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Abstract

of the Thesis of

Zeinab Wissam Al-Harakeh for Master of Science
Major: Pure Math

Title: A Fixed-Point Argument For The Existence of Dichromatic Lens

In this paper, we are going to solve a system of functional differential equations
and use Banach Fixed Point Theorem to prove existence and uniqueness of
solution. This will help us in a problem in geometrical optics. Our goal is to
be able to design a simple lens which refracts the superposition of dichromatic
light back in one direction.
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Chapter 1

Introduction

The main concept in this thesis is related to optical physics, namely, chromatic
aberration in lenses. In order to talk about chromatic aberration, we first introduce
refraction of light. In his book ”Opticks” [1], Newton defined the term ”refrangibilty”
of the rays of light as their ability to deviate from their original direction when
passing from one transparent medium into another. Geometric optics usually
consider the rays of light to be straight lines emitted from luminous body (or
medium) to an illuminated body (or medium), and refraction of light the bending
of these lines. In refraction, the angle of refraction depends on the angle of
incidence and a quantity called the refractive index of the corresponding media.
By definition, the refractive index of a medium is the ratio of the velocity of
light in vacuum to its velocity in the medium. The refractive index varies with
wavelength: it is higher for blue light than for red light [2, chapter 2]. This means
that if the ray hitting the surface is not monochromatic, that is it is made of two
or more wavelengths, the refractive index differs and consequently the rays have
different refractive directions. This phenomena is called light dispersion, and
from this behavior of optical materials, it follows that every property of a lens
depending on its refractive index will also change with the wavelength creating an
unfocused target. This undesirable phenomenon is called chromatic aberration
[2, chapter 5]. In 1729, it was noted that chromatic aberration in lenses can
be reduced notably by cementing lenses together made of different glasses. This
lead to a renewed research into understanding the behavior of optical materials
and discovering that the dispersion of light in glass varies from type to type.
In 1760, the mathematician Klingenstierna developed a mathematical theory of
achromatic lenses (a lens where chromatic aberration is notably reduced) [2,
chapter 5]. Then more concepts and methods were developed. Recently, imatest
handled chromatic aberration numerically using demosaicing algorithms [3].

In this thesis, we study the existence of a lens (2 faces) that eliminates
chromatic aberration of a dichromatic source. The problem is divided into two
cases.

The monochromatic case: we have three media 1, 2, and 3, a point source in
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medium 1 emitting monochromatic rays, and a curve σ1 separating media 1 and 2.
We construct a curve σ2 separating media 2 and 3 such that the lens sandwiched
between σ1 and σ2 refracts the monochromatic rays into a fixed direction in
medium 3. This is done by applying Snell’s Law at σ1 and σ2.

The dichromatic problem: here, the rays emitted from O are dichromatic of
two colors red and blue, denoted by r and b. If these rays hit a lens with faces
σ1 and σ2, then red and blue rays will refract differently at σ1 and at σ2 due to
dispersion. The goal is to construct the lens in such a way that the dichromatic
rays leave the lens with the same direction. From the monochromatic case, we
get a family of lenses (σ1, σr) and (σ1, σb) corresponding to colors r and b such
that these lenses refract red rays and blue rays respectively into a desired fixed
direction. The goal of the problem is to find one single lens that would do the
job for both colors. If σr is parametrized by fr and σb by fb, we intend to prove
that fr can be written as a reparametrization of fb. In other words, we study
the existence of a C1 function ϕ such that fr(t) = fb(ϕ(t)). Mathematically, the
problem can be formulated through a system of functional differential equations.
To analyze the system, we need fixed point theorems namely the Banach and
Brouwer fixed point theorems.

In chapter 2, we introduce and prove these fixed point theorems and show
two well-known applications to IVPs in Sections 2.2, 2.4. In Chapter 3, we use
the Banach fixed point theorem to prove an existence and uniqueness result for
system of functions ODE, this is originally due to [4] and later to [5]. We, in fact,
prove an extension of this theorem in Section 3.4 allowing to handle cases that are
inconclusive by the theorem proved in Section 3.1. In Chapter 4, we introduce the
Snell’s law and construct monochromatic system refracting monochromatic light
uniformly into constant direction, we consider the case of 1 surface of separation
in Section 4.3.1, and 2 surfaces of separation in Section 4.3.2. Finally, in Chapter
5, we introduce and formulate the dichromatic problem as a system of Functional
Differential Equation using the construction in Section 5.2. We use Brouwer fixed
point theorem to show necessary condition for existence of solutions, and then use
the analysis in Chapter 3 to solve the corresponding system and find conditions
for solving the model. We should mention that the monochromatic problem was
handled by Friedman and Mcleod using fixed argument [6]. The problem was
then solved by Rogers by solving a system of non-linear differential equations
[4]. As for the dichromatic problem, the existence theorem is due to Rogers [4].
Later, in [5] a simpler proof of this theorem was provided. However, in this same
paper it was shown that the existence theorem depends on the choice of norms
on R

n. In our thesis, we state and prove another existence theorem that doesn’t
have this dependence, and it then gives a more precise result.
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Chapter 2

Fixed point theorems

In this chapter, we introduce two fixed point theorems and illustrate one of their
most famous applications in solving initial value Problems.

2.1 Banach Fixed Point Theorem

Definition 2.1.1 (Contraction). Let (V, ∥ · ∥) be a normed vector space. We say
that a map

T : V 7→ V

is a contraction if there exists a constant c, 0 < c < 1, such that

∥T (x)− T (y)∥ ≤ c∥x− y∥ ∀x, y ∈ V.

Theorem 2.1.2 (Banach Fixed Point Theorem). Given a non-empty Banach
vector space (V, ∥ · ∥), if T : V 7→ V is a contraction, then there exists a unique
x ∈ V such that T (x) = x.

Proof. Take x0 ∈ V , and define the sequence xn = T (xn−1), n ∈ N. We have

∥xn+1 − xn∥ = ∥T (xn)− T (xn−1)∥ ≤ c∥xn − xn−1∥,

where c, 0 < c < 1, is the contraction constant of T . Recursively,

∥xn+1 − xn∥ ≤ c∥xn − xn−1∥ ≤ c2∥xn−1 − xn−2∥ ≤ · · · ≤ cn∥x1 − x0∥
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We claim that (xn) is Cauchy. In fact, for m,n ∈ N, m ≥ n

∥xm − xn∥ = ∥xm − xm−1 + xm−1 − · · · − xn+1 + xn+1 − xn∥
≤ ∥xm − xm−1∥+ ∥xm−1 − xm−2∥+ · · ·+ ∥xn+1 − xn∥
≤ cm−1∥x1 − x0∥+ cm−2∥x1 − x0∥+ · · ·+ cn∥x1 − x0∥
= ∥x1 − x0∥cn[1 + c+ · · ·+ cm−n−1]

≤ ∥x1 − x0∥cn
∞
∑

n=0

cn

=
cn

1− c
∥x1 − x0∥

Since 0 < c < 1 the right handside of the inequality goes to 0 as n → ∞
concluding that (xn) is Cauchy sequence.

V is Banach, so by completeness xn converges to an element x ∈ V . We have
xn = T (xn−1) and T is continuous then T (x) = x.

2.2 Application: Picard’s Theorem

We apply the Banach fixed theorem to show the following existence and uniqueness
result of solutions to initial value problems.

Theorem 2.2.1 (Picard’s Theorem). Given an open subset U ⊆ R
2, and (x0, y0) ∈

U , we consider the following initial value problem (IVP)
{

y′ = f(x, y)

y(x0) = y0
.

If f is continuous on U and is Lipschitz continuous in the variable y, then ∃δ > 0
such that the (IVP) has a unique solution y := y(x) with x ∈ [x0 − δ, x0 + δ].

Proof. Let δ, b be such that for I = [x0 − δ, x0 + δ] and J = [y0 − b, y0 + b],
I × J ⊆ U . Also, let α be the Lipschitz constant of the function f , that is,

|f(x, y1)− f(x, y2)| ≤ α|y1 − y2|, ∀(x, y1), (x, y2) ∈ U.

Since f is continuous on the compact set I × J then f is bounded, we denote
M = max(x,y)∈I×J |f |. Taking δ small enough, we may assume that αδ < 1, and
Mδ < b.

Let S := {g ∈ C(I) : ∥g − y0∥∞ ≤ b}. S is non-empty as it contains the
function g(x) = y0. Since I is compact then C(I) is complete with respect to the
sup norm, and so S being closed we get that S is Banach.

Define the map T : S 7→ C(I) by T (y) = Ty, where

Ty(x) = y0 +

∫ x

x0

f(t, y(t)) dt.
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We show that T is a contraction on S.
First, since f is continuous, then Ty is differentiable, so Im(T ) ⊆ C(I).

Moreover

∥Ty − y0∥∞ = sup {|Ty(x)− y0|, x ∈ I} = sup

{∣

∣

∣

∣

∫ x

x0

f(t, y(t))dt

∣

∣

∣

∣

, x ∈ I

}

.

Since |f(t, y(t))| ≤ M then

∣

∣

∣

∣

∫ x

x0

f(t, y(t))dt

∣

∣

∣

∣

≤ M |x− x0| ≤ Mδ ≤ b.

Therefore ∥Ty − y0∥ ≤ b, and consequently Im(T ) ⊆ S.
To show that T is a contraction, notice that

∥Ty1−Ty2∥∞ = sup {|Ty1(x)− Ty2(x)|, x ∈ I} = sup

{∣

∣

∣

∣

∫ x

x0

f(t, y1(t))− f(t, y2(t))dt

∣

∣

∣

∣

, x ∈ I

}

Since
|f(t, y1(t))− f(t, y2(t))| ≤ α|y1(t)− y2(t)| ≤ α∥y1 − y2∥∞,

then
∣

∣

∣

∣

∫ x

x0

f(t, y1(t))− f(t, y2(t))dt

∣

∣

∣

∣

≤ α∥y1 − y2∥∞ · |x− x0| ≤ αδ∥y1 − y2∥∞.

Therefore, ∥Ty1 − Ty2∥∞ ≤ αδ∥y1 − y2∥∞. Having αδ < 1, we conclude that T is
a contraction.

Using Banach Fixed Point Theorem (Theorem 2.1.2), T has a unique fixed
point, call it y∗. We have that

y∗(x) = T (y∗)(x) = Ty∗(x) = y0 +

∫ x

x0

f(t, y∗(t)) dt.

Differentiating with respect to x and using the Fundamental Theorem of Calculus
we get that (y∗)′(x) = f(x, y∗(x)). Also, y∗(x0) = y0 +

∫ x0

x0
f(t, y∗(t)) dt = y0.

Hence, y∗ solves the IVP.
To conclude uniqueness, notice that if y := y(x) is another solution to the

IVP then

Ty(x) = y0 +

∫ x

x0

f(t, y(t)) dt = y0 +

∫ x

x0

y′(t) dt = y0 + y(x)− y0 = y(x).

