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Abstract
of the Thesis of

Sarah Bassem Katerji for Masters of Science
Major: Computer Science

Title: Procedural Content Generator For Platformer Levels

Procedural Content Generation (PCG) are algorithms that can generate game con-
tent or levels with little to no human intervention. As discussed by PCGML,
datasets, and benchmarks in the field of game generation are very limited and lack
video gameplay data. Furthermore, there is no unified clear framework for the eval-
uation of GAN-based PCG algorithms. Therefore, in this thesis, we provide a new
clean video gameplay dataset composed of two games Super Mario Bros and Super
Mario Bros Lost Levels. We show that learning from language in Platformer PCG
outperforms learning from video frames. Moreover, we discuss three approaches to
extract meaningful data from the two games to perform learning from language.
The approach generates a variety of levels learned from different sources (one level,
multiple levels, multiple games). Thus, we show that learning from multiple games
is possible with GANs learning from langauge. Furthermore, we categorize several
evaluation approaches used in the literature into style difference, playability, and
fun and provide an evaluation framework for each to compare different GAN archi-
tectures (Simple GAN, DCGAN and WGAN) over different datasets and we show
that in most cases WGAN learning outperforms GAN and DCGAN.
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Chapter 1

Introduction

The video game industry is an important sector in the technology field. Every year,
thousands of popular games are produced and released. In 2019 alone, around 8290
games were published and played by millions of users around the world [1]. Despite
the rewards the industry brings, game development is a very demanding business
as it requires large funds to afford needed technology (memory and processing),
quality, and skills. [2]. The players’ continuous thrive for more game content and
faster delivery keeps the game industry pushing forth to meet their customers’ ex-
pectations. Therefore, gaming companies have a growing need to automate certain
game development tasks to deliver a variety of high-end video games in a timely,
cost-friendly and efficient manner. [2].

Procedural Content Generation (PCG) is defined as the automated creation of
video game content by using algorithms to minimize human intervention in the
development process. Such algorithms are used by gaming companies to respond
to the player’s needs and solve the issues previously mentioned. The very first
approach of simple and straightforward PCG was seen in the game ”Elite” (1984).
The creators of the game used random numbers to make the algorithm generate
worlds and levels without the need for explicit code for each level. Using this simple
form of PCG allowed them to fit a full game in 22 KB of memory thus saving
memory which was a scarce resource at the time [2], [3]. It is interesting to note
that PCG in its simplest form (pseudo random generators) is currently extensively
used in endless runner games such as Temple run [4]. Indeed, the sole purpose of
the game is to go for as long as the player is alive. Thus, the need for PCG to
continuously generate a series of platforms and obstacles at run time [5].

However, as shown in the literature, PCG is a promising tool for game developers
and designers and is not bound to pseudo-random generators only. Indeed, some
advanced applications of PCG include but are not limited to the automation of
game components creation, game style transfer, game expanding, and level design.
Researchers have been exploring techniques to generalize and parameterize PCG
as well as expand its knowledge of how to build a playable and enjoyable game.
The ultimate goal of ”general game generation” is hard to solve. Therefore, the
problem has been approached in the literature as a smaller, more focused goal i.e.
the generation of game level structure or level section structure within a specific
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game genre. Given that, several researchers tackled PCG in different ways. These
techniques range from evolutionary algorithms such as ”Patterns as Objectives for
Level Generation” [2] and probabilistic techniques such as Monte-Carlo tree search
[6] to machine learning models such as LSTM [7] and GAN [8]. It is interesting
to note that the results presented by most papers are promising but there remain
multiple areas of improvement that can be achieved through experimentation. Most
of the research is focused on learning game content from one level or a small target
group of levels (generalization of PCG). Moreover, a considerable amount of research
papers use the source or binary game code that is specific for each game to extract
the required data (dataset and language unification). Furthermore, PCG should
generate balanced and playable levels (quality of outcome) but there doesn’t seem
to be a clear unified PCG evaluation technique.

Thus, the main objective of this thesis is to explore, expand and experiment
further in procedural content generation in the paltformer game genre. We aim to
present the following contributions:

1. Describing the state-of-the-art techniques for learning platformer game design
and analyzing their advantages and disadvantages.

2. Exploring and improving platformer dataset.

3. Exploring frame generation in GAN in image format and discussing it’s limits.

4. Improving and expanding the work done by Volz et al. [8].

5. Stepping into generalization of PCG by attempting multiple level learning.

6. Proposing a technique for a level-based PCG evaluation and applying it to the
improved PCG algorithm.

The remaining of the thesis is organized as follows. Chapter 2 provides a general
introduction to key terms and concepts related to this research. Chapter 3 presents
a literature review of the work done in the field of platformer level generation as well
as a survey of those techniques. Chapter 4 explains the methodology used to build
several GAN PCG generators and defines a framework to evaluate these generators.
Chapter 5 discusses the process of the experiments and analyses the results with
evaluation. Finally, Chapter 6 concludes the paper and summarizes the work.

10



Chapter 2

Definitions

The following section presents a general introduction of key terms and concepts
related to this thesis. We define video games, PCG and GANs and OpenCV.

2.1 Video Games

Understanding what a video game is and what makes a level fun and playable
constitute the basis for building a good PCG algorithm. In this section, we will also
define the platformer game genre and provide a quick overview of the Super Mario
Bros game.

2.1.1 Definition of Video Games

In 1949, Johan Huizinga defined the term ”game” as an engaging free activity that
happens within its boundaries of time, space and rules [9]. In 1978, Bernard Suits
said that playing a game is a voluntary activity in which the player aims to overcome
unnecessary obstacles [10]. Today, game designers such as Scott Rogers define games
as an activity that requires at least one player, has rules and a victory condition
[11]. From these definitions, we can summarize the concept of a game as a set of
problems or obstacles that at least one player chooses to solve by their own will.
The player is bound by space, time and fixed rules during a game session and can
either win or lose. Finally, a video game is a game that is played virtually on a
computer machine.

2.1.2 Genres

Game genres are labels used to classify games depending on their gameplay style
[11]. Some examples of common genres are action, adventure, shooter, strategy and
puzzle. In this thesis, we are mostly interested in the 2D platformer genre. They are
characterized by their gameplay that relies on jumping and walking on platforms
and avoiding obstacles to move the player from a start position to a finish line.
A few examples of platformers include popular game titles such Mario, Sonic the
hedgehog and Jazz Jackrabbit shown in Figure 2.1. It is interesting to note that such
games contain common game elements such as gaps, ground, tiles, enemies, flying
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platforms and similar mechanics. This observation can help in building a common
language for the platformer genre when a high level of abstraction is needed.

Figure 2.1: Examples of platformer games, from left to right: Jazz Jackrabbit 2
(2D), Mario (2.5D) and Sonic Generations (Mix 3D & 2.5D).

2.1.3 Super Mario Bros

Super Mario Bros (SMB) is a 2D platformer video game, published by Nintendo and
available on NES (Nintendo Entertainment System). The player needs to control
Mario to traverse side-scrolling stages while avoiding hazards and enemies. Interest-
ing bonuses and power-ups are hidden in the blocks [12]. It is worth mentioning that
SMB is widely used in research papers due to the block-tile nature of the game’s
levels as well as its simple design. The game is composed of eight worlds. Every
world is made up of three levels and a boss level. Mario’s levels have different themes
but share similar mechanics with the exception of the boss and underwater levels
that are quite different. Thus, most researchers exclude these levels from the level
corpus. Figure 2.2a shows a section of SMB (NES) from World 1, Level 1 (W1L1)
whereas Figure 2.2b presents a sprite sheet that shows the building blocks/tiles of
the game [13].

(a) SMB section
(b) SMB Spritesheet

Figure 2.2: (a) Super Mario Bros level section from world 1 level 1 and (b) sprite
sheet containing some of the building blocks used in the game.

2.1.4 Level Attributes

A level is considered to be a good level if it is:
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1. Playable: we define a playable level as a level in which the player can tran-
sition from the ”start” state to the ”end state”. An example of non-playable
platformer level is one in which the player’s jump ability cannot overcome a
wall that is too high and thus, keeps the player from reaching the finish line.
Unplayable levels can cause player frustration and as consequence, a good
PCG algorithm should maximize the playability of a level.

