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ABSTRACT
OF THE THESIS OF

Estepan Kirakos Ashkarian for Master of Science
Major: Mathematics

Title: Integrable Generators of Lie Algebras of Vector Fields
on the Koras—Russell Cubic Threefold

The Koras—Russell cubic threefold is a complex-affine manifold that is diffeo-
morphic to the three-dimensional complex-Euclidean space, but not algebraically
isomorphic to the three-dimensional complex-affine space as an affine variety.
We study the Lie algebra of polynomial vector fields on the Koras—Russell cu-
bic threefold; We prove that the compositions of the flows of a list of complete
vector fields approximate every holomorphic automorphism that is in the path-
connected component of the identity.
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CHAPTER 1

INTRODUCTION

In this Masters thesis, we are mainly concerned about complete vector fields on
the complex submanifold X of C*, where X = {(z,y,z,w) € C*: 2%y + z + 22 +
w® = 0} is the Koras—Russell cubic threefold. This three dimensional complex
submanifold was discovered in the process of proving the so called Linearization
Conjecture in dimension 3.

In 2001, Dror Varolin introduced the notion of the density property in his
paper [16]. A complex manifold has the density property if the Lie algebra
generated by complete holomorphic vector fields is dense in the Lie algebra of
all holomorphic vector fields. In other words, every holomorphic vector field
on the complex manifold can be approximated uniformly on compacts by Lie
combinations of complete holomorphic vector fields. Mathematicians in this field
started to study complex manifolds in order to determine if they have the density
property. Some examples would be C" for n > 2, SLy(C), the Calogero-Moser
spaces and a family of spaces given by {z%y = a(2)+xb(2)} where z = (20, . .., 2,),
deg, a < 2 and deg, b < 1. Notice that the Koras—Russell cubic is part of the
family in the last example.

In Chapter 1, we give some background material from complex analysis of one
variable, several complex variables, the similarities and differences between the
two subjects. Then we move on to category theory in order to define sheaves and
coherent sheaves. The language of sheaves and coherent sheaves will be used for
the proof that the Koras—Russell cubic has the density property in Chapter 5.

Chapter 2 is also preliminary topics, which is more focused on vector fields
and their flow maps. We give some known approximation theorems concerning
flow maps. Finally, we introduce the main definition of this chapter, which is
algorithms of vector fields. Later on we prove that under some conditions a flow
map can be approximated uniformly on compacts by these algorithms. Finally
we state and prove the most important theorem of this chapter which says that
the flow map of any vector field in the Lie subalgebra of finitely many com-
plete vector fields can be approximated uniformly on compacts by holomorphic
automorphisms, these holomorphic automorphisms being the flow maps of the



complete vector fields in the Lie subalgebra generated by the complete holomor-
phic vector fields.

The third chapter is rather humble in nature. We give five vector fields U, V,
W, E and H on the Koras—Russell cubic, and we show that they are complete,
which means that their flow maps are defined for all time. The first four vector
fields will turn out to play a crucial role in Chapter 5.

In Chapter 4, our main goal is to give the proof of the density property of the
Koras—Russell cubic. We start by defining shears and overshears, then we give a
proof of the Kaliman—Kutzschebauch formula. The Andersén—Lempert theorem
is stated without proof, and finally a proof is given for the density property.



CHAPTER 2

DEFINITIONS AND RESULTS FROM
SEVERAL COMPLEX VARIABLES

The main objective of this chapter is to give a humble overview of complex anal-
ysis of one variable, several complex variables, and their differences and similar-
ities. Moreover, we introduce the language of category theory in order to define
presheaves, sheaves and coherent sheaves. We make use of the following refer-
ences. See [13, Chapter 1, 2|, [14, Chapter 14], [9, Chapter 1] and [15, Chapter
7,9].

2.1 Complex Euclidean Space

For n € NT the n—dimensional complex Euclidean space is denoted by C™ where:
C'={2=(x1,...,2): 2z, €C forall 1 <j<n}

is the Cartesian product of n copies of C. C” can be viewed as an n—dimensional
complex vector space, equipped with the Hermitian inner product defined by:

n

(z,w) = Zziwi z,w e C"

i=1

The induced norm by the inner product (-,-) is |z| = /(z, z), which in hand also
defines a distance d on C" given by d(z,w) = |z — w|.
The open ball of center a € C™ and radius r > 0 is given by:

B(a,r)={z€C":|z—a|l <r}

Often it is convenient to use another system of neighborhoods: the open polydisc
P(a,r) of multiradius r = (rq,...,7,), ; > 0 and center a € C" is the product
of n open discs in C, that is P(a,r) = D(ay,r1) X -+ X D(ay,r,).

Pla,r)={z€C":|z; —aj| <r;;,1 <j<n}

7



Notice that P(a,(r1,...,m,)) C B(a,R) whenever Y7 77 < R? and that

B(a,R) C P(a,(r1,...,ry)) for R <min{r;: 1 <j <n}.

2.1.1 Cauchy-Riemann equations

Recall that in the theory of complex analysis on C a complex valued function
f: D — C defined by f(z) = f(z +iy) = u(z,y) + iv(z,y) where u,v: R* - R,
is said to satisfy the Cauchy-Riemann equations if

Ju v
dr  dy
ou v
dy O

Moreover, if we introduce the partial differential operator

o _1(o 10
0z  2\0xr idy

Then,
of 1/ 10 -
£()—0<:>§<%—;a—y>f(z)—0
0 0
3 (5= 13y ) (o) +ivta)) =0

2 \0x Oy 2\0z oy/)

ou Ov ou ov
— and — = ——

or dy dy ox

Notation 2.1.1. Turning to C" = R*" with coordinates z; = x;+iy; we introduce
the following notation, which are partial differential operators:

9 _1(0 10
8zj n 2 an zay]
o _1(0 19
Definition 2.1.2. Let D C C" be open. A function f: D — C is called holomor-

phic on D if f € CY(D) and f satisfies the system of partial differential equations
known to be the Cauchy-Riemann equations:

of

(2)=0 for1<j<n andze D
82]‘



Note that C''(D) is the space of continuously differentiable complex valued
functions on D.

Notation 2.1.3. The space of holomorphic functions on D is denoted by O(D).

Remark 2.1.4. If a function f: D — C satisfies the Cauchy—Riemann equations
from Definition 2.1.2 then it also satisfies the Cauchy—Riemann equations in the
zj—coordinate for any j, that is the map f.,(N) = f(z1,..., 2j—1, A\, Zjr1, - -, Zn)
18 holomorphic.

One might ask if the converse is true. Hartogs gave an answer in 1906, proving
that any f: D — C which is holomorphic in each variable separately is also
holomorphic as in the sense of Definition 2.1.2. One should also note the strength
of Hartogs’ theorem by observing the following example.

Example 2.1.5. The function f: R? — R defined by f(0) = 0 and f(x,y) =
st Jor (z,y) # (0,0) is C (even stronger than this actually, it is real analytic)
in each variable separately, but is not bounded at 0.

Now, we shall introduce the standard multi-index notation.
For D C R", open and k € N, let C*(D) denote the space of k times continuously
differentiable complex valued functions on D. Let a = (aq,...,a,) € N" and
x = (x1,...,2,) € R" one sets

lal =a1+ -+ an, al=al.. . !

:L-a f— x?l ..... x

We say that a > 0(> 0) if a; > 0(> 0) for 1 < j <n.

olal

pr=—2
Oxt - - - Oxon

For f € C*(D), k < oo, we define the C*-norm of f over D by

| flrp = Z sup | D f ()]

aeN"™ zeD
|la|<k

The space B¥(D) = {f € C¥(D) : |f|x < oo} is complete in the C* norm | - |,
and hence is a Banach space.
The multi-index notation extends to the partial differential operators as follows:
for a, B € N™,
Ded olal+18l .
020" ... 028025 ... 0z,




2.2 Results from Complex Analysis which are
Generalized in Several Complex Variables

2.2.1 Cauchy Integral Formula on the Polydisc

In the theory of one complex variable, the Cauchy integral formula states that
for any holomorphic function f: D(a,r) — C we have:

fO

) = i) | ¢

0D (a,ro) C -

for all z € D(a,ry) where ro < r.
Now we generalize this formula in the context of several complex variables.

Theorem 2.2.1. Let P = P(a,r) be a polydisc in C* with multiradius r =
(71, .,7n). Suppose that f € C(P) and f is holomorphic in each variable sepa-
rately, i.e. for each z € P and 1 < j <mn, the function

fzj()\) = f(Zl, ceey Zj—1, )\, Bjdly ey Zn)

is holomorphic on {\ € C: |\ —qa;| <r;}. Then

gy f(€)
f(z) = (2mi) /bop@l_zl)“'(cn_z")

where b,P = {¢ € C" : |(; —aj| =71;,1 < j <n}.

d¢y---d¢, forze P

Proof. The method of proof is done by induction on the dimension of the complex
Euclidean space. For n = 1, it follows from the classical Cauchy integral formula.
Suppose n > 1, and that the statement of the theorem is true for n — 1 variables.
Let z € P be fixed, apply the inductive hypothesis with respect to (2, , z,),
obtaining

f(Zl, 2o, ,Zn) = (27Ti)*n+1 /b b (CQf_(Z;;)C% (C;Cj)zn) dCQ Ce dgn (21)

/

= (rg,-+-,ry). For (o, -+ ,(, fixed, the case n = 1

Cl—éh

where o’ = (ag, -+ ,a,), T
gives us

flen G =m0 G e

In general, in terms of the standard parametrization we have

G=a;+rie% 0<6;,<2m,1<j<n

10



of b,(P), one has

/g(C)dCl---an:i"rl---rn/ g(C(0))e™ - e df, - - b,
bo P

[0,27]™

for any g € C(b,P). Now, we substitute 2.2 into 2.1 and transform the iterated
integral over {|¢; — a1| = 1} x b,P'(a’,r") into an integral over b,P using the
aforementioned parametrization. ]

2.2.2 Analyticity of Holomorphic Functions

In the theory of one complex variable, if we have f: 0 C C — C holomorphic,
then for any open disc D(zg, R) C €2 we can write a power series expansion of f

f(z) = ian(z — 2)" for all z € D(zp, R)

n=0

where, ©
_ (o1 f(¢
o)t [

Moreover, a,, = i~ Due to these results, one can show the following estimate
which is called Cauchy’s estimate

f(">(zo)
!

1
|an] < = sup |f(¢)]
R —s|=r

A power series in n complex variables z1, ... z, centered at the point a € C" is a
multiple series ) . b, With terms

by = (2 —a)’ = ¢y v, (21 —a1)™ (20 — @)™
where ¢, € C for v € N™.

Definition 2.2.2. The multiple series » b, is called convergent if

veN”?

Z |b,| = sup {Z |by| © A ﬁm'te} < 00.

veEN"T vEA

Definition 2.2.3. The domain of convergence Q@ = Q({c,}) of the power series
Y venn Co(2z — @) is the interior of the set of points z € C™ for which the power
series converges.

Theorem 2.2.4. Let f € O(P(a,r)). Then the Taylor series of f at a converges
to f on P(a,r), that is

f(z)= Z D”{!(a) (z—a)" forze Pla,r)

11



Proof. See Theorem 1.18 in Range [13]. O

The more general analogue of the Cauchy estimate in the context of several
complex variables is the following.

Theorem 2.2.5. Let f € O(P(a,r)). Then, for o € N",

o al
|D f(a)| S r_a|f|P(a,r)-

Proof. See Theorem 1.6 in Range [13]. O

2.3 Holomorphic Maps

Let D C C™ be open and consider a map F: D — C™. By writing F' =
(fi,--, fm) and fr = wug + vy, where wuy, vy are real valued functions on D,
we can view F = (U1, v1, ..., Un, V) as a map from D C R?" to R?™. If F is dif-
ferentiable at a € D, its differential dF'(a): R** — R?™ is a linear transformation
with matrix representation given by the (real) Jacobian matrix

Ou;  dug duy

dr1  Oy1 "7 Oy
3 5 e 3
Je(F)=1| " .
Ovm  Oum Oum.
Ory  Oyr 7" Oyn

evaluated at a.

The map F: D — C™ is called holomorphic if its (complex) components
fi,--., fm are holomorphic functions on D. If F' is holomorphic, its differen-
tial F'(a) at @ € D is a complex linear map C* — C™, with complex matrix
representation

Lla) ... )
Fllay=1{ + ..
@ - @

We call F’(a) the derivative (or complex Jacobian matrix) of the holomorphic
map F' at a.

Definition 2.3.1. We say F' is nonsingular at a € D if F'(a) has mazimal rank;
F' is nonsingular on D, if F is nonsingular at every a € D.

2.4 The Riemann Mapping Theorem

In complex analysis of one variable, there is a deep result which is called the
Riemann mapping theorem.

12



Definition 2.4.1. Let Q C C be an open set. Let vy and v, be two curves in €2
such that 7(0) = 71(0) and (1) = v1(1). We say that vy is Q—homotopic to v,
if there exists a continuous mapping H: [0,1] x [0,1] — Q such that

1. For allt €]0,1], H(t,0) = v(t) and H(t,1) = v (t).
2. For all s € [0,1], H(0,s) = H(1,s)

Definition 2.4.2. A region Q2 in the complex plane is simply connected if any
pair of curves in § with the same initial and end points are homotopic.

Definition 2.4.3. Let )y and €2y be two regions in C. The two regions are said
to be conformally equivalent if there ezists a ¢ € O(£y) such that ¢ is one-to-one

and o(€) = Qs.

The definition above actually implies that the inverse of ¢ is holomorphic on
s, and hence ¢ is a biholomorphism of €2; and €),.

Theorem 2.4.4 (The Riemann Mapping Theorem). Every simply connected re-
gion  C C such that Q # 0 and QL # C is conformally equivalent to D(0,1).

