
AMERICAN UNIVERSITY OF BEIRUT

INTEGRABLE GENERATORS OF LIE
ALGEBRAS OF VECTOR FIELDS ON THE
KORAS–RUSSELL CUBIC THREEFOLD

by

ESTEPAN KIRAKOS ASHKARIAN

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Science
to the Department of Mathematics

of the Faculty of Arts and Sciences
at the American University of Beirut

Beirut, Lebanon
April 2022





May 10, 2022



ACKNOWLEDGEMENTS

My journey in AUB started during the fall semester of the academic year
2020–2021. It wasn’t a conventional semester, given that a pandemic was roaming
on Earth, so we were forced to proceed the academic year virtually. In my first
semester I enrolled in two courses, Complex Analysis (Math 304) and Rings and
Modules (Math 341). The analysis course was taught by professor Faruk Abi-
Khuzam. Dr. Abi-Khuzam taught me a great deal. He used to tell us in his
recordings that one must get their hands ”dirty” while studying analysis, and by
”dirty” he meant that we must solve many computational exercises in order to get
a feeling out of the theory. I would like to thank Dr. Abi-Khuzam for his efforts
for teaching me a wonderful theory and for giving me advice for tackling tough
problems. Dr. Khuri-Makdisi was my Algebra instructor. I can talk about him
all day if I like to. In our very first lecture he told us something that I will never
forget. He told us that in graduate school you have to start building ”muscles”,
and by ”muscles” he meant ”mathematical muscles” which means we have to
solve every single problem that we can get our hands on, it also means that we
have to read the textbook daily. I would like to thank Dr. Khuri-Makdisi for his
advice, office hours and for his support in my academic journey. Moreover, Dr.
Khuri-Makdisi was one of the committee members in my master’s thesis. During
my defense, when I struggled to answer his question, he told me something that
I will keep under my ears till the rest of my days, he said something along this
line ”You should reach a point in your career that even if a tiger is chasing you,
you should answer questions without hesitation”.

We move forward to the spring semester of 2021. I enrolled in two
courses, Measure Theory (Math 303) and Calculus on Manifolds (Math 306),
these courses were taught by professor Bassam Shayya and professor Giuseppe
Della Sala. Dr. Shayya in my opinion deserves the title ”the great explainer”.
I don’t recall an instant during his lectures that I didn’t understand a concept,
he talked like it was, as he would say, ”piece of cake”. I would like to thank Dr.
Shayya for all his advice and efforts, my love for analysis is due to him. Dr. Della
Sala started his lecture with the following sentence, ”Why do you think there
are people who believe the earth is flat?”. He answered this question in a few
lectures by explaining the concept of a manifold, which are mathematical objects
that look like Rn locally. Dr. Della Sala is a kind soul, who helped me a lot

1



these past couple of years, especially during his office hours and as a committee
member to my master’s thesis, he has my gratitude.

Fall 2021 was the ”back to normal semester”, we came back to campus,
so the courses were no longer online. I took two courses, Stochastic Processes
(Math 338) and Discrete Models for PDEs (Math 350). These courses were taught
by professor Abbas Alhakim and professor Nabil Nassif. Dr. Alhakim is one the
most interesting human being I have ever met. He’s a probabilist and also a
great poet. I was so fascinated by this course, which made me have at least ten
new questions in each lecture. Thank you Dr. Alhakim for making me appreciate
the theory of probability. Dr. Nassif, one of the most optimistic person I know,
taught my first graduate applied math course. Honestly, I wasn’t a big fan of
applied mathematics. However, Dr. Nassif explained in a way that made me
appreciate the field of numerical PDEs. His programming assignments were so
helpful in getting a feel out of the theoretical part of the course. I would like to
thank Dr. Nassif for his optimistic advice, and for all the pink scratch papers he
gave me while explaining a concept on them with a pencil.

Spring 2022, my final semester. I had to take my last two courses, which
were Ergodic Theory (Math 307) and Functional Analysis and PDEs (Math 309).
The first was taught by professsor Siamak Taati and the latter was taught by
professor Nabil Nassif. Dr. Taati is possibly the coolest and most academically
curious person I met in AUB. He made us question every single concept during
his lectures, and of course, few questions were left as an exercise, which I quite
enjoyed! I would like to thank Dr. Taati for letting me in his office with my
questions during any day of the week, and for his presence during my thesis
defense.

I would like to thank my friends and family for helping me out all these
years during my academic journey. From undergrad to grad school, they had
my back and gave me their support. I want to thank my mom, Hasmik Daniel,
without her, this journey would had been a lot more difficult. Thanks mom!

Dr. Bertrand was my academic advisor. His academic advice and lead-
ership were so helpful in my stay at the mathematics department, so I would like
to thank him for all his efforts.

Finally, the most important acknowledgment goes to my thesis advisor,
Dr. Rafael Andrist. I would like to thank Dr. Andrist for his mentor-ship, patience
and for all those meetings we had from the beginning of summer 2021 till the
end of spring 2022. We shared a few laughs, and he taught me what ethical
research is all about. Because of him, I learned several complex variables, and
started reading published papers about the topic which were quite fascinating. I
couldn’t have done this without him, he has all my gratitude.

2



ABSTRACT
OF THE THESIS OF

Estepan Kirakos Ashkarian for Master of Science
Major: Mathematics

Title: Integrable Generators of Lie Algebras of Vector Fields
on the Koras–Russell Cubic Threefold

The Koras–Russell cubic threefold is a complex-affine manifold that is diffeo-
morphic to the three-dimensional complex-Euclidean space, but not algebraically
isomorphic to the three-dimensional complex-affine space as an affine variety.
We study the Lie algebra of polynomial vector fields on the Koras–Russell cu-
bic threefold; We prove that the compositions of the flows of a list of complete
vector fields approximate every holomorphic automorphism that is in the path-
connected component of the identity.
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Chapter 1

Introduction

In this Masters thesis, we are mainly concerned about complete vector fields on
the complex submanifold X of C4, where X = {(x, y, z, w) ∈ C4 : x2y + x+ z2 +
w3 = 0} is the Koras–Russell cubic threefold. This three dimensional complex
submanifold was discovered in the process of proving the so called Linearization
Conjecture in dimension 3.

In 2001, Dror Varolin introduced the notion of the density property in his
paper [16]. A complex manifold has the density property if the Lie algebra
generated by complete holomorphic vector fields is dense in the Lie algebra of
all holomorphic vector fields. In other words, every holomorphic vector field
on the complex manifold can be approximated uniformly on compacts by Lie
combinations of complete holomorphic vector fields. Mathematicians in this field
started to study complex manifolds in order to determine if they have the density
property. Some examples would be Cn for n ≥ 2, SL2(C), the Calogero–Moser
spaces and a family of spaces given by {x2y = a(z)+xb(z)} where z = (z0, . . . , zn),
degz0 a ≤ 2 and degz0 b ≤ 1. Notice that the Koras–Russell cubic is part of the
family in the last example.

In Chapter 1, we give some background material from complex analysis of one
variable, several complex variables, the similarities and differences between the
two subjects. Then we move on to category theory in order to define sheaves and
coherent sheaves. The language of sheaves and coherent sheaves will be used for
the proof that the Koras–Russell cubic has the density property in Chapter 5.

Chapter 2 is also preliminary topics, which is more focused on vector fields
and their flow maps. We give some known approximation theorems concerning
flow maps. Finally, we introduce the main definition of this chapter, which is
algorithms of vector fields. Later on we prove that under some conditions a flow
map can be approximated uniformly on compacts by these algorithms. Finally
we state and prove the most important theorem of this chapter which says that
the flow map of any vector field in the Lie subalgebra of finitely many com-
plete vector fields can be approximated uniformly on compacts by holomorphic
automorphisms, these holomorphic automorphisms being the flow maps of the
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complete vector fields in the Lie subalgebra generated by the complete holomor-
phic vector fields.

The third chapter is rather humble in nature. We give five vector fields U , V ,
W , E and H on the Koras–Russell cubic, and we show that they are complete,
which means that their flow maps are defined for all time. The first four vector
fields will turn out to play a crucial role in Chapter 5.

In Chapter 4, our main goal is to give the proof of the density property of the
Koras–Russell cubic. We start by defining shears and overshears, then we give a
proof of the Kaliman–Kutzschebauch formula. The Andersén–Lempert theorem
is stated without proof, and finally a proof is given for the density property.
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Chapter 2

Definitions and Results from
Several Complex Variables

The main objective of this chapter is to give a humble overview of complex anal-
ysis of one variable, several complex variables, and their differences and similar-
ities. Moreover, we introduce the language of category theory in order to define
presheaves, sheaves and coherent sheaves. We make use of the following refer-
ences. See [13, Chapter 1, 2], [14, Chapter 14], [9, Chapter 1] and [15, Chapter
7, 9].

2.1 Complex Euclidean Space

For n ∈ N+ the n−dimensional complex Euclidean space is denoted by Cn where:

Cn = {z = (z1, . . . , zn) : zj ∈ C for all 1 ≤ j ≤ n}

is the Cartesian product of n copies of C. Cn can be viewed as an n−dimensional
complex vector space, equipped with the Hermitian inner product defined by:

(z, w) =
n∑
i=1

ziw̄i z, w ∈ Cn

The induced norm by the inner product (·, ·) is |z| =
√

(z, z), which in hand also
defines a distance d on Cn given by d(z, w) = |z − w|.
The open ball of center a ∈ Cn and radius r > 0 is given by:

B(a, r) = {z ∈ Cn : |z − a| < r}

Often it is convenient to use another system of neighborhoods: the open polydisc
P (a, r) of multiradius r = (r1, . . . , rn), rj > 0 and center a ∈ Cn is the product
of n open discs in C, that is P (a, r) = D(a1, r1)× · · · ×D(an, rn).

P (a, r) = {z ∈ Cn : |zj − aj| < rj, 1 ≤ j ≤ n}
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Notice that P (a, (r1, . . . , rn)) ⊂ B(a,R) whenever
∑n

j=1 r
2
j < R2, and that

B(a,R) ⊂ P (a, (r1, . . . , rn)) for R ≤ min{rj : 1 ≤ j ≤ n}.

2.1.1 Cauchy-Riemann equations

Recall that in the theory of complex analysis on C a complex valued function
f : D → C defined by f(z) = f(x + iy) = u(x, y) + iv(x, y) where u, v : R2 → R,
is said to satisfy the Cauchy-Riemann equations if

∂u

∂x
=
∂v

∂y
∂u

∂y
= −∂v

∂x
.

Moreover, if we introduce the partial differential operator

∂

∂z̄
=

1

2

(
∂

∂x
− 1

i

∂

∂y

)
Then,

∂f

∂z̄
(z) = 0⇐⇒ 1

2

(
∂

∂x
− 1

i

∂

∂y

)
f(z) = 0

⇐⇒ 1

2

(
∂

∂x
− 1

i

∂

∂y

)
(u(x, y) + iv(x, y)) = 0

⇐⇒ 1

2

(
∂u

∂x
− ∂v

∂y

)
+
i

2

(
∂v

∂x
+
∂u

∂y

)
= 0

⇐⇒ ∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x

Notation 2.1.1. Turning to Cn = R2n with coordinates zj = xj+iyj we introduce
the following notation, which are partial differential operators:

∂

∂zj
=

1

2

(
∂

∂xj
+

1

i

∂

∂yj

)
∂

∂z̄j
=

1

2

(
∂

∂xj
− 1

i

∂

∂yj

)
Definition 2.1.2. Let D ⊂ Cn be open. A function f : D → C is called holomor-
phic on D if f ∈ C1(D) and f satisfies the system of partial differential equations
known to be the Cauchy-Riemann equations:

∂f

∂z̄j
(z) = 0 for 1 ≤ j ≤ n and z ∈ D
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Note that C1(D) is the space of continuously differentiable complex valued
functions on D.

Notation 2.1.3. The space of holomorphic functions on D is denoted by O(D).

Remark 2.1.4. If a function f : D → C satisfies the Cauchy–Riemann equations
from Definition 2.1.2 then it also satisfies the Cauchy–Riemann equations in the
zj−coordinate for any j, that is the map fzj(λ) = f(z1, . . . , zj−1, λ, zj+1, . . . , zn)
is holomorphic.

One might ask if the converse is true. Hartogs gave an answer in 1906, proving
that any f : D → C which is holomorphic in each variable separately is also
holomorphic as in the sense of Definition 2.1.2. One should also note the strength
of Hartogs’ theorem by observing the following example.

Example 2.1.5. The function f : R2 → R defined by f(0) = 0 and f(x, y) =
xy

x4+y4 for (x, y) 6= (0, 0) is C∞(even stronger than this actually, it is real analytic)
in each variable separately, but is not bounded at 0.

Now, we shall introduce the standard multi-index notation.
For D ⊂ Rn, open and k ∈ N, let Ck(D) denote the space of k times continuously
differentiable complex valued functions on D. Let α = (α1, . . . , αn) ∈ Nn and
x = (x1, . . . , xn) ∈ Rn, one sets

|α| = α1 + · · ·+ αn, α! = α1! . . . αn!

xα = xα1
1 · · · · · xαnn

We say that α ≥ 0(> 0) if αj ≥ 0(> 0) for 1 ≤ j ≤ n.

Dα =
∂|α|

∂xα1
1 · · · ∂xαnn

.

For f ∈ Ck(D), k <∞, we define the Ck-norm of f over D by

|f |k,D =
∑
α∈Nn
|α|≤k

sup
x∈D
|Dαf(x)|

The space Bk(D) = {f ∈ Ck(D) : |f |k < ∞} is complete in the Ck norm | · |k
and hence is a Banach space.
The multi-index notation extends to the partial differential operators as follows:
for α, β ∈ Nn,

Dαβ̄ =
∂|α|+|β|

∂zα1
1 . . . ∂zαnn ∂z̄1

β1 . . . ∂z̄nβn
.
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2.2 Results from Complex Analysis which are

Generalized in Several Complex Variables

2.2.1 Cauchy Integral Formula on the Polydisc

In the theory of one complex variable, the Cauchy integral formula states that
for any holomorphic function f : D(a, r)→ C we have:

f(z) = (2πi)−1

∫
∂D(a,r0)

f(ζ)

ζ − z
dζ

for all z ∈ D(a, r0) where r0 < r.
Now we generalize this formula in the context of several complex variables.

Theorem 2.2.1. Let P = P (a, r) be a polydisc in Cn with multiradius r =
(r1, . . . , rn). Suppose that f ∈ C(P̄ ) and f is holomorphic in each variable sepa-
rately, i.e. for each z ∈ P̄ and 1 ≤ j ≤ n, the function

fzj(λ) = f(z1, . . . , zj−1, λ, zj+1, . . . , zn)

is holomorphic on {λ ∈ C : |λ− aj| < rj}. Then

f(z) = (2πi)−n
∫
boP

f(ζ)

(ζ1 − z1) . . . (ζn − zn)
dζ1 · · · dζn for z ∈ P

where boP = {ζ ∈ Cn : |ζj − aj| = rj, 1 ≤ j ≤ n}.

Proof. The method of proof is done by induction on the dimension of the complex
Euclidean space. For n = 1, it follows from the classical Cauchy integral formula.
Suppose n > 1, and that the statement of the theorem is true for n− 1 variables.
Let z ∈ P be fixed, apply the inductive hypothesis with respect to (z2, · · · , zn),
obtaining

f(z1, z2, · · · , zn) = (2πi)−n+1

∫
boP ′(a′,r′)

f(z1, ζ2, . . . , ζn)

(ζ2 − z2) · · · (ζn − zn)
dζ2 · · · dζn (2.1)

where a′ = (a2, · · · , an), r′ = (r2, · · · , rn). For ζ2, · · · , ζn fixed, the case n = 1
gives us

f(z1, ζ2, . . . , ζn) = (2πi)−1

∫
|ζ1−a1|=r1

f(ζ1, . . . , ζn)

ζ1 − a1

dζ1 (2.2)

In general, in terms of the standard parametrization we have

ζj = aj + rje
iθj , 0 ≤ θj ≤ 2π, 1 ≤ j ≤ n
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of bo(P ), one has∫
boP

g(ζ)dζ1 · · · dζn = inr1 · · · rn
∫

[0,2π]n
g(ζ(θ))eiθ1 · · · eiθndθ1 · · · dθn

for any g ∈ C(boP ). Now, we substitute 2.2 into 2.1 and transform the iterated
integral over {|ζ1 − a1| = r1} × boP

′(a′, r′) into an integral over boP using the
aforementioned parametrization.

2.2.2 Analyticity of Holomorphic Functions

In the theory of one complex variable, if we have f : Ω ⊂ C → C holomorphic,
then for any open disc D(z0, R) ⊂ Ω we can write a power series expansion of f

f(z) =
∞∑
n=0

an(z − z0)n for all z ∈ D(z0, R)

where,

an = (2πi)−1

∫
∂D(z0,R)

f(ζ)

(ζ − z0)n+1
dζ

Moreover, an = f (n)(z0)
n!

. Due to these results, one can show the following estimate
which is called Cauchy’s estimate

|an| <
1

Rn
· sup
|ζ−z0|=R

|f(ζ)|

A power series in n complex variables z1, . . . zn centered at the point a ∈ Cn is a
multiple series

∑
v∈Nn bv with terms

bv = cv(z − a)v = cv1,...,vn(z1 − a1)v1 · · · (zn − an)vn

where cv ∈ C for v ∈ Nn.

