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ABSTRACT 

OF THE THESIS OF 

 
Maya Tony El Chakhtoura  for Master of Engineering Management 
      Major: Engineering Management   
 
 
Title: Fairness Notions in Clustering 
 
 
 
 
Machine learning algorithms have been significantly integrated in the automated 
decision-making processes. Despite their wide practical success, these systems have 
demonstrated biases towards certain demographic groups. Such instances have motivated 
researchers to study fairness in machine learning. In this paper, we will focus on fairness 
in clustering, which is a well-studied unsupervised machine learning task. We propose a 
new fairness measure FM , Fairness Under Minorities, that is inspired by the Rényi 
correlation and which yields better fairness results whenever biases are present in 
minority groups. We outline some derived relations between our proposed notion and 
other fairness measures. Our experimental study illustrates the effectiveness of FM and 
proves that it better captures unfairness in minority groups, unlike other fairness 
measures.  This paper also aims at demonstrating what fairness measures best fit certain 
datasets 
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CHAPTER 1 

INTRODUCTION 

Automated decision-making algorithms are recently being adopted in a wide 

range of applications that significantly affect our lives. Such applications include 

recommendation systems used by Netflix and Amazon, spam identification systems used 

to classify suspicious accounts on social media or used to identify spam emails, and 

vehicular automation systems (Araujo, Helberger, Kruikemeier, & de Vreese, 2020).  

Moreover, these automated decision-making processes have shown significant relevance 

in the judicial and law enforcement sector. For instance, such algorithms are being 

deployed in the US to recommend who is eligible for early release from jail (Dressel & 

Farid, 2018).  

Despite their wide practical success, these models have demonstrated biases 

towards certain demographic groups when deployed in real systems. For instance, the 

automated selection program used by St. George Hospital Medical School (Lowry & 

Macpherson, 1988)  to facilitate screening process of applicants was programmed to 

reject applications with grammatical and spelling mistakes as they indicated a poor 

English standing. As non-native English speakers were more prone to send applications 

with linguistic errors, the automated system started correlating the likelihood of getting 

accepted to race, birthplace, and address. Subsequently, as the English level of foreigners 

enhanced, outstanding applicants were still getting rejected because of their birthplace or 

address, and thus indicating an ethnic and racial biases in the automated system.  

Another example is the judicial system used in the United States courts to assess 

the probability of a person to commit another crime. Judges used the software 
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Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) to 

decide whether an offender should be kept in prison or get released. Dressel et al (2018) 

studied the effectiveness of this system and concluded that the results suffer from biases 

against certain protected groups. More specifically, its predictions were mainly in favor 

of Caucasians, i.e., an African-American and a Caucasian with the same profiles were not 

treated similarly.  They even argue that a simple linear model provided only with two 

input features operates similarly to the software COMPAS which has 137 features.  

Such instances have motivated researchers to study fairness in automated 

decision-making. Fairness in this context is defined as the absence of any prejudice or 

favoritism toward an individual or a group based on their inherent or acquired 

characteristics (Mehrabi, Morstatter, Saxena, Lerman, & Galstyan, 2019). Multiple 

fairness definitions were proposed in literature. Some focus on fairness of outcome which 

is concerned with egalitarian results, while others focus on fairness of process which is 

concerned with making the decision process as fair as possible (Trautmann & Van de 

Kuilen, 2016). In both cases presented earlier, the algorithms attempted a fair decision-

making process by omitting all information related to race or ethnicity. However, these 

automated systems still suffered from prejudice since other attributes behaved as proxies 

for sensitive ones (such as race, gender, age, marital status, color, and religion).  

In addition to the ethical point of view, a fair treatment for different demographic 

groups is legally required by many countries. The disparate impact doctrine, which refers 

to an unintentional disproportionate outcome that affects a protected group, was first 

recognized by the Supreme Court in the United States in 1971 (States, 1971). It started 

when African-American workers sued the Duke Power Company for requiring a high 

school diploma or passing an intelligence test to get promoted. They argued that they 
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were not illegible for that since North Carolina lacks proper education. Thus, the court 

ruled that employees should be hired or promoted based on their job performance. 

Accordingly, in employment, the disparate impact states that it is illegal for protected 

groups to suffer from discrimination in the hiring process, and it is informally known as 

the 80% rule. Similarly, other countries have implemented laws to evaluate fairness in 

certain fields under the disparate impact and disparate treatment notions, where the latter 

is defined as intentional discrimination against a protected group (Seiner, 2006). 

In addition to these two doctrines, multiple notions have been recently proposed 

to impose fairness. Some of these notions that measure group fairness are demographic 

parity, equalized opportunity, and equalized odds (Mehrabi, Morstatter, Saxena, Lerman, 

& Galstyan, 2019). Demographic parity states that the positive outcome of a decision-

making process should be independent of the sensitive attribute. For example, if both 

males and females apply to a certain university, demographic parity will ensure that both 

genders will be equally accepted regardless of whether one group is more eligible than 

the other. Equalized opportunity is another fairness metric that requires the positive 

outcome to be independent of the sensitive attribute given that the protected group is 

actually qualified. Referring to the same example, equalized opportunity ensures that 

qualified males and females have the same probability of getting accepted. Equalized 

odds operates similarly; however, it also ensures that unqualified protected groups will 

have equal negative outcomes.  

These fairness notions are being also applied to machine learning algorithms 

which have been significantly integrated in the automated decision-making processes. 

These algorithms study hidden patterns in the data, and subsequently use these patterns 

to generate a certain outcome. Machine learning algorithms can be classified into two 
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categories: supervised and unsupervised (Alloghani, Al-Jumelly, Mustafina, Hussain, & 

Aljaaf, 2020). The main difference between these two classes is the presence of labels in 

the training data. Supervised learning tasks aim at generalizing information from 

available labeled data to be used for predicting unlabeled data. Unsupervised learning is 

defined as the process of grouping data that is not classified or categorized using 

automated algorithms that learn the underlying feature from the available data.   

One popular well-studied unsupervised machine learning task is clustering. This 

task partitions data points into groups/clusters in a way that maximizes intra-cluster 

similarity and minimizes inter-cluster resemblance between objects, i.e., given a set of 

data points, partition them into a set of groups which are as similar as possible (Aggarwal 

& Reddy, 2013). To have a fair clustering assignment, the data points have to be 

partitioned in a way that would not be biased to the protected groups. Chierichetti et al. 

(2017) were the first to introduce the disparate impact notion of fairness to the clustering 

problem. They defined fairness as having balanced proportions of the demographic 

groups in each cluster. Similarly, Ziko et al. (2019), Abraham et al. (2018), and 

Baharlouei et al. (2019) quantified fairness as a measure of independence where a 

clustering assignment is said to be fair if the partitioning is independent of the sensitive 

attribute. These fairness measures will be further discussed in later sections.  

As will be highlighted in later sections, minorities have been underrepresented in 

previously developed notions of fairness. Many instances have recorded discriminations 

against protected groups in small clusters. Among these instances is the anomaly 

detection model which identifies events that deviate from the majority of the dataset. For 

example, tech companies tend to block users who sign in with uncommon names. In some 

cultures, names are more frequently used and widespread; whereas, in other civilizations 
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people might have unique names, and thus identified as fake by the model. Accordingly, 

our main concern is to compare different fairness measures and propose a new measure 

that performs better in the presence of minorities. In addition to that, we will come up 

with conclusions on what fairness measures best fit certain datasets.  

In this thesis, we will focus on studying fairness in minority groups in clustering. 

We will start by presenting some literature related to fairness in machine learning, 

specifically clustering. Then, we will introduce our proposed fairness measure 

𝐹𝐹𝐹𝐹 (𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) which will be theoretically compared to other 

measures by deriving some mathematical relations. To test the efficiency of 𝐹𝐹𝐹𝐹, we will 

conduct an experimental study to compare its results with the different fairness measures. 

According, a summary of the outcomes will be presented along with some future work 

that still need to be performed.   
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CHAPTER 2 

LITERATURE REVIEW 

 
2.1. Fairness Notions in Machine Learning 

In a typical machine learning problem, the algorithm is supplied by the feature 𝑋𝑋 to 

generate the target label 𝑌𝑌. Most of the fairness definitions studied in the literature of 

machine learning focus on three aspects of a binary classifier; the sensitive variable 𝑆𝑆 for 

which fairness is measured, the target variable 𝑌𝑌 which can take two values, 0 or 1, in 

binary classification, and the score 𝑌𝑌�  which represents the predicted outcome, 0 or 1, for 

each observation. Accordingly, the following three fairness criteria can be categorized 

(Caton & Haas, 2020): 

1. The Independence criterion which requires the score 𝑅𝑅 to be independent of the 

sensitive attribute 𝑆𝑆:  𝑌𝑌� ⊥ 𝑆𝑆 

2. The Separation criterion which is an extension of the Independence property and 

requires the score 𝑅𝑅 and the sensitive variable 𝑆𝑆 to be independent while 

conditioning on the target variable 𝑌𝑌:  𝑌𝑌� ⊥ 𝑆𝑆|𝑌𝑌 

3. The Sufficiency criterion which requires the target variable 𝑌𝑌 and the sensitive 

variable 𝑆𝑆 to be independent while conditioning on the score 𝑅𝑅: 𝑌𝑌 ⊥ 𝑆𝑆|𝑌𝑌� 

Under these properties, some previously studied notions of fairness can be defined.  

Among those that are related to the Independence criterion are the demographic parity 

and disparate impact. Demographic parity defines fairness as equal probabilities of being 

classified with the positive outcome, and it is represented by the following:  

𝑃𝑃�𝑌𝑌� = 1�𝑆𝑆 = 0� = 𝑃𝑃�𝑌𝑌� = 1�𝑆𝑆 = 1�.          (1) 



 

 12 

Disparate impact considers the ratio of the positive outcome between unprivileged 

and privileged groups, and it is represented by the following:  

𝑃𝑃�𝑌𝑌� = 1�𝑆𝑆 = 0�
𝑃𝑃�𝑌𝑌� = 1�𝑆𝑆 = 1�

.          (2) 

Among the fairness notions that are related to the Separation criterion are the 

equalized opportunity and equalized odds. One advantage of such metrics is that they 

consider the underlying differences between the protected groups. Equalized opportunity 

defines fairness as equal probabilities of the true positive rates (TPR) across different 

groups, and it is represented by the following:   

𝑃𝑃�𝑌𝑌� = 1�𝑆𝑆 = 0,𝑌𝑌 = 1� = 𝑃𝑃�𝑌𝑌� = 1�𝑆𝑆 = 1,𝑌𝑌 = 1�.          (3) 

Similar to the equalized opportunity, equalized odds considers the false positive 

rates (FPR) in addition to the TPR, and it is represented by the following 

𝑃𝑃�𝑌𝑌� = 1�𝑆𝑆 = 0,𝑌𝑌 = 1� = 𝑃𝑃�𝑌𝑌� = 1�𝑆𝑆 = 1,𝑌𝑌 = 1�              

and 

𝑃𝑃�𝑌𝑌� = 0�𝑆𝑆 = 0,𝑌𝑌 = 0� = 𝑃𝑃�𝑌𝑌� = 0�𝑆𝑆 = 1,𝑌𝑌 = 0�.         (4) 

 
2.2. A Fair Clustering Problem 

Consider a set of 𝑁𝑁 data points  (𝑝𝑝1, … ,𝑝𝑝𝑁𝑁) associated with a sensitive attribute 

𝑆𝑆. The clustering objective is to partition them into 𝐾𝐾 clusters with corresponding 

centroids 𝐶𝐶 = [𝑐𝑐1, … , 𝑐𝑐𝐾𝐾] based on similarity where the random variable 𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖� takes 

the value of 1 if point 𝑝𝑝𝑗𝑗 is assigned to cluster 𝑖𝑖, and zero otherwise where  𝑖𝑖 𝜖𝜖 {1, … ,𝐾𝐾} 

and 𝑗𝑗 𝜖𝜖 {1, … ,𝑁𝑁}.  
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Figure 1: Randomly generated data 

 

Figure 2: Clustering 

 
Given the scattered dataset shown in figure 1, 𝐾𝐾-means, which is one of the most 

used partitioning algorithms, starts by choosing randomly 𝐾𝐾 points as the initial centroids. 

Then, it assigns each data point to the closest centroid, and once the clusters are formed, 

the centroids of each cluster are updated. These two steps are iteratively repeated until 

the algorithm converges, i.e., the centroids no longer change (Reddy & Vinzamuri, 2014). 

Figure 2 demonstrates the final result of 𝐾𝐾-means clustering where the points are 

partitioned into two clusters (𝐾𝐾 = 2).  

Mathematically, 𝐾𝐾-means algorithm aims at partitioning the points into 𝐾𝐾 clusters 

by minimizing the following objective function: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝐴𝐴,𝐶𝐶

∑ ∑ 𝑎𝑎𝑖𝑖𝑖𝑖�𝑝𝑝𝑗𝑗 − 𝑐𝑐𝑖𝑖�
2

         𝑠𝑠. 𝑡𝑡.   ∑ 𝑎𝑎𝑖𝑖𝑖𝑖 = 1  ∀𝑗𝑗,     𝑎𝑎𝑖𝑖𝑖𝑖 ∈ {0,1},    ∀𝑖𝑖, 𝑗𝑗 𝐾𝐾
𝑖𝑖=1

𝐾𝐾
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1  .         (5) 
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Now, taking into account the binary sensitive attribute 𝑆𝑆 that can take one of two 

values 𝑋𝑋 (represented by a dot) or 𝑌𝑌 (represented by a circle), the clustering assignment 

is said to be fair under the disparate impact doctrine if the protected groups have equal 

proportions in the clusters. In simpler words, considering discrete sensitive attributes, 

their distribution within clusters has to be proportional to their distribution in the dataset. 

Thus, if we consider the cluster assignment and the sensitive attribute to be two random 

variables, in the presence of independence, the conditional distribution of the sensitive 

attribute given the clustering assignment has to be equal to the distribution of the sensitive 

attribute in the dataset.  Accordingly, for this clustering problem to be fair under the 

disparate impact doctrine, the random variable 𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖� has to be independent of the 

sensitive attribute 𝑆𝑆.  

 

2.3. Fairness Approaches in Clustering 

To impose such fairness on the clustering problem, several approaches have been 

developed which are classified into three categories: pre-processing, in-processing, and 

post-processing techniques (Mehrabi, Morstatter, Saxena, Lerman, & Galstyan, 2019). 

The pre-processing approach works on removing discrimination prior to the decision-

making process, the in-processing technique works on imposing fairness simultaneously 

during the task of clustering, and the post-processing method adjusts the model output by 

removing discrimination from the classifier. 

Among the pre-processing techniques is the one developed by Chierichetti et al. 