Proof. See Theorem 14.8 [14]. O

The Riemann Mapping Theorem implies that a simply connected region in
the complex plane is either C or biholomorphic to the open unit disc D(0,1). One
might ask if the analogue of this results holds in the context of several complex
variables. The answer is negative. In 1907, Henri Poincaré gave a proof. In his
proof, he computed the groups of holomorphic automorphisms of the ball and
the bidisc (Note that the bidisc is a polydisc in C?) and compared them.

Theorem 2.4.5. There exists no btholomorphic map
F: P(0,1) — B(0,1)

between the polydisc and the ball in C™ if n > 1.

2.5 Hartogs’ Extension Phenomenon

In the theory of complex analysis of one variable the function f: C* — C* defined
by f(z) = % can’t be extended to a holomorphic function which is also holomor-
phic at 0. In several complex variables, that is not the case. In 1906 Hartogs
discovered the first example exhibiting the remarkable extension properties of
holomorphic functions in more than one variable. It is this phenomenon, more
than anything else, which distinguishes function theory of several variables from

the classical one-variable theory.

13



Theorem 2.5.1. Let n > 2 and suppose that 0 < r; < 1 for 1 < j < n. Then
every function f holomorphic on the domain

H(r)={z€C":|z| <1 forj<n, r, <|z,] <1}
U{ze€C": |z <r; forj<n, |z, <1}

has a unique holomorphic extension f to the polydisc P(0,1).

Theorem 2.5.2. Let n > 2 and suppose U is a neighborhood of the boundary bP
of a polydisc P C C", such that U N P is connected. Then every f € O(U) has
a holomorphic extension to P.

Corollary 2.5.3. Let U be open in C"* and a € U. If n > 2, then every [ €
O(U — {a}) extends holomorphically across a.

Basically, this corollary tells us that in C™ for n > 2 there is no such thing

as isolated singularities, in contrast to the situation in one variable, for instance

consider the function f(z) = 1.

2.6 Complex Submanifolds and Analytic Sets

In this subsection we follow the textbook of Range [13, Chap I, Section 2.6. and
Section 3.2. |.

Definition 2.6.1. A set M C C" is called a complex submanifold of C", if
for every point P € M there is a holomorphic coordinate system (wy, ..., w,) on
a neighborhood U of P, and an integer k, 0 < k < n, such that

MNU={z€U:wj(z) =0 forj>k}.

The integer k is called the complex dimension of M at P, and it is denoted
by k = dim¢ M,.

Notice that dimc M), is locally a constant on A, and hence is constant on
each connected component of M. The dimension of M is defined by

dim M = sup dim¢ M,,.

Theorem 2.6.2. A subset M of C" is a complex submanifold if and only if for
every P € M there is a neighborhood U of P, an open ball B*(a,e) C Ck, and a
nonsingular holomorphic map H: B¥(a,e) — C", such that

H(B*(a,e))=MnNU

A map H which satisfies all the conditions stated above is called a local para-
metrization of M at P.

14



Proof. See Theorem 2.8 in Range [13]. O

Theorem 2.6.3. Let D C C" and suppose that F: D — C™ 1is nonsingular.
Then for every a € D the level set

L, (F)={z€D:F(z)=F(a)}
is a complex submanifold of dimension max(0,n —m) at every point.
Proof. See Theorem 2.9 in Range [13]. O

Example 2.6.4. The Koras—Russell Cubic is a complex submanifold of dimen-
sion 3. Indeed, consider the function F: C* — C defined by F(x,y,z,w) =
22y +x + 22 +wd. Let (w0, Yo, 20, wo) be an arbitrary point in C*, notice that

F' (0, Y0, 20, wo) = (2x0yo + 1, 5, 220, 3wy)

so F is nonsingular on C* since the rank of F'(zo,yo, 20, wo) is one which is
maximal. Note that the rank is at least one, if yo = 0 then it’s obvious. If
Yo # 0 and we we require 2xoyo + 1 = 0 and 22 = 0 we will get a contradiction.
Therefore, Lo(F) = {(x,y,z,w) € C*: F(x,y,z,w) = F(0) = 0}, which is the
Koras Russell Cubic. Hence, it is a complex submanifold of dimension 3.

Definition 2.6.5 ([13, Chapter II page 68]). R
Let K € D C C". Its holomorphically convex hull Kopy in D is defined by

kO(D) ={zeD:|f(2)| <|flx foradll feO(D)}.
Moreover, K C D is called O(D)-convex if KO(D) =K.

Definition 2.6.6 ([8, Definition 5.1.3]).
Let M be a complexr submanifold of C*. M 1is said to be a Stein manifold if M
has a countable basis for open sets and the following three properties hold.

1. M is O(M)-convex.
2. Given two distinct points P, QQ € M, there is f € O(M) with f(P) # f(Q).

3. For every P € M there is a holomorphic coordinate system in a neighbor-
hood of P which is given by global holomorphic functions in O(M).

Theorem 2.6.7. A complex manifold is a Stein manifold if and only if it is
biholomorphic to a closed complex submanifold of C".

Proof. See Forstneric [5, Page 49]. O

Example 2.6.8. The Koras—Russell cubic is a closed complex submanifold of C*,
as it is a zero set of the continuous defining function F(x,y,z,w) = 2%y + x +
22 + w3, Hence, the Koras—Russell cubic is Stein.
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Definition 2.6.9. A subset A of a region 2 C C" is called analytic in Q) if A
is closed in Q) and if for every p € A there are open neighborhoods U, of p in
and a holomorphic map H,: U, — C%, such that

U NA={zeU,: Hy(z) =0}

Stated differently, U, N A is the common zero set of the components
WP, b of H,.

Let A; and A; be two analytic sets in 2 C C". Then it follows from the
definition that A; U As and A; N A, are analytic sets in 2.

Definition 2.6.10. An analytic sets is said to be reducible if A can be written
as A = A1 U Ay where Ay and Ay are analytic, non-empty and not equal to A. A
is said to be irreducible if A is not reducible.

Definition 2.6.11. A point p € A of an analytic set is called a regular point
of A if there is a neighborhood U of p, such that ANU is a complex submanifold
of U, and it is called a singular point otherwise.

Definition 2.6.12. A subset E of D C C" is thin, if for every point p € D there
is a ball B(p,e) and a function f € O(B(p,¢c)) such that f is not constant and
f(2) =0 on B(p,e)NE.

Notice that if £ C D is thin, its closure in D is also thin, and by the Identity
theorem, FE is nowhere dense.

Theorem 2.6.13. Let A be an analytic set in the connected region D in C". If
A # D then A is thin.

Proof. Suppose that A is not thin. For each p € A we choose a connected
neighborhood U, and a holomorphic map H,: U, — C' such that U,N A = {z €
U, : Hy(z) = 0}. Given that A is not thin, there exists p € A, such that H, =0
on U,. Hence, U,NA = U,, and the interior A of Ais not empty. Let q € bAND.
Then AN U, is open and nonempty, and the components of H, are zero on An Us.
By the Identity Theorem, the components of H, are zero on U,. This implies
that U, C A, so q € A and A is closed in D. Since D is connected, and A is
clopen and nonempty, then A=D. O

Notation 2.6.14.

e The set of reqular points is denoted by R(A). Moreover, R(A) it is the
maximal complex submanifold contained in A.

o The set of singular points is denoted by S(A) = A —R(A).
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2.7 Sheaves and Coherent Sheaves

Definition 2.7.1. A category C consists of
1. A class ob C of objects (usually denoted as X,Y, Z, etc.)

2. For each ordered pair of objects (X,Y), a set homc whose elements are
called morphisms with domain X and codomain Y .

3. A composition map, whenever X,Y,Z € ob C, we have a map

hom¢(X,Y) x home(Y, Z) — home (X, Z) where (f,g) — gf.

which satisfy the following conditions:
o If(X,Y)# (X"Y'), then homc(X,Y) and homc(X',Y') are disjoint.

o [f f € homc(X,Y), g € home(Y,Z) and h € homc(Z, W), then h(gf) =
(hg)f.

e [or every X € obC, there exists 1x € homg(X, X) with the property that,
for every f € homg(X,Y), flx = f, and for every g € homg(Z, X),

lxg=g.
Example 2.7.2. The following are some examples of categories.

1. Set where ob Set is all sets, and the morphisms in homget(X,Y) are all
functions f: X — Y.

2. Grp where ob Grp is all groups, and the morphisms in home,p(X,Y) are
the group homomorphisms f: X — Y.

Definition 2.7.3. Let C and D be two categories. A covariant functor F: C —
D is:

1. For each X € ob C we have FFX € obD.

2. For each morphism f € homg(X,Y) we have Ff € homp(FX, FY), such

that
Flx =1px and F(gf)= FgFf

17



Example 2.7.4 (The forgetful functor and the abelianization of groups).

1. The forgetful functor. For example F: Grp — Set. For any group G €
Grp, F'G = G where G 1is viewed as a set. For any group homomorphism
¢: G — H we have Fo: G — H viewed as a function and no longer a
group homomorphism.

2. Let G € Grp. Let [G,G] = {[z,y] = zyz~ 'y~ : 2,y € G} be the commu-
tator subgroup. The functor F': Grp — Ab is defined by FG = G /|G, G].

Definition 2.7.5. Let C and D be two categories. A contravariant functor
F: C — D is characterized by the following:

1. For each X € obC we have FX € obD.

2. For each morphism f € homa(X,Y) we have F f € homp(FY, FX), such
that
Flx =1px and F(gf)=FfFg

Example 2.7.6 (Continuous functions and the dualization functor).

1. F: Top — Ring, then for any topological space X, we define FX = C(X)
the ring of continuous functions. Let f: X — Y be continuous function
(which are the morphisms in Top), then Ff = f*: C(Y) — C(X). If
Y >ReC(Y), then f*¢ = ¢o f.

2. Let k be a fized field. We define the dualization functor, F': Vect/k —
Vect/k, such that FV = V*, where V* is the dual space of the vector space
V. Now let T € homvee(V, W), then FT =T*: W* — V* such that foe
every f e W*, T*f = foT.

Definition 2.7.7. Let (X,7T) be a topological space. Consider the collection of
all open subsets of X to be a category, i.e. C ={U C X : U € T}, where the
objects of this category are the open sets U C X, the morphisms are the inclusion,
that is f € homg(U, V) means that U C V', and the compositions are defined by
the transitivity of the inclusion. Then a presheaf on X is a contravariant functor
from the category C to the category of abelian groups Ab.

Let S be a presheaf on X. S assigns to each open set U C X an abelian
group S(U), and to each inclusion map f € home(U, V') a group homomorphism
puv: S(V) = S(U) € homuy(S(V),S(U)) which is called a restriction map,
where py ¢y = Id for each open set U and pyw = pyvopvw forevery U C V C W.

In category theory, we also have the concept of morphisms between functors,
so consider the morphism ®: S — T between the the presheaves S and 7" on X.
® assigns a morphism &y : S(U) — T'(U) to each open set U C X in a way which
commutes with restrictions.
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Example 2.7.8. If X is any topological space and G is a fized abelian group,
then we may define a presheaf called the constant presheaf by assigning G to each
non-empty open set U C X and 0 to the empty set.

Example 2.7.9. The presheaf C of continuous functions is the contravariant
functor which assigns to each open set U C X the algebra of continuous complex
valued functions C(U) and to each inclusion map U C V' the usual restriction
map pyy: C(V) — C(U) where f — flu for every f € C(V).
Example 2.7.10. The presheaf T of holomorphic sections of the tangent bundle
1s also a contavariant functor which assigns to each open set U C X the module
of holomorphic vector fields T(U) and to each inclusion map U C V' the usual
restriction map pyy: T(V) — T(U) where © — O|y for every ©: V. — TV €
T(V).

If U C V then the image of s € S(V) under pyyv: S(V) — S(U) will be
denoted by s|y and will be called the restriction of S to U.

Definition 2.7.11. If S is a presheaf on X, then S is called a sheaf if the
following conditions are satisfied for each open subset U C X and each open

cover YV of U:
1. If s € S(U) and s|y =0 for all V €V, then s = 0.
2. If {sy € S(V)}vey is a collection of elements with the property that

svlvaw = swlvaw for each pair VW €V then there is an s € S(U) such
that s|y = sy for every Ve V.

Definition 2.7.12. Let (X,7T) be a topological space. Given a sheaf S, it is said
to be a coherent sheaf if for every p € X, for every neighborhood U of p in X,
there exists a neighborhood U' C U of p and a map oy such that

o™U") 2% S(U') — 0
15 ezact.
Moreover, for any such @y, there exists U” C U' a neighborhood of p, and a
map Yy such that
o) Y omury P sy — 0
18 exact.

Definition 2.7.13. We say that the sheaf S is locally free if oy is an isomor-
phism.

Now we can show that, locally free implies coherence. Indeed if ¢y is an
isomorphism, then the kernel of ¢y is trivial. Then we choose ¢y~ to be the zero
map and hence we have

oMUy Y omury P sy — 0

18 exact.
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CHAPTER 3

VECTOR FIELDS AND FLOWS

3.1 Generalities

In this section we will define vector fields on manifolds and the flows they de-
termine. Moreover, we will prove a few results concerning approximation of
flows. We use the following references. See [10, Chapter 4], [10, Chapter 17] and
[5, Chapter 1].

Definition 3.1.1. Let X be a manifold. A vector field on X is a section of the
tangent bundle TX of X. That is, a vector field is a mapping V : X — T X where
Vp, € T,X forallp € X.

