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Abstract
of the Thesis of

Lara Khaled Baalbaki for Master of Science
Major: Pure Mathematics

Title: Optimal Mass Transport

Mass transportation consists of optimizing the cost of transport of “goods”
from a source to its target. First, it was stated by Monge in 1781 for a pile
of sand, but the applications of this problem appear in different fields such as
economics, optics, data science, and linear programming. In this thesis, we
develop the needed theory to solve the optimal transport problem, relax the
variational problem and connect it to two other problems that we’ll analyze using
tools from convex analysis and measure theory. We also show the existence and
uniqueness of the three problems as well as the connection of their solutions.
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Chapter 1

Introduction

Gaspard Monge was a French mathematician, known as the inventor of descriptive
geometry. In 1781, Monge formalized the mass transportation problem which is
to move one distribution of mass onto another with a minimum average distance
covered [15]. Major advances were made during World War II by the Soviet
mathematician Leonid Kantorovich [11], the founder of linear programming who
solved the Monge problem more than 150 years later, and was awarded for this
contribution Nobel Prize in economics. Another award related to this topic is the
Field medal granted to C. Villani [19] (2010), and A. Figalli (2018) [6] for their
mathematical contributions.

The problem can be stated as follows: assume we have some pile of sand, and
we would like to transport it into some hole on the other side. We want to come
up with a good transport plan minimizing the cost of the transportation from the
source to the target. Another example would be the ”mines to factories” problem.
Suppose we have several mines that are producing resources and now we get the
resources out of the mines, and we want to transport them to our collection of
factories, to which factory should I send them in a way that will minimize the
cost of transporting the resources? Let X1, X2, · · · , Xm be m mines (sources) and
Y1, Y2, · · · , Yn be n factories(destinations), xij be the quantity shipped from Xi

to Yj, and cij be the unit transportation cost. The goal is to find a transport plan
minimizing the cost of the transportation from the source to the destination, i.e.
to find a matrix X = (xij) minimizing

m∑
i=1

n∑
j=1

xijcij.

We consider that the total capacity of the sources is equal to the total needs
for the problem to be feasible, and hence in this case the number of possible
transportation plans is finite then there must be a transportation plan that attains
the minimum. On the other hand, finding an optimal plan is long so linear
programming facilitates this issue and solves these types of equations efficiently
[4].
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This problem can be extended to non-discrete cases. Monge considered the
cost as the distance of masses transported from the source to the target, but
more costs functions are applicable. Mathematically, the problem can be stated
as follows. Let X and Y be two metric spaces with measures µ and ν respectively
such that µ(X) = ν(Y ) and c : X × Y → R a measurable function with respect
to the product measure µ ⊗ ν. Our goal is to find T : X 7→ Y such that
µ(T−1(A)) = ν(A) that minimizes the transport cost∫

X

c(x, Tx) dµ.

Does such T always exist, and is it unique? The quadratic cost function has been
popular because it is convex and smooth, which makes evaluation of derivatives
easier. This has led to its popularity stretching across linear as well as nonlinear
control [17].

Well, Monge’s problem is not easy to deal with because of its constraint. What
shall we do? “Relax!” said Kantorovich, more than 150 years later. We’ll study
in Chapter 2 the relaxed formulation of Kantorovich which consists of finding
a measure that minimizes

∫
X×Y c(x, y) dγ along all measures γ with marginal µ

and ν. A precise definition can be found in Section 2.2, and a solution to the
Kantorovich problem is provided in Section 2.3. The support of these solutions
have an interesting geometrical structure called c-cyclically monotone studied in
Section 3.4. In Chapter 3, we studied the dual Kantorovich problem consisting
of maximizing some integral (3.1) allowing us to understand more the structure
of the support of γ. The dual problem is solved in Section 3.3. Finally both
the dual and the Kantorovich problem are used in Chapter 4 to solve the Monge
Problem under some conditions on the cost and the sets X and Y . As we see
in Section 4.1, a solution to the Monge Problem might not always exist even
in the case when the Kantorovich problem is solvable. We end the thesis with
an example where we can obtain explicitly a relation between the solutions to
the three problems covering a large family of costs that appear in the literature
including the quadratic cost.

Optimal transport theory is used widely to solve problems in mathematics
and some areas of the sciences, but it can also be used to understand a range
of problems in applied economics, such as the matching between job seekers and
jobs, and the determinants of real estate prices [7]. Many researchers formulated
the mathematical model for transportation problem in various environments.
The basic transportation model was introduced by Hitchcock [10], in 1941, in
which the transportation constraints were based on crisp values. But, in the
present world, the transportation parameters like demand, supply, and unit
transportation cost may be uncertain due to several uncontrolled factors. In
this situation, fuzzy transportation problem was formulated and solved by many
researchers. The Monge-Kantorovich theory is having a growing number of
applications [9] in various areas of sciences including economics [8], optic [13]
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(e.g. the reflector problem), meteorology [3], oceanography, kinetic theory [2],
machine learning [12], partial differential equations [5] and functional analysis
(e.g. geometric inequalities) [14].
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Chapter 2

The Kantorovich Problem

In this chapter, we introduce the Kantorovich problem and show that it admits
a solution under some conditions.

2.1 Preliminaries: Space of measures

Definition 2.1.1. Given a metric space X, let B(X) be the smallest σ-algebra
that contains the open sets of X, this is known as the σ-algebra of Borel sets.

We denote by M(X) the space of Borel finite signed measure that are finitely
additive, that is elements µ in M(X) are maps µ : X 7→ R such that |µ(E)| <∞
for every E ∈ B(X) and for every E1, · · · , En ∈ B(X) disjoints we have

µ(∪ni=1Ei) =
n∑
i=1

µ(Ei).

The space of M(X) is equipped with the variational norm

||µ|| := |µ|(X).

We also denote by M+(X) the subspace of M(X) containing non-negative
measures.

Definition 2.1.2 (Probability Measures). Let X be a metric space. Define P(X)
to be the set of all probability measures, i.e. µ ∈ P(X) if and only if µ ∈ M+(X)
and µ(X) = 1

P(X) := {µ ∈ M+(X) : µ(X) = 1}.

Definition 2.1.3. Let X and Y be two metric spaces. The pushforward T#µ of
a measure µ on a measurable space X along a measurable function T : X 7→ Y is
defined as follows:

(T#µ)(A) = µ(T−1(A)) ∀A ⊆ Y.
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Definition 2.1.4. Let X be a metric space. We denote by C(X) the space of all
continuous functions. If X is compact then elements in C(X) are bounded, in this
case we equip C(X) with the ∥.∥∞ norm defined as follows ∥f∥∞ = supx∈X |f(x)|.

Definition 2.1.5. Given a metric space X, and the measures µn, µ ∈ M(X),
we say that µn weakly converges to µ and denote it by µn ⇀ µ if and only if

∀f ∈ C(X)

∫
X

f dµn →
∫
X

f dµ.

Remark 2.1.6. By Riesz theorem [16], we know that for X compact C(X)∗ =
M(X), that is for every functional T : C(X) 7→ R there exists a unique measure
µ ∈ M(X) such that

T (f) =

∫
X

f dµ ∀f ∈ C(X).

In this case, the weak convergence given in Definition 2.1.5 corresponds to the
the weak ∗ topology.

In the case where X is not compact, M(X) is not the dual of C(X), but is
the dual of C0(X) the space of compactly supported continuous functions.

2.2 Transport Plans

Definition 2.2.1. Let X, Y be two metric spaces, µ ∈ P(X), and ν ∈ P(Y ). We
denote by Π(µ, ν) the set of probability measures on X×Y whose first and second
marginals are equal to µ and ν respectively, i.e. (π1)#γ = µ and (π2)#γ = ν for
all γ ∈ Π(µ, ν) where π1 and π2 denote the projections from X × Y onto the first
and second factors respectively. The measures γ ∈ Π(µ, ν) are called transport
plans.

Proposition 2.2.2. Given X, Y metric spaces, µ ∈ P(X), and ν ∈ P(Y ), then
γ ∈ Π(µ, ν) if and only if

γ(A× Y ) = µ(A) ∀A ∈ B(X), and γ(X ×B) = ν(B) ∀B ∈ B(Y ).

Proof. Let us note that for every A ∈ B(X), π−1
1 (A) = A × Y . However, if

γ ∈ Π(µ, ν), then (π1)#γ = µ which is γ(π−1
1 (A)) = µ(A) which implies that

γ(A × Y ) = µ(A) for all A ∈ B(X). Similar proof can be done to prove that
γ(X ×B) = ν(B) for all B ∈ B(Y ).

On the other hand, we have to prove that γ ∈ Π(µ, ν). It is obvious that γ is
a probability measure and by using the previous definition 2.2.1, it is enough to
prove that (π1)#γ = µ and (π2)#γ = ν.
By using Definition 2.1.3, (π1)#γ = γ(π−1

1 (A)) = µ(A) for all A ∈ B(X), so
(π1)#γ = µ. Similarly for (π2)#γ = ν.
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Proposition 2.2.3. Let X,Y be metric spaces, µ ∈ P(X), ν ∈ P(Y ), then
Π(µ, ν) is not empty.

