

Abstract
of the Thesis of

Sami Bilal Shames Ell Deen for Masters of Science
Major: Computational Science

Title: SAraBERT:Affixing Inter-Sentence Transformers to AraBERT
for Extractive Summarization

Natural language processing (NLP) has made remarkable advancement with
the advent of deep learning technology. The deep learning models have pro-
duced enhanced results in NLP tasks such as text summarization, text trans-
lation, and sentiment analysis. In particular, text summarization is becoming
an important task as the number and volume of electronic documents are in-
creasing rapidly. However, NLP for Modern Standard Arabic (MSA) did not
witness enough research due to the many challenges the language faces, the
complexity of the language itself and the lack of structured data. In this re-
search, we introduce SAraBERT, an enhanced version of AraBERT that adds
inter-sentence transformer layers for extractive summarization tasks. To en-
sure that the summaries generated achieve a high coverage of the document’s
main ideas, we propose Semantic Siamese Similarity, a novel evaluation metric
that measures the level of similarity between two text inputs. Testing using
BLEU, ROUGE, and Semantic Siamese similarity on Sarabert and published
related models showed the effectiveness of our proposed model and motivate
follow on research.

2

Table of Contents

ACKNOWLEDGEMENTS 1

ABSTRACT 2

1 Introduction 7

2 Literature Review 9
2.1 Arabic Language . 9
2.2 Arabic challenges . 10

2.2.1 Morphological richness . 10
2.2.2 Orthographic ambiguity . 10
2.2.3 Dialectal variation . 11
2.2.4 Orthographic inconsistency 11
2.2.5 Resource Poverty . 11

2.3 NLP . 12
2.3.1 Text Summarization . 12

2.4 Previous Work . 12
2.4.1 Classical Approaches . 13
2.4.2 Machine Learning Approach 13
2.4.3 Other Approaches . 14

2.5 Readability Metrics . 15
2.5.1 Flesch Reading Ease . 15
2.5.2 SMOG Index . 15
2.5.3 FOG Index . 15
2.5.4 OSMAN . 15

2.6 Evaluation Metrics . 16
2.6.1 ROUGE . 16
2.6.2 BLEU . 17
2.6.3 BertScore . 17
2.6.4 Triangle Similarity - Sector Similarity (TS-SS) 18

3 Methodology 20
3.1 SAraBERT . 20
3.2 Encoder . 23

3

3.2.1 Simple Classifier . 23
3.2.2 Recurrent Network . 23
3.2.3 Transformer . 24

3.3 Siamese Semantic Similarity (SSS) 25

4 Experiments 28
4.1 Dataset . 28

4.1.1 CNN/ Daily Mail . 28
4.1.2 Dataset Translation . 29
4.1.3 Corpus Topic Categories . 30
4.1.4 Kalimat Dataset . 33

4.2 Data Preprocessing . 33
4.3 Training Details . 34
4.4 Results . 36
4.5 Discussion . 38

5 Conclusion 39

A Siamese Semantic Similarity Experiments 40

B Sample Summaries form SaraBert 43

C Translation Quality 45

Bibliography 48

4

Illustrations

3.1 Overview for the architecture of the original BERT model 21
3.2 Overview for the architecture of the SAraBERT model 22

4.1 Sample English passage translated to Arabic and Diactritized . . 30
4.2 Histogram of readability comparisons between english and arabic

with and without diacritics . 31
4.3 Bar chart showing the distribution of document labels per category 32
4.4 Bar chart showing the distribution of corpus sentences and words

per category . 32
4.5 Cosine Similarity of named entity counts between abstracts and

articles . 33
4.6 Sample representation of tokenizing and segmenting an arabic

passage . 34
4.7 Loss training curve of each model 36
4.8 Pearson Correlation between the similarity metrics 38

B.1 Sample SaraBert summarization. Yellow highlighting represents
summary extraction using MLP as encoder, Green represents RNN
encoder, and Blue represents Transformer 43

B.2 Sample SaraBert+BiLSTM of a good summarization 44
B.3 Sample SaraBert+BiLSTM of a bad summarization 44

C.1 Sample English passage with Fleach score of 11.38 (Hard to read) 45
C.2 Sample Arabic passage (translation of Figure[C.1]) with Osman

score of 66.73 (Slight hard to read) 46
C.3 Sample English passage with Fleach score of 83.69 (Easy to read) 46
C.4 Sample Arabic passage (translation of Figure[C.3]) with Osman

score of 88.01 (Easy to read) . 46

5

Tables

3.1 interpretation of SSS scores . 26

4.1 Document highlighted counts . 29
4.2 Average number of tokens for each feature 29
4.3 Average Readability Measures . 29
4.4 Translation Experiment Results . 29
4.5 Average Readability Measures for Arabic 30
4.6 Distribution of documents between different categories 32
4.7 Distribution of documents between the split sets 35
4.8 Hyper-parameters of different encoders 35
4.9 BLEU scores over Kalimat Dataset 37
4.10ROUGE scores over Kalimat Dataset 37
4.11Results of different models under several evaluation metrics . . . 37

A.1 List of a reference sentence (1) and set of candidate sentences(2
to 19) . 41

A.2 Results of computing SSS and BertScore (BS) along with other
required computations for the candidates in Table[A.1] linked by
ID . 42

C.2 Correlation between the different features 47
C.1 Average value for documents computed over 1000 sample docu-

ments . 47

6

Chapter 1

Introduction

As the amount of textual information available online grows rapidly, it becomes
difficult for readers to read large amounts of text and find out which of these
texts are useful. As a result, researchers in the field of automatic text sum-
marization could make use of tools that can make multiple-document reading
more efficient. The task of text summarization is considered one of the most
important and challenging NLP tasks. This task is based on generating short
text from long text, so the short text contains the most important information
from the original text. The task is often divided into two paradigms known as
abstractive summarization and extractive summarization. The first method-
ology determines the essential sections of the text using statistical tool. The
summary is represented by truncating and connecting these sections. The
second methodology emulates human activity in summarizing, which is based
on presenting the text’s core idea in a new linguistic style and using different
terms. It incorporates more complicated procedures including paraphrase,
generalization, and reordering [1].This thesis focuses on extractive summa-
rization. While there is a wealth of scientific research in the area of extractive
summarization, most of this research is based on English texts, and there is a
lack of research on summarizing Arabic texts.

Arabic natural language processing (NLP) is considered more complex than
English and other European languages. The main reason for this complexity
is the highly derived and rich form of Arabic morphology. That’s why Arabic
NLP impede research progress compared to other languages. Some examples
of these challenges are:

1) Morphological richness language [2][3]: Arabic is heavily derived, in-
flected and has a significant impact on NLP tasks such as stemming and lem-
ming.

2) Absence of diacritics: diacritics play an important role in determining
the meaning of words and facilitating the task of tokenizing and parsing text.

3) No capitalization in Arabic language: without the usage of uppercase
letters in Arabic, it will be difficult to identify proper nouns, titles, and abbre-

7

viations.
In this work, we introduce SAraBERT, a novel and enhanced version of

AraBERT that adds inter-sentence transformer layers for extractive summa-
rization tasks. To ensure that the summaries generated achieve a high cover-
age of the document’s main ideas, we also propose a novel evaluation metric,
Semantic Siamese Similarity that measures the level of similarity between two
text inputs using contextualized embeddings in addition to exact match. We
use an English benchmark dataset (CNN/Daily Mail) and translate it to Mod-
ern Standard Arabic language to train SAraBERT. Testing the performance
of Sarabert in comparison with other published models was evaluated using
BLEU, ROUGE, and Semantic Siamese similarity on Kalimat Dataset. Results
have shown the effectiveness of our proposed model.

In summary, the main contributions of this thesis, which are as follows:

• A novel Arabic language model for extractive summarization that builds
on AraBERT model.

• A novel hybrid similarity metric that measures similarities between 2 text
based on the semantic and syntactic features.

• An arabic corpus translated from English that targets the extractive sum-
marization and Question Answering tasks, available upon request.

In the next chapter [2] we survey the related work and background infor-
mation required for this work. Chapter[3] clearly states the model’s architec-
ture and explains the proposed metric. Chapter [4] shows the experimental
research and highlights the obtained results along with some insights. Finally
Chapter [5] concludes the thesis with follow on research directions.

8

Chapter 2

Literature Review

The chapter summarizes the related literature. It introduces the Arabic lan-
guage and lists its challenges. The chapter then mentions previous work done
on text summarization for Arabic documents. It also explains the metrics used
for evaluating the readability level of the input documents and the ones used
for evaluating the generated summaries.

2.1 Arabic Language

Arabic is one of the most spoken language spoken languages in the world. Ara-
bic relates to Islam and more than 200 million Muslims pray five times a day
utilizing this dialect. Furthermore, Arabic is the official first language of many
Arab countries and is among the official languages of the United Nations. Ara-
bic is an extremely rich language and is related to the Semitic dialects, which
is different from the Indo-European languages spoken in the West.