Definition 3.1.2. Let X be a smooth manifold. Given a differentiable path
v: I — X where I is an interval of R. An integral curve of a vector field V
on X is a path v: I — X such that:

dy
dt

The initial value problem (the flow equation)

(t) = V«/(t) Vtel

t=V, x(0)=2"

asks for an integral curve which passes through the point z° at time ¢t = 0. In
local coordinates x = (z1, ..., x,) on X with

. 0
Ve = Z@j(l’)% 2’ = (21, ..., 7)
=1 !

the flow equation is equivalent to the system of autonomous ordinary differential
equations:



Example 3.1.3. Let W = :ca% —yZ on R%. Let v: R — R? be a smooth curve,
written in standard coordinates as y(t) = (z(t),y(t)), then for v to be an integral
curve, it must satisfy y(t) = W), which is equivalent to solving the following

system of ODFEs:

w(t) = —y(t)  y(t) = x(t)

The solution of the system above yields a family of integral curves of W :

v(t) = (acos(t) — bsin(t), asin(t) 4+ bcos(t))

However, if we specify an initial condition such as ©(0) = 0 and y(0) = 1 then the
integral curve y(t) = (—sin(t), cos(t)) is the unique solution of the flow equation
satisfying the initial conditions.

If V' is Lipschitz continuous, then for every p € X there exists a neighborhood
U C X of p and a number tq > 0 such that the flow equation has a unique solution

x(t,2°) = ¢,(2°)  for every 2° € U  and for every |t| < to.

This solution, and its t—derivative are continuous in (¢, 2%). The map t — ¢;()
is called the local flow of V. For a fixed t € R the map ¢; is a diffeomorphism
of its domain ; C X onto ¢;(2;), called the time-t map. These maps satisfy
the group law

¢to¢.§:¢t+57 t,SGR
on the set X where both sides are defined.

Theorem 3.1.4 (Gronwall’s Inequality). Let f, g: [a,b) — [0, 00) be non-negative
continuous functions which satisfy the following:

f(t) < A+exp (fcf f(m)g(T) dT) for some A >0
Then,
ft) <A- exp(fat g(T)dr) for allt € |a,b)

Proof. If A > 0:

Let h(t) = A+ f:f(T)g(T) dr, since f and ¢ are non-negative and A > 0, then
h(t) > 0.

By the fundamental theorem of calculus, we have h'(t) = f(t)g(t) < h(t)g(t).
Therefore h/(t)/h(t) < g(t). Integrating both sides we get:

F(t) < h(t) < Aexp([! g(r) dr)

IfA=0:
Let € > 0. We set h(t) =€+ f; f(7)g(7) dr, by the same steps as above, we will
have:
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f(t) < h(t) < e-exp(f, g(r)dr)
which implies that f = 0. [

Theorem 3.1.5. Let V be a time-dependent continuous vector field on a domain
Q C RY™ satisfying a uniform Lipschitz estimate with Lipschitz constant B > 0:
Vi(z) = Vily)| < Blz —y|

Then for any s € R and any pair of points x,y € Qs we have:

[@4s(2) = Prs(y)] < 1l —y|
for all t such that the trajectories exist and remain in the domain $;.

Proof. Let f(t) = |®:s(x) — Prs(y)|. Without loss of generality, we assume that
t > s.

Recall that 9
57 00e(@) = Vi(@1.(5)

We integrate from ¢ to s and we get:
t
Byo(z) — B, (z) = / Vo(®,())dr
t

Bra(y) — Dauly) = / Vi@ (y))dr

Where @, (z) = 2 and D, 5(y) = y. We get:

£t = |z + / V(@ (2))dr —y — / V(@ (y)dr

By the triangular inequality, the uniform Lipschitz condition and the definition
of f(t) we have:

f(t) < |z —yl + / Vo (@r0(2)) — Vi (@r(y))| dr
<le—y|+B- / 1B, o(2) — @ (y)]dr

o
= |a:—y|+B-/ f(rydr

Note that f(s) = [z—y|,so f(t) < f(s)+B- [ s'f(r)dr. By Gronwall’s Inequality,
we have:
f(t) < lz —yle

Note that if we assume s > ¢, the proof remains the same, but we work with —V
instead of V. O
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Lemma 3.1.6 (Escape Lemma). Let V' be a smooth vector field on a smooth
manifold X . If v is an integral curve of V whose mazimal domain is not all of
R, then the image of v cannot lie in any compact subset of X.

Proof. Let (a,b) be the maximal domain of v where —oco < a < 0 < b < 0co. Let
p =~(0) and let ® denote the flow of V', so v = ®(-,p) = ®.(p).

Assume that b < oo and y((a,b)) C K where K is a compact subset of X.
Let {t;} be a sequence of times approaching b from below. By our assumption
{7(t;)} lies in K, and since K is compact, then there exists a subsequence of
{7(t;)} converging to a point ¢ € X. Let U be a relatively compact neighborhood
of g and let € > 0 such that ® is defined on (—e¢, €) x U. We choose i large enough
so that v(¢;) € U and t; > b — e. Now we define o: (a,t; + €) — X by:

t) ~(t) ifa<t<b
g =
Oy 0Dy (p) ift, —e<t<t,+e

Note that these two definitions agree where they overlap, because ®,_,;, o
;. (p) = Pi(p) = () by the group law of ®. Therefore, o is an integral curve ex-
tending ~, which contradicts the maximality! We had assumed that the maximal
domain is (a, b). O

Remark 3.1.7. Let V' be a vector field with flow map ®,. Let t; = inf{t € R :
®, exists} < 0o. So, the flow map exists for t € [0,t1). Since @, is an integral
curve of V- whose mazimal domain is not all of R, then by the escape lemma, it
has to leave any compact.

Theorem 3.1.8. Let X be a compact manifold. Then every smooth vector field
on X 1is complete, which means that the flow map of the vector field is defined for
all time.

Proof. Let X be a compact manifold, and V' a smooth vector field on X. By the
converse of the preceding lemma, every smooth vector field is complete. O

Assume that Qy = {x € X : (0,2) € Q} # 0. We fix a compact set K C Q,
and let ¢y > 0 such that the flow ®,(z) = ®,(x) exists and remain in Q; when
x € K and t € [0,ty]. Set Ky = &,(K) C ;. For any € > 0 we let

K(e) ={z e R" : dist(z, K) = in}f{|x—y| < €}
ye
S(e) ={(t,z) e RxR": 0 <t <ty dist(z, K;) < €}

Set 19 = (1 + tg)eP > 1 where B is the Lipschitz constant from Theorem 3.1.5.
Choose ¢, > 0 sufficiently small so that S(eny) € 2.

Theorem 3.1.9. Assume that for some ¢ € (0,¢y) we have a continuous map
Ve: Q — R"(a time dependent vector field) satisfying:
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IV =Vl oo (senoy) < €
Then, the flow ®¢(x) of V£ with ®§(x) = x exists for all x € K(€) and for all
t € [0,t0] and it satisfies the estimate:
s — Bf[| 2 (k0 < Lo |V = V| oo (s(eno)» t € 10, 0]

Proof. Let A(€) = [[V = V| oo (s(eno))-
Let x € K( ). We set f(t) = |®(z) — P¢(x)|. Since f(0) = |Po(z) — P§(x)| =
|z — 2| =0, £®,(2) = Va,(») and by the triangular inequality we have:

[Vs(@s(2) = VE(@5(2)]ds

< / Va(@u(x)) — V(@ (2))]ds
/ V(@4 (2)) — Vi@ (2)) + Vo(@(2)) — V(@ (2))]ds
< [ Wt - Vi@ + [ VaGwita) - vi@i(e)as

By the hypothesis that V' satisfies the uniform Lipschitz estimate with Lip-
schitz constant B, we have:

<Bh/@ o (e m+/ﬁvv 2)) — V(O (x)|ds
~B. / F(s)ds + / Vo (®5(2)) — VE(@(2))]ds
Now, suppose that ®¢(x) € K(eno):

5 (x) € Ky(eng) < dist(Pf(x), Ky) < eng < (¢, D5(x)) € S(eno)

So, we have:

ﬂgB:[f@@+A@¢

therefore, by Gronwall’s inequality we have:

F(t) < Ae)toe™
Let’s show that & € K,(enp).
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The preceding theorem gives us ®;(r) € K;(eeP?). Assume that @ exists for
t € [0,%], we have that:

dist(®y(z), K;) = dist(P5(x) — ®y(z) + Py(x), Ky)
< [@i(x) — @f)| + dist(Py(2), K)
< A(e)tgeP! + ee”
< etoeBt + eeB?

< e(ty + 1)eP = eng

Note that we used the assumption that A(e) < e and the definition of 7.

Now, to get a contradiction, assume that ®¢ does not exist for some t € [0, ¢g].
By the local existence theorem, ®¢ exists for small enough ¢ > 0. Let ¢; = inf{t >
0 : ®¢ does not exist}, therefore ® is well defined for ¢ € [0,¢1). By Remark 3.1.7
following the Escape lemma, we have that:

Jim |;(2)]| = o0

We showed earlier that if ®§ exists, then:
||(Dt — @gHLOO(K(e)) < tgeBtHV - VEHLDO(S(enO)) =C<xxfor0<t<ty

However, ||| = ||®§ — @y + §y|| < || P — P4 + || P4]| < C + Co. Note that
|®:]] < C since ®; is continuous on the compact [0,%,] hence an upper bound
exists. We reached a contradiction, therefore our assumption is false! Hence, ®f
exists for all ¢ € [0, t], which implies that ®¢ € K,(enp). O

Definition 3.1.10. Let ®; be the flow of a vector field V. The Lie derivative
Ly W of a vector field W with respect to V' is defined by:

d
LyW=—| &W
v dt|,_y
Proposition 3.1.11. Let V and W be vector fields on X where @, is the flow of
V. Then: p
ECPIW = O (LyW) (3.1)

Moreover, if LyW =0 then, ®;W =W for all t

Proof. Let s =t + u, then by the group law of flows we have:

o, = cI)t-l—u =®, 0P,

So that,
QW = oy (drW)
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Now we differentiate w.r.t. s at s =t and we get:

d d d
—QIW = — OHPIW) =) | — QW | =0 (LyW
dt ¢t duu:O t(u ) t(duu:(]u ) t(V )
So, if Ly W = 0 we have:
d
—®iW =0
dt "

we integrate from 0 to t:

t

d

0= / TOIWds = O — S5W
0

Finally we have &;W = W. [

Proposition 3.1.12. Let f: X — Y be a smooth map and V and W be vector
fields on'Y such that V = f*V and W = f*W, then:

F(LgW) = LyW

Proof. Let @ be the flow of V. Then, fo ®;, = ZIv)t o f, since
So, we have:

OIW = &7 f* W = (f 0 b)) W = (B, 0 f) W = f*(&: W)

Now we differentiate with respect to ¢t at t = 0, and we get:

d
LyW = —
W=

d -~ —
W = - <I>;‘§W) = [ (LaW)

ram - (4

t=0 t=0 t=0

Moreover, if f: X — Y is a diffeomorphism, then:
Lyv W = fu(LvW)
Indeed, since V = (f*)"'V = £,V and W= (f)~'V = f.W we have:

Liv W = (f) (L W) = (f) I W) = LTy W) =

Theorem 3.1.13 (Canonical form theorem). Let V' be a C* vector field on an
n-dimensional manifold X. If V, # 0 for some p € X then there exist local
coordinates u = (uq,. .., uy,) in a neighborhood of p such that V = 8%1.
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Proof. By the way coordinate vector fields are defined on a manifold, a smooth

chart (U, ) will satisfy the conclusion of the theorem if (go_l)*(a%l) =V.
Let’s choose a smooth local coordinate = = (z1,...,x,) around p, we may

think of X as an open set U C R", and V' as a vector field on U. Since V, # 0
we may assume that V' has a nonzero x;-component at p.

Let ®: 2 — U be the flow of V. There exist ¢ > 0 and an open neighborhood
Uy C U of p, such that (—e, ) xUy C Q. Let Sy C Uy such that Sy = UpN{x; = 0},
and define S € R"! by

S = {(ug,...,up) : (0,us,...,u,) € Sp}.
Define a smooth map ¢: (—¢,€) x S — U by

Wt ug,y ... uy) = P(0,us, ... uy)
First we will show that ¢ pushes % forward to V. For any (tg,ug) € (—¢,€) X S,

we have
0 0
(w* & (to,uo)) f - & (f ’ w)

(to,u0)

0
7|, (@0.w)

= Vl/)(tmuo)f

On the other hand, when 1) is restricted to {0} x S,
(0, u, ... uy) = Po(0,ug, ..., u,) = (0,uz,...,u,), SO
0

0

1=2,...,n.

(0,0) p

Thus at (0,0), 1. takes the basis

0 0 f)
(&‘(o,o)’ uz | (0,0 (0,0)> to (V},, 9oz |,

zero xp-component, this is also a basis, so 1, is an isomorphism. Therefore, by
the inverse function theorem, there are neighborhoods W of (0,0) and Y of p
such that ¢: W — Y is a diffeomorphism.

Let ¢ = ¢~': Y — W, which is a smooth coordinate map.The equation

0

)7...,%

2]

,...’Ep

). Since V), has a non-

<¢* %‘ (t07u0)> J = Visto,uo) J says precisely that V' is the coordinate vector field %
in these coordinates. With ¢ renamed to wuq, this is what we wanted to prove. [J

Let V and W be smooth vector fields on a smooth manifold M. We define
[V, W]: C*(M) — C>°(M), which is called the Lie bracket of V and W, defined
by
V,WIf=VWf-WVf

27



Lemma 3.1.14. Let V., W be smooth vector fields on a smooth manifold M, and
let V.= Zvi% and W = ija%j be the coordinate expressions for V and
W in terms of some smooth local coordinates (x;) for M. Then [V, W] has the
following coordinate expression:

oW aViN 9

Proof. See [10, Lemma 4.13]. O

Lemma 3.1.15. For every f,g € C°(M), for every smooth vector field V.W we

have:
[fV.gW] = fglV.W]+ (fVg)W — (gW [)V

Proof. See [10, Lemma 4.15]. O

Proposition 3.1.16. Let V and W be Ct vector fields on a manifold X, then:
LyW = [V, W]

Proof. Let R(V) = {p € X : V,, # 0}. By the continuity of V, R(V) is an open
set in X and suppV = W

First we will show that LyW = [V, W] on R(V). Let p € R(V). We can choose
local coordinates z = (z1,...,x,) such that V' = 8%1 with flow ®;(zq,...,2,) =
(x1+t,xo,...,x,) by Theorem 3.1.13 page 26. Let W = Z?Zl bj(:v)%, It’s easy
to see that the matrix representation of ®; is the identity matrix for a fixed ¢ at
any given point in these coordinates. Let u € U where (U, (z1,...,x,)) is the
local coordinate chart. Then:

* * - a
(D)) Wo,w) = ¥ <Z bj(z) £
J

= 0

= bj(x); <— )
; ’ T |, (u)
& 0

=D bi(@) (@), <— >
jgl ’ 8xj Dy (u)

Such that,
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Using the definition of Lie derivative we get:

d
(LyW),, = pr (@) W, ()
t=0
d : %)
= — b; t ey L) ——
dt o (]z:; ]($1+ y L2y ey T ) ax] u)

&b 9
_Zlaxl(.ﬁ[l,...,xn) axj .