Definition 2.2.2. The multiple series
∑

v∈Nn bv is called convergent if

∑
v∈Nn
|bv| = sup

{∑
v∈Λ

|bv| : Λ finite

}
<∞.

Definition 2.2.3. The domain of convergence Ω = Ω({cv}) of the power series∑
v∈Nn cv(z − a)v is the interior of the set of points z ∈ Cn for which the power

series converges.

Theorem 2.2.4. Let f ∈ O(P (a, r)). Then the Taylor series of f at a converges
to f on P (a, r), that is

f(z) =
∑
v∈Nn

Dvf(a)

v!
(z − a)v for z ∈ P (a, r)
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Proof. See Theorem 1.18 in Range [13].

The more general analogue of the Cauchy estimate in the context of several
complex variables is the following.

Theorem 2.2.5. Let f ∈ O(P (a, r)). Then, for α ∈ Nn,

|Dαf(a)| ≤ α!

rα
|f |P (a,r).

Proof. See Theorem 1.6 in Range [13].

2.3 Holomorphic Maps

Let D ⊂ Cn be open and consider a map F : D → Cm. By writing F =
(f1, . . . , fm) and fk = uk + ivk, where uk, vk are real valued functions on D,
we can view F = (u1, v1, . . . , um, vm) as a map from D ⊂ R2n to R2m. If F is dif-
ferentiable at a ∈ D, its differential dF (a) : R2n → R2m is a linear transformation
with matrix representation given by the (real) Jacobian matrix

JR(F ) =


∂u1

∂x1

∂u1

∂y1
. . . ∂u1

∂yn
∂v1

∂x1

∂v1

∂y1
. . . ∂v1

∂yn
...

...
...

∂vm
∂x1

∂vm
∂y1

. . . ∂vm
∂yn


evaluated at a.

The map F : D → Cm is called holomorphic if its (complex) components
f1, . . . , fm are holomorphic functions on D. If F is holomorphic, its differen-
tial F ′(a) at a ∈ D is a complex linear map Cn → Cm, with complex matrix
representation

F ′(a) =


∂f1

∂z1
(a) . . . ∂f1

∂zn
(a)

... . . .
...

∂fm
∂z1

(a) . . . ∂fm
∂z1

(a)


We call F ′(a) the derivative (or complex Jacobian matrix) of the holomorphic
map F at a.

Definition 2.3.1. We say F is nonsingular at a ∈ D if F ′(a) has maximal rank;
F is nonsingular on D, if F is nonsingular at every a ∈ D.

2.4 The Riemann Mapping Theorem

In complex analysis of one variable, there is a deep result which is called the
Riemann mapping theorem.
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Definition 2.4.1. Let Ω ⊂ C be an open set. Let γ0 and γ1 be two curves in Ω
such that γ0(0) = γ1(0) and γ0(1) = γ1(1). We say that γ0 is Ω−homotopic to γ1

if there exists a continuous mapping H : [0, 1]× [0, 1]→ Ω such that

1. For all t ∈ [0, 1], H(t, 0) = γ0(t) and H(t, 1) = γ1(t).

2. For all s ∈ [0, 1], H(0, s) = H(1, s)

Definition 2.4.2. A region Ω in the complex plane is simply connected if any
pair of curves in Ω with the same initial and end points are homotopic.

Definition 2.4.3. Let Ω1 and Ω2 be two regions in C. The two regions are said
to be conformally equivalent if there exists a ϕ ∈ O(Ω1) such that ϕ is one-to-one
and ϕ(Ω1) = Ω2.

The definition above actually implies that the inverse of ϕ is holomorphic on
Ω2, and hence ϕ is a biholomorphism of Ω1 and Ω2.

Theorem 2.4.4 (The Riemann Mapping Theorem). Every simply connected re-
gion Ω ⊂ C such that Ω 6= ∅ and Ω 6= C is conformally equivalent to D(0, 1).

Proof. See Theorem 14.8 [14].

The Riemann Mapping Theorem implies that a simply connected region in
the complex plane is either C or biholomorphic to the open unit disc D(0, 1). One
might ask if the analogue of this results holds in the context of several complex
variables. The answer is negative. In 1907, Henri Poincaré gave a proof. In his
proof, he computed the groups of holomorphic automorphisms of the ball and
the bidisc (Note that the bidisc is a polydisc in C2) and compared them.

Theorem 2.4.5. There exists no biholomorphic map

F : P (0, 1)→ B(0, 1)

between the polydisc and the ball in Cn if n > 1.

2.5 Hartogs’ Extension Phenomenon

In the theory of complex analysis of one variable the function f : C∗ → C∗ defined
by f(z) = 1

z
can’t be extended to a holomorphic function which is also holomor-

phic at 0. In several complex variables, that is not the case. In 1906 Hartogs
discovered the first example exhibiting the remarkable extension properties of
holomorphic functions in more than one variable. It is this phenomenon, more
than anything else, which distinguishes function theory of several variables from
the classical one-variable theory.
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Theorem 2.5.1. Let n ≥ 2 and suppose that 0 < rj < 1 for 1 ≤ j ≤ n. Then
every function f holomorphic on the domain

H(r) ={z ∈ Cn : |zj| < 1 for j < n, rn < |zn| < 1}
∪ {z ∈ Cn : |zj| < rj for j < n, |zn| < 1}

has a unique holomorphic extension f̂ to the polydisc P (0, 1).

Theorem 2.5.2. Let n ≥ 2 and suppose U is a neighborhood of the boundary bP
of a polydisc P ⊂ Cn, such that U ∩ P is connected. Then every f ∈ O(U) has
a holomorphic extension to P .

Corollary 2.5.3. Let U be open in Cn and a ∈ U . If n ≥ 2, then every f ∈
O(U − {a}) extends holomorphically across a.

Basically, this corollary tells us that in Cn for n ≥ 2 there is no such thing
as isolated singularities, in contrast to the situation in one variable, for instance
consider the function f(z) = 1

z
.

2.6 Complex Submanifolds and Analytic Sets

In this subsection we follow the textbook of Range [13, Chap I, Section 2.6. and
Section 3.2. ].

Definition 2.6.1. A set M ⊂ Cn is called a complex submanifold of Cn, if
for every point P ∈M there is a holomorphic coordinate system (w1, . . . , wn) on
a neighborhood U of P , and an integer k, 0 ≤ k ≤ n, such that

M ∩ U = {z ∈ U : wj(z) = 0 for j > k}.

The integer k is called the complex dimension of M at P , and it is denoted
by k = dimCMp.

Notice that dimCMp is locally a constant on M , and hence is constant on
each connected component of M . The dimension of M is defined by

dimM = sup dimCMp.

Theorem 2.6.2. A subset M of Cn is a complex submanifold if and only if for
every P ∈ M there is a neighborhood U of P , an open ball Bk(a, ε) ⊂ Ck, and a
nonsingular holomorphic map H : Bk(a, ε)→ Cn, such that

H(Bk(a, ε)) = M ∩ U

A map H which satisfies all the conditions stated above is called a local para-
metrization of M at P .
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Proof. See Theorem 2.8 in Range [13].

Theorem 2.6.3. Let D ⊂ Cn and suppose that F : D → Cm is nonsingular.
Then for every a ∈ D the level set

La(F ) = {z ∈ D : F (z) = F (a)}

is a complex submanifold of dimension max(0, n−m) at every point.

Proof. See Theorem 2.9 in Range [13].

Example 2.6.4. The Koras–Russell Cubic is a complex submanifold of dimen-
sion 3. Indeed, consider the function F : C4 → C defined by F (x, y, z, w) =
x2y + x+ z2 + w3. Let (x0, y0, z0, w0) be an arbitrary point in C4, notice that

F ′(x0, y0, z0, w0) = (2x0y0 + 1, x2
0, 2z0, 3w

3
0)

so F is nonsingular on C4 since the rank of F ′(x0, y0, z0, w0) is one which is
maximal. Note that the rank is at least one, if y0 = 0 then it’s obvious. If
y0 6= 0 and we we require 2x0y0 + 1 = 0 and x2

0 = 0 we will get a contradiction.
Therefore, L0(F ) = {(x, y, z, w) ∈ C4 : F (x, y, z, w) = F (0) = 0}, which is the
Koras Russell Cubic. Hence, it is a complex submanifold of dimension 3.

Definition 2.6.5 ([13, Chapter II page 68]).
Let K ⊂ D ⊂ Cn. Its holomorphically convex hull K̂O(D) in D is defined by

K̂O(D) = {z ∈ D : |f(z)| ≤ |f |K for all f ∈ O(D)}.

Moreover, K ⊂ D is called O(D)-convex if K̂O(D) = K.

Definition 2.6.6 ([8, Definition 5.1.3]).
Let M be a complex submanifold of Cn. M is said to be a Stein manifold if M
has a countable basis for open sets and the following three properties hold.

1. M is O(M)-convex.

2. Given two distinct points P , Q ∈M , there is f ∈ O(M) with f(P ) 6= f(Q).

3. For every P ∈ M there is a holomorphic coordinate system in a neighbor-
hood of P which is given by global holomorphic functions in O(M).

Theorem 2.6.7. A complex manifold is a Stein manifold if and only if it is
biholomorphic to a closed complex submanifold of Cn.

Proof. See Forstnerič [5, Page 49].

Example 2.6.8. The Koras–Russell cubic is a closed complex submanifold of C4,
as it is a zero set of the continuous defining function F (x, y, z, w) = x2y + x +
z2 + w3. Hence, the Koras–Russell cubic is Stein.
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Definition 2.6.9. A subset A of a region Ω ⊂ Cn is called analytic in Ω if A
is closed in Ω and if for every p ∈ A there are open neighborhoods Up of p in Ω
and a holomorphic map Hp : Up → Clp, such that

Up ∩ A = {z ∈ Up : Hp(z) = 0}

Stated differently, Up ∩ A is the common zero set of the components

h
(p)
1 , . . . , h

(p)
lp

of Hp.
Let A1 and A2 be two analytic sets in Ω ⊂ Cn. Then it follows from the

definition that A1 ∪ A2 and A1 ∩ A2 are analytic sets in Ω.

Definition 2.6.10. An analytic sets is said to be reducible if A can be written
as A = A1 ∪A2 where A1 and A2 are analytic, non-empty and not equal to A. A
is said to be irreducible if A is not reducible.

Definition 2.6.11. A point p ∈ A of an analytic set is called a regular point
of A if there is a neighborhood U of p, such that A∩U is a complex submanifold
of U , and it is called a singular point otherwise.

Definition 2.6.12. A subset E of D ⊂ Cn is thin, if for every point p ∈ D there
is a ball B(p, ε) and a function f ∈ O(B(p, ε)) such that f is not constant and
f(z) = 0 on B(p, ε) ∩ E.

Notice that if E ⊂ D is thin, its closure in D is also thin, and by the Identity
theorem, E is nowhere dense.

Theorem 2.6.13. Let A be an analytic set in the connected region D in Cn. If
A 6= D then A is thin.

Proof. Suppose that A is not thin. For each p ∈ A we choose a connected
neighborhood Up and a holomorphic map Hp : Up → Clp such that Up∩A = {z ∈
Up : Hp(z) = 0}. Given that A is not thin, there exists p ∈ A, such that Hp ≡ 0

on Up. Hence, Up∩A = Up, and the interior Å of A is not empty. Let q ∈ bÅ∩D.

Then Å∩Uq is open and nonempty, and the components of Hq are zero on Å∩Uq.
By the Identity Theorem, the components of Hq are zero on Uq. This implies

that Uq ⊂ A, so q ∈ Å and Å is closed in D. Since D is connected, and Å is

clopen and nonempty, then Å = D.

Notation 2.6.14.

� The set of regular points is denoted by R(A). Moreover, R(A) it is the
maximal complex submanifold contained in A.

� The set of singular points is denoted by S(A) = A−R(A).
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2.7 Sheaves and Coherent Sheaves

Definition 2.7.1. A category C consists of

1. A class ob C of objects (usually denoted as X, Y, Z, etc.)

2. For each ordered pair of objects (X, Y ), a set homC whose elements are
called morphisms with domain X and codomain Y .

3. A composition map, whenever X, Y, Z ∈ ob C, we have a map

homC(X, Y )× homC(Y, Z)→ homC(X,Z) where (f, g) 7→ gf.

which satisfy the following conditions:

� If (X, Y ) 6= (X ′, Y ′), then homC(X, Y ) and homC(X ′, Y ′) are disjoint.

� If f ∈ homC(X, Y ), g ∈ homC(Y, Z) and h ∈ homC(Z,W ), then h(gf) =
(hg)f .

� For every X ∈ ob C, there exists 1X ∈ homC(X,X) with the property that,
for every f ∈ homC(X, Y ), f1X = f , and for every g ∈ homC(Z,X),
1Xg = g.

Example 2.7.2. The following are some examples of categories.

1. Set where ob Set is all sets, and the morphisms in homSet(X, Y ) are all
functions f : X → Y .

2. Grp where ob Grp is all groups, and the morphisms in homGrp(X, Y ) are
the group homomorphisms f : X → Y .

Definition 2.7.3. Let C and D be two categories. A covariant functor F : C→
D is:

1. For each X ∈ ob C we have FX ∈ ob D.

2. For each morphism f ∈ homC(X, Y ) we have Ff ∈ homD(FX,FY ), such
that

F1X = 1FX and F (gf) = FgFf
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Example 2.7.4 (The forgetful functor and the abelianization of groups).

1. The forgetful functor. For example F : Grp → Set. For any group G ∈
Grp, FG = G where G is viewed as a set. For any group homomorphism
φ : G → H we have Fφ : G → H viewed as a function and no longer a
group homomorphism.

2. Let G ∈ Grp. Let [G,G] = {[x, y] = xyx−1y−1 : x, y ∈ G} be the commu-
tator subgroup. The functor F : Grp→ Ab is defined by FG = G/[G,G].

Definition 2.7.5. Let C and D be two categories. A contravariant functor
F : C→ D is characterized by the following:

1. For each X ∈ ob C we have FX ∈ ob D.

2. For each morphism f ∈ homC(X, Y ) we have Ff ∈ homD(FY, FX), such
that

F1X = 1FX and F (gf) = FfFg

Example 2.7.6 (Continuous functions and the dualization functor).

1. F : Top→ Ring, then for any topological space X, we define FX = C(X)
the ring of continuous functions. Let f : X → Y be continuous function
(which are the morphisms in Top), then Ff = f ∗ : C(Y ) → C(X). If
φ : Y → R ∈ C(Y ), then f ∗φ = φ ◦ f .

2. Let k be a fixed field. We define the dualization functor, F : Vect/k →
Vect/k, such that FV = V ∗, where V ∗ is the dual space of the vector space
V . Now let T ∈ homVect/k(V,W ), then FT = T ∗ : W ∗ → V ∗ such that foe
every f ∈ W ∗, T ∗f = f ◦ T .

Definition 2.7.7. Let (X, T ) be a topological space. Consider the collection of
all open subsets of X to be a category, i.e. C = {U ⊂ X : U ∈ T }, where the
objects of this category are the open sets U ⊂ X, the morphisms are the inclusion,
that is f ∈ homC(U, V ) means that U ⊂ V , and the compositions are defined by
the transitivity of the inclusion. Then a presheaf on X is a contravariant functor
from the category C to the category of abelian groups Ab.

Let S be a presheaf on X. S assigns to each open set U ⊂ X an abelian
group S(U), and to each inclusion map f ∈ homC(U, V ) a group homomorphism
ρU,V : S(V ) → S(U) ∈ homAb(S(V ), S(U)) which is called a restriction map,
where ρU,U = Id for each open set U and ρU,W = ρU,V ◦ρV,W for every U ⊂ V ⊂ W .

In category theory, we also have the concept of morphisms between functors,
so consider the morphism Φ: S → T between the the presheaves S and T on X.
Φ assigns a morphism ΦU : S(U)→ T (U) to each open set U ⊂ X in a way which
commutes with restrictions.
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Example 2.7.8. If X is any topological space and G is a fixed abelian group,
then we may define a presheaf called the constant presheaf by assigning G to each
non-empty open set U ⊂ X and 0 to the empty set.

Example 2.7.9. The presheaf C of continuous functions is the contravariant
functor which assigns to each open set U ⊂ X the algebra of continuous complex
valued functions C(U) and to each inclusion map U ⊂ V the usual restriction
map ρU,V : C(V )→ C(U) where f 7→ f |U for every f ∈ C(V ).

Example 2.7.10. The presheaf T of holomorphic sections of the tangent bundle
is also a contavariant functor which assigns to each open set U ⊂ X the module
of holomorphic vector fields T (U) and to each inclusion map U ⊂ V the usual
restriction map ρU,V : T (V ) → T (U) where Θ 7→ Θ|U for every Θ: V → TV ∈
T (V ).

If U ⊂ V then the image of s ∈ S(V ) under ρU,V : S(V ) → S(U) will be
denoted by s|U and will be called the restriction of S to U.

Definition 2.7.11. If S is a presheaf on X, then S is called a sheaf if the
following conditions are satisfied for each open subset U ⊂ X and each open
cover V of U :

1. If s ∈ S(U) and s|V = 0 for all V ∈ V, then s = 0.

2. If {sV ∈ S(V )}V ∈V is a collection of elements with the property that
sV |V ∩W = sW |V ∩W for each pair V,W ∈ V then there is an s ∈ S(U) such
that s|V = sV for every V ∈ V.