Arabic language has a rich complex grammatical structure[4]. For in-
stance, a noun and its modifiers need to agree in number, gender, case, and
definiteness [5]. Moreover, in Arabic, there are advancements that really
mean “Mother of” or “Father of” to show ownership, a trademark, or a prop-
erty, and use gendered pronounce; it has no fair-minded pronouns[6]. Arabic
sentences can be nominal (subject-verb), or verbal (verb-subject) with free or-
der; however, English sentences are fundamentally in the (subject-verb) order.
The free order property of the Arabic language presents a crucial challenge
for some Arabic NLP applications[7] (Check section 2.2).

Three types characterize Arabic: Classical Arabic (Quranic), Modern Stan-
dard Arabic (MSA), and Dialectical Arabic[8][9]. Classical Arabic is mainly
spoken in Arab-speaking countries, it is found in religious writings such as
Sunnah and Hadith, and in many historical documents[10]. Diacritic marks
are commonly used within Classical Arabic as phonetic guides to show the
correct pronunciation. In contrast, diacritics are considered optional in most
other Arabic scripts [11]. MSA is used for television, newspapers, poetry, and

9

books. Arabic lessons at the Arab Academy are also taught in a modern stan-
dard format. MSA can be transformed to accommodate new words that must
be created due to science or technology. However, Arabic writing has not
changed its alphabet, spelling, or vocabulary for at least four millennia.

In this thesis, illustrative examples are used for clarification. Examples are
given in MSA as it represents the majority of written material and formal doc-
uments, lectures, and articles. Moreover, it is the universal language version
that all Arabic speakers can understand.

2.2 Arabic challenges

Arabic grammar has a rich morphology and intricate sentence structure and

grammarians have described it as the language of dad (“ XA 	
� Ë@

�
é
	
ª Ë”) [12]

[13] states that Arabic has a greatly rich morphology mixing templatic and
affixational morphemes as well as complex morphological norms.

In what follows, we list as highlights, the number of modeling challenges
for arabic NLP.

2.2.1 Morphological richness

Arabic words have numerous forms resulting from a rich inflectional system
that includes features for gender, number, person, aspect, mood, case, and
several attachable clitics. As a result, it is not uncommon to find single Arabic

words that translate into five-word English sentences (A î
�	
Eñ � �P

�
Y
�
J

�
�
�
ð) "wa-sa-

ya-drus-uuna-ha‘ "and they will study it’. This challenge leads to a higher
number of unique vocabulary types compared to English, which is challenging
for machine learning models.

2.2.2 Orthographic ambiguity

The Arabic script uses optional diacritical marks to represent short vowels and
other phonological information that is important to distinguish words from
each other. These marks are almost never used outside of religious texts and
children’s literature, which leads to a high degree of ambiguity. Arab scholars
do not usually have a problem with reading undiacritized Arabic, but it is a
challenge for Arabic learners and computers. This out-of-context ambiguity in
Standard Arabic could lead on average to a staggering 12 analyses per word:

10

for example, the readings of the word �
I�.

�
J» " ktbt" (no diacritics) includes:

•
��
I

�
�.

��
J
�
» - katabtu – I wrote

•
��
I

�
�.

��
J
�
» - katabat – she wrote

•
��
I�.

�
J�

�
» - ka+t ibit – such as Tiber

2.2.3 Dialectal variation

Arabic is also not a single language but rather a family of historically linked
varieties, among which MSA is the official language of governance, education,
and the media, while the other varieties, so-called dialects, are the languages
of daily use in spoken, and increasingly written, form. Arab children grow up
learning their native dialects, such as Egyptian, Levantine, Gulf, or Moroccan
Arabic, which have their own grammars and lexicons that differ from each

other and from MSA. For example, the word for ‘car’ is (
�
èPA J
 �) sayyaara in

MSA, (
�
éJ
K. Q«) arabiyya in Egyptian Arabic,(

�
éJ. ëQ») karhba in Tunisian Arabic,

and (Q
�
KñÓ) motar in Gulf Arabic. The difference can be significant to a point

that using MSA tools on dialectal Arabic leads to quite sub-optimal perfor-
mance.

2.2.4 Orthographic inconsistency

MSA and dialectal Arabic are both written with high degree of spelling incon-
sistency, especially on social media: A third of all words in MSA comments
online having spelling errors; and dialectal Arabic has no official spelling
standards, although there are efforts to develop such standards computa-
tionally, such as the work on Conventional Orthography for Dialectal Ara-
bic (CODA). Furthermore, Arabic can be encountered online written in other
scripts, most notably, a romanized version called Arabizi that attempts to cap-
ture the phonology of the words.

2.2.5 Resource Poverty

Data is the bottleneck of Arabic NLP; this is true for rule-based approaches
that need lexicons and carefully created rules, and for machine learning ap-

11

proaches that need corpora and annotated corpora, Although Arabic un-annotated
text corpora are quite plentiful, Arabic morphological analyzers and lexicons
as well as annotated and parallel data in non-news genre and in dialects are
limited. While none of the issues mentioned here are unique to Arabic; as
Turkish and Finnish are morphologically rich and Hebrew is orthographically
have dialectal variants for instance, the combination and degree of these phe-
nomena in Arabic creates a particularly challenging situation for NLP research
and development. Additional information has been published on Arabic com-
putational processing challenges[14][15].

2.3 NLP

NLP is a branch of computer science that attempts to make it easier for ma-
chines (computers that comprehend machine language or programming lan-
guages) and humans to interact (who communicate and understand natural
languages like English, Arabic and Chinese etc.) using written languages.
Today, many applications we use and rely on, are powered by NLP.

2.3.1 Text Summarization

With all of its recent advancements, the task of text summarization is one of
the most critical problems that computer capabilities confront. The goal of
this task is to create short text from larger text that contains the most rele-
vant information from the original text. There are two basic methodologies
used to summarize the texts which are extractive summarization from which
most systems with good results came out, and abstractive summarization that
simulate human summarization. The first methodology is based on using a
statistical approach to determine the essential sections of the text, similar to
Brlkebir et al’s work [16]. In a semantic approach, such as Imam’s work on the
Arabic language[17], the summary is represented by truncating and connect-
ing these sections, similar to Knight et al’s work on the English language [18].
The second methodology is focused on mimicking human activity in summariz-
ing, which is based on presenting the text’s core idea in a new linguistic style
and using different terms; it incorporates more complicated procedures in-
cluding paraphrase, generalization, and reordering [1]. Previous research has
attempted to generate abstract summaries utilizing linguistically inspired re-
strictions [19] or by transforming the incoming material syntactically [20][21].

2.4 Previous Work

In order to provide the necessary context to the proposed solution, it is worth
investigating previous research, and identifying the pros and cons of each

12

approach.

2.4.1 Classical Approaches

Statistical methods are widely used in text summarization which are based on
the concept of relevance score and Bayesian classifiers [22]. Word Frequency
approach is the most used methodology for sentence scoring where the sen-
tence score is calculated by the sum of the frequencies while avoiding all stop
words. The proposed solution in [23] generate news titles by combining Word-
Frequency, sentence position and similarity measures methodologies. Term
Frequency-Inverse Document Frequency (TF-IDF) is a numerical methodology
that represents the importance of a word to document in a collection of doc-
uments (corps) [24]. TF-IDF is an improvement on the Word Frequency and
shows how the weights are distributed on the words of a document. TF-IDF is
used frequently in auto-summarization systems [25] [26] [27] [28]. An Arabic
summarization system called AATSS [29] adopted an extractive text summa-
rization approach that was mainly based on sentence weighting and scoring.
However, it highly depends on the size of the document in terms of number
of sentences, which leads to generation of improper grammar context, and it
lacks automatic Arabic entity recognition system and Arabic pronoun resolu-
tion system. The classical statistical approaches are used for both single and
multi-document summarization and can be used to enhance the selection of
important sentences or the elimination of redundant sentences but it fails to
understand the text, since it only depends on statistical measures [30]. [31]
proposed a solution for English language by tokenizing the text into clean sen-
tences, then pass the sentences into BERT model to generate embeddings.
Then using K-means they generated clusters and selected summary sentences
based on closest sentence embedding to each cluster centroid.