Therefore, by comparing this to the expression of the Lie bracket in coordinates,
we see that Ly W = [V, W].

Second, we will show that Ly W = [V, W] on supp V. This follows from the
continuity and he fact that supp V' is the closure of R(V).

Finally we will show that Ly W = [V, W] on X —supp V. Let p € X —supp V.
Then V' = 0 on a neighborhood U of p, that is [V, W] = LyW = 0 on U, since
[V, W] = VW — WV and the flow map of the zero vector field is a constant. [

Theorem 3.1.17. IfV and W are vector fields with flows ®;, W, then [V, W] =0
if and only if &, 0 Wy = W, o ®; holds on the domain of the composition.

Proof. First let us assume that &, 0o W, = U, 0 ;. Let x be in the domain of the
composition, we have:

d d
£(¢t oW,)(r) = d\lf(x)q’tg‘l’s(x) = (d,2)Pt) W, (@) = ()W )a,(w.(2))
L (@00,)(@) = (@).7)
-5 s)\U) = * t(x
dS s=0 ¢ ¢ (=)
On the other hand we have:
4 U, 0dy(x) =W.
ds ls=0 B )= ®e(2)

Therefore, ((9;).W)e, () = Wa, @) for all t. Let y = (®;')(z) = ®_4(x). Since
the above identity is true for all ¢, by replacing ®,(x) by ®_;(x) we can see that:

(O;W), =W, <= ;W =W
Differentiating at t = 0 we get:

d
— W =LyW
dt lt=0 W v
d
—| W=0
dt lt=0
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— LyW =0

— [V, W] = 0 by Proposition 3.1.16.

Conversely, we assume that [V, W] =0 (i.e. LyW = 0).
By Equation (3.1) page 25 we have:

d
ZOW =@ (Ly V)

and since Ly W = 0 we have:

BW = W = (&,).W = W,
Consider the path R 3 s+ v(s) = ©;(V,(x)). We have:

dry d
7 (8) = (20): - Us(2) = (20) W) = Wayw. ) = Wis)

So, v is an integral curve of W.
Now we consider the path R 5 s — o(s) = Uy(Dy(x)). We have:

do
E(S) = Wo(s)

So, o is an integral curve of W. Moreover, we have:
7(0) = ©4(Wo(x)) = Pu()

(0) = Wo(P(2)) = y(2)

Therefore, by the uniqueness of integral curves, we have y(s) = o(s) = ®,0¥, =
\Ijs (¢] CI)t. ]

Theorem 3.1.18. If V and W are vector fields with flows ®;, U, respectively
and t > 0, then:

d
[‘/,W]x:% O‘P_\/zoq)_\/zo\lf\/goq)\/i(l')
t=

Proof. Recall the Taylor expansion formula of ®;(x) and V,(z) at t = 0:

2

By (x) = Bo(x) + tdo(x) + %élso(x) + O

U (x) = Wo(x) + o (x) + %qko(x) + O

First, notice that £®,(z) = Va,(z) and 2W,(z) = Wy, ().

Second, we see that%@t(a:) = Jo,)V - Va,(2) and %Wt(az) = Ju, )W - Wy, (2)-
So,
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t2
Qy(x) = +tV, + EJ,;V Vi +0(t?)

t2
Uy(x) =a+tW, + W Wat O(t?)

First we calculate ¥ 5 0 ® z(x):

t
V(@ yi(2)) = () + ViWs ) + 370 4@ We 4@ + O(tV1)
=z + ViV, + VtW,

+t(J”E2V-%+JxW-w+Jx2VV-Wx) +O(tV1)

Second, we calculate W_ ;0 ®_ ;(x):

t
V4@ (@) =P () = ViWe @)+ 37e_ i) Wa_ ) + O(tV'1)
= VIV DLV V- VW,
¢
+ELWVe 4 S LW - We + O(tvt)

Finally, we will calculate ¥_ ;0 ®_ ;0W ;0® 4(z):

U_ (D (P 4(P4(2)) = o+ VIV, + %Jxv Vi + VW, +tI,W -V,
+ éwa W — VIV, +VELY -V,
VLV W) + gjmv Vi
V(W + VELW Ve VLW - W, )

t
+t,W -V, + §JxW W, + O(tV1)

=z +t,W -V, —tJ,V - W, + O(t\/t)
=z +t-[V,W], + O(tV1)

And so, we have:

d
[‘/’W]IZE @7\/{0@7\/{0@\/{0@\/{(1‘) L]

t=0

Remark 3.1.19. Theorem 3.1.18 is stated only for t > 0. What if t <0 7. We
know that ®_; = ®; is the flow map of the vector field =V and V_; = U, is the
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]jOUJ map of —W. Lett <0, then —t > 0. This means that \i_ﬁ =WV = and
¢_ /= =P = So, by Theorem 3.1.18 we have:

d
dt
d

dt

VWl =[-V,-W], = Ej—ﬁt ° &)—ﬁt o \Tjﬁt © &)Ft@)

t=0

\Ilﬁtoq)ﬁto\llfﬁtoq)ﬂpt(x)
t=0

Therefore in general, for any t € R we have:

d

o V- a0/ © P sn/1 © Visantoyy /1 © Poantey /71 (%)

3.2 Algorithms and Computing Flows

The main purpose of this subsection is to show that a flow of a vector field V'
which is determined by finitely many vector fields V7, ..., V,, can be approximated
by flow maps of these finitely many vector fields vector fields. See [5, Chapter 4].

Definition 3.2.1. Let V' be a continuous vector field on a manifold X, let
A(t,z) = Ai(x) be a continuous map A: U — X where {0} x X C U C [0,00) x X
1s open. A is said to be an algorithm for V if:

1. Ao(z) =2 Vo € X.
2. Vo= %&|,_, Alx) Vo e X
3. Ay(z) is C in t with derivatives continuous in (t,x)

Theorem 3.2.2. Let V' be a Lipschitz continuous vector field with flow ®; on a
manifold X . Let Q0 be the fundamental domain of V' and Q.+ = QN (]0,00) x X).
If A is an algorithm for V', then for all (t,x) € Q. the n-th iterate A"} (x) of the

map A: is defined for sufficiently large n € N (n = n(z,t)), and we have that
lim A% (x) = &,(z)
n—oo n

The convergence is uniform on compacts in Q.. Conversely, if A% (x) is

defined and converges for 0 <t <ty then (tp,x) € Q4 and
lim,, o0 At () = Dy(x).

Proof. For X =R™.

Let p € R™ be fixed, and suppose that ®;(p) exists for t € [0, ¢y).

Let C' = {P:(p) : t € [0,10]}. Notice that C' = ®&({p} x [0, 1¢]), so C' is a compact
subset of R™.
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Choose compacts L1 C Ly C R™ such that C' C loll Cc Ly C ig C L.

We claim that there is a compact neighborhood K C [o/l of p such that Vx € K
the flow ®,(z) exists for ¢t € [0,ty] and remains in L;. Indeed, ® is uniformly
continuous on Ly since ® is continuous on the compact set Lq, that is for all
€ > 0 there exists § > 0 such that for all z,y € Ly and for all t € [0,ty] we have
[@,(z) — ®4(y)|| < € whenever ||z —y|| < d. Let e = dist(C, X — L;) and let
K = B(p,6). So K is indeed compact and is a subset of L. Now, let z € K, we
will show that ®,(z) € L;. Since z € K there exists a sequence (z,)neny C B(p,0)
such that ||z, — x| — 0 as n — oo (Note that by the continuity of ®;(-) we have
|P4(x,) — Pi(2)|| — 0 as n — o0). Now,

[2n —pll <0 = [[Pe(zn) — Pu(p)]| < e
= &y (z,) € B(Py,p) for alln € N
= (IDt(:B) € B(@t(p),f) C L1

The definition of an algorithm tells us that:

0
Ap(x) =x 5 . A(x) =V,
We also know that: 5
(I)O(J}) =X a o q)t(ﬁ) = Vx
= 21 (Al 2) - ayx) = 0
at|,_, - 0=
o (A7) = Bu(a)) = (Ao(a) = Bofw))
t—0 t— 0
. lim Alt, ) — Oy(x) 0
t—0 t

= |, () — Ai(z)| = o(t) uniformly on Ly

Let’s show that why do we have |®,(z) — A¢(z)| = o(t) uniformly on Ly. Let
F(t,xz) = w. Let g € Ly and let € > 0. By the continuity of F(¢,x),
there exists v > 0 such that |F(t,y) — F(t,20)| < § whenever y € B(xzg,7).
Moreover, there exists a 0 > 0 such that |F(t,z0)| < § whenever || < J.
So, |F(t,y)| < |F(t,y) — F(t,z0)| + |F(t,20)] < € whenever y € B(z,7) and
|t| < 0. We do this for every x(, and we get an open cover for the set Ly. By
the compactness of Ly there exists a finite sub-cover where Ly C Uf\il B(xi,vi).
Since any y € Lo is contained in one of the balls B(z;,v;) we have |F(t,y)| < ¢
for |t] <.

Now, we fix n € N and let + € K. Assume that for the moment that the
orbits,

Y =, y1=A%(y0), yzzA (yl),--~, ynZA (ynq)

t t
n n
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exist and they lie in Ls.
Lemma 3.1.5 gives us the estimate:

|y(2) — i(y)] < ™|z -yl
Also, notice that ®* (z) = ®x (x) by the group law for k =1,... n.

k
Claim : @%(x) — A’% = Z(@]z_j(@%(yj_ﬁ) — q)]%_j(A (yj-1)))

Indeed, —
k
S @@ (35 1)) — (A 1)) =B (@ (50)) — (A (00)
(@ (yr) — (AL (wr)

t t t
= n n n n
k t(k—j)
J
§§ S I(Pt(y]—l)_A%(y]—l)l
i=1

:>|cbkt(x)—A’z(a:)lgeﬁtf-k-o(f),kzl,...,n

Now we will show that the orbits do exist and they lie in Ly by induction.
First of all, note that A is continuous and Ls is compact. So there exists some
time t9 such that A;(x) exists for x € Ly and t € [0,t5]. Choose n large enough
(that is £ < #5) so that A: exists.

For k£ = 0, we have yy = 1z which exists trivially.

Now assume that y, = A« (yr—1) is well defined and lies in Lo. We will show
that yrr1 = A (yg) is well defined and lies in L,.

Indeed, ykfl is well defined since y; lies in Ly by the induction hypothesis.

tk

We just need to show that v lies in Ls. Notice that lim,,_,. e - k- o(t) =0,

t
n
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that is, for every € > 0 there exists N € N such that for every n > N we
have ‘eﬁ% ko(%)‘ < €. For every x € K set C, = {P(z) : t € [0,%2]} let

€ = 5 infuex(dist(Cy, X — Ly)). So we will have that:
| B (x) — A% (7)] < €

which shows that A:(yx) € L.

Now, for the converse statement we have assumed that the iterates A% (x)
are well-defined and converges for 0 < ¢t < ¢;. We just need to show that
lim, oo A% (x) = ®y(z). The flow map P, exists for sufficiently small ¢, that
is, set t; = inf{t > 0 : ®, does not exist}, so ®; exists for t € [0,¢;). Moreover,
by using the inequality shown above for k£ = n;

() — A% (2)] <m0 (%)

we have lim,, . A%t (z) = &4(x) for t € [0,¢1). But, we wish to show that this is

true for ¢ € [0, to]. For the sake of reaching a contradiction, suppose that ®, does
not exist for some t € [0,t9]. By Remark 3.1.7 of the Escape lemma, we have
that:

lim || ®y(x)|| = o0

t—t1

We showed earlier that if &, exists, then:

|By(z) — A% (x)] < e n-o (E) for t € [0,t)

n

For fixed n € N we have,

[e(2)[| = [[@1(2) — Ae(x) + A (2]

< 1,(x) — Ax (@)]] + | Ax ()]
<o (L) 4 14, @

Allowing t — t1, we get infinity on the left side and a constant on the right
side, contradiction! Therefore our assumption is false, hence ®; exists for ¢t €
0,t0], which implies that lim, . A:(x) = $y(z). O

Proposition 3.2.3. Let V and W be vector fields with flows ®; and ¥, respec-
tively. Then,

1. &, 0V, is an algorithm for V 4+ W.

2. W_jz0®_ s0W f0® ;s an algorithm for [V, W].
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Proof. 1. By the Taylor expansion of flows:
y(z) =z + tV, + O(t?)
(1) = o +tW, + O(?)

so that, ®,(V,(z)) = z + tW, + tV, + O(¢?).