Definition 2.7.12. Let (X, T ) be a topological space. Given a sheaf S, it is said
to be a coherent sheaf if for every p ∈ X, for every neighborhood U of p in X,
there exists a neighborhood U ′ ⊂ U of p and a map ϕU ′ such that

Om(U ′)
ϕU′−→ S(U ′) −→ 0

is exact.
Moreover, for any such ϕU ′, there exists U ′′ ⊂ U ′ a neighborhood of p, and a

map ψU ′′ such that

On(U ′′)
ψU′′−→ Om(U ′′)

ϕU′ |U′′−→ S(U ′′) −→ 0

is exact.

Definition 2.7.13. We say that the sheaf S is locally free if ϕU ′ is an isomor-
phism.

Now we can show that, locally free implies coherence. Indeed if ϕU ′ is an
isomorphism, then the kernel of ϕU ′ is trivial. Then we choose ψU ′′ to be the zero
map and hence we have

On(U ′′)
ψU′′−→ Om(U ′′)

ϕU′ |U′′−→ S(U ′′) −→ 0

is exact.
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Chapter 3

Vector Fields and Flows

3.1 Generalities

In this section we will define vector fields on manifolds and the flows they de-
termine. Moreover, we will prove a few results concerning approximation of
flows. We use the following references. See [10, Chapter 4], [10, Chapter 17] and
[5, Chapter 1].

Definition 3.1.1. Let X be a manifold. A vector field on X is a section of the
tangent bundle TX of X. That is, a vector field is a mapping V : X → TX where
Vp ∈ TpX for all p ∈ X.

Definition 3.1.2. Let X be a smooth manifold. Given a differentiable path
γ : I → X where I is an interval of R. An integral curve of a vector field V
on X is a path γ : I → X such that:

dγ

dt
(t) = Vγ(t) ∀t ∈ I

The initial value problem (the flow equation)

ẋ = Vx x(0) = x0

asks for an integral curve which passes through the point x0 at time t = 0. In
local coordinates x = (x1, ..., xn) on X with

Vx =
n∑
j=1

aj(x)
∂

∂xj
x0 = (x0

1, ..., x
0
n)

the flow equation is equivalent to the system of autonomous ordinary differential
equations:

ẋj = aj(x1, ..., xn) xj(0) = x0
j j = 1, ...n
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Example 3.1.3. Let W = x ∂
∂y
− y ∂

∂x
on R2. Let γ : R→ R2 be a smooth curve,

written in standard coordinates as γ(t) = (x(t), y(t)), then for γ to be an integral
curve, it must satisfy γ̇(t) = Wγ(t), which is equivalent to solving the following
system of ODEs:

ẋ(t) = −y(t) ẏ(t) = x(t)

The solution of the system above yields a family of integral curves of W :

γ(t) = (a cos(t)− b sin(t), a sin(t) + b cos(t))

However, if we specify an initial condition such as x(0) = 0 and y(0) = 1 then the
integral curve γ(t) = (− sin(t), cos(t)) is the unique solution of the flow equation
satisfying the initial conditions.

If V is Lipschitz continuous, then for every p ∈ X there exists a neighborhood
U ⊂ X of p and a number t0 > 0 such that the flow equation has a unique solution

x(t, x0) = φt(x
0) for every x0 ∈ U and for every |t| < t0.

This solution, and its t−derivative are continuous in (t, x0). The map t 7→ φt(x)
is called the local flow of V . For a fixed t ∈ R the map φt is a diffeomorphism
of its domain Ωt ⊂ X onto φt(Ωt), called the time-t map. These maps satisfy
the group law

φt ◦ φs = φt+s, t, s ∈ R

on the set X where both sides are defined.

Theorem 3.1.4 (Grönwall’s Inequality). Let f, g : [a, b)→ [0,∞) be non-negative
continuous functions which satisfy the following:

f(t) 6 A+ exp
(∫ t

a
f(τ)g(τ) dτ

)
for some A ≥ 0

Then,

f(t) 6 A · exp(
∫ t
a
g(τ) dτ) for all t ∈ [a, b)

Proof. If A > 0:
Let h(t) = A +

∫ b
a
f(τ)g(τ) dτ , since f and g are non-negative and A > 0, then

h(t) > 0.
By the fundamental theorem of calculus, we have h′(t) = f(t)g(t) ≤ h(t)g(t).
Therefore h′(t)/h(t) ≤ g(t). Integrating both sides we get:

f(t) ≤ h(t) ≤ A exp(
∫ t
a
g(τ) dτ)

If A = 0:
Let ε > 0. We set h(t) = ε+

∫ b
a
f(τ)g(τ) dτ , by the same steps as above, we will

have:
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f(t) ≤ h(t) ≤ ε · exp(
∫ t
a
g(τ) dτ)

which implies that f ≡ 0.

Theorem 3.1.5. Let V be a time-dependent continuous vector field on a domain
Ω ⊂ R1+n satisfying a uniform Lipschitz estimate with Lipschitz constant B > 0:

|Vt(x)− Vt(y)| ≤ B|x− y|
Then for any s ∈ R and any pair of points x, y ∈ Ωs we have:

|Φt,s(x)− Φt,s(y)| ≤ eB·|t−s||x− y|
for all t such that the trajectories exist and remain in the domain Ωt.

Proof. Let f(t) = |Φt,s(x)− Φt,s(y)|. Without loss of generality, we assume that
t ≥ s.
Recall that

∂

∂t
Φt,s(x) = Vt(Φt,s(s))

We integrate from t to s and we get:

Φt,s(x)− Φs,s(x) =

∫ t

s

Vτ (Φτ,s(x))dτ

Φt,s(y)− Φs,s(y) =

∫ t

s

Vτ (Φτ,s(y))dτ

Where Φs,s(x) = x and Φs,s(y) = y. We get:

f(t) =

∣∣∣∣x+

∫ t

s

Vτ (Φτ,s(x))dτ − y −
∫ t

s

Vτ (Φτ,s(y))dτ

∣∣∣∣
By the triangular inequality, the uniform Lipschitz condition and the definition
of f(t) we have:

f(t) ≤ |x− y|+
∫ t

s

|Vτ (Φτ,s(x))− Vτ (Φτ,s(y))| dτ

≤ |x− y|+B ·
∫ t

s

|Φτ,s(x)− Φτ,s(y)|dτ

= |x− y|+B ·
∫ t

s

f(τ)dτ

Note that f(s) = |x−y|, so f(t) ≤ f(s)+B ·
∫
stf(τ)dτ . By Grönwall’s Inequality,

we have:
f(t) ≤ |x− y|eB·|t−s|

Note that if we assume s > t, the proof remains the same, but we work with −V
instead of V .

22



Lemma 3.1.6 (Escape Lemma). Let V be a smooth vector field on a smooth
manifold X. If γ is an integral curve of V whose maximal domain is not all of
R, then the image of γ cannot lie in any compact subset of X.

Proof. Let (a, b) be the maximal domain of γ where −∞ ≤ a < 0 < b ≤ ∞. Let
p = γ(0) and let Φ denote the flow of V , so γ = Φ(·, p) = Φ·(p).

Assume that b < ∞ and γ((a, b)) ⊂ K where K is a compact subset of X.
Let {ti} be a sequence of times approaching b from below. By our assumption
{γ(ti)} lies in K, and since K is compact, then there exists a subsequence of
{γ(ti)} converging to a point q ∈ X. Let U be a relatively compact neighborhood
of q and let ε > 0 such that Φ is defined on (−ε, ε)×U . We choose i large enough
so that γ(ti) ∈ U and ti > b− ε. Now we define σ : (a, ti + ε)→ X by:

σ(t) =

{
γ(t) if a < t < b

Φt−ti ◦ Φti(p) if ti − ε < t < ti + ε

Note that these two definitions agree where they overlap, because Φt−ti ◦
Φti(p) = Φt(p) = γ(t) by the group law of Φ. Therefore, σ is an integral curve ex-
tending γ, which contradicts the maximality! We had assumed that the maximal
domain is (a, b).

Remark 3.1.7. Let V be a vector field with flow map Φt. Let t1 = inf{t ∈ R :
Φt exists} < ∞. So, the flow map exists for t ∈ [0, t1). Since Φt is an integral
curve of V whose maximal domain is not all of R, then by the escape lemma, it
has to leave any compact.

Theorem 3.1.8. Let X be a compact manifold. Then every smooth vector field
on X is complete, which means that the flow map of the vector field is defined for
all time.

Proof. Let X be a compact manifold, and V a smooth vector field on X. By the
converse of the preceding lemma, every smooth vector field is complete.

Assume that Ω0 = {x ∈ X : (0, x) ∈ Ω} 6= ∅. We fix a compact set K ⊂ Ω0,
and let t0 > 0 such that the flow Φt(x) = Φt,0(x) exists and remain in Ωt when
x ∈ K and t ∈ [0, t0]. Set Kt = Φt(K) ⊂ Ωt. For any ε > 0 we let

K(ε) = {x ∈ Rn : dist(x,K) = inf
y∈K
|x− y| < ε}

S(ε) = {(t, x) ∈ R× Rn : 0 ≤ t ≤ t0, dist(x,Kt) < ε}

Set η0 = (1 + t0)eBt0 > 1 where B is the Lipschitz constant from Theorem 3.1.5.
Choose ε0 > 0 sufficiently small so that S(εη0) b Ω.

Theorem 3.1.9. Assume that for some ε ∈ (0, ε0) we have a continuous map
V ε : Ω→ Rn(a time dependent vector field) satisfying:
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‖V − V ε‖L∞(S(εη0)) ≤ ε

Then, the flow Φε
t(x) of V ε

t with Φε
0(x) = x exists for all x ∈ K(ε) and for all

t ∈ [0, t0] and it satisfies the estimate:

‖Φt − Φε
t‖L∞(K(ε)) ≤ t0eBt‖V − V ε‖L∞(S(εη0)), t ∈ [0, t0]

Proof. Let A(ε) = ‖V − V ε‖L∞(S(εη0)).
Let x ∈ K(ε). We set f(t) = |Φt(x) − Φε

t(x)|. Since f(0) = |Φ0(x) − Φε
0(x)| =

|x− x| = 0, d
dt

Φt(x) = VΦt(x) and by the triangular inequality we have:

f(t) =

∣∣∣∣∫ t

0

[Vs(Φs(x)− V ε
s (Φε

s(x)]ds

∣∣∣∣
≤
∫ t

0

|Vs(Φs(x))− V ε
s (Φε

s(x))|ds

=

∫ t

0

|Vs(Φs(x))− Vs(Φε
s(x)) + Vs(Φ

ε
s(x))− V ε

s (Φε
s(x))|ds

≤
∫ t

0

|Vs(Φs(x))− Vs(Φε
s(x))|ds+

∫ t

0

|Vs(Φε
s(x))− V ε

s (Φε
s(x))|ds

By the hypothesis that V satisfies the uniform Lipschitz estimate with Lip-
schitz constant B, we have:

f(t) ≤ B ·
∫ t

0

|Φs(x)− Φε
s(x)|ds+

∫ t

0

|Vs(Φε
s(x))− V ε

s (Φε
s(x))|ds

= B ·
∫ t

0

f(s)ds+

∫ t

0

|Vs(Φε
s(x))− V ε

s (Φε
s(x))|ds

Now, suppose that Φε
t(x) ∈ Kt(εη0):

Φε
t(x) ∈ Kt(εη0)⇔ dist(Φε

t(x), Kt) < εη0 ⇔ (t,Φε
t(x)) ∈ S(εη0)

So, we have:

f(t) ≤ B ·
∫ t

0

f(s)ds+ A(ε) · t

therefore, by Grönwall’s inequality we have:

f(t) ≤ A(ε)t0eBt

Let’s show that Φε
t ∈ Kt(εη0).
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The preceding theorem gives us Φt(x) ∈ Kt(εe
Bt). Assume that Φε

t exists for
t ∈ [0, t0], we have that:

dist(Φε
t(x), Kt) = dist(Φε

t(x)− Φt(x) + Φt(x), Kt)

≤ |Φε
t(x)− Φt(x)|+ dist(Φt(x), Kt)

≤ A(ε)t0eBt + εeBt

≤ εt0eBt + εeBt

≤ ε(t0 + 1)eBt0 = εη0

Note that we used the assumption that A(ε) ≤ ε and the definition of η0.
Now, to get a contradiction, assume that Φε

t does not exist for some t ∈ [0, t0].
By the local existence theorem, Φε

t exists for small enough t > 0. Let t1 = inf{t >
0 : Φε

t does not exist}, therefore Φε
t is well defined for t ∈ [0, t1). By Remark 3.1.7

following the Escape lemma, we have that:

lim
t→t1
‖Φε

t(x)‖ =∞

We showed earlier that if Φε
t exists, then:

‖Φt − Φε
t‖L∞(K(ε)) ≤ t0eBt‖V − V ε‖L∞(S(εη0)) = C <∞ for 0 ≤ t < t1

However, ‖Φε
t‖ = ‖Φε

t − Φt + Φt‖ ≤ ‖Φε
t − Φt‖ + ‖Φt‖ ≤ C + C0. Note that

‖Φt‖ ≤ C1 since Φt is continuous on the compact [0, t0] hence an upper bound
exists. We reached a contradiction, therefore our assumption is false! Hence, Φε

t

exists for all t ∈ [0, t0], which implies that Φε
t ∈ Kt(εη0).

Definition 3.1.10. Let Φt be the flow of a vector field V . The Lie derivative
LVW of a vector field W with respect to V is defined by:

LVW =
d

dt

∣∣∣∣
t=0

Φ∗tW

Proposition 3.1.11. Let V and W be vector fields on X where Φt is the flow of
V . Then:

d

dt
Φ∗tW = Φ∗t (LVW ) (3.1)

Moreover, if LVW = 0 then, Φ∗tW = W for all t

Proof. Let s = t+ u, then by the group law of flows we have:

Φs = Φt+u = Φu ◦ Φt

So that,
Φ∗sW = Φ∗t (Φ

∗
uW )
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Now we differentiate w.r.t. s at s = t and we get:

d

dt
Φ∗tW =

d

du

∣∣∣∣
u=0

Φ∗t (Φ
∗
uW ) = Φ∗t

(
d

du

∣∣∣∣
u=0

Φ∗uW

)
= Φ∗t (LVW )

So, if LVW = 0 we have:

d

dt
Φ∗tW = 0

we integrate from 0 to t:

0 =

∫ t

0

d

ds
Φ∗sWds = Φ∗tW − Φ∗0W

Finally we have Φ∗tW = W .

Proposition 3.1.12. Let f : X → Y be a smooth map and Ṽ and W̃ be vector
fields on Y such that V = f ∗Ṽ and W = f ∗W̃ , then:

f ∗(LṼ W̃ ) = LVW

Proof. Let Φ̃t be the flow of Ṽ . Then, f ◦ Φt = Φ̃t ◦ f , since
So, we have:

Φ∗tW = Φ∗tf
∗W = (f ◦ Φt)

∗W̃ = (Φ̃t ◦ f)∗W̃ = f ∗(Φ̃∗t W̃ )

Now we differentiate with respect to t at t = 0, and we get:

LVW =
d

dt

∣∣∣∣
t=0

Φ∗tW =
d

dt

∣∣∣∣
t=0

f ∗(Φ̃∗t W̃ ) = f ∗
(
d

dt

∣∣∣∣
t=0

Φ̃∗t W̃

)
= f ∗(LṼ W̃ )

Moreover, if f : X → Y is a diffeomorphism, then:

Lf∗V f∗W = f∗(LVW )

Indeed, since Ṽ = (f ∗)−1V = f∗V and W̃ = (f ∗)−1V = f∗W we have:

Lf∗V f∗W = (f ∗)−1(f ∗(LṼ W̃ )) = (f ∗)−1(LVW ) = f∗(LVW )

Theorem 3.1.13 (Canonical form theorem). Let V be a C1 vector field on an
n-dimensional manifold X. If Vp 6= 0 for some p ∈ X then there exist local
coordinates u = (u1, . . . , un) in a neighborhood of p such that V = ∂

∂u1
.
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Proof. By the way coordinate vector fields are defined on a manifold, a smooth
chart (U,ϕ) will satisfy the conclusion of the theorem if (ϕ−1)∗(

∂
∂u1

) = V .
Let’s choose a smooth local coordinate x = (x1, . . . , xn) around p, we may

think of X as an open set U ⊂ Rn, and V as a vector field on U . Since Vp 6= 0
we may assume that V has a nonzero x1-component at p.

Let Φ: Ω→ U be the flow of V . There exist ε > 0 and an open neighborhood
U0 ⊂ U of p, such that (−ε, ε)×U0 ⊂ Ω. Let S0 ⊂ U0 such that S0 = U0∩{x1 = 0},
and define S ⊂ Rn−1 by

S = {(u2, . . . , un) : (0, u2, . . . , un) ∈ S0}.
Define a smooth map ψ : (−ε, ε)× S → U by

ψ(t, u2, . . . , un) = Φt(0, u2, . . . , un)

First we will show that ψ pushes ∂
∂t

forward to V . For any (t0, u0) ∈ (−ε, ε)× S,
we have

(
ψ∗

∂

∂t

∣∣∣∣
(t0,u0)

)
f =

∂

∂t

∣∣∣∣
(t0,u0)

(f ◦ ψ)

=
∂

∂t

∣∣∣∣
t=t0

(f(Φt(0, u0)))

= Vψ(t0,u0)f

On the other hand, when ψ is restricted to {0} × S,
ψ(0, u2, . . . , un) = Φ0(0, u2, . . . , un) = (0, u2, . . . , un), so

ψ∗
∂

∂ui

∣∣∣∣
(0,0)

=
∂

∂xi

∣∣∣∣
p

, i = 2, . . . , n.