2. Fun: we define fun levels as levels that are enjoyable to play. However, stating
whether a level is enjoyable or not is not an easy task as ”fun” is considered
to be a broad subjective topic. For instance, Designer Marc LeBlanc defines
fun as a set of eight concepts (or categories) that are related to human psy-
chology: fellowship, fantasy, discovery, narrative, expression, challenge and
submission [11]. Other designers add up concepts such as immersion, beauty,
competition, power and much more. Some researchers try to approximate fun
by looking at the psychological concept of challenge specifically with ”rhythm
groups” inspired by Smith et Al. and ”flow” inspired by Csikszentmihalyi.
Both concepts can be defined as the momentum of a game (low challenge sec-
tions followed by high challenge sections). In short, a good PCG algorithm
should maximize the fun of a level.

2.2 Procedural Content Generation

In this section, we define Procedural Content Generation (PCG), present some of
its applications and define PCG evaluation.

2.2.1 Definition

Procedural Content Generation (PCG) is the automated creation of game content
such as characters, weapons, maps, stories, levels, or full video games. PCG requires
little to no human intervention and uses algorithms to make the game development
process easier and quicker. Some PCG algorithms are simple and already imple-
mented in the games with the help of pseudo-random numbers (example: ”Elite”)
and object pooling (example: endless games) [3]. However, PCG can also provide
more complex behavior with the help of machine learning and computer vision in
which the machine ”learns” the design principles of video games. Below is a list of
some of the tasks/benefits PCG could offer:

1. Increasing replay value of an already existing game by generating new novel
levels that follow the design rules of the targeted game.

2. Saving time and cost of production.

3. Minimizing the storage required by a game.

4. Increasing the variety of in-game items by variation of base sprite or 3d model
(example: variation in weapons, NPCs, etc.).
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5. Run-time generation of platforms, obstacles and environments in endless run-
ner games. In this implementation, PCG becomes the very core mechanic of
the game.

6. Generating blended games where two or more game styles are merged together
to form a new unique game.

7. Generating progressive stories that adapt to the player’s choices.

8. Transferring game style from one game to another different game.

9. Generating a complete game that belongs to a given style.

10. Extracting level design rules from successful games to aid game designers with
good suggestions.

11. Creating adaptive games that can generate levels with the desired difficulty to
adhere to the skills of any player for a better game experience.

2.2.2 Evaluation

In a set of research papers, a PCG is evaluated by its’ ability to generate a variety
of levels by using the concept of expressive range which is composed of two metrics:
linearity and leniency [14]. However, the expressive range alone cannot give a clear
idea of how well a PCG algorithm performs. Therefore, other researchers evaluate
the performance of their PCG algorithm based on the quality of output levels by
assigning scores to fun and playability. A PCG can also be evaluated in terms of
speed and complexity.

2.3 Generative Adversarial Network

In this section, we introduce Generative Adversarial Networks and analyze some of
it’s variations.

2.3.1 Definition

Generative Adversarial Networks (GANs) is a machine learning technique that was
suggested by Ian Goodfellow et al. in 2014 in an attempt to teach machines to
generate new unseen data (ex: human faces never seen before). A GAN consist
of two simultaneously trained models: the Generator and the Discriminator. The
Generator is trained to generate data that resembles real data (ex: fake realistic
faces) whereas the Discriminator is trained to discern the real data from the fake
one (ex: this is a fake face, this is a real face). By training the two models at
the same time, the generator and discriminator will work to improve each other’s
performance in a competitive manner. Figure 2.3 shows a GAN diagram [15].

Generator Network:
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• Input: a random noise vector (z) as input which is a starting point to synthesize
fake data.

• Output: x* denoting fake data (ex: fake images)

• Goal: Given Z, Generate fake data x*

• Iterative training: Update weight and biases to maximize the Discriminator’s
misclassification probability

Discriminator Network:

• Input: X which is either real data (x) provided by the dataset (ex: MNIST)
or fake data (x*) output provided by the generator network

• Output: The probability of X being real

• Goal: Given X, find whether X is real data or fake data (classification problem)

• Iterative training: Update weight and biases to maximize the Discriminator’s
correct classification

Figure 2.3: The two GAN networks, their inputs and outputs and their interactions
[16]

A GAN network is a zero-sum game (minimax), i.e GAN converge when the gen-
erator generates data that is indistinguishable from real data and the discriminator
can at most randomly guess whether the data provided is real or fake. Figure 2.4
presents a variation of simple GAN architecture inspired by Ian Goodfellow et al to
generate MNIST data. The generated numbers are shown in Figure 2.5 [16].

In some cases, the Gan’s generator might learn one valid output that always fools
the generator. Thus, the generator will only generate that one output or a small set
of outputs without variation and this is due to the generator over-optimizing for a
particular discriminator at each iteration. This phenomenon is referred to as mode
collapse [16].
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(a) Simple GAN Generator
(b) Simple GAN Discriminator

Figure 2.4: A simple GAN architecture applied for MNIST digits generation

Figure 2.5: Mnist numbers generated by GAN architecture from Figure 2.4. Results
from first, intermediate and last iteration in training respectively from left to right.

2.3.2 Deep Convolution GAN (DCGAN)

DCGAN (Deep Convolutional Generative Adversarial Networks) were presented by
Alec et al. in 2016 as a more advanced architecture of GAN that uses Conv nets
as the underlying technology. Throughout their research, they show that DCGAN
results in more stable training for a certain range of datasets and it allows the
training of higher resolution and deeper generative models. Conv nets have been
acclaimed for their ability to find areas of correlation within an image hence being a
good option when generating this kind of data [17] Figure 2.6 presents an overview
of the DCGAN’s generator and discriminator models. The generator’s main goal
remains the same: take a vector (Z) and generate an image (ex: 28 x 28 x 1 MNIST
digit image). As shown in Figure 2.6a, the generator will start with a small width
and height and a large depth (7 x 7 x 256). The hidden layers take care of minimizing
the depth to reach the correct number of channels (1 for grayscale, 3 for color, etc.)
whereas the width and height increase to reach the original size of the image (28 x
28). Each layer in the generator is coupled with batchnorm (to help stabilize the
training process) and relu except for the last output which uses tanh. On the other
hand, the discriminator takes as input either a real entry x or a fake entry x* (ex:
Mnist image digit such as 28 x 28 x 1) and seeks to lower the height and width
while increasing the depth. As displayed in Figure 2.6b, the final output is a scalar
that gives that classifies the entry as either real or fake. As with the generator, each
layer should be followed by batchnorm and leak-relu layers [16].

Figure 2.7 presents a variation of DCGAN architecture to generate MNIST data.
The generated numbers are shown in Figure 2.8 and can be compared to those
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(a) DCGAN Generator (b) DCGAN Discriminator

Figure 2.6: DCGAN Generator and Discriminator Networks [16]

generated by GAN in Figure 2.5.

(a) DCGAN Generator
(b) DCGAN Discriminator

Figure 2.7: DCGAN Generator and Discriminator Layers

Figure 2.8: Mnist numbers generated by DCGAN architecutre from Figure 2.7.
Results from first, intermediate and last iteration in training respectively from left
to right.

2.3.3 Wasserstein GAN

Wasserstein GAN (WGAN) was proposed by Martin et al. in 2017. WGAN gained
its fame because it brought significant improvement to the loss function and tends
to generate better results in a large number of experiments. In addition, this archi-
tecture provides a clear stopping criteria whereas it uses the earth mover’s distance
(EMD) as loss function instead of BCE. EMD also enables WGAN to bypass the
mode collapse and vanishing gradient (generator cannot learn when discriminator is
too strong) problems faced by simple GANs and DCGANs. This allows for better
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and higher-quality image generation. In WGAN the keyword ”critic” refers to what
was previously known as generator [18] . We test the WGAN architecture that is
displayed in Figure 2.9. A sample of the generated results is presented in Figure
2.10. It is interesting to note that WGAN-GP shares the same implementation as
WGAN but it adds a penalty on the norm of weights from the critic network. The
penalty is added to ensure that the critic network satisfied the Lipschitz condition.
Figure 2.11 displays a sample of generated digits which visually seems to be better
and clearer than WGAN [16].