(2017). They introduced the concept of balance to impose fairness to the clustering 

problem with a single binary sensitive attribute, i.e., every point can take one of two 

labels. The balance of a cluster is then defined as the minimum between the fraction of 
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label 1 to label 2 and its inverse. The overall balance of the whole dataset is the minimum 

between the balances of all clusters. Accordingly, the higher the overall balance, the more 

proportional is the distribution of the sensitive attribute in the clusters, and thus the fairer 

the clustering process. To impose such fairness, the data points are first grouped into 

small fair subsets called fairlets which are comprised of only two points, one belonging 

to label 1 and the other to label 2, and then a balanced clustering is obtained by merging 

these fairlets into clusters. However, the running time for this method turned out to be 

quadratic, i.e., it takes so much time to be solved. Backurs et al. (2019) addressed this 

issue by proposing an algorithm that would compute the fairlet-decompositions in near-

linear time.  In addition to that, Schmidt et al. (2018) introduced the concept of corsets 

which are subsets in the dataset used to reduce the size of the input data. Fair clustering 

is then solved over these subsets which are afterwards combined to generate an 

approximately fair dataset. Their method covers single categorical sensitive attributes, 

i.e., the points in the dataset can take one of multiple values. 

Among the in-processing techniques, many proposed methods add a 

regularization term to the clustering objective or add a fairness constraint to demonstrate 

proportional representation of protected groups in the clusters.  Ziko et al. used the 

Kullback-Leibler loss term (KL-divergence) as a regularization term to penalize the 

difference between the probability of protected groups in each cluster and the desired 

target proportion.  Accordingly, fairness is embedded simultaneously during the task of 

clustering through a maximization-minimization algorithm. This process aims at 

minimizing the clustering term and maximizing the fairness loss term. It is applied on 

single categorical sensitive attributes, handles large datasets, and guarantees 

convergence. Another approach that uses a regularization term in the objective function 
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is the FairKM outlined by Abraham et al. (2020). They used the weighted deviation 

fairness term to penalize the difference between the proportional representation of 

protected groups in each cluster and their respective proportions in the dataset. Fairness 

is imposed during the clustering process which is attained by applying k-means algorithm. 

The concept covers multiple binary, categorical, and numeric sensitive attributes, and 

maintains a decent clustering objective while imposing fairness. Baharlouei et al. (2019) 

used an approximation of the Hirschfeld-Gebelein-Rényi (HGR) fairness term to penalize 

the dependence between the clustering assignment A and the sensitive attribute S.  This 

approximation represents an upper bound to the Rényi correlation and covers discrete 

sensitive attributes. This method ensures a decent clustering quality by adding a 

regularization term that minimizes the clustering objective and maximizes the fairness 

measure.  

 

2.4. Fairness Measures in Clustering 

Recently, researchers started studying fairness in clustering. They developed 

measures that quantify fairness under the disparate impact doctrine which requires 

proportionate representation of the protected groups in the outcome. Accordingly, a 

clustering problem is said to be fair if the proportions of the protected groups are equal 

among clusters. Motivated by that, Chierichetti et al. (2017) introduced the concept of 

balanced clusters.  

Consider a set of 𝑁𝑁 data points  (𝑝𝑝1, … ,𝑝𝑝𝑁𝑁) that need to be partitioned into 𝐾𝐾 

clusters and that are associated with a single binary sensitive attribute 𝑆𝑆 which can take 

one of two values 𝑋𝑋 or 𝑌𝑌. Let 𝑥𝑥𝑖𝑖 be the number of points that are labeled 𝑋𝑋 and belong to 

cluster 𝑖𝑖, 𝑦𝑦𝑖𝑖 be the number points that are labeled 𝑌𝑌 and belong to cluster 𝑖𝑖, and  𝑛𝑛𝑖𝑖 be the 
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number of points that belong to cluster 𝑖𝑖 where  𝑖𝑖 𝜖𝜖 {1, … ,𝐾𝐾}. Let 𝑥𝑥 be the number of 

points that have the 𝑋𝑋 label in the dataset and 𝑦𝑦 be the number of points that have the 𝑌𝑌 

label in the dataset. (Note that this problem will be used in the relations and illustrations 

sections later on). 

The balance of a cluster can be defined as follows: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖

,
𝑦𝑦𝑖𝑖
𝑥𝑥𝑖𝑖
� .           (6) 

The balance of the whole data set is then given as follows: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵1, … ,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐾𝐾}.         (7) 

Therefore, the higher the balance, the fairer the clustering solution.  

Another measure that quantifies fairness in clustering under the disparate impact 

doctrine is the weighted deviation (Abraham, Deepak, & Sundaram , 2018). It measures 

the squared difference between the distribution of the sensitive attribute 𝑆𝑆 in each cluster 𝑖𝑖 

and its distribution in the dataset. Thus, the closer its value is to zero, the fairer the 

clustering solution. The weighted deviation of the dataset is given as follows: 

��
𝑛𝑛𝑖𝑖
𝑁𝑁
�
2
�
�𝑥𝑥𝑖𝑖𝑛𝑛𝑖𝑖

− 𝑥𝑥
𝑁𝑁�

2
+ �𝑦𝑦𝑖𝑖𝑛𝑛𝑖𝑖

− 𝑦𝑦
𝑁𝑁�

2

𝑛𝑛𝑖𝑖
�

𝐾𝐾

𝑖𝑖=1

.          (8) 

Equation (8) shows that the deviation term is multiplied by the square of each cluster’s 

fractional representation in the dataset. Thus, the value of the weighted deviation gets 

enlarged for large clusters.  

In addition to these metrics, several independence measures have been used to 

quantify fairness in clustering. One of these measures is the Hirschfeld-Gebelein-Rényi 

correlation which was found to be superior to the Pearson correlation coefficient and the 
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Hilbert Schmidt independence criterion (HSIC) since it captures non-linear dependence 

between random variables. For two random variables 𝐴𝐴 and 𝑆𝑆, the Rényi correlation is 

given by the following expression (Rényi, 1959): 

𝐻𝐻𝐻𝐻𝐻𝐻(𝐴𝐴, 𝑆𝑆) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓,𝑔𝑔𝔼𝔼{𝑓𝑓(𝐴𝐴)𝑔𝑔(𝑆𝑆)}        (9) 

𝑠𝑠. 𝑡𝑡.      𝔼𝔼{𝑓𝑓(𝐴𝐴)} =  𝔼𝔼{𝑔𝑔(𝑆𝑆)} = 0     𝑎𝑎𝑎𝑎𝑎𝑎    𝔼𝔼{𝑓𝑓2(𝐴𝐴)} =  𝔼𝔼{𝑔𝑔2(𝑆𝑆)} = 1.        (10)          

The Rényi correlation is zero if and only if the two random variables are 

independent and 1 otherwise. However, computing it can be difficult, thus an upper bound 

can be used instead for the discrete case. Accordingly, Witsenhausen (1975) evaluated 

the HGR coefficient as the second highest eigenvalue of a well-defined matrix. This upper 

bound is exact whenever one of the random variables is binary.  

Considering the two random variables to be the sensitive attribute S and the 

classifier A, the Rényi correlation can be rendered as follows: 

𝑄𝑄(𝑆𝑆,𝐴𝐴) = ∑ ∑ 𝑃𝑃(𝑆𝑆=𝑠𝑠,𝐴𝐴=𝑎𝑎)2

𝑃𝑃(𝑆𝑆=𝑠𝑠)𝑃𝑃(𝐴𝐴=𝑎𝑎) − 1          𝐴𝐴=𝑎𝑎𝑆𝑆=𝑠𝑠 (11) 

where the random variable A is binary that takes the value of 1 if the data point is assigned 

to a certain cluster and 0 otherwise. Accordingly, a clustering assignment is said to be fair 

if and only if the classifier A is independent of the sensitive attribute S. Fairness is 

achieved whenever this upper bound term converges to 0, representing total 

independence, and whenever this value approaches 1, it highlights absolute dependence. 

Considering the case of two clusters with a single binary sensitive attribute, 

equation (11) can be simplified as follows: 

𝑄𝑄(𝑆𝑆,𝐴𝐴) = ∑ 𝑃𝑃(𝑆𝑆=𝑠𝑠,𝐴𝐴=0)2

𝑃𝑃(𝑆𝑆=𝑠𝑠)𝑃𝑃(𝐴𝐴=0) + ∑ 𝑃𝑃(𝑆𝑆=𝑠𝑠,𝐴𝐴=1)2

𝑃𝑃(𝑆𝑆=𝑠𝑠)𝑃𝑃(𝐴𝐴=1) − 1𝑆𝑆=𝑠𝑠𝑆𝑆=𝑠𝑠           (12) 

⟺ 
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𝑄𝑄(𝑆𝑆,𝐴𝐴) = ∑ 𝑃𝑃(𝑆𝑆=𝑠𝑠 | 𝐴𝐴=0)2𝑃𝑃(𝐴𝐴=0)2

𝑃𝑃(𝑆𝑆=𝑠𝑠)𝑃𝑃(𝐴𝐴=0) + ∑ 𝑃𝑃(𝑆𝑆=𝑠𝑠 | 𝐴𝐴=1)2𝑃𝑃(𝐴𝐴=1)2

𝑃𝑃(𝑆𝑆=𝑠𝑠)𝑃𝑃(𝐴𝐴=1)𝑆𝑆=𝑠𝑠𝑆𝑆=𝑠𝑠 − 1           (13) 

⟺ 

𝑄𝑄(𝑆𝑆,𝐴𝐴) = 𝑃𝑃(𝐴𝐴 = 0)∑ 𝑃𝑃(𝑆𝑆=𝑠𝑠 | 𝐴𝐴=0)2

𝑃𝑃(𝑆𝑆=𝑠𝑠) + 𝑃𝑃(𝐴𝐴 = 1)∑ 𝑃𝑃(𝑆𝑆=𝑠𝑠 | 𝐴𝐴=1)2

𝑃𝑃(𝑆𝑆=𝑠𝑠)𝑆𝑆=𝑠𝑠𝑆𝑆=𝑠𝑠 − 1           (14) 

where 𝑃𝑃(𝐴𝐴 = 𝑎𝑎) represents the chance a point belongs to a cluster 𝑎𝑎, 𝑃𝑃(𝑆𝑆 = 𝑠𝑠 |𝐴𝐴 = 𝑎𝑎) 

represents the fraction of points in cluster 𝑎𝑎 with S=s, and 𝑃𝑃(𝑆𝑆 = 𝑠𝑠) represents the ratio 

of points with S=s in the dataset . 
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CHAPTER 3 

PROPOSED FAIRNESS MEASURE 

The approximation term 𝑄𝑄 presented earlier might however reflect fairness in 

cases where the clustering task suffers from discrimination. For example, suppose we are 

performing a statistical study to check whether job opportunities are distributed fairly 

among males and females in two different companies. Thus, we are considering gender 

as our sensitive attribute. Out of the 100 employees in Company A, 20 are females and 

80 are males. Out of the 1,900 employees in Company B, 900 are females and 1,000 are 

males. By applying equation (14), the approximation measure 𝑄𝑄 is given by the 

following: 

𝑄𝑄 = � 100
2000

� �
� 20100�

2

920
2000

+
� 80100�

2

1080
2000

� + �1900
2000

� �
� 9001900�

2

920
2000

+
�10001900�

2

1080
2000

� − 1 = 0.0143  

It can be seen that this value is very close to 0, thus reflecting independence. This 

indicates that the job distributions for females and males are fair among both companies. 

However, we can see that Company A, which represents a minor group in the dataset, 

suffers from a major discrimination that was not captured by this fairness measure. 

Influenced by such instances, we modified the approximation 𝑄𝑄 to what is presented in 

equation (15).  

𝐹𝐹𝐹𝐹(𝑆𝑆,𝐴𝐴) = 1
𝐾𝐾
∑ ∑

𝑃𝑃�𝑆𝑆=𝑠𝑠
𝐴𝐴=𝑎𝑎�

2

𝑃𝑃(𝑆𝑆=𝑠𝑠) − 1.       𝐴𝐴=𝑎𝑎𝑆𝑆=𝑠𝑠 (15) 

Our proposed measure 𝐹𝐹𝐹𝐹, denoting 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, accounts for 

minor groups in the dataset, and thus eliminates the downside of the previously stated 

metrics.  The main difference between our proposed measure 𝐹𝐹𝐹𝐹 and the approximation 

𝑄𝑄 is that the term 𝑃𝑃(𝐴𝐴 = 𝑎𝑎), denoting the fractional representation of each cluster in the 
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dataset, has been replaced by 1
𝐾𝐾

 where 𝐾𝐾 represents the total number of clusters. By that, 

the fairness measure would not be skewed towards large clusters and would also highlight 

biases whenever they are present in minority groups. 

Considering the same example stated before and applying equation (15), our proposed 

measure conveys the following: 

𝐹𝐹𝐹𝐹 = �1
2
� �

� 20100�
2

920
2000

+
� 80100�

2

1080
2000

� + �1
2
� �

� 9001900�
2

920
2000

+
�10001900�

2

1080
2000

� − 1 = 0.136  

It can be seen that 𝐹𝐹𝐹𝐹 resulted in a higher value than 𝑄𝑄, thus better capturing the 

gender discrimination present in Company A. To better visualize the difference, we 

considered the same sample but with all possible female job-distributions. 

 

Figure 3: The approximation Q vs. our proposed notion FM for 2 clusters 

 
Figure 3 represents the approximation 𝑄𝑄 and our proposed fairness measure 𝐹𝐹𝐹𝐹 

with respect to the female distribution in Company A. It can be seen that 𝐹𝐹𝐹𝐹 represents 

an upper-bound to the approximation 𝑄𝑄, and thus better represents minorities. The red 

curve representing the approximation Q is almost flat and thus not demonstrating the bias 

in the minority group. Whereas, the blue curve representing our fairness measure FM has 

a u-shape and thus is more sensitive to biases in the minority group. Also, notice that 

these two measures are equal to zero whenever the sensitive attribute is equally 

distributed. However, this is the case of only 2 clusters. In later sections, we will test the 
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efficiency of 𝐹𝐹𝐹𝐹 for a generalized case and compare it to other fairness measures besides 

this approximation 𝑄𝑄.   
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CHAPTER 4 

RELATIONS 

As mentioned previously, we will be comparing our fairness measure 𝐹𝐹𝐹𝐹 to the 

balance, the weighted deviation, and the approximation 𝑄𝑄 of the Rényi model to illustrate 

the functionality of 𝐹𝐹𝐹𝐹 in fair clustering. First, the mathematical formulations for each 

measure will be presented and then they will be derived in terms of one another.  

The relations will be computed based on the previously defined problem in the 

literature review section for three different cases: the first case covering two clusters 

(𝐾𝐾 = 2), the second case covering three clusters (𝐾𝐾 = 3), and the third one covering 

generalized relations for 𝐾𝐾 clusters. 