Thus at (0, 0), ψ∗ takes the basis(
∂
∂t

∣∣
(0,0)

, ∂
∂u2

∣∣∣
(0,0)

, . . . , ∂
∂un

∣∣∣
(0,0)

)
to

(
Vp,

∂
∂x2

∣∣∣
p
, . . . , ∂

∂xn

∣∣∣
p

)
. Since Vp has a non-

zero x1-component, this is also a basis, so ψ∗ is an isomorphism. Therefore, by
the inverse function theorem, there are neighborhoods W of (0, 0) and Y of p
such that ψ : W → Y is a diffeomorphism.

Let ϕ = ψ−1 : Y → W , which is a smooth coordinate map.The equation(
ψ∗

∂
∂t

∣∣
(t0,u0)

)
f = Vψ(t0,u0)f says precisely that V is the coordinate vector field ∂

∂t

in these coordinates. With t renamed to u1, this is what we wanted to prove.

Let V and W be smooth vector fields on a smooth manifold M . We define
[V,W ] : C∞(M)→ C∞(M), which is called the Lie bracket of V and W , defined
by

[V,W ]f = VWf −WV f
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Lemma 3.1.14. Let V,W be smooth vector fields on a smooth manifold M , and
let V =

∑
V i ∂

∂xi
and W =

∑
W j ∂

∂xj
be the coordinate expressions for V and

W in terms of some smooth local coordinates (xi) for M . Then [V,W ] has the
following coordinate expression:

[V,W ] =
∑
i

∑
j

(
V i∂W

j

∂xi
−W i∂V

j

∂xi

)
∂

∂xj

Proof. See [10, Lemma 4.13].

Lemma 3.1.15. For every f, g ∈ C∞(M), for every smooth vector field V,W we
have:

[fV, gW ] = fg[V,W ] + (fV g)W − (gWf)V

Proof. See [10, Lemma 4.15].

Proposition 3.1.16. Let V and W be C1 vector fields on a manifold X, then:

LVW = [V,W ]

Proof. Let R(V ) = {p ∈ X : Vp 6= 0}. By the continuity of V , R(V ) is an open

set in X and suppV = R(V ).
First we will show that LVW = [V,W ] on R(V ). Let p ∈ R(V ). We can choose
local coordinates x = (x1, . . . , xn) such that V = ∂

∂x1
with flow Φt(x1, . . . , xn) =

(x1 + t, x2, . . . , xn) by Theorem 3.1.13 page 26. Let W =
∑n

j=1 bj(x) ∂
∂xj

, It’s easy

to see that the matrix representation of Φ∗t is the identity matrix for a fixed t at
any given point in these coordinates. Let u ∈ U where (U, (x1, . . . , xn)) is the
local coordinate chart. Then:

(Φ∗t )WΦt(u) = Φ∗t

(
n∑
j=1

bj(x)
∂

∂xj

∣∣∣∣
Φt(u)

)

=
n∑
j=1

bj(x)Φ∗t

(
∂

∂xj

∣∣∣∣
Φt(u)

)

=
n∑
j=1

bj(x)(Φ−t)∗

(
∂

∂xj

∣∣∣∣
Φt(u)

)

Such that,

(Φ∗t )WΦt(u) =
n∑
j=1

bj(x)

(
∂

∂xj

∣∣∣∣
u

)
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Using the definition of Lie derivative we get:

(LVW )u =
d

dt

∣∣∣∣
t=0

(Φt)
∗WΦt(u)

=
d

dt

∣∣∣∣
t=0

(
n∑
j=1

bj(x1 + t, x2, ..., xn)
∂

∂xj

∣∣∣∣
u

)

=
n∑
j=1

∂bj
∂x1

(x1, ..., xn)
∂

∂xj

∣∣∣∣
u

Therefore, by comparing this to the expression of the Lie bracket in coordinates,
we see that LVW = [V,W ].

Second, we will show that LVW = [V,W ] on suppV . This follows from the
continuity and he fact that suppV is the closure of R(V ).

Finally we will show that LVW = [V,W ] on X−suppV . Let p ∈ X−suppV .
Then V ≡ 0 on a neighborhood U of p, that is [V,W ] = LVW = 0 on U , since
[V,W ] = VW −WV and the flow map of the zero vector field is a constant.

Theorem 3.1.17. If V and W are vector fields with flows Φt, Ψt, then [V,W ] = 0
if and only if Φt ◦Ψs = Ψs ◦ Φt holds on the domain of the composition.

Proof. First let us assume that Φt ◦Ψs = Ψs ◦Φt. Let x be in the domain of the
composition, we have:

d

ds
(Φt ◦Ψs)(x) = dΨ(x)Φt

d

ds
Ψs(x) = (dΨs(x)Φt)(WΨs(x)) = ((Φt)∗W )Φt(Ψs(x))

d

ds

∣∣∣
s=0

(Φt ◦Ψs)(x) = ((Φt)∗W )Φt(x)

On the other hand we have:

d

ds

∣∣∣
s=0

Ψs ◦ Φt(x) = WΦt(x)

Therefore, ((Φt)∗W )Φt(x) = WΦt(x) for all t. Let y = (Φ−1
t )(x) = Φ−t(x). Since

the above identity is true for all t, by replacing Φt(x) by Φ−t(x) we can see that:

(Φ∗tW )y = Wy ⇐⇒ Φ∗tW = W

Differentiating at t = 0 we get:

d

dt

∣∣∣
t=0

Φ∗tW = LVW

d

dt

∣∣∣
t=0
W = 0
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=⇒ LVW = 0
=⇒ [V,W ] = 0 by Proposition 3.1.16.
Conversely, we assume that [V,W ] = 0 (i.e. LVW = 0).
By Equation (3.1) page 25 we have:

d

dt
Φ∗tW = Φ∗t (LVW )

and since LVW = 0 we have:

Φ∗tW = W ⇐⇒ (Φt)∗W = WΦt

Consider the path R 3 s 7→ γ(s) = Φt(Ψs(x)). We have:

dγ

ds
(s) = (Φt)∗

d

ds
Ψs(x) = (Φt)∗WΨs(x) = WΦt(Ψs(x)) = Wγ(s)

So, γ is an integral curve of W.
Now we consider the path R 3 s 7→ σ(s) = Ψs(Φt(x)). We have:

dσ

ds
(s) = Wσ(s)

So, σ is an integral curve of W . Moreover, we have:

γ(0) = Φt(Ψ0(x)) = Φt(x)

σ(0) = Ψ0(Φt(x)) = Φt(x)

Therefore, by the uniqueness of integral curves, we have γ(s) = σ(s) =⇒ Φt◦Ψs =
Ψs ◦ Φt.

Theorem 3.1.18. If V and W are vector fields with flows Φt, Ψt respectively
and t > 0, then:

[V,W ]x =
d

dt

∣∣∣∣
t=0

Ψ−
√
t ◦ Φ−

√
t ◦Ψ√t ◦ Φ√t(x)

Proof. Recall the Taylor expansion formula of Φt(x) and Ψt(x) at t = 0:

Φt(x) = Φ0(x) + tΦ̇0(x) +
t2

2
Φ̈0(x) +O(t3)

Ψt(x) = Ψ0(x) + tΨ̇0(x) +
t2

2
Ψ̈0(x) +O(t3)

First, notice that d
dt

Φt(x) = VΦt(x) and d
dt

Ψt(x) = WΨt(x).

Second, we see that d
2

dt2
Φt(x) = JΦt(x)V · VΦt(x) and d2

dt2
Ψt(x) = JΨt(x)W ·WΨt(x).

So,
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Φt(x) = x+ tVx +
t2

2
JxV · Vx +O(t3)

Ψt(x) = x+ tWx +
t2

2
JxW ·Wx +O(t3)

First we calculate Ψ√t ◦ Φ√t(x):

Ψ√t(Φ
√
t(x)) = Φ√t(x) +

√
tWΦ√t(x) +

t

2
JΦ√t(x) ·WΦ√t(x) +O(t

√
t)

= x+
√
tVx +

√
tWx

+ t

(
JxV

2
· Vx + JxW · Vx +

JxW

2
·Wx

)
+O(t

√
t)

Second, we calculate Ψ−
√
t ◦ Φ−

√
t(x):

Ψ−
√
t(Φ−

√
t(x)) = Φ−

√
t(x)−

√
tWΦ−

√
t(x) +

t

2
JΦ−

√
t(x) ·WΦ−

√
t(x) +O(t

√
t)

= x−
√
tVx +

t

2
JxV · Vx −

√
tWx

+ tJxW.Vx +
t

2
JxW ·Wx +O(t

√
t)

Finally, we will calculate Ψ−
√
t ◦ Φ−

√
t ◦Ψ√t ◦ Φ√t(x):

Ψ−
√
t(Φ−

√
t(Ψ

√
t(Φ
√
t(x)))) = x+

√
tVx +

t

2
JxV · Vx +

√
tWx + tJxW · Vx

+
t

2
JxW ·Wx −

√
t(Vx +

√
tJxV · Vx

+
√
tJxV ·Wx) +

t

2
JxV · Vx

−
√
t
(
Wx +

√
tJxW · Vx +

√
tJxW ·Wx

)
+ tJxW · Vx +

t

2
JxW ·Wx +O(t

√
t)

= x+ tJxW · Vx − tJxV ·Wx +O(t
√
t)

= x+ t · [V,W ]x +O(t
√
t)

And so, we have:

[V,W ]x =
d

dt

∣∣∣∣
t=0

Ψ−
√
t ◦ Φ−

√
t ◦Ψ√t ◦ Φ√t(x)

Remark 3.1.19. Theorem 3.1.18 is stated only for t > 0. What if t < 0 ?. We
know that Φ−t = Φ̃t is the flow map of the vector field −V and Ψ−t = Ψ̃t is the
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flow map of −W . Let t < 0, then −t > 0. This means that Ψ̃−
√
−t = Ψ√−t and

Φ̃−
√
−t = Φ√−t. So, by Theorem 3.1.18 we have:

[V,W ]x = [−V,−W ]x =
d

dt

∣∣∣∣
t=0

Ψ̃−
√
−t ◦ Φ̃−

√
−t ◦ Ψ̃√−t ◦ Φ̃√−t(x)

=
d

dt

∣∣∣∣
t=0

Ψ√−t ◦ Φ√−t ◦Ψ−
√
−t ◦ Φ−

√
−t(x)

Therefore in general, for any t ∈ R we have:

[V,W ]x =
d

dt

∣∣∣∣
t=0

Ψ− sgn(t)
√
|t| ◦ Φ− sgn(t)

√
|t| ◦Ψ

sgn(t)
√
|t| ◦ Φ

sgn(t)
√
|t|(x)

3.2 Algorithms and Computing Flows

The main purpose of this subsection is to show that a flow of a vector field V
which is determined by finitely many vector fields V1, . . . , Vm can be approximated
by flow maps of these finitely many vector fields vector fields. See [5, Chapter 4].

Definition 3.2.1. Let V be a continuous vector field on a manifold X, let
A(t, x) = At(x) be a continuous map A : U → X where {0}×X ⊂ U ⊂ [0,∞)×X
is open. A is said to be an algorithm for V if:

1. A0(x) = x ∀x ∈ X.

2. Vx = ∂
∂t

∣∣
t=0

At(x) ∀x ∈ X

3. At(x) is C1 in t with derivatives continuous in (t, x)

Theorem 3.2.2. Let V be a Lipschitz continuous vector field with flow Φt on a
manifold X. Let Ω be the fundamental domain of V and Ω+ = Ω∩ ([0,∞)×X).
If A is an algorithm for V , then for all (t, x) ∈ Ω+ the n-th iterate Ant

n

(x) of the

map A t
n

is defined for sufficiently large n ∈ N (n = n(x, t)), and we have that

lim
n→∞

Ant
n
(x) = Φt(x)

The convergence is uniform on compacts in Ω+. Conversely, if Ant
n

(x) is

defined and converges for 0 ≤ t ≤ t0 then (t0, x) ∈ Ω+ and
limn→∞A

n
t
n

(x) = Φt(x).

Proof. For X = Rm.
Let p ∈ Rm be fixed, and suppose that Φt(p) exists for t ∈ [0, t0].
Let C = {Φt(p) : t ∈ [0, t0]}. Notice that C = Φ({p} × [0, t0]), so C is a compact
subset of Rm.
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Choose compacts L1 ⊂ L2 ⊂ Rm such that C ⊂ L̊1 ⊂ L1 ⊂ L̊2 ⊂ L2.
We claim that there is a compact neighborhood K ⊂ L̊1 of p such that ∀x ∈ K
the flow Φt(x) exists for t ∈ [0, t0] and remains in L1. Indeed, Φ is uniformly
continuous on L1 since Φ is continuous on the compact set L1, that is for all
ε > 0 there exists δ > 0 such that for all x, y ∈ L1 and for all t ∈ [0, t0] we have
‖Φt(x) − Φt(y)‖ < ε whenever ‖x − y‖ < δ. Let ε = 1

2
dist(C,X − L1) and let

K = B(p, δ). So K is indeed compact and is a subset of L̊1. Now, let x ∈ K, we
will show that Φt(x) ∈ L1. Since x ∈ K there exists a sequence (xn)n∈N ⊂ B(p, δ)
such that ‖xn − x‖ → 0 as n→∞ (Note that by the continuity of Φt(·) we have
‖Φt(xn)− Φt(x)‖ → 0 as n→∞). Now,

‖xn − p‖ < δ ⇒ ‖Φt(xn)− Φt(p)‖ < ε

⇒ Φt(xn) ∈ B(Φt, p) for all n ∈ N
⇒ Φt(x) ∈ B(Φt(p), ε) ⊂ L1

The definition of an algorithm tells us that:

A0(x) = x
∂

∂t

∣∣∣∣
t=0

At(x) = Vx

We also know that:

Φ0(x) = x
∂

∂t

∣∣∣∣
t=0

Φt(x) = Vx

⇒ ∂

∂t

∣∣∣∣
t=0

(A(t, x)− Φt(x)) = 0

⇒ lim
t→0

(A(t, x)− Φt(x))− (A0(x)− Φ0(x))

t− 0
= 0

⇒ lim
t→0

A(t, x)− Φt(x)

t
= 0

⇒ |Φt(x)− At(x)| = o(t) uniformly on L2

Let’s show that why do we have |Φt(x) − At(x)| = o(t) uniformly on L2. Let

F (t, x) = A(t,x)−Φt(x)
t

. Let x0 ∈ L2 and let ε > 0. By the continuity of F (t, x),
there exists γ > 0 such that |F (t, y) − F (t, x0)| < ε

2
whenever y ∈ B(x0, γ).

Moreover, there exists a δ > 0 such that |F (t, x0)| < ε
2

whenever |t| < δ.
So, |F (t, y)| < |F (t, y) − F (t, x0)| + |F (t, x0)| < ε whenever y ∈ B(x0, γ) and
|t| < δ. We do this for every x0, and we get an open cover for the set L2. By
the compactness of L2 there exists a finite sub-cover where L2 ⊂

⋃N
i=1B(xi, γi).

Since any y ∈ L2 is contained in one of the balls B(xi, γi) we have |F (t, y)| < ε
for |t| < δ.

Now, we fix n ∈ N and let x ∈ K. Assume that for the moment that the
orbits,

y0 = x, y1 = A t
n
(y0), y2 = A t

n
(y1), . . . , yn = A t

n
(yn−1)
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exist and they lie in L2.
Lemma 3.1.5 gives us the estimate:

|Φt(x)− Φt(y)| ≤ eβt|x− y|

Also, notice that Φk
t
n

(x) = Φ kt
n

(x) by the group law for k = 1, . . . , n.

Claim : Φ kt
n

(x)− Akt
n

=
k∑
j=1

(Φk−j
t
n

(Φ t
n
(yj−1))− Φk−j

t
n

(A t
n
(yj−1)))

Indeed,

k∑
j=1

(Φk−j
t
n

(Φ t
n
(yj−1))− Φk−j

t
n

(A t
n
(yj−1))) =Φk−1

t
n

(Φ t
n
(y0))− Φk−1

t
n

(A t
n
(y0))

+Φk−2
t
n

(Φ t
n
(y1))− Φk−2

t
n

(A t
n
(y1))

...

+Φ t
n
(Φ t

n
(yk−2))− Φ t

n
(A t

n
(yk−2))

+Φ t
n
(yk−1)− A t

n
(yyk−1

)

=Φ kt
n

(x)− Akt
n
(x)

=⇒ |Φ kt
n

(x)− Akt
n
(x)| ≤

k∑
j=1

|Φk−j
t
n

(Φ t
n
(yj−1))− Φk−j

t
n

(A t
n
(yj−1))|

≤
k∑
j=1

eβ
t(k−j)
n |Φ t

n
(yj−1)− A t

n
(yj−1)|

≤ eβ
tk
n · k · o

(
t

n

)
, k = 1, . . . , n

=⇒ |Φ kt
n

(x)− Akt
n
(x)| ≤ eβ

tk
n · k · o

(
t

n

)
, k = 1, . . . , n

Now we will show that the orbits do exist and they lie in L2 by induction.
First of all, note that A is continuous and L2 is compact. So there exists some
time t2 such that At(x) exists for x ∈ L2 and t ∈ [0, t2]. Choose n large enough
(that is t

n
< t2) so that A t

n
exists.