(a) WCGAN Generator
(b) WCGAN Discriminator

Figure 2.9: WCGAN Generator and Discriminator Networks

Figure 2.10: Mnist numbers generated by WGAN architecutre from Figure 2.9.
Results from first, intermediate and last iteration in training respectively from left
to right.

Figure 2.11: Mnist numbers generated by WGAN-GP. Results from first, interme-
diate and last iteration in training respectively from left to right.
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2.3.4 Fréchet Inception Distance

Fréchet Inception Distance (FID) measures the distance between the Inception-v3
activation distributions for generated and real examples in a GAN network. It
is used as means to assess the realism and variation of the generated images as
well as their diversity. FID was inspired by its predecessor, the Inception Score
which evaluates the distribution of generated images, whereas FID compares the
distribution of the generated images to the distribution of real images that were used
to train the generator model. Furthermore, the FID does not compare images pixel
by pixel in a similar fashion to L2 norm but rather compares the mean and standard
deviation of one of the ConvNet layers in the Inceptionv3 model. Hence, the metric
is represented by the squared Wasserstein metric between two multidimensional
Gaussian distributions [19]. The FID score formula can be written as follows:

FID(x,g) = ||µx − µg||22 + Tr(Σx + Σg − 2(ΣxΣg)
1/2)

where (µx, µg) and (Σx,Σg) are the respective means and covariances of the
samples from the true data distribution and the generator’s distribution. Moreover,
a lower FID score indicates that the generated output is very similar to the original
input. Figure 2.12 shows an example of several images with different noise levels.
The more noisy an image is, the lowest the FID score [20].

Figure 2.12: The FID score for images with different disturbance levels by Brownlee

2.4 OpenCV

OpenCV is a free cross-platform library for real-time computer vision functionalities
originally developed by Intel. This library comes in very handy when performing
machine learning tasks with visual inputs such as images and videos as it helps the
machine gain an understanding of these types of data [21].

2.4.1 Multi Template Matching

Template Matching is the process of finding the location of a template image in a
larger image. OpenCV comes with the function cv.matchTemplate() that searches
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for the template image by sliding it over the input image in a similar fashion to 2d
convolution and then compares the template with each taken patch of the original
image as shown in Figure 2.13. The function returns the location of the best match.
On the other hand, Multi Template Matching is the process of finding the same
template image multiple times in the original image as depicted in Figure 2.14 [21].

Figure 2.13: Demonstrating an Example of OpenCV Template Matching

Figure 2.14: Demonstrating an Example of Multi Template Matching by OpenCV
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Chapter 3

Literature Review

In this chapter, we look at the literature and discuss the research papers related to
PCG algorithms that attempt to understand design knowledge to create novel game
levels. It is interesting to note that most research carried out in this field uses the
Super Mario Bros game (boss and underwater levels excluded) as the main source
of data for their algorithms. The reason for the popularity of this particular game
among researchers is the linearity, one-direction & sprite-tiling nature of the game.
It also constitutes the first step toward a more general platformer PCG algorithm.
Moreover, we also divide the literature review into three main sections of interest
(1) Dataset, (2) PCG Methodologies and (3) PCG Evaluation.

3.1 Dataset

There is a lack of publicly available high-quality clean game datasets for PCG given
that it is a developing field of research as noted by Summerville et al [22]. They
discuss three public datasets:

• VGLC: contains level data and lacks gampeplay information (published paper,
most popular)

• Opengameart: contains object models (online website, rarely used)

• Squidi.net: contains gameplay mechanic (online website, rarely used)

Before VGLC and PCGML, to our knowledge, most authors would recreate a
data-extraction algorithm from either level maps available online with computer
graphic tools or directly from game code.

The VGLC (video game level corpus) is a game dataset made up of 12 games
with a total of 428 levels, created by Summerville et al. The corpus is ready for use
for machine consumption in several ML and AI applications for video games such as
generation, design knowledge and style transfer. For the Mario Game, the authors
convert a long pictorial map of each level into a parsable text composed of a set of
characters with each tile mapping to one predefined character. The source of the
maps is not clear but might be derived from either the game’s binary or manually
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reconstructed by online fans of the franchise. Figure 3.1 shows the mapping of
Mario’s sprites/tiles into specific characters whereas Figure 3.2 shows the picture
and text format of a section of SMB world 1 level 1 [23]. It is interesting to note
that this method also gives the advantage of lowering the data size as it maps every
collection of pixels into one single character thus making the learning process easier
and faster. However, we should also point out that all enemy types in Mario are
grouped under the generic ”E” character thus losing some information about the
specific type, difficulty and behavior of the enemy. The same applies to some other
types of items defined by VGLV in the mapping.

Unlike other previously seen research papers which make use of the VGLC
dataset or extract their own data directly from SMB’s game code or online art,
Matthew et al. make use of video footage of the Super Mario game, also referred to
as gameplay video as a main source of data. The authors argue that using gameplay
videos has multiple benefits [24]:

• Interchangeable formats: using the same algorithm for any kind of video format
as one can easily convert from one video format to the other.

• Includes player experience: gameplay videos include the reaction of the player,
the path they take and their experiences. No two gameplays can be considered
the same.

• Publicly available & Large Corpora: with the increasing popularity of the
”let’s play” and ”long plays” over YouTube and social media, more people are
indulging in the gaming community and sharing their gameplays online.

In an attempt to game engine learning, Matthew et al. also use gameplay videos
as the main source of data. The authors develop a tool that relies on OpenCV to
parse each frame into a list of sprites with their numbers and spatial information. A
greedy matching algorithm is run on the frame-sprites information to get the amount
of shift between the adjacent frame and its closest neighbor. Finally, they extract
facts such as animation, spatial, relationshipX, velocityX and so on for each sprite.
These facts are then used by the Author to learn rules (engine) that can search
frames and build playable levels [25]. Hence, one can argue that video gameplay as
a data source can provide additional information and benefits that a still map or
VGLC dataset cannot.

As discussed by Summerville et al., creating new datasets is necessary for refining
and expanding the field [22]. To our knowledge, usage of video gameplay hasn’t been
extensively explored and there doesn’t exist any clean unified video dataset. As such,
we aim to provide such dataset and discuss its details in chapter 4.

3.2 PCG Methodologies

In this thesis, we divide the research carried out in the field of PCG into three broad
categories: Evolutionary Search-Based PCG, Probabilistic PCG and PCGML.
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Figure 3.1: VGLC mapping of tiles into characters for the SMB game

(a) Image format

(b) Parsable text format

Figure 3.2: A section of SMB level in picture format and its text parsable format
provided by VGLC

3.2.1 Evolutionary Search-Based PCG

In 2012, Steve Dahlskog et al. discuss the relation between PCG and design patterns
in games. They explain that games are a collection of well-tested and playable
designed structures that, when combined, give meaning and context to the game.
Thus, a PCG algorithm must generate structures and levels that make sense to the
player and not just create a random combination of game pieces. In addition, a
level should lead the player to neither frustration (too difficult) nor boredom (too
easy). Given that, Dahlskog et al. argue that already existing games such as Super
Mario Bros (SMB), which have been well planned and extensively tested, could be
used to build a PCG algorithm that can generate meaningful levels. Dahlskog et
al. start their research by manually studying and extracting the patterns (entities)
from the levels of Super Mario Bros, excluding boss levels and underwater settings
due to the difference in gameplay. Using gameplay and meaning, they find twenty-
three patterns/structures in SMB that are re-used throughout the game. Figure 3.3
displays some of these structures. The authors discuss that a PCG algorithm can
feed on these already-meaningful patterns, slightly change them (increase/decrease
gap length, add an enemy, etc.) then randomly combine them while taking into
consideration the difficulty parameter of each pattern. Thus, a PCG can still form
a meaningful new level. In this sense, one can argue that their approach to the
problem might generate a limited output of new levels as a variation only depend
on parameters. [3]
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Figure 3.3: Empty Valley followed by Enemy Valley patterns by Steve Dahlskog et
al.

