Learning from distributed information and building
intelligent models require full access to data. It is imperative to centralize the
data at fusion centers for building smart applications and improving learning
models; however, the privacy of data usually complicates or prevents its sharing.
In addition, the continuous communication of big data over networks is usually
limited by the link resources. On top of that, collecting big data at fusion cen-
ters ends up in storage and computational challenges. For these reasons, many
techniques were proposed in the literature to develop processing and learning
algorithms that work in a distributed manner. In distributed learning, the data
is processed locally to train a global model without the need to share the raw
information; however, few parameters are sent over the network. Local devices
or agents use their own data and some shared parameters over the network to
update the learning algorithm. Decentralized learning reduces the risk of pri-
vacy leakage and heavy communication but it also puts a computational burden
on distributed agents which might have energy or computational capabilities re-
strictions. In addition, decentralized learning is susceptible to noisy reception of
the shared parameters over the network, reception of parameters asynchronously,
malicious attacks, etc., which might affect the accuracy of the learning model.

Learning and estimation over networks usually consist of computation, com-
munication, decision making, etc. Computation is usually accompanied with
energy consumption, while communication is usually limited by the privacy of
information and the link resources (bandwidth, speed, costs, etc); in addition,
decision making is usually concerned with high accuracy and good performance.
This thesis deals with designing low complexity algorithms for estimation, pro-
cessing, adaptation and learning over single agents and networks. Our target is
to develop algorithms that have low computational complexity, not greedy for
link resources and have good learning accuracy. Our thesis is mainly divided into
three objectives.

The first objective consists of two parts. The first one is about learning over
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heterogeneous networks, while the second is about an approximation of the gradi-
ent descent method for learning over single and multi-agent systems. In learning
over heterogeneous networks, we study distributed optimization for learning prob-
lems over agents with different computational capabilities. The heterogeneity of
computational capabilities implies that a subset of the agents might be able to
run computationally-intensive learning algorithms like Newton’s method or full
gradient descent, while the remaining ones can only run lower-complexity algo-
rithms like stochastic gradient descent. This leads to opportunities for designing
hybrid distributed optimization algorithms that rely on cooperation among the
network agents in order to enhance the overall performance, improve the rate of
convergence, and reduce the communication overhead. We provide a theoretical
proof that hybrid learning among heterogeneous agents attains a stable solution.
For small step-sizes µ, the proposed approach leads to a small estimation error
in the order of O(µ). Results are presented and analyzed for case study scenarios
to demonstrate the effectiveness of the proposed approach.

In the second part of the first objective, we propose an approximation method
for the gradient descent algorithm that is usually used over single and multi-agent
systems. The proposed method computes a deterministic summary of the train-
ing data set, and then computes the learning direction per iteration with respect
to the summary. We provide a convergence analysis for the proposed method
and show that the thoroughness of the summary can be tweaked to optimize the
trade-off between computational complexity and convergence rate. Performance
results are illustrated numerically for single and multi-agent systems.

In the second objective of the thesis, we present an efficient two-step method
to design low complexity finite-impulse response (FIR) filters. In the first step,
the filter design is formulated as an optimization problem to find the minimum
number of coefficients. In the second step, a mapping approach is proposed to
compensate for the mean square error (MSE) that results from the first step.
The proposed method demonstrates its effectiveness in terms of computational
complexity without compromising the filtering performance.

Finally, in the third objective, we propose a dynamic and effective compression
approach for large data sets of brain signals that are acquired by the electroen-
cephalogram (EEG) technique. The proposed compression algorithm relies on a
sequence of compression and decompression phases to optimize the compression
rate while maintaining a distortion level below a target threshold. The proposed
approach shows high compression ratios while it maintains the signals quality.

The remaining parts of this thesis are organized as follows. Chapter 2 provides
background information about learning over single agents and networks. Chapter
3 presents the proposed work about learning over heterogeneous networks, while
Chapter 4 presents our work for approximating the gradient descent algorithm.
Chapter 5 presents the proposed novel approach for designing low complexity
FIR filters, while Chapter 6 describes our work on biomedical data compression.
Finally, Chapter 7 presents future research directions.
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Chapter 2

Background

2.1 Learning over Networks: Network Topology

Optimization and learning over single and multi-agent systems usually entails
a network of N interacting agents, labeled as k = 1, 2, ..., N . The network is
usually characterized by a graph involving N vertices (nodes, devices, or agents)
and a set of edges connecting the vertices to each other as shown in Figure 2.1.
We assume the graph to be undirected so that if agent or node k is a neighbor of
node l, then node l is also a neighbor of agent k [2]. Neighbor nodes can share
data both ways over the edge joining them. Every edge connecting two agents
will be assigned a weight alk to form up a weighted graph [2]. The subscripts l
and k in alk represent the source and the sink respectively, where alk is used by
node k to scale the information it receives from l.

Network topology plays an important role in learning over networks, and
there are many network structures in the literature such as strongly connected
networks, connected networks, weakly connected networks, etc. In this work,
we focus on distributed learning over strongly connected networks. Strongly-
connected network means that there always exists at least one path connecting
any two agents, and that there is at least one agent with self connecting loop.
This indicates that there is at least one agent in the network that relies on its own
data and will allocate a positive weight to it. The strong connectivity of a network
turns out into a useful property that can be understood well if we represent the
weights of a network by N × N adjacency matrix A, where the elements on
the k-th column of A include the weights used by agent k to scale information
incoming from its neighbors l ∈ Nk; we set alk = 0 if l /∈ Nk. So, the row and
column indices in (l, k) denote the source and destination agents respectively.
So the topology of the network is summarized by the matrix A, which is a very
important matrix in learning over networks, and it plays an important role in the
stability and convergence analysis. It has a useful property that it is primitve.
The primitiveness of A allows the use of the Perron − Frobenius theorem in
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Figure 2.1: Network of N nodes that are connected by weighted edges. Note
that, we are representing the edges among agents by two separate directed arrows
with weights alk, akl. Later on, the two arrows will be represented by single bi-
directional edge.

matrix theory to prove the convergence of several algorithms over the network
later on. The Perron−Frobenius theorem describes the eigen-structure of A as
follows

• Matrix A has a single eigenvalue at one, and all other eigenvalues of A are
strictly inside the unit circle (the spectral radius of A is ρ(A) and it is equal
to one).

• With proper sign scaling, all entries of the right-eigen vector of A corre-
sponding to the single eigenvalue at one are positive.

2.2 Learning over Networks: Distributed Learn-

ing Strategies

Every agent k over the network holds its own data and works to minimize its cost
function Jk(ω) in collaboration with other dispersed agents in its neighborhood
Nk. Every agent attains its minimizer locally where the local minimizer over the
network ωo corresponds to the minimizer of the weighted aggregate cost Jglob(ω),
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namely

ωo = argmin
ω

Jglob(ω) = argmin
ω

N∑
k=1

αkJk(ω) (2.1)

where Jglob(ω) is given by

Jglob(ω) =
N∑
k=1

αkJk(ω) (2.2)

where αk is some positive scalar, αk ≥ 0.
The following is an assumption about the individual and the aggregate cost

functions Jk(ω), and J
glob(ω).

Assumption 1 (Conditions on Aggregate and Individual Costs)
Assume that the individual costs, Jk(ω), are each twice-differentiable and convex,
with at least one of them being ν-strongly convex. It follows that Jglob(ω) is
strongly convex and attains a global minimizer ωo, and satisfies

∇Jglob(ωo) =
N∑
k=1

αk∇Jk(ωo) = 0 (2.3)

In addition, we assume that the gradient ∇Jk(ω) is δc-Lipschitz. It follows that
the Hessian of the individual cost function ∇2Jk(ω), and the Hessian of the ag-
gregate cost function ∇2Jglob(ω) satisfy the following conditions

∇2Jk(ω) ≤ δcIM (2.4)

νIM ≤ ∇2Jglob(ω) ≤ δcIM (2.5)

∇2Jk0(ω) ≥ νIM > 0, ∇2Jk(ω) ≥ 0, k ̸= k0 (2.6)

for some positive parameter ν ≤ δc .

There exists many distributed learning strategies like incremental [2], consensus
[2], [3], diffusion [2], [4], [5], enlarged cooperation [2], spatio-temporal [6], etc. In
these methods, every agent k works to minimize (2.1) by using two main steps;
a combination step and an adaptation step. In the combination step, every
agent combines linearly the shared iterates over the network from agents in its
neighborhood, while in the adaptation step an iterative optimization algorithm
is run by every agent. We adopt in this work the diffusion method due to its
stability and superior adaptation performance. Diffusion techniques have shown
better performance in adaptive situations where it is essential to track drifts in
the underlying models through constant step-size adaptation [7], [8]. The two
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steps of combination and adaptation under the diffusion technique are given as
follows 

Combination Step:

ψk,i−1 =
∑
l∈Nk

alkωl,i−1

Adaptation Step:

ωk,i = ψk,i−1 + µkdk(ψk,i−1)

(2.7)

where ωk,i ∈ RM is the global parameter, in which all agents over the network
must decide upon, ψk,i−1 combines linearly the previous iterates ωl,i−1 received
from the neighborhood of agent k and then ψk,i−1 is used to update the descent
direction optimization algorithm as given in the second line of (2.7), dδk(·) is the
descent direction, and µk is the learning rate or the step size. The coefficient alk
that appear in (2.7) represents the weight that agent k assigns to the received
iterate ωl,i−1 from agent l, and these weights are usually selected to satisfy the
following conditions [9–16],

alk ≥ 0,
N∑
l=1

alk = 1, and alk = 0 if l /∈ Nk, k = 1, 2, ..., N (2.8)

The entries {alk} can be collected into an N ×N matrix A1, such that the k-th
column of A1 consists of {alk, l = 1, 2, ..., N}.

The descent direction dk(·) may take different forms depending on the adopted
iterative optimization algorithm. There exists many descent directions in litera-
ture [17], [18]. Below are the most well known descent directions in the numerical
optimization field

dk,i−1 =


−[∇2Jk(ψk,i−1)]

−1∇Jk(ψk,i−1) for Newton’s method,

−Bk(ψk,i−1)∇Jk(ψk,i−1) for Quasi-Newton method,

−∇Jk(ψk,i−1) for gradient descent method,

−∇̂Jk(ψk,i−1) for stochastic gradient descent method.

(2.9)
Newton’s method is known to be the fastest to converge iterative optimization
algorithm, however it requires the computation of the inverse of the Hessian
matrix at every iteration which represents a burden for most of the distributed
agents. The Quasi-Newton method is an approximation technique for Newton’s
method and it can compute efficiently the inverse of the Hessian matrix by rely-
ing only on the gradient of the cost function [17], [18]. There are many different
versions of Quasi-Newton methods, but they are all based on approximating
the inverse of the Hessian [∇2J(ψk,i−1)]

−1 by another matrix B(ψk,i−1) which
may take different forms depending on the update formula such as the tech-
niques of Broyden-Fletcher-Goldfarb-Shanno (BFGS), Davidon-Fletcher-Powell
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(DFP), etc., [17], [18]. Even though quasi-Newton approximates well the New-
ton’s method, but it is still computationally demanding. Gradient descent (GD)
represents a good alternative to Newton’s methods when it is essential to reduce
the computational complexity at every iteration. However, in some applications,
the optimization problems entail thousands or millions of data samples which
makes the task of computing the gradient for the whole data set a challenging
one. Also, in online optimization algorithms there is a tendency to reduce the
computational complexity of gradient descent to gain in speed and achieve the
real time requirements. Problems of these type can be solved efficiently by ap-
proximating the gradient by stochastic gradient ∇̂J(ψk,i−1) as it is usually done
in mini-batch and stochastic gradient descent.

We propose in the next two chapters two different approaches to benefit from
the network topology and the data structure to improve the convergence rate of
learning over networks, which leads to reducing the communication overhead and
decreases the computational complexity at every distributed agent. However, be-
fore continuing with the proposed work in the following chapters, we summarize
the most prevalent methods for approximating the gradient as it is important for
the remaining parts of the thesis.

2.3 Learning over Networks: Approximation of

Gradient Descent

Equation (2.9) reveals that the descent directions require at least the computation
of the gradient of the cost function at every iteration. The cost function Jk(ψk,i−1)
and its gradient are usually expressed as a summation of loss function Qk(ψk,i−1)
and ∇Qk(ψk,i−1) as follows:

Jk(ψk,i−1) =
1

L

L−1∑
n=0

Qk(ψk,i−1, γk(n), hk(n)), hk ∈ Rm, γk(n) ∈ R. (2.10)

∇Jk(ψk,i−1) =
1

L

L−1∑
n=0

∇Qk(ψk,i−1, γk(n), hk(n)), hk ∈ Rm, γk(n) ∈ R, (2.11)

where hk(n), γk(n), and L represent the data set, the label/class of the data, and
the size of the data set, respectively.

The computation of the gradient becomes intractable and a challenging task,
when it comes to big data set, online learning, or agents with low computational
complexity. So it is proposed in the literature to approximate the computing of
the gradient at every iteration, and there exists many low complexity algorithms,

7



however, this comes at the expense of slow convergence rates, which ends up
in running the network for a long time and thus increases the communication
overhead. We will outline in the following section the different algorithms that
are widely used to approximate the gradient to deal with online learning and big-
data scenarios. Then in the next chapters, we will present our work to improve
the convergence speed of learning over single and multi-agent systems.

2.3.1 Mini-Batch and Stochastic Gradient Descent Algo-
rithms

Gradient descent or batch learning uses the whole data set at every iteration to
learn the parameters that minimize the desired cost function as shown below [17],
[2] 

ψk,i−1 =
∑
l∈Nk

alkωl,i−1

ωk,i = ψk,i−1 − µ[
1

L

L−1∑
n=0

∇Qk(ψk,i−1, γk(n), hk(n))].

(2.12)

Batch learning needs O(n) computations at every iteration (since we have to
calculate the ∇Q(ω) for all L samples of the data). When the size L of the
data set is large, it is impractical to use (2.12) since it is costly to evaluate
the gradient over the whole data set. Different algorithms are proposed in the
literature to approximate the gradient computation at every iteration by ∇̂Jk(·).
The approximation is based on selecting a subset of the data samples at every
iteration to compute the gradient of the cost function. For instance, mini-batch
gradient descent approximates (2.12) by uniformly selecting at each iteration a
subset B of the L training data samples {γk(n), hk(n)} [19], [20]. The mini-batch
GD is given by

ψk,i−1 =
∑
l∈Nk

alkωl,i−1

ωk,i = ψk,i−1 − µ∇̂Jk(ψk,i−1, γk(b), hk(b))

ωk,i = ψk,i−1 − µ[
1

B

B−1∑
b=0

∇Qk(ψk,i−1, γk(b), hk(b))]

(2.13)

where B is the mini-batch size and B < L. The B samples can be selected in
various ways as follows

• Uniform sampling with replacement: In this case, the indices of the B
samples are selected uniformly from the set of indices {0, 1, ..., L − 1} so
that, for each integer i in this set, J(b = i) = 1

L
.
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• Random sampling: The indices of the B samples are selected here according
to the following distribution:

P (b = i) = pi, i ∈ {0, 1, ..., L− 1} (2.14)

where pi represents the occurrence probability of the samples in the data
set.

• Data streaming: The B training samples are chosen as the most recent B
samples in a streaming implementation. Note that, the sampling method
doesn’t affect the complexity of the algorithm.

SGD is an another algorithm to approximate the GD by selecting at random
one pair (B = 1) of data samples {γk(n), hk(n)} at every iteration [21]. At
every iteration, the data sample {γk(n), hk(n)} can be chosen as presented in
the aforementioned methods, or the N samples in the data set can be randomly
reshuffled and then the data are selected from the reshuffled set sequentially in
an increasing order.

It is useful to mention that the approximation of the gradient introduces a
gradient noise, which represents the difference between the full gradient ∇Jk(·)
and the approximated gradient ∇̂Jk(·) and it is defined as follows

sδk,i(ψk,i−1) = ∇̂Jk(ψk,i−1)−∇Jk(ψk,i−1), (2.15)

The mini-batch and stochastic gradient descent represent an appealing solu-
tion to approximate the GD algorithm, however, they need a lot of iterations to
converge. Many techniques are proposed in the literature to improve the speed
and performance of mini-batch and SGD algorithms based on either adapting
the learning rate, adapting the gradient or adapting both the learning rate and
the gradient. Among these enhanced techniques are the momentum [22], Nes-
terov accelerated gradient (NAG) [23], Adagrad [24], Adadelta [25], Adam [26],
Nadam [27] and AMSGrad [28].
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Chapter 3

Optimization and Learning over
Distributed Agents with
Heterogeneous Computational
Capabilities

Distributed optimization is a key enabler for collaborative learning in intelligent
networks in which the edge devices only have access to their local data streams.
It provides a scalable solution to the distributed inference problem in scenarios
where the communication between nodes is costly and data centralization raises
privacy and computational concerns [29–35]. Decentralized learning can over-
come the challenges of privacy, communication overhead, and the computational
burden at centralized agents by processing the information locally at distributed
agents. In this context, each agent senses data, processes it and shares some
learning parameters over the network. Every agent runs an iterative optimiza-
tion algorithm to minimize a certain cost function and sends its local updates to
other agents over the network.