Then y is a fixed point of T , and by uniqueness of the fixed point in Theorem
2.1.2, we get y = y∗.
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2.3 Brouwer Fixed Point Theorem

In this section, we introduce another useful fixed point theorem due to Brouwer,
then we prove Schauder fixed point theorem, the extension to infinite dimensional
spaces.

Theorem 2.3.1. (The one-dimensional case) Let f be a continuous function from
[a, b] to itself, then there exists a point c ∈ [a, b] such that f(c) = c.

Proof. Let g(x) = f(x)−x. Since f is continuous, then g is continuous. We have
g(a) = f(a)− a ≥ 0 , and g(b) = f(b)− b ≤ 0. Hence, by the Intermediate Value
Theorem, there exists a point c ∈ [a, b] such that g(c) = 0, that is, f(c) = c.

In the rest of the section, we denote by D
n the closed unit ball in R

n. We
state the following result from algebraic topology whose proof can be found in
Evan’s book [7, chapter 8.1].

Theorem 2.3.2. (No-Retraction Theorem in n-dimensions) There exists no continuous
map w : Dn 7→ ∂Dn such that w(x) = x for all x ∈ ∂Dn.

A consequence of Theorem 2.3.2 is the following n−dimensional fixed point
result on unit balls.

Theorem 2.3.3. Let f be a continuous function from D
n to itself, then there

exists a point x0 ∈ D
n, such that f(x0) = x0.

Proof. Assume that f has no fixed points. Define the map w : Dn 7→ ∂Dn by
setting w(x) to be the tip of the ray emanating from f(x), passing through x
and intersecting the boundary ∂Dn. This map is well defined as f(x) ̸= x for
all x ∈ D

n. In addition, w is continuous and w(x) = x for all x ∈ ∂Dn which,
by Theorem 2.3.2, is a contradiction. We conclude that f has at least one fixed
point in D

n.

Since every non-empty compact convex set is homeomorphic to a point or to
the unit ball (Topology and Geometry by E.Bredon [8, chapter 1, section 16]),
we then get the following version for general convex sets.

Theorem 2.3.4. (Brouwer’s Theorem for general finite dimensional spaces] Let
(X, ∥ · ∥) be a finite dimensional normed space, and K be a non-empty, compact,
and convex subset of X, then any continuous map T : K 7→ K has at least one
fixed point.

The above result can be extended to Banach spaces obtaining then the following
fixed point result named after Schauder.

Theorem 2.3.5. (Schauder Fixed Point Theorem- Version 1) Let (X, ∥ · ∥) be
a Banach space, and K be a non-empty, compact, and convex subset of X, then
any continuous map T : K 7→ K has at least one fixed point.
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Proof. Given ϵ > 0. By compactness, there exist x1, x2, · · · , xN ∈ K such that
the balls Bi := B(xi, ε) form an open cover of K. We denote by Kϵ the closed
convex hull of the points x1, · · · , xN , that is

Kϵ =

{

N
∑

i=1

λixi : 0 ≤ λi ≤ 1,
N
∑

i=1

λi = 1

}

.

Since K is convex, then Kϵ ⊆ K. Moreover, Kϵ is nonempty, finite dimensional,
and compact.

We define the function fϵ : K 7→ Kϵ by

fϵ(x) =

∑N

i=1 dist(x,K \Bi)xi
∑N

i=1 dist(x,K \Bi)

where dist denotes the distance between two points. Note that the denominator
is not zero since K ⊆ ∪N

i=1Bi, and so fϵ is continuous. Also, we have that for
every x ∈ K

∥fϵ(x)−x∥ =

∥

∥

∥

∥

∥

∑N

i=1 dist(x,K \Bi)(xi − x)
∑N

i=1 dist(x,K \Bi)

∥

∥

∥

∥

∥

≤
∑N

i=1 dist(x,K \Bi)∥xi − x∥
N
∑

i=1

dist(x,K \Bi)

≤ ϵ

(2.1)
Define then the map

Tϵ = fϵ ◦ T.
We have Tϵ(Kϵ) ⊆ Kϵ, Tϵ is continuous, then by Theorem 2.3.4 applied on Kϵ,
there is a point xϵ ∈ Kϵ such that Tϵ(xϵ) = xϵ.

Consider ϵn = 1
n
, and let xϵn ∈ Kϵn be a sequence of fixed points of Tϵn .

By compactness of K, xϵn has a converging subsequence xϵnk
. Denote x0 =

limk→∞ xϵnk
. Using (2.1), we have

∥

∥xϵnk
− T (xϵnk

)
∥

∥ =
∥

∥Tϵnk
(xϵnk

)− T (xϵnk
)
∥

∥ =
∥

∥fϵnk
(T (xϵnk

))− T (xϵnk
)
∥

∥ ≤ ϵnk
=

1

nk

Letting k → ∞, we get Tx0 = x0.

In fact a weaker version of Schauder fixed point theorem can be also proven
and will be of use in the next section

Theorem 2.3.6. (Schauder Fixed Point Theorem- Version 2) Let (X, ∥ · ∥) be a
Banach space and K a non-empty, closed, and convex subset of X. If T : K 7→ K
is a continuous map such that T (K) is precompact1, then T has a fixed point in
K.

1T is called a compact operator
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Proof. We have T (K) is compact then from Rudin Functional analysis book [9,
theorem 3.24], the closed convex hull C of T (K) is compact. We have by definition
C is non-empty and convex. It is also clear that C ⊆ K, in fact since K is closed
and T (K) ⊆ K, then T (K) ⊆ K, and hence having that K is convex we conclude
the inclusion. Notice finally that T (C) ⊆ T (K) ⊆ C, applying then Theorem
2.3.5 on T |C we get that T has a fixed point in C.

2.4 Application: Peano’s Existence Theorem

One of the applications of Schauder Fixed Point Theorem in ODEs is Peano’s
existence Theorem.

Theorem 2.4.1 (Peano’s Existence Theorem). Given an open subset U ⊆ R
2,

and (x0, y0) ∈ U , we consider the following initial value problem (IVP)
{

y′ = f(x, y)

y(x0) = y0
.

If f is continuous on U , then ∃δ > 0 such that the (IVP) has a solution y := y(x)
with x ∈ [x0 − δ, x0 + δ].

Proof. We use the same setting of the proof of Picard’s Theorem 2.2.1. I =
[x0 − δ, x0 + δ], and J = [y0 − b, y0 + b] with b, δ > 0 chosen so that I × J ⊆ U .
Let M = max

(x,y)∈I×J
|f(x, y)|, and take δ small enough so that δM < b. Finally, let

S := {g ∈ C(I,R) : ∥g − y0∥∞ ≤ b}.

S is non-empty and closed. Moreover, notice that if h and g are two functions in
S and λ ∈ [0, 1], then (1− λ)h+ λg ∈ C(I) and for all x ∈ I,

|(1−λ)h(x)+λg(x)−y0| = |(1−λ)(h(x)−y0)+λ(g(x)−y0)| ≤ (1−λ)|h(x)−y0|+λ|g(x)−y0| ≤ b.

Hence, (1−λ)h(x)+λg(x) ∈ S, concluding that S is convex. Finally notice that
S is bounded since for every g ∈ S, we have ∥g∥∞ ≤ b+ |y0|.

Next, as in the proof of Theorem 2.2.1, consider the map T : S 7→ S given by
T (y) = Ty with

Ty(x) = y0 +

∫ x

x0

f(t, y(t))dt.

We prove T is continuous2. Let yn be a sequence in S that converges uniformly
to a function y. We have for every x ∈ I

|Tyn(x)− Ty(x)| =
∣

∣

∣

∣

∫ x

x0

f(t, yn(t))− f(t, y(t))dt

∣

∣

∣

∣

≤
∫

I

|f(t, yn(t))− f(t, y(t))|dt,

2The proof of continuity here is different as we do not have necessarily a contraction
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and so

∥T (yn)− T (y)∥∞ ≤
∫

I

|f(t, yn(t))− f(t, y(t))|dt.

We have |f(t, yn(t)) − f(t, y(t))| ≤ 2M , and f(t, yn(t)) → f(t, y(t)), hence, by
the Dominated Convergence Theorem, we get

lim
n→∞

∥T (yn)− T (y)∥∞ = 0.

Therefore, T : S 7→ S is continuous.
To apply Theorem 2.3.6 it remains to show that T (S) is precompact. We

already have that T (S) ⊆ S is bounded. Also, for every y ∈ S,

|Ty(x2)− Ty(x1)| =
∣

∣

∣

∣

∫ x2

x1

f(t, y(t))dt

∣

∣

∣

∣

≤ M |x2 − x1|.

Hence T (S) is equicontinuous. Therefore, by Arzelà-Ascoli T (S) is precompact.
We conclude from Theorem 2.3.6, that T has a fixed point y∗ ∈ S which

following the proof of Theorem 2.2.1 is a solution to the IVP.

Remark 2.4.2. In Peano’s theorem, we do not have necessarily uniqueness. In
fact, consider the the initial value problem

{

y′ = xy
1
3

y(0) = 0

where (x, y) ∈ U ⊂ R
2, and U is an open set containing (0, 0). f(x, y) = xy

1
3 is

continuous, so by Peano’s theorem, there exist a neighborhood of x = 0 where a
solution y(x) exists. Notice that y = 0 is a solution, but it is not the only one as
y = x3

3
√
3
is another solution to the IVP.
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Chapter 3

Solving system of Functional

differential equations

In this chapter, we introduce the system of functional differential equations that
will be used later to solve the dichromatic problem. In sections 3.1 and 3.2, we
prove an existence and uniqueness theorem for solutions to the system. In section
3.3, some analysis on the theorem shows that the existence theorem depends on
the choice of norms that could give inconclusive results. In section 3.4, we avoid
these cases using another existence theorem which is stated and proved.

3.1 Existence of solutions

Let ∥ · ∥ be any norm on R
n, and H be a continuous map defined in an open

domain in R
4n+1 with values in R

n given by

H(X) = (h1(X), h2(X), · · · , hn(X))

with X = (t, v0, v1, w0, w1); t ∈ R, and v0, v1, w0, w1 ∈ R
n. We are interested in

solving the system:

{

Z ′(t) = H(t, Z(t), Z(z1(t)), Z
′(t), Z ′(z1(t)))

Z(0) = 0

with Z(t) = (z1(t), z2(t), · · · , zn(t)) a C1 map from R to R
n. We denoted by

VZ(t) the vector

VZ(t) = (t, Z(t), Z(z1(t)), Z
′(t), Z ′(z1(t))). (3.1)

Note that if a solution exists in a neighborhood of t = 0, then

Z ′(0) = H(0,0,0, Z ′(0), Z ′(0))

15



has a solution. In other words, there must exist a point P = (p1, p2, · · · , pn) ∈ R
n

that solves the system
P = H(0,0,0, P, P )

For such a point P , we define P = (0,0,0, P, P ) and the closed neighborhood in
R

4n+1

Nϵ(P) = {(t, v0, v1, w0, w1); |t|+ ∥v0∥+ ∥v1∥+ ∥w0 − P∥+ ∥w1 − P∥ ≤ ϵ}

Assuming H is continuous in Nϵ(P), we define

α = max{∥H(X)∥ : X ∈ Nϵ(P)}. (3.2)

Definition 3.1.1. Given δ > 0, C1([−δ, δ]) is the set of C1 functions Z(t) :
[−δ, δ] 7→ R

n,with the norm

∥ · ∥C1([−δ,δ]) = max
[−δ,δ]

∥Z(t)∥+max
[−δ,δ]

∥Z ′(t)∥.