 

4.1. Case of 2 Clusters (𝑲𝑲 = 𝟐𝟐) with a Single Binary Sensitive Attribute 

 In accordance with equations (6) and (7), the balance measure can be defined as 

follows: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵1 = 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑥𝑥1
𝑦𝑦1

,
𝑦𝑦1
𝑥𝑥1
� ,         (16) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵2 = 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑥𝑥2
𝑦𝑦2

,
𝑦𝑦2
𝑥𝑥2
� ,        (17) 

and                      𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵1,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵2}.      (18) 

In accordance with equation (8), the weighted deviation can be defined as follows: 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = �𝑛𝑛1
𝑁𝑁
�
2
�
�𝑥𝑥1𝑛𝑛1

−𝑥𝑥
𝑁𝑁�

2
+�𝑦𝑦1𝑛𝑛1

−𝑦𝑦𝑁𝑁�
2

𝑛𝑛1
� + �𝑛𝑛2

𝑁𝑁
�
2
�
�𝑥𝑥2𝑛𝑛2

−𝑥𝑥
𝑁𝑁�

2
+�𝑦𝑦2𝑛𝑛2

−𝑦𝑦𝑁𝑁�
2

𝑛𝑛2
�.       (19) 

Through mathematical derivations, equation (19) can be simplified to the following: 
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𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 2(𝑥𝑥1𝑁𝑁−𝑥𝑥𝑛𝑛1)2

𝑁𝑁3𝑛𝑛1𝑛𝑛2
.          (20) 

In accordance with equation (11), the approximation 𝑄𝑄 can be defined as follows: 

𝑄𝑄 = �𝑛𝑛1
𝑁𝑁
��

�𝑥𝑥1𝑛𝑛1
�
2

𝑥𝑥
𝑁𝑁

+
�𝑦𝑦1𝑛𝑛1

�
2

𝑦𝑦
𝑁𝑁

� + �𝑛𝑛2
𝑁𝑁
� �

�𝑥𝑥2𝑛𝑛2
�
2

𝑥𝑥
𝑁𝑁

+
�𝑦𝑦2𝑛𝑛2

�
2

𝑦𝑦
𝑁𝑁

� − 1.           (21) 

Through mathematical derivations, equation (21) can be simplified to the following: 

𝑄𝑄 =
(𝑥𝑥1𝑁𝑁 − 𝑥𝑥𝑛𝑛1)2

𝑥𝑥𝑥𝑥𝑛𝑛1𝑛𝑛2
.          (22) 

In accordance with equation (15), our proposed measure 𝐹𝐹𝐹𝐹 can be defined as 

follows: 

𝐹𝐹𝐹𝐹 = �1
𝐾𝐾
� �

�𝑥𝑥1𝑛𝑛1
�
2

𝑥𝑥
𝑁𝑁

+
�𝑦𝑦1𝑛𝑛1

�
2

𝑦𝑦
𝑁𝑁

� + �1
𝐾𝐾
� �

�𝑥𝑥2𝑛𝑛2
�
2

𝑥𝑥
𝑁𝑁

+
�𝑦𝑦2𝑛𝑛2

�
2

𝑦𝑦
𝑁𝑁

� − 1.           (23) 

Through mathematical derivations, equation (23) can be simplified to the following: 

𝐹𝐹𝐹𝐹 =
(𝑥𝑥1𝑁𝑁 − 𝑥𝑥𝑛𝑛1)2(𝑛𝑛12 + (𝑁𝑁 − 𝑛𝑛1)2)

2𝑥𝑥𝑥𝑥𝑛𝑛12𝑛𝑛22
.          (24) 

Lemma 1: Suppose that 𝐾𝐾 = 2 and 𝑆𝑆 is a binary sensitive attribute, then the following 

relations between fairness notions exist:  

𝑄𝑄 =
𝑁𝑁3

2𝑥𝑥𝑥𝑥
[𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡],          (25) 

𝐹𝐹𝐹𝐹 =
1
2
�
𝑛𝑛1
𝑛𝑛2

+
𝑛𝑛2
𝑛𝑛1
� [𝑄𝑄],          (26) 

and                              𝐹𝐹𝐹𝐹 =
𝑁𝑁3�𝑛𝑛1𝑛𝑛2

+𝑛𝑛2𝑛𝑛1
�

4𝑥𝑥𝑥𝑥
[𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡].          (27) 

Equation (25) represents the approximation 𝑄𝑄 in terms of the weighted deviation. 

It shows that the approximation 𝑄𝑄 can be attained by multiplying the weighted deviation 
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by the factor 𝑁𝑁
3

2𝑥𝑥𝑥𝑥
. Analyzing this equation, it can be deduced that the former gets amplified 

whenever we have a larger dataset and whenever the points are not distributed evenly in 

the dataset. 

Equation (26) represents FM in terms of the approximation 𝑄𝑄. It shows that 𝐹𝐹𝐹𝐹 

can be attained by multiplying the approximation 𝑄𝑄 by the factor 1
2
�𝑛𝑛1
𝑛𝑛2

+ 𝑛𝑛2
𝑛𝑛1
�. Analyzing 

this equation, it can be deduced that this factor will always augment the value of our 

measure FM, thus representing an upper bound to the approximation 𝑄𝑄. Also, notice that 

𝐹𝐹𝐹𝐹 will have the same value of 𝑄𝑄 only if the clusters have the same distribution of points. 

Equation (27) represents 𝐹𝐹𝐹𝐹 in terms of the weighted deviation. It shows that 𝐹𝐹𝐹𝐹 

can be attained by multiplying the weighted deviation by the factor 
𝑁𝑁3�𝑛𝑛1𝑛𝑛2

+𝑛𝑛2𝑛𝑛1
�

4𝑥𝑥𝑥𝑥
. Analyzing 

this equation, it can be deduced that the former gets amplified whenever we have a larger 

dataset and whenever the points are not distributed evenly in the dataset. 

 

4.2. Case of 3 Clusters (𝑲𝑲 = 𝟑𝟑) with a Single Binary Sensitive Attribute 

 In accordance with equations (6) and (7), the balance measure can be defined as 

follows: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵1 = 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑥𝑥1
𝑦𝑦1

,
𝑦𝑦1
𝑥𝑥1
� ,           (28) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵2 = 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑥𝑥2
𝑦𝑦2

,
𝑦𝑦2
𝑥𝑥2
� ,           (29) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵3 = 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑥𝑥3
𝑦𝑦3

,
𝑦𝑦3
𝑥𝑥3
� ,          (30) 

and                     𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵1,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵2,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒3}.          (31) 
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In accordance with equation (8), the weighted deviation can be defined as follows: 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 
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2

𝑛𝑛3
�.  (32) 

Through mathematical derivations, equation (32) can be simplified to the following: 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 2�𝑛𝑛1(𝑥𝑥2𝑁𝑁−𝑥𝑥𝑛𝑛2)2+𝑛𝑛2(𝑥𝑥1𝑁𝑁−𝑥𝑥𝑛𝑛1)2−𝑁𝑁(𝑥𝑥1𝑛𝑛2−𝑥𝑥2𝑛𝑛1)2�
𝑁𝑁3𝑛𝑛1𝑛𝑛2𝑛𝑛3

.          (33)     

In accordance with equation (11), the approximation 𝑄𝑄 can be defined as follows: 

𝑄𝑄 = �𝑛𝑛1
𝑁𝑁
��
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� − 1.       (34) 

Through mathematical derivations, equation (34) can be simplified to the following: 

𝑄𝑄 = 𝑛𝑛1(𝑥𝑥2𝑁𝑁−𝑥𝑥𝑛𝑛2)2+𝑛𝑛2(𝑥𝑥1𝑁𝑁−𝑥𝑥𝑛𝑛1)2−𝑁𝑁(𝑥𝑥1𝑛𝑛2−𝑥𝑥2𝑛𝑛1)2

𝑥𝑥𝑥𝑥𝑛𝑛1𝑛𝑛2𝑛𝑛3
.         (35)  

In accordance with equation (15), our proposed measure 𝐹𝐹𝐹𝐹 can be defined as 

follows: 

 𝐹𝐹𝐹𝐹 = �1
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Through mathematical derivations, equation (36) can be simplified to the following: 

𝐹𝐹𝐹𝐹 = 

𝑁𝑁�𝑛𝑛1(𝑥𝑥2𝑁𝑁−𝑥𝑥𝑛𝑛2)2+𝑛𝑛2(𝑥𝑥1𝑁𝑁−𝑥𝑥𝑛𝑛1)2−𝑁𝑁(𝑥𝑥1𝑛𝑛2−𝑥𝑥2𝑛𝑛1)2�
3𝑥𝑥𝑥𝑥𝑛𝑛1𝑛𝑛2𝑛𝑛32
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   .  (37) 

Lemma 2: Suppose that 𝐾𝐾 = 3 and 𝑆𝑆 is a binary sensitive attribute, then the following 

relations between fairness notions exist: 
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𝑄𝑄 =
𝑁𝑁3

2𝑥𝑥𝑥𝑥
[𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡],          (38) 
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,           (39) 

and                                                                      𝐹𝐹𝐹𝐹 = 
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It can be seen that the relation between the approximation 𝑄𝑄 and the weighted 

deviation, represented by equation (38), is similar to that of the case of two clusters. 

However, equations (39) and (40), relating our measure 𝐹𝐹𝑀𝑀 to the approximation 𝑄𝑄 and 

to the weighted deviation respectively, are no longer linear, thus indicating that they 

might sometimes present an upper bound to 𝐹𝐹𝐹𝐹. 

 

4.3. Generalized Case for a Single Binary Sensitive Attribute 

𝐿𝐿𝐿𝐿𝐿𝐿 𝑛𝑛𝑖𝑖∗ = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑛𝑛1, … ,𝑛𝑛𝑘𝑘}           (41) 

Lemma 3: Suppose that 𝐾𝐾 can take any value and 𝑆𝑆 is a binary sensitive attribute, then 

the following relations between fairness notions exist: 

𝑄𝑄 =
𝑁𝑁3

2𝑥𝑥𝑥𝑥
[𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡],          (42) 

𝐹𝐹𝐹𝐹 =
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          (43) 

and         𝐹𝐹𝐹𝐹 = 𝑁𝑁2

𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖
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These equations are similar to the ones computed for the case of three clusters, 

and thus a similar analysis can be followed. To illustrate the significance of these 

relations, some illustrations and an experimental study will be presented in the following 

sections. 
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 CHAPTER 5 

ILLUSTRATIONS 

In this section, we will demonstrate the effectiveness of our proposed fairness 

measure 𝐹𝐹𝐹𝐹 by experimentally comparing it to the balance, weighted deviation, and the 

approximation 𝑄𝑄.  

The dataset mentioned in the literature review section will again be considered, 

but now, the first case covers two clusters (𝐾𝐾 = 2) and the second case covers five 

clusters (𝐾𝐾 = 5).  

Two tables will be presented for each case; the first presenting the different 

instances studied and the second demonstrating the values obtained from each of the 

fairness measures considered.  

The goal behind this experiment is computing and comparing the values obtained 

from the four different fairness measures (the balance, the weighted deviation, the 

approximation 𝑄𝑄, and 𝐹𝐹𝐹𝐹) while considering different instances that highlight two 

factors; the presence of bias in the distribution of the points and the presence of minority 

groups in the dataset. The points are said to have a bias distribution if the sensitive 

attribute is not represented proportionally within clusters as in the dataset. Minority 

groups are present whenever the number of points in one of the clusters is relatively 

minimal compared to the number of points in other clusters. A (+) sign indicates the 

presence of bias or minority groups, and a (-) sign indicates their absence each instance 

considered. 
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5.1. Case of 2 Clusters with a Single Binary Sensitive Attribute 

In this case, 1,000 data points, which are associated with a single binary sensitive 

attribute, were considered. They were distributed into two clusters, i.e., 𝐾𝐾 = 2.  

Instance 1 represents an absolute fair distribution under the absence of minority 

groups where the total number of points is evenly divided between both clusters that have 

proportional representation of the sensitive attribute as in the dataset.  

Instance 2 deviates from instance 1 in that it considers different cluster 

distributions. 

Instance 3 represents minority groups where the number of points in cluster 1 is 

relatively small compared to the number of points in cluster 2, but with somewhat a fair 

distribution, i.e., the proportion of points having label 𝑋𝑋 in the dataset is somewhat 

equivalent to the proportion of points having label 𝑋𝑋 in both clusters, and the proportion 

of points having label 𝑌𝑌 in the dataset is somewhat equivalent to the proportion of points 

having label 𝑌𝑌 in both clusters. 

Instance 4 represents a dataset where the number of points having label 𝑋𝑋 is 

relatively small to the number of points having label 𝑌𝑌; however, the distribution of the 

points in the two clusters is equivalent to the distribution of the points in the dataset, i.e. 

the proportion of points having label 𝑋𝑋 in the dataset is equivalent to the proportion of 

points having label 𝑋𝑋 in both clusters, and the proportion of points having label 𝑌𝑌 in the 

dataset is equivalent to the proportion of points having label 𝑌𝑌 in both clusters. 

Instance 5 is similar to instance 4; however, the distribution of the points in both 

clusters is not equivalent to the distribution of the points in the dataset.  

Instance 6 represents a bias distribution of the points in the clusters where the 

proportion of points having label 𝑋𝑋 in both clusters is not equivalent to the proportion of 
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points having label 𝑋𝑋 in the dataset, and the proportion of points having label 𝑌𝑌 in both 

clusters is not equivalent to the proportion of points having label 𝑌𝑌 in the dataset. 

Instance 7 represents the presence of minority groups where the number of points 

in cluster 1 is relatively small compared to the number of points in cluster 2. In addition 

to that, cluster 1 suffers from bias in the distribution of its points.  

 

Table 1: Instances for case 1 

Instances Bias Minorities N x y n1 x1 y1 n2 x2 y2 
1 - - 1,000 500 500 500 250 250 500 250 250 
2 - - 1,000 500 500 400 150 250 600 350 250 
3 - + 1,000 500 500 100 40 60 900 460 440 
4 - - 1,000 100 900 500 50 450 500 50 450 
5 + - 1,000 100 900 500 90 410 500 10 490 
6 + - 1,000 400 600 600 20 580 400 380 20 
7 + + 1,000 400 600 100 10 90 900 390 510 

 
 

The values obtained from the balance, the approximation 𝑄𝑄, and 𝐹𝐹𝐹𝐹 range 

between 0 and 1, where a value of 1 demonstrates complete fairness for the balance 

measure; whereas, a value of 0 denotes absolute fairness for the approximation 𝑄𝑄 and 

𝐹𝐹𝐹𝐹. The weighted deviation indicates complete fairness when it results in 0; however, it 

does not have an upper level. That is why its values were normalized to the range of [0,1]. 

Table 2 represents the values obtained from the four different fairness measures.  