2.4.2 Machine Learning Approach

Text summarization is considered as a binary classification problem, where a
set of documents and their extractive summaries are used as a training set,
and each sentence is classified as a summary sentence or non-summary based
on statistical, semantic features or a combination of them [32] [16] [33] [34].
Machine learning methods can be suitable for document summarization as
several methods have been introduced and proven to be effective in perform-
ing summarization tasks. We will discuss sequence to sequence models and
encoder decoder architectures in what follows.
Sequence-to-Sequence Model
The neural abstractive summarization with sequence-to-sequence models eme-
rged in [35] [36]. This approach has been applied to tasks such as headline
generation [37] and article summarization [38]. Chopra et al. [39] show that

13

attention approaches that are more specific to summarization can further im-
prove the performance of models. Molham et al. [40] re-implemented the
sequence-to-sequence framework on the Arabic language, which has not wit-
nessed the employment of this model in the text summarization before. How-
ever, the authors state that the work still requires expanding the dataset to
cover more articles, and to infer new models that are beneficial with the Ara-
bic language since it has a unique grammatical language written from right to
left.
Encoder-Decoder Model
Google AI pre-trained language model called Bidirectional Encoder Represen-
tations from Transformers (BERT), proved highly efficient at language under-
standing and achieved convincing results in most NLP tasks. The Arabic lan-
guage model ARABERT based on BERT for Arabic language was evaluated
on Named Entity Recognition, Sentiment Analysis and Question Answering
[41]. Abdulla et al. [42] proposed an extractive Arabic text summarizer based
on ARABERT to summarize the Arabic documents by evaluating and extract-
ing the most important sentences at a document. This proposed approach
generated a good summary by extracting the most important sentences from
paragraphs and generated a coherent and meaningful summary. However,
the model highly depends on sentence boundaries, its coverage accuracy de-
creases when the text is too long, and extracted sentences sometimes contain
linguistic expressions that creates ambiguous summaries.

2.4.3 Other Approaches

Researchers et al. of [43] managed to solve the problem of sentence boundary
detection by adding an additional layer in the embedding that specifies the
beginning and end of each consecutive sentence inserted into the encoder.

Go et al. [44] explored the effects of language variants, data sizes, and
fine-tuning task types in Arabic pre-trained language models. The results sug-
gested that the variant proximity of pre-training data to fine-tuning data is
more important than the pre-training data size. Moreover, other design de-
cisions can be explored that may contribute to the fine-tuning performance,
including vocabulary size, tokenization techniques, and additional data mix-
tures.

Nasser et al. [45] presented an LSTM-based morphological disambigua-
tion system for Arabic which has significantly outperformed the state-of-the-
art systems. The paper suggested exploring additional deep learning architec-
tures for morphological modeling and disambiguation, especially sequence-to-
sequence models. It also suggested to further investigate the role of syntax
features in morphological disambiguation, and explore additional techniques
for more accurate tagging.

14

2.5 Readability Metrics

In order to understand the level of complexity in reading and understanding a
document from the corpus, readability metrics were used to measure the com-
prehension of written text by readers of different levels of education. Read-
ability focuses on multiple factors such as length of sentences and words, num-
ber of difficult and complex words, and the number of syllables in each word.
Alot of research on such metrics for the English language have emerged, we
will mention and formalize few of them:

2.5.1 Flesch Reading Ease

Flesch Ease [46] is a readability test designed to indicate how difficult a pas-
sage in English is to understand ranging from 0 indicating the passage to be
very confusing to 100 indicating it is very easy to read.

Flesch = 206.8351.015

(
total words

total sentences

)
− 84.6

(
total syllables

total words

)
(2.1)

2.5.2 SMOG Index

SMOG Index [47] is used to measure how many years of education the average
person needs to have to understand a text.

SMOG = 1.043

√
total polysyllables× 30

total sentences
+ 3.1291 (2.2)

2.5.3 FOG Index

The FOG index [48] estimates the years of formal education a person needs to
understand the text on the first reading.

Fog = 0.4

(
total words

total sentences
+

complex words

total words

)
(2.3)

2.5.4 OSMAN

OSMAN [49] is a modified version of the conventional readability formulas
such as Flesch and Fog. Since Arabic is highly inflectional and derivational,
word length and number of sentences cannot be sufficient indicators of text
readability . Additional factors should be considered such as “Faseeh words”
which are words containing

15

(@ð ,
	
àð ,

	
 ,

	
X ,

ð ,
ø , Z)

OSMAN = 200.791− 1.015×
(

total words

total sentences

)
− 24.181×

total long words+ syllables in word+ complex words+ Faseeh words

total words

(2.4)

2.6 Evaluation Metrics

2.6.1 ROUGE

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [50] is widely

used for performance evaluation of summarization techniques. Some of the

ROUGE methods are commonly used to measure performance of the model

in summarizing documents. ROUGEN is the N-gram (N ≥ 1) recollection be-

tween a system summary and human-generated or reference summaries. It is

used to estimate the fluency of the summaries.

RougeN =

∑
s∈refsum

∑
gramn∈S countmatch(gramn)∑

s∈refsum
∑

gramn∈S count(gramn)
(2.5)

ROUGEL is used to identify the longest co-occuring in sequence N-grams au-

tomatically. Assume A is the set of sentences of the reference summary and B

is the set of sentences of the candidate summary represented by the sequence

of words and LCS-based F score (Flcs) indicates the similarity between A (of

length m) and B (of length n):

Rlcs =
LCS (A,B)

n
(2.6)

Plcs =
LCS (A,B)

m
(2.7)

Flcs =
2Rlcs × Plcs

Rlcs + Plcs

(2.8)

where LCS(A,B) denotes the length is the LCS of A and B

16

2.6.2 BLEU

BiLingual Evaluation Understudy (BLEU) is a lexical-based metric that is mostly
used for automatic evaluation of machine-translated text. The BLEU score is a
number between 0 and 1 that measures the similarity between machine trans-
lated text and a set of high quality reference translations. A value of 0 means
that the machine translation does not overlap the reference translation (low
quality), and a value of 1 means that the reference translation matches exactly
(high quality).

BLEU = min

(
1, exp

(
1− reference− length

output− length

))(4∏
i=1

precisioni

)1/4

(2.9)

with
precisioni =

∑
snt∈Cand−Corpus

∑
i∈snt min(mi

cand,m
i
ref)

wi
t =

∑
snt′∈Cand−Corpus

∑
i′∈snt′ m

i′
cand

(2.10)

where

1. mi
cand is the count of i-gram in candidate matching the reference transla-

tion

2. mi
ref is the count of i-gram in the reference translation

3. wi
t is the total number of i-grams in candidate translation

2.6.3 BertScore

BERTScore [51] leverages the pre-trained contextual embeddings from BERT
and matches words in candidate and reference sentences using cosine similar-
ity between the tokens’ embeddings. BERTScore addresses a common prob-
lem in n-gram-based metrics. the fail to robustly match phrases as those met-
rics can only cover the grammar of the sentence without interpreting the se-
mantic meaning, this leads to performance underestimation when semantically-
close phrases are penalized because they differ on the word matching level
with the reference.

Let x = ⟨x1, ..., xk⟩ be the set of embedding vectors the model generates
on a tokenized reference sentence. Similarly for the candidate sentence x̂ =

⟨x̂1, ..., x̂k⟩. BERTScore can be appied for obtaining Recall Precision, and F1
score:

RBERT =

∑
xi∈x idf(xi)maxx̂x

⊺
i x̂j∑

xi∈x idf(xi)
(2.11)

PBERT =

∑
xi∈x idf(x̂i)maxx̂x

⊺
i x̂j∑

xi∈x idf(x̂i)
(2.12)

FBERT = 2
PBERT ·RBERT

PBERT +RBERT

(2.13)

17

2.6.4 Triangle Similarity - Sector Similarity (TS-SS)

TS-SS [52] is a geometric approach to measure the similarity level among doc-
uments. It considers documents to be represented as vectors and measures
similarity based on the angle and Euclidean distance between each pair. We
briefly explain some of the popular geometric similarity measures that we will
be using.

Cosine Similarity: Cosine similarity computes pairwise similarity between
2 documents using dot product and magnitude of document vectors A and B

in high-dimensional space [53]

cosine(A,B) =

∑k
n=1A(n) ·B(n)

|A| · |B|
(2.14)

The resulting similarity ranges from 0 to 1, with 1 meaning the 2 vectors are
overlapped and the 2 documents have maximum similarity (cos(0) = 1), and 0
meaning that the documents have no similarity commons.

Euclidean Distance: ED is another geometrical measure used to measure
similarity of 2 documents. Each document is represented as a point in space
based on the number of features in a vector representation. ED computes
difference between 2 points in n dimensional space based on their coordinate
using the following equation:

ED(A,B) =

√√√√ k∑
n=1

(A(n)−B(n))2 (2.15)

Using ED, highest similarity between 2 vectors happens when they are plotted
in the same position in space, making the distance difference between them
0.

Triangle’s Area Similarity (TS): The Triangle Area Similarity combines
3 geometric similarity characteristics, the angle between vectors, magnitude
of vectors, and ED.

TS(A,B) =
|A| · |B| · sin(θ′)

2
(2.16)

where θ′ = cos−1(V) + 10 V = cosineSim(A,B)

If the vectors A,B are overlapping, no area can be computed thus to over-
come this problem we increase θ′ by 10

Sector’s Area Similarity (SS): Merely TS alone is not robust enough to
interpolate vectors’ differentiation precisely to produce accurate similarity re-
sults due to missing components. Thus the SS has been introduced:

SS(A,B) = π · (ED(A,B) + ||A| − |B||)2 · θ′

360
(2.17)

The final formula of the TS-SS metric is produced by combining TS and SS

18

by multiplying them together.