(C1([−δ, δ]), ∥ · ∥C1([−δ,δ])) is a Banach space.

Definition 3.1.2. Given ϵ > 0 and P = (p1, p2, · · · , pn) a solution to the system
P = H(0,0,0, P, P ). We assume H is continuous in Nϵ(P) and α is the constant
defined in (3.2).

For µ, δ > 0, we define CP,µ(δ) to be the set of functions Z(t) that satisfy the
following properties for t, t̄ ∈ [−δ, δ]

1. Z ∈ C1([−δ, δ]).

2. Z(0) = 0, and Z ′(0) = P .

3. |z1(t)| ≤ |t|.

4. ∥Z(t)− Z(t̄)∥ ≤ α|t− t̄|.

5. |z1(t)− z1(t̄)| ≤ |t− t̄|.

6. ∥Z ′(t)− Z ′(t̄)∥ ≤ µ|t− t̄|.

7. VZ(t) ∈ Nϵ(P).

Lemma 3.1.3. Let ϵ,H, α and P be as in Definition 3.1.2, assume further that
|p1| ≤ 1. Then there exists δ0 > 0 such that CP,µ(δ) is not empty for all δ ≤ δ0
and for all µ > 0.

Proof. Let Z0(t) = tP. We have,

• Z0 is C1, Z0(0) = 0, and Z ′
0(0) = P.
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• |z1(t)| = |tp1| = |t| · |p1| ≤ |t|.

• Using (3.2), we have

∥Z0(t)− Z0(t̄)∥ = ∥P (t− t̄)∥ = ∥P∥ · |t− t̄| = ∥H(P)∥ · |t− t̄| ≤ α|t− t̄|.

• |z1(t)− z1(t̄)| = |p1(t− t̄)| = |p1| · |t− t̄| ≤ |t− t̄|.

• ∥Z ′
0(t)− Z ′

0(t̄)∥ = ∥P − P∥ = 0 ≤ µ|t− t̄|.

• VZ0(t) = (t, tP, (tp1)P, P, P ).

(1)-(6) in Definition 3.1.2 are satisfied by Z0(t). To obtain (7), we need
|t|+ ∥tP∥+ ∥tp1P∥ ≤ ϵ. This is achieved by taking |t| ≤ ϵ

1+∥P∥+|p1|·∥P∥ := δ0.

Lemma 3.1.4. Using the same setting of Definition 3.1.2, CP,µ(δ) is complete
for every µ, δ > 0 with respect to the ∥ · ∥C1([−δ,δ]) norm.

Proof. Let Zk be a Cauchy sequence in CP,µ(δ). Since, (C1[−δ, δ], ∥ · ∥C1[−δ,δ]) is
complete, Zk converges to a function Z in C1[−δ, δ], this means that Zk and
(Zk)′ converge uniformly to Z and Z ′ respectively with respect to the chosen
norm ∥ · ∥ on R

n. We will show that Z ∈ CP,µ(δ) by checking properties (1)− (7)
in Definition 3.1.2.

• By pointwise convergence, Z(0) = 0, and Z ′(0) = P .

• For every ϵ1 > 0, there exists k such that |z1(t)−zk1 (t)| < ϵ1 for all t ∈ [−δ, δ]
so we get

|z1(t)| ≤ |z1(t)− zk1 (t)|+ |zk1 (t)| < ϵ1 + |t|.
Letting ϵ1 go to zero, we get |z1(t)| ≤ |t|.

• For every ϵ1 > 0, there exists k such that
∥

∥Z(t)− Zk(t)
∥

∥ < ϵ1 for all
t ∈ [−δ, δ], so we get

∥Z(t)− Z(t̄)∥ ≤
∥

∥Z(t)− Zk(t)
∥

∥+
∥

∥Zk(t)− Zk(t̄)
∥

∥+
∥

∥Zk(t̄)− Z(t̄)
∥

∥ < 2ϵ1 + α|t− t̄|

Letting ϵ1 go to zero, we get ∥Z(t)− Z(t̄)∥ ≤ α|t− t̄|.

• Similarly as above, we obtain (5) and (6).

• We have that for every ϵ1 > 0, there exists k such that for t ∈ [−δ, δ],

∥

∥Z(t)− Zk(t)
∥

∥ < ϵ1,
∥

∥Z ′(t)− (Zk)′(t)
∥

∥ < ϵ1, |z1(t)− zk1 (t)| < ϵ1.
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using the fact that |z1(t)|, |zk1 (t)| ≤ |t| ≤ δ,

|t|+ ∥Z(t)∥+ ∥Z(z1(t))∥+ ∥Z ′(t)− P∥+ ∥Z ′(z1(t))− P∥
≤ |t|+

(∥

∥Z(t)− Zk(t)
∥

∥+
∥

∥Zk(t)
∥

∥

)

+
(∥

∥Z(z1(t))− Zk(zk1 (t))
∥

∥+
∥

∥Zk(zk1 (t))
∥

∥

)

+
(∥

∥Z ′(t)− (Zk)′(t)
∥

∥+
∥

∥(Zk)′(t)− P
∥

∥

)

+
(∥

∥Z ′(z1(t))− (Zk)′(zk1 (t))
∥

∥

+
∥

∥(Zk)′(zk1 (t))− P
∥

∥

)

≤ ϵ+ 2ϵ1 +
∥

∥Z(z1(t))− Zk(zk1 (t))
∥

∥+
∥

∥Z ′(z1(t))− (Zk)′(zk1 (t))
∥

∥

We have

∥

∥Z(z1(t))− Zk(zk1 (t))
∥

∥ ≤
∥

∥Z(z1(t))− Z(zk1 (t))
∥

∥+
∥

∥Z(zk1 (t))− Zk(zk1 (t))
∥

∥

< α|z1(t)− zk1 (t)|+ ϵ1 < (1 + α)ϵ1.

Similarly,
∥

∥Z ′(z1(t))− (Zk)′(zk1 (t))
∥

∥ < (1+α)ϵ1.We conclude that for every
t ∈ [−δ, δ]

|t|+ ∥Z(t)∥+ ∥Z(z1(t))∥+ ∥Z ′(t)− P∥+ ∥Z ′(z1(t))− P∥ ≤ ϵ+ (4+ 2α)ϵ1.

Letting ϵ1 go to zero, we get that Z verifies (7), concluding the proof of the
lemma.

Theorem 3.1.5. Given a norm ∥ · ∥ on R
n and a function H defined in R4n+1

as in the beginning of section 3.1, and assume that the system

P = H(0,0,0, P, P ) (3.3)

has a solution P = (p1, p2, · · · , pn), with

|p1| ≤ 1. (3.4)

Define P = (0,0,0, P, P ). Furthermore, assume there exists ϵ > 0 such that

1. H is uniformly Lipschitz in the variable t, i.e., there exists Λ > 0 such that

∥

∥H(t, v0, v1, w0, w1)−H(t̄, v0, v1, w0, w1)
∥

∥ ≤ Λ|t− t̄| (3.5)

for all (t, v0, v1, w0, w1), (t̄, v0, v1, w0, w1) ∈ Nϵ(P).

2. H is uniformly Lipschitz in the variables v0 and v1, i.e., there exist positive
constants L0 and L1 such that

∥

∥H(t, v0, v1, w0, w1)−H(t, v̄0, v̄1, w0, w1)
∥

∥ ≤ L0

∥

∥v0 − v̄0
∥

∥+ L1

∥

∥v1 − v̄1
∥

∥

(3.6)
for all (t, v0, v1, w0, w1), (t, v̄0, v̄1, w0, w1) ∈ Nϵ(P).
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3. H is a uniform contraction in the variables w0 and w1, i.e., there exist
constants C0 and C1 with C0 + C1 < 1 such that

∥

∥H(t, v0, v1, w0, w1)−H(t, v0, v1, w̄0, w̄1)
∥

∥ ≤ C0

∥

∥w0 − w̄0
∥

∥+ C1

∥

∥w1 − w̄1
∥

∥

(3.7)
for all (t, v0, v1, w0, w1), (t, v0, v1, w̄0, w̄1) ∈ Nϵ(P).

4. For all X ∈ Nϵ(P),
|h1(X)| ≤ 1. (3.8)

Then there exists δ > 0 and Z ∈ C1([−δ, δ]) with VZ(t) ∈ Nϵ(P) that solves the
system

{

Z ′(t) = H(t, Z(t), Z(z1(t)), Z
′(t), Z ′(z1(t)))

Z(0) = 0
(3.9)

for |t| ≤ δ, with Z ′(0) = P.

Proof. Let µ be a real number such that

µ ≥ Λ + (L0 + L1)α

1− C0 − C1

(3.10)

where α is the constant defined in (3.2). Using Lemma 3.1.3, there exists δ0 such
that CP,µ(δ) is not empty for every δ ≤ δ0. Fixing µ satisfying (3.10), we denote
in this proof for simplicity the set CP,µ(δ) by C(δ).

Let δ ≤ δ0. We define the map T on C(δ) as follows

T (Z)(t) =

∫ t

0

H(s, Z(s), Z(z1(s)), Z
′(s), Z ′(z1(s))) ds.

As VZ(t) ∈ Nϵ(P) then the integrand is well defined. We will prove that T is a
contraction on C(δ). From Lemma 3.1.4, C(δ) is complete then this will imply by
Banach Fixed Point Theorem, Theorem 2.1.2, that T has a unique fixed point
which will turn out to be the solution of the system.

We start by showing that T (C(δ)) ⊆ C(δ). Take Z(t) ∈ C(δ), and

W (t) = (w1(t), w2(t), · · · , wn(t)) = T (Z)(t).

We need to check properties (1)− (7) in Definition 3.1.2.

• Since H is continuous in Nϵ(P), then from the Fundamental Theorem of
Calculus, W is continuously differentiable.

• Obviously, W (0) = 0, and

W ′(0) = H(0, Z(0), Z(z1(0)), Z
′(0), Z ′(z1(0))) = H(0,0,0, P, P ) = P.
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• Using (3.8), we have

|w1(t)| =
∣

∣

∣

∣

∫ t

0

h1(VZ(s))dt

∣

∣

∣

∣

≤ |t− 0| = |t|,

and

|w1(t)−w1(t̄)| =
∣

∣

∣

∣

∣

∫ t

0

h1(VZ(s))dt−
∫ t̄

0

h1(VZ(s))dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

t̄

h1(VZ(s))dt

∣

∣

∣

∣

≤ |t−t̄|

• Moreover, by (3.2)

∥W (t)−W (t̄)∥ =

∥

∥

∥

∥

∥

∫ t

0

H(VZ(s))dt−
∫ t̄

0

H(VZ(s))dt

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∫ t

t̄

H(VZ(s))dt

∥

∥

∥

∥

≤
∣

∣

∣

∣

∫ t

t̄

∥H(VZ(s))∥dt
∣

∣

∣

∣

≤ α|t− t̄|.