0
ot],_,

Also, (®g o Wg)(x) = Pg(x) = x. Therefore: A(t,z) = &, o Uy(z) is an
algorithm for V + W.
Let (; be the flow of V + W then by Theorem 3.2.2 we have:

lim (®eoWe)(z) = (i(x)

n——+00 n n

2. Let A(t,z) = (V_50P_ z0W 0 4)(z). By Theorem 3.1.18 we have:

0

— At,z) = [V, W], A0,z) ==z
ot

so, A(t, z) is an algorithm for [V, W].
Let n; be the flow map of [V, W]. So by Theorem 3.2.2 we have:

A (Y ro pol ped m)i(x)=m() =
Remark 3.2.4. In Proposition 3.2.3 part 1, we can assume ®; and ¥, to be
algorithms of V- and W respectively, the same result will follow.

By a repeated application of this proposition and the preceding theorem we
have the following important result. But first, we need a couple of definitions.

Definition 3.2.5. A Lie algebra g over a field F is a F-vector space endowed with
a map called the Lie bracket from g X g to g, usually denoted by (V, W) — [V, W],
that satisfies the following properties for all Vi, V5, V3 € g:

1. Bilinearity: For a,b € F
(Vi + bVa, Vi) = alVi, Va] + b[Va, Vi
[V, aVi + bVa] = a[Vs, V] + b[V3, V2

2. Antisymetry:
Vi,Vi] =0
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3. Jacobi Identity:

Vi, [Va, Va]] + [Va, [Va, Vi]] + [Va, [V1, Vo]l = O

Definition 3.2.6. Let g be a Lie algebra over F. Then a linear subspace U C g
1s a Lie subalgebra if U is closed under the Lie bracket of g:

Vi, Vo] €U YA, V5 €U

Definition 3.2.7. Let g be a Lie algebra over F, and let U C g. We call (U) the
Lie subalgebra generated by U, where:

(U) = ﬂ{[ C g: 1 is a Lie subalgebra of g containing U}

Corollary 3.2.8. Let Vi,...,V,, be R-complete holomorphic vector fields on a
complex manifold X. Let V € (Vi,..., V). Assume that K is a compact set in
X and ty > 0 is such that the flow ®y(x) of V exists for every x € K and for
all t € [0,to]. Then ®y is a uniform limit on K of a sequence of compositions
of time forward maps of the vector fields Vi, ..., V,,. In particular ®,, can be
approzimated uniformly on K by holomorphic automorphisms of X.

Proof. We will prove the following result using induction.
First, let us define the sets that we need in order to proceed.

UOZU:{‘/l,,Vm}
Uk+1 = span{[Wl,Wg],Wl . Wl,WQ - Uk}

We claim that (U) = |J, oy Ur- To prove this, we have to show that J, . Us is
the smallest Lie algebra containing U. It is trivial to see that U C (J,cy Ur. Now
we have to show that UkeN Uy is a Lie algebra. Notice that Uy C U; C --- C
Up CUks1 C ... So, Ugey Uk is a Lie algebra.

We just have to show that | J, . Ui is the smallest Lie algebra containing U.
Indeed, let L be a Lie algebra containing U, and let W € |J .y Ur = JFk € N :
W € Uy, = W is an element formed by taking a certain number of successive
-, -]-operations on the vector fields in U, but this implies that W € L, since L is
closed under taking [-,-]’s. Therefore (U) = (J,cy Uk-

Step 1: The base case, the flow of every element in Uy can be approximated
uniformly on compacts by a finite number of composition of complete low maps
of the vector fields Vi,...,V,,. Well, this is quite trivial, there is no need for
an approximation, since the flow is equal to itself everywhere, particularly on
compacts.

Step 2: The inductive step, suppose that the flow map of every element in Uy,
can be approximated uniformly on compacts by a finite number of composition
of complete flow maps of the vector fields V4, ..., V,,, we need to show that the
same is true for every flow map in Uy .
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For V' = [W;, Ws] such that Wy, Wy € Uy. Let ®"* and ®;"2 be the flow maps
for W, and W5 respectively. By the induction hypothesis, there exists flow maps
©Ory ..o b of the complete vector fields Vi, ..., Vj,, such that for any
given € > 0 we have:

sup  (dist(®," (2), (¢} 0 -+~ 0 p1)()) < e

z€K,te(0,to]

sup  (dist(®}" (), (15 0 - 0 }) () < €

z€K,te[0,to]

. oy W2 W1 W2 W]
By part 2 of the preceding proposition we have that, ® “po od iy CID\[ <I>\/

is an algorithm for V' = [W7, W5]. Moreover the preceding theorem gives us the
following;:

00 oo =

uniformly on K, where (; is the flow map of V.
Since the convergence is uniform on K we have, Ve > 0 AN € N; Vn > N

and Vo € K dlst((q)wi/_ o (IDWi/_ o @m\?_ o @V\?Z)"(x), Gi(z)) < 5. Let

fn(x):((qﬁi\/gO- O¢ \/—) (90\/3 "o \/—) (\/— O¢\/—)

(¢ om0 o) (a)
Wa OW1 OW20W1n
gn(T) = ((I)_\/_CI)\/_CD\/_CI)\/_)()

We wish to show that lim,, , f.(z) = (;(z) uniformly on K.
Let x € K, by the triangular inequality we have:

I1Ge(x) = fu(@)llx = [ICe(x) = ful@) = gn(2) + gn(2) &
< NIG(@) = gn(@)lxe + [1fn(2) = gn(2) ]| x
< et [[fule) = gul@) |k

Now, concerning || f,.() — gn(2)]|| x
Consider the map defined by (End(X))? x R — End(X) defined by (®, ¥, t) —
(¥ \/zoq)_ \/IO\II \/ZO‘I) +) which is continuous in the compact open topology.
So, [Gi(2) ~ fulo) s < .

Finally let us deal with linear combinations. Suppose V' = W; 4+ Wj, such
that Wi, Wy € Uy, and let CI>ZV t CIDXV 2 be the flow maps of W; and W5 respectively.
We follow the same method of proof that we did concerning the Lie bracket |-, ].
The only difference is that the algorithm for V is ®}"* o ®}"2. [l

|+
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CHAPTER 4

VECTOR FIELDS ON THE
KORAS—RUSSELL CUBIC

In this chapter we study some particular vector fields on the Koras—Rusell cubic.
Moreover we show that they are complete.

In [11], Leuenberger defines vector fields on a space X as follows. Let n >
k>0 and let a,b € Clz,...,2,] such that deg, (a) < 2 and deg, (b) < 1 for all
i <k Let z=(z20,...,2,) and X = {z%y = a(2) + zb(2)}. Now, we define the
following vector fields on X:

Ja ob. 0 0

o 2
0z +xazi)8y e 0z;

, Jda ob. 0 0
‘7 p— —_— _— - z
and v, (82]- * xf)zj)@x + 2y b(z))azj

vy = (

for 0 <i <nand 0 < j <k and moreover, let

Ve T “(z)x% — (2a(2)y — xyb(z) + bz(z))a%

Notice that, the Koras—Russell Cubic is this space X for a(z) = —28 — 2} and
b(z) = —1 where zZ = (z9, z1). We will rename these vector fields (associated to
the Koras—Russell cubic) from 0%, v! 09 v, to U, V, W, E . They turn out to be

x? Yx y7
complete vector fields, that is, their flow maps are defined for all time.
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Theorem 4.0.1. The following four vector fields

U= —22% + xQ%

V= —BwQ(% + :1:2%

W = —22% + (2zy + 1)%)

E=—x(2*+ wg)% —(=2( +w)y + 2y + 1)6%
H:6x3— a—FSZQ—I—Qwi

Gy —
ox y@y 0z ow
on X ={(z,y,z,w) € C*: 2%y + x + 2* + w* = 0} are complete.

Proof. 1. Let y(t) = (x(t),y(t), 2(t), w(t)) be an integral curve for the vector
field U = =222 + 222, This implies that 4(t) = U, which is equivalent
0 0z y(t)
to the following system of Ordinary differential equations,

(t) =

yt) = —2z(t)
A(t) = 2°(t)
w(t) =0
= z(t) = c1, y(t) = —2(ct + c3), 2(t) = ¢}t + c3 and w(t) = ¢4. So, we
have:
z(t) = ¢
y(t) = _C%tQ + C3t + co
2(t) = At + c3
w(t) = ¢y
= (t) = (c1, —At* + c3t + co, 3t + 3, ¢4). Therefore the flow map of U
is given by,

Oy (z,y, z,w) = (z, —2*t* — 22t +y, 2%t + 2z, w)
which is defined for all time.

2. Let 6(t) = (x(t),y(t), 2(t),w(t)) be an integral curve for the vector field
V. So, 6(t) = V4(), which is equivalent to the following system of ordinary
differential equations,

i(t) =0

§(t) = —3w(t)
£(t) =0

w(t) = 2*(t)



— z(t) = ¢, y(t) = —cit? = 3c2cqt? — 33t + o, 2(t) = c3, w(t) = A3t + ¢y.
= (t) = (a1, —cit® — 3ckest? — 3c3t + c2, 3, ¢t + ¢4). Therefore the flow
map of V' is given by,

Uy (2, y, z,w) = (2, —2*t® — 3wt — 3zwt* +y, 2z, 2°t + w)
which is defined for all time.

. Consider the vector field W. Let €(t) = (z(t), y(t), 2(t), w(t)) be an integral
curve for W. So, é(t) = Wy, that is:

(t) = —22( )
y(t) =
Z()—QI() () +1
w(t) =
This implies that y(t) = ¢z and w(t) = ¢4. Now, 2(t) = 2coz(t) + 1 =

Z(t) = 2coi(t) = 2(t) = —4022( ). We have to solve the following ODE:

The corresponding characteristic equation is m? + 4c, = 0 which implies
that m = 41 - 2,/cy. So, this yields

2(t) = Ay cos(2v/cat) + Ay sin(24/cat)

after taking the derivative of z(t) we get:

2(t) = —2A1/casin(2+/cat) + 2A94/c cos(24/cat)

but, 2(t) = 2cox(t) + 1, which means:

x(t) = —A1£ sin(2y/cat) + A2£ cos(2y/cat) —

02 202
() = —Alﬁ Sin(2y/G5t) + A27 cos(2+/et) — 2;

= €(t) = (— Alfs1n(2\/_t)+A2fcos(2\/_t) 55 C2, A1 co8(2,/Cat) +

Ay sin(2,/cat), c4).
Let y(z,y, z,w) be the flow map of W. We have, po(z,y, z,w) = (x,y, z, w)
and @y(z,y, z,w) = W, (z,,20)- S0,

AQ 1 A 1

Yy==0e
Z:Al
W = C4
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Therefore, Ay = x,/y + 5=, which gives us our flow map:

2f’
iy, 2 w) = (% in(2y/Ft)+ cos(24/3it) + i(cos,(z\/gt) 1)y

z cos(2/yt) + (z/y + —=) sin(2,/yt), w)

\/_

Notice the, the flow map is well defined for all time. However, we have a
singularity at y = 0. As it turns out, it is a removable singularity since,

sin(2,/yt 1 2,/yt 2,/yt)°
CYT) Ly, gy YR @URP
N g
43y 4t5y2
=2t — — —
3 * 15
1 1 (2ymt)?  2yyt)t (2/yt)°
;[COS(Q\/@t) —1] = ;[— TR ol +...]
2tt 41592
ey A My pR
YT
Finally, the complex square root is also well defined, since #@ sin(—/y) =

\/i@ sin(/y) and cos(2(—4/y)t) = cos(2,/yt). That is, the result is the same

regardless if we chose —v/- or ++/-.

. Consider the vector field

E=—x(+ wg)2 — (22> + w®)y + 2y + 1)82

ox

We want to show that it’s complete. Let ( = (z(t),y(¢), 2(t), w(t)) be a
integral curve for £. Then,

#(t) = —ax(t)(z°(t) + w’(t))

(1) = 2(22(t) +w’()y(t) — z(t)y(t) — 1
A(t) =0

w(t) =0

So, we have that z(t) = ¢5, w(t) = ¢4 and z(t) = cre(G+D? To find y(t),
we used some rudimentary ODE techniques. Let A = ¢3 + ¢j.

g(t) —2X\y(t) + crexp(=A-t)y(t) + 1 =0
y(t) = (2A —cre™M)y(t) +1=0

The corresponding homogeneous equation is:
§(t) = A = cre™)y(t) = 0
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By separation of variables we get:

Yo (t) _ 0262)\1%%%—”

Now we wish to find a particular solution y,(t), so that y(t) = yo(t) + y,(t).
Let y,(t) = u(t)y1(t) where y;(t) = E2M+ e So,

Up(t)
Up(t)

C1 7)\t

u(t)
w(t)y(t) + ()?ﬁ(t)
)

=t p2Mt+Te + u(t) (21 — Cle—/\t)e%t—s—%eﬂt

By substituting vy, and g, in the ODE, we get:
Go(t) = A+ 1)y, (t) =1 =0
u(t)ew*%e’“ +u(t) (21 — Clef)\t)GQ)\tJrchef)\t
—(2X — cre Mu(t)eM e = 1

u(t)e2kt+%e7>\t = _1
Finally, all is left to solve is the following:
U,(t) — _e—QAt—i-che_’\t
After integration we have:

A Ay
u(t) = _—(e i Cl)e_%eﬂt
C1

Therefore,

el 1 A
y(t) = CzeQ)\t—&-Tle M (e)\t + 2 2)\t)

So finally we have

C(t) _ (Clef(cngci)‘t, 0262)\t+%e*)‘t i l(e)\t + AeQ)\t)’ cs, C4)
C1 C1
Let v;(z,y, 2, w) be the flow map of V. Then, by the definition of flow map,
we have that, ¥o(z,y, z,w) = (z,y,2,w) and (2, y, 2,w) = Vi(ayzw)-
Therefore,

wt<x7y727w> =
) 1 2 3
(we= G+ (y 4 5(1 Skl

1

T —(224w3
e D2

2 3
(et L Z T8 v TN 2 w)

X
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First of all, notice that the flow is defined for all time. Second, it appears
that we have a few singularities. Since we’re in the Koras—Russell Cubic,
let’s use the fact that z? + w® = —(2%y + x) for the second component of
the flow map. We get