TS − SS(A,B) = TS(A,B)× SS(A,B) (2.18)

19

Chapter 3

Methodology

This chapter presents the model architecture built for the translation task and
its different encoder extensions. The chapter ends with introducing our new
hybrid metric (SSS) and showcases its implementation and algorithm.

3.1 SAraBERT

Let d denote a document containing several sentences [sent1, sent2, . . . , sentm],
where senti is the ith sentence in the document. Extractive summarization can
be defined as the task of assigning a label yi ∈ {0, 1} to each senti, indicat-
ing whether the sentence should be included in the summary or not. Thus, if
yi = 1 then the sentence is considered in the summary due to its importance
in terms of document content. BERT as shown in Figure[3.1] is considered
the model of choice because it showed better performance compared to other
NLP statement embedding algorithms. To keep the original BERT pre-training
objective, AraBERT uses Masked Language Modeling (MLM) to improve the
pre-training process by letting the model predict the entire word rather than
receiving clues from part of the word. In addition, it also uses Next Sentence
Prediction (NSP) to help the model understand the relationships between sen-
tences [41]. To achieve sentence ranking in the document based on content
importance, we will apply modifications to the embedding layers as shown in
Figure[3.2] to highlight sentence endpoints for the model to rank each sen-
tence independently.

Encoding Multiple Sentences: We insert [CLS] token before each sen-
tence and a [SEP] token after each sentence. The [CLS] is used as a symbol
to represent the start of a sequence and the [SEP] indicated the end of that
sequence. Inserting multiple [CLS] tokens help in specifying the boundaries
of each sentence.

Interval Segment Embedding: We add another layer of embedding to
distinguish multiple sentences within a document. So, for senti we assign a
segment embedding EA or EB based on whether it’s even or odd. For ex-

20

ample, For [sent1, sent2, sent3, sent4, sent5] the interval segment layer assign
[EA, EB, EA, EB, EA]. The vector Ti that corresponds to the ith [CLS] token,
will be used as the representation for senti.

Figure 3.1: Overview for the architecture of the original BERT model

The sequence on top is the input document, followed by the summation of
three kinds of embeddings for each token. The summed vectors are used as
input embeddings to the transformer layers, generating contextual vectors for
each token Ti.

21

Figure 3.2: Overview for the architecture of the SAraBERT model

The difference between SAraBERT and the model in Figure[3.1] is the in-
sertion of [CLS] tokens before each sentence, and alternating the sentence
segmenting embedding values along with the addition of a summarization
layer that derives a sentence score from the [CLS] token embeddings.

22

Algorithm 1 Summarization Model
Input: Text
Output : Sentence Scores

tokens← tokenize(Text)
sentences← sentence_segmentation(tokens)
tokenID ← array [|sentences|] [maxsent∈sentences(|sent|)]
segmentID ← array [|sentences|] [maxsent∈sentences(|sent|)]
for i = 1 to |sentences| do

sentences[i]← {"[CLS]", sentences[i], "[SEP]"}
for j = 1 to |sentences[i]| do

tokenID[i][j]← getTokenID(sentences[i][j])
if i is Even then

segmentID[i][j]← 0
else

segmentID[i][j]← 1
end if

end for
end for
bertEmbedding← AraBERT(tokenID,segmentID)
sentence_embeddings← get_CLS_embeddings(bertEmbedding)
sentence_scores← encode(sentence_embeddings)

Next section will discuss the different types of layers that were added to
AraBERT to improve the scoring task.

3.2 Encoder

3.2.1 Simple Classifier

We add a linear layer on the AraBERT outputs Ti with sigmoid as the activation
function to get the predicted score:

Ŷi = σ(WoTi + bo) (3.1)

Where σ is a Sigmoid function which is a non-linear activation function used
mostly in output layers for predicting probability based outputs (specifically
used for binary classification). The Sigmoid function has the following expres-
sion:

σ(x) =

(
1

1 + e−x

)
(3.2)

3.2.2 Recurrent Network

We apply an LSTM layer over the BERT outputs to learn summarization-specific
features. To stabilize the training, pergate layer normalization Ba et al. [54]

23

is applied within each LSTM cell. At time step i, the input to the LSTM layer
is the AraBERT output Ti, and the output is calculated as follows:

Fi

Ii
Oi

Gi

 = LNh (Whhi−1) + LNx(WxTi) (3.3)

Ci = σ (Fi)⊙ Ci−1 (3.4)

hi = σ (Ot)⊙ tanh(LNc (Ct)) (3.5)

Where Fi, Ii, Oi are forget gates, input gates, output gates; Gi is the hidden
vector and Ci is the memory vector; hiis the output vector; LNh, LNx, LNc are
there difference layer normalization operations; Bias terms are not shown.
The final output layer is also a sigmoid classifier:

Ŷi = σ(Woh
L
i + bo) (3.6)

3.2.3 Transformer

Adds more Transformer layers only on sentence representations Ti, extracting
document level-features focusing on summarization tasks.

h̃l = LN
(
hl−1 +MHAtt

(
hl−1

))
(3.7)

hl = LN(h̃l + FFN
(
h̃l
)
) (3.8)

h0 = PosEmb(T) (3.9)

LN(x) is a normalization operation [54] that re-centers and re-scales the
input x where x = (x1, x2, ..., xH) is a vector representation of an input of size
H the normalization operation being represented as follows:

LN(x) =
x− µ

φ
, µ =

1

H

H∑
i=1

xi, φ =

√√√√ 1

H

H∑
i=1

(xi − µ)2 (3.10)

MHAtt is a Multi-Head Attention operation [55]. Before going into how Multi-
Head attention work, we should define what is an attention function. An atten-
tion function is a mapping from a query matrix Q and a set of key-value pairs
(K,V) to an output vector that has a sum of elements equal to one which will
represent the percentage of attention each element should have.

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V, softmax(z⃗)i =

ezi∑H
j=i e

zj
(3.11)

The Multi-Head attention allows the model to spread attention over differ-

24

ent positions.

MHAtt(hl) = Concat(headl1, ..., head
l
H)W

O, headi = Attention(QWQ
i , KWK

i , V W V
i)

(3.12)
Where WQ

i ∈ Rdmodel×dk ,WK
i ∈ Rdmodel×dk ,W V

i ∈ Rdmodel×dv , and WO ∈ Rhdv×dmodel

are trainable parameter matrices.
FFN(x) is a fully connected feed-forward network having two linear trans-

formations with a ReLU activation in between.

FFN(x) = max(0, xW1 + b1)W2 + b2 (3.13)

PosEmb(T) is the function that adds positional embedding to the sentence
vectors T . Several choices can be made for the positional embedding, for this
work, we will use sine and cosine functions of different frequencies.

PoseEmb(Ti) =

{
sin(Ti

100002i/dmodel
) if i = 2k

cos(Ti

100002i/dmodel
) if i = 2k + 1

(3.14)

The superscript l indicates the depth of the stacked layer with l = 0 repre-
senting first layer and l = L representing the last layer. The final output layer
will still be a sigmoid classifier:

Ŷi = σ(Woh
L
i + bo) (3.15)

3.3 Siamese Semantic Similarity (SSS)

Rouge [50] has been used as a metric for determining the quality of a sum-
mary by comparing a candidate summary (generated by machine) to a refer-
ence summary (generated by humans). The way it does this projects only the
level of similarity on the syntactic level without the coverage of the context.
Summaries may cover a large portion of the original context but with fewer
words (and more verbose) which Rouge can’t keep track of. Language models
have the ability to map the context of a passage into a fixed size vector. We
can compute the cosine similarity of the 2 embeddings to obtain a similarity
measure at the semantic level.

Reference ÉJ
ÊË @ ú

	
¯ ÐAª¢Ë@ É¿

AK
 ú

Î« ROUGE Cosine Similarity

Candidate ZA�Ó ÐAª¢Ë@ ÈðA
	
J
�
�K
 ñë 0.0 0.9074

Since cosine similarity treats all dimensions equally in the semantic space,
and 2 vector points might overlap yet stay very distant from each other, the
distance should be added into the evaluation, since the smaller the value is
the higher the score should be, we insert the distance difference in the de-
nominator. Moreover, we will wrap it with a square root to slow the growth

25

speed of the value as the difference increase (this will later become helpful in
interpreting the computed values).

cos_sim(candembedding, refembedding)√
||candembedding − refembedding||2 + 1

(3.16)

A value of 1 was added because the distance difference can be 0, thus to
eliminate the possibility of a division by zero error.