It can be deduced that for the case of 2 clusters, the balance was able to capture 

unfairness whenever we had bias (instances 5 to 7); however, at a greater cost, i.e., it 

sometimes resulted in exaggerated values (values closer to 0) when we had insignificant 

difference between the distribution of points in the dataset and that in the clusters 

(instances 2 and 3).  
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The weighted deviation and our fairness measure 𝐹𝐹𝐹𝐹 resulted in values close to 

0 whenever the clusters had a somewhat fair distribution (instances 2 and 3), and they 

both resulted in values close to 1 whenever we had bias in both clusters (instance 6). 

However, the weighted deviation resulted in a value of 0.73 whenever we had biased 

large clusters (instance 5) and in a value of 0.25 whenever a biased minority group; thus, 

proving that it is skewed towards large clusters. Whereas, our fairness measure 𝐹𝐹𝐹𝐹 

resulted in a value of 0.2691 for instance 5 and in a value of 0.1898 for instance 7, proving 

that it treats minority groups and large clusters similarly.  

The computed values for the approximation 𝑄𝑄 were so close to our fairness 

measure 𝐹𝐹𝐹𝐹, with the latter being an upper bound, and thus capturing unfairness better 

than the initial approximation to the Rényi model.  

As mentioned previously, instance 4 represents a dataset where the proportion of 

points having label 𝑋𝑋 is relatively small to the proportion of points having label 𝑌𝑌; 

however, the distribution of the points in the two clusters is equivalent to the distribution 

of the points in the dataset. For that case, the weighted deviation, the approximation 𝑄𝑄, 

and 𝐹𝐹𝐹𝐹 resulted in values of 0, thus indicating that they measure fairness as a means of 

proportional representation of the sensitive attribute within clusters and the dataset, unlike 

the balance measure which resulted in an exaggerated value of 0.111. 

 

Table 2: Fairness evaluation for case 1 

Instances Balance Weighted Deviation Approximation Q  FM 
1 1 0 0 0 
2 0.6 0.0625 0.0417 0.0451 
3 0.667 0.0399 0.0044 0.0202 
4 0.111 0 0 0 
5 0.2041 0.73 0.2691 0.2691 
6 0.0345 0.84 0.8403 0.9103 
7 0.1111 0.25 0.0417 0.1898 
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To better visualize these results, the values obtained from the weighted deviation, 

the approximation 𝑄𝑄, and our fairness measure 𝐹𝐹𝐹𝐹 were plotted for each instance 

covering all the values that 𝑥𝑥𝑖𝑖  can take.  

 
Figure 4: Instance 1 

 
Figure 5: Instance 2 

 
Figure 6: Instance 3 
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Figure 7: Instances 4 and 5 

 
Figure 8: Instance 6 

 
Figure 9: Instance 7 

 
The figures above represent the values obtained from the weighted deviation, the 

approximation 𝑄𝑄, and 𝐹𝐹𝐹𝐹 for all the instances covering all possible data distributions. It 

can be seen that in most cases our fairness model showed better results than the 
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approximation 𝑄𝑄 in capturing unfairness; however, the weighted deviation outdid both 

fairness measures since it represented an upper bound for the case of 2 clusters.  

 

5.2. Case of 5 Custers with a Single Binary Sensitive Attribute 

In this case, 2,000 data points, which are associated with a single binary sensitive 

attribute, were considered. They were distributed into five clusters, i.e., 𝐾𝐾 = 5.  

Instance 1 represents an absolute fair distribution under the absence of minority 

groups where the total number of points is evenly divided between all clusters that have 

proportional representation of the sensitive attribute as in the dataset.  

Instance 2 represents the presence of minority groups where one of the clusters 

represents a small fraction of the dataset compared to others. However, all the 

distributions in all the clusters are somewhat proportional to that in the dataset. 

Instance 3 represents a dataset where the number of points having label 𝑋𝑋 is 

relatively small to the number of points having label 𝑌𝑌; however, the distribution of the 

points in all clusters is equivalent to the distribution of the points in the dataset, i.e. the 

proportion of points having label 𝑋𝑋 in the dataset is equivalent to the proportion of points 

having label 𝑋𝑋 in all clusters, and the proportion of points having label 𝑌𝑌 in the dataset is 

equivalent to the proportion of points having label 𝑌𝑌 in all clusters. 

Instance 4 is similar to instance 3; however, the distribution of the points in the 

clusters is not equivalent to the distribution of the points in the dataset. 

Instance 5 represents a bias distribution of the points in the clusters where the 

proportion of points having label 𝑋𝑋 in the clusters is not equivalent to the proportion of 

points having label 𝑋𝑋 in the dataset, and the proportion of points having label 𝑌𝑌 in both 

clusters is not equivalent to the proportion of points having label 𝑌𝑌 in the dataset. 
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Instance 6 represents a minority group that has a bias distribution. The remaining 

clusters have somewhat a fair distribution, i.e., the proportion of points having label 𝑋𝑋 in 

the dataset is somewhat equivalent to the proportion of points having label 𝑋𝑋 in the 

remaining four clusters, and the proportion of points having label 𝑌𝑌 in the dataset is 

somewhat equivalent to the proportion of points having label 𝑌𝑌 in the remaining four 

clusters. 

Instance 7 represents a minority group and a large cluster with a fair distribution; 

however, three other large clusters suffer from bias in the distribution of their points. 

Instance 8 represents two minority groups with bias distributions. The remaining 

clusters have somewhat a fair distribution. 

Instance 9 represents the presence of minority groups where two clusters represent 

a small fraction of the dataset compared to others. However, all the distributions in all the 

clusters are proportional to that in the dataset. 

Note that for simplification, the values of 𝑦𝑦 and 𝑦𝑦𝑖𝑖′𝑠𝑠 in table 8 were eliminated where 

𝑦𝑦 = 𝑁𝑁 − 𝑥𝑥 and 𝑦𝑦𝑖𝑖 = 𝑛𝑛𝑖𝑖 − 𝑥𝑥𝑖𝑖. 

 

Table 3: Instances for case 2 

Instances Bias Minorities N x n1 x1 n2 x2 n3 x3 n4 x4 n5 x5 
1 - - 2,000 1,000 400 200 400 200 400 200 400 200 400 200 
2 - + 2,000 1,000 100 45 500 245 450 250 550 270 400 190 
3 - - 2,000 200 400 40 400 40 400 40 400 40 400 40 
4 + - 2,000 200 400 10 400 60 400 30 400 40 400 60 
5 + - 2,000 800 400 90 300 250 350 50 450 50 500 360 
6 + + 2,000 900 100 10 500 200 450 250 550 250 400 190 
7 + + 2,000 1100 100 50 500 200 450 450 550 0 400 400 
8 + + 2,000 900 100 10 100 20 550 250 600 300 650 320 
9 - + 2,000 900 100 50 100 50 550 250 600 300 650 250 

 
 

The values obtained from the balance, the approximation 𝑄𝑄, and FM range 

between 0 and 1, where a value of 1 demonstrates complete fairness for the balance 
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notion; whereas, a value of 0 denotes absolute fairness for the approximation 𝑄𝑄 and 𝐹𝐹𝐹𝐹. 

The weighted deviation indicates complete fairness when it results in 0; however, it does 

not have an upper level. That is why its values were normalized to the range of [0,1]. 

Table 4 represents the values obtained from the four different fairness measures.  

Similar to the case of 2 clusters, the balance was able to capture unfairness 

whenever we had bias (instances 4 to 8), but also resulting in some exaggerated values 

(values closer to 0) when we had insignificant difference between the distribution of 

points in the dataset and that in the clusters (instances 2 and 3). However, compared to 

the values obtained from the balance notion for the case of 2 clusters, this exaggeration 

seemed to diminish whenever more clusters were involved.  

Our fairness measure 𝐹𝐹𝐹𝐹 performed well in capturing unfairness whenever we 

had bias whether in minority groups or in large clusters, and it highlighted this prejudice 

better than the weighted deviation and the approximation 𝑄𝑄, i.e., our fairness measure 

𝐹𝐹𝐹𝐹 resulted in values closer to 1 whenever we had bias in the dataset, large clusters, or 

minority groups. However, for instance 7, which represents fairness in two clusters out 

of which one represents a minority group, and bias in the three other large clusters, the 

weighted deviation and the approximation 𝑄𝑄 resulted in 0.946 and 0.7071 respectively; 

whereas, our fairness measure 𝐹𝐹𝐹𝐹 resulted in 0.5919. This proves that the weighted 

deviation and the approximation 𝑄𝑄 account for large clusters in their calculations more 

than they account for minority groups.   

As mentioned previously, instance 3 represents a dataset where the number of 

points having label 𝑋𝑋 is relatively small to the number of points having label 𝑌𝑌; however, 

the distribution of the points in all clusters is equivalent to the distribution of the points 

in the dataset, i.e. the proportion of points having label 𝑋𝑋 in the dataset is equivalent to 
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the proportion of points having label 𝑋𝑋 in all clusters, and the proportion of points having 

label 𝑌𝑌 in the dataset is equivalent to the proportion of points having label 𝑌𝑌 in all clusters. 

For that case, the weighted deviation, the approximation 𝑄𝑄, and 𝐹𝐹𝐹𝐹 resulted in values of 

0, thus indicating that they measure fairness as a means of proportional representation of 

the sensitive attribute within clusters and the dataset, unlike the balance notion which 

resulted in an exaggerated value of 0.111. 

 

Table 4: Fairness evaluation for case 2 

Instances Balance Weighted Deviation Approximation Q FM 
1 1 0 0 0 
2 0.8 0.00397 0.004 0.0051 
3 0.1111 0 0 0 
4 0.0257 0.05625 0.025 0.025 
5 0.125 0.376 0.376 0.392 
6 0.1111 0.0399 0.0379 0.1105 
7 0 0.946 0.7071 0.5919 
8 0.1111 0.0554 0.0428 0.153 
9 0.625 0.0116 0.0097 0.0095 

 
 

In conclusion, for the case of more than 2 clusters, a similar interpretation can be 

deduced for the balance. However, in that case, our fairness measure 𝐹𝐹𝐹𝐹 represented an 

upper bound for both the weighted deviation and the approximation 𝑄𝑄, and thus 

exemplifying a more suitable fairness measure, with the exception of when we had fair 

minorities but biased large clusters, which proves that the weighted deviation and the 

approximation 𝑄𝑄 do not account for minor groups.   
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CHAPTER 6 

EXPERIMENTAL STUDY 

We now detail a real-world experimental study to quantify the effectiveness of 

our fairness measure 𝐹𝐹𝐹𝐹. We first describe the dataset considered, followed by our results 

and analysis.  

We consider the Customer Segmentation dataset from Kaggle repository. It 

contains data from a supermarket mall, and has been mainly used to identify unsatisfied 

customer needs. The dataset has 2,000 instances represented by 7 attributes. Among these 

attributes, 3 were chosen as non-sensitive attributes {age, educational level, and income}, 

and thus they were used for the clustering assignment. The following table illustrates 

some details for each of these non-sensitive attributes. 

 

Table 5: Non-sensitive attribute description 

Non-sensitive attributes Type 
Age  Continuous  

Educational level Continuous  
Income Continuous 

 
 

All non-sensitive attributes were normalized prior to the clustering assignment 

which was performed using 𝐾𝐾-means algorithm. The data were grouped into 3 clusters 

(𝐾𝐾 = 3), and to test the fairness of this clustering assignment, the balance, weighted 

deviation, approximation 𝑄𝑄, and 𝐹𝐹𝐹𝐹were computed based on 3 sensitive attributes 

{gender, marital status, and occupation}, all of which were changed to binary features. 

The following tables illustrate the distribution of the points in the three clusters according 

to each sensitive attribute. 
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Table 6: Distribution of points with respect to gender 

Gender Total Male Female Ratio Female 
Cluster 1 976 431 545 0.558402 
Cluster 2 158 113 45 0.28481 
Cluster 3 866 538 328 0.378753 

Total 2000 1082 918 0.459 
 
 

Table 7: Distribution of points with respect to marital status 

Marital Status Total Married Single Ratio Single 
Cluster 1 976 530 446 0.456967 
Cluster 2 158 67 91 0.575949 
Cluster 3 866 396 470 0.542725 

Total 2000 993 1007 0.5035 
 
 

Table 8: Distribution of points with respect to occupation 

Occupation Total Working Not Working Ratio Not Working 
Cluster 1 976 444 532 0.545082 
Cluster 2 158 155 3 0.018987 
Cluster 3 866 768 98 0.113164 

Total 2000 1367 633 0.3165 
 
 

 
Figure 10: Distribution of points in the clusters 

 
It can be seen that this clustering assignment represents a minority group which 

is illustrated in cluster 2 having only 158 points (representing 8% of the whole dataset) 

49%

8%

43%
Cluster 1

Cluster 2

Cluster 3
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compared to clusters 1 and 3 that have 976 (49% of the whole dataset) and 866 (49% of 

the whole dataset) points respectively.  

Now, to better visualize the distribution of the data points according to each 

sensitive attribute, the following bar charts have been developed. 
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Figure 11: Distribution of points with respect to gender 

Figure 12: Distribution of points with respect to marital status 

Figure 13: Distribution of points with respect to occupation 
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Gender as a sensitive attribute: 

Figure 11 shows that the distribution of the points in each of the clusters does not perfectly 

reflect their distribution in the dataset, and thus representing minor biases. 

Marital status as a sensitive attribute: 

It can be seen in figure 12 that the distribution of points in all three clusters is 

approximately proportional to their distribution in the dataset, and thus representing 

fairness of clustering. 

Occupation as a sensitive attribute: 

Figure 13 reflects complete biases in the clusters, especially in the minority group. 

Table 9 represents the values obtained from each fairness measure with respect to 

each sensitive attribute. Note again that the weighted deviation, approximation 𝑄𝑄, and 

𝐹𝐹𝐹𝐹 approach zero whenever fairness is attained, unlike the balance which approaches 1.  

 

Table 9: Fairness measures 

 Sensitive Attribute 
Fairness measure  Gender Marital status Occupation 

Balance 0.3982 0.7363 0.0194 
Deviation  1.00E-05 2.14E-06 5.04E-05 

Q 0.0403 0.0086 0.2329 
FM 0.0626 0.0119 0.2806 
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Gender Marital status Occupation

Balance

Figure 14: Balance with respect to each sensitive attribute 
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Weighted Deviation

Figure 15:Weighted deviation with respect to each sensitive attribute 

0.0403 0.0086

0.2329

Gender Marital status Occupation

Approximation Q

Figure 16: Approximation Q with respect to each sensitive attribute 
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The values obtained from each fairness measure were plotted with respect to each 

sensitive attribute to visualize the feature that mostly suffers from biases. It can be 

deduced that discrimination prevails in the sensitive attribute occupation since it attained 

the highest values in the weighted deviation, approximation 𝑄𝑄, and 𝐹𝐹𝐹𝐹, and the lowest 

value in the balance measure, thus proving that these fairness measures reflect the 

distribution of the points in the clusters to that in the dataset.  

0.0626 0.0119

0.2806

Gender Marital status Occupation

FM

Figure 17: FM with respect to each sensitive attribute 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

A summary of what has been presented earlier is illustrated in the following table. 
 