For k = 0, we have y0 = x which exists trivially.
Now assume that yk = A t

n
(yk−1) is well defined and lies in L2. We will show

that yk+1 = A t
n
(yk) is well defined and lies in L2.

Indeed, yk+1 is well defined since yk lies in L2 by the induction hypothesis.
We just need to show that yk+1 lies in L2. Notice that limn→∞ eβ

tk
n · k · o( t

n
) = 0,

34



that is, for every ε > 0 there exists N ∈ N such that for every n > N we

have
∣∣∣eβ tkn · k · o( tn)

∣∣∣ < ε. For every x ∈ K set Cx = {Φt(x) : t ∈ [0, t2]} let

ε = 1
2

infx∈K(dist(Cx, X − L2)). So we will have that:

|Φ kt
n

(x)− Akt
n
(x)| < ε

which shows that A t
n
(yk) ∈ L2.

Now, for the converse statement we have assumed that the iterates Ant
n

(x)

are well-defined and converges for 0 ≤ t ≤ t0. We just need to show that
limn→∞A

n
t
n

(x) = Φt(x). The flow map Φt exists for sufficiently small t, that

is, set t1 = inf{t > 0 : Φt does not exist}, so Φt exists for t ∈ [0, t1). Moreover,
by using the inequality shown above for k = n;

|Φt(x)− Ant
n
(x)| ≤ eβt · n · o

(
t

n

)
we have limn→∞A

n
t
n

(x) = Φt(x) for t ∈ [0, t1). But, we wish to show that this is

true for t ∈ [0, t0]. For the sake of reaching a contradiction, suppose that Φt does
not exist for some t ∈ [0, t0]. By Remark 3.1.7 of the Escape lemma, we have
that:

lim
t→t1
‖Φt(x)‖ =∞

We showed earlier that if Φt exists, then:

|Φt(x)− Ant
n
(x)| ≤ eβt · n · o

(
t

n

)
for t ∈ [0, t1)

For fixed n ∈ N we have,

‖Φt(x)‖ = ‖Φt(x)− A t
n
(x) + A t

n
(x)‖

≤ ‖Φt(x)− A t
n
(x)‖+ ‖A t

n
(x)‖

≤ eβt · n · o
(
t

n

)
+ ‖A t

n
(x)‖

Allowing t → t1, we get infinity on the left side and a constant on the right
side, contradiction! Therefore our assumption is false, hence Φt exists for t ∈
[0, t0], which implies that limn→∞A t

n
(x) = Φt(x).

Proposition 3.2.3. Let V and W be vector fields with flows Φt and Ψt respec-
tively. Then,

1. Φt ◦Ψt is an algorithm for V +W .

2. Ψ−
√
t ◦ Φ−

√
t ◦Ψ√t ◦ Φ√t is an algorithm for [V,W ].
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Proof. 1. By the Taylor expansion of flows:

Φt(x) = x+ tVx +O(t2)

Ψt(x) = x+ tWx +O(t2)

so that, Φt(Ψt(x)) = x+ tWx + tVx +O(t2).

∂

∂t

∣∣∣∣
t=0

(Φt ◦Ψt)(x) = Vx +Wx = (V +W )x

Also, (Φ0 ◦ Ψ0)(x) = Φ0(x) = x. Therefore: A(t, x) = Φt ◦ Ψt(x) is an
algorithm for V +W .
Let ζt be the flow of V +W , then by Theorem 3.2.2 we have:

lim
n→+∞

(Φ t
n
◦Ψ t

n
)n(x) = ζt(x)

2. Let A(t, x) = (Ψ−
√
t ◦ Φ−

√
t ◦Ψ√t ◦ Φ√t)(x). By Theorem 3.1.18 we have:

∂

∂t

∣∣∣∣
t=0

A(t, x) = [V,W ]x, A(0, x) = x

so, A(t, x) is an algorithm for [V,W ].

Let ηt be the flow map of [V,W ]. So by Theorem 3.2.2 we have:

lim
n→+∞

(Ψ−
√

t
n

◦ Φ−
√

t
n

◦Ψ√ t
n

◦ Φ√ t
n

)n(x) = ηt(x)

Remark 3.2.4. In Proposition 3.2.3 part 1, we can assume Φt and Ψt to be
algorithms of V and W respectively, the same result will follow.

By a repeated application of this proposition and the preceding theorem we
have the following important result. But first, we need a couple of definitions.

Definition 3.2.5. A Lie algebra g over a field F is a F -vector space endowed with
a map called the Lie bracket from g×g to g, usually denoted by (V,W ) 7→ [V,W ],
that satisfies the following properties for all V1,V2,V3 ∈ g:

1. Bilinearity: For a, b ∈ F

[aV1 + bV2, V3] = a[V1, V3] + b[V2, V3]

[V3, aV1 + bV2] = a[V3, V1] + b[V3, V2]

2. Antisymetry:
[V1, V1] = 0
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3. Jacobi Identity:

[V1, [V2, V3]] + [V2, [V3, V1]] + [V3, [V1, V2]] = 0

Definition 3.2.6. Let g be a Lie algebra over F. Then a linear subspace U ⊂ g
is a Lie subalgebra if U is closed under the Lie bracket of g:

[V1, V2] ∈ U ∀V1, V2 ∈ U

Definition 3.2.7. Let g be a Lie algebra over F, and let U ⊂ g. We call 〈U〉 the
Lie subalgebra generated by U , where:

〈U〉 =
⋂
{I ⊂ g : I is a Lie subalgebra of g containing U}

Corollary 3.2.8. Let V1, . . . , Vm be R-complete holomorphic vector fields on a
complex manifold X. Let V ∈ 〈V1, . . . , Vm〉. Assume that K is a compact set in
X and t0 > 0 is such that the flow Φt(x) of V exists for every x ∈ K and for
all t ∈ [0, t0]. Then Φt0 is a uniform limit on K of a sequence of compositions
of time forward maps of the vector fields V1, . . . , Vm. In particular Φt0 can be
approximated uniformly on K by holomorphic automorphisms of X.

Proof. We will prove the following result using induction.
First, let us define the sets that we need in order to proceed.

U0 = U = {V1, . . . , Vm}
Uk+1 = span{[W1,W2],W1 : W1,W2 ∈ Uk}

We claim that 〈U〉 =
⋃
k∈N Uk. To prove this, we have to show that

⋃
k∈N Uk is

the smallest Lie algebra containing U . It is trivial to see that U ⊂
⋃
k∈N Uk. Now

we have to show that
⋃
k∈N Uk is a Lie algebra. Notice that U0 ⊂ U1 ⊂ · · · ⊂

Uk ⊂ Uk+1 ⊂ . . . . So,
⋃
k∈N Uk is a Lie algebra.

We just have to show that
⋃
k∈N Uk is the smallest Lie algebra containing U .

Indeed, let L be a Lie algebra containing U , and let W ∈
⋃
k∈N Uk ⇒ ∃k ∈ N :

W ∈ Uk ⇒ W is an element formed by taking a certain number of successive
[·, ·]-operations on the vector fields in U , but this implies that W ∈ L, since L is
closed under taking [·, ·]’s. Therefore 〈U〉 =

⋃
k∈N Uk.

Step 1: The base case, the flow of every element in U0 can be approximated
uniformly on compacts by a finite number of composition of complete flow maps
of the vector fields V1, . . . , Vm. Well, this is quite trivial, there is no need for
an approximation, since the flow is equal to itself everywhere, particularly on
compacts.

Step 2: The inductive step, suppose that the flow map of every element in Uk
can be approximated uniformly on compacts by a finite number of composition
of complete flow maps of the vector fields V1, . . . , Vm, we need to show that the
same is true for every flow map in Uk+1.
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For V = [W1,W2] such that W1,W2 ∈ Uk. Let ΦW1
t and ΦW2

t be the flow maps
for W1 and W2 respectively. By the induction hypothesis, there exists flow maps
ϕ1
t , . . . , ϕ

r
t , ψ

1
t , . . . , ψ

s
t of the complete vector fields V1, . . . , Vm, such that for any

given ε > 0 we have:

sup
x∈K,t∈[0,t0]

(dist(ΦW1
t (x), (ϕrt ◦ · · · ◦ ϕ1

t )(x)) < ε

sup
x∈K,t∈[0,t0]

(dist(ΦW2
t (x), (ψst ◦ · · · ◦ ψ1

t )(x)) < ε

By part 2 of the preceding proposition we have that, ΦW2

−
√
t
◦ΦW1

−
√
t
◦ΦW2√

t
◦ΦW1√

t

is an algorithm for V = [W1,W2]. Moreover the preceding theorem gives us the
following:

lim
n→∞

(ΦW2

−
√

t
n

◦ ΦW1

−
√

t
n

◦ ΦW2√
t
n

◦ ΦW1√
t
n

)n(x) = ζt(x)

uniformly on K, where ζt is the flow map of V .
Since the convergence is uniform on K we have, ∀ε > 0 ∃N ∈ N ; ∀n > N

and ∀x ∈ K dist((ΦW2

−
√

t
n

◦ ΦW1

−
√

t
n

◦ ΦW2√
t
n

◦ ΦW1√
t
n

)n(x), ζt(x)) < ε
2
. Let

fn(x) = ((ψs
−
√

t
n

◦ · · · ◦ ψ1

−
√

t
n

) ◦ (ϕr
−
√

t
n

◦ · · · ◦ ϕ1

−
√

t
n

) ◦ (ψs√ t
n

◦ · · · ◦ ψ1√
t
n

)◦

(ϕr√ t
n

◦ · · · ◦ ϕ1√
t
n

))n(x)

gn(x) = (ΦW2

−
√

t
n

◦ ΦW1

−
√

t
n

◦ ΦW2√
t
n

◦ ΦW1√
t
n

)n(x)

We wish to show that limn→∞ fn(x) = ζt(x) uniformly on K.
Let x ∈ K, by the triangular inequality we have:

‖ζt(x)− fn(x)‖K = ‖ζt(x)− fn(x)− gn(x) + gn(x)‖K
≤ ‖ζt(x)− gn(x)‖K + ‖fn(x)− gn(x)‖K
≤ ε+ ‖fn(x)− gn(x)‖K

Now, concerning ‖fn(x)− gn(x)‖K
Consider the map defined by (End(X))2 × R → End(X) defined by (Φ,Ψ, t) 7→
(Ψ−
√

t
n

◦Φ−
√

t
n

◦Ψ√ t
n

◦Φ√ t
n

) which is continuous in the compact open topology.

So, ‖ζt(x)− fn(x)‖K < ε.
Finally let us deal with linear combinations. Suppose V = W1 + W2, such

that W1,W2 ∈ Uk and let ΦW1
t ,ΦW2

t be the flow maps of W1 and W2 respectively.
We follow the same method of proof that we did concerning the Lie bracket [·, ·].
The only difference is that the algorithm for V is ΦW1

t ◦ ΦW2
t .
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Chapter 4

Vector Fields On The
Koras–Russell Cubic

In this chapter we study some particular vector fields on the Koras–Rusell cubic.
Moreover we show that they are complete.

In [11], Leuenberger defines vector fields on a space X as follows. Let n ≥
k ≥ 0 and let a, b ∈ C[z0, . . . , zn] such that degzi(a) ≤ 2 and degzi(b) ≤ 1 for all
i ≤ k. Let z̄ = (z0, . . . , zn) and X = {x2y = a(z̄) + xb(z̄)}. Now, we define the
following vector fields on X:

vix = (
∂a

∂zi
+ x

∂b

∂zi
)
∂

∂y
+ x2 ∂

∂zi
and vjy = (

∂a

∂zj
+ x

∂b

∂zj
)
∂

∂x
+ (2xy − b(z̄))

∂

∂zj

for 0 ≤ i ≤ n and 0 ≤ j ≤ k and moreover, let

vz = a(z̄)x
∂

∂x
− (2a(z̄)y − xyb(z̄) + b2(z̄))

∂

∂y

Notice that, the Koras–Russell Cubic is this space X for a(z̄) = −z2
0 − z3

1 and
b(z̄) = −1 where z̄ = (z0, z1). We will rename these vector fields (associated to
the Koras–Russell cubic) from v0

x, v
1
x, v

0
y, vz to U, V,W,E . They turn out to be

complete vector fields, that is, their flow maps are defined for all time.
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Theorem 4.0.1. The following four vector fields

U = −2z
∂

∂y
+ x2 ∂

∂z

V = −3w2 ∂

∂y
+ x2 ∂

∂w

W = −2z
∂

∂x
+ (2xy + 1)

∂

∂z
)

E = −x(z2 + w3)
∂

∂x
− (−2(z2 + w3)y + xy + 1)

∂

∂y

H = 6x
∂

∂x
− 6y

∂

∂y
+ 3z

∂

∂z
+ 2w

∂

∂w

on X = {(x, y, z, w) ∈ C4 : x2y + x+ z2 + w3 = 0} are complete.

Proof. 1. Let γ(t) = (x(t), y(t), z(t), w(t)) be an integral curve for the vector
field U = −2z ∂

∂y
+ x2 ∂

∂z
. This implies that γ̇(t) = Uγ(t), which is equivalent

to the following system of Ordinary differential equations,

ẋ(t) = 0

ẏ(t) = −2z(t)

ż(t) = x2(t)

ẇ(t) = 0

=⇒ x(t) = c1, ẏ(t) = −2(c2
1t + c3), z(t) = c2

1t + c3 and w(t) = c4. So, we
have:

x(t) = c1

y(t) = −c2
1t

2 + c3t+ c2

z(t) = c2
1t+ c3

w(t) = c4

=⇒ γ(t) = (c1,−c2
1t

2 + c3t + c2, c
2
1t + c3, c4). Therefore the flow map of U

is given by,

Φt(x, y, z, w) = (x,−x2t2 − 2zt+ y, x2t+ z, w)

which is defined for all time.

2. Let δ(t) = (x(t), y(t), z(t), w(t)) be an integral curve for the vector field
V . So, δ̇(t) = Vγ(t), which is equivalent to the following system of ordinary
differential equations,

ẋ(t) = 0

ẏ(t) = −3w2(t)

ż(t) = 0

ẇ(t) = x2(t)
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=⇒ x(t) = c1, y(t) = −c4
1t

3 − 3c2
1c4t

2 − 3c2
4t+ c2, z(t) = c3, w(t) = c2

1t+ c4.
=⇒ δ(t) = (c1,−c4

1t
3 − 3c2

1c4t
2 − 3c2

4t + c2, c3, c
2
1t + c4). Therefore the flow

map of V is given by,

Ψt(x, y, z, w) = (x,−x4t3 − 3w2t− 3x2wt2 + y, z, x2t+ w)

which is defined for all time.

3. Consider the vector field W . Let ε(t) = (x(t), y(t), z(t), w(t)) be an integral
curve for W . So, ε̇(t) = Wε(t), that is:

ẋ(t) = −2z(t)

ẏ(t) = 0

ż(t) = 2x(t)y(t) + 1

ẇ(t) = 0

This implies that y(t) = c2 and w(t) = c4. Now, ż(t) = 2c2x(t) + 1 ⇒
z̈(t) = 2c2ẋ(t)⇒ z̈(t) = −4c2z(t). We have to solve the following ODE:

z̈(t) + 4c2z(t) = 0

The corresponding characteristic equation is m2 + 4c2 = 0 which implies
that m = ±i · 2√c2. So, this yields

z(t) = A1 cos(2
√
c2t) + A2 sin(2

√
c2t)

after taking the derivative of z(t) we get:

ż(t) = −2A1

√
c2 sin(2

√
c2t) + 2A2

√
c2 cos(2

√
c2t)

but, ż(t) = 2c2x(t) + 1, which means:

x(t) = −A1

√
c2

c2

sin(2
√
c2t) + A2

√
c2

c2

cos(2
√
c2t)−

1

2c2

x(t) = −A1
1
√
c2

sin(2
√
c2t) + A2

1
√
c2

cos(2
√
c2t)−

1

2c2

=⇒ ε(t) = (−A1
1√
c2

sin(2
√
c2t)+A2

1√
c2

cos(2
√
c2t)− 1

2c2
, c2, A1 cos(2

√
c2t)+

A2 sin(2
√
c2t), c4).

Let ϕt(x, y, z, w) be the flow map ofW . We have, ϕ0(x, y, z, w) = (x, y, z, w)
and ϕ̇t(x, y, z, w) = Wϕt(x,y,z,w). So,

x =
A2√
c2

− 1

2c2

=
A2√
y
− 1

2y

y = c2

z = A1

w = c4
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Therefore, A2 = x
√
y + 1

2
√
y
, which gives us our flow map:

ϕt(x, y, z, w) = (
z
√
y

sin(2
√
yt)+x cos(2

√
yt) +

1

2y
(cos(2

√
yt)− 1), y,

z cos(2
√
yt) + (x

√
y +

1

2
√
y

) sin(2
√
yt), w)

Notice the, the flow map is well defined for all time. However, we have a
singularity at y = 0. As it turns out, it is a removable singularity since,

sin(2
√
yt)

√
y

=
1
√
y

[2
√
yt−

(2
√
yt)3

3!
+

(2
√
yt)5

5!
− . . . ]

= 2t− 4t3y

3
+

4t5y2

15
− . . .