Learning over networks induces many degrees of freedom and there are many
factors that can improve or degrade the distributed learning performance. For
instance, the following design options have an imperative impact on the per-
formance of distributed learning algorithms: the optimization algorithm that is
being run by every agent, the distributed learning strategy, the selection of the
weights over the edges of the network, the synchronous/asynchronous reception of
shared parameters over the network [36–38], the topology of the network [39], [2]
(strongly connected, weakly connected, etc.), the link failures [40], the exchange
of noisy information [41–43], the malicious behaviour [44], etc. The weights over
the edges of the network play an important role in improving the minimization
of the cost function of every agent and they are chosen according to different
rules like the metropolis [9], [10], Hasting [11], [12] relative degree [13], Lapla-
cian [14–16], etc.
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There exist many open problems that have to be addressed in learning over
networks. In this part of the thesis, we propose to study two main points; learning
over heterogeneous networks, and distributed learning under summary of data.
In the first point, we mean by the heterogeneous learning when the distributed
agents have different computational capabilities. The heterogeneity of computa-
tional capabilities implies that a subset of the agents may run computationally-
intensive learning algorithms like Newton’s method or full gradient descent, while
the other agents can only run lower-complexity algorithms like stochastic gradient
descent. This leads to opportunities for designing hybrid distributed optimiza-
tion algorithms that rely on cooperation among the network agents in order to
enhance overall performance, improve the rate of convergence, and reduce the
communication overhead. On the other side, we mean by the distributed learn-
ing under summarized data, is to approximate the data intelligently such that it
can help in reducing the computational complexity of the gradient descent algo-
rithm locally for every agent. The remaining parts of this chapter present our
work in learning over heterogeneous networks, while the next chapter presents
our work about the approximation of the gradient descent algorithm and the
learning under summarized data samples.

3.1 Motivation

Most prior literature focuses on distributed optimization in homogeneous net-
works where all agents have similar computational capabilities and apply the same
learning algorithm. Having similar computational capabilities means that the
distributed agents should run the same iterative optimization algorithm. For in-
stance, the methods of incremental [2], consensus [2], [3], diffusion [2], [4], [5], en-
larged cooperation [2], spatio-temporal [6], etc., are among the distributed strate-
gies that are proposed in the literature where all agents are assumed to have ho-
mogeneous computational capabilities. However, real network deployments have
much richer structure and may comprise agents with various energy constraints,
hardware complexities and different computational power [45], [46], [47], [48]. In
this work, we study learning over networks when the distributed agents have
different or heterogeneous computational capabilities and can run different itera-
tive optimization algorithms while cooperating among each other. For instance, a
subset of the capable agents can run the Newton’s methods, full gradient descent,
etc., while the other subset might only be able to run stochastic gradient descent
(SGD) due to their limited computational capabilities.

There exist many applications for optimizing learning over multiple agents
with heterogeneous computational capabilities. For instance, in wireless cellular
networks with cooperative and distributed learning, some mobile phones may
have more computational power than others, and base stations may serve as edge
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computing nodes with much higher capabilities than mobile phones [33], [49], [50],
[51]. In wireless sensor networks (WSN), sensor devices normally have varying
levels of computational, energy, and storage resources, which restricts their ability
to run different classes of distributed learning algorithms [52], [53], [54], [55], [56].
Mixed models of hybrid optimization algorithms can also find application use
cases in distributed power systems, computer networks, industrial control sys-
tems, etc.

The main contribution in this part of the thesis is in proposing a hybrid dis-
tributed optimization approach for learning over networks with heterogeneous
agents and in proving theoretically its stability. The theoretical and simulation
results show that the mean-error process, the mean-square error, and the fourth
order moment of the error process ∥ωo−ωk,i∥ converge to a stationary point and
attain a stable solution. This work shows that the cooperation among agents
that can run fast algorithms like Newton’s methods and slow ones like SGD can
improve the rate of convergence and performance of incapable agents. Improving
the rate of convergence and performance for agents with limited computational
capabilities leads to reducing the local power consumption, decreasing the com-
munication overhead over the network and saving financial costs resulting from
running the network for a long time.

3.2 Problem Formulation

In this work, we assume a network of N interacting agents with different com-
putational capabilities, which allows the distributed agents to run heterogeneous
optimization algorithms. The individual cost functions are denoted by Jk(ω).
Different algorithms might be run over the network and we define a parameter δ
to distinguish among them as follows

δ =



NM for agents with high computational capabilities

and run the Newton’s method,

QN for agents with high computational capabilities

and run the Quasi-Newton method,

GD for agents with high computational capabilities

and run the gradient descent method,

SGD for agents with low computational capabilities

and run the stochastic gradient descent method.

(3.1)

Note that, we only focus on Newton’s, Quasi-Newton, gradient descent, and
SGD methods since these are the widely used techniques in iterative optimization
algorithms.

As stated in Section 2.2, we adopt the diffusion as a distributed learning
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strategy for its stability and superior adaptation performance. We repeat below
the equation of the diffusion method that was given in (2.7), but we modify it
to take into consideration the heterogeneous algorithms that are being run by
dispersed agents. We rewrite (2.7)

ψk,i−1 =
∑
l∈Nk

alkωl,i−1,

ωk,i = ψk,i−1 + µkd
δ
k(ψk,i−1)

(3.2)

where dδk(·) is the descent direction. We suggest the following definition for dδk(·)
to accommodate all possibilities of the descent directions that might be adopted
by the distributed agents.

dδk(ψk,i−1) = −Y δ
k,i−1{∇Jk(ψk,i−1) + sδk,i(ψk,i−1)} (3.3)

The matrix Y δ
k,i−1 ∈ RM×M and its value depends on the adopted iterative opti-

mization algorithm as shown below

Y δ
k,i−1 =


[∇2Jk,i−1(ψk,i−1)]

−1 when δ = NM,

Bk,i−1(ψk,i−1) when δ = QN,

IM when δ = GD,

IM when δ = SGD.

(3.4)

Computing the matrix Y δ
k,i−1 at the minimizer ωo, produces a matrix Y δ

k,o which
is defined as follows

Y δ
k,o =


[∇2Jk,i−1(ω

o)]−1 when δ = NM,

Bk,i−1(ω
o) when δ = QN,

IM when δ = GD,

IM when δ = SGD.

(3.5)

Note that sδk,i(ψk,i−1) is the gradient noise that was defined in (2.15), but we
modify it here to accommodate for the different optimization algorithms that are
being run over the network.

sδk,i(ψk,i−1) =


0, when δ = NM, QN, or GD,

∇̂Jk(ψk,i−1)−∇Jk(ψk,i−1),

when δ = SGD.

(3.6)

Using (3.3) we can write (3.2) as follows
ψk,i−1 =

∑
l∈Nk

alkωl,i−1,

ωk,i = ψk,i−1 − µkY
δ
k,i−1{∇Jk(ψk,i−1) + sδk,i(ψk,i−1)}

(3.7)
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Let ω̃k,i, and ψ̃k,i−1 be defined as follows

ω̃k,i = ωo − ωk,i (3.8)

ψ̃k,i−1 = ωo − ψk,i (3.9)

where ωo is the optimal minimizer of the global cost function given in (2.2). By
using the mean value theorem [57], it can be shown that ∇Jk(ψk,i−1) can be
written as

∇Jk(ψk,i−1) = −Hk,i−1ψ̃k,i−1 − bk (3.10)

where bk is the gradient of the cost function at the optimal value of the network
and it is given by

bk = −∇Jk(ωo) (3.11)

Hk,i−1 is defined to be

Hk,i−1 =

∫ 1

0

∇2Jk(ω
o − tψ̃k,i−1)dt (3.12)

From (2.4), (3.12) and since each individual Hessian matrix is at least non-
negative definite, we get

Hk,i−1 ≤ δcIM (3.13)

Moreover, we deduce from (2.6), and (3.12) that

Hko(ω) ≥ νIM > 0, Hk ≥ 0, k ̸= ko (3.14)

Subtracting ωo from both sides of (3.7) and using (3.8), (3.9) and (3.10), then
(3.7) can be rewritten as

ψ̃k,i−1 =
∑
l∈Nk

alkω̃l,i−1,

ω̃k,i = ψ̃k,i−1 − µkY
δ
k,i−1Hk,i−1ψ̃k,i−1 − µkY

δ
k,i−1bk + µkY

δ
k,i−1s

δ
k,i(ψk,i−1)

(3.15)
To assess the evolution of the error dynamics across the entire network, equations
(3.15) of all agents can be collected and written into a network-error recursion
formula as follows

ω̃i = Bi−1ω̃i−1 +Msi(ωi−1)−Mb (3.16)

where
ω̃i = col{ω̃1,i, ω̃2,i, ..., ω̃N,i} (3.17)

Bi−1 = (I −MH′
i−1)AT

1 (3.18)

I = IN ⊗ IM (3.19)

A1 = A1 ⊗ IM (3.20)
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where A1 is a left stochastic matrix that includes the weights {alk} over the edges
of the network, and the term ⊗ is the Kronecker product. Note that the weights
αk that are used in (2.2) are chosen to be

αk = µkpk (3.21)

where pk represents the k-th entry of the Perron eigenvector of A1 (A1p = p, 1Tp =
1).

M = diag{µ1IM , µ2IM , ..., µNIM} (3.22)

si(ωi−1) = col{Y δ
k,i−1s

δ
1,i(ψ1,i−1), ..., Y

δ
k,i−1s

δ
N,i(ψN,i−1)} (3.23)

b = col{Y δ
1,ob1, Y

δ
2,ob2, ..., Y

δ
N,obN} (3.24)

H′
i−1 = diag{H ′δ

1,i−1,H
′δ
2,i−1, ...,H

′δ
N,i−1} (3.25)

H ′δ
k,i−1 = Y δ

k,i−1Hk,i−1 (3.26)

According to (3.1), different forms can be taken by dδk(ψk,i−1) and Y δ
k,i−1. In

addition, we state the lower and upper bounds of Y δ
k,i−1, which will be useful in

the remaining parts of this thesis.

3.2.1 Distributed Agents under Newton’s Method

When a subset of the agents runs the Newton’s method, then the descent direction
dδ=NM
k (ψk,i−1) in (3.2) becomes

dδ=NM
k (ψk,i−1) = −Y δ=NM

k,i−1 ∇Jk,i−1(·) (3.27)

where sδ=NM
k,i (ψk,i−1) is equal to zero, and Y δ=NM

k,i−1 in (3.7) is given in this case by

Y δ=NM
k,i−1 = [∇2Jk,i−1(ψk,i−1)]

−1 (3.28)

and [∇2Jk,i−1(·)]−1 is the inverse of the Hessian matrix at every iteration. The
induced 2-norm of Y δ=NM

k,i−1 can be upper bounded as follows

∥Y δ=NM
k,i−1 ∥ = ∥[∇2Jk,i−1(ψk,i−1)]

−1∥
a

≤ 2∥[∇2Jk(ω
o
k)]

−1∥ = L̃k

(3.29)

where L̃k is some positive number, and (a) follows since ∇2Jk(·) is assumed to
be positive definite at every iteration, then ∇2Jk(ω

o
k) is non-singular and thus

there is a radius r > 0 such that ∥[∇2Jk(ψk,i−1)]
−1∥ ≤ 2∥[∇2Jk(ω

o
k)]

−1∥ for all ωk

with ∥ψk,i−1 − ωo
k∥ ≤ r [17]. Note that if [∇2Jk(ψk,i−1)]

−1 is not positive definite
at every iteration, then it can be replaced by a related positive-definite matrix
like modified Hessian matrices to guarantee that condition [17], [18]. This means
that Y δ=NM

k,i−1 can be upper bounded as follows

Y δ=NM
k,i−1 ≤ c2IM (3.30)
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where c2 is some positive number. In addition, since ∇2Jk,i−1 ≤ δcIM , then

Y δ=NM
k,i−1 ≥ 1

δc
IM = c1IM (3.31)

Consequently

c1IM ≤ Y δ=NM
k,i−1 ≤ c2IM (3.32)

3.2.2 Distributed Agents under Quasi-Newton Method

Quasi-Newton method is an approximation technique for the Newton’s method
and it can compute efficiently the inverse of the Hessian matrix by relying only on
the gradient of the cost function [17], [18], [58]. There are many different versions
of Quasi-Newton methods, but they are all based on approximating the inverse
of the Hessian [∇2Jk(·)]−1 by another matrix Bk which may take different forms
depending on the update formula such as the techniques of Broyden-Fletcher-
Goldfarb-Shanno (BFGS), Davidon-Fletcher-Powell (DFP), etc. So, Y δ=QN

k,i−1 usu-
ally takes the following form under Quasi-Newton method

Y δ=QN
k,i−1 = Bk,i−1 (3.33)

Then the descent direction dδ=QN
k (ψk,i−1) in (3.2) becomes

dδ=QN
k (ψk,i−1) = −Bk,i−1∇Jk,i−1(·) (3.34)

Note that sδ=QN
k,i (ψk,i−1) is equal to zero, and since Bk is designed to be symmetric

and positive definite at every iteration, then Y δ=QN
k,i−1 can be bounded as follows

clqIM ≤ Y δ=QN
k,i−1 ≤ cuqIM (3.35)

3.2.3 Distributed Agents under Gradient Descent Method

When the gradient descent is being implemented by any of the distributed agents,
then the sδ=GD

k,i (ψk,i−1) is equal to zero, and the Y δ=GD
k,i−1 in (3.7) is given in this

case by

Y δ=GD
k,i−1 = IM (3.36)

The descent direction dδ=GD
k (ψk,i−1) in (3.2) becomes

dδ=GD
k (ψk,i−1) = −∇Jk,i−1(ψk,i−1) (3.37)

The induced 2-norm of Y δ=GD
k,i−1 is given by

∥Y δ=GD
k,i−1 ∥ = 1 (3.38)
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3.2.4 Distributed Agents under Stochastic Gradient De-
scent Method

Stochastic Gradient Descent (SGD) is an iterative optimization algorithm that
is used to approximate the gradient descent and it is considered a promising
solution for large datasets and online learning [59], however it can be slow to
converge [22], [24], [27], [28], [60]. The sδ=SG

k,i (ψk,i−1) is non-zero, and Y δ=SG
k,i−1 in

(3.7) is given in this case by

Y δ=SG
k,i−1 (ψk,i−1) = IM (3.39)

Then, the descent direction dδ=SG
k (ψk,i−1) in (3.2) for agents who implement the

SGD is given by

dδ=SG
k (ψk,i−1) = −[∇Jk(ψk,i−1) + sδ=SG

k,i (ψk,i−1)] (3.40)

The induced 2-norm of Y s
k,i−1 is given by

∥Y δ=SG
k,i−1 ∥ = 1 (3.41)

3.2.5 Unifying Bounds of Y δ
k,i−1

We capture in this section the various bounds of Y δ
k,i−1 by a single unifying descrip-

tion under different iterative optimization strategies. We conclude from (3.32),
(3.35), (3.36), and (3.39) that Y δ

k,i−1 is bounded as follows

c′1IM = min{1, c1, clq}IM ≤ Y δ
k,i−1 ≤ max{1, c2, cuq}IM = c′2IM (3.42)

In addition, we conclude from (3.29), (3.35), (3.38), and (3.41) that

∥Y δ
k,i−1∥ ≤ max{L̃k, cuq, 1} = L̃max (3.43)

There are still four important terms which include the matrix Y δ
k,i−1 and need to

be bounded. The first term is ∥I − H ′δ
k,i−1∥, while the remaining ones are the

first, second, and the fourth moments of Y δ
k,i−1s

δ
k,i(ψk,i−1). In Appendix A.3, we

need an upper bound for the term ∥I −H ′δ
k,i−1∥, and we present its proof here as
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follows
∥I −H ′δ

k,i−1∥
a
= ∥I − Y δ

k,i−1Hk,i−1∥
= ∥Y δ

k,i−1((Y
δ
k,i−1)

−1 −Hk,i−1)∥
b

≤ ∥Y δ
k,i−1∥∥((Y δ

k,i−1)
−1 −Hk,i−1)∥

c

≤ ∥Y δ
k,i−1∥∥(∇2Jk(ψk,i−1)−Hk,i−1)∥

d

≤ ∥Y δ
k,i−1∥ ∗ ∥

∫ 1

0

∇2Jk(ψk,i−1)−∇2Jk(ω
o − tψ̃k,i−1)dt∥

e

≤ Lmax ∗
∫ 1

0

∥∇2Jk(ψk,i−1)−∇2Jk(ω
o − tψ̃k,i−1)∥dt

f

≤ Lmax

∫ 1

0

K′
d∥ψk,i−1 − ωo + tψ̃k,i−1∥dt

= LmaxK′
d

∫ 1

0

∥ψ̃k,i−1(t− 1)∥dt

= LmaxK′
dC∥ψ̃k,i−1∥

= LmaxK′
dC∥

∑
l∈Nk

ω̃l,i−1∥

≤ LmaxK′
dCN∥ω̃i−1∥

(3.44)

where (a), (b), (c), (d), (e) and (f) follow from (3.26), triangular inequality,
(3.4), mean-value theorem, triangular inequality and Lipschitz condition, while
C is some positive constant.