In 2013, Steve Dahlskog et al. carried on their work by building a PCG that uses
previously discovered structures (later referred to as meso-patterns) as objective in
an evolutionary algorithm. Their goal was to produce levels by recombining vertical
slices (later referred to as micro-patterns) from the SMB game all the while maxi-
mizing the number of known structures. Figure 3.4 depicts some of the vertical slices
that were extracted by the authors from the SMB game with each slice consisting
of 1 tile in width and 14 tiles in height. Moreover, the authors invited test-players
to evaluate a level generated by three different fitness functions (reverse, actual and
pattern-based). The authors claim that the levels generated by the fitness func-
tion that rewarded partial and full patterns were more fun to play and appeared
more similar to the actual levels and can generate a larger set of new levels while
retaining the design of the original game. The authors report that their algorithm
cannot support the concept of beats (rhythm) very well and that fine-tuning fitness
function demands attention when adding new patterns.The authors also report that
the generator fails to create a natural flow in the level. [2]

Figure 3.4: 2-path pattern previously defined by Steve Dahlskog et al in 2012 and
the 2 vertical slices extracted from this section used by Dahlskog et al in 2013.

Steve Dahlskog et al. published yet another paper in 2014 in which they pro-
pose the use of “macro-patterns” as objective for the evolutionary algorithm. They
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define macro-patterns as the sequence of meso-patterns that will provide a full-level
overview in an attempt to output a more meaningful level. This time, the fitness
function does not only reward the number of meso patterns but it also looks for their
order and sequencing (macro pattern). They compare three algorithms FFmeso (re-
ward meso-patterns equally), FFmesoB(weighted reward of meso-patterns) and FF-
macro (FFmesoB with extra reward if the order of patterns is similar to the original
game). To compare the three generators, the authors use Smith’s and whitehead’s
metrics Linearity and Leniency. Thus, the authors claim that FFmacro and FFme-
soB perform better than FFmeso in terms of variety and level difficulty but FFmacro
slightly performs better than FFmesoB. However, they report that FFmacro is ten-
fold slower in generation and was deemed unusable in real-time scenarios. [26]

Despite generating playable levels in all three attempts, one can argue that the
approach presented is very game-specific since the patterns are carefully picked and
manually studied. Moreover, the methodology in question introduces other variables
of uncertainty such as ”level of abstraction” that defines how large a meso and macro
pattern are and the fitness function which requires to be varied and fine-tuned. Table
3.1 presents a summary of the papers, their advantages and disadvantages.

Paper Methodology Advantages Disadvantages

Patterns and Procedural
Content Generation (2012)

Find all repeated patterns
(section of game) in
SMB manually.

Building block for next
set of papers.

Requires understanding
& analysis of the game and
generator has limited output

space.

Patterns as Objectives
for Level Generation (2013)

Use vertical slices of the
map as alphabet and a
fitness function that
rewards patterns.

Generates set of new levels
that retain design of original

game.

Doesn’t support rhythm
groups, fitness function needs

fine-tuning when adding
new patterns, is game-specific.

Multi-level Level
Generator (2014)

Macro-patterns (sequence
of meso-patterns) as

objective.

Performs better in variety
& level difficulty, also
fixes flow problem.

Slower algorithm
and game-specific.

Table 3.1: Evolutionary Search-Based PCG techniques Summary

3.2.2 Probabilistic PCG

In 2014, Julian et al. propose the use of n-grams to generate levels that are rep-
resented by slices. In their experiments, the authors vary the values of n (1,2,3)
and the number and types of levels in the corpus (one level, similar levels, different
levels). They claim that the method is fast and reliable and can generate a variety
of levels that still retain the style of the original SMB levels, especially when using
tri-grams. The authors base this claim on the Pearson coloration for the metrics of
the expressive range between the generated levels and the original levels. However,
when using multiple levels in the corpus could lead to a surprising shift in the style.
The authors report that the method is only limited to linear 2d games. Moreover,
a game-specific pruning process is required to decrease boring sections and it relies
on the code of the game as with the previous papers.[13]

Snodgrass et al. suggest using Markov Chains as a way of learning level structures
from human-authored maps so that they can generate new level maps. Markov
chains model probabilistic transitions between different states. The authors claim
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that the method can generate novel levels. However, a considerable number of
generated levels are unplayable. Since most of the tiles are empty, the transition
would happen from or to an empty tile which would cause a problem. It also misses
the height of the tiles in platformer games (most tiles above are empty such as
sky, most tiles below are interactive such as block, ground, etc.). They attempt
to fix these problems by using look-ahead, backtracking and splitting the level into
multiple horizontal slices and applying a Markov chain on each. [27]

Summerville et al. build upon the work of Snodgrass et al. and Julian et al. and
propose the use of Monte Carlo Tree Search (MCTS) to guide the Markov chain so it
generates more playable levels. The role of MCTS is to use random sampling during
search to find areas that are playable by balancing the need to exploit (playable)
and explore (near unplaybale i.e hard to play). The authors use a 2-slices history to
generate the chain with a transition of up to 8 slices. [6]

Matthew et al. use a novel approach in which they extract data from several
SMB video gameplay available online. The authors perform five major tasks

1. Defining sections by measuring differences between frames.

2. Categorising sections into high and low interaction areas depending on the
number of frames.

3. Clustering data into similar themes using K Means++ and euclidean distance
on vectors of sprites count.

4. Learning generative probabilistic models of themes as inspired by the work of
Kaleogerakis et al. in the creation of 3D models.

5. Generating level sections through a recursive walk of the model.

It is interesting to note that the generator only creates sections of levels rather than
full levels all the while discarding low interaction section which should be included
to provide rhythm groups. Although the work of Matthew et al. provides room
to edit playability and similarity, they do not provide a means of controlling level
difficulty. [24]

Table 3.2 presents a summary of the papers, their advantages and disadvantages.

Paper Methodology Advantages Disadvantages

Linear levels through
n-grams (2014)

Use N-grams to generate
levels with slices as

vocabulary.

Fast, reliable & generates
variety of levels that
retain style of original
game using tri-grams.

Learning from multiple levels
cause undesired shift in style,
limited to 2D linear games,

requires game-specific pruning
process.

Monte Carlo Tree Search
to Guide Platformer

Level Generation (2015)

Balances need to explore
(hard levels) & exploit

(playable levels).

Generates set of new
levels that retain design

of original game & increases
space of playable levels.

Sacrifices specificity for better
speed, is game-specific.

Toward Game Level Generation
from Gameplay Videos (2016)

Learning generative
probabilistic models of

themes.

Provides controllable parameters
(playability and similarity).

Ignores low interaction sections,
no control over level difficulty,

generates sections not full levels.

Table 3.2: Probabilistic PCG techniques Summary
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3.2.3 PCGML

PCGML (Procedural Content Generation via Machine Learning) is defined by Sum-
merville et al. as ”the generation of game content by models that have been trained
on existing game content”. [22]

In 2016, Summerville et al. attempt to solve the problem of level generation
with sequence learning that has been commonly used for translation, speech under-
standing and video captioning. Hence, the authors propose LSTM Recurrent Neural
Networks as a method to train a level PCG. The authors opt for the use of each
tile as a character in a sequence with each tile being assigned a type such as solid,
enemy, etc. It is interesting to note that due to applying a level of abstraction to
some types, one can argue that crucial information is lost. The authors train eight
networks with the combinations of:

1. Snaking: Defines how the tiles are read in sequence as either (1) bottom to
top or (2) snaking as in alternating between bottom to top and top to bottom.
For the latter, the authors claim better locality as important information like
the ”pipe” structure is separated by fewer blocks as seen in Figure 3.5.

2. Path Information: defines whether to embed the player’s path to solve the level
or not. The path information is provided by a tile A* algorithm and used as
means to increase the number of playable levels by the LSTM network.

3. Column Depth: defines whether to embed a sense of progression in the level or
not. This is done by including a special incremental character every 5 columns
to denote progress.