1

y
[cos(2

√
yt)− 1] =

1

y
[−

(2
√
yt)2

2!
+

(2
√
yt)4

4!
−

(2
√
yt)6

6!
+ . . . ]

= −2t2 +
2t4

3
y − 4t6y2

45
+ . . .

Finally, the complex square root is also well defined, since 1
−√y sin(−√y) =

1√
y

sin(
√
y) and cos(2(−√y)t) = cos(2

√
yt). That is, the result is the same

regardless if we chose −
√
· or +

√
·.

4. Consider the vector field

E = −x(z2 + w3)
∂

∂x
− (−2(z2 + w3)y + xy + 1)

∂

∂y

We want to show that it’s complete. Let ζt = (x(t), y(t), z(t), w(t)) be a
integral curve for E. Then,

ẋ(t) = −x(t)(z2(t) + w3(t))

ẏ(t) = 2(z2(t) + w3(t))y(t)− x(t)y(t)− 1

ż(t) = 0

ẇ(t) = 0

So, we have that z(t) = c3, w(t) = c4 and x(t) = c1e−(c23+c34)·t. To find y(t),
we used some rudimentary ODE techniques. Let λ = c2

3 + c3
4.

ẏ(t)− 2λy(t) + c1 exp(−λ · t)y(t) + 1 = 0

ẏ(t)− (2λ− c1e−λt)y(t) + 1 = 0

The corresponding homogeneous equation is:

ẏ(t)− (2λ− c1e−λt)y(t) = 0
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By separation of variables we get:

y0(t) = c2e2λt+
c1
λ

e−λt

Now we wish to find a particular solution yp(t), so that y(t) = y0(t) + yp(t).

Let yp(t) = u(t)y1(t) where y1(t) = e2λt+
c1
λ

e−λt . So,

yp(t) = u(t)e2λt+
c1
λ

e−λt

ẏp(t) = u̇(t)y1(t) + u(t)ẏ1(t)

= u̇(t)e2λt+
c1
λ

e−λt + u(t)(2λ− c1e−λt)e2λt+
c1
λ

e−λt

By substituting yp and ẏp in the ODE, we get:

ẏp(t)− (2λ+ c1e−λt)yp(t)− 1 = 0

u̇(t)e2λt+
c1
λ

e−λt + u(t)(2λ− c1e−λt)e2λt+
c1
λ

e−λt

−(2λ− c1e−λt)u(t)e2λt+
c1
λ

e−λt = −1

u̇(t)e2λt+
c1
λ

e−λt = −1

Finally, all is left to solve is the following:

u̇(t) = −e−2λt+
c1
λ

e−λt

After integration we have:

u(t) = −
(e−λt + λ

c1
)

c1

e−
c1
λ

e−λt

Therefore,

y(t) = c2e2λt+
c1
λ

e−λt − 1

c1

(eλt +
λ

c1

e2λt)

So finally we have

ζ(t) = (c1e−(c23+c34)·t, c2e2λt+
c1
λ

e−λt − 1

c1

(eλt +
λ

c1

e2λt), c3, c4)

Let ψt(x, y, z, w) be the flow map of V . Then, by the definition of flow map,
we have that, ψ0(x, y, z, w) = (x, y, z, w) and ψ̇t(x, y, z, w) = Vψt(x,y,z,w).
Therefore,

ψt(x, y, z, w) =

(xe−(z2+w3)t,(y +
1

x
(1 +

z2 + w3

x
))e

x
z2+w3 (e−(z2+w3)t−1)+2(z2+w3)t

− 1

x
(e(z2+w3)t +

z2 + w3

x
e2(z2+w3)t), z, w)

43



First of all, notice that the flow is defined for all time. Second, it appears
that we have a few singularities. Since we’re in the Koras–Russell Cubic,
let’s use the fact that z2 + w3 = −(x2y + x) for the second component of
the flow map. We get

(y +
1

x
(1 +

−(x2y + x)

x
))e

x
z2+w3 (e−(z2+w3)t−1)+2(z2+w3)t

− 1

x
e(z2+w3)t(1 +

−(x2y + x)

x
e(z2+w3)t)

= −1

x
e(z2+w3)t(1− e(z2+w3)t − xye(z2+w3)t)

= −1

x
e(z2+w3)t(1− e−(x2y+x)t) + ye2(z2+w3)t

By Taylor expanding 1
x
(1− e−(x2y+x)t) we see that the singularity at

x = 0 vanishes. Finally,the flow map of E is defined for all time, has no
singularities, and is give as follows:

ψt(x, y, z, w) = (xe−(z2+w3)t,−1

x
(e(z2+w3)t +

z2 + w3

x
e2(z2+w3)t), z, w)

5. Consider the vector field

H = 6x
∂

∂x
− 6y

∂

∂y
+ 3z

∂

∂z
+ 2w

∂

∂w

H is a vector field on the Koras–Russell cubic since:

H(x2y + x+ z2 + w3) = 6x(2xy + 1)− 6y(x2) + 3z(2z) + 2w(3w2)

= 6(x2y + x+ z2 + w3)

= 0

Now, let’s show that H is a complete vector field.
Let σ(t) = (x(t), y(t), z(t), w(t)) be an integral curve for H. That is, σ̇(t) =
Hσ(t), which is equivalent to the following system of ordinary differential
equations,

ẋ(t) = 6x(t)

ẏ(t) = −6y(t)

ż(t) = 3z(t)

ẇ(t) = 2w(t)

So, we can easily see that σ(t) = (c1e6t, c2e−6t, c3e3t, c4e2t). And finally, the
flow map of H is given by,

ρt(x, y, z, w) = (xe6t, ye−6t, ze3t, we2t)

which is complete, as it is defined for all time.
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Remark 4.0.2. Notice that [U, V ] = 0, indeed:

[U, V ] =

[
−2z

∂

∂y
+ x2 ∂

∂z
,−3w2 ∂

∂y
+ x2 ∂

∂w

]
=

[
−2z

∂

∂y
,−3w2 ∂

∂y

]
+

[
−2z

∂

∂y
, x2 ∂

∂w

]
+

[
x2 ∂

∂z
,−3w2 ∂

∂y

]
+

[
x2 ∂

∂z
, x2 ∂

∂w

]
= 0
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Chapter 5

The Density Property of the
Koras–Russell Cubic

The main purpose of this chapter is to show that the Koras–Russell cubic X
has the density property. We will need a few ingredients. Namely, we will show
that Authol(X) acts transitively on X, (V,W ) are compatible pairs, and Wp is a
generating set of TpX for a generic point p ∈ X. In this chapter, we make use
of the following references: Leuenberger [11], Andrist and Kutzschebauch [4] and
Munkres [12].

5.1 Shears and Overshears

Definition 5.1.1 ([4, Definition 3.1]).
Let X be a complex manifold and let Θ be a C-complete vector field on X,i.e. the
flow map of Θ exists for all complex times. A vector field f · Θ, f ∈ O(X) is
called a Θ-shear vector field if Θ(f) = 0. It is called a Θ-overshear vector field if
Θ2(f) = 0.

Proposition 5.1.2. Let X be a complex manifold and let Λ be a C−complete
vector field on X, then all Λ−shear fields are C−complete. In fact, if ψt denotes
the flow map of Λ, the the flow map ζt of f · Λ is given by

ζt(z) = ψt·f(z)(z)

Proof. We need to show that ζt(z) is the flow map of the vector field Θ = f · Λ.
First, it’s trivial to see that ζ0(z) = ψ0·f(z)(z) = ψ0(z) = z. Now, we need to show

that ζ̇t(z) = Θζt(z). Indeed, ζ̇t(z) = d
dt

(ζt(z)) = d
dt

(ψt·f(z)(z)) = f(z)ψ̇t·f(z)(z) =
f(z)Λψt·f(z)

= Θζ(z).

Lemma 5.1.3 ([4, Lemma 3.3]).
Let X be a complex manifold and let V be a C-complete vector field on X, then
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all V -overshear vector fields are C-complete as well. In fact, if φt denotes the
flow map of V , then the flow map ψt of f · V is given by

ψt(z) = φε(tVz(f))·tf(z)(z)

where ε : C→ C is given by

ε(ζ) =
∞∑
k=1

ζk−1

k!
=

eζ − 1

ζ

Proof. First, let us compute d
dt
ψt(z). Note that, ε(tΘz(f)) · tf(z) = etΘzf−1

Θzf
f(z).

d

dt
ψt(z) =

d

dt
φ etΘzf−1

Θzf
f(z)

(z)

= φ̇ etΘzf−1
Θzf

f(z)
(z) · ΘzfetΘzf

Θzf
f(z)

= Θψt(z) · f(z)etΘzf

Second, we will calculate d
dt
f(ψt(z)).

d

dt
f(ψt(z)) = dψt(z)f ◦ φ̇ etΘzf−1

Θzf
f(z)

(z) · f(z)etΘzf

= f(z)etΘzf ·Θψt(z)f

Note that d
dt

Θψt(z)f = 0 because Θ2(f) = 0. We can compare higher order
derivatives:

dm

dtm
f(ψt(z)) = f(z)etΘzf · (Θzf)m−1 ·Θψt(z)f

dm

dtm
f(z) · etΘzf = f(z)etΘzf · (Θzf)m

Notice that for t = 0 and for all m ∈ N the values above agree. Therefore,
f(ψt(z)) = f(z)etΘzf and d

dt
ψt(z) = f(z) ·Θψt(z).

Remark 5.1.4. Using Lemma 5.1.3, we can say the following about the vector
fields from Theorem 4.0.1:

1. If f(x, y, z, w) = xlwn for some l,m ∈ N, then f ∈ kerU , that is: fU is a
U−shear vector field. Moreover, if f(x, y, z, w) = zxlwn for some l,m ∈ N,
then f ∈ kerU2 that is, fU is a U−overshear.

2. If f(x, y, z, w) = xlzn for some l, n ∈ N, then f ∈ kerV , that is: fV is a
V−shear vector field. Moreover, if f(x, y, z, w) = wxlzn for some l,m ∈ N,
then f ∈ kerV 2 that is, fV is a V−overshear vector field.
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5.2 The Kaliman–Kutzschebauch Formula

Proposition 5.2.1 (Kaliman–Kutzschebauch formula). Let Θ and Λ be two vec-
tor fields on a manifold X. Then,

[hfΘ, gΛ]− [fΘ, hgΛ] = −fgΘ(h)Λ− fgΛ(h)Θ

= −fg (Θ(h)Λ− Λ(h)Θ)

Proof.

[hfΘ, gΛ] = hfg[Θ,Λ] + hfΘ(g)Λ− gΛ(hf)Θ

= hfg[Θ,Λ] + hfΘ(g)Λ− g(fΛ(h) + hΛ(f))Θ

= hfg[Θ,Λ] + hfΘ(g)Λ− gfΛ(h)Θ− ghΛ(f)Θ

[fΘ, hgΛ] = fhg[Θ,Λ] + fΘ(hg)Λ− hgΛ(f)Θ

= fhg[Θ,Λ] + f(gΘ(h) + hΘ(g))Λ− hgΛ(f)Θ

= fhg[Θ,Λ] + fgΘ(h)Λ + fhΘ(g)Λ− hgΛ(f)Θ

Therefore,
[hfΘ, gΛ]− [fΘ, hgΛ] = −fgΘ(h)Λ− fgΛ(h)Θ

Remark 5.2.2. Suppose that we add the assumption that Θ(f) = Λ(g) = 0,
Θ2(h) = 0 but Θ(h) 6= 0, and Λ(h) = 0. Then,

[hfΘ, gΛ]− [fΘ, hgΛ] = −fgΘ(h)Λ

we can observe that, hfΘ, gΛ, fΘ, and hgΛ are all complete vector fields, if Θ
and Λ were complete. Using this variant of the Kaliman–Kutzschebauch formula
is a strategic way to go, since we can find new vector fields using complete ones.

Remark 5.2.3. The reason we stated the Kaliman–Kutzschebauch formula is
because of the missing commutator on the right hand side. In Theorem 4.0.1,
[U, V ] = 0. However, we don’t have the same for the rest, i.e. [U,W ], [U,E],
[V,W ], [V,E], [W,E] 6= 0.
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5.3 The Density Property

Definition 5.3.1. Let X be a complex manifold. Let f : X → X be a holomorphic
map. We say that f is a holomorphic automorphism if f is bijective and f−1 is
holomorphic.

Notation 5.3.2.

1. We will denote the space of holomorphic automorphisms on X by Authol(X).

2. We will denote the space of holomorphic vector fields on X by VFhol(X).

3. We will denote the set of complete holomorphic vector fields on X
by CVFhol(X).

Definition 5.3.3 ([12, Page 82]).
A subbasis S for a topology on X is a collection of subsets of X whose union
equals X. The topology generated by the subbasis S is defined to be the collection
T of all unions of finite intersections of elements of S.

Definition 5.3.4 ([12, Page 285]).
Let X and Y be topological spaces. If K is a compact subspace of X and U is an
open subset of Y , define

S(K,U) = {f : f ∈ C(X, Y ) and f(K) ⊂ U}.

The sets S(K,U) form a subbasis for a topology on C(X, Y ) that is called the
compact open topology.

Definition 5.3.5 ([16, Section 1]). Let X be a Stein manifold. If the Lie algebra
Lie(CVFhol(X)) generated by the complete holomorphic vector fields CVFhol(X)
on X is dense (in the compact open topology) in the Lie algebra of all holomorphic
vector fields VFhol(X), then X has the density property.

Note that Cn for n ≥ 2 also has the algebraic density property. Note that
a complex algebraic manifold is said to have the algebraic density property if
the Lie algebra generated by the complete algebraic vector fields on the manifold
coincides with the Lie algebra of all algebraic vector fields. In fact, in his paper,
Andrist [3] shows that the Lie algera of polynomial vector fields on Cn can be
generated by three complete polynomial vector fields.

The main implication of the density property is the so called Andersén–
Lempert theorem. The proof can be found in Andersén–Lempert [2], Forstnerič–
Rosay [6], [7] and Varolin [16].

Theorem 5.3.6 (Andersén–Lempert Theorem). Let X be a Stein manifold with
the density property. Let Ω ⊂ X be a Stein open subset and let ϕ : [0, 1]×Ω→ X
be a C1-smooth map such that
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1. ϕ0 : Ω→ X is the natural embedding.

2. ϕt : Ω→ X is holomorphic and injective for every t ∈ [0, 1].

3. ϕt(Ω) is a Runge subset of X for every t ∈ [0, 1].

Then for every ε > 0 and for every compact K ⊂ Ω, there exists a continuous
family Φ: [0, 1]→ Aut(X) such that Φ0 = IdX and ||ϕt − Φt||K < ε.
Moreover, these automorphisms can be chosen to be compositions of flows of
completely integrable generators of any dense Lie subalgebra g of Lie(VFhol(X)).

Remark 5.3.7 (Andersén–Lempert Theorem and Corollary 3.2.8).
Notice that in Corollary 3.2.8, given a vector field V ∈ Lie({V1, . . . , Vm}), where
the Vi’s are complete, we can approximate uniformly the flow map of V by com-
positions of the flow maps of the Vi’s. In the Andersén–Lempert Theorem, we can
approximate any automorphism in the path–connected component of the identity,
by compositions of the flow maps of the vector fields in the dense Lie subalgebra
of Lie(VFhol(X)).

Lemma 5.3.8. f(z, w)E ∈ CVFhol(X) for every f ∈ C[z, w].

Proof. We have shown in Theorem 4.0.1 that E is complete.
Moreover, E(f(z, w)) = 0 for all f ∈ C[z, w], then f(z, w)E is an E−shear vector
field, whose flow map is given by ηt = ψt·f hence it’s complete.

Definition 5.3.9. Let G be a group with identity e and let X be a nonempty set.
A left group action of G on X is a map from G×X → X, defined by (g, x) 7→ g ·x
that satisfies the following two conditions:

1. For every g1, g2 ∈ G and for every x ∈ X, g1 · (g2 · x) = (g1g2) · x.

2. For every x ∈ X, e · x = x.

Definition 5.3.10. We say that a group G acts transitively on a set X if there
exists x ∈ X such that G · x = X.

Note: Here, our set is X = {(x, y, z, w) ∈ C4 : x2y + x + z2 + w3 = 0}
and our group G = Authol(X). The action of Authol(X) on X is given by,
(f, (x, y, z, w)) 7→ f(x, y, z, w), where f ∈ Authol(X) and (x, y, z, w) ∈ X.

Lemma 5.3.11. The group Authol(X) acts transitively on X − {x = 0}.

Proof. Let Fc = {(x, y, z, w) ∈ X : x = c} where c 6= 0. Note that
⋃
c∈C∗ Fc =

X − {x = 0}. So, to show transitivity, we need to show that for any points p,
q ∈ X−{x = 0} there exists an automorphism f ∈ Authol(X) such that f(p) = q.