• By the Lipchitz properties (3.5), (3.6), and (3.7) of H ,

∥W ′(t)−W ′(t̄)∥ = ∥H(VZ(t))−H(VZ(t̄))∥
≤ Λ|t− t̄|+ L0∥Z(t)− Z(t̄)∥+ L1∥Z(z1(t))− Z(z1(t̄))∥

+ C0∥Z ′(t)− Z ′(t̄)∥+ C1∥Z ′(z1(t))− Z ′(z1(t̄))∥

Using properties 3, 4, 5, and 6 in Definition 3.1.2, we get

∥W ′(t)−W ′(t̄)∥ ≤ Λ|t− t̄|+ L0α|t− t̄|+ L1α|z1(t)− z1(t̄)|+ C0µ|t− t̄|+ C1µ|z1(t)− z1(t̄)|
≤ (Λ + (L0 + L1)α + (C0 + C1)µ)|t− t̄|.

By (3.10), Λ + (L0 + L1)α ≤ (1− C0 − C1)µ. Hence,

∥W ′(t)−W ′(t̄)∥ ≤ µ|t− t̄|.

• It remains to show that VW (t) ∈ Nϵ(P). Define

SW (t) = |t|+ ∥W (t)∥+ ∥W (w1(t))∥+ ∥W ′(t)− P∥+ ∥W ′(w1(t))− P∥.

We have to show that SW (t) ≤ ϵ by choosing δ properly. We have:

∥W (t)∥ = ∥W (t)−W (0)∥ ≤ α|t| ≤ αδ

Since |w1(t)| ≤ |t| ≤ δ, we get

∥W (w1(t))∥ ≤ αδ.
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We next calculate ∥W ′(t)− P∥. From (3.3) and the Lipschitz properties
(3.5), (3.6) and (3.7) of H, and we get

∥W ′(t)− P∥ = ∥H(VZ(t))−H(P)∥
≤ Λ|t|+ L0∥Z(t)∥+ L1∥Z(z1(t))∥+ C0∥Z ′(t)− P∥+ C1∥Z ′(z1(t))− P∥.

We have

∥Z(t)∥ = ∥Z(t)− Z(0)∥ ≤ α|t| ≤ αδ, ∥Z ′(t)− P∥ = ∥Z ′(t)− Z ′(0)∥ ≤ µ|t| ≤ µδ.

Since |z1(t)| ≤ |t| ≤ δ, then we also get

∥Z(z1(t))∥ ≤ αδ, ∥Z ′(z1(t))− P∥ ≤ µδ.

Hence,
∥W ′(t)− P∥ ≤ [Λ + (L0 + L1)α + (C0 + C1)µ]δ.

Since |w1(t)| ≤ |t| ≤ δ, then

∥W ′(w1(t))− P∥ ≤ [Λ + (L0 + L1)α + (C0 + C1)µ]δ.

We conclude that

SW (t) ≤ δ[1 + 2Λ + 2α(1 + L0 + L1) + 2µ(C0 + C1)].

Choosing δ to be less than ϵ
1+2Λ+2α(1+L0+L1)+2µ(C0+C1)

, we get VW (t) ∈
Nϵ(P).

It remains to show that for such δ, T is a contraction. Let Z1, Z2 be in C(δ),
we prove that there exists a constant 0 < c < 1 such that

∥

∥T (Z1)− T (Z2)
∥

∥

C1([−δ,δ])
≤ c
∥

∥Z1 − Z2
∥

∥

C1([−δ,δ])

Let W 1 = T (Z1), W 2 = T (Z2). By the Fundamental theorem of calculus, we
have

∥

∥W 1(t)−W 2(t)
∥

∥ ≤
∣

∣

∣

∣

∫ t

0

∥

∥(W 1)′(s)− (W 2)′(s)
∥

∥ds

∣

∣

∣

∣

≤ δ sup
|t|≤δ

∥

∥(W 1)′(t)− (W 2)′(t)
∥

∥

(3.11)

And similarly,
∥

∥Z1(t)− Z2(t)
∥

∥ ≤ δ sup
|t|≤δ

∥(Z1)′(t)− (Z2)′(t)∥ ≤ δ
∥

∥Z1 − Z2
∥

∥

C1([−δ,δ])
.

Next we will estimate ∥(W 1)′(t)− (W 2)′(t)∥. From the Lipchitz properties (3.5),
(3.6), (3.7) we get
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∥

∥(W 1)′(t)− (W 2)′(t)
∥

∥ = ∥H(VZ1(t))−H(VZ2(t))∥
≤ L0

∥

∥Z1(t)− Z2(t)
∥

∥+ L1

∥

∥Z1(z11(t))− Z2(z21(t))
∥

∥

+ C0

∥

∥(Z1)′(t)− (Z2)′(t)
∥

∥+ C1

∥

∥(Z1)′(z11(t))− (Z2)′(z21(t))
∥

∥

≤ (L0δ + C0)
∥

∥Z1 − Z2
∥

∥

C1([−δ,δ])
+ L1

∥

∥Z1(z11(t))− Z2(z21(t))
∥

∥

+ C1

∥

∥(Z1)′(z11(t))− (Z2)′(z21(t))
∥

∥

Notice that
∥

∥Z1(z11(t))− Z2(z21(t))
∥

∥ ≤
∥

∥Z1(z11(t))− Z2(z11(t))
∥

∥+
∥

∥Z2(z11(t))− Z2(z21(t))
∥

∥

≤ δ
∥

∥Z1 − Z2
∥

∥

C1([−δ,δ])
+ α|z11(t)− z21(t)|

≤ δ
∥

∥Z1 − Z2
∥

∥

C1([−δ,δ])
+ αC∥.∥

∥

∥Z1(t)− Z2(t)
∥

∥

≤ δ(αC∥.∥ + 1)
∥

∥Z1 − Z2
∥

∥

C1([−δ,δ])
.

,

and
∥

∥(Z1)′(z11(t))− (Z2)′(z21(t))
∥

∥ ≤
∥

∥(Z1)′(z11(t))− (Z2)′(z11(t))
∥

∥+
∥

∥(Z2)′(z11(t))− (Z2)′(z21(t))
∥

∥

≤
∥

∥Z1 − Z2
∥

∥

C1([−δ,δ])
+ µ|z11(t)− z21(t)|

≤
∥

∥Z1 − Z2
∥

∥

C1([−δ,δ])
+ µC∥.∥

∥

∥Z1(t)− Z2(t)
∥

∥

≤ δ(µC∥.∥ + 1)
∥

∥Z1 − Z2
∥

∥

C1([−δ,δ])
,

Here C∥·∥ is a constant that depends on the norm ∥ · ∥. Combining the above
inequalities, we obtain

∥

∥(W 1)′(t)− (W 2)′(t)
∥

∥ ≤ (L0δ + L1δ(αC∥.∥ + 1)) + C0 + C1(µC∥.∥δ + 1))
∥

∥Z1 − Z2
∥

∥

C1([−δ,δ])

= (Mδ + C0 + C1)
∥

∥Z1 − Z2
∥

∥

C1([−δ,δ])
(3.12)

Combining (3.11), and (3.12) we get
∥

∥W 1(t)−W 2(t)
∥

∥ ≤ δ(Mδ + C0 + C1)
∥

∥Z1 − Z2
∥

∥

C1([−δ,δ])
.

We conclude that:
∥

∥(TZ1)(t)− (TZ2)(t)
∥

∥

C1([−δ,δ])
=
∥

∥W 1 −W 2
∥

∥

C1([−δ,δ])
≤ (1+δ)(Mδ+C0+C1)

∥

∥Z1 − Z2
∥

∥

C1([−δ,δ])
.

Since C0 +C1 < 1, choosing δ to be small enough, we get that T is a contraction
on C(δ). Hence, by Banach Fixed Point Theorem (Theorem 2.1.2), T has a unique
fixed point, that is, there is a unique function Z∗(t) ∈ C(δ) such that

Z∗(t) = (TZ∗)(t) =

∫ t

0

H(VZ∗(s))ds.

Differentiating both sides, and plugging t = 0 we get that Z∗(t) solves the system
(3.9), for |t| ≤ δ, and satisfies (Z∗)′(0) = P .
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3.2 Uniqueness of the Solution

In Theorem 3.1.5, we have proven that the fixed point of the contraction T is
a solution to the system 3.9. If we can show that for any solution Z(t) to the
system, Z is a fixed point of T , then uniqueness follows from Theorem 2.1.2.

Theorem 3.2.1. Under the assumptions of Theorem 3.1.5, the local solution
Z(t) to the system 3.9 with |t| ≤ δ, Z ′(0) = P , and VZ(t) ∈ Nϵ(P) is unique.

Proof. First, we prove that Z ∈ C(δ) by checking the properties of Definition
3.1.2 where P is given and µ satisfies (3.10). Since H is continuous, Z ′(t) is
continuous and hence Z ∈ C1([−δ, δ]). We also have that Z solves the system
then z′1(t) = h1(VZ(t)), so from (3.8)

|z1(t)| =
∣

∣

∣

∣

∫ t

0

h1(VZ(s))ds

∣

∣

∣

∣

≤ |t|. (3.13)

and,

|z1(t)− z1(t̄)| =
∣

∣

∣

∣

∫ t

t̄

h1(VZ(s))ds

∣

∣

∣

∣

≤ |t− t̄|. (3.14)

Also, for |t|, |t̄| ≤ δ, we have from (3.2)

∥Z(t)− Z(t̄)∥ =

∥

∥

∥

∥

∫ t

t̄

H(VZ(s))ds

∥

∥

∥

∥

≤ α|t− t̄|, (3.15)

and from the Lipchitz properties (3.5), (3.6), and (3.7) of H

∥Z ′(t)− Z ′(t̄)∥ = H(VZ(t))−H(VZ(t̄))

≤ Λ|t− t̄|+ L0∥Z(t)− Z(t̄)∥+ L1∥Z(z1(t))− Z(z1(t̄))∥
+ C0∥Z ′(t)− Z ′(t̄)∥+ C1∥Z ′(z1(t))− Z ′(z1(t̄))∥.

Using (3.13), (3.14) and (3.15), we get that for every |t|, |t̄| ≤ δ

∥Z ′(t)− Z ′(t̄)∥ ≤ (Λ + (L0 + L1)α)|t− t̄|+ C0∥Z ′(t)− Z ′(t̄)∥+ C1∥Z ′(z1(t))− Z ′(z1(t̄))∥.

Now fix t and t̄ and let d = |t − t̄|. Let τ and τ̄ be such that |τ |, |τ̄ | ≤ δ, and
|τ − τ̄ | ≤ d. We have

|z1(τ)− z1(τ̄)| ≤ |τ − τ̄ | ≤ d.