Figure 3.5: Pipe separated by fewer tiles when snaking by Summerville et al

Summerville et al. claim that the networks with Path information perform two
times better than those without. Their experimentation results also confirm that
the network including all three components (snaking, path information and column
depth) performs the best out of all 8 networks. It is worth mentioning that the
algorithm used works best for left-to-right games such as SMB where there is a
linear mapping between space and time. [7]

In 2018, Vanessa Volz et al. trained a DCGAN to generate super Mario level
sections using a level from the VGLC dataset. As shown in Figure 3.6, the authors
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assign an identity number (table on right) for each of the symbols provided in the
VGLC dataset (representation on left). Each integer is then converted into a one-
hot encoding vector thus making the data ready to be fed to the DGAN network
as presented in Figure 3.7a. The authors then apply CMA-ES (evolving vectors of
real numbers) and LVE to the latent vector to search the generator’s space for the
fittest playable levels. In each evolutionary iteration, the latent vector is updated
to abide by some parameters such as the number of tiles, enemies and playability as
depicted in Figure 3.7b [8].

Figure 3.6: Level Representation used by Volz et al in 2018

(a) Phase 1: Gan Training Process
(b) Phase 2: Parsable Text Format

Figure 3.7: Volz et al. Methodology using GAN followed by Latent Vector evolution

Table 3.3 presents a summary of the papers, their advantages and disadvantages.

Paper Methodology Advantages Disadvantages

Platformer Level Generation
Via LSTMs (2016)

Use of LSTM (sequence learning
in translation and speech

recognition).

Generates promising results,
and incorporates playability in

the learning process.

Only works on left to right
games such as SMB (sequence).

Evolving Mario Levels in
the Latent Space of

Deep Convolutional Generative
Adversarial Network (2018)

Use WGAN to generate levels
and CMA-ES (latent space
evolution) to evolve latent
vector to search for playable
level (survival of the fittest).

Generates promising results,
uses VGLC dataset,
isn’t game specific

and searches the space
for playable levels.

Trains on specific set of levels,
limited control for designer,

doesn’t provide comparison to
style of original game.

Table 3.3: PCGML techniques Summary

3.3 PCG Evaluation

In this section, we discuss the different techniques in the literature that are used
to evaluate and compare PCG algorithms. To have a good PCG, it should gener-
ate a variety of levels that are similar to the original game yet different from one
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another. Moreover, the generator should generate levels that are playable and fun
[22]. As noted by Sumerville et al. there is no widely used standardized evaluation
benchmark.

The most straightforward way to evaluate a PCG is to sample participants to
play the generated levels to collect surveys. Dahlskog et al. survey players with
three scores (1) boring-fun level (2) similar-not similar to original SMB game and
(3) easy-hard to play. One can argue that the concept of fun is subjective and that
sampling a large enough population could help us approximate the success of the
generated levels [2].

In 2010, Gillian et Al. claim that a useful PCG can generate a collection of levels
that differ from one another. For that purpose, they provide a rigorous method to
capture the range of content referred to as expressive range of a PCG given two
metrics: linearity and leniency. The first metric is found by using linear regression
to fit a line to the center point of all geometry of the level then calculating the
normalized mean absolute error with an expected value between 0 (highly linear)
and 1 (highly non-linear) as depicted in Figure 3.8a. The other metric is calculated
by adding a positive number for any gaps and enemies and a negative number for
safe jumps. Thus, a higher score indicates less leniency as depicted in Figure 3.8b.
[14]

(a) Levels ranging from highly linear (A)
to highly non-linear (C)

(b) Levels ranging from highly Lenient (A)
to highly non-lenient (C)

Figure 3.8: Linearity and Leniency as explained by Gillian et al.

Some early research papers used expressive range as a technique to compare
two PCG algorithms. As example, figure 3.9 shows the expressive range of three
generators provided by Dahlskog et al [26].

However, it seems less common in recent publications. We argue that expressive
range alone is not sufficient to evaluate a PCG since it does not provide any direct
insights about playability and level fun. Though, we also argue that it is a useful
tool that should not be discarded and should be used with other metrics to evaluate
PCG algorithms as it provides the following benefits:

• Understanding how a level generator behaves.

• Capturing PCG bias toward easy vs hard levels or linear vs non-linear levels.

• Comparing two generators in terms of output and similarity [26].

• Comparing the similarity between original games and PCG generated games
as a means of evaluating the new PCG [13].
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Figure 3.9: Expressive range of three generators (FFMeso, FFMesoB and FFMacro)
by Dahlskog et al. in 2012.

To approximate the style score, Matthew et al. measure the distance from a
generated section to the closest original level section. In other words, they calculate
the edit distance of a sprite for a generated level and its closest originator. [24]

In their evaluation process, Matthew et al. consider a section of level to be
playable if it meets the following conditions:

1. There is a platform on the left of the level section that the player can jump to
from a previous section.

2. There is a platform on the right of the level section that the player can jump
from to the next section.

3. There is a path between these two sprites.

An A* agent plays through the section to test the third condition. [24]
Summerville et al. propose the use of a hand-tweaked score metric in the selection

process of the Monte Carlo Tree Search [6]. The authors define the score as score =
S + g + e+ r [6] where.

• S is 0 if the level is solvable, a large negative number otherwise. A level is
solvable if the A* agent can complete the level.

• g as function for desired number of gaps

• e as function of desired number of enemies

• r as function for desired number of rewards

In another paper, Summerville et al. attempt to use a collection of style metrics
in combination with leniency and linearity to compare the generated level to the
original levels. These metrics are detailed below.

• The level completion percentage of the A* agent.
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• The percentage of the level that is empty.

• The percentage of empty level that is reachable by the player referred to as
negative space of level.

• The percentage of the level that is filled with interesting sprites excluding
solids and empty blocks.

• The total number of jumps in the level.

• The number of meaningful jumps in the level on occurrence of enemies or gaps.

The authors calculate the mean value of each of the metrics over a large set of
generated levels and then compare them to the standard deviation of these values
derived from the original levels. [7]

It is hard to quantify difficulty in a game given that it is quite subjective yet it can
be approximated. In an attempt to measure difficulty, Canossa et al. define some
interesting metrics such as Lenience differentiation (ratio of hazards to enemies) and
threat Level (density and frequency of clusters of enemies). [28]
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Chapter 4

Methodology

In this thesis we focus on the platformer games and our goal is to learn level de-
sign knowledge with GANs so that we can generate novel levels. We also focus on
functional game content which is defined by Summerville et al. as ”Artifacts, that if
they were changed, could alter the in-game effects of a sequence of player actions”.
Hence, we are only interested in generating elements that are in direct relation to the
gameplay such as platforms, enemies and so on rather than sound effects, GUI and
other decorative sprites. The methodology is divided into three sections: Dataset,
PCG methodology and PCG evaluation.

4.1 Dataset

As previously discussed by Summerville et al, there is a lack of clean datasets in the
field of PCGML and any new datasets are welcome [22]. Given that VGLC does
not provide video data, we aim to come up with a publicly available high quality
dataset of Super Mario Bros gameplay videos that can be used for several PCGML
and non-PCGML related tasks.

In addition to the previously mentioned benefits of using video gameplay data
by Matthew et al. in chapter 3, the new dataset can also increase the number of
data considerably by capturing every possible enemy state (example: when enemy
moves from left to right). This could potentially make up for the ”small” dataset
issue faced by researchers in the field.

The dataset we present includes two games: Super Mario Bros and Super Mario
Bros Lost Levels. It contains a total of 64 videos as both games include 32 high-
quality videos with clean sound data in the AVI format with each featuring Mario
going through one full level. All of the videos are free from death to avoid the black
screen that could hinder machine learning tasks or impose additional computer vision
requirements.

The dataset includes a class Video that extracts frames from this dataset and
offers some other functionalities such as drawing a frame, cropping frames, trans-
forming to grayscale, dropping a range of frames and saving the frames to a specific
output folder. This Video class can be later extended with more functionalities such
as grouping frames into interesting and non-interesting sections or extracting game-
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play data, linearity of a level and more. It also includes a test driver code that is
used to extract frames and prepare them for our PCG algorithm.

In some cases, we group the levels under one of 5 themes: classic theme, forest
theme, underground theme, underwater theme and boss theme as these themes have
considerable visual or functional differences. An example of each theme is displayed
in Figure 4.1. For this thesis, we focus on the classic theme which we define as the
following set of levels:

1. w1l1, w2l1, w4l1, w5l1, w5l2 and w8l1 and w8l2 from Super Mario Bros game.