Claim: For any two points p,q ∈ Fc for some c 6= 0 there exists an automor-
phism g ∈ Authol(X) such that g(p) = q.
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Indeed, let p = (c, y1, z1, w1) ∈ Fc and q = (c, y2, z2, w2) ∈ Fc. Recall that the
flow maps of the vector fields U and V from Theorem 4.0.1 are given by:

Φt(x, y, z, w) = (x,−x2t2 − 2zt+ y, x2t+ z, w)

Ψt(x, y, z, w) = (x,−x4t3 − 3w2t− 3x2wt2 + y, z, x2t+ w)

We will find t, s, τ ∈ C such that Φτ ◦Ψs ◦ Φt(p) = q.

Φτ ◦Ψs ◦ Φt(p) = (c,−c2τ 2 − 2(c2t+ z1)τ − c4s3 − 3w2
1s− 3c2w1s

2 − c2t2

− 2z1t+ y1, c
2(t+ τ) + z1, c

2s+ w1)

Let s = w2−w1

c2
and τ + t = z2−z1

c2
. Now, if we substitute s and t = z2−z1

c2
− τ in the

equation:

−c2τ 2 − 2(c2t+ z1)τ − c4s3 − 3w2
1s− 3c2w1s

2 − c2t2 − 2z1t+ y1 = y2

we get a polynomial in τ . By the fundamental theorem of algebra, there exists a
τ0 which satisfies the polynomial equation. Hence, we have a found τ0, t0, s ∈ C
such that Φτ0 ◦Ψs ◦ Φt0(p) = q.
Claim: Let c1, c2 ∈ C∗ such that c1 6= c2. Then, for every p ∈ Fc1 and for every
q ∈ Fc2 there exists an automorphism h ∈ Authol(X) such that h(p) = q.
Consider the vector field E from Theorem 4.0.1 and its flow map, which was
given by:

ψt(x, y, z, w) = (xe−(z2+w3)t,−1

x
(e(z2+w3)t +

z2 + w3

x
e2(z2+w3)t), z, w)

Let p = (c1, y1, z1, w1) ∈ X − {x = 0} and let q = (c2, y2, z2, w2) ∈ X − {x = 0}.
If z2

1 + w3
1 = −c2

1y1 − c1 = −c1(c1y1 − 1) 6= 0. Notice that the first component
of ψt(p) is c1e−(z2

1+w3
1)t. By the surjectivity of the exponential map we can find

a t0 ∈ C such that c1e−(z2
1+w3

1)t = c2, and then using the first claim we can flow
ψt0(p) to q using the flow maps of U and V . If on the other hand, we have
c1y1 = 1, first we flow out p from the curve c1y1 = 1 in Fc1 using the flow maps
of U and V , and then we proceed like in the first case. Therefore for every
points p,q ∈ X − {x = 0} we found an automorphism f ∈ Authol(X) such that
f(p) = q.

Theorem 5.3.12. Authol(X) acts transitively on X.

Proof. In the preceding lemma, we showed that for any points p, q ∈ X−{x = 0}
there exists an automorphism f ∈ Authol(X) such that f(p) = q. Now, we will
consider a point p = (0, y1, z1, w1) ∈ {x = 0} and we need to show that for any
point q = (x2, y2, z2, w2) ∈ X there exists an automorphism f ∈ Authol(X) such
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that f(p) = q. First let us consider q = (c, y2, z2, w2) ∈ Fc for some c 6= 0. Let
W be the vector field from Theorem 4.0.1, with flow map:

ϕt(x, y, z, w) = (
z
√
y

sin(2
√
yt)+x cos(2

√
yt) +

1

2y
(cos(2

√
yt)− 1), y,

z cos(2
√
yt) + (x

√
y +

1

2
√
y

) sin(2
√
yt), w)

Notice that, the first component of ϕt(p) is:

z1√
y1

sin(2
√
y1t) +

1

2y1

(cos(2
√
y1t)− 1)

If z1 = 0, then there exists t0 ∈ C∗, ϕt0(p) ∈ Fc′ for some c′ ∈ C∗. Also, if z1 6= 0,
the Taylor expansion of the first component of ϕt(p) is:

(
2z1t− t2

)
+

(
t4

3
− 4t3

3
z1

)
y1 +

(
4t5

15
z1 −

2t6

45

)
y2

1 + . . .

Hence, there exists a t0 ∈ C∗ such that ϕt0(p) ∈ Fc′′ for some c
′′ ∈ C∗. So,

regardless what the value of z1 is, there exists c1 ∈ C∗ such that ϕt0(p) ∈ Fc1 for
some t0 ∈ C∗. Now, by the second claim of the preceding lemma, we know that
there exits an automorphism f ∈ Authol(X) such that f(ϕt0(p)) = q.

If q = (0, y2, z2, w2) ∈ F0, then there exists t0, s0 ∈ C∗ such that ϕt0(p) ∈ Fc2
and ϕs0(p) ∈ Fc3 for some c2, c3 ∈ C∗. Again, by the second claim of the preceding
lemma there exists an automorphism f ∈ Authol(X) such that f(ϕt0(p)) = ϕs0(q).
And so, ϕ−s0(f(ϕt0(p))) = q.

Definition 5.3.13 ([11, Definition 2.9]).
A semi-compatible pair is a pair (ν, µ) of complete vector fields such that the
closure of the linear span of the product of the kernels ker ν · kerµ contains a
non-trivial ideal I ⊂ O(X). We call I a compatible ideal of (ν, µ).

Note: The ideal I is not unique. In most applications O(X) itself serves as
the ideal.

Definition 5.3.14 ([11, Definition 2.11]). A semi-compatible pair (ν, µ) is called a
compatible pair if there is a holomorphic function h ∈ O(X) with ν(h) ∈ ker ν−0
and h ∈ kerµ. We call h a compatible function of the pair (ν, µ).

Example 5.3.15. On Cn, for n ≥ 2 with coordinates z = (z1, . . . , zn) the pair of
vector fields ( ∂

∂z1
, ∂
∂z2

) are compatible with h = z1 and I = O(Cn), moreover ∂
∂z2

is a generating set for each tangent space.

Lemma 5.3.16. The pair (V,W ) is a compatible pair.
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Proof. First, let us show that the pair (V,W ) is a semi-compatible pair. Indeed
the kernel of V contains the functions depending on x, z and the kernel of W
contains the functions depending on y, w; thus the closure of span{kerV ·kerW}
is equal to O(X) and in particular contains an ideal.

For (V,W ) to be a compatible pair, we need a function h ∈ kerW such that
V (h) ∈ kerV −0. Let h = w ∈ kerW , and V (w) = x2 6= 0 and V (w) ∈ kerV .

Definition 5.3.17. Let G be a group acting on a set X. Let x ∈ X be a fixed
element of the group. The subgroup Gx = {g ∈ G : g · x = x} is called the
stabilizer of x.

Definition 5.3.18 ([11, Definition 2.4]).
Let p ∈ X. A set Ω ⊂ TpX is called a generating set for TpX if the orbit of Ω
of the induced action of the stabilizer Authol(X)p = {f ∈ Authol(X) : f(p) = p}
contains a basis of TpX.

Lemma 5.3.19. For a generic point p ∈ X = {(x, y, z, w) ∈ C4 : x2y + x+ z2 +
w3 = 0}, the vector Wp is a generating set for TpX.

Proof. It is sufficient to find one point since spanning is an open condition and
hence will fail only on a thin set. Let p = (x0, y0, 1, 0) ∈ X where x0 6= 0. Let
ν ∈ CVFhol(X) and f ∈ ker ν with f(p) = 0. Consider the flow map of ν given
by ζt ∈ Authol(X). Let ηt = ζtf be the flow map of fν. Notice that the time-1
map of fν is given by ζf where (ζf )(q) = ζf(q)(q). Consider the induced action
by these time-1 maps on TpX which is given by v 7→ v + v(f)ν(p). To see this,
let’s Taylor expand ζt(q).

ζt(q) = q + tνq +O(t2)

Also, we have that

f(q) = f(p) + Jpf · (q − p) +O(‖q − p‖2) = Jpf · (q − p) +O(‖q − p‖2)

Finally,
ζf(q)(q) = q + f(q)νq +O(f(q)2)

Combining all the linear terms, and considering νq = νp + non–linear terms
we get:

ζf(q)(q) = q + (Jpf · (q − p)) νq +O(f(q)2) +O(‖q − p‖2)

= q + (Jpf · (q − p)) νq +O
(∥∥Jpf · (q − p) +O(‖q − p‖2)

∥∥2
)

+O(‖q − p‖2)

= p+ (q − p) + (Jpf · (q − p)) νp +O(‖q − p‖2)
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We conclude that
dpζf (v) = v + dpf(v) · νp

The vector fields U ,V ∈ CVFhol(X) with f = x − x0 ∈ kerU, kerV , with
time-1 maps given by Φx−x0 ,Ψx−x0 ∈ Authol(X)p.

Φx−x0(x, y, z, w) = (x, y − x2(x− x0)2x2 − 2z(x− x0), z + x2(x− x0), w)

Ψx−x0(x, y, z, w) = (x, y − x4(x− x0)3 − 3x2w(x− x0)2−
3w2(x− x0), z, w + x2(x− x0))

The orbit of Wp under the Authol(X)p−action are given by: Wp, Wp − 2Up
and Wp − 2Vp due to Id, Φx−x0 and Ψx−x0 ∈ Authol(X)p. In vector notation Wp,
Wp − 2Up and Wp − 2Vp correspond to

−2
0

2x0y0 + 1
0

 ,


−2
4

−2x2
0 + 2x0y0 + 1

0

 ,


−2
0

2x0y0 + 1
−2x2

0


Since these three vectors are independent in TpX, they form a basis.

Now that we have proved Authol(X) acts transitively on X, (V,W ) are com-
patible pairs, and {Wp} for a generic p ∈ X is a generating for TpX, we can prove
the density property for the Koras–Russell cubic.

Definition 5.3.20. Let X be a complex manifold of dimension n. The subset
Y ⊂ X is said to be Runge if, for every K ⊂ Y compact, for every f ∈ O(Y )
and for every ε > 0 there exists F ∈ O(X) such that ||f − F ||K < ε.

Lemma 5.3.21. Let {si}Ni=1 ⊂ T (X) where T (X) is the set of global sections
of the tangent bundle. Let p ∈ X and mp = {f ∈ O(X) : f(p) = 0}. If {si +
mpT (X)}Ni=1 span the vector space T (X)/mpT (X) ∼= TpX, then the localizations
(si)p generate Tp.

Proof. Since s1|p, s2|p, . . . sN |p span the tangent space TpX where the vector space
TpX has dimension d ≤ N , then without loss of generality, we can say that
s1|p, . . . sd|p is a basis of TpX. Let ((z1, . . . , zd), U) be a coordinate neighborhood

of p. That is to say, in local coordinates we can write si =
∑d

j=1 f
j
i
∂
∂zj

on a

neighborhood W of p. At p we know that:∣∣∣∣∣∣∣∣∣
f 1

1 f 2
1 . . . fd1

f 1
2 f 2

2 . . . fd2
...

...
...

f 1
d f 2

d . . . fdd

∣∣∣∣∣∣∣∣∣ 6= 0
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So, the determinant is not zero in a neighborhood as well. Let Θ =
∑d

j=1 gj
∂
∂zj

on a neighborhood of p, then we can write Θ =
∑d

i=1 hisi in a neighborhood of
p, where the hi are holomorphic in that neighborhood.

Lemma 5.3.22. If the elements (si)p generate the stalks Fp for all points p ∈
X. Then every global section ν ∈ F(X) is of the form

∑
fisi for some global

holomorphic functions fi ∈ O(X).

Proof. See [13, Theorem 6.25].

Remark 5.3.23. The proof of Lemma 5.3.22 requires Theorem B of Cartan which
states that Hp(X,F) = 0 for all p > 0 where X is a Stein manifold and F is a
coherent sheaf.

Corollary 5.3.24. Given Θ ∈ T (X) a holomorphic vector field on X we can
write Θ =

∑N
i=1 gisi where gi ∈ O(X) and s1, . . . , sN are the sections from Lemma

5.3.21.

Proof. By taking the coherent sheaf F from Lemma 5.3.22 to be the tangent sheaf
T concludes the proof. Note that the tangent sheaf is coherent since it is locally
free.

Lemma 5.3.25. Let Y ⊂ X be a domain of X which is Runge and Stein. If
the elements (si)p generate the stalks Fp for all points p ∈ Y , then every global
section ν ∈ T (X) can be uniformly approximated on compacts K ⊂ Y by global
sections of the form

∑
fisi for some global holomorphic functions fi ∈ O(X).

Proof. Let ν ∈ T (X) be a global section, consider its restriction ν|Y ∈ T (Y ).
By Corollary 5.3.24 we have ν|Y =

∑N
i=1 gisi for some holomorphic functions

gi ∈ O(Y ). Since Y is given to be a Runge domain and K ⊂ Y is compact, let
ε > 0, there exists fi ∈ O(X) such that ||fi − gi||K < ε

N
· sup ||si||K . Thus, ||ν −∑N

i=1 fisi|| ≤ sup ||si||K
∑N

i=1 ||fi − gi||K < ε. Therefore we have approximated

the global section ν by sections
∑N

i=1 fisi uniformly on compacts K ⊂ Y .

Lemma 5.3.26. The submodule O(X) · x2 ·W of VFhol(X) is contained in the
closure of Lie(CVFhol(X)).

Proof. Notice that O(X) = span{kerV · kerW}. Let f ∈ kerV and g ∈
kerW , then by Proposition 5.1.2 and Proposition 5.1.3 fV , fwV , gW , gwW ∈
CVFhol(X). By the Kaliman Kutzschebauch formula we have:

[fV, gwW ]− [fwV, gW ] = fgx2W ∈ Lie(CVFhol(X)).

Thus an arbitrary element
∑

(figi)x
2W ∈ O(X) · x2 · W with fi ∈ kerV and

gi ∈ kerW is contained in Lie(CVFhol(X)).

Theorem 5.3.27. The Koras–Russell cubic X has the density property.
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Proof. We know that Wp for a generic p ∈ X is a generating set. Moreover, we
saw that Wp,Wp−2Vp and Wp−2Up form a basis for the tangent space TpX. Let
A = {a ∈ X : TaX 6= span{Wa,Wa − 2Va,Wa − 2Ua}} which is analytic. From
here on let ν1 = W , ν2 = W − 2V , ν3 = W − 2U .

Let
⋃
Ki = X be an exhaustion of X by O−convex compacts. For any

K = Ki, let Y be a neighborhood of K which is Stein and Runge, and moreover,
the closure of Y is compact. (The existence of Y can be found in Theorem 5.1.6
and Theorem 5.2.8 from Lars Hörmander’s textbook [8]).

Claim: After adding finitely many complete vector fields alongside W , we get
that Y ∩ A = ∅.

Sub-claim: Ȳ ∩ A is a finite union of irreducible analytic subsets.
First, we prove the sub-claim. Notice that Ȳ ∩A is a closed subset of the compact
set Ȳ . For every p ∈ Ȳ ∩A there exists Up a neighborhood of p and a holomorphic
map Hp : Up → Clp , such that Up ∩ A = {z ∈ Up : Hp(z) = 0}. The open sets
Up form an open covering of the compact set Ȳ ∩ A. By compactness, there
exists a finite sub-cover U1, . . . , UN . Assume to get a contradiction that there are
infinitely many irreducible analytic subsets. Then, by the pigeonhole principle
there exists a Uj0 which contains infinitely many irreducible analytic subsets, call
them A1, A2, . . . . For each irreducible analytic subset Aj choose a point aj ∈ Aj
such that aj /∈ Ak for all k 6= j. Let p be an accumulation point of the sequence
{aj}∞j=1. By [13, Chapter I.E.3.9, page 40] there is a polydisc P (p, δ) such that
A ∩ P (p, δ) can be written as a finite union of irreducible analytic sets. This
contradicts our assumption, and hence ends the proof of the sub-claim.

Let A0 ⊂ A be an irreducible component of maximal dimension. Let a ∈ A0

and φ ∈ Authol(X) such that φ(a) ∈ Y −A, we can do this by transitivity. Since
φ(a) 6∈ A then, span{ν1(φ(a)), ν2(φ(a)), ν3(φ(a))} = Tφ(a)X by taking pullbacks
we get span{(φ∗ν1)(a), (φ∗ν2)(a), (φ∗ν3)(a)} = TaX. Thus after adding these
pullbacks among the vector field ν1, ν2, ν3, the component A0 ∩ Y is replace by
finitely many components of lower dimension. Repeating the same procedure in-
ductively we get after finitely many steps a list of complete vector fields ν1, . . . , νN
such that A ∩ Y = ∅.