Hence, substituting τ and τ̄ in the inequality gives

∥Z ′(τ)− Z ′(τ̄)∥ ≤ (Λ + (L0 + L1)α)|τ − τ̄ |+ C0∥Z ′(τ)− Z ′(τ̄)∥+ C1∥Z ′(z1(τ))− Z ′(z1(τ̄))∥
≤ (Λ + (L0 + L1)α)d+ (C0 + C1) sup

|τ |,|τ̄ |≤δ,|τ−τ̄ |≤d

∥Z ′(τ)− Z ′(τ̄)∥.
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Taking the supremum of the left hand side we get from (3.10)

sup
|τ |,|τ̄ |≤δ,|τ−τ̄ |≤d

∥Z ′(τ)− Z ′(τ̄)∥ ≤ Λ + (L0 + L1)α

1− C0 − C1

d ≤ µd = µ|t− t̄|.

Hence, for every |t|, |t̄| ≤ δ,

∥Z ′(t)− Z ′(t̄)∥ ≤ sup
|τ |,|τ̄ |≤δ,|τ−τ̄ |≤d

∥Z ′(τ)− Z ′(τ̄)∥ ≤ µ|t− t̄|.

Therefore, Z ∈ C(δ). Noticing that

T (Z)(t) =

∫ t

0

H(VZ(t)) dt =

∫ t

0

Z ′(t) dt = Z(t)− Z(0) = Z(t),

then Z is a fixed point of T concluding uniqueness of the solution.

3.3 Estimate of the contraction constants C0 and C1

Recall the following preliminary definitions from linear algebra.

Definition 3.3.1. Given a norm ∥ · ∥ on R
n. We define the induced norm |||·|||

on the space of n× n matrices by

|||A||| = max{∥Av∥ : v ∈ R
n, ∥v∥ = 1}.

Definition 3.3.2. Given an n×n matrix A, the spectral radius RA is the largest
absolute value of the eigenvalues of A.

Remark 3.3.3. Let λ be the eigenvalue of A with the largest absolute value,
and x a corresponding eigenvector then for any norm ∥ · ∥ we have

|λ| · ∥x∥ = ∥λx∥ = ∥Ax∥ ≤ |||A||| · ∥x∥

and hence, RA = |λ| ≤ |||A|||.

In fact, we have the following useful result due to Householder in ”Matrices:
Theory and Applications” [10, chapter 7].

Theorem 3.3.4. Given a matrix A in R
n, for every ϵ > 0, there exists a norm

∥ · ∥ in R
n such that

RA ≤ |||A||| < RA + ϵ.
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LetH, and P be as defined at the beginning of Section 3.1 and P = (0,0,0,P, P ),
moreover we assume that H is C1 in Nϵ(P) for some ϵ > 0. In this case, H is
automatically Lipschitz in all the variables. We are interested in this section
in the Lipschitz constants with respect to variables w0 and w1. We define the
following n× n matrices

∇w0H =

(

∂hi

∂w0
j

)

1≤i,j≤n

, ∇w1H =

(

∂hi

∂w1
j

)

1≤i,j≤n

,

and we denote by DH the n× (4n+ 1) first order derivative matrix of H.

Proposition 3.3.5. The Lipchitz property (3.7) is satisfied for C0 = maxNϵ(P) |||∇w0H|||
and C1 = maxNϵ(P) |||∇w1H|||.

Proof. For (t, v0, v1, w0, w1) and (t, v0, v1, w̄0, w̄1) inNϵ(P), and by the fundamental
theorem of calculus

H(t, v0, v1, w0, w1)−H(t, v0, v1, w̄0, w̄1)

=

∫ 1

0

DH((1− s)(t, v0, v1, w0, w1) + s(t, v0, v1, w̄0, w̄1))(0,0,0, w0 − w̄0, w1 − w̄1)tds

=

∫ 1

0

∇w0H((1− s)(t, v0, v1, w0, w1) + s(t, v0, v1, w̄0, w̄1))(w0 − w̄0)tds

+

∫ 1

0

∇w1H((1− s)(t, v0, v1, w0, w1) + s(t, v0, v1, w̄0, w̄1))(w1 − w̄1)tds

Hence we get

∥

∥H(t, v0, v1, w0, w1)−H(t, v0, v1, w̄0, w̄1)
∥

∥

≤
∫ 1

0

∥

∥∇w0H((1− s)(t, v0, v1, w0, w1) + s(t, v0, v1, w̄0, w̄1))(w0 − w̄0)t
∥

∥ds

+

∫ 1

0

∥

∥∇w1H((1− s)(t, v0, v1, w0, w1) + s(t, v0, v1, w̄0, w̄1))(w1 − w̄1)t
∥

∥ds

≤
∫ 1

0

∣

∣

∣

∣

∣

∣∇w0H((1− s)(t, v0, v1, w0, w1) + s(t, v0, v1, w̄0, w̄1))
∣

∣

∣

∣

∣

∣ ·
∥

∥w0 − w̄0
∥

∥ds

+

∫ 1

0

∣

∣

∣

∣

∣

∣∇w1H((1− s)(t, v0, v1, w0, w1) + s(t, v0, v1, w̄0, w̄1))
∣

∣

∣

∣

∣

∣ ·
∥

∥w1 − w̄1
∥

∥ds

≤ max
Nϵ(P)

|||∇w0H||| ·
∥

∥w0 − w̄0
∥

∥+ max
Nϵ(P)

|||∇w1H||| ·
∥

∥w1 − w̄1
∥

∥.

Proposition 3.3.6. For any values C0 and C1 satisfying the Lipchitz property
(3.7), we have C0 ≥ |||∇w0H(P)|||, C1 ≥ |||∇w1H(P)|||
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Proof. Let v ∈ R
n such that ∥v∥ = 1. For s > 0 small, we have (0,0,0, P +

sv, P ) ∈ Nϵ(P), and hence

∥H(0,0,0, P, P )−H(0,0,0, P + sv, P )∥ ≤ C0|s|. (3.16)

Applying the mean value theorem for each component, we get

hi(0,0,0, P + sv, P )− hi(0,0,0, P, P ) = ∇hi(θi) · (0,0,0, sv,0) = s













∂hi

∂w0
1

∂hi

∂w0
2
...

∂hi

∂w0
n













(θi) ·











v1
v2
...
vn











where θi = (0,0,0, P + s0iv, P ), 0 < s0i < s is a point in Nϵ(P). Hence,

hi(0,0,0, P + sv, P )− hi(0,0,0, P, P )

s
=

n
∑

j=1

∂hi

∂w0
j

(θi) · vj.

Then, replacing in (3.16)

C0 ≥
∥

∥

∥

∥

H(0,0,0, P + sv, P )−H(0,0,0, P, P )

s

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













∑n

i=1
∂h1

∂w0
i

(θ1) · vi
∑n

i=1
∂h2

∂w0
i

(θ2) · vi
...

∑n

i=1
∂hn

∂w0
i

(θn) · vi













∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

As s tends to zero, θi tends to P and we get

C0 ≥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













∑n

i=1
∂h1

∂w0
i

(P).vi
∑n

i=1
∂h2

∂w0
i

(P).vi
...

∑n

i=1
∂hn

∂w0
i

(P) · vi













∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥











∂h1

∂w0
1

∂h1

∂w0
2

· · · ∂h1

∂w0
n

· · ·
· · ·

∂hn

∂w0
1

∂hn

∂w0
2

· · · ∂hn

∂w0
n











(P)











v1
v2
...
vn











∥

∥

∥

∥

∥

∥

∥

∥

∥

= ∥∇w0H(P) · v∥

Taking the supremum over all v ∈ R
n with ∥v∥ = 1, we get C0 ≥ |||∇w0H(P)|||.

The inequality for C1 follows similarly.

Remark 3.3.7. By Proposition 3.3.6, and Remark 3.3.3 we have

C0 + C1 ≥ |||∇w0H(P)|||+ |||∇w1H(P)||| ≥ Rw0 +Rw1 .

where Rw0 and Rw1 are spectral radii of the Jacobian matrices ∇w0H(P) and
∇w1H(P) respectively. Hence, if the sum Rw0 + Rw1 is bigger than one, then it
is not possible to find a norm ∥ · ∥ in R

n for which the contraction property (3.7)
holds, and Theorem 3.1.5 cannot be applied. On the other hand, if there exists
a norm on R

n such that

|||∇w0H(P)|||+ |||∇w1H(P)||| < 1,
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then by continuity of H, there exists Nϵ(P) such that

max
Nϵ(P)

|||∇w0H|||+ max
Nϵ(P)

|||∇w1H||| < 1

and hence giving values to C0 and C1 by Proposition 3.3.5 to which we can apply
Theorem 3.1.5.

3.4 Another existence result

Motivated by Remark 3.3.7, we are going in this section to state and prove
another existence and uniqueness theorem in the case when H is continuously
differentiable which does not depend on the choice of norms but will require the
inequality (3.4) to be strict.

Theorem 3.4.1. Given H : U → R
n continuously differentiable, where U ⊆

R
4n+1. Assume P = (p1, · · · , pn) is a solution to the system P = H(0,0,0, P, P )

with
|p1| < 1, (3.17)

Set P = (0,0,0, P, P ). If the matrix Id−∇w0H(P) is invertible and the spectral
radius of the matrix [Id − ∇w0H(P )]−1∇w1H(P) is strictly less than one, then
there exists δ > 0 , and a map Z : [−δ, δ] 7→ R

n that solves the system 3.9.
Moreover, Z is the unique solution in [−δ, δ] satisfying Z ′(0) = P .

Proof. Since R[Id−∇
w0H(P )]−1∇

w1H(P) < 1, then from Theorem 3.3.4 there exists a
norm ∥ · ∥ in R

n such that

∣

∣

∣

∣

∣

∣[Id−∇w0H(P )]−1∇w1H(P)
∣

∣

∣

∣

∣

∣ < 1. (3.18)

Define the function G : U 7→ R
n by

G(t, v0, v1, w0, w1) = w0 −H(t, v0, v1, w0, w1).

We have
G(P) = G(0,0,0, P, P ) = P −H(0,0,0, P, P ) = 0,

and
∇w0G(P) = Id−∇w0H(P)

which is given to be invertible. Then, by the Implicit Function Theorem, there
exist an open neighborhood Vϵ1 of (0,0,0, P )

Vϵ1 = {(t, v0, v1, w1) ∈ R
3n+1 : |t|+

∥

∥v0
∥

∥+
∥

∥v1
∥

∥+
∥

∥w1 − P
∥

∥ < ϵ1}

and an open neighborhood Oϵ2 of P

Oϵ2 = {w0 ∈ R
n :
∥

∥w0 − P
∥

∥ < ϵ2}
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and a unique continuously differentiable function F : Vϵ1 7→ Oϵ2 satisfying

F (0,0,0, P ) = P, and G(t, v0, v1, F (t, v0, v1, w1), w1) = 0 ∀(t, v0, v1, w1) ∈ Vϵ1 .