Now, regarding the moments of Y δ
k,i−1s

δ
k,i(ψk,i−1), it is useful to recall that

the gradient noise is non-zero only when the distributed agents are applying the
SGD. The gradient noise in (3.6) plays an important role in the stability analysis
as will be shown in Section 3.3, and the following is an important assumption
about the gradient noise for agents who apply the SGD.

Assumption 2 Moments of Gradient Noise
The gradient noise process sδ=SG

k,i (ψk,i−1) has non-zero value over agents who

implement the SGD as given in (3.6). In addition, their matrix Y δ=SG
k,i−1 = IM as

given in (3.39). Then, the moments of the gradient noise in [2] remain unchanged
for the term Y δ=SG

k,i−1 s
δ=SG
k,i (ψk,i−1) and thus for any ω ∈ Fi−1 and for all k =

1, 2, ..., N , we have

E[Y δ=SG
k,i−1 s

δ=SG
k,i (ψk,i−1)|Fi−1] = 0 (3.45)

E[∥Y δ=SG
k,i−1 s

δ=SG
k,i (ψk,i−1)∥2|Fi−1] ≤ β2

k∥ψ̃k,i−1∥2 + σ2
s,k (3.46)

E[Y δ=SG
k,i−1 s

δ=SG
k,i (ψk,i−1)(s

δ=SG
l,i )T (ψk,i−1)|Fi−1] = 0, k ̸= l (3.47)

E[∥sδ=SG
k,i (ψk,i−1)∥4|Fi−1] ≤ β4

k∥ψ̃k,i−1∥4 + σ4
s,k (3.48)
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for some β2
k ≥ 0, σ2

s,k ≥ 0, and Fi−1 represents the set of the previous iterates
{ωi−1}.

As explained in [2], these conditions are automatically satisfied in many cir-
cumstances of interest in learning and adaptation. Condition (3.45) states that
the gradient noise is unbiased conditioned on the past iterates. Condition (3.46)
states that the second-order moment of the gradient noise is bounded by the
squared norm of the iterates. Condition (3.47) shows that the gradient noises
across the agents are uncorrelated.

3.2.6 Analysis of the Matrix Bi−1

Matrix Bi−1 plays an important role in the stability and the convergence analysis
of (3.16). In this section, we will present a decomposition of the matrix A1 since
it facilitates the proof of several upper bounds for different elements within the
equation of the matrix Bi−1. A1 is a left stochastic matrix and assumed to be
primitive. The Jordan canonical decomposition of the N ×N matrix A1 is given
by

A1 = VϵJV
−1
ϵ (3.49)

where J , Vϵ, and V
−1
ϵ have dimensions of N ×N and they are given by

J =

(
1 0
0 Jϵ

)
(3.50)

Vϵ =
(
p VR

)
(3.51)

V −1
ϵ =

(
1T

V T
L

)
(3.52)

where the matrices VL, Jϵ, VR have dimensions of (N − 1) × (N − 1). Since
V −1
ϵ Vϵ = IN , then it holds that,

1TVR = 0T

V T
L p = 0

V T
L VR = IN−1

(3.53)

Substituting (3.49) into (3.18), we get

Bi−1 = ((V −1
ϵ )T ⊗ IM){(JT ⊗ IM)−DT

i−1}(V T
ϵ ⊗ IM) (3.54)

where DT
i−1 is given by

DT
i−1 = ((Vϵ)

T ⊗ IM)MH′
i−1AT

1 ((V
−1
ϵ )T ⊗ IM)

=

(
DT

11,i−1 DT
21,i−1

DT
12,i−1 DT

22,i−1

)
(3.55)
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The given form of Bi−1 in (3.54) is the one that will be used for proving the
stability in the next section. However, it is still remaining in this section to find
the upper bounds of the terms ∥DT

11,i−1∥, ∥DT
12,i−1∥, ∥DT

21,i−1∥, and ∥DT
22,i−1∥ of

the matrix Bi−1. Substituting (3.51), (3.52) and (3.53) in (3.55), we get

D11,i−1 =
N∑
k=1

µkpkH
′T

kδ,i−1 (3.56)

D12,i−1 = (1T ⊗ IM)H′T
i−1M(VR ⊗ IM) (3.57)

D21,i−1 = (V T
L A1 ⊗ IM)H′T

i−1M(p⊗ IM) (3.58)

D22,i−1 = (V T
L A1 ⊗ IM)H′T

i−1M(VR ⊗ IM) (3.59)

Let µk be defined as
µk = τkµmax (3.60)

where τk is some positive scalar, then the matrix sequence D11,i−1 can be upper
bounded as follows

D11,i−1 =
N∑
k=1

µkpkY
δ
k,i−1H

δT
k,i−1

a

≤ pmaxτkmaxµmaxNc
′
2δcIM

= c′′2µmaxIM = O(µmax)

(3.61)

where (a) follows from (3.13) and (3.42), µmax and pmax represent the maximum
learning rate and the maximum entry of the vector p respectively. The lower
bound of D11,i−1 can be derived as follows

D11,i−1 =
N∑
k=1

µkpkY
δ
k,i−1H

δT
k,i−1

a

≥ c′1pkoτkoµmaxνIM

= c′′1µmaxIM = O(µmax)

(3.62)

where (a) follows from (3.14) and (3.32).
In the following sections, we need to know the induced 2-norm of ∥IM −DT

11,i−1∥
and this can be derived as follows. We can deduce from (3.61), and (3.62) that

c′′1µmaxIM ≤ D11,i−1 ≤ c′′2µmaxIM

−c′′2µmaxIM ≤ −D11,i−1 ≤ −c′′1µmaxIM

(1− c′′2µmax)IM ≤ IM −D11,i−1 ≤ (1− c′′1µmax)IM

∥IM −DT
11,i−1∥ ≤ max{1− c′′1µmax, 1− c′′2µmax}

= 1−O(µmax)

(3.63)
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∥D21,i−1∥ can be bounded as follows

∥D21,i−1∥ = ∥(V T
L A1 ⊗ IM)H′T

i−1M(p⊗ IM)∥
≤ ∥(V T

L A1 ⊗ IM)∥∥H′T
i−1∥∥M∥∥p⊗ IM∥

= ∥(V T
L A1 ⊗ IM)∥∥H′T

i−1∥∥M∥
√
Np2max

= α21∥H′T
i−1∥∥M∥

a

≤ α21∥M∥( max
1≤k≤N

∥H ′δ
k,i−1∥)

b

≤ α21∥M∥L̃maxδc

= α21∥M∥L̃maxδc

≤ σ21µmax = O(µmax)

(3.64)

where σ21 is some positive constant, (a) follows from the property of the induced
2-norm of block diagonal matrices, and (b) follows from (3.13), and (3.43). Sim-
ilarly, it can be shown that

∥D12,i−1∥ ≤ σ12µmax = O(µmax)

∥D22,i−1∥ ≤ σ22µmax = O(µmax) (3.65)

for some constants σ12 and σ22.

3.3 Stability Analysis

Using the results of the previous section, we examine the stability of the mean-
error process ∥E ω̃i

δ∥, the mean-square-error E∥ω̃i
δ∥2 and the fourth-order mo-

ment E∥ω̃i
δ∥4 of the distributed strategy in (3.16). It is important to highlight

that we need the stability analysis of the heterogeneous algorithms that are be-
ing run over the network to guarantee that fast algorithms don’t lead to diverge
the slow ones and vice versa. In this section, we study how well the distributed
strategies in (3.15) and (3.16) approach the optimal solution ωo of the global cost
in (2.2). This can be measured by the first, second and fourth order moments
of the error between the iterate ωk,i and the optimal point ωo. The following
theorems are proved in this work.

Theorem 1 (Network Mean-Square-Error Stability)
Assume that the aggregate cost Jglob(ω), the individual costs Jk(ω), and the net-
work topology satisfy the conditions in Assumption 1 and Assumption 2.
Then, the network with heterogeneous agents is mean-square stable for sufficiently
small step-sizes, specifically, it holds that
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lim sup
i→∞

E∥ω̃k,i∥2 = O(µmax), for k = 1, 2, ..., N (3.66)

for any µmax < µo, for some small enough µo.

Proof: See Appendix A.1.

Theorem 2 (Network Fourth-Order Moment Stability)
Assume that the aggregate cost Jglob(ω), the individual costs Jk(ω), and the net-
work topology satisfy the conditions in Assumption 1 and Assumption 2.
Then, the fourth-order moment, E∥ω̃k,i∥4, of the network with heterogeneous
agents is stable for sufficiently small step-sizes, specifically, it holds that

lim sup
i→∞

E∥ω̃k,i∥4 = O(µ2
max), for k = 1, 2, ..., N (3.67)

for any µmax < µo, for some small enough µo.

Proof: See Appendix A.2.

Theorem 3 (Network Mean-Error Stability)
Assume that the aggregate cost Jglob(ω), the individual costs Jk(ω), and the net-
work topology satisfy the conditions in Assumption 1 and Assumption 2.
Then, the first-order moment, ∥Eω̃k,i∥, of the network with heterogeneous agents
are stable for sufficiently small step-sizes, specifically, it holds that

lim sup
i→∞

∥Eω̃k,i∥ = O(µmax), for k = 1, 2, ..., N (3.68)

for any µmax < µo, for some small enough µo.

Proof: See Appendix A.3.

3.4 Simulation Results and Performance Anal-

ysis

In this section, we illustrate the performance of the optimization algorithms for
learning over distributed agents who own heterogeneous computational capabili-
ties and can run different iterative optimization algorithms. The performance of
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the proposed work is compared with existing algorithms that assume the homo-
geneous computational capabilities among the dispersed agents.

Figure 4.3 presents an example of a strongly connected network of N = 10
agents. Every agent is assumed to own a regularized logistic cost function Jk(ω)
that is given by

Jk(ωk) =
ρ

2
∥ωk∥2 +

1

L

L−1∑
n=0

ln(1 + e−γk(n)(hk(n))
Tωk) (3.69)

The gradient and the Hessian matrix of (3.69) are given in (3.70), and (3.71)
respectively.

∇Jk(ωk) = ρωk −
1

L

L−1∑
n=0

γk(n)hk(n)
e−γk(n)(hk(n))

Tωk

1 + e−γk(n)(hk(n))Tωk
(3.70)

∇2Jk(ωk) =ρIM +
1

L

L−1∑
n=0

hk(n)(hk(n))
T e−γk(n)hk(n)

Tωk

(1 + e−γk(n)hk(n)Tωk)2
(3.71)

where L, γk(n) ∈ R, hk(n) ∈ RM (M = 50) and ρ represent the size of the data-
set, the label, the data and the regularization parameter respectively. Agents
with low computational capabilities (when δ = SG) approximate the gradient in

(3.70) by ∇̂Jk(ωk) which is given below by

∇̂Jk(ωk) = ρωk − (γk(b)hk(b))
e−γk(b)h

T
k (b)ωk

1 + e−γk(b)h
T
k (b)ωk

(3.72)

where b is the index of the randomly selected pair of data samples {γk(n), hk(n)}
by the SGD at every iteration.

The objective of every agent is to minimize (3.69) in a distributed manner.
All agents are assumed to have the same cost function Jk(ω). We choose αk in
(3.21) to be equal one for all agents. We generate a random dataset {hk(n), γk(n)}
of size N = 10000, where hk(n) ∈ R50 and γk(n) ∈ ±1. The vectors {hk(n)} are
generated according to a multivariate normal distribution and the corresponding
{γk(n)} values are generated according to Bernoulli distributions with parameter
hk(n)

Tω·
k, where ω

·
k is some preset vector. The regularization parameter ρ is

chosen to be equal 0.1.
The step-size µk is assumed to be uniform (µk = µ), across all agents who

implement the SGD and set to be 10−3. For agents who implement the Newton’s
or the full gradient descent methods, the step-size µk is chosen by a backtracking
line search method based on Armijo condition [17], [18]. The weights of the
matrix A1 are chosen according to the averaging rule as follows

alk =

{
1

|Nk|
, if l ∈ Nk

0 , otherwise
(3.73)
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Figure 3.1: A strongly connected network with N = 10 agents who own hetero-
geneous computational capabilities. Subset of the agents can run the Newton’s
methods, or the GD, and the remaining ones can only implement the SGD.

where |Nk| denotes the degree of the agent k, which is equal to the size of its
neighborhood.

Two different metrics are used in this work to assess the performance of
the proposed algorithm. In the first metric, we will measure the mean-square-
deviation (MSD) at every agent k, as well as the MSD for the entire network, by
using the following formulas

MSDk = E∥ω̃k,i∥2 (3.74)

MSDavg =
1

N

N∑
k=1

MSDk (3.75)

In the second metric, we will measure the excess risk (ER) at every agent k, and
for the entire network. ER measures the average fluctuation of Jglob(ω) around
its minimum value Jglob(ωo). The ER at every agent k and for the entire network
are defined as follows

ERk = E{Jglob(ωk,i−1)− Jglob(ωo)} (3.76)

ERavg =
1

N

N∑
k=1

ERk (3.77)
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3.4.1 Impact on Agents with High Computational Capa-
bilities

The proposed distributed optimization for learning over networks has an imper-
ative impact on both capable and non-capable agents. The convergence rate
of agents with low computational capabilities will increase after its cooperation
with agents with high computational capabilities, however the capable agents
will undergo a decrease in their rate of convergence. To asses the impact of the
proposed work on the capable agents, we will study four different scenarios in this
section; the first one is when all agents over the network can implement the New-
ton’s method, the second one is when agents three and eight can implement the
Newton’s method while the agents in their neighborhood can only implement the
SGD, the third scenario is when all agents over the network can implement the
GD method, and the fourth case is when agents three and eight can implement the
GD method while the agents in their neighborhood can only implement the SGD.
Figure 3.2 presents the normalized curves for agents three and eight under the
aforementioned four scenarios. The curves are attained by averaging the trajec-
tories of agents three and eight over 200 repeated experiments. Each experiment
involves running the distributed strategy in (3.2) with ρ = 0.1. The unknown
vector ωk,i−1 is generated randomly at iteration i = 0, and its norm is normalized
to one. Note that the curves of Figure 3.2 are normalized and they are attained
by applying (3.75) for capable agents only, i.e., MSDavg = 1

2
(MSD3 +MSD8).

The following conclusions can be deduced from Figure 3.2.

• The learning curves over capable agents converge to a stationary point and
attain a stable solution, which proves that the cooperation with nodes who
implement the SGD does not affect the stability of Newton’s or GD descent
methods.

• The convergence rate over agents who can implement the Newton’s or GD
method is degraded after its cooperation with agents who are running the
SGD. When all agents run the Newton’s method, the true optimal point
is obtained with a few number of iterations and this is expected due to
the quadratic convergence of the Newton’s method. However, this rate
of convergence is being affected when the capable agents cooperate with
distributed nodes who implement the SGD. This degradation in the rate of
convergence is still acceptable as it contributes to improving the speed of
the SGD algorithm which is used by most nodes over the network.
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Figure 3.2: Impact of heterogeneous distributed optimization algorithms on the
capable agents.