Proof. Let γ = µ ⊗ ν be the measure on X × Y. Obviously, γ is a probability
measure since γ(X × Y ) = µ(X) · ν(Y ) = 1. Moreover, for all A ∈ B(X) and
B ∈ B(Y ) we have: γ(A × Y ) = µ(A) · ν(Y ) = µ(A) since ν(Y ) = 1 and
γ(X × B) = µ(X) · ν(B) = ν(B) since µ(X) = 1. Then, by using Proposition
2.2.2, γ ∈ Π(µ, ν). Therefore, Π(µ, ν) is not empty.

Proposition 2.2.4. Given compact metric spaces X and Y , µ ∈ P(X) and
ν ∈ P(Y ), then γ ∈ Π(µ, ν) if and only if for every ϕ ∈ C(X) and ψ ∈ C(Y )∫

X

ϕ(x) dµ =

∫
X×Y

ϕ(x) dγ, and

∫
Y

ψ(y) dν =

∫
X×Y

ψ(y) dγ.

Proof. Let γ ∈ Π(µ, ν) then for all ϕ ∈ C(X) there exists c1, · · · , cn distinct
values in R, An disjoint subsets of X such that

ϕ(x) =
∞∑
i=1

ci · χAi

Notice that ∫
X×Y

ϕ(x) dγ =

∫
X×Y

∞∑
i=1

ci · χAi
dγ =

∞∑
i=1

ci

∫
X×Y

χAi
dγ

(Fubini’s theorem having
∑∞

i=1 |cnχAi
| ≤ sup |ϕ| <∞). Moreover,

∞∑
i=1

ci

∫
X×Y

χAi
(x) dγ =

∞∑
i=1

ci

∫
X×Y

χAi×Y (x, y) dγ =
∞∑
i=1

ciγ(Ai × Y ).

Using the above Proposition (2.2.2) we have that γ(Ai × Y ) = µ(Ai) so

∞∑
i=1

ciγ(Ai × Y ) =
∞∑
i=1

ciµ(Ai) =

∫
X

∞∑
i=1

ciχAi
(x) dµ.

Therefore,

∫
X

ϕ(x) dµ =

∫
X×Y

ϕ(x) dγ.

Similarly we can prove that

∫
Y

ψ(y) dν =

∫
X×Y

ψ(y) dγ. On the other hand, we

have to prove that γ ∈ Π(µ, ν). Let F be any closed subset of X. Let

fn(x) = max(1− nd(x, F ), 0).
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Obviously, fn is continuous inX and decreases to χF since if x ∈ F then fn(x) = 1
and if x /∈ F so d(x, F ) > 0 so there exists n ∈ N+ such that d(x, F ) > 1

n
then

fn(x) = 0. We have ∫
X

fn(x) dµ =

∫
X×Y

fn(x) dγ

but by applying Lebesgue Monotone convergence theorem we have :∫
X

fn(x) dµ→
∫
X

χF (x) dµ and

∫
X×Y

fn(x) dγ →
∫
X×Y

χF×Y (x, y) dγ

so µ(F ) = γ(F ×Y ). Similarly we can prove that ν(G) = γ(X ×G) for all closed
subsets G of Y. Therefore, by Proposition 2.2.2 we can conclude that γ ∈ Π(µ, ν).

2.3 Solution of the Kantorovich Problem

Definition 2.3.1. Let X and Y be two metric spaces , µ ∈ P(X) and ν ∈ P(Y ),
and c : X × Y 7→ R a continuous function, then the Kantorovich-Problem is
defined as follows

(KP ) : inf

{∫
X×Y

c(x, y) dγ : γ ∈ Π(µ, ν)

}
(2.1)

Proposition 2.3.2. Let X,Y be compact metric spaces, µ ∈ P(X) and ν ∈ P(Y ),
then Π(µ, ν) is compact.

Proof. Let γn ∈ Π(µ, ν). We have to prove that γn has a convergent subsequence.
Notice that γn are contained in the closed unit ball of M(X) which by Banach
Alaoglu [1] is compact in the weak ∗ topology then there exists a sub sequence
γnk

that converges weakly to γ i.e γnk
⇀ γ.

It remains to show γ ∈ Π(µ, ν). We have γnk
⇀ γ then

∫
X×Y

ϕ(x) dγnk
→∫

X×Y
ϕ(x) dγ for every ϕ ∈ C(X), but from Proposition 2.2.4

∫
X×Y

ϕ(x) dγnk
=∫

X

ϕ(x) dµ. Letting k → ∞, we obtain that

∫
X×Y

ϕ dγ =

∫
X

ϕ dµ. Similarly we

show that for all ψ ∈ C(Y ) we have

∫
Y

ψ(y) dν =

∫
X×Y

ψ(y) dγ, therefore using

proposition 2.2.4 we get γ ∈ Π(µ, ν), and the proof follows.

Proposition 2.3.3. Given X and Y compact metric spaces, µ ∈ P(X) and
ν ∈ P(Y ), and a continuous function c : X × Y 7→ R then the (KP ) problem
(2.1) admits a solution.
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Proof. To prove that (KP ) admits a solution we need to show that the infimum
is attained. We define K : Π(µ, ν) 7→ R as follows

K(γ) =

∫
X×Y

c(x, y) dγ.

Let γn ∈ Π(µ, ν) be such that

K(γn) =

∫
X×Y

c(x, y) dγn → m = inf

{∫
X×Y

c(x, y) dγ : γ ∈ Π(µ, ν)

}
.

Since Π(µ, ν) is compact then γn has a subsequence γnk
⇀ γ0 with γ0 ∈ Π(µ, ν).

We have that c ∈ C(X × Y ), we then conclude by the definition of convergence
in Π(µ, ν) that limk→∞K(γnk

) = K(γ0), and hence

m = K(γ0) =

∫
X×Y

c(x, y) dγ0.

Remark 2.3.4. A solution of the Kantorovich Problem γ is called an optimal
transport plan.
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Chapter 3

The dual problem

3.1 Motivation of the Dual problem

Here is an informal way of interpreting Kantorovich duality principle. Suppose
for instance an industrial is willing to transfer a huge amount of coal from his
mines to his factories. He can hire trucks to do this transportation problem, but
he has to pay them c(x, y) for each ton of coal which is transported from position
x to position y. Both the amount of coal which he can extract from each mine,
and the amount which each factory will receive, are fixed. As he is trying to
solve the associated Monge-Kantorovich problem in order to minimize the price
he has to pay, a mathematician comes to him and tells him ”I can ship all your
coal with my own trucks and you won’t have to care of what goes where. I will
only set a price ϕ(x) for loading one ton of coal at position x, and a price ψ(y)
for unloading it at destination y. I will set the prices in such a way that your
financial interest will be to let me handle all your transportation! Indeed, the
industrial can check that for all x and all y, the sum ϕ(x) + ψ(y) will always
be less than the cost c(x, y). Kantorovich’s dual problem presumes that if the
shipper is clever enough, then he can arrange the prices in such a way that he
will pay you (almost) as much as he would have been ready to spend by the other
method. [19]

Mathematically, we then seek to show that

inf

{∫
X×Y

c(x, y) dγ : γ ∈ Π(µ, ν)

}
= sup

{∫
X

ϕ(x) dµ+

∫
Y

ψ(y) dν : ϕ ∈ C(X), ψ ∈ C(Y ), and ϕ(x) + ψ(y) ≤ c(x, y)

}
.

We will provide in this chapter a rigorous proof of this identity however we
present below a heuristic approach of why we expect these two problems to be
equivalent.
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(KP ) : inf
γ∈Π(µ,ν)

{∫
X×Y

c(x, y) dγ

}
= inf

γ∈M+(X×Y )

{∫
X×Y

c(x, y) dγ +

{
0 if γ ∈ Π(µ, ν)

+∞ otherwise

}
.

We also have

sup
ϕ,ψ

{∫
X

ϕ dµ+

∫
Y

ψ dν −
∫
X×Y

(ϕ(x) + ψ(y)) dγ

}
=

{
0 if γ ∈ Π(µ, ν)

+∞ otherwise
.

where the supremum is taken over all ϕ : X 7→ R, ψ : Y 7→ R bounded and
continuous functions. We then write

inf
γ∈M+(X×Y )

{∫
X×Y

c(x, y) dγ + sup
ϕ,ψ

{∫
X

ϕ(x) dµ+

∫
Y

ψ(y) dν −
∫
X×Y

(ϕ(x) + ψ(y)) dγ

}}
= inf

γ∈M+(X×Y )
sup
ϕ,ψ

{∫
X×Y

c(x, y) dγ +

∫
X

ϕ(x) dµ+

∫
Y

ψ(y) dν −
∫
X×Y

(ϕ(x) + ψ(y)) dγ

}
Switching ”naively” the infimum and the supremum we get that the above expression
is equal to

sup
ϕ,ψ

inf
γ∈M+(X×Y )

{∫
X×Y

c(x, y) dγ +

∫
X

ϕ(x) dµ+

∫
Y

ψ(y) dν −
∫
X×Y

(ϕ(x) + ψ(y)) dγ

}
= sup

ϕ,ψ

{∫
X

ϕ(x) dµ+

∫
Y

ψ(y) dν + inf
γ∈M+(X×Y )

{∫
X×Y

c(x, y)− (ϕ(x) + ψ(y)) dγ

}}
= sup

ϕ,ψ

{∫
X

ϕ(x) dµ+

∫
Y

ψ(y) dν +

{
0 if ϕ(x) + ψ(y) ≤ c(x, y)

−∞ otherwise

}

= sup
ϕ,ψ

{∫
X

ϕ(x) dµ+

∫
Y

ψ(y) dν : ϕ ∈ C(X), ψ ∈ C(Y ), and ϕ(x) + ψ(y) ≤ c(x, y)

}
.