Let W = {X = (t, v0, v1, w0, w1); (t, v0, v1, w1) ∈ Vϵ1 , w
0 ∈ Oϵ2}. We define the

function F̃ : W → R
n by

F̃ (t, v0, v1, w0, w1) = F (t, v0, v1, w1).

We will show that F̃ satisfies the conditions of Theorem 3.1.5.

• We have F̃ (0,0,0, P, P ) = F (0,0,0, P ) = P with |p1| < 1, and so (3.3) and
(3.4) follow.

• Since F̃ is continuously differentiable, then F̃ satisfies the Lipchitz conditions
(3.5), (3.6), and (3.7) with respect to any norm in R

n.

• Since |F̃1(P)| = |F1(0,0,0, P )| = |p1| < 1 and F̃ ∈ C1, then taking ϵ1 small
enough we get that |F̃ (X)| ≤ 1 for X ∈ Vϵ1 , and (3.8) follows

• It remains to show that F̃ is actually a contraction in the variables w0 and
w1. Since F is independent of w0

∇w0F̃ (P) = ∇w0F (0,0,0, P ) = [0].

Also, by the Implicit Function Theorem

∂F

∂w1
j

(0,0,0, P ) = −[∇w0G(P)]−1 × ∂G

∂w1
j

(P).

This gives

∇w1F̃ (P) = ∇w1F (0,0,0, P ) = −[∇w0G(P)]−1∇w1G(P) = [Id−∇w0H(P)]−1∇w1H(P)

We conclude from (3.18)

∣

∣

∣

∣

∣

∣

∣

∣

∣
∇w0F̃ (P)

∣

∣

∣

∣

∣

∣

∣

∣

∣
+
∣

∣

∣

∣

∣

∣

∣

∣

∣
∇w1F̃ (P)

∣

∣

∣

∣

∣

∣

∣

∣

∣ = 0 +
∣

∣

∣

∣

∣

∣[Id−∇w0H(P )]−1∇w1H(P)
∣

∣

∣

∣

∣

∣ < 1.

Hence using remark 3.3.7, for ϵ small enough, there exist two constants C0

and C1 such that F̃ is a uniform contraction in w0 and w1 in a neighborhood
Nϵ(P) contained in W .

Applying Theorem 3.1.5 for F̃ , there exists δ > 0 and a unique Z ∈ C1([−δ, δ])
with VZ(t) ∈ Nϵ(P) that solves the system

{

Z ′(t) = F̃ (VZ(t))

Z(0) = 0
(3.19)
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for |t| ≤ δ, with Z ′(0) = P.
Observe

Z ′(t)−H(t, Z(t), Z(z1(t)), Z
′(t), Z ′(z1(t)))

= G(t, Z(t), Z(z1(t)), Z
′(t), Z ′(z1(t)))

= G(t, Z(t), Z(z1(t)), F̃ (t, Z(t), Z(z1(t)), Z
′(t), Z ′(z1(t))), Z

′(z1(t)))

= G(t, Z(t), Z(z1(t)), F (t, Z(t), Z(z1(t)), Z
′(z1(t))), Z

′(z1(t)))

= 0

Hence, Z(t) is a solution of the system (3.9) with Z ′(0) = P.
Finally, to prove uniqueness we assume that W (t) solves (3.9) for t ∈ [−δ, δ]

with W ′(0) = P . We have for |t| < δ,

G(t,W (t),W (w1(t)),W
′(t),W ′(w1(t))) = W ′(t)−H(t,W (t),W (w1(t)),W

′(t),W ′(w1(t))) = 0.

By uniqueness of F in the Implicit Function Theorem,

W ′(t) = F (t,W (t),W (w1(t)),W
′(w1(t))) = F̃ (t,W (t),W (w1(t)),W

′(t),W ′(w1(t))),

By the uniqueness of Theorem 3.1.5 applied to system (3.19), W = Z in [−δ, δ].
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Chapter 4

Uniformly refracting surfaces

and lenses

Snell’s Law is the law that governs refraction of light. In sections 4.1 and 4.2 of
this chapter, we introduce Snell’s Law in two dimensions and in three dimensions.
Then in section 4.3, we solve the monochromatic problem that was described in
the introduction.

4.1 Snell’s Law in Two Dimensions

In this section, we introduce the most familiar form of Snell’s law.
Let Γ be a curve in R

2 that separates two homogeneous and isotropic media
1 and 2. Let v1, and v2 be the velocities of light in medium 1 and medium 2
respectively. The index of refraction of medium 1 is defined as n1 = c

v1
, where

c is the speed of light in vacuum. Similarly, the refractive index of medium 2
is n2 = c

v2
. If an incident light ray with unit direction x traveling in medium 1

hits Γ at a point of incidence P , and if ν is the normal to Γ at P going toward
medium 2, then this ray is refracted in the unit direction m through medium 2
according to the equation

n1 sin θ1 = n2 sin θ2

where θ1 is the angle formed by x and ν, and θ2 is the angle formed by m and ν.
Let κ = n2

n1
, Snell’s law becomes

sin θ1 = κ sin θ2. (4.1)

If κ > 1, the refracted ray bends towards the normal, figure 4.1. In this case
we have

sin θ1 = κ sin θ2 > sin θ2

The maximum value of θ1 is π/2, so the maximum value attained by sin θ1 is
1. In this case we always have refraction, and the maximum refracted angle is
θ2 = arcsin ( 1

κ
) that corresponds to θ1 = π/2.
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Figure 4.1: Refraction κ > 1

If κ < 1, the refracted ray bends away from the normal. In this case we have

sin θ1 = κ sin θ2 < sin θ2.

The maximum value of θ2 is π/2, so the maximum value of sin θ2 is 1. This
corresponds to the case where sin θ1 = κ. Since the sine inverse function is
increasing, we conclude that the maximum angle of incidence is θ1 = arcsinκ.
This angle is called the critical angle and is denoted by θc, figures 4.2 and 4.3. If
the incident angle is larger than the critical angle, there is no refraction. In this
case we have total reflection, figure 4.4.

4.2 Snell’s Law in Three Dimensions (Vector Form)

Now we discuss the general form of Snell’s Law that is the vector form.
Let Γ be a surface in R

3 separating two homogeneous and isotropic media 1
and 2. Let n1 and n2 be the corresponding refractive indices. If an incident light
ray with unit direction x traveling in medium 1 hits Γ at a point of incidence
P , and if ν is the normal to Γ at P going towards medium 2, then this ray is
refracted in the unit direction m through medium 2 according to the equation

n1(x× ν) = n2(m× ν).

Again κ = n2

n1
, Snell’s law becomes

(x× ν) = κ(m× ν). (4.2)

We mention two consequences of (4.2):
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Figure 4.2: θ1 < θc
Figure 4.3: θ1 = θc

Figure 4.4: θ1 > θc

• The vectors x,m, and ν belong to the same plane. In fact,

m · (x× ν) = m · (κ(m× ν)) = κm · (m× ν) = 0

and so m belongs to the plane generated by x and ν and passing through
P , this is called the plane of incidence.

• Snell’s law in two dimensions (4.1) is recovered in the plane of incidence.
In fact, taking modulus in (4.2) we get

∥x∥ · ∥ν∥ sin θ1 = κ∥m∥ · ∥ν∥ sin θ2.
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Replacing the unit vectors norms with 1 we obtain (4.1).

Now, we are going to find a formula for the refracted unit direction m. From
(4.2), x− κm is parallel to the normal ν, that is, there exists λ ∈ R such that

x− κm = λν (4.3)

Dotting (4.3) with ν yields

λ = x · ν − κm · ν = cos θ1 − κ cos θ2 (4.4)

We have that

cos θ2 = m · ν =
√

1− sin2 θ2 =

√

1− 1

κ2
sin2 θ1 =

√

1− 1

κ2
(1− (x · ν)2)

Replacing in (4.4) we get

λ = x · ν − κ

√

1− 1

κ2
(1− (x · ν)2) = x · ν −

√

κ2 − 1 + (x · ν)2 (4.5)

Note that if κ > 1 we have κ2 − 1+ (x · ν)2) > 0 and refraction always occurs
as expected. But if κ < 1, then to have refraction we need (x · ν)2 ≥ 1− κ2, and
so

x · ν ≥
√
1− κ2 (4.6)

(4.6) is equivalent to the condition sin θ1 ≤ κ, that is, θ1 ≤ arcsin(κ). This angle
is called the critical angle. To have refraction, the angle of incidence cannot go
beyond this value.

We conclude that the refracted ray (if it exists) is given by

m =
1

κ
(x− λν) (4.7)

with λ given in (4.5).

Remark 4.2.1. Dotting (4.7) with x we get

κx ·m = 1− λx · ν = 1− (x · ν)2 + (x · ν)
√

κ2 − 1 + (x · ν)2

Observe that for κ < 1, the function x ·m is increasing in x ·ν for x ·ν ≥
√
1− κ2

which is then equivalent to
x ·m ≥ κ (4.8)

For the case κ > 1, we use the principle of reversibility of refraction of light.
In this case, m becomes the incident ray and x the refracted ray. κ′ = n1

n2
= 1

κ
.

Then we have:

x ·m ≥ κ′ =
1

κ
In conclusion, a light ray in medium 1 with unit direction x could be refracted
by some surface into the unit direction m in medium 2 if and only if m · x ≥ κ
when κ < 1; and if and only if m · x ≥ 1

κ
, when κ > 1.
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4.3 Two Dimensional Monochromatic Problem

4.3.1 The case of one face

Consider two media 1 and 2. Given a point O in medium 1 and m a fixed unit
vector in medium 2. Let D be the closed sub-interval [−π/2, π/2]. Rays are
emitted from O with the unit direction x(t) = (sin t, cos t), t ∈ D. The goal is
to construct a curve of separation Γ such that all the rays with direction x(t),
t ∈ D are refracted by Γ into the constant direction m, figure 4.5. Remark 4.2.1

Figure 4.5: Refracting the rays by Γ into m

gives a restriction on t, i.e, on the interval D: x and m should satisfy x(t) ·m ≥ κ
for the case κ < 1, and x(t) ·m ≥ 1

κ
for the case κ > 1.

Suppose that r(t) = ρ(t)x(t), t ∈ D is the parametrization of Γ where ρ(t)
is the distance between the origin and the incident point of x(t) at Γ. Since
x(t)− κm is parallel to the normal of Γ at the point of contact, we have

r′(t) · (x(t)− κm) = 0

that is,
[ρ′(t)x(t) + ρ(t)x′(t)] · (x(t)− κm) = 0

Since x(t) is unit, ∥x∥2 = x(t) · x(t) = 1. Differentiating we get, 2x′(t) · x(t) = 0.
Hence the equation becomes

ρ′(t)− κρ′(t)m · x(t)− κρ(t)m · x′(t) = 0
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that is,

[ρ(t)(1− κm · x(t))]′ = 0

Then we have

ρ(t) =
b

1− κm · x(t)
for some b ∈ R, finding then the parametrization of the curves that uniformly
refract point source rays into a constant direction m. In the case where κ < 1,
the curve Γ is a part of an ellipse with axis of direction m, whereas in the case of
κ > 1, Γ is a piece of a hyperbola sheet about the axis of direction m. A proof
by calculation is given in [11].