Table 10: Summary of findings 

Fairness Measures Conclusion 
Balance Too strict and not a good representation when dealing with large 

number of clusters 
Weighted deviation Skewed towards large clusters and does not capture unfairness in 

minority groups especially when dealing with large number of 
clusters 

Approximation 𝑄𝑄 Does not capture biases in minority groups 
𝐹𝐹𝐹𝐹 Treats large clusters and minorities similarly where unfairness can be 

captured for both especially when dealing with large number of 
clusters 

 
 

Concerning our future work, we can study relations between the fairness measures 

for single categorical sensitive attributes.   
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APPENDIX 1 

CASE OF TWO CLUSTERS 
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= 1
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𝑥𝑥12𝑛𝑛12) + 𝑛𝑛12𝑁𝑁(𝑁𝑁𝑥𝑥2 − 2𝑁𝑁𝑁𝑁𝑥𝑥1 + 𝑥𝑥12𝑁𝑁 − 𝑥𝑥3 + 2𝑥𝑥2𝑥𝑥1 − 𝑥𝑥𝑥𝑥12) + 𝑥𝑥𝑛𝑛12𝑁𝑁3 − 2𝑥𝑥2𝑛𝑛12𝑁𝑁2 +
𝑥𝑥3𝑛𝑛12𝑁𝑁 − 2𝑥𝑥𝑛𝑛13𝑁𝑁2 + 2𝑁𝑁2𝑛𝑛12𝑥𝑥1𝑥𝑥 + 2𝑥𝑥2𝑛𝑛13𝑁𝑁 − 2𝑥𝑥2𝑛𝑛12𝑁𝑁𝑥𝑥1 + 𝑥𝑥𝑛𝑛14𝑁𝑁 − 2𝑛𝑛13𝑁𝑁𝑥𝑥1𝑥𝑥 +
𝑥𝑥12𝑥𝑥𝑛𝑛12𝑁𝑁 − 2𝑥𝑥𝑛𝑛12(𝑁𝑁3 − 2𝑁𝑁2𝑛𝑛1 + 𝑛𝑛12𝑁𝑁 − 𝑥𝑥𝑁𝑁2 + 2𝑁𝑁𝑛𝑛1𝑥𝑥 − 𝑛𝑛12𝑥𝑥)�  
= 1

2𝑥𝑥𝑛𝑛12(𝑁𝑁−𝑥𝑥)(𝑁𝑁−𝑛𝑛1)2
(𝑥𝑥12𝑁𝑁4 − 2𝑥𝑥12𝑁𝑁3𝑛𝑛1 + 𝑥𝑥12𝑁𝑁2𝑛𝑛12 − 𝑥𝑥12𝑥𝑥𝑁𝑁3 + 2𝑥𝑥12𝑥𝑥𝑁𝑁2𝑛𝑛1 − 𝑥𝑥12𝑥𝑥𝑥𝑥𝑛𝑛12 +

𝑥𝑥𝑁𝑁3𝑛𝑛12 − 2𝑥𝑥1𝑥𝑥𝑁𝑁3𝑛𝑛1 + 𝑥𝑥12𝑥𝑥𝑁𝑁3 − 2𝑥𝑥𝑁𝑁2𝑛𝑛13 + 4𝑥𝑥1𝑥𝑥𝑁𝑁2𝑛𝑛12 − 2𝑥𝑥12𝑥𝑥𝑁𝑁2𝑛𝑛1 + 𝑥𝑥𝑥𝑥𝑛𝑛14 −
2𝑥𝑥1𝑥𝑥𝑥𝑥𝑛𝑛13 + +𝑥𝑥12𝑥𝑥𝑥𝑥𝑛𝑛12 + 𝑥𝑥2𝑁𝑁2𝑛𝑛12 − 2𝑥𝑥1𝑥𝑥𝑁𝑁2𝑛𝑛12 + 𝑥𝑥12𝑁𝑁2𝑛𝑛12 − 𝑥𝑥3𝑁𝑁𝑛𝑛12 + 2𝑥𝑥1𝑥𝑥2𝑁𝑁𝑛𝑛12 −
𝑥𝑥12𝑥𝑥𝑥𝑥𝑛𝑛12 + 𝑥𝑥𝑁𝑁3𝑛𝑛12 − 2𝑥𝑥2𝑁𝑁2𝑛𝑛12 + 𝑥𝑥3𝑁𝑁𝑛𝑛12 − 2𝑥𝑥𝑁𝑁2𝑛𝑛13 + 2𝑥𝑥1𝑥𝑥𝑁𝑁2𝑛𝑛12 + 2𝑥𝑥2𝑁𝑁𝑛𝑛13 −
2𝑥𝑥1𝑥𝑥2𝑁𝑁𝑛𝑛12 + 𝑥𝑥𝑥𝑥𝑛𝑛14 − 2𝑥𝑥1𝑥𝑥𝑥𝑥𝑛𝑛13 + 𝑥𝑥12𝑥𝑥𝑥𝑥𝑛𝑛12 − 2𝑥𝑥𝑁𝑁3𝑛𝑛12 + 4𝑥𝑥𝑁𝑁2𝑛𝑛13 − 2𝑥𝑥𝑥𝑥𝑛𝑛14 +
2𝑥𝑥2𝑁𝑁2𝑛𝑛12 − 4𝑥𝑥2𝑁𝑁𝑛𝑛13 + 2𝑥𝑥2𝑛𝑛14)  
= 2𝑥𝑥12𝑁𝑁2𝑛𝑛12+𝑥𝑥12𝑁𝑁4−2𝑥𝑥12𝑁𝑁3𝑛𝑛1−4𝑥𝑥1𝑥𝑥𝑥𝑥𝑛𝑛13+4𝑥𝑥1𝑥𝑥𝑁𝑁2𝑛𝑛12−2𝑥𝑥1𝑥𝑥𝑁𝑁3𝑛𝑛1−2𝑥𝑥2𝑁𝑁𝑛𝑛13+2𝑥𝑥2𝑛𝑛14+𝑥𝑥2𝑁𝑁2𝑛𝑛12

2𝑥𝑥𝑛𝑛12(𝑁𝑁−𝑥𝑥)(𝑁𝑁−𝑛𝑛1)2   

= 𝑥𝑥12𝑁𝑁2�2𝑛𝑛12+𝑁𝑁2−2𝑁𝑁𝑛𝑛1�+𝑥𝑥2𝑛𝑛12�2𝑛𝑛12+𝑁𝑁2−2𝑁𝑁𝑛𝑛1�−2𝑥𝑥1𝑥𝑥𝑥𝑥𝑛𝑛1�2𝑛𝑛12−2𝑁𝑁𝑛𝑛1+𝑁𝑁2�
2𝑥𝑥𝑛𝑛12(𝑁𝑁−𝑥𝑥)(𝑁𝑁−𝑛𝑛1)2   

= (𝑥𝑥12𝑁𝑁2−2𝑥𝑥1𝑥𝑥𝑥𝑥𝑛𝑛1+𝑥𝑥2𝑛𝑛12)(𝑛𝑛12+𝑛𝑛12−2𝑁𝑁𝑛𝑛1+𝑁𝑁2)
2𝑥𝑥𝑛𝑛12(𝑁𝑁−𝑥𝑥)(𝑁𝑁−𝑛𝑛1)2   

= (𝒙𝒙𝟏𝟏𝑵𝑵−𝒙𝒙𝒏𝒏𝟏𝟏)𝟐𝟐(𝒏𝒏𝟏𝟏
𝟐𝟐+(𝑵𝑵−𝒏𝒏𝟏𝟏)𝟐𝟐)

𝟐𝟐𝟐𝟐𝒏𝒏𝟏𝟏
𝟐𝟐(𝑵𝑵−𝒙𝒙)(𝑵𝑵−𝒏𝒏𝟏𝟏)𝟐𝟐   

 
 

𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 = �𝒏𝒏𝟏𝟏
𝑵𝑵
�
𝟐𝟐
�
�𝒙𝒙𝟏𝟏𝒏𝒏𝟏𝟏

−𝒙𝒙
𝑵𝑵�

𝟐𝟐
+�𝒚𝒚𝟏𝟏𝒏𝒏𝟏𝟏

−𝒚𝒚𝑵𝑵�
𝟐𝟐

𝒏𝒏𝟏𝟏
�+ �𝒏𝒏𝟐𝟐

𝑵𝑵
�
𝟐𝟐
�
�𝒙𝒙𝟐𝟐𝒏𝒏𝟐𝟐

−𝒙𝒙
𝑵𝑵�

𝟐𝟐
+�𝒚𝒚𝟐𝟐𝒏𝒏𝟐𝟐

−𝒚𝒚𝑵𝑵�
𝟐𝟐

𝒏𝒏𝟐𝟐
�  

= 𝑛𝑛1
𝑁𝑁2
�𝑥𝑥1

2

𝑛𝑛12
− 2𝑥𝑥𝑥𝑥1

𝑁𝑁𝑛𝑛1
+ 𝑥𝑥2

𝑁𝑁2
+ 𝑦𝑦12

𝑛𝑛12
− 2𝑦𝑦𝑦𝑦1

𝑁𝑁𝑛𝑛1
+ 𝑦𝑦2

𝑁𝑁2
� + 𝑛𝑛2

𝑁𝑁2
�𝑥𝑥2

2

𝑛𝑛22
− 2𝑥𝑥𝑥𝑥2

𝑁𝑁𝑛𝑛2
+ 𝑥𝑥2

𝑁𝑁2
+ 𝑦𝑦22

𝑛𝑛22
− 2𝑦𝑦𝑦𝑦2

𝑁𝑁𝑛𝑛2
+ 𝑦𝑦2

𝑁𝑁2
�  

= 𝑥𝑥12

𝑛𝑛1𝑁𝑁2
− 2𝑥𝑥𝑥𝑥1

𝑁𝑁3
+ 𝑥𝑥2𝑛𝑛1

𝑁𝑁4
+ 𝑦𝑦12

𝑁𝑁2𝑛𝑛1
− 2𝑦𝑦𝑦𝑦1

𝑁𝑁3
+ 𝑦𝑦2𝑛𝑛1

𝑁𝑁4
+ 𝑥𝑥2

𝑁𝑁2𝑛𝑛2
− 2𝑥𝑥𝑥𝑥2

𝑁𝑁3
+ 𝑥𝑥2𝑛𝑛2

𝑁𝑁4
+ 𝑦𝑦22

𝑁𝑁2𝑛𝑛2
− 2𝑦𝑦𝑦𝑦2

𝑁𝑁3
+ 𝑦𝑦2𝑛𝑛2

𝑁𝑁4
  

= 1
𝑁𝑁4𝑛𝑛1𝑛𝑛2

(𝑥𝑥12𝑁𝑁2𝑛𝑛2 − 2𝑥𝑥𝑥𝑥1𝑁𝑁𝑛𝑛1𝑛𝑛2 + 𝑥𝑥2𝑛𝑛12𝑛𝑛2 + 𝑦𝑦12𝑁𝑁2𝑛𝑛2 − 2𝑦𝑦𝑦𝑦1𝑁𝑁𝑛𝑛1𝑛𝑛2 + 𝑦𝑦2𝑛𝑛12𝑛𝑛2 +
𝑥𝑥22𝑁𝑁2𝑛𝑛1 − 2𝑥𝑥𝑥𝑥2𝑁𝑁𝑛𝑛1𝑛𝑛2 + 𝑥𝑥2𝑛𝑛1𝑛𝑛22 + 𝑦𝑦22𝑁𝑁2𝑛𝑛1 − 2𝑦𝑦𝑦𝑦2𝑁𝑁𝑛𝑛1𝑛𝑛2 + 𝑦𝑦2𝑛𝑛1𝑛𝑛22)  
= 1

𝑁𝑁4𝑛𝑛1𝑛𝑛2
(𝑥𝑥12𝑁𝑁2(𝑁𝑁 − 𝑛𝑛1) − 2𝑥𝑥𝑥𝑥1𝑁𝑁𝑛𝑛1(𝑁𝑁 − 𝑛𝑛1) + 𝑥𝑥𝑛𝑛12(𝑁𝑁 − 𝑛𝑛1) + 𝑁𝑁2(𝑛𝑛1 − 𝑥𝑥1)2(𝑁𝑁 −

𝑛𝑛1) − 2𝑁𝑁𝑛𝑛1(𝑁𝑁 − 𝑥𝑥)(𝑛𝑛1 − 𝑥𝑥1)(𝑁𝑁 − 𝑛𝑛1) + 𝑛𝑛12(𝑁𝑁 − 𝑥𝑥)2(𝑁𝑁 − 𝑛𝑛1) + 𝑁𝑁2𝑛𝑛1(𝑥𝑥 − 𝑥𝑥1)2 −
2𝑥𝑥𝑥𝑥𝑛𝑛1(𝑥𝑥 − 𝑥𝑥1)(𝑁𝑁 − 𝑛𝑛1) + 𝑥𝑥2𝑛𝑛1(𝑁𝑁 − 𝑛𝑛1)2 + 𝑁𝑁2𝑛𝑛1(𝑁𝑁 − 𝑥𝑥 − 𝑛𝑛1 + 𝑥𝑥1)2 −
2𝑁𝑁𝑛𝑛1(𝑁𝑁 − 𝑥𝑥)(𝑁𝑁 − 𝑥𝑥 − 𝑛𝑛1 + 𝑥𝑥1)(𝑁𝑁 − 𝑛𝑛1) + 𝑛𝑛1(𝑁𝑁 − 𝑥𝑥)2(𝑁𝑁 − 𝑛𝑛1)2  

= 𝟐𝟐(𝒙𝒙𝟏𝟏𝑵𝑵−𝒙𝒙𝒏𝒏𝟏𝟏)𝟐𝟐

𝑵𝑵𝟑𝟑𝒏𝒏𝟏𝟏𝒏𝒏𝟐𝟐
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Lemma 1:  
 

𝐹𝐹𝐹𝐹
𝑄𝑄

=
(𝑥𝑥1𝑁𝑁−𝑥𝑥𝑛𝑛1)2�𝑛𝑛1

2+(𝑁𝑁−𝑛𝑛1)2�

2𝑥𝑥𝑛𝑛1
2(𝑁𝑁−𝑥𝑥)(𝑁𝑁−𝑛𝑛1)2

(𝑥𝑥1𝑁𝑁−𝑥𝑥𝑛𝑛1)2
𝑥𝑥𝑛𝑛1(𝑁𝑁−𝑥𝑥)(𝑁𝑁−𝑛𝑛1)

= 𝑛𝑛12+(𝑁𝑁−𝑛𝑛1)2

2𝑛𝑛1(𝑁𝑁−𝑛𝑛1)
= 𝑛𝑛12

2𝑛𝑛1(𝑁𝑁−𝑛𝑛1) + (𝑁𝑁−𝑛𝑛1)
2𝑛𝑛1(𝑁𝑁−𝑛𝑛1)