2. w1l1, w3l2, w4l2, w5l1, w6l1 and w8l1 from Super Mario Bros Lost Level
game.

(a) Classical (b) Underground (c) Forest

(d) Underwater (e) Boss

Figure 4.1: Categorization of SMB levels into themes

4.2 PCG Methodology

We aim to train a GAN-based PCG using GAN, DCGAN and WGAN architectures.
The first thing that comes to mind when generating mario frames with any GAN
architecture is to replicate the MNIST problem detailed in chapter 2. However,
this technique faces some issues as will be shown in chapter 5 and therefore, we
transition into a different way of representing the data before feeding it to the GAN
network. In this section, we explore both techniques of data representation, discuss
the methodology of learning and present their advantages and disadvantages.
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4.2.1 Extracting Frames

We create a video object for each level and generate frames. Given that sometimes
a frame can be repeated due to a player spending time in the same level area, there
might be repetition in the data and this might lead to overfitting in our GAN model.
Therefore, we incorporate the ability to skip frames. The original frame size is (224,
256, 3) but we crop the frames to a square format of (208, 208, 3) noting that the
last number denotes the number of channels. We save each collection of frames in
its own folder labeled with the name of the level as shown in Figure 4.2. We also
register some statistics such as the number of frames and the number of dropped
frames.

Figure 4.2: Storage Organization of the frames data

4.2.2 Learning from Frames

The first thing that comes to mind when training GANs is to provide the data in the
form of images in a similar format to the MNIST dataset discussed in chapter 2. In
this scenario, GAN tries to learn from frames and generate new unseen frames that
can then be used to generate a level. We aim to test the robustness of this method by
supplying it with one level of SMB and then creating a separate dataset with several
levels of SMB belonging that fall under the classic theme. We resize all frames to 64
x 64 px to make the learning process faster and more stable. Then we normalize the
images to suit the GAN architecture. After that, we feed the transformed images to
GAN, DCGan and Wgan networks and vary the hyper-parameters (learning rate,
batch size and latent vector dimension) to explore the outcome. We find the best
combination of hyper-parameters by picking the model that has the smallest total
loss, calculated as the average between the generator’s loss and discriminator’s loss.
To evaluate the output of the final models, we get the FID score of each. As we will
discuss in chapter 5, most of models generate low quality output images making it
hard to run other openCV operations to complete the task of level generation or
PCG evaluation.

4.2.3 Learning From Language

To get better results, we change the data representation. In what follows, we explain
our approach and the different methods to extract data from frames.
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Instead of passing frames with 64 x 64 px as input, we opt for Volz et al’s
technique in which they first transform the image into a smaller, more compressed
representation made up of integers [8]. As previously discussed in chapter 3, VGLC
provides a language that the authors then transform into integers as presented in
Figure 3.6. In VGLC, the authors attempt to generalize game language. However,
in some cases, a designer could want the language to be more specific without losing
important information such as the enemy type. Therefore, we attempt to provide
a technique in which the designer can adjust the level of abstraction for the game
language to fit different needs. An example of this language for SMB game is given
in Figure 4.3. The language is of the form ’General Name of Item’:([list of sprite
path that maps to the Item],[Item to which we map as image path]). For example,
all three animated coin sprites from the classical theme as well as all three animated
coin sprites from the underground theme map to the same ”coin” item and will
eventually be replaced by the coin.png image in the generation process. A general
overview of the grouping scheme for the sample presented in Figure 4.4 can be seen
in Figure 4.5. It is interesting to note that several blocks can map to one output
item because it can bring two benefits:

• Allow the user to map different types of sprites to one item. As example, a
designer could make the goomba, koopa troopa and bullet bill enemies all map
to the enemy object (many to one mapping) or map each one of them it’s own
object (one to one mapping) thus giving the designer control over the level of
abstraction of the language.

• Incorporating the different animated sprites or variations of the same sprite
and mapping them to one same object. As example, a designer could choose to
add multiple coin colors and consider them as one object labeled ”coin”. This
also helps in solving the issue of detecting animated objects in video which
isn’t previously seen in map data with VGLC.

Figure 4.3: A sample sprite dictionary that covers the ”coin”, ”block”, ”ground”
and ”goomba” objects in both classical theme and underground theme.

Figure 4.5 summarizes our goal of transforming frames into a custom language
of integers. The last column of Figure 4.5 denotes the rebuild of the frame using
different variations of sprites.

Given a large map of the level, it is easy to run a 16x16 window to extract the
block items in SMB. However, it is less intuitive with frames as some of them might
start with half or quarter a block which is a problem that doesn’t exist in the data
extraction from full map. To better illustrate the issue, we take a closer look at the

35



Figure 4.4: A diagram to visually showcase the level of abstraction used by the
language displayed in Figure 4.3

question block displayed in Figure 4.6. The red and green boxes are 16px by 16px
each. As we can see, the question mark block is shifted as part of it extends to
the green box, making the mapping process used in the still map technique hard to
apply on frames.

To solve the issue, we propose three methods to extract sprites from the frame
as detailed below.

• PX by PX: an aggressive brute force technique that searches the frames for
items by comparing each sprite’s pixels (defined in the dictionary under the
name of the item) of each item to the window of 16px x 16px (or a window
of customized size for larger shapes) and shifts the window by 1px at every
iteration. In this method, we vary the sprite to window matching algorithm by
using full match, partial match, quick match, quick partial match and SSIM
match detailed below.

– Full Match: compares every pixel value of the window to the correspond-
ing pixel value in the sprite. If there is one mismatched pixel, the sprite
type will be rejected.

– Partial Match: a less aggressive full match that allows up to 10% mis-
match. This method is expected to take more time to run.

– Quick Match: compares every pixel in the center of the window (cropping
the window by n pixels from each side) to the corresponding pixel value
in the sprite. If there is one mismatched pixel, the sprite type will be
rejected. This matching technique is proposed to allow some room for
variation in the background of a sprite when it’s an enemy behind a bush
versus an enemy with just the sky in the background.

– Quick Partial Match: a less aggressive quick match that allows up to 10%
mismatch. This method is expected to take more time to run than the
Quick Match.

– SSIM Match: compares a window and a sprite using the Structural Sim-
ilarity Index Measure. The closer the SSIM to 1, the more similar the

36



Figure 4.5: Transforming some frames from W1L1 of SMB into custom language
with reconstruction (style transfer)

two images are. If the SSIM score is below a given threshold, the sprite
type will be rejected.

• CV2M: a technique that calculates the normalized correlation coefficient to
determine how similar the pixel intensities of the initial image and the template
are. OpenCV provides such functionality and can be further augmented to
detect multiple instances of the template within the original image. In some
cases, this method will result in a considerably large set of matches caused by
overlap. The non-maxima suppression (NMS) method can be used to filter out
the unneeded matches. In this method, we are required to vary two important
hyper-parameters: threshold score used by the CV detection algorithm and
overlap threshold used by the NMS detailed below.

– Threshold score: CV2M returns a matching score for each item detected,
those with low scores are usually false positives so we aim to drop all
matched elements that have a matching score lower than the threshold
score.

– Overlap Threshold: CV2M can match multiple items for the same tem-
plate. However, in some cases, these items overlap. The overlap threshold
helps to prune the detected items that have high intersection-over-union
(IOU) overlap with previously detected items. At the end of the process,
all items that have an IOU smaller than the overlap threshold will be
omitted.

• Multi Template Matching (MTM): a technique to achieve object-recognition
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Figure 4.6: A frame example that starts with quarter a block (ground) in which
tiles cannot be identified by running a window of 16x16 px

in images with repetition using one or several template images. Similar to the
CV2M, it is based on openCV and we are required to vary the threshold score
and overlap threshold.