Let T be the tangent sheaf. It is coherent because it is locally free. Since
the vectors νi(a) span TaX for all a ∈ Y , then by Lemma 5.3.21 the assumption
of Corollary 5.3.24 holds. Therefore, by Lemma 5.3.25 every vector field on
X can be approximated uniformly on K by elements of the form

∑
fiνi for

some holomorphic functions fi ∈ O(X). Also, by Lemma 5.3.26 the submodule
generated by the finite list of νi’s is contained in the closure of Lie(CVFhol(X))
(Note that this property still holds after enlarging the list of vector fields since
we’re pulling back W using diffeomorphisms; uniform approximation on compacts
is preserved by pullbacks of diffeomorphisms and automorphisms). Therefore
every holomorphic vector field is in the closure of Lie(CVFhol(X)), which means
X has the density property.
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Remark 5.3.28. The proofs of Lemma 5.3.8, Lemma 5.3.11, Theorem 5.3.12,
Lemma 5.3.16, Lemma 5.3.19, Lemma 5.3.21, Lemma 5.3.25, Lemma 5.3.26 and
Theorem 5.3.27 can be found in the paper of Leuenberger [11]. However, we have
modified the proofs for the Koras–Russell cubic, since Leuenberger gave a more
general proof for a family of submanifolds, where the Koras–Russell cubic is just
one member of that family.
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Chapter 6

List of Generators

Lemma 6.0.1. Let U = −2z ∂
∂y

+ x2 ∂
∂z

and V = −3w2 ∂
∂y

+ x2 ∂
∂w

. Using the

complete vector fields U , V , zU , wz2V , wz2xV ,wV , w2zU and w2zxU , we can
generate the following vector fields:

wz2xiV , zw2xiU for i = 0, 1, 2, . . .

z2xiV ,w2xiU for i = 2, 3, 4, . . .

zxiV ,wxiU for i = 4, 5, 6, . . .

xiV , xiU for i = 6, 7, 8, . . .

Proof. 1. First, let us generate wz2xiV using zU , wz2V , wz2xV .

[zU,wz2V ] = zU(wz2)V = 2z2wx2V

[zU, 2z2wx2V ] = zU(2z2wx2)V = 4z2wx4V

[zU, 4z2wx4V ] = zU(4z2wx4)V = 8z2wx6V

...

[zU, 2i−1z2wx2i−2V ] = zU(2i−1z2wx2i−2)V = 2iz2wx2iV

So, using zU and wz2V we were able to generate z2wx2iV . Now we will
generate z2wx2i+1V using zU and wz2xV .

[zU,wz2xV ] = zU(wz2x)V = 2z2wx3V

[zU, 2z2wx3V ] = zU(2z2wx3)V = 4z2wx5V

[zU, 4z2wx5V ] = zU(4z2wx5)V = 8z2wx7V

...

[zU, 2i−1z2wx2i−1V ] = zU(2i−1z2wx2i−1)V = 2iz2wx2i+1V

Therefore, using zU , wz2V and wz2xV we have generated z2wxiV for i =
0, 1, 2, . . .
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Similarly we will generate the vector fields of the form zw2xiU using wV ,
zw2U and zw2xU .

Now, we will get the even powers in x, zw2x2iV using wV and zw2U .

[wV, zw2U ] = wV (zw2)U = 2zw2x2U

[wV, 2zw2x2U ] = wV (2zw2x2)U = 4zw2x4U

[wV, 4zw2x4U ] = wV (4zw2x4)U = 8zw2x6U

...

[wV, 2i−1zw2x2i−2U ] = wV (2i−1zw2x2i−2)U = 2izw2x2iU

So,using wV and zw2U we have generated zw2x2iU . Now, we will generate
zw2x2i+1U using wV and zw2xU .

[wV, zw2xU ] = wV (zw2)U = 2zw2x3U

[wV, 2zw2x3U ] = wV (2zw2x3)U = 4zw2x5U

[wV, 4zw2x5U ] = wV (4zw2x5)U = 8zw2x7U

...

[wV, 2i−1zw2x2i−1U ] = wV (2i−1zw2x2i−1)U = 2izw2x2i+1U

Therefore, using wV , zw2U and zw2xU we have generated zw2xiU for
i = 0, 1, 2 . . .

2. Now, we will add U and V to our list of vector fields to get rid of the z and
w terms from zw2xiU and wz2xiV respectively.
First, using V and z2wxiV for i = 0, 1, 2, . . . we get:

[V, z2wV ] = V (wz2)V = z2x2V

[V, z2wxV ] = V (wz2x)V = z2x3V

[V, z2wx2V ] = V (wz2x2)V = z2x4V

...

[V, z2wxiV ] = V (z2wxi) = z2wxi+2V

[U, zw2U ] = U(zw2)U = w2x2U

[U, zw2xU ] = U(zw2x)U = w2x3U

[U, zw2x2U ] = U(zw2x2)U = w2x4U

...

[U, zw2xiU ] = U(zw2xi)U = w2xi+2U

Therefore, using V , U , wz2xiV and zw2xiU for i = 0, 1, 2, . . . we have
generated z2xiV and w2xiU for i = 2, 3, . . .
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3. Now, using the vector fields that we have, particularly U ,V , z2xiV and
w2xiU for i = 2, 3, . . . we will generate zxiV and wxiU for i = 4, 5, . . .
Apply [U, ·] to z2xiV for i = 2, 3, . . . and we get the vector fields of the
form zxiV for i = 4, 5, . . .
Apply [V, ·] to w2x2U and we get the vector fields of the form wxiU for
i = 4, 5, . . .
Finally, we apply [U, ·] and [V, ·] to zxiV and wxiU for i = 4, 5, . . . re-
spectively, and we get the vector fields of the form xiV and xiU for i =
6, 7, . . .

Lemma 6.0.2. Given the vector fields U ,V ,W and E from Theorem 4.0.1, the
vector fields used and found from Lemma 6.0.1 and the complete vector fields
z2V ,wE,z2xV ,E,w2U ,zE, w2xU , W and wW we can generate the following vec-
tor fields:

z2xiE for i = 2, 3, 4, . . .

w2xiE for i = 2, 3, 4, . . .

z2xiW for i = 2, 3, 4, . . .

Proof. 1. By the Kaliman–Kutzschebauch formula, we have:
[hfV, gE] − [fV, hgE] = −fgV (h)E where V (h) 6= 0, V 2(h) = 0 and
E(h)=0. Let h = w and g = 1,

f = z2 =⇒[wz2V,E]− [z2V,wE] = −z2x2E

f = z2x =⇒[wz2xV,E]− [z2xV,wE] = −z2x3E

f = z2x2 =⇒[wz2x2V,E]− [z2x2V,wE] = −z2x4E

...

f = z2xi =⇒[wz2xiV,E]− [z2xiV,wE] = −z2xi+2E

So, using z2V ,E,wE and z2xV we were able to generate z2xiE for i =
2, 3, . . .

2. By the Kaliman–Kutzschebauch formula, we have:
[hfU, gE] − [fU, hgE] = −fgU(h)E where U(h) 6= 0, U2(h) = 0 and
E(h) = 0. Let h = z and g = 1,

f = w2 =⇒[zw22U,E]− [w2V, zE] = −w2x2E

f = w2x =⇒[zw2xU,E]− [w2xV, zE] = −w2x3E

f = w2x2 =⇒[zw2x2U,E]− [w2x2U, zE] = −w2x4E

...

f = w2xi =⇒[zw2xiU,E]− [w2xiU, zE] = −w2xi+2E
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So, using E,w2U ,zE and w2xU we were able to generate w2xiE for i =
2, 3, . . .

3. By the Kaliman–Kutzschebauch formula, we have:
[hfV, gW ] − [fV, hgW ] = −fgV (h)W where V (h) 6= 0, V 2(h) = 0 and
W (h) = 0. Let h = w and g = 1,

f = z2 =⇒[wz22V,W ]− [z2V,wW ] = −z2x2W

f = z2x =⇒[wz2xV,W ]− [z2xV,wW ] = −z2x3W

f = z2x2 =⇒[wz2x2V,W ]− [z2x2V,wW ] = −z2x4W

...

f = z2xi =⇒[wz2xiV,W ]− [z2xiV,wW ] = −z2xi+2W

So, using W and wW we were able to generate z2xiW for i = 2, 3, . . .

Remark 6.0.3. Note that we can’t make a symmetric argument using the Kali-
man Kutzschebauch formula for U and W , since if we take h = z, which is an
overshear of U , we will have W (z) = 2xy + 1 6= 0.

Lemma 6.0.4. Given the vector fields U , V from Theorem 4.0.1, the vector fields
used and found from Lemma 6.0.1, and the vector fields used in Lemma 6.0.2, we
can generate the following vector fields:

z2xiU for i = 8, 9, 10, . . .

zxiU for i = 10, 11, 12 . . .

w2xiV for i = 8, 9, 10, . . .

wxiV for i = 10, 11, 12, . . .

z3wxiV for i = 10, 11, 12, . . .

z3xiV for i = 12, 13, 14, . . .

w3zxiU for i = 10, 11, 12, . . .

w3xiU for i = 12, 13, 14, . . .

Proof. 1. By the Kaliman–Kutzschebauch formula, we have:
[hfV, gU ]−[fV, hgU ] = −fgV (h)U where V (h) 6= 0, V 2(h) = 0 and U(h) =
0 Let h = w and g = x6,

f = z2 =⇒[wz22V, x6U ]− [z2V,wx6U ] = −z2x8U

f = z2x =⇒[wz2xV, x6U ]− [z2xV,wx6U ] = −z2x9U

f = z2x2 =⇒[wz2x2V, x6U ]− [z2x2V,wx6U ] = −z2x10U

...

f = z2xi =⇒[wz2xiV, x6U ]− [z2xiV,wx6U ] = −z2xi+2U
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So, using previously known vector field we were able to generate z2xiU for
i = 8, 9, 10, . . . Moreover, if we apply [U, ·] on z2xiU for i = 8, 9, 10, . . . , we
will generate zxiU for i = 10, 11, 12, . . .

2. By the Kaliman–Kutzschebauch formula, we have:
[hfU, gV ] − [fU, hgV ] = −fgU(h)V where U(h) 6= 0, U2(h) = 0 and
V (h) = 0. Let h = z and g = x6,

f = w2 =⇒[zw2U, x6V ]− [w2U, zx6V ] = −w2x8V

f = w2x =⇒[zw2xU, x6V ]− [w2xU, zx6V ] = −w2x9V

f = w2x2 =⇒[zw2x2U, x6V ]− [w2x2U, zx6V ] = −w2x10V

...

f = w2xi =⇒[zw2xiU, x6U ]− [w2xiU, zx6V ] = −w2xi+2V

So, using previously known vector field we were able to generate w2xiV for
i = 8, 9, 10, . . . Moreover, if we apply [V, ·] on w2xiV for i = 8, 9, 10, . . . , we
will generate wxiV for i = 10, 11, 12, . . .

3. Consider the vector fields wz2V and z2xiU for i = 8, 9, 10, . . . We apply
[·, wz2V ] to the vector fields z2xiU for i = 8, 9, 10, . . . and we get z3wxiV
for i = 10, 11, 12, . . . Moreover, we apply [V, ·] on the vector fields z3wxiV
for i = 10, 11, 12, . . . and we get z3xiV for i = 12, 13, 14, . . .

4. Consider the vector fields zw2U and w2xiV for i = 8, 9, 10, . . . We apply
[·, zw2U ] on the vector fields w2xiV for i = 8, 9, 10, . . . and we get w3zxiU
for i = 10, 11, 12, . . . Moreover, we apply [U, ·] on the vector fields w3zxiU
and we get the w3xiU for i = 12, 13, 14, . . .

Lemma 6.0.5. Given the vector fields U, V and W . Using the complete vector
fields xU, yW, ywW and all the needed vector fields from the previous lemmas, we
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can generate the following vector fields:

z3xiU for i = 2, 3, 4, . . .

z3w2xiU for i = 2, 3, 4, . . .

z4w2xiU for i = 2, 3, 4, . . .

yz2xiW for i = 4, 5, 6, . . .

yx2W

zxyW

y2xzW

y2xzwW

yz3xiU for i = 4, 5, 6, . . .

z3w2xiU for i = 4, 5, 6, . . .

z4xiW for i = 4, 5, 6, . . .

z6xiW for i =

z3xiV for i = 2, 3, 4, . . .

z5wxiV for i = 2, 3, 4, . . .

z5xiV for i = 2, 3, 4 . . .

yz3xiV for i = 4, 5, 6, . . .

z3w2xiV for i = 4, 5, 6, . . .

z3w2xiW for i = 4, 5, 6, . . .

yz4w2xiW for i = 5, 6, 7, . . .

Proof. 1. By the Kaliman–Kutzschebauch formula we have:

[hfW, gU ]− [fW, hgU ] = −fgW (h)U − fgU(h)W

For g = 1, h = x and f = z2xi for i = 2, 3, 4, . . . we get, z3xiU for
i = 2, 3, 4, . . .
For g = w2, h = x and f = z2xi for i = 2, 3, 4, . . . we get, z3w2xiU for
i = 2, 3, 4, . . .
For g = zw2xi for i = 0, 1, 2, . . . , h = x and f = z2x2 we get, z4w2xiU for
i = 2, 3, 4, . . .

2. By the Kaliman–Kutzschebauch formula we have:

[fhV, gW ]− [fV, ghW ] = −fgV (h)W − fgW (h)V

For g = y, h = w and f = z2xi for i = 2, 3, 4, . . . we get yz2xiW for
i = 4, 5, 6, . . .
For f = 1, h = 2 and g = y we have yx2W . Moreover, we can get the
following vector fields: [W, yx2W ] = zxyW , [yW, yx2W ] = y2xzW and
[ywW, yx2W ] = y2xwzW .

63



3. Again, by the Kaliman–Kutzchebauch formula for U and W , for f = 1,
h = x and g = yz2xi for i = 4, 5, 6, . . . we get yz3xiU for i = 4, 5, 6, . . . .
Moreover, [V, yz3xiU ] = z3w2xiU for i = 4, 5, 6, . . .
For h = y, g = 1 and f = z3xi we get z4xiW for i = 4, 5, 6, . . . .
For f = z3x4, h = y and g = z2xi we get z6xiW for i = 8, 9, 10, . . .

4. Using the Kaliman–Kutzschebauch formula for V and W , for f = 1, h = x
and f = z2xi for i = 2, 3, 4, . . . we get z3xiV for i = 2, 3, 4, . . .
For g = z2x2, h = x and f = z2wxi for i = 0, 1, 2, . . . we get z5wxiV for
i = 2, 3, 4, . . .
For h = x, f = z2 and g = z2xi for i = 2, 3, 4, . . . we get z5xiV for
i = 2, 3, 4, . . .
For f = 1, h = x and g = yz2xi for i = 4, 5, 6, . . . we get yz3xiV for
i = 4, 5, 6, . . . Moreover, [V, yz3xiV ] = z3w2xiV for i = 4, 5, 6, . . .
For h = y, g = 1 and f = z3xi for i = 4, 5, 6, . . . we get z3w2xiW for
i = 4, 5, 6, . . .
For h = y, g = yxz and f = z3xi for i = 4, 5, 6, . . . we get yz4w2xiW for
i = 5, 6, 7, . . .

In all these computations we have used the complete vector fields U , V , zU ,
wz2V , wz2xV ,wV , w2zU , w2zxU , z2V ,wE, z2xV , E, w2U , zE, w2xU , W , wW ,
xU , yW and ywW . We let V = {νi}20

i=1 to be these complete vector fields, and
{ηit}20

i=1 be the flow maps of the vector fields in V . Let W be all the vector fields
we have found using V , where W ⊂ Lie(V) ⊂ Lie(CVFhol(X)).

Note that, to achieve the density property for the Koras–Russell cubic we
need three crucial steps. The first being that Authol(X) acts transitively on X,
where we used the vector fields U , V , W and E. Second, we showed that Wp for
a generic point p ∈ X is a generating set for TpX. Here we used xU and xV .
Finally, we showed that the submodule O(X) · x2 ·W is contained in the closure
of Lie(CVFhol(X)), where we used the vector fields xkzlV , wxkzlV and ymwnW
for any k, l,m, n ∈ N. Denote the collection of all the vector fields need to prove
the density property by D, and let {ζ it} be the flow maps of the vector fields in
D.

Notice that using the twenty vector fields in V , we were able to find the vector
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fields M = {µij}7
j=1 given by

wxiz2V i = 0, 1, 2, . . .

z2xiV i = 2, 3, 4, . . .

zxiV i = 4, 5, 6, . . .

xiV i = 6, 7, 8, . . .

wxiV i = 10, 11, 12, . . .

xiz3V i = 2, 3, 4, . . .

wxiz5V i = 2, 3, 4, . . .

which are all required to prove the density property of the threefold. Let ∆ be
the flow maps of the vector fields in (D −M) ∪ V .

Let F be an automorphism on X, which is in the path–connected component
of the identity. That is, there exists ϕt : X → X, such that ϕ0 = Id and ϕ1 = F .
Note that ϕt satisfies the three conditions of the Andersén–Lempert theorem,
namely Ω = X and ϕt(X) = X is a Runge subset of X for every t ∈ [0, 1] trivially.
So ϕt can be approximated by a composition of flows from ∆, in particular, we
can approximate F by compositions of the flows in ∆.

Theorem 6.0.6. Any automorphism F in the path-connencted component of the
identity map can be approximated uniformly by compositions of flow maps from
∆.
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[2] Erik Andersén and László Lempert, On the group of holomorphic automorphisms of Cn,
Invent. Math. 110 (1992), no. 2, 371–388, DOI 10.1007/BF01231337. MR1185588

[3] Rafael B. Andrist, Integrable generators of Lie algebras of vector fields on Cn, Forum Math.
31 (2019), no. 4, 943–949, DOI 10.1515/forum-2018-0204. MR3975669

[4] Rafael B. Andrist and Frank Kutzschebauch, The fibred density property and the au-
tomorphism group of the spectral ball, Math. Ann. 370 (2018), no. 1-2, 917–936, DOI
10.1007/s00208-017-1520-8. MR3747506
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