= 1
2
�𝑛𝑛1
𝑛𝑛2

+ 𝑛𝑛2
𝑛𝑛1
�  

𝑭𝑭𝑭𝑭 = 𝟏𝟏
𝟐𝟐
�𝒏𝒏𝟏𝟏
𝒏𝒏𝟐𝟐

+ 𝒏𝒏𝟐𝟐
𝒏𝒏𝟏𝟏
� [𝑸𝑸]  

𝑄𝑄
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
(𝑥𝑥1𝑁𝑁−𝑥𝑥𝑛𝑛1)2

𝑥𝑥𝑛𝑛1(𝑁𝑁−𝑥𝑥)(𝑁𝑁−𝑛𝑛1)
2(𝑥𝑥1𝑁𝑁−𝑥𝑥𝑛𝑛1)2

𝑁𝑁3𝑛𝑛1𝑛𝑛2

=
(𝑥𝑥1𝑁𝑁−𝑥𝑥𝑛𝑛1)2

𝑥𝑥𝑛𝑛1𝑦𝑦𝑛𝑛2
2(𝑥𝑥1𝑁𝑁−𝑥𝑥𝑛𝑛1)2

𝑁𝑁3𝑛𝑛1𝑛𝑛2

= 𝑁𝑁3

2𝑥𝑥𝑥𝑥
  

 
𝑸𝑸 = 𝑵𝑵𝟑𝟑

𝟐𝟐𝟐𝟐𝟐𝟐
[𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾]  

𝐹𝐹𝐹𝐹
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

=
(𝑥𝑥1𝑁𝑁−𝑥𝑥𝑛𝑛1)2�𝑛𝑛1

2+(𝑁𝑁−𝑛𝑛1)2�

2𝑥𝑥𝑛𝑛1
2(𝑁𝑁−𝑥𝑥)(𝑁𝑁−𝑛𝑛1)2

2(𝑥𝑥1𝑁𝑁−𝑥𝑥𝑛𝑛1)2

𝑁𝑁3𝑛𝑛1𝑛𝑛2

=
𝑁𝑁3�𝑛𝑛1𝑛𝑛2

+𝑛𝑛2𝑛𝑛1
�

4𝑥𝑥𝑥𝑥
  

𝑭𝑭𝑭𝑭 =
𝑵𝑵𝟑𝟑�𝒏𝒏𝟏𝟏𝒏𝒏𝟐𝟐

+𝒏𝒏𝟐𝟐𝒏𝒏𝟏𝟏
�

𝟒𝟒𝟒𝟒𝟒𝟒
[𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾]  
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APPENDIX 2 

CASE OF THREE CLUSTERS 

               
 

 𝑸𝑸 = �𝒏𝒏𝟏𝟏
𝑵𝑵
��

�𝒙𝒙𝟏𝟏𝒏𝒏𝟏𝟏
�
𝟐𝟐

𝒙𝒙
𝑵𝑵

+
�𝒚𝒚𝟏𝟏𝒏𝒏𝟏𝟏

�
𝟐𝟐

𝒚𝒚
𝑵𝑵
� + �𝒏𝒏𝟐𝟐

𝑵𝑵
��

�𝒙𝒙𝟐𝟐𝒏𝒏𝟐𝟐
�
𝟐𝟐

𝒙𝒙
𝑵𝑵

+
�𝒚𝒚𝟐𝟐𝒏𝒏𝟐𝟐

�
𝟐𝟐

𝒚𝒚
𝑵𝑵
� + �𝒏𝒏𝟑𝟑

𝑵𝑵
��

�𝒙𝒙𝟑𝟑𝒏𝒏𝟑𝟑
�
𝟐𝟐

𝒙𝒙
𝑵𝑵

+
�𝒚𝒚𝟑𝟑𝒏𝒏𝟑𝟑

�
𝟐𝟐

𝒚𝒚
𝑵𝑵
� − 𝟏𝟏 

= 𝑛𝑛1
𝑁𝑁
�𝑥𝑥1

2𝑁𝑁
𝑥𝑥𝑛𝑛12

+ 𝑦𝑦12𝑁𝑁
𝑦𝑦𝑛𝑛12

� + 𝑛𝑛2
𝑁𝑁
�𝑥𝑥2

2𝑁𝑁
𝑥𝑥𝑛𝑛22

+ 𝑦𝑦22𝑁𝑁
𝑦𝑦𝑛𝑛22

� + 𝑛𝑛3
𝑁𝑁
�𝑥𝑥3

2𝑁𝑁
𝑥𝑥𝑛𝑛32

+ 𝑦𝑦32𝑁𝑁
𝑦𝑦𝑛𝑛32

� − 1  

= 𝑥𝑥12

𝑥𝑥𝑛𝑛1
+ (𝑛𝑛1−𝑥𝑥1)2

𝑛𝑛1(𝑁𝑁−𝑥𝑥) + 𝑥𝑥22

𝑥𝑥𝑛𝑛2
+ (𝑛𝑛2−𝑥𝑥2)2

𝑛𝑛2(𝑁𝑁−𝑥𝑥) + 𝑥𝑥32

𝑥𝑥𝑛𝑛3
+ (𝑛𝑛3−𝑥𝑥3)2

𝑛𝑛3(𝑁𝑁−𝑥𝑥) − 1  

= 1
𝑥𝑥𝑛𝑛1𝑛𝑛2𝑛𝑛3(𝑁𝑁−𝑥𝑥) �𝑥𝑥1

2𝑛𝑛2𝑛𝑛3(𝑁𝑁 − 𝑥𝑥) + 𝑥𝑥𝑛𝑛2𝑛𝑛3(𝑛𝑛1 − 𝑥𝑥1)2 + 𝑥𝑥22𝑛𝑛1𝑛𝑛3(𝑁𝑁 − 𝑥𝑥) +

𝑥𝑥𝑛𝑛1𝑛𝑛3(𝑛𝑛2 − 𝑥𝑥2)2 + 𝑥𝑥32𝑛𝑛1𝑛𝑛2(𝑁𝑁 − 𝑥𝑥) + 𝑥𝑥𝑛𝑛1𝑛𝑛2(𝑛𝑛3 − 𝑥𝑥3)2 − 𝑥𝑥𝑛𝑛1𝑛𝑛2𝑛𝑛3(𝑁𝑁 − 𝑥𝑥)�  
= 1

𝑥𝑥𝑛𝑛1𝑛𝑛2𝑛𝑛3(𝑁𝑁−𝑥𝑥)
(𝑥𝑥12𝑁𝑁𝑛𝑛2𝑛𝑛3 − 𝑥𝑥𝑥𝑥12𝑛𝑛2𝑛𝑛3 + 𝑥𝑥𝑛𝑛2𝑛𝑛3(𝑛𝑛12 − 2𝑛𝑛1𝑥𝑥1 + 𝑥𝑥12) + 𝑥𝑥22𝑁𝑁𝑛𝑛1𝑛𝑛3 −

𝑥𝑥𝑥𝑥22𝑛𝑛1𝑛𝑛3 + 𝑥𝑥𝑛𝑛1𝑛𝑛3(𝑛𝑛22 − 𝑥𝑥𝑛𝑛2𝑥𝑥2 + 𝑥𝑥22) + 𝑥𝑥32𝑁𝑁𝑛𝑛1𝑛𝑛2 − 𝑥𝑥𝑥𝑥32𝑛𝑛1𝑛𝑛2 + 𝑥𝑥𝑛𝑛1𝑛𝑛2(𝑛𝑛32 − 2𝑥𝑥3𝑛𝑛3 +
𝑥𝑥32) − 𝑥𝑥𝑥𝑥𝑛𝑛1𝑛𝑛2𝑛𝑛3 + 𝑥𝑥2𝑛𝑛1𝑛𝑛2𝑛𝑛3)  
= 1

𝑥𝑥𝑛𝑛1𝑛𝑛2𝑛𝑛3(𝑁𝑁−𝑥𝑥)
(𝑥𝑥12𝑁𝑁𝑛𝑛2𝑛𝑛3 − 𝑥𝑥𝑥𝑥12𝑛𝑛2𝑛𝑛3 + 𝑥𝑥𝑛𝑛12𝑛𝑛2𝑛𝑛3 − 2𝑥𝑥𝑥𝑥1𝑛𝑛1𝑛𝑛2𝑛𝑛3 + 𝑥𝑥𝑥𝑥12𝑛𝑛2𝑛𝑛3 +

𝑥𝑥22𝑁𝑁𝑛𝑛1𝑛𝑛3 − 𝑥𝑥𝑥𝑥22𝑛𝑛1𝑛𝑛3 + 𝑥𝑥𝑛𝑛1𝑛𝑛22𝑛𝑛3 − 2𝑥𝑥𝑥𝑥2𝑛𝑛1𝑛𝑛2𝑛𝑛3 + 𝑥𝑥𝑥𝑥22𝑛𝑛1𝑛𝑛3 + 𝑥𝑥𝑥𝑥32𝑛𝑛1𝑛𝑛2 −
𝑥𝑥𝑥𝑥𝑛𝑛1𝑛𝑛2𝑛𝑛3 + 𝑥𝑥2𝑛𝑛1𝑛𝑛2𝑛𝑛3)  
= 1

𝑥𝑥𝑛𝑛1𝑛𝑛2𝑛𝑛3(𝑁𝑁−𝑥𝑥) (𝑥𝑥12𝑁𝑁𝑛𝑛2(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2) + 𝑥𝑥𝑛𝑛12𝑛𝑛2(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2) − 2𝑥𝑥𝑥𝑥1𝑛𝑛1𝑛𝑛2(𝑁𝑁 −
𝑛𝑛1−𝑛𝑛2) + 𝑥𝑥22𝑁𝑁𝑛𝑛1(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2) + 𝑥𝑥𝑛𝑛1𝑛𝑛22(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2) − 2𝑥𝑥𝑥𝑥2𝑛𝑛1𝑛𝑛2(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2) +
(𝑁𝑁𝑛𝑛1𝑛𝑛2(𝑥𝑥 − 𝑥𝑥1 − 𝑥𝑥2)2 + 𝑥𝑥𝑛𝑛1𝑛𝑛2(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2)2 − 2𝑥𝑥𝑛𝑛1𝑛𝑛2(𝑥𝑥 − 𝑥𝑥1 − 𝑥𝑥2)(𝑁𝑁 − 𝑛𝑛1 −
𝑛𝑛2) − 𝑥𝑥𝑥𝑥𝑛𝑛1𝑛𝑛2(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2) + 𝑥𝑥2𝑛𝑛1𝑛𝑛2(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2))  
= 1

𝑥𝑥𝑛𝑛1𝑛𝑛2𝑛𝑛3(𝑁𝑁−𝑥𝑥) (𝑥𝑥12𝑁𝑁2𝑛𝑛2 − 𝑥𝑥12𝑁𝑁𝑛𝑛1𝑛𝑛2 − 𝑥𝑥12𝑁𝑁𝑛𝑛22 + 𝑥𝑥𝑥𝑥𝑛𝑛12𝑛𝑛2 − 𝑥𝑥𝑛𝑛13𝑛𝑛2 − 𝑥𝑥𝑛𝑛12𝑛𝑛22 −
2𝑥𝑥𝑥𝑥1𝑁𝑁𝑛𝑛1𝑛𝑛2 + 2𝑥𝑥𝑥𝑥1𝑛𝑛12𝑛𝑛2 + 2𝑥𝑥𝑥𝑥1𝑛𝑛1𝑛𝑛22 + 𝑥𝑥22𝑁𝑁2𝑛𝑛1 − 𝑥𝑥22𝑁𝑁𝑛𝑛12 − 𝑥𝑥22𝑁𝑁𝑛𝑛1𝑛𝑛2 + 𝑥𝑥𝑥𝑥𝑛𝑛1𝑛𝑛22 −
𝑥𝑥𝑛𝑛12𝑛𝑛22 − 𝑥𝑥𝑛𝑛1𝑛𝑛23 − 2𝑥𝑥𝑥𝑥2𝑁𝑁𝑛𝑛1𝑛𝑛2 + 2𝑥𝑥𝑥𝑥2𝑛𝑛12𝑛𝑛2 + 2𝑥𝑥𝑥𝑥2𝑛𝑛1𝑛𝑛22 + 𝑁𝑁𝑛𝑛1𝑛𝑛2(𝑥𝑥2 + 𝑥𝑥12 + 𝑥𝑥22 −
2𝑥𝑥𝑥𝑥1 − 2𝑥𝑥𝑥𝑥2 + 2𝑥𝑥1𝑥𝑥2) + 𝑥𝑥𝑛𝑛1𝑛𝑛2(𝑁𝑁2 + 𝑛𝑛12 + 𝑛𝑛22 − 2𝑁𝑁𝑛𝑛1 − 2𝑁𝑁𝑛𝑛2 + 2𝑛𝑛1𝑛𝑛2) −
2𝑥𝑥2𝑛𝑛1𝑛𝑛2(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛1) + 2𝑥𝑥𝑥𝑥1𝑛𝑛1𝑛𝑛2(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2) + 2𝑥𝑥𝑥𝑥2𝑛𝑛1𝑛𝑛2(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2) −
𝑥𝑥𝑁𝑁2𝑛𝑛1𝑛𝑛2 + 𝑥𝑥𝑥𝑥𝑛𝑛12𝑛𝑛2 + 𝑥𝑥𝑥𝑥𝑛𝑛1𝑛𝑛22 + 𝑥𝑥2𝑁𝑁𝑛𝑛1𝑛𝑛2 − 𝑥𝑥2𝑛𝑛12𝑛𝑛2 − 𝑥𝑥2𝑛𝑛1𝑛𝑛22)  
= 1