_(IQy + l’) ))ezszs (e 2+t 1) pa(22 i)

1
~(1
(y+x( + "

2
B le(zz+w3)t(1 n —(z%y + ‘r)e(z2+w3)t)
x

= _le(z2+w3)t(1 — et _ ettty
€
= —ie(zzﬂ"s)t(l — e*(zzyﬂﬁ)t) + ye2(z2+w3)t

By Taylor expanding %(1 — e~ (@¥+2)t) we see that the singularity at
x = 0 vanishes. Finally,the flow map of E is defined for all time, has no
singularities, and is give as follows:

(22 4wd)t 1 (e(z2+w3)t n 2 + w? 62(zg+w3)t)

T i

Uz, y, z,w) = (xe” L Z,W)

. Consider the vector field

H is a vector field on the Koras—Russell cubic since:

H(z?y + 2+ 2° + w®) = 62(2zy + 1) — 6y(2?) + 32(22) + 2w(3w?)
= 6(x%y + 7+ 2* + w?)
=0
Now, let’s show that H is a complete vector field.
Let o(t) = (z(t),y(t), z(t), w(t)) be an integral curve for H. That is, 6(t) =
Hg (), which is equivalent to the following system of ordinary differential
equations,

@(t) = 6z(t)
y(t) = —6y(t)
5(t) = 32(1)
w(t) = 2w(t)
So, we can easily see that o(t) = (c1e%, ce % c3e®, cse?'). And finally, the

flow map of H is given by,
pt(xv Y, =, w) = (xefjta ye_Gta Zegta we2t)

which is complete, as it is defined for all time. n
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Remark 4.0.2. Notice that [U,V] =0, indeed:

B 0 5 0 5 0 )

U, V] = {—2zay+$ 55’ 3w ay+x 5
0 5 0 a 50
= | =22 3w ) PR
[ Qzay, 3w ay} —i—{ zay,x e

0 0 0

20 5 20 20 2 0
+{”’”a’3 8y}+{3z’ D

=0
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CHAPTER 5

THE DENSITY PROPERTY OF THE
KORAS—RUSSELL CUBIC

The main purpose of this chapter is to show that the Koras—Russell cubic X
has the density property. We will need a few ingredients. Namely, we will show
that Auty(X) acts transitively on X, (V, W) are compatible pairs, and W, is a
generating set of 7, X for a generic point p € X. In this chapter, we make use
of the following references: Leuenberger [11], Andrist and Kutzschebauch [4] and
Munkres [12].

5.1 Shears and Overshears

Definition 5.1.1 ([4, Definition 3.1]).

Let X be a complex manifold and let © be a C-complete vector field on X ,i.e. the
flow map of © exists for all complex times. A wvector field f - O, f € O(X) is
called a ©-shear vector field if ©(f) = 0. It is called a ©-overshear vector field if
©%(f) = 0.

Proposition 5.1.2. Let X be a complex manifold and let A be a C—complete
vector field on X, then all A—shear fields are C—complete. In fact, if 1, denotes
the flow map of A, the the flow map (; of f - A is given by

Gi(2) = Yrp((2)

Proof. We need to show that (;(z) is the flow map of the vector field © = f - A.
First, it’s trivial to see that (y(2) = ¥o.f(»)(2) = 1(2) = 2. Now, we need to show

that {;(z) = O¢,(-). Indeed, (4(2) = 4(¢(2)) = L(Wrs)(2) = [(2)Urs)(2) =
f(z)Al/wﬂZ) = O¢(2)- -

Lemma 5.1.3 ([4, Lemma 3.3)).
Let X be a complex manifold and let V' be a C-complete vector field on X, then
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all 'V -overshear vector fields are C-complete as well. In fact, if ¢; denotes the
flow map of V', then the flow map ¢, of f -V is given by

Vi(2) = by () () (2)

where e: C — C 1s given by

X k-1 ¢ 1
5(C) = Z Ck' = : C
k=1

Proof. First, let us compute £1(z). Note that, e(t0.(f)) - tf(z) = etengf_l (2).

d d
E”[Aﬁ(Z) = %gbet@zf_l (z)(Z)

Oz f
Ry szetGZf
- (b%f(z) (Z) ’ @Zf f(Z)

= Oy, (») - [(2)e'®

Second, we will calculate £ f(1(2)).

d .
a/ Wn(2) = du f o duoer sy (2) - f(2)e'®!
= [(2)e"% Oy, f

Note that %@wt(z) f = 0 because ©%(f) = 0. We can compare higher order
derivatives:

dm
g [ ((2)) = F(2)e' (0. 1)" - Oy f

A () O = (e - (@.1)"

Notice that for ¢ = 0 and for all m € N the values above agree. Therefore,

F(W(2) = f(2)e'®= and Zap(2) = f(2) - Oy (a)- s

Remark 5.1.4. Using Lemma 5.1.3, we can say the following about the vector
fields from Theorem 4.0.1:

1. If f(z,y, z,w) = 2'w™ for some l,m € N, then f € kerU, that is: fU is a
U—shear vector field. Moreover, if f(z,y, z,w) = zz'w™ for some l,m € N,
then f € ker U? that is, fU is a U—overshear.

2. If f(x,y,z,w) = 22" for some I,n € N, then f € kerV, that is: fV is a
V —shear vector field. Moreover, if f(x,y, z,w) = wa'z" for some l,m € N,
then f € ker V2 that is, fV is a V—overshear vector field.
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5.2 The Kaliman—Kutzschebauch Formula

Proposition 5.2.1 (Kaliman—Kutzschebauch formula). Let © and A be two vec-
tor fields on a manifold X. Then,

[hfO,gA] — [fO©,hgA] = —fgO(h)A — fgA(h)O
=—fg(O(h)A — A(h)O)

Proof.
[hfO,gA] = hfglO©,A] + hfO(9)A — gA(hf)©
= hfgl®,Al + hfO(g)A — g(fA(R) + hA(f))O
= hfg[@,/\] +hfO(g)A — gfA(h)O — ghA(f)O
[f©,hgA] = fhg[©,A] + fO(hg)A — hgA(f)©
= [hg[®,A] + f(9O(h) + hO(g))A — hgA(f)O
= [hg[©,A] + fgO(R)A + fhO(g)A — hgA(f)©
Therefore,
[hfO,gA] — [fO©,hgA] = —fgO(R)A — fgA(h)© O

Remark 5.2.2. Suppose that we add the assumption that ©(f) = A(g) = 0,
©%(h) = 0 but O(h) # 0, and A(h) = 0. Then,

[hfO,gA] — [fO, hgA] = — fgO(h)A

we can observe that, hf®, g\, fO, and hgA are all complete vector fields, if ©
and A were complete. Using this variant of the Kaliman—Kutzschebauch formula
1s a strategic way to go, since we can find new vector fields using complete ones.

Remark 5.2.3. The reason we stated the Kaliman—Kutzschebauch formula is
because of the missing commutator on the right hand side. In Theorem 4.0.1,
U, V] = 0. However, we don’t have the same for the rest, i.e. [U, W], [U, E],
[V.W], [V, E], [W, E] # 0.
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5.3 The Density Property

Definition 5.3.1. Let X be a complex manifold. Let f: X — X be a holomorphic
map. We say that f is a holomorphic automorphism if f is bijective and f=' is
holomorphic.

Notation 5.3.2.
1. We will denote the space of holomorphic automorphisms on X by Autye (X).
2. We will denote the space of holomorphic vector fields on X by VFpq(X).

3. We will denote the set of complete holomorphic vector fields on X
by CVFhOl(X).

Definition 5.3.3 ([12, Page 82]).

A subbasis S for a topology on X is a collection of subsets of X whose union
equals X . The topology generated by the subbasis S is defined to be the collection
T of all unions of finite intersections of elements of S.

Definition 5.3.4 ([12, Page 285]).
Let X and'Y be topological spaces. If K is a compact subspace of X and U is an
open subset of Y, define

S(K,U)={f: f€C(X,Y) and f(K) C U}.

The sets S(K,U) form a subbasis for a topology on C(X,Y) that is called the
compact open topology.

Definition 5.3.5 ([16, Section 1]). Let X be a Stein manifold. If the Lie algebra
Lie(CVFpa (X)) generated by the complete holomorphic vector fields CVFyq(X)
on X is dense (in the compact open topology) in the Lie algebra of all holomorphic
vector fields VFy(X), then X has the density property.

Note that C" for n > 2 also has the algebraic density property. Note that
a complex algebraic manifold is said to have the algebraic density property if
the Lie algebra generated by the complete algebraic vector fields on the manifold
coincides with the Lie algebra of all algebraic vector fields. In fact, in his paper,
Andrist [3] shows that the Lie algera of polynomial vector fields on C™ can be
generated by three complete polynomial vector fields.

The main implication of the density property is the so called Andersén—
Lempert theorem. The proof can be found in Andersén-Lempert [2], Forstneric—
Rosay [6], [7] and Varolin [16].

Theorem 5.3.6 (Andersén—Lempert Theorem). Let X be a Stein manifold with
the density property. Let Q C X be a Stein open subset and let ¢: [0,1] x Q — X
be a Ct-smooth map such that
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1. po: Q — X is the natural embedding.
2. ¢ Q@ — X is holomorphic and injective for every t € [0, 1].
3. ¢1(Q2) is a Runge subset of X for every t € [0, 1].

Then for every € > 0 and for every compact K C €2, there exists a continuous
family ®: [0,1] — Aut(X) such that ®g = Idx and ||¢; — P4||x < €.

Moreover, these automorphisms can be chosen to be compositions of flows of
completely integrable generators of any dense Lie subalgebra g of Lie(VFpq(X)).

Remark 5.3.7 (Andersén-Lempert Theorem and Corollary 3.2.8).

Notice that in Corollary 3.2.8, given a vector field V € Lie({Vi,...,V,,}), where
the V;’s are complete, we can approximate uniformly the flow map of V' by com-
positions of the flow maps of the V;’s. In the Andersén—Lempert Theorem, we can
approzimate any automorphism in the path—connected component of the identity,
by compositions of the flow maps of the vector fields in the dense Lie subalgebra

Of Lie(VFhol(X)) .
Lemma 5.3.8. f(z,w)E € CVFq(X) for every f € C[z,w].

Proof. We have shown in Theorem 4.0.1 that E is complete.
Moreover, E(f(z,w)) = 0 for all f € C[z,w], then f(z,w)FE is an E—shear vector
field, whose flow map is given by 7 = 1. hence it’s complete. [

Definition 5.3.9. Let G be a group with identity e and let X be a nonempty set.
A left group action of G on X is a map from Gx X — X, defined by (g,x) — g-x
that satisfies the following two conditions:

1. For every g1,92 € G and for every x € X, g1 - (g2 - ) = (q192) - .
2. For everyx € X, e-x = 1.

Definition 5.3.10. We say that a group G acts transitively on a set X if there
exists x € X such that G-x = X.

Note: Here, our set is X = {(z,y,z,w) € C!' : 2%y + z + 2* + w? = 0}
and our group G = Autpg(X). The action of Auty,(X) on X is given by,
(f, (x,y,z,w)) — f(x,y,z,w), where f € Autyo(X) and (z,y, z,w) € X.

Lemma 5.3.11. The group Auty,(X) acts transitively on X — {x = 0}.

Proof. Let F, = {(z,y,2,w) € X : © = ¢} where ¢ # 0. Note that (J o Fe =
X — {z = 0}. So, to show transitivity, we need to show that for any points p,
q € X —{x = 0} there exists an automorphism f € Auty,(X) such that f(p) = q.

Claim: For any two points p,q € F, for some ¢ # 0 there exists an automor-
phism g € Auty,(X) such that g(p) = q.
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Indeed, let p = (¢, y1, 21, w1) € F. and ¢ = (¢, Yo, 22, w2) € F.. Recall that the
flow maps of the vector fields U and V' from Theorem 4.0.1 are given by:

O,(z,y, z,w) = (z, —2*t* — 22t +y, 2%t + 2z, w)
Uy (2, y, 2, w) = (2, —2*t® — 3wt — 32°wt? +y, 2, 2%t + w)

We will find ¢, s, 7 € C such that &, o ¥ 0 d,(p) = gq.

P, 0 W, 0Py(p) = (¢, —*1° = 2(c*t + 21)7 — c's® — Bwis — 3cPw;s* — At

— 22t + yl,CQ(t +7)+ 2, s+ wy)

Let s = #25% and 7+t = 25, Now, if we substitute s and ¢t = 23* — 7 in the
equation:

153 — 3wls — 3cPw s — AP — 2t +yy = o

—*r? = 2(Pt+ 2T — ¢
we get a polynomial in 7. By the fundamental theorem of algebra, there exists a
To which satisfies the polynomial equation. Hence, we have a found 7y, ¢y, s € C
such that @, o U, 0 &, (p) = g¢.
Claim: Let ¢1, cg € C* such that ¢; # co. Then, for every p € F,, and for every
q € F, there exists an automorphism h € Auty,(X) such that h(p) = q.
Consider the vector field E from Theorem 4.0.1 and its flow map, which was
given by:

2 3
g[} x Z.W) = $e—(22+w3)t _l e(z2+w3)t + 2 tw e2(z2+w3)t
t\ T, Y, 2, )

x x ),2:w)

Let p = (c1,y1, 21,w1) € X —{z = 0} and let ¢ = (ca, Yo, 22, w2) € X — {z = 0}.
If 22 +w} = —By; — 1 = —ci(c1yn — 1) # 0. Notice that the first component
of 4(p) is cre~ Gt By the surjectivity of the exponential map we can find
a tg € C such that cle_(zfﬂ”?)t = ¢y, and then using the first claim we can flow
Wy, (p) to ¢ using the flow maps of U and V. If on the other hand, we have
cy1 = 1, first we flow out p from the curve c;y; = 1 in F,, using the flow maps
of U and V, and then we proceed like in the first case. Therefore for every
points p,q € X — {x = 0} we found an automorphism f € Auty,(X) such that

) =q 0
Theorem 5.3.12. Auty,(X) acts transitively on X .