Definition 3.1.1 (The Dual Problem). Let X, Y be any two metric spaces, c :
X × Y 7→ R be a continuous function we then define the dual problem:

(DP ) : sup
ϕ,ψ

{∫
X

ϕ(x) dµ+

∫
Y

ψ(y) dν : ϕ ∈ C(X), ψ ∈ C(Y ), and ϕ(x) + ψ(y) ≤ c(x, y)

}
.

(3.1)

In this chapter, we will investigate the existence of solutions to the (DP )
problem. To do this we need first to introduce the notions of c−transform and
c̄−transform.
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3.2 c and c̄ transforms

Definition 3.2.1. Let X and Y be two metric spaces, µ ∈ P(X) and ν ∈ P(Y ),
given ϕ ∈ C(X), ψ ∈ C(Y ), we define I(ϕ, ψ) as follows

I(ϕ, ψ) =

∫
X

ϕ dµ+

∫
Y

ψ dν

Definition 3.2.2. Let X and Y be two metric spaces, given a function f : X 7→
R, we define its c-transform f c : Y 7→ R as follows

f c(y) = inf
x∈X

{c(x, y)− f(x)}.

We also define the c-transform of g : Y 7→ R by gc : X 7→ R given as follows

gc(x) = inf
y∈Y

{c(x, y)− g(y)}.

Remark 3.2.3. Notice that if f ≤ m then f c(y) ≥ mc(y) for every y ∈ Y .
Similarly, if g ≤ n then gc̄(x) ≥ nc̄(x) for every x ∈ X.

Proposition 3.2.4. Given two metric spaces X and Y , and the measures µ ∈
P(X) and ν ∈ P(Y ), let c : X×Y 7→ R be a continuous function, ϕ ∈ C(X) and
ψ ∈ C(Y ) then the followings are true:

1. ϕ(x) + ϕc(y) ≤ c(x, y), and similarly ψ(y) + ψc̄(x) ≤ c(x, y) for all (x, y) ∈
X × Y.

2. If for every (x, y) ∈ X × Y , ϕ(x) + ψ(y) ≤ c(x, y) then I(ϕ, ϕc) ≥ I(ϕ, ψ)
and I(ψc, ψ) ≥ I(ϕ, ψ).

3. I(ϕ− ϵ, ψ + ϵ) = I(ϕ, ψ).

4. (ϕ− ϵ)c = ϕc + ϵ, and (ψ + ϵ)c̄ = ψc̄ − ϵ.

5. If ϕn → ϕ uniformly on X then ϕcn → ϕc uniformly on Y . Similarly, if
ψn → ψ uniformly on Y then ψcn → ψc̄ uniformly on X.

Proof. The proof of these claims follow directly from the definitions of the c and
c̄ transform and of I(ϕ, ψ), we show (2), (4), and (5).

Proof of (2). We have ψ(y) ≤ c(x, y) − ϕ(x) for every (x, y) ∈ X × Y , and so
taking the infimum over X we get

ψ(y) ≤ inf
x
{c(x, y)− ϕ(x)} = ϕc(y).

Hence,

I(ϕ, ϕc) =

∫
X

ϕ dµ+

∫
Y

ϕc dν ≥
∫
X

ϕ dµ+

∫
Y

ψ dν = I(ϕ, ψ).

The other inequality follows similarly.
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Proof of (4). We have (ϕ− ϵ)c(y) = infx{c(x, y)− (ϕ− ϵ)(x)} = infx{(c(x, y)−
ϕ(x)) + ϵ} = ϕc(y) + ϵ. The other equality follows similarly.

Proof of (5). For y ∈ Y ,

|ϕcn(y)− ϕc(y)| =
∣∣∣inf
x
{c(x, y)− ϕn(x)} − inf

x
{c(x, y)− ϕ(x)}

∣∣∣ ≤ sup
x∈X

|ϕn(x)− ϕ(x)| 1.

Hence, supy∈Y |ϕcn(y)−ϕc(y)| ≤ supx∈X |ϕn(x)− ϕ(x)| , and the proof follows.

Definition 3.2.5. Given X and Y any two metric spaces, a function ψ : Y 7→ R
is c−concave if there exists f : X 7→ R such that ψ = f c. We denote by c-conc(Y)
the set of c−concave functions.

A function ϕ : X 7→ R is c−concave if there exists g : Y 7→ R such that
ϕ = gc. We denote by c-conc(X) the sets of c−concave functions.

Remark 3.2.6. Notice that if X and Y are compact metric spaces and ϕ ∈ C(X)
and ψ ∈ C(Y ), then ϕ and ψ are bounded and so is their c and c̄ transforms, we
can then in this case consider the functions to have range in R as opposed to R̄.
Proposition 3.2.7. Let X and Y be two metric spaces, c : X × Y 7→ R
continuous. For ϕ : X 7→ R ∪ {−∞} we have ϕcc̄ ≥ ϕ. Moreover, we get
equality ϕcc̄ = ϕ if and only if ϕ is c−concave.

Similarly, for ψ : Y 7→ R∪{−∞} we have ψcc ≥ ψ. Moreover, we get ψcc = ψ
if and only if ψ is c−concave.

Proof. Given x ∈ X, we realize that for every y ∈ Y ,

c(x, y)− ϕc(y) = c(x, y)− inf
x′
{c(x′, y)− ϕ(x′)}

≥ c(x, y)− c(x, y) + ϕ(x) = ϕ(x).

Then taking the infimum over y, we get that for every x ∈ X

ϕcc̄(x) = inf
y
{c(x, y)− ϕc(y)} ≥ ϕ(x).

Similarly, it follows that ψc̄c(y) ≥ ψ(y), y ∈ Y .
Next, we prove that ϕcc̄ = ϕ if and only if ϕ is c−concave. The forward

implication follows from the definition of c−concave function. To show the
converse, assume ϕ is c−concave then there exists ψ such that ϕ = ψc̄, then
ϕc = ψc̄c ≥ ψ and so from Remark 3.2.3 ϕcc̄ ≤ ψc̄ = ϕ.

Remark 3.2.8. Above proposition implies ϕcc̄ is the smallest c−concave function
larger than ϕ. In fact, take ϕ̃ any c−concave function ϕ̃ ≥ ϕ, we get from Remark
3.2.3 that ϕ̃c ≤ ϕc and hence by the same remark and Proposition 3.2.7

ϕ̃ = ϕ̃cc̄ ≥ ϕcc̄.
1The inequality follows from the fact that | infx F (x)− infx G(x)| ≤ supx |F (x)−G(x)|
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3.3 Existence of solution to the DP problem

In this section, we investigate the existence of solutions of the (DP ) problem
(3.1).

Lemma 3.3.1. Given two metric spaces X and Y , µ ∈ P(X), ν ∈ P(Y ), and
c : X × Y 7→ R continuous then there exists a sequence ϕn ∈ C(X) such that

1. ϕn(x0) = 0 for some x0 ∈ X, and all n ∈ N.

2. ϕn ∈ c−conc(X).

3. limn→∞ I(ϕn, ϕ
c
n) = sup {I(ϕ, ψ) : ϕ ∈ C(X), ψ ∈ C(Y ), ϕ(x) + ψ(y) ≤ c(x, y)} .

Proof. Let fn be a sequence of functions in C(X) and gn be a sequence of functions
in C(Y ) such that fn(x) + gn(y) ≤ c(x, y) for all (x, y) ∈ X × Y and

I(fn, gn) →M := sup {I(ϕ, ψ) : ϕ ∈ C(X), ψ ∈ C(Y ), and ϕ(x) + ψ(y) ≤ c(x, y)} .

By Proposition 3.2.4, we get that

I(fn, gn) ≤ I(gcn, gn) ≤ I(gcn, g
cc
n ) ≤M.

Hence, by Squeeze theorem I(gcn, g
cc
n ) →M.

Given x0 ∈ X, let ϕn(x) = gcn(x) − gcn(x0), we have ϕn(x0) = 0. Notice that
from Proposition 3.2.4

ϕn = (gn + gcn(x0))
c, and ϕcn(y) = (gcn − gcn(x0))

c = gccn (y) + gcn(x0).

Hence, ϕn ∈ c−conc(X) and

I(ϕn, ϕ
c
n) = I

(
gcn − gcn(x0), g

cc
n + gcn(x0)

)
= I(gcn, g

cc
n ) →M.