3.4.2 Impact on Agents with Low Computational Capa-
bilities

In this section, we study the impact of learning among heterogeneous agents on
the nodes that own low computational capabilities. Three different scenarios
will be studied over the network of Figure 4.3; the first case is when two of the
agents (agents three and eight) can implement the Newton’s method while the
remaining ones are running the SGD, the second one is when two of the agents
(agents three and eight) can implement the GD method while the remaining ones
are running the SGD, and the third case is when all the agents over the network
are running the SGD method. Figures 3.3, 3.4 present the normalized curves for
non-capable agents (all agents except three and eight) under the aforementioned
three scenarios. Figure 3.3 presents the evolution of the ensemble-average learning
curvesMSDavg for the distributed learning method given in (3.2). The curves are
attained by averaging the trajectories MSDavg over 200 repeated experiments.
Each experiment involves running the distributed strategy in (3.2) with ρ = 0.1.
The unknown vector ωk,i−1 is generated randomly at iteration i = 0, and its
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norm is normalized to one. Note that the red and blue curves in Figure 3.3
correspond to the ensemble-average learning curves MSDavg over agents who
are implementing the SGD (all agents except three and eight). The following
conclusions can be deduced from Figure 3.3.

• Optimization and learning over networks with heterogeneous agents con-
verge to a stationary point and attain a stable solution. Not only this, but
the convergence rate is much faster than learning over networks with ho-
mogeneous agents who are running SGD. For instance, the hybrid learning
of the Newton’s method and the SGD requires 11 iterations before conver-
gence, however when all agents are running the SGD then 500 iterations
are required before convergence.

• The reduced number of iterations has an imperative impact on reducing
the communication overhead over the network and in providing an efficient
solution to reduce the transmitted power during the learning process.

Figure 3.4 presents the evolution of the ensemble-average learning curves ERavg

for the distributed learning method given in (3.2). The curves are attained by
averaging the trajectories ERavg over 200 repeated experiments. Each experiment
involves running the distributed strategy in (3.2). Note that the red and blue
curves correspond to the ensemble-average learning curves ERavg over agents
who are implementing the SGD (all agents except agents three and eight). The
following conclusions can be deduced from Figure 3.4.

• The cost functions of agents who implement the SGD attain their min-
imizers at faster rate of convergence under heterogeneous learning than
homogeneous learning.

• The performance of learning among heterogeneous agents is better than
the performance of learning among homogeneous agents who implement
the SGD. This is clear if we notice that the heterogeneous agents converge
faster than homogeneous agents do.

In conclusion, learning over networks with heterogeneous nodes can help
agents with limited computational capabilities to increase their rate of conver-
gence and to have a stable solution. The advantage of applying SGD lies in its low
computational complexity at every iteration, however, it needs more iterations to
converge in comparison with full gradient descent or Newton’s method. Hence,
allowing agents who implement SGD to cooperate with another ones who run
fast algorithms like Newton’s methods would lead in getting better performance
and faster rate of convergence for agents with limited computational capabili-
ties. Enhancing the rate of convergence at agents with SGD leads to decreasing
the number of iterations which in turn reduces the communication overhead of
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Figure 3.3: Evolution of the mean-square deviation learning curves over network
with agents of homogeneous and heterogeneous computational capabilities under
the diffusion learning strategy. Agents with limited computational capabilities
employ the same step-size of µ = 10−3.
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Figure 3.4: Evolution of the empirical risk learning curves over network with
agents of homogeneous and heterogeneous computational capabilities under the
diffusion learning strategy. Agents with limited computational capabilities em-
ploy the same step-size of µ = 10−3.

parameters over the network at every iteration. In addition, fast rates of con-
vergence with low computational complexity at every iteration reduce the power
consumption at these agents.

3.5 Conclusion

This part of the thesis considered the distributed optimization algorithms for
learning over dispersed agents who own heterogeneous computational capabilities.
We proposed an iterative and distributed implementation that allows subset of
the agents to run the SGD while the other capable agents can run the Newton’s
method, full gradient descent, etc. Theoretical and simulation results show that,
for small step-size parameter µ, the distributed learning algorithm is stable and
converges faster than the algorithms that work over agents with homogeneous
computational capabilities.
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Chapter 4

A Low Complexity
Approximation of Gradient
Descent for Learning over Single
and Multi-Agent Systems

4.1 Background and Literature Review

Learning over networks induces many degrees of freedom, and there are many fac-
tors that can improve the performance, increase the rate of convergence, reduce
the local power consumption, and enhance the communication overhead over the
network. In this part of the thesis, we provide a new approach for efficient approx-
imation of the gradient descent and study its impact on learning over single and
multi-agent systems. Most prior literature focuses on distributed algorithms that
assume that the dispersed agents apply the stochastic gradient descent (SGD)
or the mini-batch learning algorithms due to their low computational complexity
in comparison with gradient descent (GD) or Newton’s methods. For instance,
the methods of incremental [2], consensus [2], [3], diffusion [2], [4], [5] are among
the existing distributed strategies that assume that the agents are running the
SGD. However, these algorithms take time to converge and trade-off the per-
formance with low computational complexity at every iteration. This work aims
to approximate the GD and study its impact on the convergence rate and the
performance of learning algorithms over single and multi-agent systems.

The main contribution in this part is in proposing a low complexity approx-
imation method for the GD that has better convergence rate and performance
than existing methods. The theoretical and simulation results show that the pro-
posed method converges to a stationary point, improve the rate of convergence
and the performance of learning over single and multi-agent systems. Improving
the rate of convergence leads to reducing the local power consumption, decreasing
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the communication overhead and saving costs resulting from running the network
for a long time.

4.2 Proposed Approach for Approximating the

Gradient Descent Algorithm

Consider the optimization problem of minimizing over model parameters ω ∈ RM

the cost function P
(
ω, {h(i), γ(i)}Ni=1

)
, defined over a dataset of N data samples

h ∈ RM and their respective labels γ ∈ {0, 1, . . . , C − 1}. The cost function
P (ω) is assumed to be differentiable over ω and can be expressed as a sum of loss
function Q over individual data samples as

P (ω) =
1

N

N−1∑
i=0

Q (ω, h(i), γ(i)) (4.1)

Batch gradient descent (GD) [17] provides a solution to the minimization of P (ω)
by iteratively updating the parameter vector ω in the direction opposite to the
gradient vector ∇P (ω) at steps of µ

GD: ωn = ωn−1 − µ∇P (ωn−1) (4.2)

By linearity of the differentiation operator and (4.1), the computation of the
gradient ∇P (ω) in (4.2) comprises N computations of gradients ∇Q(ω) corre-
sponding to the N data samples. For large datasets, such a computation may be
cost prohibitive. Alternatively, mini-batch gradient descent updates parameter
vector ω per iteration n at the cost of B computations of gradients ∇Q(ω) over
a random selection Sn of B data samples of the dataset

Mini-GD: ωn = ωn−1 − µ∇P̂ (ωn−1)

P̂ (ω) =
1

B

∑
i∈Sn

Q (ω, h(i), γ(i))
(4.3)

Assuming that selection Sn may include each sample (h(i), γ(i)) of the dataset

with equal probability 1/N , the expected value E[P̂ (ω)] of P̂ (ω) is given by

ESn

[
P̂ (ω)

]
=

1

B

∑
i∈Sn

E(h(i),γ(i)) [Q (ω, h(i), γ(i))]

=
1

B

∑
i∈Sn

1

N

N−1∑
j=0

Q (ω, h(j), γ(j))

=
1

B
× |Sn| × P (ω) = P (ω)

(4.4)
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(4.4) implies that the mini-batch gradient descent algorithm in (4.3) computes

that update of parameter vector ω using a random approximation P̂ (ω) of the

cost function P (ω) per iteration n. A tradeoff exists between how well −∇P̂ (ω)
fits the steepest descent direction −∇P (ω) and how many gradients ∇Q(ω) are
computed per iteration.

Using the same insight as for mini-batch gradient descent, we propose an-
other approximation P̃ (ω) of P (ω) that reduces the computational burden of the
parameter vector update per iteration. The approximation is based on deter-
ministically mapping each data sample h(i) to a new value h(i) ∈ RM and then
computing the gradient descent direction over the new set of samples {h(i)}Ni=1.
Respective labels {γ(i)}Ni=1 are unaltered.

Prop-GD: ωn = ωn−1 − µ∇P (ωn−1)

P (ω) =
1

N

N−1∑
i=0

Q
(
ω, h(i), γ(i)

) (4.5)

The new samples {h(i)} are computed such that

• The sum of squares of distances {d(h(i), h(i))} between the original and
new samples is minimized

• The new samples {h(i)} attain at most K distinct values η1,γ(i), . . . , ηK,γ(i)

per class label γ(i)



h(i) = fγ(i)(h(i)) = arg min
x∈{η1,γ(i),...,ηK,γ(i)}

d(h(i), x)2

(
η1,γ(i), . . . , ηK,γ(i)

)
= arg min

(η1,...,ηK)

K∑
k=1

N−1∑
j=0,

h(j)=ηk,
γ(j)=γ(i)

d(h(j), ηk)
2 (4.6)

The summation terms of P (ω) in (4.5) can be reordered by the class labels
{γ(i)} and the values {ηk,γ(i)} attained by h(i) in the respective class

P (ω) =
1

N

C−1∑
c=0

K∑
k=1

∑
i=0,

h(i)=ηk,c,
γ(i)=c

Q
(
ω, h(i), γ(i)

)

=
1

N

C−1∑
c=0

K∑
k=1

Nk,c ×Q (ω, ηk,c, c) ,

Nk,c =
N−1∑
i=0

1{h(i) = ηk,c, γ(i) = c}

(4.7)
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Equation (4.7) shows that the mapping h(i) 7→ h(i) defined in (4.6) allows
to update the parameter vector ω in (4.5) per iteration n at the cost of K × C
computations of gradients∇Q(ω) over the new samples {h(i)} in comparison with
N × C computations of gradients ∇Q(ω) over the original data samples when
applying the gradient descent algorithm. The latter samples are computed using
K-means clustering of the original samples {h(i)} per class label γ(i). This can be
performed only once offline at linear order of complexity O(N) [61], [62], where
distance d(h(i), h(i)) in (4.6) is chosen as the Euclidean norm of the difference
between samples h(i) and h(i).

4.3 Convergence Analysis

Assume P (·) is ν-strongly convex and first-order differentiable in ω, then

P (ω2) ≥ P (ω1) +∇P (ω1)
T (ω2 − ω1) +

ν

2
||ω2 − ω1||2,∀ω1, ω2 (4.8)

Further assume that ∇P (·) is δ-Lipschitz [17], [2] in ω and ∇Q(·) δd-Lipschitz in
the data samples:

||∇P (ω2)−∇P (ω1)|| ≤ δ||ω2 − ω1||,∀ω1, ω2

||∇Q(ω, h2, γ)−∇Q(ω, h1, γ)|| ≤ δd||h2 − h1||,∀h1, h2
(4.9)

Define ω∗ as the global minimizer of P (ω) and let

ω̃n = ω∗ − ωn (4.10)

Denote by GEK
n the gradient error upon computing the gradient in (4.5) using

data samples {h(i)} as computed in (4.6) for a given K value

GEK
n = ∇P (ωn−1)−∇P (ωn−1) (4.11)

Using (4.10) and (4.11), the parameter vector update in (4.5) becomes

ω̃n = ω̃n−1 + µ∇P (ωn−1) + µGEK
n (4.12)

By Cauchy-Schwarz inequality we have

||ω̃n||2 ≤
(
||ω̃n−1 + µ∇P (ωn−1)||+ µ||GEK

n ||
)2

=
(√

g(ωn−1) + µ||GEK
n ||
)2 (4.13)

Using the results of the Appendix A.4, an upper bound of g(ωn−1) in (4.13) can
be obtained as follows

g(ωn−1) = ||ω̃n−1||2 + µ2||∇P (ωn−1)||2

+ 2µ∇P (ωn−1)
T ω̃n−1

≤ ||ω̃n−1||2 + µ2δ2||ω̃n−1||2 − 2µν||ω̃n−1||2

= (1− 2µν + µ2δ2)||ω̃n−1||2 = β||ω̃n−1||2

(4.14)
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On the other hand, using the triangular inequality and the Lipschitz condition of
∇Q(·) in (4.9), an upper bound of ||GEK

n || in (4.13) can be obtained as follows

||GEK
n || =

∣∣∣∣∣
∣∣∣∣∣ 1N

N−1∑
i=0

∇Q(ω, h(i), γ(i))−∇Q(ω, h(i), γ(i))

∣∣∣∣∣
∣∣∣∣∣

≤ 1

N

N−1∑
i=0

∣∣∣∣∇Q(ω, h(i), γ(i))−∇Q(ω, h(i), γ(i))
∣∣∣∣

≤ δd
N

N−1∑
i=0

d(h(i), h(i)) = δd.dav

(4.15)

Plugging (4.14) and (4.15) in (4.13), we obtain

||ω̃n|| ≤ β1/2||ω̃n−1||+ µδd.dav (4.16)

Taking the limit n→ ∞ on both sides of (4.16), we have

lim
n→∞

sup||ω̃n|| ≤
µδd.dav
1− β1/2

≤ µδd.dav
1− β1/2

∣∣∣∣
µ=0

=
δd.dav
ν

, (4.17)

where the equality in (4.17) follows from applying L’Hopital’s rule at µ = 0.
The upper bound in (4.17) shows that if h(i) = h(i) ∀i, then dav = 0 and

ωn −→
n→∞

ω∗. In this case, (4.5) becomes (4.2) and the convergence of batch

gradient descent is as expected for strongly convex function P (ω). Otherwise,
the selection of K in (4.6) determines the average distance dav between data
samples {h(i)} and their approximations {h(i)}, which in turn determines the
upper bound of the convergence radius.

4.4 Proposed Method under Distributed Learn-

ing

A network of R agents seek to collaboratively find minimizer ωo of a global cost
function P glob(ω) of the form

P glob(ω) =
R∑

r=1

Pr(ω) (4.18)

Each Pr(ω) has the same form as (4.1) and is function of dataset {hr(i), γr(i)}Nr
i=1

owned by agent r. We propose a diffusion-based method to solve for ωo. In
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particular, each agent r runs the following algorithm at every iteration

ψr,n−1 =
∑
s∈Nr

asrωs,n−1,

ωr,n = ψr,n−1 − µr∇P r(ψr,n−1)

= ψr,n−1 − µr
1

Nr

Nr−1∑
i=0

∇Q(ψr,n−1, hr(i), γr(i))

(4.19)

In the first step of (4.19), every agent r combines the iterates {ωs,n−1} received
by agent r from its neighborhood Nr. The weights {asr} are selected by agent r
such that [9–16]

asr ≥ 0,
R∑

s=1

asr = 1, and asr = 0 if s /∈ Nr (4.20)

In the second step of (4.19), every agent r performs an adaptation step based on
the computed value ψr,n−1. Each agent r computes the approximation {hr(i)}
of its original dataset {hr(i)} as in (4.6), then it uses it to update the direction
−∇P r(ψr,n−1) in the adaptation step. The direction can be computed efficiently
as illustrated in (4.7) using a reduced number of gradient computations ∇Q(ψr)
that is dependent on the choice of value K by agent r.

4.5 Simulation Results and Performance Anal-

ysis

Figure 4.3 presents an example of a strongly connected network of R = 10 agents.
Every agent r is assumed to own a regularized logistic cost function Jr(ωr) that
is given by

Jr(ωr) =
ρ

2
∥ωr∥2 +

1

N

N−1∑
i=0

ln(1 + e−γr(i)(hr(i))Tωr) (4.21)

The gradient of (4.21) is given by

∇Jr(ωr) = ρωr −
1

N

N−1∑
i=0

γr(i)hr(i)
e−γr(i)(hr(i))Tωr

1 + e−γr(i)(hr(i))Tωr
(4.22)

To assess the performance of the proposed algorithm, we measure the mean-
square-deviation (MSDr) at every agent r, as well as the MSDavg for the entire
network as follows

MSDavg =
1

R

R∑
r=1

MSDr =
1

R

R∑
r=1

E∥ω̃r,n∥2 (4.23)
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In addition, we evaluate the average fluctuation of Jglob(ω) around its minimum
value Jglob(ωo) by computing the excess risk (ERr) at every agent r, and for the
entire network (ERavg) as follows.

ERr = E{Jglob(ωr,n−1)− Jglob(ωo)} (4.24)

ERavg =
1

R

R∑
r=1

ERr (4.25)

We generate a random dataset {hr(i), γr(i)} of size N = 10000, where hr(i) ∈ R50

and γr(i) ∈ ±1. The vectors {hr(i)} are generated according to a multivariate
normal distribution and the corresponding {γr(i)} values are generated accord-
ing to Bernoulli distributions with parameter hr(i)

Tω·
r, where ω

·
r is some preset

vector. We set ρ = 0.1, and µr = 0.01 for the mini-batch algorithm, while µr is
chosen according to Armijo backtracking line search method [17], [18] for the GD
and the proposed algorithms. The weights asr are chosen such that asr =

1
|Nr| if

l ∈ Nr and zero otherwise. The results of the GD, mini-batch (B = 20) and the
proposed (with K = 10, 30, 60) learning methods over single and multi-agent
systems are presented in Figures 4.1, 4.2, 4.4 and 4.5. The curves are attained
by averaging the trajectories of (4.23), (4.24), and (4.25) over 200 repeated ex-
periments. We make the following observations.