Reference �
ékA

	
®
�
K YËñË@ ÈðA

	
J
�
K Cos_Sim L2 norm

Candidate1
�
é¢

�
¯ É

	
®¢Ë@ É¿

@ 0.873 5.989

Candidate2
�
éê» A

	
¯ É

	
®¢Ë@ É¿

@ 0.867 5.686

Moreover, rouge is still an important component of the formula to keep an
eye on the grammar.

cos_sim(candembedding, refembedding) · rouge(cand, ref)√
||candembedding − refembedding||2 + 1

(3.17)

It remains the element of frequency to be considered, Two sentences can
be similar in context yet one being redundant more than the other.

�
ékA

	
®
�
K YËñË@ ÈðA

	
J
�
K Cos_Sim Rouge L2 norm FreqDiff

�
ékA

	
®
�
K É

	
®¢Ë@ É¿

@ 0.957 0.222 3.637 1.000

ÈðA
	
J
�
K ÈðA

	
J
�
K
�
ékA

	
®
�
K
�
ékA

	
®
�
K YËñË@ 0.930 0.889 5.005 1.667

Thus a penalty should be added on the difference in frequency distribution
among words where we divide the the number of unique words over the num-
ber of total words. This step was added because an embedding does not take
redundancy and coverage into consideration which can affect level of similar-
ity for tasks as summarizing. The final Formula can be seen in Algorithm[2]

SSS score Interpretation
0-0.1 no clear resemblance or no similarity at all

0.1-0.2 the gist is clear, but not all context is covered
0.2-0.5 context is significantly covered using different words
≥0.5 exact replica with slight modifications

Table 3.1: interpretation of SSS scores

26

Algorithm 2 Semantic Textual Similarity
Input: Candidate, Reference
Output : SimilarityScore

rouge1 ← rouge1(Candidate,Reference)
rouge2 ← rouge2(Candidate,Reference)
rougeL ← rougeL(Candidate,Reference)
rouge← rouge1+rouge2+rougeL

3

embedding1 ← AraBERT.encode(Candidate)
embedding2 ← AraBERT.encode(Reference)
cosine_similarity ← embedding1·embedding1

∥embedding1∥2×∥embedding2∥2
DistDiff ← ∥embedding1 − embedding2∥2
FreqDiffc ← unique_words(Candidate)

total_words(Candidate)

FreqDiffr ← unique_words(Reference)
total_words(Reference)

FreqDiff ← min(FreqDiffr,F reqDiffc)
max(FreqDiffr,F reqDiffc)

SimilarityScore← cosine_similarity×rouge×FreqDiff√
DistDiff+1

27

Chapter 4

Experiments

This chapter covers the different experiments that have been designed to in-
vestigate the translated dataset quality and performance of SaraBert. Results
are discussed and conclusions drawn.

4.1 Dataset

4.1.1 CNN/ Daily Mail

We used the CNN / DailyMail dataset to train SAraBERT, it is an English
dataset containing over 300,000 unique news articles written by CNN and
DailyMail journalists. The dataset can be used to train a model for the task of
extractive and abstractive summarization. Each document instance from the
dataset consists of 3 components:

1. id: A string containing the hexadecimal SHA1 hash of the URL from
which the story was obtained.

2. Article: A string containing the body of a news article.

3. Highlights: A string containing the highlights of the article written by
the author of the article.

We computed multiple insights to understand and analyse the dataset on
different granular levels. Table[4.1] displays the overall number of documents,
sentences, and words the dataset is composed of. Table[4.2] shows the aver-
age number of tokens that are found in each article and highlight. Moreover,
the distribution of the readability measure is important to look after as it de-
fines whether the passages fed into the model while training are naive or not.
Table[4.5] illustrates the average readability level of the documents in the En-
glish dataset. The results show that the passages are not for beginner-level
readers and requires educational background of at least 3 years to fully un-
derstand the context of the document.

28

Dataset Analytics Count
Number of Documents 211,935
Number of Sentences 17,253,935
Number of Words 140,342,917

Table 4.1: Document highlighted counts

Feature Mean Token Count
Article 781
Highlights 56

Table 4.2: Average number of tokens for each feature

Metric Value (Mean ± std)
Flesch Reading Ease 49.1±13.02
SMOG Index 3.44±5.7
Gunning FOG Index 13.42±3.58

Table 4.3: Average Readability Measures

4.1.2 Dataset Translation

Since our model should be trained on an Arabic dataset, we examined state-
of-the-art machine translation model mbart [56] along with Google-Trans1 ser-
vice. We evaluated each of the models on the Opus dataset [57]. Results are
shown in Table[4.4]. We can see competitive results from both translators, so
the tie breaker was the duration required to translate a document.

BLEU METEOR
Translation Duration
(Docs/minute)

GoogleTrans 0.413 ± 0.386 0.24 30
mBart 0.413 ± 0.382 0.25 20

Table 4.4: Translation Experiment Results

We also generated diacriticisation for the Arabic documents [58] to see
whether the diacritics have an effect on the readability level or not. Table[4.5]
and Figure[4.7] shows that the documents containing diacritics have closer
readability estimations to English than documents without diacritics but it
will not be a problem since [49] explained that this behavior is normal and
what is important is that the correlation between Flesch and OSMAN (without
diacritics) is high.
We investigated if translation will affect the readability of a document and
whether large difference between the English and Arabic readabilities of the

1pypi.org/googletrans

29

https://pypi.org/project/googletrans/

Figure 4.1: Sample English passage translated to Arabic and Diactritized

original and translated documents will influence our model. After experiment-
ing on 1000 translated samples, and computing the ROUGE score of the re-
sulting summaries along with the readability of the original and translated
samples, results have shown that the level of readability does not affect the
model’s output and there is no correlation between readability difference and
ROUGE. More details are provided in Appendix[C].

Metric Value (Mean ± std)
OSMAN - Diacritics 78.45±5.18
OSMAN + Diacritics 70.28±8.95

Table 4.5: Average Readability Measures for Arabic

4.1.3 Corpus Topic Categories

We categorised the content of the corpus using a text classification model
originated from [59]. The model f(w, c) returns a value v between 0 and 1

representing the degree of confidence that the word w belongs to category c.
For example, f(apple, food) = 0.93 is read as "The model f is 93% confident
that apple belongs to category food". Let −→v = g(w) where −→v is the confidence
vector of w having category ci’s confidence value assigned to a fixed position
i in the output vector −→v . In this experiment, the 8 positions respectively
correspond to:

1. Art and Photography

2. Beauty and Fashion

3. Business and Finance

30

Figure 4.2: Histogram of readability comparisons between english and arabic
with and without diacritics

4. Food

5. Health

6. Music

7. Science and Technology

8. Sports

The documents in the corpus are distributed as shown in Table[4.6] and Fig-
ure[4.4] with Science and technology ranking first between the other cate-
gories.

The general topic focus can be deducted from the previous 2 figures which
is that scientific and technological topics are the dominants between the other
categories.

For a summarization task, we need to ensure that entities are preserved
between the original document (article) and its summary(abstract). So we ap-
plied entity recognition on each article and abstract, and computed the cosine
similarity to have an idea of how much the entities’ appearance in summaries
is important. The entities that we have focused on were "Organization, Per-
son, Location, Miscellaneous" and the obtained results show that there is a

31

Figure 4.3: Bar chart showing the distribution of document labels per category

Figure 4.4: Bar chart showing the distribution of corpus sentences and words
per category

Category % Distribution
art/photography 4.17%
beauty/fashion 2.48%
business/finance 11.94%
food 2.73%
health 3.62%
music 1.46%
science/technology 63.76%
sports 9.83%

Table 4.6: Distribution of documents between different categories

high similarity on the skeletal level of the relation between articles and ab-
stracts Figure[4.5]

32

Figure 4.5: Cosine Similarity of named entity counts between abstracts and
articles

4.1.4 Kalimat Dataset

We will evaluate the models trained on KALIMAT dataset [60], which is a mul-
tipurpose Arabic corpus Dataset that contains 20,291 Arabic articles collected
from the Omani newspaper Alwatan. Mainly it is used for extractive sum-
maries, and named entity recognition. The data has 6 categories: culture,
economy, local-news, international-news, religion, and sports in modern stan-
dard arabic language.

4.2 Data Preprocessing

The raw documents in the translated corpus went through a pipeline of pro-
cesses in order to extract the meta data required to highlight critical infor-
mation that will be fed into the model later. Stanza [61] a multi-language
NLP toolkit was used for tokenization and sentence segmentation. Figure[4.6]
shows an example of how a passage gets split into tokens and each sentence
consists of a group of tokens.

33

Figure 4.6: Sample representation of tokenizing and segmenting an arabic
passage

An associated labeling vector with each document will hold the value 1 if
the ith sentence is an important sentence and 0 otherwise. This will be used
later in the training of the models.

After splitting and labeling each sentence in the document. The text file
samples are then converted into JSON files as it is a more robust data structure
to work with.

1 [
2 { #For each document
3 "src": list of tokenized words from main article,
4 "tgt": list of tokenized words from the target extractive

summary,
5 },
6 ...
7]

Finally the structured JSON files are converted into binary files to enhance
the parallelism of the model training.