4.3.2 The case of two faces

Consider three media 1,2, and 3 with n1, n2, and n3 the respective indices of
refraction. For simplicity, we assume that n1 = n3 = 1 and n2 > 1 because this
is the case we will study later. Given σ1 the curve separating medium 1 and
medium 2 and a point source O in medium 1. w is a fixed unit vector in medium
3. Let D be the closed sub-interval [−π/2, π/2]. Rays are omitted from O with
the unit direction x(t) = (sin t, cos t), t ∈ D. We ask the following question:
Can we find a curve σ2 separating medium 2 and medium 3 such that the lens
with lower face σ1 and upper face σ2 refracts all the incident rays emitted from O
into the direction w, see figure 4.6. As in the previous section, we use the polar

Figure 4.6: Lens refracting monochromatic rays into w

parametrization ρ(t)x(t) for σ1, t ∈ D with ρ(t) a given C2 positive function.
At σ1, since κ1 = n2

n1
= n2 > 1, refraction always occurs. Now let m(t) be the
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refracted rays corresponding to x(t) at σ1. m(t) can be found from (4.7) in terms
of the incident direction x(t) and the outer unit normal νσ1(t) to σ1. The formula
of νσ1(t) can be obtained in terms of ρ and ρ′ from the following general result.

Proposition 4.3.1. Given a curve σ parametrized by ρ(t)x(t) where x(t) =
(sin t, cos t) and with ρ ∈ C1, the outer unit normal to the curve is given by

ν(t) =
1

√

ρ(t)2 + ρ′(t)2
(ρ(t) sin t− ρ′(t) cos t, ρ′(t) sin t+ ρ(t) cos t).

Proof. A tangent vector to the curve at the point ρ(t)x(t) is

(ρ(t)x(t))′ = ρ′(t)x(t) + ρ(t)x′(t) = (ρ′(t) sin t+ ρ(t) cos t, ρ′(t) cos t− ρ(t) sin t).

Noticing that
∥(ρ(t)x(t))′∥ = ρ2(t) + ρ′2(t),

and using that ν is outer, i.e, x · ν ≥ 0 we conclude the proof of the Proposition.

At σ2, since κ2 =
n3

n2
= 1

n2
< 1, we should have from (4.8)

m(t) · w ≥ κ2 ∀t ∈ D.

This means there are restrictions on w, x(t), and ρ(t).
We assume that these conditions are satisfied, and we parametrize σ2 by

f(t) = ρ(t)x(t) + d(t)m(t) (4.9)

d(t) being the distance crossed by the incident ray x(t) inside the lens. To find
σ2, it is enough to find a formula for d(t).

Snell’s law at σ2 implies that m(t)− 1
n2
w is parallel to νσ2(t) for every t. Here

νσ2 is the outer unit normal to σ2 at t. This means that

(m(t)− 1

n2

w) · f ′(t) = 0 ∀t ∈ D (4.10)

We have

m(t) · f ′(t) = m(t) · [(ρ(t)x(t))′ + (d(t)m(t))′] = m(t) · [ρ(t)x(t)]′ +m(t) · [d(t)m(t)]′,

From (4.7), and using the fact that ∥x(t)∥ = 1 and that νσ1 is the normal to
σ1 = {ρ(t)x(t)}, we get

m(t) · [ρ(t)x(t)]′ = 1

n2

(x(t)− λ1νσ1(t)) · (ρ(t)x(t))′ =
1

n2

x(t) · (ρ′(t)x(t) + ρ(t)x′(t)) =
1

n2

ρ′(t)
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Since ∥m(t)∥ = 1

m(t) · [d(t)m(t)]′ = m(t) · [d′(t)m(t) + d(t)m′(t)] = d′(t).

Hence (4.10) becomes

0 = d′(t) +
1

n2

ρ′(t)− 1

n2

w · f ′(t) =

(

d(t) +
1

n2

ρ(t)− 1

n2

w · f(t)
)′

Replacing f(t) with its value in (4.9), we get that

d(t) =
C − ρ(t)(1− w · x(t))

n2 − w ·m(t)
, (4.11)

with C a constant. Given the lower face of a lens, we then obtain a family of
curves so that the corresponding lenses uniformly refract incident rays emitted
from a point source into a constant direction. See Aspherical Lens Design [12]
for more similar examples and figures and Design of Pairs of reflectors [13] for
the case of reflectors and hybrid systems.
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Chapter 5

Refraction of Dichromatic Ray

Into a Fixed Direction

In the previous chapter, we studied how we can adjust a lens so that the monochromatic
incident rays refract uniformly into a fixed direction at every point. Given the
lower face, we were able to derive a parametrization for the upper one.

In this chapter, we assume that the incident rays emitted from a point source
are dichromatic, so the rays are of two colors (i.e. two different wavelengths), say
r and b. Since different wavelengths give different refraction indices, at a point
of incidence of dichromatic ray, the corresponding colors will refract differently.
In this section, we study the existence of a single lens which refracts rays of the
two different colors into a fixed direction.

The setting of the problem is as follows. We are given a fixed unit vector w
in R

2 and three media 1, 2, and 3, and we assume media 1 and 3 are vaccuum
i.e. n1 = n3 = 1. O is a point source in medium 1, and w is a unit direction in
medium 3. Consider a closed interval D ⊆ [−π/2, π/2]. Dichromatic rays with
colors r and b are emitted from O with unit direction x(t) = (sin t, cos t), t ∈ D.
The goal is to construct σ1 separating medium 1 and 2 and σ2 separating medium
2 and 3 so that rays with both colors leave the lens enclosed by σ1 and σ2 with
direction w. In this case both the lower and upper faces of the lens are unknown,
and the incident rays x(t) are refracted differently for the colors b and r. We
assume that the refractive indices of medium 2 corresponding to the colors b and
r are nb, nr > 1 with nb > nr, see figure 5.1.

Given a lower face σ1 parametrized by ρ(t)x(t), the incident dichromatic rays
with direction x(t) are dispersed by σ1 into two rays with colors r and b and with
corresponding unit directions mr(t) and mb(t). We know from Remark 4.2.1 that

if mr(t) · w ≥ 1

nr

and mb(t) · w ≥ 1

nb

, then there exist curves σr parametrized

by fr, and σb parametrized by fb such that the lenses (σ1, σr) refract the rays
with color r into the direction w and the the len (σ1, σb) refract the rays with
color b into w. Note from (4.11), that fr and fb are not unique. We ask then the
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Figure 5.1: Lens refracting dichromatic rays into w

following question: is it possible to find ρ, fr and fb such that fr can be obtained
by a re-parametrization of fb? That is, is there ρ, fr, fb and a continuous map
ϕ : D 7→ D such that

fr(t) = fb(ϕ(t)) ∀t ∈ D. (5.1)

In case this function exists, we have that fr(D) ⊆ fb(D). This means that the
lens (σ1, σb) refracts all the rays with both colors into direction w, but there might
be some points on fb that are not reached by the rays with color r.

5.1 Necessary Condition for the Existence of the Lens

We find a neccessary condition on w for the existence of a solution to the
dichromatic problem.

Lemma 5.1.1. If the problem described above is solvable, then w = x(t) for some
t ∈ D.

Proof. If there exists a continuous function ϕ : D 7→ D satisfying (5.1), then since
D is a closed interval, by Brouwer’s Fixed Point Theorem 2.3.1, there exists a
point t0 ∈ D such that ϕ(t0) = t0. By (5.1), this gives fr(t0) = fb(t0). This means
from (4.9) that the refracted rays mr(t0) and mb(t0) coincide. Since the two rays
have different wavelengths, this can only happen if mr(t0) = mb(t0) = x(t0)
which means that the incident ray is along the normal of σ1 at t0. Again since
mr(t0) = mb(t0) and are both refracted into w then they coincide with the normal
of σ2 at t0 concluding that x(t0) = mr(t0) = mb(t0) = w.
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Therefore, if w doesn’t belong to the set x(D), the problem is not solvable.
Without loss of generality, we can assume that w = e = (0, 1). In fact, the

system can be rotated in order to get this setting.

Corollary 5.1.2. If the problem is solvable for w = e, then 0 ∈ D.

Proof. As in the argument of Lemma 5.1.1, there is a point t0 ∈ D such that
x(t0) = (0, 1). Then (sin t0, cos t0) = (0, 1) obtaining that t0 = 0.

We shall then in the rest of the chapter assume by means of rotation that
w = e and study the dichromatic problem when D is a closed subinterval of
[−π/2, π/2] containing 0 in its interior.1

5.2 Deriving the system of Functional Differential Equations

Assume a solution exists to the dichromatic problem as follows: having D ⊆
[−π/2, π/2] a closed interval containing 0, there exists a ρ ∈ C2(D) positive,
ϕ ∈ C1(D), and constants Cr and Cb such that fr(t) = fb(φ(t)). Geometrically
this implies that the lens with lower face σ1 = {ρ(t)x(t)} and upper face σ2

parametrized by fb(t) refracts dichromatic rays with colors r and b emitted from
the origin with unit direction x(t) = (sin t, cos t), t ∈ D into the direction e. Recall
our assumption that the medium around the lens is vacuum and the medium of
the lens has refraction indices nb and nr corresponding to each color b and r with
nb > nr > 1.

We denote by νσ1 and νσ2 the outer unit normal vectors of σ1 and σ2 respectively.
Rays with direction x(t) are dispersed by σ1 at the point ρ(t)x(t) into the unit
directions mr(t) and mb(t) corresponding to each color r and b. mr(t) and mb(t)
can be obtained using Snell’s law (4.7). We also have fr(t) = ρ(t)x(t)+dr(t)mr(t)
and fb(t) = ρ(t)x(t) + db(t)mb(t) with dr and db given by (4.11).

From Corollary 5.1.2, we have that t = 0 is a fixed point of ϕ, i.e.

ϕ(0) = 0 (5.2)

and
x(0) = νσ1(0) = νσ2(0) = mr(0) = mb(0) = (0, 1). (5.3)

Since fr(t) = fb(ϕ(t)) then fr(0) = fb(ϕ(0)) = fb(0), and so

ρ(0)x(0) + dr(0)mr(0) = ρ(0)x(0) + db(0)mb(0)

and hence
dr(0) = db(0). (5.4)

1We can still assume that 0 is in the boundary of D and solve the problem similarly to the
left or right of zero, however we chose for simplicity of notations to discuss the problem in an
interval [−δ, δ] with δ > 0.
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Proposition 4.3.1 and the fact that νσ1(0) = (0, 1) imply that

ρ′(0) = 0. (5.5)

We set ρ0 = ρ(0), and d0 = db(0) = dr(0). Consider the map Z : D 7→ R
3

defined by Z(t) = (z1(t), z2(t), z3(t)), with

z1(t) = ϕ(t), z2(t) = ρ(t)− ρ0, z3(t) = ρ′(t).