• The proposed method converges to a stationary point and attain a stable
solution over single and multi-agent systems as shown in Figures 4.1, 4.2,
4.4 and 4.5.

• Figures 4.1 and 4.4 show that the batch gradient takes around 10 iterations
to converge and it needs N = 10000 computations of the gradient per
iteration, so it requires in total around 10 ∗ 10000 computations of the
gradient∇Q. However, the proposed algorithm (withK = 10) takes around
20 iterations to converge, and it needs 2 ∗ K = 20 computations of the
gradient at every iteration, thus it needs around 20 ∗ 20 computation of the
gradient ∇Q. This decrease in the required number of iterations has an
imperative impact on reducing the local power consumption.

• When the mini-batch algorithm uses B = K, then it has the same compu-
tational complexity at every iteration as the proposed method, however the
convergence rate and the steady-state behaviour of the proposed method
outperform the mini-batch algorithm as shown in Figures 4.2 and 4.5. The
reduced number of iterations in the proposed algorithm in comparison with
the mini-Batch method has an imperative impact in reducing the commu-
nication overhead over the network and in providing an efficient solution to
reduce the transmitted power during the learning process. Note that when
K = 10, then we have 10 clusters in each label of the dataset, and that is
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Figure 4.1: Comparison among the mean-square-deviation MSDr curves over
single agent (agent r=1 in Figure 4.3) of the GD, mini-batch (B = 20) and the
proposed method (K = 10, 30, 60).

why we need a mini-batch with B = 20 to have a fair comparison with the
proposed algorithm with K = 10.

4.6 Conclusion

In this part of the thesis, we proposed an approximation method for computing
the gradient descent algorithm, and a theoretical convergence analysis is pre-
sented. The impact of the proposed method is evaluated over single and multi-
agent systems and it outperforms existing algorithms in terms of convergence
rate and performance.
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Figure 4.2: Comparison among the excess risk ERr curves over single agent (agent
r=1 in Figure 4.3) of the GD, mini-batch (B = 20) and the proposed method
(K = 10, 30, 60).

Figure 4.3: A strongly connected network with N = 10 agents.
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Figure 4.4: Evolution of the mean-square deviation learning curves over network
with R = 10 agents under the diffusion learning strategy.

Figure 4.5: Evolution of the excess risks learning curves over network with R = 10
agents under the diffusion learning strategy.
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Chapter 5

A Clustering-Based Approach for
Designing Low Complexity FIR
Filters

This is the second part of the thesis, in which we provide a new method of
designing fast filtering algorithms for big data and low power DSP applications.

5.1 Background and Literature Review

Low power requirements [63–65], real-time constraints [66], and big data applica-
tions [67–74] pose significant challenges for the design of efficient signal processing
algorithms. The proliferation of smartphones, massive antennas, and dense small
cells generates large data sets that need to be processed at edge computing nodes
with low delay and high efficiency. The online processing and digital filtering of
such data volumes require the design of novel algorithms that are optimized for
high speed and low energy consumption [1]. In addition, wearable physiological
sensing devices generate large data sets that need to be processed and filtered in
real-time for various mobile health applications. For instance, for mobile epileptic
seizure prediction systems, electroencephalogram (EEG) recordings of brain sig-
nals from a 20-channel headset generate about 37 Mbytes per hour for a sample
size of 2 bytes and a sampling frequency of 256 Hz [75].

This work proposes a new method for digital filter design that minimizes the
computational complexity and the latency of filtering by clustering the filter co-
efficients so that the frequency response specifications are met. Low latency is
achieved by reducing the filter’s processing time in order to realize real-time oper-
ation [76]. The computational complexity is measured in terms of the number of
multiplications and additions, where a reduction of the number of multiplications
shall improve the speed and reduce the power consumption.

Finite impulse response (FIR) filters are desirable since they are stable, have
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no limit cycles and have linear phase for (anti-)symmetric coefficients [77]. How-
ever, they require more coefficients to achieve a given filter response character-
istic, which increases the computational complexity. Reducing the FIR length
decreases the complexity but degrades the performance. Hence, the objective of
this paper is to design FIR filters that have low computational complexity and
maintain the desired frequency response.

Different methods are proposed for FIR filter design. For instance, the fre-
quency sampling approach [78], [79], [77] specifies the desired frequency response
at a set of equally spaced frequencies, which is then converted to the FIR filter
unit sample response. On the other hand, windowing methods [77], [80] specify
the frequency response and then truncate the corresponding unit sample response
using windows of Hamming, Kaiser, etc. Another method is the Parks-McClellan
(PM) approach which finds the optimal filter coefficients by minimizing the max-
imum absolute value of the error function between the desired and actual filter
response [81], [82], [83], [84], [85]. Evolutionary optimization methods have been
introduced recently in [86], [87], [88], [89] and are characterized by their ability
to provide global optimization. Moreover, techniques for sparse filter design are
proposed in [1], [90], [91] and aim to find FIR filters with sparse coefficients as
zero-valued coefficients eliminate multiplications and reduce the complexity.

5.2 Proposed Approach

Consider an FIR filter of (anti-)symmetric coefficients {h(n), 0 ≤ n ≤ N − 1}.
Given an input {x(n)}, the output of the filter is given by the convolution of
{h(n)} and {x(n)}:

y(n) =

N/2−1∑
l=0

h(l)(x(n− l) + x(n− (N − 1− l))) (5.1)

Equation (5.1) implies each output sample y(n) is computed by N/2 multipli-
cations and N − 1 additions, where the N/2 multiplications in (5.1) is achieved
by exploiting the fact that filter coefficients {h(l), 0 ≤ l ≤ N − 1} hold only
N/2 distinct values. We now generalize this observation. Consider an even
symmetric FIR filter whose coefficients attain C distinct values {µ0, . . . , µC−1},
1 ≤ C ≤ N/2. In particular, defining Ik as the subset of indices {0, . . . , N/2−1}
such that ∀l ∈ Ik, h(l) = h(N − 1− l) = µk, equation (5.1) becomes

y(n) =
C−1∑
k=0

µk

N/2−1∑
l=0,l∈Ik

(x(n− l) + x(n− (N − 1− l))) (5.2)

Equation (5.2) implies that each output sample y(n) can be computed by C
multiplications and N − 1 additions. In the special case where all coefficients
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{h(0), . . . , h(N/2 − 1)} are distinct, C = N/2 and (5.2) becomes (5.1). Other-
wise, C < N/2 and the number of multiplications to compute an output sample
y(n) in (5.2) is reduced by a factor of C/(N/2) compared to (5.1). The above ob-
servation illustrates that the computational complexity of FIR filtering depends
on the number of distinct values within the filter coefficients. Consider an even
symmetric FIR filter of coefficients {h(n)}. We seek to find the best approxima-
tion {hc(n)} of {h(n)} such that {hc(n)} is of same length N , maintains even
symmetry and has at most C distinct values, 1 ≤ C ≤ N/2. Denote by {e(n)}
the error signal of the output of filters {h(n)} and {hc(n)} for some input signal
{x(n)}, we can write

e(n) =
N−1∑
k=0

(h(l)− hc(l))x(n− l) (5.3)

We define the best approximation {hc(n)} of {h(n)} as the one that minimizes
the energy of the error signal {e(n)} for all input energy signals {x(n)}:

min
{hc(n)}

∞∑
n=−∞

|e(n)|2 ≡ min
{hc(n)}

∫ π

−π

∣∣E(ejω)∣∣2 dω (5.4)

where {hc(n)} is the set of {hc(0), . . . , hc(N − 1)} and E(ejω) is the frequency
response of e(n). Let H(ejω), Hc(e

jω) and X(ejω) be the frequency responses
of {h(n)}, {hc(n)} and {x(n)} respectively. Incorporating (5.3) into (5.4) and
applying the convolution theorem, (5.4) becomes

min
{hc(0),...,hc(N−1)}

∫ π

−π

∣∣H(ejω)−Hc(e
jω)
∣∣2 ∣∣X(ejω)

∣∣2 dω
=

∫ π

−π

∣∣∣∣∣
N−1∑
n=0

(h(n)− hc(n)) e
−jωn

∣∣∣∣∣
2 ∣∣X(ejω)

∣∣2 dω
≤ N

(
N−1∑
n=0

(h(n)− hc(n))
2

)∫ π

−π

∣∣X(ejω)
∣∣2 dω

(5.5)

The last line of (5.5) follows from the Cauchy-Schwarz inequality and the fact
|e−jωn| = 1 ∀n. Equation (5.5) implies that the energy of the error signal {e(n)} of
the outputs of the two filters {h(n)} and {hc(n)} can be suppressed by minimizing
the sum square difference of the coefficients of the two filters:

min
{hc(0),...,hc(N−1)}

N−1∑
n=0

(h(n)− hc(n))
2 (5.6)

5.2.1 Even Symmetry of Minimizer {h∗c(0), . . . , h∗c(N − 1)}
The optimization problem in (5.6) admits the following constraints:
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• Optimization variables {hc(n)} can attain at most C distinct values, 1 ≤
C ≤ N/2.

• Variables {hc(n)} are even symmetric so that minimizer {h∗c(n)} has a linear
phase response

hc(n) = hc(N − 1− n), 0 ≤ n ≤ N − 1 (5.7)

We now show that the optimization problem in (5.6) can be relaxed by dismissing
the equality constraints in (5.7) without compromising the even symmetry of
minimizer {h∗c(n)}. To prove this, we first define {h∗∗c (0), . . . , h∗∗c (N/2− 1)} as

{h∗∗c (n)}N/2−1
n=0 = arg min

hc(0),...,hc(N/2−1)

N/2−1∑
n=0

(h(n)− hc(n))
2 (5.8)

By the even symmetry of {h(n)}, we also have

{h∗∗c (n)}N/2−1
n=0 = arg min

{hc(n)}N/2

N/2−1∑
n=0

(h(N − 1− n)− hc(n))
2 (5.9)

where {hc(n)}N/2 is the set of {hc(0), . . . , hc(N/2− 1)}. We plug the minimizer
{h∗c(n)} into the objective function (5.6):

N/2−1∑
n=0

(h(n)− h∗c(n))
2 +

N−1∑
n=N/2

(h(n)− h∗c(n))
2

a

≥
N/2−1∑
n=0

(h(n)− h∗∗c (n))2 +

N/2−1∑
n=0

(h(N − 1− n)− h∗∗c (n))2

b

≥
N−1∑
n=0

(h(n)− h∗c(n))
2

(5.10)

where (a) and (b) follow from a change of variables, (5.8)- (5.9) and the definition
of {h∗c(n)}. Since the objective function in (5.6) is strongly convex, minimizer
{h∗c(n)} is unique. Therefore, by (5.10)

h∗c(n) = h∗∗c (n), 0 ≤ n ≤ N/2− 1

h∗c(n) = h∗∗c (N − 1− n), N/2 ≤ n ≤ N − 1
(5.11)

which implies {h∗c(n)} is even symmetric. This also implies that the equality
constraints on {hc(n)} in (5.6) may be dropped, so (5.6) becomes a problem of
clustering the original filter coefficients {h(n)} into at most C distinct values.
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5.2.2 K-means Based Clustering Solution

The optimization problem in (5.6) can now be solved iteratively using Lloyd’s
K-means algorithm [92], [93], [94]:

• Select randomly C filter coefficients of set {h(n), 0 ≤ n ≤ N − 1} and
denote them by {µ0, . . . , µC−1}.

• Construct set Ik = {n|0 ≤ n ≤ N − 1, |h(n)− µk| ≤ |h(n)− µk′ | ∀ k′ ̸= k}
for 0 ≤ k ≤ C − 1.

• Reinitialize µk = 1
|Ik|
∑

n∈Ik h(n) for 0 ≤ k ≤ C − 1, where |Ik| is the
cardinality of set Ik.

• Repeat the last two steps until coefficients’ convergence.

• The clustered FIR filter solution of (5.6) is given by

h∗c(n) =
C−1∑
k=0

µk × 1{n ∈ Ik}, 0 ≤ n ≤ N − 1 (5.12)

where 1{·} is the indicator function.

5.2.3 Generalized Clustered FIR Filter Approximation

Equation (5.2) shows that the number of multiplications in an FIR filtering
operation increases linearly with the number of distinct values of the filter co-
efficients, or equivalently the number of centroids {µ0, . . . , µC−1}. On the other
hand, (5.6) shows that the sum square difference between filter {h(n)} and its
approximation {hc(n)} decreases with the number of clusters, where it drops from
(N−1)×var ({h(n)}) for C = 1 to zero for C = N/2. Therefore, there is a trade-
off in selecting the number of clusters between the computational complexity of
the filtering operation and the quality of the filter approximation, where the lat-
ter should always meet the frequency response specifications. We now show how
to improve the filter approximation at a minimal increase in the computational
complexity. Note that (5.12) has the form

h∗c(n) =
C−1∑
k=0

bn,kµk, 0 ≤ n ≤ N − 1 (5.13)

i.e., each coefficient h∗c(n) in the clustered filter approximation is a weighted sum
of the centroids {µ0, . . . , µC−1} solution of (5.6). Given the centroids, our objec-
tive is to optimize the selection of weights {bn,k} in (5.13) so that {h∗c(n)} better
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approximates {h(n)} and maintains the filtering operation computationally effi-
cient. Plugging (5.13) into (5.1) we have

yc(n) =
C−1∑
k=0

µk

N/2−1∑
l=0

bl,k [x(n− l) + x(n− (N − 1− l))] (5.14)

Note that weights {bn,k} in (5.13) become multiplicative terms in the filtering
operation of (5.14). We therefore impose the constraints

bn,k ∈ {0} ∪ {± 2z| z ∈ Z} ∀n, k (5.15)

where Z is the set of integers. Since multiplication by zero or unity is trivial and
multiplication by powers of two is a bitwise-shift O(1) operation, by (5.15) the
number of non-trivial multiplications in (5.14) is C as in (5.2). However, while
in (5.2) the number of additions is N − 1, in (5.14) this becomes

N − 1 +

N/2−1∑
l=0

[(
C−1∑
k=0

1{bl,k ̸= 0}

)
− 1

]
(5.16)

We therefore impose an additional constraint on weights {bn,k} in (5.13), namely
that filter coefficient h∗c(n) can be mapped to at most two cluster centroids

(
C−1∑
k=0

1{bl,k ̸= 0}

)
∈ {1, 2} ∀l (5.17)

Equations (5.16) and (5.17) imply that the number of additions in (5.14) is in the
range [N − 1, 3N/2− 1]. Since additions are much cheaper than multiplications,
the computational complexity of the filtering operation in (5.14) is therefore
comparable to that in (5.2) under constraints (5.15) and (5.17).

The optimal selection of {bn,k} in (5.13) seeks to minimize the sum square
difference between {h(n)} and {h∗c(n)}. Algorithm 1 shows how to optimally
map each filter coefficient h∗c(n) to either the closest centroid or the midpoint of
the two closest centroids. Note the similarity between (5.18) and (5.12) which
shows that general mapping (5.13) of h∗c(n) to {µk} virtually increases the number
of centroids from C to 2C − 1 to better approximate filter {h(n)}. Algorithm
1 can be easily extended to the case where {bn,k} are general powers of two as
in (5.15). Algorithm 1 can also be extended to the case where coefficients {h(n)}
are complex numbers.
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Algorithm 1

Input: {h(0), . . . , h(N − 1)} and C
Output: {h∗c(0), . . . , h∗c(N − 1)}
1: Solve (5.6) for centroids {µ0, . . . , µC−1} as in Section 5.2.2.
2: Sort {µ0, . . . , µC−1} into {µi0 , . . . , µiC−1

}
3: Let mk = (µik + µik+1

)/2, 0 ≤ k ≤ C − 2. Form set {µ̂0, . . . , µ̂2C−2} =
{µik} ∪ {mk}.

4: Construct set Îk = {n|0 ≤ n ≤ N − 1, |h(n) − µ̂k| ≤ |h(n) − µ̂k′ | ∀ k′ ̸= k}
for 0 ≤ k ≤ 2C − 2.