4.3 Training Details

The dataset have been split into train, test, and validation sets as shown in
Table[4.7]

34

Dataset Split Number of Documents per Set
Train Set 287,226
Test Set 11,489
Validation Set 13,367

Table 4.7: Distribution of documents between the split sets

Training was ran on an NVIDIA Tesla V100 32GB GPU, the pretrained bert
model used was "arabertv02", and the following hyper-parameters were used
on the 3 models trained:

We applied 50, 000 training steps with a batch size of 1, 000, optimization
algorithm chosen was Adam with a learning rate 5.10−5, beta_1= 0.9, beta_2=
0.999, epsilon= 10−5, and dropout rate of 0.1. Noam decay scheme was applied
with 8, 000 warm-up steps. In order to fix the randomness a constant seed of
666 was used. Table[4.8] shows the special hyper-parameters of each encoder.

Encoder Value Description
Classifier 128 Number of hidden layers

RNN
768 Number of features in hidden state
1 Number of recurrent layers
True Bidirectional

Transformer

768 Number of expected features

4
Number of heads in multi-head
attention models

512 Dimension of feed forward network model
2 Number of Intermediate Layers

Table 4.8: Hyper-parameters of different encoders

We used the Binary Cross Entropy (xent) for a loss function and each sen-
tence will be labeled with a score between 0 and 1.

35

Figure 4.7: Loss training curve of each model

4.4 Results

Results are reported in Table[4.11]. The 3 metrics used for evaluation are
BLEU (Average of the 4 BLEU evaluations over uni-,bi-,tri-, and quad-grams),
ROUGE (Average between F1-Scores of ROUGE-1,ROUGE-2, and ROUGE-L),
and the Siamese Similarity metric. Oracle Score represents the evaluation of
human summaries that will be used for comparison with machine summaries.
"SAraBert+RNN" was the best performing model based on the 3 evaluation
metrics. Sample summaries given by the different models can be found in the
Appendix[B].

36

Model bleu_1 bleu_2 bleu_3 bleu_4 avg min max
SAraBert + Classifier 0.408 0.385 0.38 0.376 0.387 0.0 0.99
SAraBert + RNN 0.474 0.45 0.445 0.441 0.452 0.0 0.99
SAraBert
+ Transformer

0.391 0.368 0.364 0.36 0.371 0.0 0.99

AraBert Embeddings
+ K-Means

0.284 0.254 0.249 0.246 0.258 0.0 0.991

AraVec + K-Means 0.345 0.334 0.331 0.328 0.335 0.0 0.973
Bag of Words 0.361 0.351 0.348 0.345 0.352 0.0 0.98

Table 4.9: BLEU scores over Kalimat Dataset

Model rouge_1 rouge_2 rouge_L avg min max
SAraBert + Classifier 0.529 0.466 0.51 0.502 0.008 0.99
SAraBert + RNN 0.588 0.524 0.568 0.56 0.008 0.99
SAraBert
+ Transformer

0.512 0.444 0.491 0.482 0.017 0.99

AraBert Embeddings
+ K-Means

0.445 0.366 0.427 0.414 0.008 1.0

AraVec + K-Means 0.545 0.49 0.535 0.523 0.0 1.1
Bag of Words 0.47 0.415 0.46 0.448 0.0 1.1

Table 4.10: ROUGE scores over Kalimat Dataset

Model BLEU ROUGE
Siamese
Similarity

BS TS-SS

Oracle Score 0.532 ± 0.27 0.699 ± 0.23 0.326 ± 0.3 0.83 0.003
SAraBert + Classifier 0.387 ± 0.3 0.502 ± 0.31 0.211 ± 0.158 0.76 0.018
SAraBert + RNN 0.452 ± 0.2 0.560 ± 0.26 0.282 ± 0.18 0.79 0.017
SAraBert
+ Transformer

0.371 ± 0.3 0.482 ± 0.31 0.240 ± 0.17 0.77 0.019

AraBert Embeddings
+ K-Means

0.258 ± 0.21 0.414 ± 0.25 0.216 ± 0.1 0.76 0.032

AraVec + K-Means 0.335 ± 0.28 0.523 ± 0.28 0.191 ± 0.18 0.74 0.039
Bag of Words 0.352 ± 0.35 0.448 ± 0.36 0.217 ± 0.28 0.76 0.111

Table 4.11: Results of different models under several evaluation metrics

37

Figure 4.8: Pearson Correlation between the similarity metrics

4.5 Discussion

It appears that the usage of BiLSTM encoder did better than the transformer
encoder, this could be due to the need of transformers for huge amount of data
to train all its attention heads and layers. Moreover, the summarization layers
are fed only the [CLS] tokens making the size of the input equal to the num-
ber of sentences, which is on average 7, this might indicate that the hidden
layers of the BiLSTM encoder are able to cover the small input size having
a similar performance to the attention mechanism of the transformers. One
problem remains is the incapability of feeding very large documents into the
models to obtain a single global lookup on the document instead of segment-
ing the document and loosing linked contexts between the trimmed passages.
The translated documents fed into the model have shown no correlation be-
tween the readability variation and the ROUGE, meaning that translation did
not affect the quality and content of the translated articles. However, the
topic category and structure of the document had an effect on the results
and showing that the model can best handle news articles. In addition, the
short sentences have negatively affected the sentence scoring and produced
low information coverage as shown in Figure[B.3] Future work should focus
on enhancing SAraBert, the contextualized embeddings can be appended with
regular embeddings such as GloVe, WordNet, FastText, etc. in order to see if
the performance gets boosted by generating hybrid embeddings.

38

Chapter 5

Conclusion

Natural language understanding has shown to be a more complex task when
dealing with the Arabic language in comparison with the English language.
Text summarization is one of the important areas of research in NLP, as tex-
tual data keep increasing by day. Prior art have introduced statistical ap-
proaches and sequence-to-sequence machine learning models to generate text
summaries. The proposed model "SAraBert" works on the summarization task
for MSA NLP. We also created a similarity metric that evaluated the similar-
ity of 2 documents on the semantic level and not just the syntactic level. We
compared it with other types of similarity metrics that evaluate on the syntax-
level, embeddings-level, and geometry-level. Experiments on KALIMAT corpus
dataset have shown that SAraBert with RNN encoding and achieved the best
performance on the syntax (ROUGE 0.56) and semantic (SSS 0.282). The model
worked best with objective documents on contrary to subjective documents.
The SSS metric highly correlates with other similarity metrics but requires to
have a mechanism that can focus on context changing parameters such as a
negation word. Future work should investigate the expansion of the model’s
understanding to other Arabic Dialects. As for the SSS, a modified version of
cosine similarity should be implemented to allow certain dimensions to have
higher or lower impact, because the cosine similarity by itself treats all dimen-
sions equally.

39

Appendix A

Siamese Semantic Similarity
Experiments

The metric that was discussed is Section[3.3] had to be tested for different
cases to visualise and evaluate the overall performance of this metric.

We applied SSS on a set of candidates shown in Table[A.1] to the reference
found at the first row of that table. The results of SSS and BertScore can be
found in Table[A.2] along with the values required to compute SSS. The cor-
relation between BertScore and SSS is 0.97 showing that both metrics behave
very similar but SSS tends to be more strict with its evaluations.

40

ID Text

0
�
ékA

	
®
�
K

	
àA¿ éÓAª£ . ZA

�
KC

�
JË @ ÐñK
 AgAJ.�

�
é�PYÖÏ @ ú

	
¯ éÓAª£ ú

×A�

	
YJ
ÒÊ

�
JË @ É¿

@

1 H. Që

2 É¿

@

3
�
ékA

	
®
�
K

	
àA¿ éÓAª£ . ZA

�
KC

�
JË @ ÐñK
 AgAJ.�

�
é�PYÖÏ @ ú

	
¯ éÓAª£ ú

×A�

	
YJ
ÒÊ

�
JË @ É¿

@

4
�
ékA

	
®
�
K

	
àA¿ éÓAª£ . ZA

�
KC

�
JË @ ÐñK
 AgAJ.�

�
é�PYÖÏ @ ú

	
¯ éÓAª£ ú

×A�

	
YJ
ÒÊ

�
JË @ ÈðA

	
J
�
K

5
�
ékA

	
®
�
K

	
àA¿ éÓAª£ . ZA

�
KC

�
JË @ ÐñK
 AgAJ.�

�
é�PYÖÏ @ ú

	
¯ éÓAª£ ú

×A� ÈðA

	
J
�
K

6 ZA
�
KC

�
JË @ hAJ.�

�
é�PYÖÏ @ ú

	
¯
�
ékA

	
®
�
K ú

×A� ÈðA

	
J
�
K

7 ú

×A� É¿

@

8
�
ékA

	
®
�
K ú

×A� É¿

@

9
�
ék. Ag. X ú

×A� É¿

@

10 AÓAª£ ú

×A� É¿

@

11 ú

×A� hA

	
®
�
JË @ É¿

@

12 AêÓAª£
�
éJ
ÓA�

�
IÊ¿

@

13 hA
	
®
�
K
�
éJ.k. ð ú

×A� ÈðA

	
J
�
K
�
é�PYÖÏ @ ú

	
¯

14 ú

×A� É¿

@
�
é�PYÖÏ @ ú

	
¯

15
�
ékA

	
®
�
K ú

×A� É¿

@ AgAJ.� ZA

�
KC

�
JË @ PAî

	
E

16 PA¾�ð@
�
è 	Q

KAm.
�'
. A¾J
��
k.