Lemma 3.3.2. Given compact metric spaces X and Y, ϕ : X 7→ R, ψ : Y 7→ R
and c : X × Y 7→ R continuous. If ϕ ∈ c− conc(X) then

|ϕ(x1)− ϕ(x2)| ≤ ωc(dX(x1, x2)) ∀x1, x2 ∈ X,

where ωc denotes the modulus of continuity of the function c.
Similarly, if ψ ∈ c̄− conc(Y ) then

|ψ(y1)− ψ(y2)| ≤ ωc(dY (y1, y2)) ∀y1, y2 ∈ Y.

17



Proof. c is continuous and finite on compact set then it is uniformly continuous,
and so there exists an increasing continuous function ωc : R+ 7→ R+ such that
ωc(0

+) = 0, and

|c(x1, y1)−c(x2, y2)| ≤ ωc (dX(x1, x2) + dY (y1, y2)) ∀(x1, y1), (x2, y2) ∈ X×Y.

We have ϕ ∈ c− conc(X) then there exists g : Y 7→ R such that ϕ = gc, therefore

|ϕ(x1)− ϕ(x2)| = |gc̄(x1)− gc̄(x2)| =
∣∣∣∣infy {c(x1, y)− g(y)} − inf

y
{c(x2, y)− g(y)}

∣∣∣∣
≤ sup

y
|c(x1, y)− c(x2, y)|

≤ ωc(dX(x1, x2)).

The proof for ψ follows similarly.

Theorem 3.3.3. Given X and Y two compact spaces, and c : X × Y 7→ R
continuous function then there exists a solution (ϕ0, ψ0) to the (DP ) problem
(3.1) such that ϕ0 ∈ c− conc(X), ψ0 ∈ c− conc(Y ) and ψ0 = ϕc0.

Proof. LetM := sup {I(ϕ, ψ) : ϕ ∈ C(X), ψ ∈ C(Y ), and ϕ(x) + ψ(y) ≤ c(x, y)}.
From Lemma 3.3.1, there exists a sequence ϕn ∈ c−conc(X) such that ϕn(x0) = 0
for some x0 ∈ X, and I(ϕn, ϕ

c
n) →M.

From Lemma 3.3.2, ϕn is equicontinuous, and for every x ∈ X we have

|ϕn(x)| = |ϕn(x)− ϕn(x0)| ≤ ωc(dX(x, x0)) ≤ ωc(diamX)

so ϕn is uniformly bounded. Arzelà-Ascoli theorem hence implies that ϕn has a
subsequence ϕnk

that converges uniformly on X.
Set ϕ0 = lim

k→∞
ϕnk

. By Proposition 3.2.4, ϕcnk
converges uniformly to ϕc0, and

M = lim
k→∞

I(ϕnk
, ϕcnk

) = lim
k→∞

∫
X

ϕnk
dµ+

∫
Y

ϕcnk
dν =

∫
X

ϕ0 dµ+

∫
Y

ϕc0 dν = I(ϕ0, ϕ
c
0).

Therefore, there exists (ϕ0, ψ0) solution to the (DP ) problem such that ψ0 = ϕc0
and ψ0 ∈ c̄− conc(Y ).

It remains to show that ϕ0 ∈ c−conc(X). In fact, since ϕnk
∈ c−conc(X) then

by Proposition 3.2.7 we have ϕcc̄nk
= ϕnk

. Moreover, ϕcnk
→ ϕc0 uniformly hence,

by Proposition 3.2.4 we get ϕnk
= ϕcc̄nk

→ ϕcc̄0 uniformly. By uniqueness of limit,
we conclude that ϕ0 = ϕcc̄0 and our proof follows using Proposition 3.2.7.

Remark 3.3.4. The solution ϕ0 of the (DP ) problem 3.1 is called a Kantorovich
Potential.
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3.4 c-Cyclically Monotone

Definition 3.4.1. Given metric spaces X and Y , and c : X × Y 7→ R. We say
that a set Γ ⊆ X × Y is c-cyclically monotone (briefly c-CM) if for every k ∈ N,
permutation σ of {1, 2, · · · , k} we have

k∑
i=1

c(xi, yi) ≤
k∑
i=1

c(xi, yσ(i)).

for all (x1, y1), · · · , (xk, yk) ∈ Γ.

Remark 3.4.2. The word “cyclical” refers to the fact that, since every permutation
is the disjoint composition of cycles, it is enough to check the inequality for
cyclical permutations, i.e. replacing

∑k
i=1 c(xi, yσ(i)) by

∑k
i=1 c(xi, yi+1) in the

definition (with the convention yk+1 = y1).
The word “monotone” refers instead to the behavior of those sets when

X = Y = Rd and c(x, y) = −x · y, in this case the set Γ ⊆ Rd × Rd is simply
called cyclically monotone if and only if for every k ∈ N and permutation σ of
{1, 2, · · · , k} we have

k∑
i=1

xi · yi ≥
k∑
i=1

xi · yσ(i)

for every (x1, y1), · · · , (xk, yk) ∈ Γ.

Theorem 3.4.3. Let c : X × Y 7→ R continuous. If Γ ̸= ∅ is a c-CM set in
X × Y , then there exists a c−concave function ϕ : X 7→ R ∪ {−∞} such that

Γ ⊆ {(x, y) ∈ X × Y : ϕ(x) + ϕc(y) = c(x, y)}. (3.2)

Proof. Fix (x0, y0) ∈ Γ. Define the following function on X

ϕ(x) = inf{c(x, yn)− c(xn, yn) + c(xn, yn−1)− c(xn−1, yn−1) + · · ·+ c(x1, y0)

−c(x0, y0) : n ∈ N, (xi, yi) ∈ Γ for all i = 1, · · · , n}.
ϕ(x) never takes the value +∞ since c is real valued and Γ is non-empty. Notice
also that since Γ is c−CM then for every (x1, y1), (x2, y2), · · · , (xn, yn) ∈ Γ

c(x0, yn)− c(xn, yn) + c(xn, yn−1)− c(xn−1, yn−1) + · · ·+ c(x1, y0)− c(x0, y0)

= (c(x0, yn) + c(x1, y0) + · · ·+ c(xn, yn−1))− (c(x0, y0) + c(x1, y1) + · · ·+ c(xn, yn))

≥ 0

Therefore ϕ(x0) ≥ 0 implying that ϕ is not identically −∞.
Define also the following function on Y

ψ(y) = − inf{−c(xn, y) + c(xn, yn−1)− c(xn−1, yn−1) + ...+ c(x1, y0)− c(x0, y0);
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n ∈ N, (xi, yi) ∈ Γ for all i = 1, ..., n ; yn = y}.
Notice that ψ(y) ̸= −∞ if and only if there exist x ∈ X such that (x, y) ∈ Γ
which is equivalent to say that y ∈ π2(Γ).

The goal is to first show that ϕ = ψc̄. For y ∈ π2(Γ), we have that for every
n ∈ N and (x1, y1), (x2, , y2), · · · , (xn−1, yn−1), (xn, yn) ∈ Γ, with yn = y,

ϕ(x) ≤ c(x, y)− c(xn, y) + c(xn, yn−1) + · · ·+ c(x1, y0)− c(x0, y0)

≤ c(x, y) + (−c(xn, y) + c(xn, yn−1) + · · ·+ c(x1, y0)− c(x0, y0))

so we get ϕ(x) ≤ c(x, y) − ψ(y) for every y ∈ π2(Γ). The inequality also holds
for y /∈ π2(Γ) since in this case the right hand side is equal to +∞. Taking the
infimum over all y ∈ Y we get that ϕ(x) ≤ ψc̄(x) for every x ∈ X. Moreover
applying the inequality for x = x0 we get that for every y ∈ Y ,

ψ(y) ≤ c(x0, y)− ϕ(x0) ≤ c(x0, y) < +∞.

Next we prove that ψc̄(x) ≤ ϕ(x). Notice that for every n ∈ N and for all
(x1, y1), (x2, y2), · · · , (xn, yn) ∈ Γ

−ψ(yn) ≤ −c(xn, yn) + c(xn, yn−1) + · · ·+ c(x1, y0)− c(x0, y0),

and so for every x ∈ X

ψc̄(x) = inf
y∈Y

{c(x, y)− ψ(y)}

≤ c(x, yn)− ψ(yn)

≤ c(x, yn) + (−c(xn, yn) + c(xn, yn−1) + · · · c(x1, y0)− c(x0, y0)).

Taking the infimum over (x1, y1), · · · , (xn, yn) ∈ Γ yields to ϕ(x) ≥ ψc̄(x). Hence,
ϕ(x) = ψc̄(x). This shows that ϕ is c−concave.

It remains to show the inclusion (3.2). Let (x, y) ∈ Γ from Proposition 3.2.4
it is enough to show that we have ϕ(x) + ϕc(y) ≥ c(x, y). For n ∈ N and
(x1, y1), · · · , (xn, yn) ∈ Γ we write

c(x, yn)− c(xn, yn) + c(xn, yn−1)− c(xn−1, yn−1) + · · ·+ c(x1, y0)− c(x0, y0)

= c(x, y) + [−c(x, y) + c(x, yn)− c(xn, yn) + c(xn, yn−1)− c(xn−1, yn−1)+

· · ·+ (c(x1, y0)− c(x0, y0))]

≥ c(x, y)− ψ(y),

where we used the fact that (x1, y1), · · · , (xn, yn), (x, y) ∈ Γ. Taking the infimum
over all n ∈ N and (x1, y1), · · · , (xn, yn) ∈ Γ, we get that ϕ(x) ≥ c(x, y) − ψ(y).
Therefore for every (x, y) ∈ Γ, from Proposition 3.2.7 and the fact that ϕ = ψc̄

we conclude that

ϕ(x) + ϕc(y) = ϕ(x) + ψc̄c(y) ≥ ϕ(x) + ψ(y) ≥ c(x, y).
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3.5 (KP ) = (DP )

In this section, we show equality of the Kantorovich Problem and its dual. The
setting is as follows, we are given X, Y metric spaces, c : X×Y 7→ R continuous,
µ ∈ P(X) and ν ∈ P(Y ).