5: Return {h∗c(n)} where

h∗c(n) =
2C−2∑
k=0

µ̂k × 1{n ∈ Îk}, 0 ≤ n ≤ N − 1 (5.18)

5.3 Simulation Results and Performance Anal-

ysis

Figure 5.1 presents the magnitude response over normalized frequency for lowpass
(LPF) and highpass (HPF) filters designed using the proposed (with C=20),
Hamming window and Parks-McClellan (PM) methods. The LPFs have passband
cutoff frequency wp = 0.25, stopband cutoff frequency ws = 0.3 and filter length
N = 72, while HPFs have ws = 0.25, wp = 0.3 and N = 72. We make two
observations:

• Although the approximation filters are designed for the same set of spec-
ifications (wp, ws, N , C), they have a different frequency response. This
is because the clustering method seeks to meet a set of specifications only
indirectly by minimizing as in (5.4) the energy of the error signal of two
filter outputs, that of an original filter {h(n)} meeting the specifications
and an approximate filter {hc(n)}. Thus, for different {h(n)}, a different
solution for {hc(n)} is generated.

• The magnitude of the approximation of the PM filter closely matches that
of the original filter both in the passband and the stopband. This is only
true in the passband in the case of the Hamming window, where the gap in
the stopband grows for higher frequencies.

The second observation can be understood by inspecting the frequency response
of the HPF in Figure 5.1. As in the case of the LPF, a close match is observed in
the PM case. However, this is now also true in the Hamming window case for the
magnitude response in both the passband and the stopband. The justification for
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Table 5.1: Performance of PM, sparse, proposed and ideal filters in the stopband
and passband. LPF (ωp = 0.5, ωs = 0.55), HPF (ωp = 0.55, ωs = 0.5), N =62
coefficients, C=20 clusters (proposed) and Z=42 zeros (sparse [1]).

MSEs MSEp δsmax (dB) δp−p (dB)

LPF

Ideal 0 0 −∞ 0
PM 0.0919 0.0927 -77.1889 0.8396
Sparse 0.5514 0.1149 -50.5638 1.6131
Proposed 0.0924 0.0964 -69.3012 0.9921

HPF

Ideal 0 0 −∞ 0
PM 0.0919 0.0930 -77.2520 0.8416
Sparse 0.55 0.1120 -51.1201 1.6240
Proposed 0.1161 0.0893 -73.4245 1.0390

the clustering method performance in the Hamming window case in Figure 5.1
is that a Hamming window has a smooth differentiable form unlike a PM filter.
Thus, the smoothness form of the Hamming window is lost upon clustering, which
adds to the high frequency content of the filter magnitude response. In the case
of a lowpass Hamming window filter, the energy content of the filter response is
concentrated in the low frequency band, so the high frequency loss-of-smoothness
noise is non-negligible. For a highpass Hamming window filter, the energy content
is concentrated in the high frequency band and thus this noise becomes negligible.

In Figure 5.2a, the proposed method is compared against the original PM
filter for different number of clusters C. The figure shows that the clustering
method can be computationally very efficient as the response changes notably
only for very small C values (e.g., C = 5). This also implies that the clustering
method yields a reduction in the number of multiplications for a single filtering
operation by a factor of (C)/(N/2) = C/36 (for N = 72). For C = 10, over
70% computational savings can be achieved. This amount of reduction makes
the designed filter well-suited for low-end devices and for processing of big-data
signals.

We have also applied the proposed filter design to a large EEG dataset from
the Freiburg database [95], which includes around 200 GB of non-invasive data
for 21 patients. The signals were sampled at 256 Hz, with 16 bits per sample.
Using the proposed method with C = 13 clusters, the complexity is estimated
to be around 97 million multiplications per hour, which represents a significant
reduction when compared with 600 million multiplications per hour when using
the Parks McClellan filter (with N=72 coefficients for both filters).

Figure 5.2b shows the magnitude frequency response using the proposed
method based on an even symmetric PM filter (ωp = 0.5, ωs = 0.55, N = 62)
for number of distinct filter coefficients C1 = 20 and C2 = 13. Figure 5.2b shows
the magnitude response of two non-symmetric filters designed using the sparse
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filter of [1]. The number of zero-valued coefficients (Z1 = N − C1 = 42 and
Z2 = N − C2 = 49) is selected such that each filter using the proposed method
and the corresponding sparse filter have the same number of multiplications. Fig-
ure 5.2b shows that the proposed method provides a tighter transition band and
more equiripple stopband response compared to the sparse filter method for the
high computational complexity case. In addition, the proposed method main-
tains the equiripple response and achieves sharper cutoff in the transition band
and higher attenuation in the stopband for the low computational complexity
case. Moreover, the response using the sparse filter method significantly varies
for the two complexities compared to the proposed method. This shows that the
proposed method performs better compared to state-of-the-art methods for the
same computational saving.

Table 5.1 presents additional performance metrics for the various filter de-
sign methods including the mean squared errors MSEs, MSEp for the stopband
and passband, respectively, the maximum peak in the stopband (δsmax), and the
peak-to-peak deviation in the passband (δp−p). The MSEs are computed with
respect to an ideal filter.

5.4 Conclusion

In this part of the thesis, we presented a new digital filter design characterized by
low complexity, suitable for low-power and big data signal processing applications.
The design method incorporates K-means clustering and a mapping technique
of the filter coefficients. Simulation results show that the designed filter has
flat response in the passband, a narrow transition band, and high attenuation
in the stopband. The method also offers a better performance-computational
complexity trade-off compared to state-of-the-art digital filter design methods.
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Figure 5.1: Comparison of the frequency response of LPF (wp = 0.25, ws = 0.3,
N = 72) and HPF ( wp = 0.3, ws = 0.25, N = 72 ) using Hamming window,
Parks-McClellan and the proposed method with C = 20.
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Figure 5.2: (a) Effect of the number of clusters on the passband and stopband
gains. (b) Comparison between the proposed method and the sparse filter method
of [1] with N = 62, ωp = 0.5 and ωs = 0.55.
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Chapter 6

Dynamic Compression for Big
Biomedical Data

This is the final part of the thesis, where we present our work in the compression
of electroencephalogram (EEG) signals. The development of a neurologically-
oriented mobile health system involves significant challenges in terms of the
proper sensing and efficient transmission of EEG signals, and the faithful re-
construction of these signals at the receiving node. EEG compression has been
widely used to reduce storage requirements, improve the real time processing of
the sensed signals, and provide a better and timely feedback to the concerned
patients. The non-stationarity of the EEG signals and the large volumes of data
being continuously processed mandate the development of data reduction schemes
that provide a good trade-off between compression performance and the preser-
vation of the signal quality and integrity. To this end, we propose in this part
of the thesis a dynamic and effective compression approach for EEG data that
relies on a sequence of compression and decompression phases to optimize the
compression rate while maintaining a distortion level below a target threshold.
Simulation results using real EEG data segments show that even with stringent
quality requirements, a notable compression ratio can be attained with minimal
processing overhead.

6.1 Background and Literature Review

The technological developments in the design of wearable EEG headsets has per-
mitted the ambulatory monitoring of brain disorders [96]. In particular, the
advancements in the design of scalp electrodes has facilitated the accurate and
continuous sensing of the brain’s electrical activity while the development of
miniaturized capable, and frugal signal processing hardware has contributed to
the ubiquitous and quasi-real time processing of the sensed signal. This has paved
the way to the establishment of neurologically-oriented mobile health solutions
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aiming at the continuous management of brain disorders which involves two main
steps: the detection and prediction of the disorder and the feedback that alarms
the user of the occurrence of an abnormal brain activity to prevent its debilitating
effects.

The continuous monitoring process involves the processing and transmission
of large volumes of data. This creates a bottleneck as the efficiency of the health
solution relies on how fast the data is being stored, transmitted and processed.
For instance, an hour of EEG recordings from a 20-channel headset generates
around 37 Mbytes/hour (2 bytes/sample, 256 Hz sampling frequency) of EEG
data [97]. In order to reduce the impact of the collected data on the system
performance, data reduction techniques have been investigated to try to send
significantly less data while keeping the key characteristics of the EEG signals
upon recovery at the receiver side. Data reduction is further divided into two
separate tracks, namely, data reduction through selective transmission and data
reduction through compression and feature extraction. Selective transmission em-
ploys special algorithms to decide which sensed data to transmit and when. On
the other hand, data reduction aims at reducing the volume of data being trans-
mitted. In this context, the compression of EEG signals offers notable prospects
into achieving this goal, by removing redundancies (lossless compression), or even
dropping some signal information (lossy compression).

Compression schemes have been extensively studied for the reduction of EEG
signals. Due to the importance of preserving data integrity, several lossless al-
gorithms were presented such as as Lempel-Ziv coding, Huffman coding were
used for EEG data and provided some notable compression performance [98].
It is also argued in [98] that employing predictors increases the compression ra-
tio. Examples include Markov predictors, linear predictive coding (LPC) and
artificial neural network (ANN)-based predictors. Lossy compression schemes
were also recently studied in order to reduce the volumes of bio-electric data
being processed and transmitted. Many algorithms in the literature build on
the set partitioning in hierarchical trees (SPIHT) image-based compression algo-
rithm [99] such as in [100] where redundancy between EEG frequency subbands
is exploited and used to develop a SPIHT-based compression algorithm. More-
over, a low-complexity lossy compression scheme using a variant of the SPIHT
algorithm is presented in [101]. In [102], independent component analysis, and a
medical compression technique known as Waves, are used to develop a lossy al-
gorithm that provides notable data reduction. Compressed sensing was recently
used for EEG data reduction [103], [104]. In [104], a technique known as the
block sparse Bayesian learning (BSBL) is used in conjunction with the sensing
technique to address the low sparsity of EEG signals.

Due to the importance of maintaining the integrity of biomedical data, sev-
eral metrics were used to measure the loss of signal fidelity between the original
signal and the reconstructed one. Examples include the percentage root-mean-
square difference (PRD), the root mean square error and the cross correlation.
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Increasing the compression ratio while maintaining such parameters at an ac-
ceptable level is a notable challenge taking into account the non-stationarity of
EEG signals. This property makes the performance of a compression algorithm
dependent on the EEG segment being processed. To address this challenge, we
propose a dynamic learning-based compression scheme which tries, iteratively, to
achieve a high compression ratio while maintaining an appropriate PRD level.
For a given EEG segment, this takes place by dynamically tuning the percentage
of segments being processed using lossless and lossy compression, for a limited
number of iterations in order to achieve a target PRD level.

6.2 Proposed EEG Compression Algorithm

The proposed dynamic compression algorithm starts from some predetermined
compression parameters (training phase) and adjusts them iteratively for each
EEG segment being processed, to reach a minimum PRD while preserving a high
compression ratio (dynamic adjustment phase). The training and dynamic ad-
justment phases involve running a lossy compression routine several times, each
time with a different set of initial parameters.

The compression routine presented in Figure 6.1 was initially proposed in
our previous work in [105]. It uses a combination of discrete cosine transform
(DCT) and adaptive differential pulse coded modulation (ADPCM). The DCT
takes correlated input data and concentrates its energy in just the first few trans-
form coefficients. This allows for aggressive compression to take place by treating
each subset of the coefficients differently. The first few coefficients are preserved
through lossless compression while the remainder of the coefficients are either sub-
ject to lossy compression or discarded. The resulting vector of DCT coefficients is
divided into four portions. The main aim is to match the decreasing importance
of the coefficients by an increasing level of lossiness in the compression. Thus,
the first α% of the coefficients block is subject to a lossless compression opera-
tion. The next β% of the block is subject to ADPCM with a 16:4 compression
ratio. Then, γ% is subject to a more aggressive lossy compression with a 10:2
compression ratio. The remaining part of the block is discarded as this contains
the least relevant coefficients for signal reconstruction.
The complementary operations are performed in order to decompress the com-
pressed EEG signal. These operations include lossless decoding, ADPCM decod-
ing and inverse DCT (IDCT). The quality of the reconstructed signal is assessed
by calculating the PRD metric which quantifies the distortion in the received
signal and the fidelity in the signal reconstruction. The PRD metric is given as

PRD =

√∑N
n=1(x(n)− x̂(n))2∑N

n=1 x(n)
2

(1)
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Figure 6.1: Compression routine used in the training and dynamic adjustment
phases.

where x(n) and x̂(n) are the original and reconstructed signals, respectively. n
is the sample index and N is the total number of samples in the original and
reconstructed EEG segments.

6.2.1 Training Phase

In the training phase, an exhaustive search is performed using different combina-
tions of the α, β and γ values. Each parameter is divided into a discrete set of
eleven values (0% to 100%). The combinations are selected such that the propor-
tions sum to 100%. The combinations were tested for a target PRD of 30% and
7% and the combination yielding the highest compression ratio for each target
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PRD and given in (2), is selected as the most suitable compression strategy. This
is also considered as the reference strategy, which would be refined through the
proposed dynamic compression technique.

CR =
original bits− compressed bits

original bits
× 100 (2)

6.2.2 Dynamic Parameter Adjustment Phase

The main purpose of this approach is to try and improve the PRD (by reducing
it) for a given EEG window while maintaining a high compression ratio. An
intuitive approach would be to increase the percentage of lossless compression
considerably (increase α). This however has a big impact on the compression
ratio which would decrease considerably. Alternatively, the increments in the
values of α and β will be done in an iterative manner in order to reach a lower
target PRD (TPRD) without having a drastic impact on the compression ratio.
The starting values for this dynamic approach are selected from the reference
values determined in the training phase as described in Section 6.2.1. Then the
algorithm highlighted in Figure 6.2 operates as follows

Figure 6.2: Dynamic compression approach.

· Parameter Tuning The parameters are tuned gradually to reduce the PRD
value starting by solely decreasing the level of lossy compression (increasing β,
decreasing γ and reducing the set of discarded coefficients) and then gradually
increasing the lossless compression. To this end, important parameters need to be
set such as the percentage of increase/decrease in the different portions and the
number of times tuning takes place. In this work, the iterative parameter tuning
goes as follows. While the PRD is greater than TPRD, the chain will be executed
at most four times. In the first iteration, γ is increased by 15% thus reducing the
aggressively compressed portions (γ and discarded data). In the second iteration,
α is increased by 5% while decreasing γ and the set of discarded coefficients. In
the third iteration, both α and β are increased by 5% and 15%, respectively.
Finally, in the last iteration, α is increased by 5% which are now deduced from
the β portion. The rationale behind this selection is to try and avoid lossless
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data compression while relying on the less agressive 16:4 ADPCM compression
to reduce the PRD value. This also justifies the selection of a 5% increase for
the lossless compression segment compared to 15% for the 16:4 ADPCM part.
Thus, the algorithm will try to reduce the aggressiveness in the lossy compression
before relying on increasing the lossless compression percentage to get the PRD
value below the TPRD.

· Compression/Decompression Iterations The compression and decom-
pression are performed as described in Figure 6.1. The decompression is done at
each iteration in order to be able to assess the performance of the compression
resulting from the parameter tuning in terms of the achieved PRD.

· PRD Calculation The PRD value is calculated as in (1). An illustration of
the operation of the algorithm is shown in Figure 3 for patient 1 of the Freiburg
database (http://epilepsy-database.eu/). After training, the initial parameters
are set to α = 0%, β = 30%, γ = 10% and the remaining part is discarded.
The initial PRD is 47.3% whereas the initial compression ratio is 94.1%. After
applying the proposed algorithm, the PRD dropped to 10% while the compression
ratio reached 92% after the fourth iteration. This trend was also observed for
other patients as no more than four iterations were needed to achieve the required
PRD threshold.

6.2.3 Complexity Analysis and Practical Considerations

The proposed compression approach is mainly designed to operate in the con-
text of a mobile health system, thus requiring a relatively low computational
complexity. Among the different constituting blocks of the compression and de-
compression algorithms (Lossless, ADPCM, DCT/IDCT), the DCT algorithm
has the largest complexity requirement of nlogn multiplications where n is the
number of samples being processed by the DCT algorithm in each window (e.g.,
one minute window is 15360 samples assuming a sampling rate of 256 Hz). The
DCT coefficients are calculated once per window, and the compression using the
different α, β, γ proportions are applied directly to the DCT coefficients. On
the other hand, IDCT is computed at each iteration as part of the decompres-
sion. This is done at most four times since a maximum of four iterations can
be used. Therefore, the complexity of the DCT/IDCT computations sums up to
5nlogn multiplications which is considered fast even for the miniaturized signal
processing hardware on the wearable headsets.
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Patient ID 162 239 261 891
Initial CR 94.15 94.3 94.2 94.33

Optimized CR 93 92 92 93
Initial PRD 78.52 57.96 57.1 70.97

Optimized PRD 9.9 8.35 9.42 9.56
Stopping iteration 2 3 2 3

Table 6.1: Sample testing outcome with a TPRD of 10%.

6.3 Performance Evaluation

The proposed compression approach was tested on real EEG data obtained from
the Freiburg database. For the training phase in the proposed algorithm, 60
one-minute EEG segments (windows) from a 20-channel setup are selected, thus
resulting in 1200 EEG segments. Different combinations were tested to determine
the best α,β and γ values that yield the best compression ration for a target PRD
value.