Proof. In the preceding lemma, we showed that for any points p, ¢ € X —{z = 0}
there exists an automorphism f € Auty(X) such that f(p) = ¢. Now, we will
consider a point p = (0,yy, 21, w;) € {x = 0} and we need to show that for any
point ¢ = (3, Ya2, 22, we) € X there exists an automorphism f € Auty(X) such

o1



that f(p) = q. First let us consider ¢ = (¢, yg, 22, wy) € F, for some ¢ # 0. Let
W be the vector field from Theorem 4.0.1, with flow map:

o, Yy, 2z, w) = (% sin(2./yt)+x cos(2/yt) + i(cos,(Q\/ﬂt) —1),y,

2 cos(2:/yt) + (z1/y + =—=) sin(2/yt), w)

\/_

Notice that, the first component of ¢;(p) is
——sin(2 t cos(2 t)—1
\/y— (2V/nt) + ( (2y/yit) — 1)

If z; = 0, then there exists tg € C*, ¢y, (p) € Fu for some ¢ € C*. Also, if z; # 0,
the Taylor expansion of the first component of ¢;(p) is:

443 4t° 2t6

221t — t? - — 24
(22 )+(3 z))'zl>yl+<1s'>z1 45)ler

Hence, there exists a t, € C* such that oy (p) € F for some ¢’ € C*. So,
regardless what the value of z; is, there exists ¢; € C* such that ¢, (p) € F,, for
some ty € C*. Now, by the second claim of the preceding lemma, we know that
there exits an automorphism f € Auty,(X) such that f(p,(p)) = q.

If ¢ = (0,92, 29, w2) € Fy, then there exists tg, so € C* such that ¢y, (p) € F,
and p,, (p) € F, for some ¢y, c3 € C*. Again, by the second claim of the preceding
lemma there exists an automorphism f € Autyo(X) such that f(¢y, (p)) = ¢s,(q)-

And 50, Spfso(f(gpto (p))) =4q. L

Definition 5.3.13 ([11, Definition 2.9)).

A semi-compatible pair is a pair (v,p) of complete vector fields such that the
closure of the linear span of the product of the kernels kerv - ker i contains a
non-trivial ideal I C O(X). We call I a compatible ideal of (v, ).

Note: The ideal I is not unique. In most applications O(X) itself serves as
the ideal.

Definition 5.3.14 ([11, Definition 2.11]). A semi-compatible pair (v, j1) is called a
compatible pair if there is a holomorphic function h € O(X) with v(h) € kerv—0
and h € ker . We call h a compatible function of the pair (v, ).

Example 5.3.15. On C", for n > 2 with coordinates z = (z1, ..., z,) the pair of

vector fields (821, 8‘2 ) are compatible with h = z; and I = O(C"™), moreover 8%2

18 a generating set for each tangent space.

Lemma 5.3.16. The pair (V,W) is a compatible pair.
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Proof. First, let us show that the pair (V, W) is a semi-compatible pair. Indeed
the kernel of V' contains the functions depending on x,z and the kernel of W
contains the functions depending on y, w; thus the closure of span{ker V - ker W'}
is equal to O(X) and in particular contains an ideal.

For (V, W) to be a compatible pair, we need a function h € ker W such that
V(h) € kerV—0. Let h =w € ker W, and V(w) = 2* # 0 and V(w) € ker V. [

Definition 5.3.17. Let G be a group acting on a set X. Let x € X be a fixed
element of the group. The subgroup G, = {g € G : g-x = x} is called the
stabilizer of x.

Definition 5.3.18 ([11, Definition 2.4]).
Letp e X. A set Q C T,X s called a generating set for T,X if the orbit of
of the induced action of the stabilizer Autp(X), = {f € Autpa(X) : f(p) = p}

contains a basis of T,.X.

Lemma 5.3.19. For a generic point p € X = {(z,y,z,w) € C*: 2%y + 1 + 2% +
w® = 0}, the vector W, is a generating set for T,X.

Proof. 1t is sufficient to find one point since spanning is an open condition and
hence will fail only on a thin set. Let p = (x¢,y0,1,0) € X where x5 # 0. Let
v € CVFpo(X) and f € kerv with f(p) = 0. Consider the flow map of v given
by (; € Autpo(X). Let n; = (i be the flow map of fv. Notice that the time-1
map of fv is given by (y where ((f)(q) = (f(q)(q). Consider the induced action
by these time-1 maps on 7, X which is given by v +— v + v(f)r(p). To see this,
let’s Taylor expand (;(q).

i) = g+ tvg + O(t?)
Also, we have that
@) =fp) + Jpf - (a—p)+O(lg — p|*) = Jpf - (@ —p) + O(lg — p|*)

Finally,
Criy(@) = a+ f(@)vg + O(f(9)?)

Combining all the linear terms, and considering v, = v, + non-linear terms
we get:

Cria(@) =+ (of - (g —p) vy + O(f(9)*) + Ollg — pII*)
=g+ (B (@=2) v+ O (|5 - (a =) + OCla = pIP)|[")
+O0(llg = plI*)
=p+(a—p)+ (Lf - (a=p) v+ O(lg —pl*)
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We conclude that
dpCr(v) = v+ dpf(v) - 1
The vector fields U,V € CVF,,(X) with f = 2 — 29 € ker U, ker V, with
time-1 maps given by ®,_,,V,_5 € Autpe(X),.

By (2, 2w) = (2,y — 22w — 20)%? — 22(x — o), 2 + 2°(x — ), w)

\Pz—:co (l’, Y, <, U)) = (:L‘7 Yy—= ZL‘4(ZE - :L‘O)g - 3[L’21U(ZL‘ - 170)2_
3w?(x — o), z,w + 2 (x — 70))
The orbit of W, under the Auty(X),—action are given by: W,, W, — 2U,

and W, — 2V}, due to Id, ®,_,, and V,_,, € Auty,(X),. In vector notation W,
W, —2U, and W, — 2V}, correspond to

—2 -2 -2
0 4 0
2z0y0 + 1 | 7| =222 +2z0y0 + 1 | 7 | 2moy0 + 1
0 0 —2x3
Since these three vectors are independent in 7, X, they form a basis. O

Now that we have proved Autyq(X) acts transitively on X, (V, W) are com-
patible pairs, and {W,} for a generic p € X is a generating for 7,X, we can prove
the density property for the Koras—Russell cubic.

Definition 5.3.20. Let X be a complex manifold of dimension n. The subset
Y C X is said to be Runge if, for every K C'Y compact, for every f € O(Y)
and for every € > 0 there exists F' € O(X) such that ||f — F||x <e.

Lemma 5.3.21. Let {s;}, C T(X) where T(X) is the set of global sections
of the tangent bundle. Let p € X and m, = {f € O(X) : f(p) = 0}. If {s; +
m, T (X)}Y, span the vector space T(X)/m,T(X) = T,X, then the localizations
(si)p generate T.

Proof. Since s1],, S2lp, - - - Sn|p span the tangent space 7, X where the vector space
T,X has dimension d < N, then without loss of generality, we can say that
S1lp, - - - Salp 1s a basis of T,X. Let ((z1,...,24),U) be a coordinate neighborhood
of p. That is to say, in local coordinates we can write s; = 2?21 ZJ a%- on a
neighborhood W of p. At p we know that:

R
fa I3 - Td
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So, the determinant is not zero in a neighborhood as well. Let © = ijl gj£
J

on a neighborhood of p, then we can write © = Z?Zl h;s; in a neighborhood of
p, where the h; are holomorphic in that neighborhood. O

Lemma 5.3.22. [f the elements (s;), generate the stalks §, for all points p €
X. Then every global section v € F(X) is of the form > fis; for some global
holomorphic functions f; € O(X).

Proof. See [13, Theorem 6.25]. O

Remark 5.3.23. The proof of Lemma 5.3.22 requires Theorem B of Cartan which
states that H?(X,§) = 0 for all p > 0 where X is a Stein manifold and § is a
coherent sheaf.

Corollary 5.3.24. Given © € T(X) a holomorphic vector field on X we can
write © = ZZ]\LI gisi where g; € O(X) and sq,. .., Sy are the sections from Lemma
5.5.21.

Proof. By taking the coherent sheaf § from Lemma 5.3.22 to be the tangent sheaf

T concludes the proof. Note that the tangent sheaf is coherent since it is locally
free. O]

Lemma 5.3.25. Let Y C X be a domain of X which is Runge and Stein. If
the elements (s;), generate the stalks F, for all points p € Y, then every global
section v € T(X) can be uniformly approximated on compacts K C'Y by global
sections of the form Y fis; for some global holomorphic functions f; € O(X).

Proof. Let v € T(X) be a global section, consider its restriction v|y € T(Y).
By Corollary 5.3.24 we have v|y = Zf;l g;s; for some holomorphic functions
g; € O(Y). Since Y is given to be a Runge domain and K C Y is compact, let
€ > 0, there exists f; € O(X) such that ||f; — gi||x < % - sup||s;||x. Thus, || —
Zi\il fisil| < sup||si||x le\il ||fi — gillx < €. Therefore we have approximated
the global section v by sections Zfil fis; uniformly on compacts K C Y. O]

Lemma 5.3.26. The submodule O(X) - 2% - W of VFy,1(X) is contained in the
closure of Lie(CVFyq(X)).

Proof. Notice that O(X) = span{kerV - kerW}. Let f € kerV and g €
ker W, then by Proposition 5.1.2 and Proposition 5.1.3 fV, fwV, gW, gwW €
CVF}0(X). By the Kaliman Kutzschebauch formula we have:

[fV, guW] — [fwV, gW] = fgz*W € Lie(CVF,(X)).

Thus an arbitrary element > (fig;)z*W € O(X) - 2? - W with f; € kerV and
g; € ker W is contained in Lie(CVFy(X)). O

Theorem 5.3.27. The Koras—Russell cubic X has the density property.
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Proof. We know that W, for a generic p € X is a generating set. Moreover, we
saw that W, W, — 2V, and W, — 2U, form a basis for the tangent space T, X. Let
A={a€e X :T,X # span{W,, W, — 2V,, W, — 2U,}} which is analytic. From
hereon let vy =W, v =W =2V, v3 =W — 2U.

Let |JK; = X be an exhaustion of X by O—convex compacts. For any
K = K, let Y be a neighborhood of K which is Stein and Runge, and moreover,
the closure of Y is compact. (The existence of Y can be found in Theorem 5.1.6
and Theorem 5.2.8 from Lars Hormander’s textbook [8]).

Claim: After adding finitely many complete vector fields alongside W, we get
that Y N A = 0.

Sub-claim: Y N A is a finite union of irreducible analytic subsets.

First, we prove the sub-claim. Notice that Y N A is a closed subset of the compact
set Y. For every p € YN A there exists U, a neighborhood of p and a holomorphic
map H,: U, — C', such that U,N A = {z € U, : Hy(z) = 0}. The open sets
U, form an open covering of the compact set Y N A. By compactness, there
exists a finite sub-cover Uy, ..., Uy. Assume to get a contradiction that there are
infinitely many irreducible analytic subsets. Then, by the pigeonhole principle
there exists a Uj, which contains infinitely many irreducible analytic subsets, call
them Ay, Ay, .... For each irreducible analytic subset A; choose a point a; € A;
such that a; ¢ Ay, for all k # j. Let p be an accumulation point of the sequence
{a;}32,. By [13, Chapter LE.3.9, page 40] there is a polydisc P(p,d) such that
AN P(p,d) can be written as a finite union of irreducible analytic sets. This
contradicts our assumption, and hence ends the proof of the sub-claim.

Let Ag C A be an irreducible component of maximal dimension. Let a € Ay
and ¢ € Autye(X) such that ¢(a) € Y — A, we can do this by transitivity. Since
¢(a) & A then, span{vi(¢(a)), v2(¢(a)), v3(d(a))} = Ty X by taking pullbacks
we get span{(¢*v1)(a), (¢*1e)(a), (¢*v3)(a)} = T,X. Thus after adding these
pullbacks among the vector field 14, 15, v3, the component Ay N'Y is replace by
finitely many components of lower dimension. Repeating the same procedure in-
ductively we get after finitely many steps a list of complete vector fields vy, ..., vy
such that ANY = 0.

Let T be the tangent sheaf. It is coherent because it is locally free. Since
the vectors v;(a) span T, X for all a € Y, then by Lemma 5.3.21 the assumption
of Corollary 5.3.24 holds. Therefore, by Lemma 5.3.25 every vector field on
X can be approximated uniformly on K by elements of the form Y fiv; for
some holomorphic functions f; € O(X). Also, by Lemma 5.3.26 the submodule
generated by the finite list of ;s is contained in the closure of Lie(CVFj, (X))
(Note that this property still holds after enlarging the list of vector fields since
we're pulling back W using diffeomorphisms; uniform approximation on compacts
is preserved by pullbacks of diffeomorphisms and automorphisms). Therefore
every holomorphic vector field is in the closure of Lie(CVF}y (X)), which means
X has the density property. O
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Remark 5.3.28. The proofs of Lemma 5.3.8, Lemma 5.3.11, Theorem 5.5.12,
Lemma 5.3.16, Lemma 5.3.19, Lemma 5.3.21, Lemma 5.3.25, Lemma 5.3.26 and
Theorem 5.3.27 can be found in the paper of Leuenberger [11]. However, we have
modified the proofs for the Koras—Russell cubic, since Leuenberger gave a more
general proof for a family of submanifolds, where the Koras—Russell cubic is just
one member of that family.
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CHAPTER 6

Li1ST OF GENERATORS

Lemma 6.0.1. Let U = —2z8% + 222 and V = —3w28% + 222 Using the
complete vector fields U, V, 2zU, w2V, wz?zV ,wV, w*2U and w?zaU, we can

generate the following vector fields:

w2V, zw?atU fori=0,1,2,...
22V, was'U fori=23,4,...
22"V, wa'U fori1=45,6,...
o'V, o'U fori1=26,7,8,...