Notice that for every ϕ ∈ C(X) and ψ ∈ C(Y ) with ϕ(x) + ψ(y) ≤ c(x, y)
and for every measure γ ∈ Π(µ, ν) we have from Propositions 2.2.4, and 3.2.4

I(ϕ, ψ) =

∫
X

ϕ(x) dµ+

∫
Y

ψ(y) dν

∫
X×Y

ϕ(x) + ψ(y) dγ ≤
∫
X×Y

c(x, y) dγ.

and hence
(DP ) ≤ (KP ). (3.3)

Definition 3.5.1. Let X be a metric space and η ∈ P(X ) the support of η is
defined as follows

spt(η) = {x ∈ X : η(B(x, r)) > 0 for all r > 0}.

Theorem 3.5.2. Let γ ∈ Π(µ, ν) be an optimal transport plan, i.e. a solution to
the corresponding (KP ) problem, then spt(γ) is a c-CM set.

Proof. Suppose that there exist k ∈ N, a permutation σ, and (x1, y1), · · · , (xk, yk) ∈
spt(γ) such that

k∑
i=1

c(xi, yi) >
k∑
i=1

c(xi, yσ(i)).

Take now 0 < ϵ < 1
2k

(∑k
i=1 c(xi, yi)−

∑k
i=1 c(xi, yσ(i))

)
. Since c is continuous

then there exists r > 0 such that for all i = 1, · · · , k we have and for all (x, y) ∈
B(xi, r)×B(yi, r) we have

c(x, y) > c(xi, yi)− ϵ ∀(x, y) ∈ B(xi, r)×B(yi, r), (3.4)

c(x, y) < c(xi, yσ(i)) + ϵ ∀(x, y) ∈ B(xi, r)×B(yσ(i), r). (3.5)

We will construct a measure γ̃ ∈ Π(µ, ν) such that

∫
X×Y

c dγ̃ <

∫
X×Y

c dγ,

obtaining then a contradiction since γ is given to be an optimal transport plan.
Denote Vi := B(xi, r)×B(yi, r), notice that γ(Vi) > 0 for every i because (xi, yi) ∈
spt(γ). Define the measures γi ∈ P(X × Y ) to be the normalized restriction of γ
on Vi, that is,

γi(A) =
γ(A ∩ Vi)
γ(Vi)

∀A ∈ B(X × Y ),

and let µi = (π1)#γi and νi = (π2)#γi. Take also the product measures γ̃i =
µi ⊗ νσ(i). We then take

γ̃ = γ − mini γ(Vi)

2k

k∑
i=1

(γi − γ̃i).
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Notice that for A ∈ B(X × Y ) we have

γ̃(A) ≥ γ(A)− mini γ(Vi)

2k

k∑
i=1

γ(A ∩ Vi)
γ(Vi)

≥ γ(A)− 1

2k

k∑
i=1

γ(A) =
1

2
γ(A) ≥ 0,

and γ(X×Y ) = 1, then γ ∈ P(X×Y ). Moreover, since γ ∈ Π(µ, ν), γi ∈ Π(µ, ν),
γ̃i ∈ Π(µi, νσ(i)) then

(π1)#γ̃ = µ− min γ(Vi)

2k

k∑
i=1

(µi − µi) = µ

(π2)#γ̃ = ν − min γ(Vi)

2k

k∑
i=1

(νi − νσ(i)) = ν − min γ(Vi)

2k

(
k∑
i=1

νi −
k∑
i=1

νσ(i))

)
= ν

where the last equality is due to the fact that σ is a permutation.
Finally, since γi is supported on B(xi, r) × B(yi, r) and γ̃i on B(xi, r) ×

B(yσ(i), r), it follows from inequalities (3.4) and (3.5)∫
X×Y

c dγ −
∫
X×Y

c dγ̃ =
mini γ(Vi)

2k

k∑
i=1

(∫
X×Y

c dγi −
∫
X×Y

c dγ̃i

)

=
mini γ(Vi)

2k

k∑
i=1

(∫
B(xi,r)×B(yi,r)

c dγi −
∫
B(xi,r)×B(yσ(i),r)

c dγ̃i

)

≥ mini γ(Vi)

2k

(
k∑
i=1

(c(xi, yi)− ϵ)−
k∑
i=1

(c(xi, yσ(i)) + ϵ)

)

=
mini γ(Vi)

2k

( k∑
i=1

c(xi, yi)−
k∑
i=1

c(xi, yσ(i))− 2kϵ
)
> 0.

Hence, a contradiction so spt(γ) is a c-CM set.

Theorem 3.5.3. Let X and Y be compact metric spaces, c : X × Y 7→ R
continuous, µ ∈ P(X) and ν ∈ P(Y ), then

(KP ) = (DP ).

Proof. From Theorem 2.3.3, there exists γ0 solution to the (KP ) problem. By
Theorem 3.5.2, spt(γ0) is c−CM then from Theorem 3.4.3 there exists ϕ0 ∈
c−conc(X) such that

spt(γ0) ⊆ {(x, y) ∈ X × Y : ϕ0(x) + ϕc0(y) = c(x, y)} (3.6)
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By Lemma 3.3.2, ϕ0 and ϕc0 are continuous and from Proposition 3.2.4 ϕ0(x) +
ϕc0(y) ≤ c(x, y) for all (x, y) ∈ X × Y therefore from Proposition 2.2.4

(KP ) = inf

{∫
X×Y

c(x, y) dγ : γ ∈ Π(µ, ν)

}
=

∫
X×Y

c(x, y) dγ0 =

∫
X×Y

ϕ0(x) + ϕc0(y) dγ0 =

∫
X

ϕ0(x) dµ+

∫
Y

ϕc0(y) dν

≤ sup{I(ϕ, ψ) : ϕ ∈ C(X), ψ ∈ C(Y ) and ϕ(x) + ψ(y) ≤ c(x, y)} = (DP ).

Hence by inequality (3.3), we get

(KP ) =

∫
X×Y

c(x, y) dγ0 = I(ϕ0, ϕ
c
0) = (DP ).

Remark 3.5.4. Notice that above proof can be used to show that every measure
γ ∈ P (X × Y ) with a c−CM support is an optimal transport plan with respect
to the measures µ = (π1)#γ and ν = (π2)#γ, this corresponds to the converse of
Theorem 3.5.2.

We can also infer that every transport plan γ0 solution to the (KP ) problem
induces a Kantorovich potential ϕ0 ∈ c-conc(X) solution to (DP ), and satisfying
(3.6). We end this chapter by showing that (3.6) is true for every Kantorovich
potential ϕ.

Proposition 3.5.5. Given the setting of Theorem 3.5.3, let γ ∈ Π(µ, ν) be an
optimal transport plan and ϕ be a Kantorovish potential then

ϕ(x) + ϕc(y) = c(x, y) a.e γ

Proof. Since (KP ) = (DP ) then∫
X×Y

c(x, y) dγ = I(ϕ, ϕc) =

∫
X

ϕ(x) dµ+

∫
Y

ϕc(y) dν =

∫
X×Y

(ϕ(x) + ϕc(y)) dγ,

and so ∫
X×Y

c(x, y)− (ϕ(x) + ϕc(y)) dγ = 0

The results hence follows from Proposition 3.2.4.
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Chapter 4

The Monge Problem

We are now ready to study the Monge Problem presented in the introduction.
In other words, given an optimal transport plan corresponding to a cost function
c : X × Y 7→ R, does it induce a map T : X 7→ Y minimizing the transport cost?
The problem can be formulated as follows, let X and Y be two metric spaces
with corresponding probability measures µ and ν and c : X×Y 7→ R continuous,
we define the Monge problem as follows

(MP ) : inf

{∫
X

c(x, T (x)) dµ(x), T : X 7→ Y and T#µ = ν

}
. (4.1)

Solutions to the (MP ) problems are called optimal transport maps. As in the
previous chapters, we shall find sufficient conditions for existence of these maps,
and for obtaining (MP ) = (KP ) = (DP ).

We make the following observation, that justifies why the Monge Problem is
considered to be a relaxation of the Kantorovich problem.