6.3.1 EEG Compression Results

In order to emulate the compression process in a realistic scenario, and to ensure
independence between the training and testing data sets, separate blocks of data
where selected for training and testing. For each of the patients, testing was
performed on several one-hour EEG blocks which were divided into one-minute
segments. The proposed approach was applied to these segments and the average
compression ratio and PRD values calculated. Table 6.1 shows the average com-
pression ratio and PRD for four patients data from the Freiburg database. For
each patient, an initial α = 0% indicating no lossless compression and a β = 30%
indicating a processing of 30% of the EEG segment using 16:4 ADPCM, were
selected. For the same starting point, the PRD values were different from patient
to patient as they are not the optimal ones resulting from the training phase.
The selection of a common starting point also highlights the need for a dynamic
compression scheme where the parameters should be tweaked per patient and
for each processed EEG segment. As a general trend, it can be noted that less
than four iterations were needed to achieve the target PRD value of 10% for a
relatively high starting PRD value. Concurrently, the compression ratio is above
90% for all the cases. These conclusions demonstrate that only a small number
of iterations is needed to converge to the targeted value.

1) Comparison with Other Algorithms In order to further assess the per-
formance gains of the proposed approach, the results presented in Table 6.1
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are compared to the performance of the JPEG2000 and SPIHT algorithms [99].
These two algorithms were selected as they are widely used in the literature for
EEG compression( [100], [106]). The JPEG2000 algorithm relies on a sequence of
wavelet transform, quantization and arithmetic coding. The SPIHT algorithm,
on the other hand, relies on wavelet transform, set partitioning sorting, and en-
tropy coding. To test these algorithms, the sampled EEG signals are reshaped
into two-dimensional matrices on a channel by channel basis. These matrices
are then processed using the compression algorithms and average results are re-
ported.

Figure 6.3 illustrates the resulting compression ratio for each of the four pa-
tients in Table 6.1. For fair comparison, the parameters were tweaked for the
other two approaches to achieve a PRD value below the target one. As shown in
Figure 6.3, the proposed approach outperforms the other two methods for all the
patients. This is mainly due to the dynamic compression feature of our approach.
At each iteration and for each EEG window, the compression parameters are be-
ing tuned to ensure the highest compression ratio while keeping the PRD below
the target value. The figure also shows that SPIHT achieves the closest com-
pression ratios. However, this comes at the expense of increased computational
complexity due to two inherent features, namely, the use of arithmetic coding
and the use of floating-point operations which require longer data length. One
additional factor with an impact on complexity comes from calculating wavelet
transform that depends on the length of the wavelet filters, which is at least one
multiplication per coefficient. As for the JPEG2000 algorithm, the computational
complexity is not significant; however, the compression performance is well below
the proposed algorithm.
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Figure 6.3: Comparison of the proposed algorithm, SPIHT and JPEG2000 with
a TPRD of 10%.
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Figure 6.4: Original and reconstructed EEG segment.

6.3.2 Faithfulness in Signal Reconstruction

As the main goal of a mobile health system is to provide continuous monitoring
of the patient’s medical condition, the correct reconstruction of the EEG signal,
after transmission to the processing device, is very important. To measure the
fidelity in the reconstruction, we consider two aspects of EEG analysis, namely,
visual and feature based analysis. The first one is used by neurologists to depict
certain events that reflect the patient’s condition. The second is mainly used
to come up with automated detection and prediction techniques of neurological
disorders.

Figure 6.4 shows an example EEG segment and the resulting output after the
compression/decompression and reconstruction process. It can be noticed that
the reconstructed signal is nearly identical to the original one. The reconstruc-
tion process preserved the signal variations including the spikes. Therefore, the
reconstructed signal can be used by specialists to delimit neurological events such
as a seizure occurrence.
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Figure 6.5: Fourier transform coefficients (a) and linear predictive coding (LPC)
coefficients of the original and reconstructed signals.

Figure 6.5 presents further evidence on the quality of the reconstruction
through a comparison of the coefficients obtained through two feature extrac-
tion technique, the Fourier transform and linear predictive coding. We can see
that the signal’s features are preserved by the proposed compression algorithm.
Thus, instead of working directly on the sensed signal, the compressed version
can be transmitted to the mobile device for further processing. This has a signif-
icant impact in terms of energy saving as a smaller amount of data needs to be
stored, transmitted and processed.

6.3.3 Complexity

In Section 6.2.3, the computational complexity of the proposed algorithm was
analyzed. We observed that the most complex operation is in the DCT/IDCT.
Since a neurologically oriented mobile health system involves contiguous and
continuous multi-channel measurements which need to be processed and analyzed,
it is important to check how the algorithm scales when larger EEG segments are
being processed. To investigate this issue, the algorithm was applied to EEG
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segments of different window sizes. The results shown in Figure 6.6 provide an
idea of the running time of the proposed compression algorithm. The processing
time for a one minute segment is around 0.71 seconds with an overhead of 1.18%.
For a ten minutes segment, the compression approach takes about 6.5 seconds
with a similar overhead. Thus, the proposed approach incurs a delay which is
very small when compared to the size of the EEG segment being processed.

Figure 6.6: Running time of proposed algorithm for different EEG segment sizes.

6.4 Conclusion

In this chapter, a dynamic EEG compression algorithm was proposed. The
scheme applies a sequence of compression/decompression operations in order to
find the best loss-less/lossy compression combination that provides the high-
est compression ratio for each EEG segment while preserving the signal in-
tegrity. Performance evaluation results on real EEG datasets demonstrate the
gains achieved through the proposed scheme in terms of high compression ratio,
low percentage root-mean-square difference and low computational overhead.
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Chapter 7

Future Research Directions

Many challenging topics have been studied in this thesis including the design of a
distributed learning algorithm among agents with heterogeneous computational
capabilities, approximation of the gradient descent algorithm, design of low com-
plexity FIR filters and dynamic compression approach for big EEG data. The
findings of this thesis revealed further research directions and raised new open
questions, which can drive future research efforts and boost even more the inter-
est in these areas. Below are some suggested future research directions that can
be investigated as an extension to the contributions of the thesis.

• Optimizing the performance of distributed learning over heterogeneous net-
works.

– Optimal edge weighting: We mean here to investigate a new method
which can find the optimal weights that can be assigned to the shared
parameters over the network by the capable and the non-capable agents.
Intuitively speaking, the incoming parameters from the capable agents
should be given more weight than the incoming ones from the non-
capable agents. To find the optimal weights, this can be set as an
optimization problem, which looks for the optimal weights over the
edges of the heterogeneous network that can minimize the excess risk
function of the network.

– Dynamic operation among optimization algorithms: We mean here
to propose a dynamic strategy that allows the distributed agents to
alter among different optimization algorithms based on some power
consumption restrictions. For instance, some agents may be able to
run Newton’s or gradient descent methods, but due to limited energy
resources at some duration, these agents may decide to shift to low
complexity algorithms like the mini-batch or the stochastic gradient
descent algorithms. The switching from one algorithm to another dur-
ing offline/online learning leads to reserving the available power, and

63



its impact on the mean square deviation and the excess risk should be
studied.

– Learning over agents with heterogeneous computational capabilities
under non-convex functions: We mean here to study the scenario when
the distributed agents own non-convex cost functions and different
computational capabilities. An important application of this study is
when the distributed agents are running the neural networks. Train-
ing neural networks is very challenging and may take hours or days of
training. The best general optimization algorithm known for training
neural networks is the stochastic gradient descent (SGD), where model
weights are updated at each iteration using the back-propagation al-
gorithm. Letting non-capable agents cooperate with agents who can
run faster algorithms than SGD (like mini-batch GD) will end up in
reducing the training time over distributed neural networks.

– Heterogeneous learning over weakly connected networks: We mean
here to study the impact of distributed learning among agents with
heterogeneous computational capabilities over weakly connected net-
works. Distributed learning over weakly connected networks arise in
important situations. For example, in the context of interactions over
social networks where weak connectivity can be used to model the
ability of authoritarian governments to manage the flow of media in-
formation, or to model the behavior of stubborn agents who never up-
date their opinions and may represent political parties, media sources
or leaders, trying to influence the beliefs in the rest of the society.

• A clustering-based approach for designing sparse FIR filters: This is an-
other important research direction that can be investigated to design a low
complexity FIR filter such that the coefficients are sparse and have at most
at most a given set of distinct values. The sparsity of the coefficients and
the upper bound over the number of distinct values can be set as constraints
for an optimization problem. The importance of this work is in providing
very low complexity FIR filters that are suitable for low-power and big data
signal processing applications.
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Chapter 8

Thesis Publications

• Hybrid Distributed Optimization for Learning over Networks with Hetero-
geneous Agents, submitted as a journal paper and it is under review.

• A Low Complexity Approximation of Gradient Descent For Learning Over
Single And Multi-Agent Systems, submitted as a conference paper and it
is under review.

• A Clustering-Based Approach for Designing Low Complexity FIR Filters
[107], published in IEEE Signal Processing Letter, 2021.

• Dynamic EEG Compression Approach with Optimized Distortion Level for
Mobile Health Solutions [108], published in IEEE 18th International Con-
ference on e-Health Networking, Applications and Services (Healthcom),
Munich, 2016.

• On EEG Lossy Data Compression for Data-Intensive Neurological Mobile
Health Solutions [105], published in International Conference on Advances
in Biomedical Engineering (ICABME), Beirut, 2015.
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Appendix A

A.1 Network Mean-Square-Error Stability

Multiplying both sides of (3.16) by VT
ϵ we get

VT
ϵ ω̃i = VT

ϵ Bi−1ω̃i−1 + VT
ϵ Msi(ωi−1)− VT

ϵ Mb (A.1)[
ωi

ω̌i

]
=

 I −DT
11,i−1 −DT

21,i−1

−DT
12,i−1 J T

ϵ −DT
22,i−1

[ωi−1

ω̌i−1

]
+

[
si−1

ši−1

]
−
[
b̄

b̌

]
(A.2)

where

VT
ϵ ω̃i =

(
(pT ⊗ IM)ω̃i

(V T
R ⊗ IM)ω̃i

)
=

(
ω̄i

ω̌i

)
(A.3)

VT
ϵ Ms(ψi−1) =

(
(pT ⊗ IM)Ms(ψi−1)
(V T

R ⊗ IM)Ms(ψi−1)

)
=

(
s̄i
ši

)
(A.4)

VT
ϵ Mb =

(
(pT ⊗ IM)Mb
(V T

R ⊗ IM)Mb

)
=

(
b̄

b̌

)
(A.5)

Note that, from the expression of b̄ and b̌, we note that they depend on M and b.
Recall from (3.24) that the entries of b are defined in terms of the gradient vectors
and ∇Jk(ωo) and the matrix Y δ

k,o = Y δ
k,i−1(ω

o). Since each Jk(ω) is assumed to be
twice-differentiable, then each ∇Jk(ω) is a differentiable function and therefore
bounded. In addition, Y δ

k,i−1 is also bounded as discussed in Section 3.2.5. It
follows that

b̄ = −
N∑
k=1

pkµkY
δ
k,o∇Jk(ωo) = O(µmax) (A.6)

Similarly,
b̌ = O(µmax) (A.7)

From (A.2) we can write

ωi = (I −DT
11,i−1)ωi−1 − (DT

21,i−1)ω̌i−1 + si−1 (A.8)
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ω̌i = (−DT
12,i−1)ωi−1 + (J T

ϵ −DT
22,i−1)ω̌i−1 + ši−1 − b̌ (A.9)

Conditioning both sides of (A.8) on Fi−1 and using the condition on gradient
noise that is given in (3.45),

E[∥ωi∥2|Fi−1] = E[∥(I −DT
11,i−1)ωi−1 − (DT

21,i−1)ω̌i−1 + si−1 − b∥2|Fi−1]

= ∥(I −DT
11,i−1)ωi−1 − (DT

21,i−1)ω̌i−1 − b∥2 + E[∥si−1∥2|Fi−1]
(A.10)

Conditioning again on both sides of (A.10) we get

E[∥ωi∥2] = E[∥(I −DT
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(A.11)

It is shown in [2] that E[∥si−1∥2 and E[∥ši−1∥2 are upper bounded by
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≤ ν21ν
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2β

2
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2
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s

(A.12)

Substituting (A.12) in (A.11) we get,

E∥ωi∥2 ≤(1−O(µmax))E∥ωi−1∥2 +O(µmax)E∥ω̌i−1∥2 +O(µ2
max) (A.13)

Similarly, we get

E[∥ω̌i∥2] ≤ (ρ(Jϵ) + ϵ+O(µ2
max))E[ω̌i−1∥2] +O(µ2

max)E[|ωi−1∥2] +O(µ2
max)
(A.14)

Equations (A.13) and (A.14) can be written in a matrix form as follows[
E∥ωi∥2
E∥ω̌i∥2

]
≤ Γ

[
E[ωi−1∥2]
E[ω̌i−1∥2]

]
+

[
O(µ2

max)
O(µ2

max)

]
= Γ

[
E[ωi−1∥2]
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O(µ2
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] (A.15)

where Γ is a matrix that is given by

Γ =

 1−O(µmax) O(µ2
max)

O(µ2
max) ρ(Jϵ) + ϵ+O(µ2

max)

 (A.16)
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Since ρ(Jϵ) < 1 is independent of µmax, and since ϵ and µmax are small positive
numbers that can be chosen arbitrarily small and independently of each other,
then it can be easily shown that

lim sup
i→∞

[
E∥ωi∥2
E∥ω̌i∥2

]
≤ (I − Γ)−1
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] (A.17)

from which we conclude that

lim sup
i→∞

E∥ωi∥2 = O(µmax) (A.18)
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and therefore
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(A.20)

A.2 Network Fourth-Order Moment Stability

Using (A.8), and (A.14), we can write

∥ωi∥4 = ∥(I −DT
11,i−1)ωi−1 − (DT

21,i−1)ω̌i−1 + si−1∥4 (A.21)

∥ω̌i∥4 = ∥ −DT
12,i−1ωi−1 + (J T

ϵ −DT
22,i−1)ω̌i−1 + ši−1 − b̌∥4 (A.22)

Using the following inequality

∥a+ b∥4 ≤ ∥a∥4 + 3∥b∥4 + 8∥a∥2∥b∥2 + 4∥a∥2Re(a ∗ b) (A.23)

Let
a = (I −DT

11,i−1)ωi−1 − (DT
21,i−1)ω̌i−1 (A.24)

b = si−1 (A.25)

then decompose the right-hand side of (A.21) according to (A.23), and take the
expectations on both sides and follow exactly the same steps in [2], we get

lim sup
i→∞

E∥ω̄i∥4 = O(µ2
max) (A.26)
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Similarly, let

a = (−DT
12,i−1)ωi−1 + (J T

ϵ −DT
22,i−1)ω̌i−1 − b̌ (A.27)

b = ši−1 (A.28)

and decompose the right-hand side of (A.22) according to (A.23), and take the
expectations on both sides and follow exactly the same steps in [2], we get

lim sup
i→∞

E∥ω̌i∥4 = O(µ4
max) (A.29)

and, therefore

lim sup
i→∞

E∥ω̃i∥4 = lim sup
i→∞

E

(
∥(V−1

ϵ )T
[
ωi

ω̌i

]
∥2
)2

≤ lim sup
i→∞

∥(V−1
ϵ )T∥4[E∥ωi∥2 + E∥ω̌i∥2] = O(µ2

max).
(A.30)

A.3 Network Mean-Error Stability

ω̃i = Bi−1ω̃i−1 +Ms(ψi−1)−Mb , i ≥ 0 (A.31)

Bi−1 = (I −MH′
i−1)AT

1 (A.32)

Let
H̃ = H−H′

i−1 (A.33)

where H is a constant matrix defined as

I = diag{I1, I2, ..., IN} (A.34)

and Ik, k = 1, ..., N represents the eye matrix.
Substituting (A.33) in (A.32), we can write

Bi−1 = B +MH̃AT
1 (A.35)

where B is given by
B = (IMN −MH)AT

1 (A.36)

Substituting (A.35) in (A.31), we get

ω̃i = Bω̃i−1 +MH̃AT
1 ω̃i−1 +Ms(ψi−1)−Mb , i ≥ 0 (A.37)

Taking conditional expectations on both sides of (A.37)

E[ω̃i|Fi−1]
a
= Bω̃i−1 +MH̃AT

1 ω̃i−1 −Mb , i ≥ 0 (A.38)
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where (a) follows from E[s(ψi−1)|Fi−1] = 0. Taking the expectations of both sides
of (A.38), we can write

E[ω̃i] = BE[ω̃i−1] +ME[H̃AT
1 ω̃i−1]−Mb , i ≥ 0

= BE[ω̃i−1] +Mci−1 −Mb , i ≥ 0
(A.39)

where ci−1 is defined as follows

ci−1 = E[H̃AT
1 ω̃i−1] (A.40)

Multiplying both sides of (A.39) by VT
ϵ , we can write[

Eωi

Eω̌i

]
= B

[
Eωi−1

Eω̌i−1

]
−
[
0

b̌

]
+ VT

ϵ Mci−1 (A.41)

Note that (A.41) has the same form as in [2], with the exception that ci−1 and H̃
take different forms in this work from that in [2]. So, we present below the upper

bounds of H̃, and ∥VT
ϵ Mci−1∥ and then the remaining steps of the proof follow

similarly as in [2].