We aim to test and experiment with these techniques in terms of speed and
quality of output. To measure the quality of output we sample a total of 85 frames
from three levels that belong each to the themes of interest: classic, underground and
forest. We also describe these frames in our language manually. Then we compare
our manual output to the generated output. We recall that the frames are cropped
to 208 x 208 which is transformed into 13 x 13 blocks with each block expanding
into the 16p x 16px sprite (208/16 = 13). We have a total of 169 integers in a 2D
matrix for generated and manual output as we opt for a full matrices comparison.
For each method, we define the matching error which is calculated by the formula

error =
1

l

1

f

i=l∑
i=1

i=f∑
i=1

mf

tf

where
l: number of levels used in the experiment i.e. 3 in this case.
f: number of frames
mf : number of misclassified entries in a given frame
tf : total number of entries in a given frame
We also measure the time it takes for each algorithm to extract sprites while it’s

running. As displayed in Table 4.1, the CV2M and MTM technique outperforms
the aggressive PX by PX extraction method in both performance and speed when
tested on the previously manually annotated benchmark. However, we find that the
MTM approach generates better results when tested on the classic genre which is
our main target for this thesis. We then use it to save an array file per frame which
we use as input for the GAN algorithm in the next step.
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Technique Accuracy (%) Time (Seconds)
PX (Full Match) 76.36 1417.41

PX (Partial Match) 76.51 9324.09
PX (Quick Match) 76.61 749.16

PX (Quick Partial Match) 76.18 4902.24
PX (SSIM Match) 77 68934.32

MTM 77.40 11.23
CV2M 77.77 10.87

Table 4.1: The Accuracy and time measured for each matching technique on the
manually labeled benchmark

At this point and similar to our first method, we explore running the three
GAN algorithms (Simple GAN, DCGAN and WGAN) and we vary the input data
provided as a single level, multiple levels under the same theme and two different
yet similar-in-style games with the same theme. We detail each of our experiments
in chapter 5.

4.3 PCG Evaluation

PCG evaluation is not an easy task as previously analyzed in chapter 3. We attempt
to categorize PCG evaluation techniques and propose a solid framework. We recall
that a level should be similar to the original games, fun and playable. As such, we
will need to calculate our score based on these three notions. We first explore each
of the notions on its own and explain the approach to calculate them.

4.3.1 FID

As discussed in Chapter 3, the Frechet Inception Distance can help us with insights
on how close a set of generated images are to a set of original images. The usage of
FID is straightforward for learning from frames. However, it requires language data
to be converted back to images in both original and generated samples in the case
of learning from language. Both input and output images should share the same
base of sprites.

4.3.2 Style

We define the Style Diff metric as to how similar the generated levels are to the real
levels of the original game. To quantify the style, we want to calculate style related
metrics detailed below that define a given level.

1. Linearity: measures the profile of a level. To calculate linearity, we first find
the highest points in a given vertical sequence of similar elements (sprites) and
fit a line to these points. The aim is to calculate the R-squared goodness-of-fit
measure to find how near points are to the fitted line. An example is displayed
in Figure 4.7
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2. Leniency: measures how difficult a level is in terms of structure. To calculate
this score we add +0.1 for each enemy or gap found in the target level.

3. Empty Space: measures the percentage of the level that is empty by taking
sprites as unit measure.

4. Interesting Space: measures the percentage of the level that is not empty,
ground, normal block platform or stair.

5. Enemy Space: measures the percentage of the level that is enemy.

6. Gap Space: measures the percentage of the level that is gap. A gap is defined
only at the first horizontal line of the level.

7. Negative Space: measures the percentage of the level that is passable by the
player. A given position is considered passable by the player if it is within
jump reach (three horizontal blocks) and is preceded by a sprite that can be
stood on top such as pipe, ground or solid block.

(a) Section with Linearity = 1.0 (b) Section with Linearity = 0.08

Figure 4.7: Calculating Linearity with R2 measure on red dots

The main goal is to see how different the original levels are to the generated
levels in each of the metrics defined above. Hence, for each metric, we calculate the
difference between the mean value of the original metric and the mean value of the
generated metric with the following formula.

MetricDiff = |OriginalMetricaverage −GeneratedMetricaverage|

To calculate the Metricaverage value, we first calculate the metric on each indi-
vidual level of the set of generated levels or original levels trained on then calculate
the mean by using the following formula.

Metricaverage =
1

nblevels

nblevels∑
n=1

Metricn
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To get one final number that indicates the similarity between generated levels
and original levels, we calculate the balanced sum of all seven MetricDiff calculated
by using the following formula.

StyleDiff =
7∑

m=1

MetricDiffm

The closer the Style Diff is to 0, the more similar the generated levels are to the
original levels. In this sense, the goal of a generator is to produce a Style Diff that
is neither too close to 0 (low originality of generated levels) nor too high (very far
from the set of original levels).

4.3.3 Playability

Perhaps the most important matter in game generation is playability. If a level is
not playable, then it is not useful. To calculate the playability of a level, we assign
a score of 1 for a playable level or a score of 0 for an unplayable level. We run
an AI Agent, inspired by Robin Baumgarten and implemented by Volz et al. with
some modifications, on a set of generated levels to calculate the average score of
playability.

4.3.4 Fun

As explained in chapter 2, fun is a subjective matter that is hard to quantify. It is
best approximated through sampling real players to test the generated games and
fill a survey with the level of excitement or happiness they felt while playing the
level. This experiment is out of the scope of the thesis.
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Chapter 5

Experiments & Evaluation

In this chapter, we present the process of experiments and we discuss and evaluate
the different results for the two learning methods: learning from frames and learning
from language.

5.0.1 Learning from Frames

In this set of experiments, we run three versions of GANs: simple Gan, DCGAN
and WGAN. For each GAN version, we vary some hyper parameters such as bach
size [32, 64], latent dimension [32, 50, 100, 200] and learning rate [0.0001, 0.0002].
Moreover, we fix the number of training epochs to 500, image size to 64, number of
channels to 3 in all three GAN architectures. For the WGAN architecture, we fix
the number of critics to 5 and the clip value to 0.01. In some cases, we prematurely
stop the training process if the Generator or Discriminator diverges with a loss of
greater than 50 or equal to 0 as we noticed that training further does not improve
the generator. Figure 5.1 depicts the learning process of one of the conducted
experiments at several stages starting from random noise at the initial stage, an
image where it learns the sky, clouds and ground at an intermediate step, all the
way to a more meaningful image.

Figure 5.1: Learning Process of Simple GAN trained on (D1)

We end up with 16 experiments for each architecture. Then, we pick the ex-
periment that has the least mean total loss taking into consideration the losses of
both generator and discriminator to bring the number of winning experiments to 3.

42



We repeat the same set of experiments on three different dataset variations which
include:

1. World 1 Level 1 of Super Mario Bros without skipping any frames (D1)

2. World 1 Level 1 of Super Mario Bros with skipping every 10 frames ((D2)

3. Classical themed levels of Super Mario Bros with skipping every 10 frames
(D3)

Hence, we have a total number of 9 generators to evaluate by calculating the FID
score on a large sample of original images paired with generated images from each
generator. Table 5.1 shows the FID scores for all of the 9 experiments.

Dataset Simple GAN DCGAN WGAN
D1 167.19 194.33 181.74
D2 224.84 236.73 233.97
D3 231.08 215.21 201.83

Table 5.1: The FID scores of the three GAN architectures (Simple GAN, DCGAN,
WGAN) over the three datasets (D1, D2, D3)

If we rely on the FID score, we find that Simple GAN model on D1 performs the
best. This is confirmed by looking at the sample of images generated by this model
in comparison to the ones generated by DCGAN and WGAN on the same set as
shown in Figure 5.2.

Figure 5.2: Output Samples of Simple GAN, DCGAN and WGAN trained on D1

We also notice that WGAN-D1’s FID score is lower than WGAN-D3’s FID score
and this is again reflected in the sample results as displayed in Figure 5.3

Figure 5.3: Output Samples of WGAN trained on D1 and D3
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In other cases, FID score seems to be less reliable, especially when it comes to
comparing the three GAN architectures across D2 where skipping frames is applied
as seen in Figure 5.4.

Figure 5.4: Output Samples of Simple GAN, DCGAN and WGAN trained on D2

This variation in FID score could be due to the nature of generated images mixing
up between several frames. As a result, we find that the quality of images generated
by the simple GAN iN D1 have the lowest FID score and represent the best visual
outputs even though they are clearly plagued by mode collapse. Moreover, the poor
quality of generated images in DCGAN and WGAN could be related to training on
a very small dataset (around 3000 images in world 1 level 1) while also requiring an
image size of 64x64 whereas MNIST dataset contains 20 times more the number of
images with an image size of 28x28 in addition to the fact that mario frames are
well varied whereas in MNIST dataset there is less variation in images.