Theorem 4.0.1. Given X and Y two compact metric spaces with corresponding
probability measures µ and ν, we are given a continuous function c : X×Y 7→ R,
and a measurable map T : X 7→ Y with T#µ = ν. Define γT = (id, T )#µ, that is

γT (A×B) = µ(A ∩ T−1B) ∀A×B ⊆ X × Y.

then γT ∈ Π(µ, ν) and∫
X

c(x, Tx) dµ =

∫
X×Y

c(x, y) dγ. (4.2)

Proof. Let A ⊆ X and B ⊆ Y then

γT (A× Y ) = µ(T−1Y ∩ A) = µ(X ∩ A) = µ(A)

γT (X ×B) = µ(T−1B ∩X) = µ(T−1B) = ν(B).
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Hence, by Proposition 2.2.2 γT ∈ Π(µ, ν). Now let’s prove that∫
X

c(x, Tx) dµ =

∫
X×Y

c(x, y) dγT .

Since X and Y are two compact spaces and c is continuous then there exists
cn distincts values in R, Ai ×Bi ∈ B(X × Y ) disjoints such that

c(x, y) =
∞∑
i=1

ci · χAi×Bi
(x, y)

∫
X×Y

c(x, y) dγT =

∫
X×Y

∞∑
i=1

ci · χAi×Bi
(x, y) dγT =

∞∑
i=1

ci ·
∫
X×Y

χAi×Bi
(x, y) dγT

(Fubini’s theorem having
∑∞

i=1 |ciχAi×Bi
| ≤ sup |c| <∞) Then,∫

X×Y
c(x, y) dγT =

∞∑
i=1

ciγT (Ai ×Bi) =
∞∑
i=1

ciµ(Ai ∩ T−1Bi).

While,∫
X

c(x, Tx) dµ =

∫
X

∞∑
i=1

ciχAi×Bi
(x, Tx) dµ =

∞∑
i=1

ci

∫
X

χAi∩T−1Bi
(x) dµ =

∞∑
i=1

ciµ(Ai∩T−1Bi).

We hence conclude (4.2).

This imply for every T such that T#µ = ν we can associate a γT ∈ Π(µ, ν)
such that γT = (id, T )#µ and satisfying (4.2). In other words, the space of
transport plan is larger than the space of transport maps concluding that

(KP ) ≤ (MP ).

Notice that the result in Theorem 4.0.1 is still valid for X and Y not necessarily
compact as long as the function c is continuous and bounded.

4.1 Preliminary examples for inexistence

4.1.1 Example 1. Nonexistence Case of atomic measure

Let X and Y be metric spaces and a ∈ X. Take µ the Dirac mass at a that is
such that for A ⊆ X

µ(A) = δa(A) =

{
1 if a ∈ A

0 if a /∈ A,
.
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Notice that for every Borel map T : X 7→ Y we have T#δa = δT (a). Let B ⊆ Y
in fact for every B ⊆ Y

(T#δa)(B) = δa(T
−1(B)) =

{
1 if a ∈ T−1(B)

0 if a /∈ T−1(B)
=

{
1 if T (a) ∈ B

0 if T (a) /∈ B
= δT (a)(B)

Therefore if ν is not a dirac mass then one can’t find a transport map such that
T#µ = ν, and hence no optimal transport map exist in this case.

However, an optimal transport plan exists for any Borel measure ν and
continuous cost c, since in this case we’ll prove that Π(µ, ν) contains only the
canonical product measure. Take γ ∈ Π(δa, ν), A ∈ B(X) and B ∈ B(Y ). If
a /∈ A, then from Proposition 2.2.2

γ(A×B) ≤ γ(A× Y ) = δa(A) = 0,

and so γ(A×B) = 0 = δa(A)ν(B). On the other hand, if a ∈ A, then using again
Proposition 2.2.2 and the above result

γ(A×B) = γ(X ×B)− γ(Ac ×B) = ν(B) = δa(A)ν(B).

4.1.2 Example 2. Nonexistence case of quadratic cost

Figure 4.1: Example 2 figure [18]

We consider the quadratic cost c(x, y) = |x − y|2, and X = A, Y = B ∪ C
where A,B and C are three vertical parallel segments in R2 whose vertices lie on
the two lines y = 0 and y = 1 and the abscissas are 0, 1 and −1 respectively as
shown in Figure 4.1.2. We define the following two measures on X and Y

µ(E) = H1(E ∩ A) ∀E ∈ B(A) and

ν(F ) =
H1(F ∩B) +H1(F ∩ C)

2
∀F ∈ B(B ∪ C)
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where H1 corresponds to the one-dimensional Hausdorff measure.
Notice that for all T : A 7→ B ∪ C we have |x− Tx|2 ≥ 1. This is clear since

d(A,B ∪ C) = 1 then∫
A

c(x, Tx) dµ =

∫
A

|x− Tx|2 dµ ≥
∫
A

1 dµ = µ(A) = 1.

then

inf

{∫
A

c(x, Tx) dµ : T#µ = ν

}
≥ 1.

We prove that the infimum is actually equal to 1.
We construct a sequence Tn : A 7→ B ∪ C as follows. Divide A into 2n equal

segments (Ai)i=1,··· ,2n, B into n−segments (Bi)i=1,··· ,n, and C into n−segments
(Ci)i=1,··· ,n, Tn is an affine map such that

A2i−1 7→ Bi and A2i 7→ Ci

Notice from the geometry of the figure for all x ∈ A

1 ≤ |x− Tn(x)|2 ≤ |(0, 0)− (−1, 1/n)|2 = 1 +
1

n2
,

letting n→ ∞ we get that

∫
A

c(x, Tnx) dµ→ 1.

Notice that the length of the subintervals Ai is doubled when mapped by Tn,
so using the definition of µ and ν we get that for every F ⊆ (B ∪ C)

µ(T−1
n F ) = µ

(
T−1
n (F ∩B) ∪ (F ∩ C)

)
= µ

(
T−1
n (F ∩B)

)
+ µ

(
T−1
n (F ∩ C)

)
= H1(T−1

n (F ∩B)) +H1(T−1
n (F ∩ C))

=
1

2
H1(F ∩B) +

1

2
H1(F ∩ C)

= ν(F )

As a result, we conclude that

inf

{∫
A

c(x, Tx) dµ, T#µ = ν

}
= 1.

However, there is no optimal transport map for which the infimum is attained. In
fact, if T : A 7→ B∪C is such that

∫
A
|x−Tx|2 dµ = 1 then

∫
A
|x−Tx|2−1 dµ = 0

but the integrand is non negative then |x − Tx|2 = 1 a.e µ, and so T moves
horizontally. Hence for every E ⊆ B

2ν(E) = H1(E) = H1(T−1E) = µ(T−1E),
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and so T#µ ̸= ν, that is the map T does not belong to the class of admissible
maps.

We prove however that an optimal transport plan, i.e. a solution to the
corresponding (KP ) problem exists. As above we have for every γ ∈ Π(µ, ν),∫
A×(B∪C)

|x− y|2 dγ ≥ 1, and so (KP ) ≥ 1. Construct the optimal transport plan

as follows. Let T+ : A 7→ B moving horizontally to the right i.e. T+x = x+(1, 0).
Notice that for every U ⊆ B

H1(U) = H1(T−1
+ U) = µ(T−1

+ U)

Then, (T+)#µ = H1|B. We then define as in Theorem 4.0.1 the associated
probability measure on A×B, γT+ ∈ Π(µ,H1|B).

Similarly, let T− : A 7→ C moving horizontally to the left i.e. T−x = x +
(−1, 0). Notice that for every V ⊆ C

H1(V ) = H1(T−1
− V ) = µ(T−1

− V )

Then, (T−)#ν = H1|C and the associated measure γT− ∈ Π(µ,H1|C). Let γ =
1

2
γT+ +

1

2
γT− a measure on A× (B ∪ C) that is

γ(E×F ) =
1

2
γT+(E× (F ∩B))+

1

2
γT−(E× (F ∩C), ∀E×F ⊆ A× (B∪C).

Let’s check that γ ∈ Π(µ, ν) using Proposition 2.2.2. For F ⊆ B ∪ C,

γ(A× F ) =
1

2
γT+(A× (F ∩B)) +

1

2
γT−(A× (F ∩ C))

=
1

2
H1(F ∩B) +

1

2
H1(F ∩ C)

= ν(F )

For E ⊆ A,

γ(E × (B ∪ C)) = 1

2
γT+(E ×B) +

1

2
γT−(A× C)

=
1

2
µ(E) +

1

2
µ(E)

= µ(E)

Finally, we show that γ is optimal. From (4.2) applied to γT+ and γT− , we have∫
A×(B∪C)

|x− y|2 dγ =
1

2

∫
A×B

|x− y|2 dγT+ +
1

2

∫
A×C

|x− y|2 dγT−

=
1

2

∫
A

|x− T+x|2 dµ+
1

2

∫
A

|x− T−x|2 dµ

=
1

2

∫
A

1 dµ+
1

2

∫
A

1 dµ

= µ(A) = 1.
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Hence, we’re done.

4.2 Measure preserving maps

Definition 4.2.1. Let X and Y be measure spaces, let N : X 7→ 2Y be a
multivalued map such that N(x) ⊆ Y for each x ∈ X. For F ⊆ Y we denote

N−1(F ) = {x ∈ X : N(x) ∩ F ̸= ∅}

Let µ ∈ P(X). Assume N satisfies the following

1. N is measurable i.e N−1(F ) ∈ B(X) for every F ∈ B(Y )

2. The set {x ∈ X : N(x) is not a singleton} has µ-measure zero.

Given ν ∈ P(Y ), we say that N is measure preserving from µ to ν if and only if
N#µ = ν.