�
éÊ
�
JÒÖÏ @

�
H 	PA

	
¯

17 É¿

B@ ©J
¢

�
���
 B é

	
K

@ ú

	
æªK
 ½Ë

	
X

	
à

@ Ñê

	
¯ ú

�
æk AêªÓ Ðñ��

	
àA¿

18 ½
�
Jª
�
JÓ

@ ú

	
¯ ¼Y«A�

@
	
à

@ ú

Í iÖÞ� @

19

H. Aë
	
YÊË A�Òj

�
JÓ ZA

�
KC

�
JË @ ÐñK
 hAJ.� ú

×A�

	
¡
�
®J

�
��@

¼A
	
Jë

�
ékA

	
®
�
K ÈðA

	
J
�
�K

	
à@ YK
QK
 é

	
KB

�
é�PYÖÏ @ úÍ@

20

�
ékA

	
®
�
K ú

×A� É¿

@
�
ékA

	
®
�
K ú

×A� É¿

@

�
ékA

	
®
�
K ú

×A� É¿

@
�
ékA

	
®
�
K ú

×A� É¿

@
�
ékA

	
®
�
K ú

×A� É¿

@

21

ú

×A� ú

×A�

	
YJ
ÒÊ

�
JË @ É¿

@ É¿

@ É¿

@ É¿

@ É¿

@ É¿

@

�
é�PYÖÏ @

�
é�PYÖÏ @ ú

	
¯
�
é�PYÖÏ @

�
é�PYÖÏ @ éÓAª£ ú

×A�

�
ékA

	
®
�
K
�
ékA

	
®
�
K
�
ékA

	
®
�
K
�
ékA

	
®
�
K
�
ékA

	
®
�
K

	
àA¿ éÓAª£ . ÐñK
 ÐñK
 ÐñK
 ZA

�
KC

�
JË @ ÐñK
 AgAJ.�

Table A.1: List of a reference sentence (1) and set of candidate sentences(2 to
19)

41

ID Cosine ROUGE norm2 FD SSS BS
1 0.598 0.0 9.406 0.923 0.0 0.631
2 0.638 0.111 9.1 0.923 0.065 0.682
3 1.0 1.0 1.0 1.0 1.0 1.0
4 0.995 0.909 2.012 1.0 0.901 0.971
5 0.980 0.857 2.929 0.993 0.829 0.935
6 0.877 0.41 5.719 0.923 0.329 0.772
7 0.734 0.205 8.86 0.923 0.137 0.697
8 0.816 0.286 6.894 0.923 0.213 0.728
9 0.7630 0.19 7.789 0.923 0.133 0.693
10 0.8000 0.19 7.526 0.923 0.139 0.718
11 0.763 0.19 7.926 0.923 0.133 0.702
12 0.824 0.0 6.756 0.923 0.0 0.717
13 0.891 0.238 5.396 0.923 0.194 0.74
14 0.812 0.314 7.452 0.923 0.233 0.722
15 0.904 0.314 5.205 0.923 0.26 0.741
16 0.701 0.0 8.136 0.923 0.0 0.662
17 0.811 0.058 6.777 0.923 0.043 0.669
18 0.722 0.078 8.0 0.923 0.052 0.623
19 0.845 0.257 6.247 0.923 0.199 0.743
20 0.677 0.286 9.243 0.217 0.041 0.616
21 0.869 0.874 6.778 0.433 0.326 0.778

Table A.2: Results of computing SSS and BertScore (BS) along with other
required computations for the candidates in Table[A.1] linked by ID

42

Appendix B

Sample Summaries form SaraBert

This section will present sample summaries extracted via SaraBert, highlights
are used to visualize the selected top 3 sentences selected to be considered as
the most informative sentences.

Figure B.1: Sample SaraBert summarization. Yellow highlighting represents
summary extraction using MLP as encoder, Green represents RNN encoder,
and Blue represents Transformer

43

Figure B.2: Sample SaraBert+BiLSTM of a good summarization

Figure B.3: Sample SaraBert+BiLSTM of a bad summarization

From the summaries in Figure[B.2] and Figure[B.3] it can be seen that the
model best works with documents are have the type of journalism and not.

44

Appendix C

Translation Quality

In this section we will present sample translations and discuss the quality and
performance effect on the results.

Figure C.1: Sample English passage with Fleach score of 11.38 (Hard to read)

45

Figure C.2: Sample Arabic passage (translation of Figure[C.1]) with Osman
score of 66.73 (Slight hard to read)

Figure C.3: Sample English passage with Fleach score of 83.69 (Easy to read)

Figure C.4: Sample Arabic passage (translation of Figure[C.3]) with Osman
score of 88.01 (Easy to read)

The translations have shown no effect on the trained model, where the
readability variation had no link with ROUGE results. We sampled 1000 docu-
ments and computed their respective readability metrics in Arabic and English
(Osman and Flesch) along with the ROUGE value of the generated summary.
By looking at table[C.2], it can be observed that no readability metric highly
affects the ROUGE evaluation.

46

Index Flesch Osman Rouge-AR Readability-Diff
Flesch 1.0 0.76 -0.12 -0.64
Osman 0.76 1.0 -0.04 0.01
rouge-AR -0.12 -0.04 1.0 0.14
Readability-Diff -0.64 0.01 0.14 1.0

Table C.2: Correlation between the different features

Flesch 59.93 ± 10.13
Osman 74.88 ± 7.79
Rouge-AR 0.41 ± 0.14
Readability-Diff 14.95 ± 6.55

Table C.1: Average value for documents computed over 1000 sample docu-
ments

47

Bibliography

[1] H. Jing, “Using hidden markov modeling to decompose human-written
summaries,” Computational linguistics, vol. 28, no. 4, pp. 527–543, 2002.

[2] A. B. Al-Saleh and M. E. B. Menai, “Automatic arabic text summariza-
tion: A survey,” Artificial Intelligence Review, vol. 45, no. 2, pp. 203–
234, 2016.

[3] K. S. Al Harazin, “Multi-document arabic text summarization,” 2015.

[4] K. Shaalan, “Nizar y. habash, introduction to arabic natural language
processing (synthesis lectures on human language technologies),” Ma-
chine Translation, vol. 24, pp. 285–289, Dec. 2010. doi: 10.1007/s10590-
011-9087-8.

[5] K. SHAALAN, M. MAGDY, and A. FAHMY, “Analysis and feedback of
erroneous arabic verbs,” Natural Language Engineering, vol. 21, no. 2,
pp. 271–323, 2015. doi: 10.1017/S1351324913000223.

[6] S. Izwaini, “Problems of arabic machine translation: Evaluation of three
systems,” in Proceedings of the International Conference “The Chal-
lenge of Arabic for NLP/MT”. 23 October 2006, London, United King-
dom. Pages, 2006, pp. 118–148.

[7] S. K. Ray and K. Shaalan, “A review and future perspectives of ara-
bic question answering systems,” IEEE Transactions on Knowledge and
Data Engineering, vol. 28, no. 12, pp. 3169–3190, 2016. doi: 10.1109/
TKDE.2016.2607201.

[8] M. Korayem, D. Crandall, and M. Abdul-Mageed, “Subjectivity and sen-
timent analysis of arabic: A survey,” in Advanced Machine Learning
Technologies and Applications, A. E. Hassanien, A.-B. M. Salem, R. Ra-
madan, and T.-h. Kim, Eds., Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2012, pp. 128–139, isbn: 978-3-642-35326-0.

[9] N. Habash and O. Rambow, “MAGEAD: A morphological analyzer and
generator for the Arabic dialects,” in Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguistics, Sydney, Australia:
Association for Computational Linguistics, Jul. 2006, pp. 681–688. doi:

48

https://doi.org/10.1007/s10590-011-9087-8
https://doi.org/10.1007/s10590-011-9087-8
https://doi.org/10.1017/S1351324913000223
https://doi.org/10.1109/TKDE.2016.2607201
https://doi.org/10.1109/TKDE.2016.2607201

10.3115/1220175.1220261. [Online]. Available: https://aclanthology.
org/P06-1086.

[10] K. Shaalan, “A Survey of Arabic Named Entity Recognition and Clas-
sification,” Computational Linguistics, vol. 40, no. 2, pp. 469–510, Jun.
2014, issn: 0891-2017. doi: 10.1162/COLI_a_00178. eprint: https:
//direct.mit.edu/coli/article-pdf/40/2/469/1803591/coli_a\
00178.pdf. [Online]. Available: https://doi.org/10.1162/COLI%5C

a%5C_00178.