H̃δ
k,i−1 = I −H ′δ

k,i−1

∥H̃δ
k,i−1∥ = ∥I −H ′δ

k,i−1∥
a

≤ LmaxK′
dCN∥ω̃i−1∥

(A.42)

where (a) follows from (3.44), then

∥H̃i−1∥ = max
1≤k≤N

∥H̃δ
k,i−1∥ ≤ LmaxK′

dCN∥ω̃i−1∥ (A.43)

therefore
∥VT

ϵ Mci−1∥ ≤ ∥VT
ϵ ∥∥M∥∥ci−1∥

≤ ∥VT
ϵ ∥∥M∥∥E(H̃i−1AT

1 ω̃i−1)∥
≤ (∥VT

ϵ ∥∥M∥∥AT
1 ∥)E[∥(H̃i−1∥∥ω̃i−1)∥]

a

≤ LmaxK′
dCN∥VT

ϵ ∥∥M∥∥AT
1 ∥E∥ω̃i−1∥2

b
= rµmaxE∥ω̃i−1∥2

(A.44)

for some constant r that is independent of µmax. It follows from (3.68) that

lim sup
i→∞

∥VT
ϵ Mci−1∥2 = O(µ2

max) (A.45)

Rewrite (A.41) as[
zi
ži

]
= B

[
zi−1

ži−1

]
−
[
0

b̌

]
−
[
b
′

b̌′

]
−
[
B′z

i−1

B̌′ži−1

]
+

[
ci−1

či−1

]
+

[
c′i−1

č′i−1

]
(A.46)

then continue as in [2], we get

lim sup
i→∞

∥Eω̃k,i∥ = O(µmax), for k = 1, 2, ..., N. (A.47)
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A.4 Derived Results from Lipschitz Condition

By noting that ∇P (ω∗) = 0 and using the Lipschitz condition of ∇P (·) in (4.9),
we have

Result 1: ||∇P (ωn−1)|| = ||∇P (ω∗)−∇P (ωn−1)|| ≤ δ||ω̃n−1|| (A.48)

Substituting ω2 = ω∗ and ω1 = ωn−1 in (4.8), we get

∇P (ωn−1)
T ω̃n−1 ≤ P (ω∗)− P (ωn−1)−

ν

2
||ω̃n−1||2 (A.49)

Further substituting ω2 = ωn−1 and ω1 = ω∗ in (4.8), we get

P (ω∗)− P (ωn−1) ≤ −ν
2
||ω̃n−1||2 (A.50)

(A.50) and (A.49) imply

Result 2: ∇P (ωn−1)
T ω̃n−1 ≤ −ν||ω̃n−1||2 (A.51)
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[52] W. Kim, M. S. Stanković, K. H. Johansson, and H. J. Kim, “A dis-
tributed support vector machine learning over wireless sensor networks,”
IEEE Transactions on Cybernetics, vol. 45, no. 11, pp. 2599–2611, 2015.

[53] P. Ray and P. K. Varshney, “Estimation of spatially distributed processes
in wireless sensor networks with random packet loss,” IEEE Transactions
on Wireless Communications, vol. 8, no. 6, pp. 3162–3171, 2009.

[54] S. Jayaprakasam, S. K. A. Rahim, and C. Y. Leow, “Distributed and col-
laborative beamforming in wireless sensor networks: Classifications, trends,
and research directions,” IEEE Communications Surveys Tutorials, vol. 19,
no. 4, pp. 2092–2116, 2017.

[55] Q. Zhou, D. Li, S. Kar, L. M. Huie, H. V. Poor, and S. Cui, “Learning-
based distributed detection-estimation in sensor networks with unknown
sensor defects,” IEEE Transactions on Signal Processing, vol. 65, no. 1,
pp. 130–145, 2017.

[56] P. A. Forero, A. Cano, and G. B. Giannakis, “Distributed clustering us-
ing wireless sensor networks,” IEEE Journal of Selected Topics in Signal
Processing, vol. 5, no. 4, pp. 707–724, 2011.

[57] B. Polyak and Y. Tsypkin, “Pseudogradient Adaptation and Training al-
gorithms,” Automation and Remote Control, vol. 34, pp. 377–397, 01 1973.

[58] M. Eisen, A. Mokhtari, and A. Ribeiro, “Decentralized Quasi-Newton
Methods,” IEEE Transactions on Signal Processing, vol. 65, no. 10,
pp. 2613–2628, 2017.

77



[59] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization Methods for Large-
Scale Machine Learning,” SIAM Review, vol. 60, no. 2, pp. 223–311, 2018.

[60] X. Li, “Preconditioned Stochastic Gradient Descent,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 29, no. 5, pp. 1454–1466,
2018.

[61] M. K. Pakhira, “A linear time-complexity k-means algorithm using cluster
shifting,” in 2014 International Conference on Computational Intelligence
and Communication Networks, pp. 1047–1051, Nov 2014.

[62] N. Zong, F. Gui, and M. Adjouadi, “A new clustering algorithm of large
datasets with o(n) computational complexity,” in 5th International Confer-
ence on Intelligent Systems Design and Applications (ISDA’05), pp. 79–82,
Sep. 2005.

[63] X. Sun, Y. Guo, Z. Liu, and S. Kimura, “A Radix-4 Partial Product
Generation-Based Approximate Multiplier for High-speed and Low-power
Digital Signal Processing,” in 2018 25th IEEE International Conference on
Electronics, Circuits and Systems (ICECS), pp. 777–780, 2018.

[64] W. Liu, L. Qian, C. Wang, H. Jiang, J. Han, and F. Lombardi, “Design
of Approximate Radix-4 Booth Multipliers for Error-Tolerant Computing,”
IEEE Transactions on Computers, vol. 66, no. 8, pp. 1435–1441, 2017.

[65] G. Zervakis, K. Tsoumanis, S. Xydis, D. Soudris, and K. Pekmestzi,
“Design-Efficient Approximate Multiplication Circuits Through Partial
Product Perforation,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 24, no. 10, pp. 3105–3117, 2016.

[66] A. Hugeat, J. Bernard, G. Goavec-Mérou, P. Y. Bourgeois, and J. M. Friedt,
“Filter Optimization for Real-Time Digital Processing of Radio Frequency
Signals: Application to Oscillator Metrology,” IEEE Transactions on Ul-
trasonics, Ferroelectrics, and Frequency Control, vol. 67, no. 2, pp. 440–449,
2020.

[67] Z. Han, M. Hong, and D. Wang, Signal Processing and Networking for Big
Data Applications. USA: Cambridge University Press, 1st ed., 2017.

[68] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel,
R. Ramakrishnan, and C. Shahabi, “Big data and its technical challenges.,”
Commun. ACM, vol. 57, no. 7, pp. 86–94, 2014.

[69] G. B. Giannakis, “Signal Processing for Big Data,” in 2014 Signal Pro-
cessing: Algorithms, Architectures, Arrangements, and Applications (SPA),
pp. 9–9, 2014.

78



[70] Y. He, F. R. Yu, N. Zhao, H. Yin, H. Yao, and R. C. Qiu, “Big data
analytics in mobile cellular networks,” IEEE Access, vol. 4, pp. 1985–1996,
2016.

[71] A. Sandryhaila and J. M. F. Moura, “Big data analysis with signal pro-
cessing on graphs: Representation and processing of massive data sets
with irregular structure,” IEEE Signal Processing Magazine, vol. 31, no. 5,
pp. 80–90, 2014.

[72] A. I. Tikhonyuk, S. D. Erokhin, and T. A. Chadov, “Big data appli-
cation on signal processing systems,” in 2018, Systems of Signal Syn-
chronization, Generating and Processing in Telecommunications (SYN-
CHROINFO), pp. 1–3, 2018.

[73] Y. Du, F. Hu, L. Wang, and F. Wang, “Framework and challenges for
wireless body area networks based on big data,” in 2015 IEEE International
Conference on Digital Signal Processing (DSP), pp. 497–501, 2015.

[74] S. Rani, S. H. Ahmed, R. Talwar, and J. Malhotra, “Can sensors collect big
data? an energy-efficient big data gathering algorithm for a wsn,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 4, pp. 1961–1968, 2017.

[75] M. Nassralla, A. M. El-Hajj, F. Baly, and Z. Dawy, “Dynamic EEG Com-
pression Approach with Optimized Distortion Level for Mobile Health So-
lutions,” in IEEE 18th International Conference on e-Health Networking,
Applications and Services (Healthcom), pp. 1–5, 2016.

[76] A. Chandra and S. Chattopadhyay, “Design of Hardware Efficient FIR Fil-
ter: A Review of the State-of-the-Art Approaches,” Engineering Science
and Technology, an International Journal, vol. 19, no. 1, pp. 212 – 226,
2016.

[77] J. G. Proakis and D. K. Manolakis, Digital Signal Processing (4th Edition).
Prentice Hall, 4 ed., 2006.

[78] P. A. Stubberud, “A computationally Efficient Technique for Designing
Frequency Sampling Filters,” IEEE Transactions on Circuits and Systems
II: Analog and Digital Signal Processing, vol. 44, pp. 45–50, Jan 1997.

[79] R. Y. Belorutsky and I. S. Savinykh, “Modified Technique of FIR Filter
Design by the Frequency Sampling Method,” in 11th International Forum
on Strategic Technology (IFOST), pp. 259–262, 2016.

[80] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal
Processing. Prentice-hall Englewood Cliffs, second ed., 1999.

79



[81] T. Parks and J. McClellan, “Chebyshev Approximation for Nonrecursive
Digital Filters with Linear Phase,” IEEE Transactions on Circuit Theory,
vol. 19, pp. 189–194, March 1972.

[82] L. Rabiner and O. Herrmann, “On the Design of Optimum FIR Low-Pass
Filters with even Impulse Response Duration,” IEEE Transactions on Au-
dio and Electroacoustics, vol. 21, pp. 329–336, August 1973.

[83] E. Y. Remez, “General Communication Methods of Chebyshev Approxi-
mation,” Atomic Energy Translation 4491, Kiev, U.S.S.R.,, pp. 1–85.

[84] P. Zahradnik, “Robust Analytical Design of Optimal Equiripple Lowpass
FIR Filters,” IEEE Signal Processing Letters, vol. 27, pp. 755–759, 2020.

[85] X. Yang, H. Wang, K. Liu, and Y. Xiao, “Minimax and WLS Designs of
Digital FIR Filters Using SOCP for Aliasing Errors Reduction in BI-DAC,”
IEEE Access, vol. 7, pp. 11722–11735, 2019.

[86] H. K. Kwan and J. Liang, “Minimax Design of Linear Phase FIR Filters us-
ing Cuckoo Search Algorithm,” in 8th International Conference on Wireless
Communications Signal Processing (WCSP), pp. 1–4, Oct 2016.

[87] J. Liang and H. K. Kwan, “FIR Filter Design using Multiobjective Cuckoo
Search Algorithm,” in 2017 IEEE 30th Canadian Conference on Electrical
and Computer Engineering (CCECE), pp. 1–4, 2017.

[88] T. Chen, Q. Wang, and H. Liu, “FIR Digital Filter Design Based on Evo-
lutionary Multi-Objective Algorithm,” in 14th International Conference on
Computational Intelligence and Security (CIS), pp. 349–352, Nov 2018.

[89] H. K. Kwan, “Asymmetric FIR Filter Design using Evolutionary Optimiza-
tion,” in 2017 IEEE 30th Canadian Conference on Electrical and Computer
Engineering (CCECE), pp. 1–4, 2017.

[90] J. H. Webb and D. C. Munson, “Design of Sparse FIR Filters using Linear
Programming,” in IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 339–342 vol.1, May 1993.

[91] A. Jiang and H. K. Kwan, “WLS Design of Sparse FIR Digital Filters,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60,
no. 1, pp. 125–135, 2013.

[92] S. Lloyd, “Least Squares Quantization in PCM,” IEEE Transactions on
Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

80



[93] G. Ahalya and H. M. Pandey, “Data Clustering Approaches Survey and
Analysis,” in International Conference on Futuristic Trends on Computa-
tional Analysis and Knowledge Management (ABLAZE), pp. 532–537, Feb
2015.

[94] M. H. Nassralla, M. M. Mansour, and L. M. A. Jalloul, “A low-complexity
detection algorithm for the primary synchronization signal in lte,” IEEE
Transactions on Vehicular Technology, vol. 65, no. 10, pp. 8751–8757, 2016.

[95] G. Epilepsy Center of the University Hospital of Freiburg, EEG
Database. Available at http://epilepsy.uni-freiburg.de/freiburg-seizure-
prediction-project/eeg-database.

[96] L. Mertz, “Sending out an SOS ? and More: Next-generation textiles and
EEG headsets transport vital biomed information.,” IEEE Pulse, vol. 6,
pp. 30–36, March 2015.

[97] M. Nassralla, A. M. El-Hajj, F. Baly, and Z. Dawy, “Dynamic EEG com-
pression approach with optimized distortion level for mobile health solu-
tions,” in 2016 IEEE 18th International Conference on e-Health Network-
ing, Applications and Services (Healthcom), pp. 1–5, Sep. 2016.

[98] G. Antoniol and P. Tonella, “EEG data compression techniques,” IEEE
Transactions on Biomedical Engineering, vol. 44, pp. 105–114, Feb 1997.

[99] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based
on set partitioning in hierarchical trees,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 6, pp. 243–250, June 1996.

[100] H. Daou and F. Labeau, “Dynamic Dictionary for Combined EEG Com-
pression and Seizure Detection,” IEEE Journal of Biomedical and Health
Informatics, vol. 18, pp. 247–256, Jan 2014.

[101] G. Xu, J. Han, Y. Zou, and X. Zeng, “A 1.5-D Multi-Channel EEG Com-
pression Algorithm Based on NLSPIHT,” IEEE Signal Processing Letters,
vol. 22, pp. 1118–1122, Aug 2015.

[102] I. Dhif, M. S. Ibraheem, L. Lambert, K. Hachicha, A. Pinna, S. Hochberg,
I. Mhedhbi, and P. Garda, “A novel approach using WAAVES coder for the
EEG signal compression,” in 2016 IEEE-EMBS International Conference
on Biomedical and Health Informatics (BHI), pp. 453–456, Feb 2016.

[103] D. Craven, B. McGinley, L. Kilmartin, M. Glavin, and E. Jones, “Com-
pressed Sensing for Bioelectric Signals: A Review,” IEEE Journal of
Biomedical and Health Informatics, vol. 19, pp. 529–540, March 2015.

81



[104] Z. Zhang, T. Jung, S. Makeig, and B. D. Rao, “Compressed Sensing of EEG
for Wireless Telemonitoring With Low Energy Consumption and Inexpen-
sive Hardware,” IEEE Transactions on Biomedical Engineering, vol. 60,
pp. 221–224, Jan 2013.

[105] M. Nasrallah, A. M. El-Hajj, and Z. Dawy, “On EEG lossy data compres-
sion for data-intensive neurological mobile health solutions,” in 2015 Inter-
national Conference on Advances in Biomedical Engineering (ICABME),
pp. 309–312, Sep. 2015.

[106] G. Higgins, S. Faul, R. P. McEvoy, B. McGinley, M. Glavin, W. P. Marnane,
and E. Jones, “EEG compression using JPEG2000: How much loss is too
much?,” in 2010 Annual International Conference of the IEEE Engineering
in Medicine and Biology, pp. 614–617, Aug 2010.

[107] M. H. Nassralla, N. Akl, and Z. Dawy, “A clustering-based approach for de-
signing low complexity fir filters,” IEEE Signal Processing Letters, vol. 28,
pp. 299–303, 2021.

[108] M. Nassralla, A. M. El-Hajj, F. Baly, and Z. Dawy, “Dynamic eeg compres-
sion approach with optimized distortion level for mobile health solutions,”
in 2016 IEEE 18th International Conference on e-Health Networking, Ap-
plications and Services (Healthcom), pp. 1–5, 2016.

82