Example 4.2.2. Given Ω ⊆ Rn open, let ϕ : Ω 7→ R be a strictly convex C1

function. In this case, we have that ∇ϕ is injective. In fact, suppose that there
exist x, y ∈ Ω such that ∇ϕ(x) = ∇ϕ(y) where x ̸= y. We have by strict convexity

∇ϕ(x) · (y − x) < ϕ(y)− ϕ(x) (4.3)

Similarly, switching the roles of y and x, we get ∇ϕ(y) · (x − y) < ϕ(x) − ϕ(y).
Having ∇ϕ(x) = ∇ϕ(y) we get

∇ϕ(x) · (y − x) > ϕ(y)− ϕ(x)

which contradicts (4.3) hence x = y. Now, let Ω∗ = ∇ϕ(Ω). We have ∇ϕ : Ω 7→
Ω∗ is bijective, we then define N = (∇ϕ)−1 : Ω∗ 7→ Ω. N is single valued, and
N−1 = ∇ϕ is measurable as ∇ϕ is continuous and injective and hence open.

Take a probability measure µ on Ω∗, and define the Borel measure ν on Ω as
follows

ν(E) = µ(∇ϕ(E)),

then N is a measure preserving map from from µ to ν.

Proposition 4.2.3. Given two compact metric spaces X and Y with corresponding
probability measures µ and ν, let N : X 7→ Y be a map satisfying the above
conditions (1) and (2). N is measure preserving from µ to ν if and only if∫

X

v(N(x)) dµ =

∫
Y

v(y) dν (4.4)

for each v ∈ C(Y ).
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Proof. Assume N is measure preserving. Let A ∈ B(Y ), notice that from (2)
χA(N(x)) = χN−1(A)(x) for µ−a.e x. Therefore, since N is measure preserving∫

X

χA(N(x)) dµ =

∫
X

χN−1A(x) dµ = µ(N−1A) = ν(A) =

∫
Y

χA(y) dν

obtaining hence (4.4) for characteristic functions.
Consider v ∈ C(Y ), since Y is compact then there exists Borel disjoint sets

An and real numbers an such that

v(y) =
∞∑
n=1

anχAn(y),

Moreover, by Fubini’s theorem having
∑∞

n=1 |anχAn| ≤ sup |v| < ∞ and by the
above∫
Y

v(y) dν =

∫
Y

∞∑
n=1

anχAn(y) dν =
∞∑
n=1

an

∫
Y

χAn(y) dν

=
∞∑
n=1

an

∫
X

χA(N(x)) dν(x) =

∫
X

v(N(x)) dµ.

To prove the converse, let’s prove for a borel set E the following inequality

N#µ(E) ≤ ν(E) (4.5)

Let G be an open set in Y and K ⊆ G compact then by Urysohn’s lemma there
exist a function v ∈ C(X) such that 0 ≤ v ≤ 1, v = 0 outside G and v = 1 on K.

Notice that from the construction of v we have

∫
X

χK(N(x)) dµ ≤
∫
X

v(N(x)) dµ

Hence, using the fact that χK(N(x)) = χN−1(K)(x), and the above inequality we
have

N#µ(K) =

∫
X

χN−1(K)(x) dµ =

∫
X

χK(N(x)) dµ ≤
∫
X

v(N(x)) dµ

Moreover, using the construction of v and (4.4) we have∫
X

v(N(x)) dµ =

∫
Y

v(y) dν ≤ ν(G).

Therefore, N#µ(K) ≤ ν(G). From condition 1, N#µ is a probability measure on
the compact space Y then by regularity

N#µ(G) = sup
K⊆G,Kcompact

N#µ(K) ≤ ν(G).
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Now, let E be any Borel set, ν is a probability measure on the compact space Y
then ν is regular so there exists an open set U where E ⊆ U and ν(U \ E) < ϵ.
Using the inequality on U we get

N#µ(E) ≤ N#µ(U) ≤ ν(U) < ν(E) + ϵ

Let ϵ→ 0 then N#µ(E) ≤ ν(E).
Now we prove the reverse inequality. First notice that for F ⊆ Y

{x ∈ X : N(x) ̸= ∅} ∩ (N−1(F ))c ⊆ N−1(F c)

and

(N−1(F ))c =(
(N−1(F ))c ∩ {x ∈ X : N(x) ̸= ∅}

)⋃(
(N−1(F ))c ∩ {x ∈ X : N(x) = ∅}

)
From condition (2), µ({x ∈ X : N(x) = ∅}) = 0 then using (4.5) on F c we

obtain

µ((N−1(F ))c) = µ((N−1(F ))c ∩ {x ∈ X : N(x) ̸= ∅}) ≤ µ(N−1(F c)) ≤ ν(F c)

then µ(N−1(F )) ≥ ν(F ) for any F borel set in Y. Therefore, N is a measure
preserving from µ to ν.

4.3 (MP)=(DP)=(KP)

Definition 4.3.1. Consider X and Y two metric spaces and ϕ : X 7→ R. Let
x ∈ X, we define the c−normal mapping of ϕ to be

Nc,ϕ(x) = {y ∈ Y : ϕ(x) + ϕc(y) = c(x, y)} (4.6)

Example 4.3.2. Let X = Y = B(0, 1) be the unit ball in Rn, c(x, y) = |x − y|,
and ϕ(x) = −|x|. We have to find ϕc, notice that, by definition, we have for
y ∈ Y ,

ϕc(y) = inf
x∈B(0,1)

{c(x, y) + |x|} .

From the triangular inequality, we have |x− y|+ |x| ≥ |y|, and we have equality
when x = y, then ϕc(y) = |y|, concluding that

Nc,ϕ(x) = {y ∈ B(0, 1) : |y| = |x− y|+ |x|}.

For x = 0, we have Nc,ϕ(0) = B(0, 1). For x ̸= 0 in B(0, 1), we have that
y ∈ Nc,ϕ(x) if and only if y = λx for some λ > 1. Therefore

Nc,ϕ(x) = {λx : λ > 1, and |λx| < 1} =

{
λx : 1 ≤ λ ≤ 1

|x|

}
.

Notice that Nc,ϕ(x) is not single valued for any x ∈ B(0, 1) so it violates (1)
for any Borel measure µ.
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Example 4.3.3. Given X = Y = Rn, ϕ : X 7→ R and c : X × Y 7→ R such that
c(x, y) = x · y then Nc,ϕ(x) = ∂∗ϕ(x) where ∂∗ϕ is the super-differential of ϕ

∂∗ϕ(x) = {m ∈ Rn : ϕ(y) ≤ ϕ(x) +m · (y − x)∀y ∈ Y }.

In fact, m ∈ ∂∗ϕ(x), if and only if for every y ∈ Y we have

ϕ(y) ≤ ϕ(x) +m · (y − x),

i.e. m · x− ϕ(x) ≤ m · y − ϕ(y). Equivalently,

ϕc(m) = inf
y∈Rn

{m · y − ϕ(y)} = m · x− ϕ(x),

and our claim follows.
One can show that if ϕ is a c−concave function then ∂∗ϕ satisfies Condition

(1), and (2) with µ being the Lebesgue measure on Rn. [9]

Lemma 4.3.4. Given X, Y two compact metric spaces, c : X × Y 7→ R such
that Nc,ϕ satisfies (1) and (2) for every ϕ c−concave then

1. If ϕ is c−concave and Nc,ϕ is measure preserving from µ to ν, then ϕ is a
Kantorovich potential.

2. If ϕ is c−concave and ϕ is a Kantorovich potential then Nc,ϕ is measure
preserving from µ to ν.

Proof of (1). Let u ∈ C(X) and v ∈ C(Y ) such that u(x)+v(y) ≤ c(x, y)∀(x, y) ∈
X × Y. From (2), we have that for µ−a.e x ∈ X

u(x) + v(Nc,ϕ(x)) ≤ c(x,Nc,ϕ(x)).

By using the Definition 3.2.1 of I(u, v) and Proposition 4.2.3 we have

I(u, v) =

∫
X

u(x) dµ+

∫
Y

v(y) dν =

∫
X

u(x)+v(Nc,ϕ(x)) dµ ≤
∫
X

c(x,Nc,ϕ(x)) dµ.

We also have from the definition of Nc,ϕ that c(x,Nc,ϕ(x)) = ϕ(x) + ϕc(Nc,ϕ(x))
for µ−almost every x ∈ X, then similarly by Proposition 4.2.3

I(ϕ, ϕc) =

∫
X

c(x,Nc,ϕ(x)) dµ ≥ I(u, v).

Hence ϕ is a Kantorovich potential.

Proof of (2). Let ψ = ϕc, for v ∈ C(Y ) and θ ∈ R, we denote

ψθ(y) = ψ(y) + θv(y),
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and ϕθ = (ψθ)
c̄.