𝑥𝑥𝑛𝑛1𝑛𝑛2𝑛𝑛3(𝑁𝑁−𝑥𝑥) (𝑥𝑥12𝑁𝑁2𝑛𝑛2 − 𝑥𝑥12𝑁𝑁𝑛𝑛1𝑛𝑛2 − 𝑥𝑥12𝑁𝑁𝑛𝑛22 + 𝑥𝑥𝑥𝑥𝑛𝑛12𝑛𝑛2 − 𝑥𝑥𝑛𝑛13𝑛𝑛2 − 𝑥𝑥𝑛𝑛12𝑛𝑛22 −
2𝑥𝑥𝑥𝑥1𝑁𝑁𝑛𝑛1𝑛𝑛2 + 2𝑥𝑥𝑥𝑥1𝑛𝑛12𝑛𝑛2 + 2𝑥𝑥𝑥𝑥1𝑛𝑛1𝑛𝑛22 + 𝑥𝑥22𝑁𝑁2𝑛𝑛1 − 𝑥𝑥22𝑁𝑁𝑛𝑛12 − 𝑥𝑥22𝑁𝑁𝑛𝑛1𝑛𝑛2 + 𝑥𝑥𝑥𝑥𝑛𝑛1𝑛𝑛22 −
𝑥𝑥𝑛𝑛12𝑛𝑛22 − 𝑥𝑥𝑛𝑛1𝑛𝑛23 − 2𝑥𝑥𝑥𝑥2𝑁𝑁𝑛𝑛1𝑛𝑛2 + 2𝑥𝑥𝑥𝑥2𝑛𝑛12𝑛𝑛2 + 2𝑥𝑥𝑥𝑥2𝑛𝑛1𝑛𝑛22 + 𝑥𝑥2𝑁𝑁𝑛𝑛1𝑛𝑛2 + 𝑥𝑥12𝑁𝑁𝑛𝑛1𝑛𝑛2 +
𝑥𝑥22𝑁𝑁𝑛𝑛1𝑛𝑛2 − 2𝑥𝑥𝑥𝑥1𝑁𝑁𝑛𝑛1𝑛𝑛2 − 2𝑥𝑥𝑥𝑥2𝑁𝑁𝑛𝑛1𝑛𝑛2 + 2𝑥𝑥1𝑥𝑥2𝑁𝑁𝑛𝑛1𝑛𝑛2 + 𝑥𝑥𝑁𝑁2𝑛𝑛1𝑛𝑛2 + 𝑥𝑥𝑛𝑛13𝑛𝑛2 +
𝑥𝑥𝑛𝑛1𝑛𝑛23 − 2𝑥𝑥𝑥𝑥𝑛𝑛12𝑛𝑛2 − 2𝑥𝑥𝑥𝑥𝑛𝑛1𝑛𝑛22 + 2𝑥𝑥𝑛𝑛12𝑛𝑛22 − 2𝑥𝑥2𝑁𝑁𝑛𝑛1𝑛𝑛2 + 2𝑥𝑥2𝑛𝑛12𝑛𝑛2 + 2𝑥𝑥2𝑛𝑛1𝑛𝑛22 +
2𝑥𝑥𝑥𝑥1𝑁𝑁𝑛𝑛1𝑛𝑛2 − 2𝑥𝑥𝑥𝑥1𝑛𝑛12𝑛𝑛2 − 2𝑥𝑥𝑥𝑥1𝑛𝑛1𝑛𝑛22 + 2𝑥𝑥𝑥𝑥2𝑁𝑁𝑛𝑛1𝑛𝑛2 − 2𝑥𝑥𝑥𝑥2𝑛𝑛12𝑛𝑛2 − 2𝑥𝑥𝑥𝑥2𝑛𝑛1𝑛𝑛22 −
𝑥𝑥𝑁𝑁2𝑛𝑛1𝑛𝑛2 + 𝑥𝑥𝑥𝑥𝑛𝑛12𝑛𝑛2 + 𝑥𝑥𝑥𝑥𝑛𝑛1𝑛𝑛22 + 𝑥𝑥2𝑁𝑁𝑛𝑛1𝑛𝑛2 − 𝑥𝑥2𝑛𝑛12𝑛𝑛2 − 𝑥𝑥2𝑛𝑛1𝑛𝑛22)  
= 1

𝑥𝑥𝑛𝑛1𝑛𝑛2𝑛𝑛3(𝑁𝑁−𝑥𝑥)
(𝑥𝑥12𝑁𝑁2𝑛𝑛2 − 𝑥𝑥12𝑁𝑁𝑛𝑛22 + 𝑥𝑥22𝑁𝑁2𝑛𝑛1 − 𝑥𝑥22𝑁𝑁𝑛𝑛12 − 2𝑥𝑥𝑥𝑥1𝑁𝑁𝑛𝑛1𝑛𝑛2 −

2𝑥𝑥𝑥𝑥2𝑁𝑁𝑛𝑛1𝑛𝑛2 + 2𝑥𝑥1𝑥𝑥2𝑁𝑁𝑛𝑛1𝑛𝑛2 + 𝑥𝑥2𝑛𝑛12𝑛𝑛2 + 𝑥𝑥2𝑁𝑁𝑛𝑛22)  



 

 50 

= 1
𝑥𝑥𝑛𝑛1𝑛𝑛2𝑛𝑛3(𝑁𝑁−𝑥𝑥) (𝑛𝑛1(𝑥𝑥22𝑁𝑁2 − 2𝑥𝑥𝑥𝑥2𝑁𝑁𝑛𝑛2 + 𝑥𝑥2𝑛𝑛22) + 𝑛𝑛2�𝑥𝑥12𝑁𝑁2 − 2𝑥𝑥𝑥𝑥1𝑁𝑁𝑛𝑛1 + 𝑥𝑥2𝑛𝑛12 −

𝑁𝑁(𝑥𝑥12𝑛𝑛22 − 2𝑥𝑥1𝑥𝑥2𝑛𝑛1𝑛𝑛2 + 𝑥𝑥22𝑛𝑛12)�  
= 𝟏𝟏

𝒙𝒙𝒏𝒏𝟏𝟏𝒏𝒏𝟐𝟐𝒏𝒏𝟑𝟑(𝑵𝑵−𝒙𝒙) (𝒏𝒏𝟏𝟏(𝒙𝒙𝟐𝟐𝑵𝑵 − 𝒙𝒙𝒏𝒏𝟐𝟐)𝟐𝟐 + 𝒏𝒏𝟐𝟐(𝒙𝒙𝟏𝟏𝑵𝑵 − 𝒙𝒙𝒏𝒏𝟏𝟏)𝟐𝟐 − 𝑵𝑵(𝒙𝒙𝟏𝟏𝒏𝒏𝟐𝟐 − 𝒙𝒙𝟐𝟐𝒏𝒏𝟏𝟏)𝟐𝟐)  

𝑭𝑭𝑭𝑭 = �𝟏𝟏
𝑲𝑲
� ��

�𝒙𝒙𝟏𝟏𝒏𝒏𝟏𝟏
�
𝟐𝟐

𝒙𝒙
𝑵𝑵

+
�𝒚𝒚𝟏𝟏𝒏𝒏𝟏𝟏

�
𝟐𝟐

𝒚𝒚
𝑵𝑵
� + �

�𝒙𝒙𝟐𝟐𝒏𝒏𝟐𝟐
�
𝟐𝟐

𝒙𝒙
𝑵𝑵

+
�𝒚𝒚𝟐𝟐𝒏𝒏𝟐𝟐

�
𝟐𝟐

𝒚𝒚
𝑵𝑵
� + �

�𝒙𝒙𝟑𝟑𝒏𝒏𝟑𝟑
�
𝟐𝟐

𝒙𝒙
𝑵𝑵

+
�𝒚𝒚𝟑𝟑𝒏𝒏𝟑𝟑

�
𝟐𝟐

𝒚𝒚
𝑵𝑵
�� − 𝟏𝟏                           

= 1
3
�𝑥𝑥1

2𝑁𝑁
𝑥𝑥𝑛𝑛12

+ 𝑦𝑦12𝑁𝑁
𝑦𝑦𝑛𝑛12

�+ 1
3
�𝑥𝑥2

2𝑁𝑁
𝑥𝑥𝑛𝑛22

+ 𝑦𝑦22𝑁𝑁
𝑦𝑦𝑛𝑛22

�+ 1
3
�𝑥𝑥3

2𝑁𝑁
𝑥𝑥𝑛𝑛32

+ 𝑦𝑦32𝑁𝑁
𝑦𝑦𝑛𝑛32

� − 1 = 𝑥𝑥12𝑁𝑁
3𝑥𝑥𝑛𝑛12

+ (𝑛𝑛1−𝑥𝑥1)2𝑁𝑁
2(𝑁𝑁−𝑥𝑥)𝑛𝑛12

+ 𝑥𝑥22𝑁𝑁
3𝑥𝑥𝑛𝑛22

+
(𝑛𝑛2−𝑥𝑥2)2𝑁𝑁
2(𝑁𝑁−𝑥𝑥)𝑛𝑛22

+ 𝑥𝑥22𝑁𝑁
3𝑥𝑥𝑛𝑛22

+ (𝑛𝑛3−𝑥𝑥3)2𝑁𝑁
2(𝑁𝑁−𝑥𝑥)𝑛𝑛32

− 1  

= 1
3𝑥𝑥𝑛𝑛12𝑛𝑛22𝑛𝑛32(𝑁𝑁−𝑥𝑥) �𝑥𝑥1

2𝑁𝑁𝑛𝑛22𝑛𝑛32(𝑁𝑁 − 𝑥𝑥) + (𝑛𝑛1 − 𝑥𝑥1)2𝑁𝑁𝑛𝑛22𝑛𝑛32𝑥𝑥 + 𝑥𝑥22𝑁𝑁𝑛𝑛12𝑛𝑛32(𝑁𝑁 − 𝑥𝑥) +

(𝑛𝑛2 − 𝑥𝑥2)2𝑁𝑁𝑛𝑛12𝑛𝑛32𝑥𝑥 + 𝑥𝑥32𝑁𝑁𝑛𝑛12𝑛𝑛22(𝑁𝑁 − 𝑥𝑥) + (𝑛𝑛3 − 𝑥𝑥3)2𝑁𝑁𝑛𝑛12𝑛𝑛22𝑥𝑥 − 3𝑥𝑥𝑛𝑛12𝑛𝑛22𝑛𝑛32(𝑁𝑁 − 𝑥𝑥)�  
= 1

3𝑥𝑥𝑛𝑛12𝑛𝑛22𝑛𝑛32(𝑁𝑁−𝑥𝑥) �𝑥𝑥1
2𝑁𝑁𝑛𝑛22(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2)2(𝑁𝑁 − 𝑥𝑥) + (𝑛𝑛1 − 𝑥𝑥1)2𝑁𝑁𝑛𝑛22(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2)2𝑥𝑥 +

𝑥𝑥22𝑁𝑁𝑛𝑛12(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2)2(𝑁𝑁 − 𝑥𝑥) + (𝑛𝑛2 − 𝑥𝑥2)2𝑁𝑁𝑛𝑛12(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2)2𝑥𝑥 + (𝑥𝑥 − 𝑥𝑥1 −
𝑥𝑥2)2𝑁𝑁𝑛𝑛12𝑛𝑛22(𝑁𝑁 − 𝑥𝑥) + (𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2 − 𝑥𝑥 + 𝑥𝑥1 + 𝑥𝑥2)2𝑁𝑁𝑛𝑛12𝑛𝑛22𝑥𝑥 − 3𝑥𝑥𝑛𝑛12𝑛𝑛22(𝑁𝑁 − 𝑛𝑛1 −
𝑛𝑛2)2(𝑁𝑁 − 𝑥𝑥)�  

= 𝑵𝑵�𝒏𝒏𝟏𝟏(𝒙𝒙𝟐𝟐𝑵𝑵−𝒙𝒙𝒏𝒏𝟐𝟐)𝟐𝟐+𝒏𝒏𝟐𝟐(𝒙𝒙𝟏𝟏𝑵𝑵−𝒙𝒙𝒏𝒏𝟏𝟏)𝟐𝟐−𝑵𝑵(𝒙𝒙𝟏𝟏𝒏𝒏𝟐𝟐−𝒙𝒙𝟐𝟐𝒏𝒏𝟏𝟏)𝟐𝟐�
𝟑𝟑𝟑𝟑𝟑𝟑𝒏𝒏𝟏𝟏𝒏𝒏𝟐𝟐𝒏𝒏𝟑𝟑

𝟐𝟐  +
𝑵𝑵𝟐𝟐�(𝒏𝒏𝟑𝟑−𝒏𝒏𝟏𝟏)�𝒙𝒙𝟏𝟏𝒏𝒏𝟏𝟏

−𝒙𝒙𝑵𝑵�
𝟐𝟐
+(𝒏𝒏𝟑𝟑−𝒏𝒏𝟐𝟐)�𝒙𝒙𝟐𝟐𝒏𝒏𝟐𝟐

−𝒙𝒙𝑵𝑵�
𝟐𝟐
�

𝟑𝟑𝟑𝟑𝟑𝟑𝒏𝒏𝟑𝟑
  

 
 

𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 = �𝒏𝒏𝟏𝟏
𝑵𝑵
�
𝟐𝟐
�
�𝒙𝒙𝟏𝟏𝒏𝒏𝟏𝟏