[11] P. T. Daniels, “The arabic writing system,” The Oxford handbook of Ara-
bic linguistics, pp. 422–431, 2013.

[12] K. C. Ryding, A reference grammar of modern standard Arabic. Cam-
bridge university press, 2005.

[13] I. A. Al-Sughaiyer and I. A. Al-Kharashi, “Arabic morphological analy-
sis techniques: A comprehensive survey,” Journal of the American soci-
ety for information science and technology, vol. 55, no. 3, pp. 189–213,
2004.

[14] A. Farghaly and K. Shaalan, “Arabic natural language processing: Chal-
lenges and solutions,” ACM Transactions on Asian Language Informa-
tion Processing (TALIP), vol. 8, no. 4, pp. 1–22, 2009.

[15] N. Y. Habash, “Introduction to arabic natural language processing,” Syn-
thesis Lectures on Human Language Technologies, vol. 3, no. 1, pp. 1–
187, 2010.

[16] R. Belkebir and A. Guessoum, “A supervised approach to arabic text
summarization using adaboost,” in New contributions in information
systems and technologies, Springer, 2015, pp. 227–236.

[17] I. Imam, N. Nounou, A. Hamouda, and H. A. A. Khalek, “An ontology-
based summarization system for arabic documents (ossad),” Interna-
tional Journal of Computer Applications, vol. 74, no. 17, pp. 38–43, 2013.

[18] K. Knight and D. Marcu, “Summarization beyond sentence extraction: A
probabilistic approach to sentence compression,” Artificial Intelligence,
vol. 139, no. 1, pp. 91–107, 2002.

[19] B. Dorr, D. Zajic, and R. Schwartz, “Hedge trimmer: A parse-and-trim
approach to headline generation,” MARYLAND UNIV COLLEGE PARK
INST FOR ADVANCED COMPUTER STUDIES, Tech. Rep., 2003.

[20] T. Cohn and M. Lapata, “Sentence compression beyond word deletion,”
in Proceedings of the 22nd International Conference on Computational
Linguistics (Coling 2008), 2008, pp. 137–144.

[21] K. Woodsend, Y. Feng, and M. Lapata, “Generation with quasi-synchronous
grammar,” in Proceedings of the 2010 conference on empirical methods
in natural language processing, 2010, pp. 513–523.

49

https://doi.org/10.3115/1220175.1220261
https://aclanthology.org/P06-1086
https://aclanthology.org/P06-1086
https://doi.org/10.1162/COLI_a_00178
https://direct.mit.edu/coli/article-pdf/40/2/469/1803591/coli_a_00178.pdf
https://direct.mit.edu/coli/article-pdf/40/2/469/1803591/coli_a_00178.pdf
https://direct.mit.edu/coli/article-pdf/40/2/469/1803591/coli_a_00178.pdf
https://doi.org/10.1162/COLI%5C_a%5C_00178
https://doi.org/10.1162/COLI%5C_a%5C_00178

[22] V. Patil, M. Krishnamoorthy, P. Oke, and M. Kiruthika, “A statistical ap-
proach for document summarization,” Department of Computer Engi-
neering Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai,
Maharashtra, India, 2004.

[23] F. Alotaiby, S. Foda, and I. Alkharashi, “New approaches to automatic
headline generation for arabic documents,” Journal of Engineering and
Computer Innovations, vol. 3, no. 1, pp. 11–25, 2012.

[24] R. Ferreira, L. de Souza Cabral, R. D. Lins, et al., “Assessing sentence
scoring techniques for extractive text summarization,” Expert systems
with applications, vol. 40, no. 14, pp. 5755–5764, 2013.

[25] Q. Al-Radaideh and M. Afif, “Arabic text summarization using aggregate
similarity,” in International Arab conference on information technology
(ACIT2009), Yemen, 2009.

[26] A. Haboush, M. Al-Zoubi, A. Momani, and M. Tarazi, “Arabic text summa-
rization model using clustering techniques,” World of Computer Science
and Information Technology Journal (WCSIT) ISSN, pp. 2221–0741, 2012.

[27] F. El-Ghannam and T. El-Shishtawy, “Multi-topic multi-document sum-
marizer,” arXiv preprint arXiv:1401.0640, 2014.

[28] H. N. Fejer and N. Omar, “Automatic arabic text summarization using
clustering and keyphrase extraction,” in Proceedings of the 6th Inter-
national Conference on Information Technology and Multimedia, IEEE,
2014, pp. 293–298.

[29] N. M. Hewahi and K. A. Kwaik, “Automatic arabic text summarization
system (aatss) based on semantic features extraction,” International
Journal of Technology Diffusion (IJTD), vol. 3, no. 2, pp. 12–27, 2012.

[30] M. El-Haj, U. Kruschwitz, and C. Fox, “Multi-document arabic text sum-
marisation,” in 2011 3rd Computer Science and Electronic Engineering
Conference (CEEC), IEEE, 2011, pp. 40–44.

[31] D. Miller, “Leveraging bert for extractive text summarization on lec-
tures,” arXiv preprint arXiv:1906.04165, 2019.

[32] M. A. Fattah and F. Ren, “Ga, mr, ffnn, pnn and gmm based models for
automatic text summarization,” Computer Speech & Language, vol. 23,
no. 1, pp. 126–144, 2009.

[33] Q. A. Al-Radaideh and D. Q. Bataineh, “A hybrid approach for arabic
text summarization using domain knowledge and genetic algorithms,”
Cognitive Computation, vol. 10, no. 4, pp. 651–669, 2018.

[34] A. Nenkova and K. McKeown, “A survey of text summarization tech-
niques,” in Mining text data, Springer, 2012, pp. 43–76.

50

[35] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[36] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[37] A. M. Rush, S. Chopra, and J. Weston, “A neural attention model for
abstractive sentence summarization,” arXiv preprint arXiv:1509.00685,
2015.

[38] R. Nallapati, B. Zhou, and M. Ma, “Classify or select: Neural architec-
tures for extractive document summarization,” arXiv preprint arXiv:1611.04244,
2016.

[39] S. Chopra, M. Auli, and A. M. Rush, “Abstractive sentence summariza-
tion with attentive recurrent neural networks,” in Proceedings of the
2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, 2016,
pp. 93–98.

[40] M. Al-Maleh and S. Desouki, “Arabic text summarization using deep
learning approach,” Journal of Big Data, vol. 7, no. 1, pp. 1–17, 2020.

[41] W. Antoun, F. Baly, and H. Hajj, “Arabert: Transformer-based model
for arabic language understanding,” arXiv preprint arXiv:2003.00104,
2020.

[42] A. M. Abu Nada, E. Alajrami, A. A. Al-Saqqa, and S. S. Abu-Naser, “Ara-
bic text summarization using arabert model using extractive text sum-
marization approach,” 2020.

[43] Y. Liu, “Fine-tune bert for extractive summarization,” arXiv preprint
arXiv:1903.10318, 2019.

[44] G. Inoue, B. Alhafni, N. Baimukan, H. Bouamor, and N. Habash, The
interplay of variant, size, and task type in arabic pre-trained language
models, 2021. arXiv: 2103.06678 [cs.CL].

[45] N. Zalmout and N. Habash, “Don’t throw those morphological analyz-
ers away just yet: Neural morphological disambiguation for arabic,” in
Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, 2017, pp. 704–713.

[46] J. P. Kincaid, R. P. Fishburne Jr, R. L. Rogers, and B. S. Chissom, “Deriva-
tion of new readability formulas (automated readability index, fog count
and flesch reading ease formula) for navy enlisted personnel,” Naval
Technical Training Command Millington TN Research Branch, Tech. Rep.,
1975.

51

https://arxiv.org/abs/2103.06678

	ABSTRACT
	Introduction
	Literature Review
	Arabic Language
	Arabic challenges
	Morphological richness
	Orthographic ambiguity
	Dialectal variation
	Orthographic inconsistency
	Resource Poverty

	NLP
	Text Summarization

	Previous Work
	Classical Approaches
	Machine Learning Approach
	Other Approaches

	Readability Metrics
	Flesch Reading Ease
	SMOG Index
	FOG Index
	OSMAN

	Evaluation Metrics
	ROUGE
	BLEU
	BertScore
	Triangle Similarity - Sector Similarity (TS-SS)

	Methodology
	SAraBERT
	Encoder
	Simple Classifier
	Recurrent Network
	Transformer

	Siamese Semantic Similarity (SSS)

	Experiments
	Dataset
	CNN/ Daily Mail
	Dataset Translation
	Corpus Topic Categories
	Kalimat Dataset

	Data Preprocessing
	Training Details
	Results
	Discussion

	Conclusion
	Siamese Semantic Similarity Experiments
	Sample Summaries form SaraBert
	Translation Quality
	Bibliography