We first prove that

lim
θ→0

I(ϕθ, ψθ)− I(ϕ, ψ)

θ
=

∫
X

−v(Nc,ϕ(x)) dµ+

∫
Y

v(y) dν (4.7)

In fact,

I(ϕθ, ψθ)− I(ϕ, ψ)

θ
=

∫
X

ϕθ − ϕ

θ
dµ+

∫
Y

ψθ − ψ

θ
dν =

∫
X

ϕθ − ϕ

θ
dµ+

∫
Y

v(y) dν.

To apply Lebesgue Dominated Convergence Theorem we have to show that
ϕθ − ϕ

θ
is uniformly bounded inX for |θ| close to 0 and ϕθ(x)− ϕ(x)

θ
→ −v(Nc,ϕ(x))

µ−a.e x ∈ X as θ → 0.
Let S the set of singular point that is S = {x ∈ X : Nc,ϕ(x) is not a singleton}.

We take x ∈ X \ S. Denote y1 = Nc,ϕ(x), then ϕ(x) = c(x, y1)− ψ(y1), and

ϕθ(x) = inf
y
{c(x, y)−ψθ(y)} ≤ c(x, y1)−ψθ(y1) = c(x, y1)−ψ(y1)−θv(y1) = ϕ(x)−θv(y1).

On the other hand, we have ϕθ(x) = (ψθ)
c̄(x) = infy{c(x, y) − ψθ(y)}. By

compactness of Y and continuity of c and ϕ there exists yθ ∈ Y such that

ϕθ(x) = c(x, yθ)−ψθ(yθ) = c(x, yθ)−ψ(yθ)−θv(yθ) ≥ ψc̄(x)−θv(yθ) = ϕ(x)−θv(yθ),

where for the last equality we used by Proposition 3.2.7. We conclude

−θv(yθ) ≤ ϕθ(x)− ϕ(x) ≤ −θv(y1).

We deduce that

∣∣∣∣ϕθ − ϕ

θ

∣∣∣∣ is uniformly bounded and limθ→0 ϕθ(x) = ϕ(x). It

remains to show that yθ → y1 = Nc,ϕ(x).
Suppose there exists a subsequence yθk such that yθk → y0 ̸= y1, as k → ∞.

We have that
ϕ(x) = lim

k→∞
ϕθk(x) = c(x, y0)− ψ(y0)

which implies that y0 ∈ Nc,ϕ(x), but x /∈ S then Nc,ϕ(x) is a singleton hence
y0 = y1 which is a contradiction. We obtain then (4.7).

Since ϕ is a Kantorovich Potential then I(ϕθ, ψθ) ≤ I(ϕ, ψ), and so

lim
θ→0+

I(ϕθ, ψθ)− I(ϕ, ψ)

θ
≤ 0 lim

θ→0−

I(ϕθ, ψθ)− I(ϕ, ψ)

θ
≥ 0,

but since we proved that the limit exists we obtain

lim
θ→0

I(ϕθ, ψθ)− I(ϕ, ψ)

θ
= 0

which implies that ∫
X

v(Nc,ϕ(x)) dµ =

∫
Y

v(y) dν

Hence, by Proposition 4.2.3 Nc,ϕ is measure preserving from µ to ν.
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Theorem 4.3.5. Let X and Y be two compact metric spaces, µ ∈ P(X), ν ∈
P(Y ). Assume c : X×Y 7→ R continuous such that Nc,ϕ satisfies (1) and (2) for
every c−concave function ϕ.

Let ϕ0 be a Kantorovich potential, then T0(x) = Nc,ϕ0(x) is a solution to the
corresponding (MP ) problem, and we have

(MP ) = (DP ).

Proof. ϕ0 is a Kantorovich potential then from Lemma 4.3.4 T0 = Nc,ϕ0 is measure
preserving from µ to ν.

Let T : X 7→ Y be such that T#µ = ν then∫
X

c(x, T (x)) dµ ≥
∫
X

ϕ0(x) + ϕc0(T (x)) dµ

=

∫
X

ϕ0(x) dµ+

∫
X

ϕc0(T (x)) dµ

=

∫
X

ϕ0(x) dµ+

∫
Y

ϕc0(y) dν (by Proposition 4.2.3)

= I(ϕ0, ϕ
c
0)

=

∫
X

ϕ0(x) + ϕc0(Nc,ϕ0(x)) dµ (by Proposition 4.2.3)

=

∫
X

c(x,Nc,ϕ0(x)) dµ

Then,

(MP ) =

∫
X

c(x, T0(x)) dµ(x) = I(ϕ0, ϕ
c
0) = (DP ).

Remark 4.3.6. Let X and Y be two compact metric spaces, µ ∈ P(X), ν ∈
P(Y ) and c : X × Y 7→ R be continuous function. We obtain that

min

{∫
X×Y

c(x, y) dγ : γ ∈ Π(µ, ν)

}
= max {I(u, v) : u(x) + v(y) ≤ c(x, y)}

= inf

{∫
X

c(x, Tx) dµ : T#µ = ν

}

which is (KP ) = (DP ) = (MP ).
Notice that if T is an optimal transport map solving the (MP ) problem then

the associated measure γT = (id, T )#µ solves the (KP ) problem. Now from
Chapter 3 γT induces a c−concave function ϕ such that

spt(γT ) ⊆ {(x, y) ∈ X × Y : ϕ(x) + ϕc(y) = c(x, y)},
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such ϕ is a Kantorovich potential that is (ϕ, ϕc) solves the (DP ) problem.

Proposition 4.3.7 (Uniqueness). Let X and Y be two compact metric spaces,
µ ∈ P(X), and ν ∈ P(Y ). Let c : X × Y → R continuous be such that Nc,ϕ

satisfies conditions (1) and (2) for every c−concave function ϕ, then the solution
of the (MP ) problem found in Theorem 4.3.5 is unique.

Proof. From Theorem 4.3.5 then T = Nc,ϕ is the solution to the (MP ) problem
where ϕ is a Kantorovich potential. Let T0 be another solution to (MP ) problem,
we have

(DP ) = (MP ) =

∫
X

c(x, T0x) dµ.

Therefore, since T0 is measure preserving then from Proposition 4.2.3 we get

0 =

∫
X

c(x, T0x)− ϕ(x)− ϕc(T0x) dµ.

Since, the integrand is nonegative (from Proposition 3.2.4) then

ϕ(x) + ϕc(T0x) = c(x, T0x) µ− a.e.

We hence obtain that T0x ∈ Nc,ϕ(x)µ − a.e. But Nc,ϕ is a singleton µ − a.e
concluding that T0x = Nc,ϕ(x) for µ almost every x.

Remark 4.3.8. Notice that with the setting of Proposition 4.3.7, if γ is a
transport plan, ϕ is a corresponding Kantorovich potential, and T an optimal
transport map then for (x, y) ∈ spt(γ) then ϕ(x) + ϕc(y) = c(x, y) and so
y = Nc,ϕ(x) = Tx. Let A×B ⊆ B(X × Y ), then

γ(A×B) = γ ({(x, y) : x ∈ A, y ∈ B})
= γ ({(x, Tx) : x ∈ A, Tx ∈ B})
= γ

({
(x, Tx) : x ∈ A ∩ T−1B

})
But also since γ ∈ Π(µ, ν), then from Lemma 2.2.2 and similarly as above

µ(A ∩ T−1B) = γ((A ∩ T−1B)× Y ) = γ
({

(x, y) : x ∈ A ∩ T−1B, y ∈ Y
})

= γ
({

(x, y) : x ∈ A ∩ T−1B, Tx ∈ Y
})

= γ
({

(x, Tx) : x ∈ A ∩ T−1B
})

Concluding that γ(A×B) = µ(A∩T−1B) = γT (A×B). Concluding, hence, that
in this case the transport plan is unique.
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4.3.1 The case c(x, y) = h(x− y) with h is strictly convex

Let X ⊆ Rd be a compact set with λ(∂X) = 0 where λ is the Lebesgue measure.
Let µ, ν ∈ P(X), c : X × X 7→ R such that c(x, y) = h(x − y) where h is a C1

strictly convex function. We assume that µ is absolutely continuous to λ.
Let γ ∈ Π(µ, ν) a transport plan, i.e. solution to the corresponding (KP )

problem, then there exists a Kantorovich potential ϕ such that

spt(γ) ⊆ {(x, y) ∈ X ×X : ϕ(x) + ϕc(y) = c(x, y).

From Lemma 3.3.2, ϕ is C1.
Let (x0, y0) ∈ spt(γ), we have for every x ∈ X

ϕc(y0) ≤ c(x, y0)− ϕ(x),

with equality at x = x0, this imply that the function c(x, y0) − ϕ(x) attains a
minimum at x = x0. Assume moreover that x0 is an interior point of X (as
µ(∂X) = 0) we get that

∇xc(x0, y0)−∇xϕ(x0) = 0,

obtaining then
∇xϕ(x0) = ∇xc(x0, y0) = ∇xh(x0 − y0).

Since h is strictly convex then ∇xh is injective and so

y0 = x0 − (∇xh)
−1(∇xϕ(x0)).

From Theorem 4.3.5, the optimal transport map is

Tx = x− (∇xh)
−1(∇xϕ(x)).

The C1 assumption on h can be dropped as from [18] strictly convex function
are differentiable a.e. with respect to the Lebesgue measure and hence to µ, since
µ≪ λ.
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