−𝒙𝒙
𝑵𝑵�

𝟐𝟐
+�𝒚𝒚𝟏𝟏𝒏𝒏𝟏𝟏

−𝒚𝒚𝑵𝑵�
𝟐𝟐

𝒏𝒏𝟏𝟏
�+ �𝒏𝒏𝟐𝟐

𝑵𝑵
�
𝟐𝟐
�
�𝒙𝒙𝟐𝟐𝒏𝒏𝟐𝟐

−𝒙𝒙
𝑵𝑵�

𝟐𝟐
+�𝒚𝒚𝟐𝟐𝒏𝒏𝟐𝟐

−𝒚𝒚𝑵𝑵�
𝟐𝟐

𝒏𝒏𝟐𝟐
� +

�𝒏𝒏𝟑𝟑
𝑵𝑵
�
𝟐𝟐
�
�𝒙𝒙𝟑𝟑𝒏𝒏𝟑𝟑

−𝒙𝒙
𝑵𝑵�

𝟐𝟐
+�𝒚𝒚𝟑𝟑𝒏𝒏𝟑𝟑

−𝒚𝒚𝑵𝑵�
𝟐𝟐

𝒏𝒏𝟑𝟑
�  

= 𝑛𝑛1
𝑁𝑁2
�𝑥𝑥1

2

𝑛𝑛12
− 2𝑥𝑥𝑥𝑥1

𝑁𝑁𝑛𝑛1
+ 𝑥𝑥2

𝑁𝑁2
+ 𝑦𝑦12

𝑛𝑛12
− 2𝑦𝑦𝑦𝑦1

𝑁𝑁𝑛𝑛1
+ 𝑦𝑦2

𝑁𝑁2
� + 𝑛𝑛2

𝑁𝑁2
�𝑥𝑥2

2

𝑛𝑛22
− 2𝑥𝑥𝑥𝑥2

𝑁𝑁𝑛𝑛2
+ 𝑥𝑥2

𝑁𝑁2
+ 𝑦𝑦22

𝑛𝑛22
− 2𝑦𝑦𝑦𝑦2

𝑁𝑁𝑛𝑛2
+ 𝑦𝑦2

𝑁𝑁2
� +

𝑛𝑛3
𝑁𝑁2
�𝑥𝑥3

2

𝑛𝑛32
− 2𝑥𝑥𝑥𝑥3

𝑁𝑁𝑛𝑛3
+ 𝑥𝑥2

𝑁𝑁2
+ 𝑦𝑦32

𝑛𝑛32
− 2𝑦𝑦𝑦𝑦3

𝑁𝑁𝑛𝑛3
+ 𝑦𝑦2

𝑁𝑁2
�  

= 𝑥𝑥12

𝑛𝑛1𝑁𝑁2
− 2𝑥𝑥𝑥𝑥1

𝑁𝑁3
+ 𝑥𝑥2𝑛𝑛1

𝑁𝑁4
+ 𝑦𝑦12

𝑁𝑁2𝑛𝑛1
− 2𝑦𝑦𝑦𝑦1

𝑁𝑁3
+ 𝑦𝑦2𝑛𝑛1

𝑁𝑁4
+ 𝑥𝑥2

𝑁𝑁2𝑛𝑛2
− 2𝑥𝑥𝑥𝑥2

𝑁𝑁3
+ 𝑥𝑥2𝑛𝑛2

𝑁𝑁4
+ 𝑦𝑦22

𝑁𝑁2𝑛𝑛2
− 2𝑦𝑦𝑦𝑦2

𝑁𝑁3
+

𝑦𝑦2𝑛𝑛2
𝑁𝑁4

+ 𝑥𝑥32

𝑛𝑛3𝑁𝑁2
− 2𝑥𝑥𝑥𝑥3

𝑁𝑁3
+ 𝑥𝑥2𝑛𝑛3

𝑁𝑁4
+ 𝑦𝑦32

𝑁𝑁2𝑛𝑛3
− 2𝑦𝑦𝑦𝑦3

𝑁𝑁3
+ 𝑦𝑦2𝑛𝑛3

𝑁𝑁4
  

= 1
𝑁𝑁4𝑛𝑛1𝑛𝑛2𝑛𝑛3

(𝑥𝑥12𝑁𝑁2𝑛𝑛2𝑛𝑛3 − 2𝑥𝑥𝑥𝑥1𝑁𝑁𝑛𝑛1𝑛𝑛2𝑛𝑛3 + 𝑥𝑥2𝑛𝑛12𝑛𝑛2𝑛𝑛3 + 𝑦𝑦12𝑁𝑁2𝑛𝑛2𝑛𝑛3 − 2𝑦𝑦𝑦𝑦1𝑁𝑁𝑛𝑛1𝑛𝑛2𝑛𝑛3 +
𝑦𝑦2𝑛𝑛12𝑛𝑛2𝑛𝑛3 + 𝑥𝑥22𝑁𝑁2𝑛𝑛1𝑛𝑛3 − 2𝑥𝑥𝑥𝑥2𝑁𝑁𝑛𝑛1𝑛𝑛2𝑛𝑛3 + 𝑥𝑥2𝑛𝑛1𝑛𝑛22𝑛𝑛3 + 𝑦𝑦22𝑁𝑁2𝑛𝑛1𝑛𝑛3 −
2𝑦𝑦𝑦𝑦2𝑁𝑁𝑛𝑛1𝑛𝑛2𝑛𝑛3 + 𝑦𝑦2𝑛𝑛1𝑛𝑛22𝑛𝑛3 + 𝑥𝑥32𝑁𝑁2𝑛𝑛1𝑛𝑛2 − 2𝑥𝑥𝑥𝑥3𝑁𝑁𝑛𝑛1𝑛𝑛2𝑛𝑛3 + 𝑥𝑥2𝑛𝑛1𝑛𝑛2𝑛𝑛32 +
𝑦𝑦32𝑁𝑁2𝑛𝑛1𝑛𝑛2 − 2𝑦𝑦𝑦𝑦3𝑁𝑁𝑛𝑛1𝑛𝑛2𝑛𝑛3 + 𝑦𝑦2𝑛𝑛1𝑛𝑛2𝑛𝑛32)  
= 1

𝑁𝑁4𝑛𝑛1𝑛𝑛2𝑛𝑛3
(𝑥𝑥12𝑁𝑁2𝑛𝑛2(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2) − 2𝑥𝑥𝑥𝑥1𝑁𝑁𝑛𝑛1𝑛𝑛2(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2) + 𝑥𝑥2𝑛𝑛12𝑛𝑛2(𝑁𝑁 − 𝑛𝑛1 −

𝑛𝑛2) + (𝑛𝑛1 − 𝑥𝑥1)𝑁𝑁2𝑛𝑛2(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2) − 2(𝑁𝑁 − 𝑥𝑥)(𝑛𝑛1 − 𝑥𝑥1)𝑁𝑁𝑛𝑛1𝑛𝑛2(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2) +
(𝑁𝑁 − 𝑥𝑥)2𝑛𝑛12𝑛𝑛2(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2) + 𝑥𝑥22𝑁𝑁2𝑛𝑛1(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2) − 2𝑥𝑥𝑥𝑥2𝑁𝑁𝑛𝑛1𝑛𝑛2(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2) +
𝑥𝑥2𝑛𝑛1𝑛𝑛22(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2) + (𝑛𝑛2 − 𝑥𝑥2)2𝑁𝑁2𝑛𝑛1(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2) − 2(𝑁𝑁 − 𝑥𝑥)(𝑛𝑛2 −
𝑥𝑥2)𝑁𝑁𝑛𝑛1𝑛𝑛2(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2) + (𝑁𝑁 − 𝑥𝑥)2𝑛𝑛1𝑛𝑛22(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2) + (𝑥𝑥 − 𝑥𝑥1 − 𝑥𝑥2)2𝑁𝑁2𝑛𝑛1𝑛𝑛2 −



 

 51 

2𝑥𝑥(𝑥𝑥 − 𝑥𝑥1 − 𝑥𝑥2)𝑁𝑁𝑛𝑛1𝑛𝑛2(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2) + 𝑥𝑥2𝑛𝑛1𝑛𝑛2(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2)2 + (𝑛𝑛3 −
𝑥𝑥3)2𝑁𝑁2𝑛𝑛1𝑛𝑛2 − 2(𝑁𝑁 − 𝑥𝑥)(𝑛𝑛3 − 𝑥𝑥3)𝑁𝑁𝑛𝑛1𝑛𝑛2(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2) + (𝑁𝑁 − 𝑥𝑥)2𝑛𝑛1𝑛𝑛2(𝑁𝑁 − 𝑛𝑛1 −
𝑛𝑛2)2)  

= 𝟐𝟐�𝒏𝒏𝟏𝟏(𝒙𝒙𝟐𝟐𝑵𝑵−𝒙𝒙𝒏𝒏𝟐𝟐)𝟐𝟐+𝒏𝒏𝟐𝟐(𝒙𝒙𝟏𝟏𝑵𝑵−𝒙𝒙𝒏𝒏𝟏𝟏)𝟐𝟐−𝑵𝑵(𝒙𝒙𝟏𝟏𝒏𝒏𝟐𝟐−𝒙𝒙𝟐𝟐𝒏𝒏𝟏𝟏)𝟐𝟐�
𝑵𝑵𝟑𝟑𝒏𝒏𝟏𝟏𝒏𝒏𝟐𝟐𝒏𝒏𝟑𝟑

  
Lemma 2:  
 
𝐹𝐹𝐹𝐹 = 1

3𝑥𝑥𝑥𝑥𝑛𝑛12𝑛𝑛22𝑛𝑛32
(𝑛𝑛22(𝑥𝑥1𝑁𝑁 − 𝑥𝑥𝑛𝑛1)2[(𝑁𝑁 − 𝑛𝑛1−𝑛𝑛2)2 + 𝑛𝑛1𝑛𝑛2 + 𝑛𝑛12] + 𝑛𝑛12(𝑥𝑥2𝑁𝑁 −

𝑥𝑥𝑛𝑛2)2[(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2)2 + 𝑛𝑛1𝑛𝑛2 + 𝑛𝑛22] − 𝑁𝑁2(𝑥𝑥1𝑛𝑛2 − 𝑥𝑥2𝑛𝑛1)2[𝑛𝑛1𝑛𝑛2])  
= 1

3𝑥𝑥𝑥𝑥𝑛𝑛12𝑛𝑛22𝑛𝑛32
(𝑛𝑛22(𝑥𝑥1𝑁𝑁 − 𝑥𝑥𝑛𝑛1)2[𝑁𝑁2 − 3𝑁𝑁𝑛𝑛1 − 2𝑁𝑁𝑛𝑛2 + 𝑛𝑛22 + 2𝑛𝑛12 + 3𝑛𝑛1𝑛𝑛2] +

𝑛𝑛12(𝑥𝑥2𝑁𝑁 − 𝑥𝑥𝑛𝑛2)2[𝑁𝑁2 − 2𝑁𝑁𝑛𝑛1 − 3𝑁𝑁𝑛𝑛2 + 𝑛𝑛12 + 2𝑛𝑛22 + 3𝑛𝑛1𝑛𝑛2] − 𝑁𝑁2𝑛𝑛1𝑛𝑛2(𝑥𝑥1𝑛𝑛2 −
𝑥𝑥2𝑛𝑛1)2 + 𝑁𝑁𝑛𝑛1𝑛𝑛22(𝑥𝑥1𝑁𝑁 − 𝑥𝑥𝑛𝑛1)2 + 𝑁𝑁𝑛𝑛12𝑛𝑛2(𝑥𝑥2𝑁𝑁 − 𝑥𝑥𝑛𝑛2)2)  
= 1

3𝑥𝑥𝑥𝑥𝑛𝑛12𝑛𝑛22𝑛𝑛32
(𝑛𝑛22(𝑥𝑥1𝑁𝑁 − 𝑥𝑥𝑛𝑛1)2(𝑛𝑛32 − 𝑁𝑁𝑛𝑛1 + 𝑛𝑛12 + 𝑛𝑛1𝑛𝑛2) + 𝑛𝑛12(𝑥𝑥2𝑁𝑁 − 𝑥𝑥𝑛𝑛2)2(𝑛𝑛32 −

𝑁𝑁𝑛𝑛2 + 𝑛𝑛22 + 𝑛𝑛1𝑛𝑛2) + 𝑁𝑁𝑛𝑛1𝑛𝑛2[−𝑁𝑁(𝑥𝑥1𝑛𝑛2 − 𝑥𝑥2𝑛𝑛1)2 + 𝑛𝑛2(𝑥𝑥1𝑁𝑁 − 𝑥𝑥𝑛𝑛1)2 +
𝑛𝑛1(𝑥𝑥2𝑁𝑁 − 𝑥𝑥𝑛𝑛2)2)]   
= 1

3𝑥𝑥𝑥𝑥𝑛𝑛12𝑛𝑛22𝑛𝑛32
(𝑛𝑛22(𝑥𝑥1𝑁𝑁 − 𝑥𝑥𝑛𝑛1)2(𝑛𝑛32 − 𝑛𝑛1(𝑁𝑁 − 𝑛𝑛1 − 𝑛𝑛2)) + 𝑛𝑛12(𝑥𝑥2𝑁𝑁 − 𝑥𝑥𝑛𝑛2)2(𝑛𝑛32 −

𝑛𝑛2(𝑁𝑁 − 𝑛𝑛2 − 𝑛𝑛1)) + 𝑁𝑁𝑛𝑛1𝑛𝑛2[−𝑁𝑁(𝑥𝑥1𝑛𝑛2 − 𝑥𝑥2𝑛𝑛1)2 + 𝑛𝑛2(𝑥𝑥1𝑁𝑁 − 𝑥𝑥𝑛𝑛1)2 + 𝑛𝑛1(𝑥𝑥2𝑁𝑁 −
𝑥𝑥𝑛𝑛2)2)]   
= 1

3𝑥𝑥𝑥𝑥𝑛𝑛12𝑛𝑛22𝑛𝑛32
(𝑛𝑛22(𝑥𝑥1𝑁𝑁 − 𝑥𝑥𝑛𝑛1)2(𝑛𝑛32 − 𝑛𝑛1𝑛𝑛3) + 𝑛𝑛12(𝑥𝑥2𝑁𝑁 − 𝑥𝑥𝑛𝑛2)2(𝑛𝑛32 − 𝑛𝑛2𝑛𝑛3) +

𝑁𝑁𝑛𝑛1𝑛𝑛2[−𝑁𝑁(𝑥𝑥1𝑛𝑛2 − 𝑥𝑥2𝑛𝑛1)2 + 𝑛𝑛2(𝑥𝑥1𝑁𝑁 − 𝑥𝑥𝑛𝑛1)2 + 𝑛𝑛1(𝑥𝑥2𝑁𝑁 − 𝑥𝑥𝑛𝑛2)2)]  
= 1

3𝑥𝑥𝑥𝑥𝑛𝑛12𝑛𝑛22𝑛𝑛32
(𝑛𝑛22𝑛𝑛3(𝑛𝑛3 − 𝑛𝑛1)(𝑥𝑥1𝑁𝑁 − 𝑥𝑥𝑛𝑛1)2 + 𝑛𝑛12𝑛𝑛3(𝑛𝑛3 − 𝑛𝑛2)(𝑥𝑥2𝑁𝑁 − 𝑥𝑥𝑛𝑛2)2 +

𝑁𝑁𝑛𝑛1𝑛𝑛2[−𝑁𝑁(𝑥𝑥1𝑛𝑛2 − 𝑥𝑥2𝑛𝑛1)2 + 𝑛𝑛2(𝑥𝑥1𝑁𝑁 − 𝑥𝑥𝑛𝑛1)2 + 𝑛𝑛1(𝑥𝑥2𝑁𝑁 − 𝑥𝑥𝑛𝑛2)2]  
 

𝑭𝑭𝑭𝑭 = 𝑵𝑵[𝑸𝑸]
𝟑𝟑𝒏𝒏𝟑𝟑

+
𝑵𝑵𝟐𝟐[(𝒏𝒏𝟑𝟑−𝒏𝒏𝟐𝟐)�𝒙𝒙𝟐𝟐𝒏𝒏𝟐𝟐

−𝒙𝒙
𝑵𝑵�

𝟐𝟐
+(𝒏𝒏𝟑𝟑−𝒏𝒏𝟏𝟏)�𝒙𝒙𝟏𝟏𝒏𝒏𝟏𝟏

−𝒙𝒙𝑵𝑵�
𝟐𝟐

𝟑𝟑𝟑𝟑𝟑𝟑𝒏𝒏𝟑𝟑
  

𝑭𝑭𝑭𝑭 = 𝑵𝑵𝟐𝟐

𝟑𝟑𝟑𝟑𝟑𝟑𝒏𝒏𝟑𝟑
�𝑵𝑵

𝟐𝟐[𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝒏𝒏]
𝟐𝟐

+ (𝒏𝒏𝟑𝟑 − 𝑵𝑵𝟏𝟏) �𝒙𝒙𝟏𝟏
𝒏𝒏𝟏𝟏
− 𝒙𝒙

𝑵𝑵
�
𝟐𝟐

+ (𝒏𝒏𝟑𝟑 − 𝒏𝒏𝟐𝟐) �𝒙𝒙𝟐𝟐
𝒏𝒏𝟐𝟐
− 𝒙𝒙

𝑵𝑵
�
𝟐𝟐
�  

𝑸𝑸 = 𝑵𝑵𝟑𝟑

𝟐𝟐𝟐𝟐𝟐𝟐
[𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾]  
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