Proof. 1. First, let us generate w222V using 2U, wz?V, wz*zV.

[2U,wz?V] = 2U(w2?)V = 22%wx*V
[2U, 22%w2?V] = 2U(2z*wa*)V = 42%wa*V
[2U, 42*wx*V] = 2U(42*w2*)V = 82%wa’V

[2U, 2i_lz2wx2i_2\/] = ZU(Qi_lz2wx2i_2)V = 2122wV

So, using zU and w22V we were able to generate zwx*V. Now we will
generate zwx* 1V using 2zU and wz?zV.

[2U, wz*zV] = 2U(w2’z)V = 222wV
[2U, 222wx V] = 2U(22*w2®)V = 42°wz’V
[2U, 42°wx’ V] = 2U (42*w2®)V = 82%wa"V

[2U, 27 22wa® V] = 2U (27 22 wa® YV = 2022w TV

Therefore, using 2U, wz?V and wz?xV we have generated z?wz'V for i =
0,1,2,...
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Similarly we will generate the vector fields of the form zw?z'U using wV,
2w?U and zw?zU.

Now, we will get the even powers in x, zw?z*V using wV and zw?U.
[wV, 2w?U] = wV (z2w*)U = 2zw?2*U
[wV, 2zw2*U] = wV (222U = dzw?a*U
WV, 4zw?r* U] = wV (4zw?2x*)U = 8zw?a®U

[wV, 27 2?2?20 = wV (27 2w®2® AU = 2 2w*2®' U
So,using wV and 2w?U we have generated zw?z*U. Now, we will generate
2w?2*U using wV and zw?aU.
[wV, zw?zU] = wV (2 2) = 22w 2°U
[wV, 220230 = wV (2z0°2*)U = 42w?2°U
[wV, 42w 2°U) = wV (42w’2°)U = 8zw?x"U

[wV, 2" 2w e~ 1U] = wV (2" 2w YU = 2 zw?a® U
Therefore, using wV, zw?U and zw?zU we have generated zw?z‘U for
i=0,1,2...
2. Now, we will add U and V' to our list of vector fields to get rid of the z and

w terms from zw?x'U and wz?z'V respectively.
First, using V and z2wz'V for i =0,1,2,... we get:
[V, 22wV] = V(wz*)V = 2%2°V
[V, 22waV] = V(wz*z2)V = 2%2°V
[V, 22wz?V] = V(w22 V = 222*V

[V, 22wz'V] = V(Z2wa") = 22wV

U, 20?*U) = U(zw*)U = w?z*U
U, 20*xU] = U(zw?*2)U = w?a*U
U, z2w?2*U) = U(zw?a*)U = wa*U

U, z2w*2'U] = U(zw?a")U = w?a™ U

Therefore, using V, U, wz?2'V and zw?z'U for i = 0,1,2,... we have
generated z22'V and w?z'U for i = 2,3,...
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3. Now, using the vector fields that we have, particularly U,V, z2z‘V and
22U for i = 2,3, ... we will generate z2'V and wa'U for i = 4,5, ...

Apply [U, ] to 222V for i = 2,3,... and we get the vector fields of the
form za'V for i =4,5,...
Apply [V, ] to w?z?U and we get the vector fields of the form wx'U for
i=45,...
Finally, we apply [U, -] and [V,-] to 22’V and wa'U for i = 4,5,... re-
spectively, and we get the vector fields of the form z‘V and z'U for i =
6,7, ... 0

Lemma 6.0.2. Given the vector fields U,V ,W and E from Theorem 4.0.1, the
vector fields used and found from Lemma 6.0.1 and the complete vector fields
22V wE 222V ,Ew?U 2E, w*aU, W and wW we can generate the following vec-
tor fields:

20'F fori=2,34,...

22'E fori=2,3,4,...

20'W fori=2,34,...

Proof. 1. By the Kaliman—Kutzschebauch formula, we have:
[hfV,gE] — [fV,hgE] = —fgV(h)E where V(h) # 0, V*(h) = 0 and
E(h)=0. Let h = w and g = 1,

f =2 =[wz*V,E] — [*V,wE]| = —2*2°E

f =220 = w22V, E] — [Z*2V,wE] = —2*2°F
f = 2% =[w?2?V, E] — [*2*V,wE] = —2*2'E
f = 220" = [wz*2'V, E] — [*2'V,wE] = —2*2"?E

So, using 22V ,E,wE and z%xV we were able to generate 2x'E for i =
2,3,...

2. By the Kaliman—Kutzschebauch formula, we have:
|hfU,gE| — [fU,hgE] = —fgU(h)E where U(h) # 0, U*(h) = 0 and
E(h) =0. Let h=zand g =1,

f =w® =[2w2U, E] — [w*V, 2E] = —w2x2E
f = w*r =[z2w’2U, E] — [w*2V, 2E] = —w?a*
f = wr? =[2w*2*U, E] — [w*2°U, 2E] = —w2x4E
f = wr' =[2w*2'U, E] — [w’2'U, 2E] = —w*r"°E

60



So, using E.w?U,2E and w?zxU we were able to generate w?x'E for i =
2,3,...

3. By the Kaliman—Kutzschebauch formula, we have:
(hfV,gW] — [fV,hgW] = —fgV (h)W where V(h) # 0, V*(h) = 0 and
W(h) =0. Let h =w and g = 1,
f =22 =[wz2V, W] — [*V,uW] = —2*2*W
f=22r = w2V, W] — [Z22V,wW] = —2*2°W

f =220 = [w*V, W] — [2*2°V,wW] = —2%2*'W
f =220 = w2V, W] — 22"V, uW] = =222 W
So, using W and wW we were able to generate 22x'W for i =2,3,... O

Remark 6.0.3. Note that we can’t make a symmetric argument using the Kali-
man Kutzschebauch formula for U and W, since if we take h = z, which is an
overshear of U, we will have W (z) = 2zy + 1 # 0.

Lemma 6.0.4. Given the vector fields U, V' from Theorem 4.0.1, the vector fields
used and found from Lemma 6.0.1, and the vector fields used in Lemma 6.0.2, we
can generate the following vector fields:
222U fori=38,9,10,...
22U fori=10,11,12...
22V fori=38,9,10,...
wa'V fori=10,11,12, ...
Pwa'Vo fori=10,11,12,...
32V fori=12,13,14, . ..
wi22'U  fori=10,11,12, ...
32U fori=12,13,14, ...
Proof. 1. By the Kaliman—Kutzschebauch formula, we have:

(hfV,gU]=[fV,hgU] = —fgV (h)U where V(h) # 0, V*(h) = 0 and U(h) =
0 Let h = w and g = 25,

f =2 =[wz2?V,2°U] — [2*V, wxﬁU] — %8
f = 22r = w22V, 2°U] — [222V, watU] =
f =220 = [w22?V, 2°U] — [2%2°V, waU)] = —2 IIOU
f =22 = [w?2'V, 2°U] — [2*2'V, wa'U] = —2*2" U
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So, using previously known vector field we were able to generate z2x'U for
i=28,9,10,... Moreover, if we apply [U, -] on 222U for i = 8,9,10,..., we
will generate zz'U for i = 10,11,12, ...

2. By the Kaliman—Kutzschebauch formula, we have:
[hfU,gV] — [fU,hgV] = —fgU(R)V where U(h) # 0, U*(h) = 0 and
V(h) =0. Let h =z and g = af,

f =w? =[20?U, 2°V] — [w?U, 22°V] = —w*2®V
f = w*r =[2w’2U, 2°V] — [w*aU, 22°V] = —w?2V
f = w*s? =[2w*2?U, 2°V] — [w?2?U, 22°V] = —w?2' 0V
f = w*r' =[2w?*2'U, 2°U] — [w*a'U, 22°V] = —w?a" 7V

So, using previously known vector field we were able to generate w?z‘V for
i=38,9,10,... Moreover, if we apply [V, -] on w?z'V for i = 8,9,10,..., we
will generate wa'V for i = 10,11,12, ...

3. Consider the vector fields wz?V and 222U for i = 8,9,10,... We apply
[-,wz*V] to the vector fields 222U for i = 8,9,10,... and we get z3wz'V
for i = 10,11,12,... Moreover, we apply [V, -] on the vector fields z3wz'V
for i = 10,11,12,... and we get 232’V for i = 12,13, 14, ...

4. Consider the vector fields zw?U and w22’V for i = 8,9,10,... We apply
[-, zw?U] on the vector fields w?z'V for i = 8,9,10,... and we get w?zz'U
for i = 10,11,12,... Moreover, we apply [U, -] on the vector fields w?zz'U
and we get the w32'U for i = 12,13, 14, . ..

L]

Lemma 6.0.5. Given the vector fields U,V and W. Using the complete vector
fields U, yW, ywW and all the needed vector fields from the previous lemmas, we
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can generate the following vector fields:
B2U fori=2,3,4,...
Pwc'U  fori=2,3,4,...
AU fori=2,3,4,...
y2*c'W fori=4,5,6,...
y* W
zayW
v rzW
yvirzwW
y2*2'U  fori=4,5,6,...
2w?c'U  fori=4,5,6,...
AW fori=4,5,6,. ..
L2W o fori =
B2V fori=2,3,4,...
Pwr'Vo fori=2,3,4,...
22V fori=2,34...
y222'V fori=4,5,6,...
2w’V fori=4,5,6,...
Bwx'W fori=4,5,6,...
y2 s W fori=5,6,7,...
Proof. 1. By the Kaliman—Kutzschebauch formula we have:
[hfW, gU] = [fW, hgU] = = fgW (R)U — fgU(h)W
For g = 1, h = x and f = 2% for i = 2,3,4,... we get, 232U for

i—=2.3.4,...
For g = w? h = o and f = 2% for i = 2,3,4,... we get, 25w?z'U for
i=2.34,. ..
For g = zw?x' for i = 0,1,2,..., h = z and f = 222% we get, z*w?2'U for
i—2.3.4,. ..

2. By the Kaliman—Kutzschebauch formula we have:
[fRV, gW] = [fV,ghW] = = fgV ()W — fgW (h)V

For g =y, h = w and f = 222" for i = 2,3,4,... we get yz?z'W for
i—=4,56,...

For f =1, h = 2 and ¢ = y we have yz?W. Moreover, we can get the
following vector fields: [W,yz?W] = zzyW, [yW,yx?*W] = y*zzW and
[ywW, y2? W] = y2zwzW.
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3. Again, by the Kaliman—-Kutzchebauch formula for U and W, for f = 1,
h =z and g = yz%a® for i = 4,5,6,... we get yz*2'U for i = 4,5,6,....
Moreover, [V, yz3z'U] = z3w?z'U for i = 4,5,6,. ..

For h=1vy, g =1 and f = 232" we get z*2'W for i = 4,5,6,....
For f = z32* h =y and g = 2°2* we get 252'W for i = 8,9, 10, . ..

4. Using the Kaliman-Kutzschebauch formula for V and W, for f =1, h==
and f = 222! for i = 2,3,4,... we get 232'V fori=2,3,4,...

For g = 222%, h = x and f = 22wz’ for i = 0,1,2,... we get z5wa’V for
i—2,3.4,...
For h = z, f = 22 and g = 2% for i = 2,3,4,... we get 2°2'V for
i=2.34,. ..

For f =1, h = z and g = y2%2® for i = 4,5,6,... we get yz32'V for
i=4,56,... Moreover, [V,yz32'V] = 23w?z'V for i = 4,5,6, ...
For h =y, g =1 and f = 232 for i = 4,5,6,... we get 23w?2'W for

1=4,5,6,...
For h =y, g = yxz and f = 2%2% for i = 4,5,6,... we get yz*w?z'W for
1=25,6,7,... O

In all these computations we have used the complete vector fields U, V, zU,
w22V, w2V wV, w?2U, w?zaU, 22V wE, 222V, E, w?U, zE, w?aU, W, wW,
zU, yW and ywW. We let V = {1;}?%, to be these complete vector fields, and
{ni}#, be the flow maps of the vector fields in V. Let W be all the vector fields
we have found using V, where W C Lie(V) C Lie(CVF}q(X)).

Note that, to achieve the density property for the Koras—Russell cubic we
need three crucial steps. The first being that Auty(X) acts transitively on X,
where we used the vector fields U, V, W and E. Second, we showed that W), for
a generic point p € X is a generating set for 7,X. Here we used zU and zV'.
Finally, we showed that the submodule O(X) - 2% - T is contained in the closure
of Lie(CVFy1(X)), where we used the vector fields z%2'V | waz*2'V and y™w"W
for any k,l,m,n € N. Denote the collection of all the vector fields need to prove
the density property by D, and let {¢/} be the flow maps of the vector fields in
D.

Notice that using the twenty vector fields in V, we were able to find the vector
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fields M = {u}}7_, given by

wr'Z?V i=0,1,2,...
22V =234, ...
22'V 1 =4,5,6,...
'V i=6,7,8,...
wa'V i =10,11,12,...
223V i=23,4,...
wr'Z’V i=2,3,4,...

which are all required to prove the density property of the threefold. Let A be
the flow maps of the vector fields in (D — M) U V.

Let F' be an automorphism on X, which is in the path—connected component
of the identity. That is, there exists ¢;: X — X, such that ¢y =1Id and p; = F.
Note that ¢, satisfies the three conditions of the Andersén—Lempert theorem,
namely Q = X and ¢;(X) = X is a Runge subset of X for every ¢ € [0, 1] trivially.
So ; can be approximated by a composition of flows from A, in particular, we
can approximate F' by compositions of the flows in A.

Theorem 6.0.6. Any automorphism F in the path-connencted component of the
wdentity map can be approximated uniformly by compositions of flow maps from

A.
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