5.0.2 Learning from Language

In this set of experiments, we also run three versions of GANs: simple Gan, DCGAN
and WGAN. For each GAN version, we vary some hyper parameters such as bach
size [32, 64], latent dimension [16, 32, 50, 100] and learning rate [0.0001, 0.0002].
Moreover, we fix the number of training epochs to 250 and the image size to 16
x 16 px. For the WGAN architecture, we fix the number of critics to 5 and the
clip value to 0.01. Given that the number of channels is related to the number of
elements/sprites that are incorporated in the learning process, we fix the number of
channels to 18 for training on D1 and to 23 for the other datasets since they include
more sprites. In a similar way to the previous set of experiments, we prematurely
stop the training process when needed. Figure 5.5 depicts the learning process of one
of the conducted experiments at several stages starting from random sprites spread
all over the place to a more meaningful section with better sprite positioning.

We also use the same picking criteria and end up with a single Simple GAN,
DCGAN and WGAN model for each of the following dataset variations:

1. World 1 Level 1 of Super Mario Bros without skipping any frames (D1)

2. World 1 Level 1 of Super Mario Bros with skipping every 10 frames (D2)

3. Classical themed levels of Super Mario Bros with skipping every 10 frames
(D3)
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Figure 5.5: Learning Process of Simple WGAN trained on (D1)

4. Classical themed levels of Super Mario Bros and Super Mario Bros Lost Levels
with skipping every 10 frames (D4)

In the sampled images, we see the ability of the generators to produce good
quality output with sections that are similar to the original levels such as the ones
presented in Figure 5.6. We also see some new structures that were previously
unseen in the training levels, yet look interesting to play as depicted in Figure 5.7.
Some generators can retain full pipes, a problem that were faced by many in the
literature. However, some generators generate poor stylistic sections of SMB as
displayed in Figure 5.8 with incomplete pipes or less meaningful stair structures.

Figure 5.6: Good Quality Examples (Similar Style)

Figure 5.7: Good Novel Examples

To construct a full level, we simply append the generated sections together. Some
examples of generated levels are depicted in Figure 5.9
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Figure 5.8: Poor Quality Examples

Figure 5.9: Some Examples of Generated Levels

To better evaluate the 12 generators, we run the following evaluation steps on
each: (1) Calculate the FID score (2) Calculate the Style Diff Metric (3) Calculate
the Playability score. Figures 5.10 to 5.13 depict five sample outputs per GAN
architecture across datasets D1 to D4 along with their FID, Style Diff (Sty.) and
Playability (P ) scores.

As shown in Figure 5.10, the GAN in D1 has a lower Sty Diff and a higher
playability scores than the WGAN architecture but a higher FID score. This can
be explained by GAN falling into the mode collapse issue where it generates low
novelty levels causing the Style Diff to be low. However, WGAN solves the issue of
mode collapse by generating slightly more novel sections and hence increasing the
Style Diff and slightly lowering the playability score. Since WGAN’s generator is
able to cover more ground being more representative of the original data, it makes
sense for the FID score to be lower. DCGAN’s scoring metrics indicate the poor
quality of generated output.

As shown in Figure 5.11, training on one level with frame skipping generates poor
quality results in GAN and DCGAN in which there is high mode collapse despite
having a high playability. However, WGAN is able to capture more insights on the
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Figure 5.10: Output Samples of Simple GAN, DCGAN and WGAN trained on (D1)

original frames despite the very low number of training data as it generates the best
quality results once again with a playbility of 1, FID score of 46.66 and a Style Diff
of 0.14.

Figure 5.11: Output Samples of Simple GAN, DCGAN and WGAN trained on (D2)

As depicted in Figure 5.12, training on several levels under the classic theme is
possible and seems more robust with WGAN architecture. Moreover, it generated
more varied samples in terms of manual inspection and relying on style Diff as
well as its ability to score better in terms of FID. It is interesting to note that the
playability is lower than the one provided by DCGAN and GAN due to their low
variation nature.
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Figure 5.12: Output Samples of Simple GAN, DCGAN and WGAN trained on (D3)

As shown in Figure 5.13, it is also possible to get meaningful output when training
on two different games with a similar theme. We see a varied collection of samples
that are provided by GAN and WGAN whereas DCGAN generates less quality
output. In the case of WGAN, we note the large wall that was picked during
training due to the high frequency of repetition of that wall in game. However,
in the original game, this wall comes with either a spring or an additional block
that makes it possible to overcome. However, in the generation process, we did not
incorporate the spring which explains the low playability score.

Figure 5.13: Output Samples of Simple GAN, DCGAN and WGAN trained on (D4)

In conclusion, we find the GAN approach to have a low style diff score in general
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as it seems to have mode collapse issues most of the time. The high playability score
is due to the availability of already existing sections from the original game that are
known to be solvable. On the other hand, WGAN architecture has a higher style
diff making the generated sections novel yet still related to SMB design rules. As a
result, we note a decrease in the playability score as some of the generated sequences
are not playable. This score can be slightly improved if more elements such as the
spring are learned in the case of D3 and D4. Finally, the DCGAN architecture seems
to be performing poorly and this indicates the need to experiment further with the
architecture at hand to generate better results.
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Chapter 6

Conclusion & Future Work

In this thesis, we described the state-of-the-art techniques for learning platformer
game design and analyzed their advantages and disadvantages. Then, we explore
the available datasets such as VGLC and include a video gameplay datasets for SMB
and SMB Lost Levels as high quality footage to not only increase the number of data
input by providing different positions of enemies and other objects but also to retain
gameplay information in case needed for future research. Moreover, we provided a
tool along the dataset to perform frame extraction, grayscaling and other useful
image transformation and preprocessing functionalities.

Furthermore, we have been able to study and research two methods of learning
defined as (1) learning from frames and (2) learning from language. We noted that
learning from frames is not reliable and generates poor quality results due to the low
similarity between different frames of the game in addition to training the networks
on a small dataset despite the frame augmentation when compared to the actual
MNIST dataset. The only exception is in Simple GAN network trained on World 1
Level 1 of SMB which surprisingly generates good results due to the mode collapse
issue that is commonly known in Simple GAN architectures. On the other hand,
learning from language requires the extraction of data (sprites) from frame images
as a preprocessing step before being fed as input to the network. Given that it’s
harder to run a window on the frame to pick the sprites due to the shifting issue,
we proposed three methods of extraction of which CV2M and MTM provided good
results when tested against a manually labeled benchmark. After extracting the
sprites, we run a series of experiments with GAN, DCGAN, WGAN on several
datasets and provide a solid evaluation framework by separating the process into
four categories (1) FID, (2) Playability, (3) Style Diff and (4) Fun. We find that
WGAN generates good results on all four datasets including D4 which is composed
of two games. The results of WGAN have the smallest FID score, a Style Diff score
that falls within an acceptable range that is neither too low (not novel) like the
ones generated by GAN that has the mode collapse issue nor too high (output that
does not learn well from the input game). However, the playability score given by
WGAN should be improved to generated a larger number of playable levels.
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6.0.1 Future Work

GAN Procedural Content Generation has proved to be a good technique to generate
platformer levels. However, we would like to improve the current WGAN architec-
ture to (1) increase the space of generated playable level and (2) incorporate the
missing spring sprite. We would also like to analyze other GAN architectures such
as WGAN-GP which is a more stable WGAN architecture. Moreover, the tech-
nique presented seems to generalize well over two similar games and hence it would
be interesting to test it on a larger collection of games not limited to the MARIO
genre. Moreover, it would be very beneficial to implementing designer features to
generate levels with requested parameters such as a predefined number of enemies
or a desired difficulty as well as porting the generated language to game code that
could run with Popular Game Engines such as Unity to make the creation of game
less tedious. Finally, GAN PCG opens the door for other areas of research such as
the ability to generate adaptive games based on player skill. In short, if the game is
played by an experienced player, the generator will generate a more difficult level.
On the other hand, if it is played by a beginner, it will generate a simpler level.
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