From (5.2) and (5.5), Z(0) = 0. In this section we derive a system of functional
differential equations of the form

{

Z ′(t) = H(t, Z(t), Z(z1(t)), Z
′(t), Z ′(z1(t)))

Z(0) = 0
, (5.6)

with H = H(t, v0, v1, w0, w1) := (h1, h2, h3), a C1 map in a neighborhood of

(0, Z(0), Z(z1(0)), Z
′(0), Z ′(z1(0))) = (0,0,0, Z ′(0), Z ′(0)),

where from (5.5), Z ′(0) = (ϕ′(0), 0, ρ′′(0)). Our goal is to find H.

5.2.1 Auxiliary funtions

We introduce the following auxiliary functions, that will be used to derive the
map H. We are given a color r with refractive index nr > 1, ρ0, d0 positive real
values, t ∈ D, v = (v1, v2, v3), w = (w1, w2, w3) ∈ R

3

List 1 List 2
Ar(v) =

1−n2

r

(v2+ρ0)+
√

(n2
r
−1)|(v2+ρ0,,v3)|

2+(v2+ρ0)2
Ãr(v, w) =

(Ar(v))
2

n2
r
−1

[

v2 +
(n2

r
−1)((v2+ρ0)w2+v3w3)+(v2+ρ0)w2

√

(n2
r
−1)((v2+ρ0)2+v2

3
)+(v2+ρ0)2

]

µr(t, v) = 1
nr

[sin t−Ar(v)((v2 + ρ0) sin t− v3 cos t)] µ̃r(t, v, w) = 1
nr

[cos t−Ar(v)(w2 sin t+ (v2 + ρ0) cos t+ v3 sin t− w3 cos t)

−Ãr(v, w)((v2 + ρ0) sin t− v3 cos t)]

τr(t, v) = 1
nr

[cos t−Ar(v)(v3 sin t+ (v2 + ρ0) cos t)] τ̃r(t, v, w) = 1
nr

[− sin t−Ar(v)(w2 cos t− (v2 + ρ0) sin t+ w3 sin t+ v3 cos t)

−Ãr(v, w)((v2 + ρ0) cos t+ v3 sin t)]

Dr(t, v) =
(nr−1)d0−(v2+ρ0)(1−cos t)

nr−τr(t,v)
D̃r(t, v, w) =

−nr [w2(1−cos t)+(v2+ρ0) sin t]+τr(t,v)[w2(1−cos t)+(v2+ρ0) sin t]

(nr−τr(t,v))2

+
τ̃r(t,v,w)[(nr−1)d0−(v2+ρ0)(1−cos t)]

(nr−τr(t,v))2

Fr1(t, v) = (v2 + ρ0) sin t+Dr(t, v)µr(t, v) F̃r1(t, v, w) = w2 sin t+ (v2 + ρ0) cos t+ D̃r(t, v, w)µr(t, v) +Dr(t, v)µ̃r(t, v, w)

Fr2(t, v) = (v2 + ρ0) cos t+Dr(t, v)τr(t, v) F̃r2(t, v, w) = w2 cos t− (v2 + ρ0) sin t+ D̃r(t, v, w)τr(t, v) +Dr(t, v)τ̃r(t, v, w)

Λr(t, v) =
√

1 + 1
n2
r

− 2
nr

τr(t, v) Λ̃r(t, v, w) = − τ̃r(t,v,w)
nrΛ(t,v)

Denoting ∆r =
nr

nr − 1
, we have the following values at t = 0, v = 0 and

w ∈ R
3
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List 3

Ar(0) =
1− nr

ρ0
, µr(0,0) = 0, τr(0,0) = 1, Dr(0,0) = d0, Fr1(0,0) = 0, Fr2(0,0) = ρ0 + d0,

Λr(0,0) =
1

∆r

, Ãr(0, v) =
nr − 1

ρ2
0

v2, µ̃r(0,0, w) = 1− 1

∆r

w3

ρ0
, τ̃r(0,0, w) = 0, D̃r(0,0, v) = 0,

F̃r1(0,0, v) = ρ+ d0

(

1− 1

∆r

w3

ρ0

)

, F̃r2(0,0, w) = v2, Λ̃r(0,0, w) = 0.

Remark 5.2.1. We then deduce from List 3 that all the functions in List 1 and
2 are analytic in a neighborhood of t = 0. Moreover, one can verify that for every
C1 field V (t) in this neighborhood satisfying V (0) = 0

d
dt
Ar(V (t)) = Ãr(V (t), V ′(t)) d

dt
µr(t, V (t)) = µ̃r(t, V (t), V ′(t))

d
dt
τr(t, V (t)) = τ̃r(t, V (t), V ′(t)) d

dt
Dr(t, V (t)) = D̃r(t, V (t), V ′(t))

d
dt
Fr1(t, V (t)) = F̃r1(t, V (t), V ′(t)) d

dt
Fr2(t, V (t)) = F̃r2(t, V (t), V ′(t))

d
dt
Λr(t, V (t)) = Λ̃r(t, V (t), V ′(t))

5.2.2 Finding hi’s

We write the variables in terms of t, Z, and Z ′ using the functions in Lists 1 and
2.

From Snell’s law (4.7), and (4.5) at ρ(t)x(t) we have that

mr(t) =
1

nr

(x(t)− Φnr
(x · ν)ν(t)) (5.7)

with

Φnr
(x · ν) = x · ν −

√

n2
r − 1 + (x · ν)2 = 1− n2

r

x · ν +
√

n2
r − 1 + (x · ν)2

,

and from Proposition 4.3.1,

x · ν =
1

√

ρ(t)2 + ρ′(t)2
(sin t, cos t) · (ρ(t) sin t− ρ′(t) cos t, ρ′(t) sin t+ ρ(t) cos t)

=
1

√

ρ(t)2 + ρ′(t)2

(

ρ(t) sin2 t− ρ′(t) sin t cos t+ ρ′(t) cos t sin t+ ρ(t) cos2 t
)

=
ρ(t)

√

ρ2(t) + ρ′2(t)
.
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Then we get using List 1

Φnr
(x · ν) = 1− n2

r

ρ(t)√
ρ2(t)+ρ′2(t)

+
√

n2
r − 1 + ρ2(t)

ρ2(t)+ρ′2(t)

=
(1− n2

r)(
√

ρ2(t) + ρ′2(t))

ρ(t) +
√

ρ2(t) + (n2
r − 1)(ρ2(t) + ρ′2(t))

=
1− n2

r

(z2 + ρ0) +
√

(n2
r − 1)((z2 + ρ0)2 + z23) + (z2 + ρ0)2

√

(z2 + ρ0)2 + z23

= Ar(Z(t)) |(z2 + ρ0, z3)|

Writing mr(t) = (mr1(t),mr2(t)), we deduce from (5.7), and Proposition 4.3.1

mr1(t) =
1

nr

[sin t− Ar(Z(t))(ρ(t) sin t− ρ′(t) cos t)] (5.8)

=
1

nr

[sin t− Ar(Z(t))((z2 + ρ0) sin t− z3 cos t)]

= µr(t, Z(t)),

mr2(t) =
1

nr

[cos t− Ar(Z(t))(ρ
′(t) sin t+ ρ(t) cos t)] (5.9)

=
1

nr

[cos t− Ar(Z(t))(z3 sin t+ (z2 + ρ0) cos t)]

= τr(t, Z(t))

The refracted ray with color r propagates inside the lens and hits σ2 at the point
fr(t) = ρ(t)x(t) + dr(t)mr(t), where from (4.11), and (5.9)

dr(t) =
Cr − ρ(t)(1− cos t)

nr −mr2(t)
=

Cr − (z2 + ρ0)(1− cos t)

nr − τr(t, Z(t))

Plugging t = 0 in the formula of dr and using List 3, we get Cr = (nr − 1)d0.
Hence from List 1

dr(t) =
(nr − 1)d0 − (z2 + ρ0)(1− cos t)

nr − τr(t, Z(t))
= Dr(t, Z(t)), (5.10)

Writing fr(t) = (fr1(t), fr2(t)), we get from (5.8), (5.9), (5.10)

fr1(t) = (z2 + ρ0) sin t+Dr(t, Z(t))µr(t, Z(t)) = Fr1(t, Z(t)) (5.11)

fr2(t) = (z2 + ρ0) cos t+Dr(t, Z(t))τr(t, Z(t)) = Fr2(t, Z(t) (5.12)

At σ2, from Snell’s Law (4.7) withmr(t) as the incident direction and e = (0, 1)
the refracted direction, we have

mr(t)−
1

nr

e = λ2,rνσ2 .
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Since
1

nr

< 1 then from (4.5) λ2,r > 0 and so taking absolute values in above

equation yields to

λ2,r =

∣

∣

∣

∣

mr(t)−
1

nr

e

∣

∣

∣

∣

=

√

1 +
1

n2
r

− 2

nr

τ(t, Z(t)) = Λr(t, Z(t)) (5.13)

Remark 5.2.2. From Remark 5.2.1, we have
m′

1r(t) = µ̃r(t, Z(t), Z
′(t)), m′

r2(t) = τ̃r(t, Z(t), Z
′(t)),

d′r(t) = D̃r(t, Z(t), Z
′(t)), f ′

r1(t) = F̃r1(t, Z(t), Z
′(t)),

f ′
r2(t) = F̃r2(t, Z(t), Z

′(t)), λ′
2,r(t) = Λ̃r(t, Z(t), Z

′(t)).

Notice also the formula for the variables related to the rays with color b can
be obtained from above with replacing nr in (5.8), (5.9), (5.10), (5.11), (5.12),
(5.13), and in the formula above by nb.

We are ready to calculate z′1, z
′
2, z

′
3 as functions of (t, Z(t), Z(z1(t)), Z

′(t), Z ′(z1(t))).
We will need the following result.

Lemma 5.2.3.
f ′
b1(0) ̸= 0.

Proof. Assume by contradiction that f ′
b1(0) = 0. Differentiating (5.1) and using

(5.2) we obtain f ′
r1(0) = f ′

b1(0) = 0. From Remark 5.2.2, and List 3

f ′
r1(0) = F̃r1(0,0, Z

′(0)) = ρ0 + d0

(

1− 1

∆r

z′3
ρ0

)

= ρ0 + d0

(

1− 1

∆r

ρ′′(0)

ρ0

)

= 0,

so ρ′′(0) = ρ0∆r

(

ρ0
d0

+ 1

)

. Similarly, using that

f ′
b1(0) = ρ0 + d0

(

1− 1

∆b

ρ′′(0)

ρ0

)

= 0,

we get ρ′′(0) = ρ0∆b

(

ρ0
d0

+ 1

)

. Equating both obtained formulas for ρ′′(0) leads

to a contradiction since ρ0, d0 > 0 and

∆r =
nr

nr − 1
= 1 +

1

nr − 1
> ∆b. (5.14)
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Calculating h1. Recall z′1(t) = ϕ′(t). We have fr1(t) = fb1(ϕ(t)). Differentiate
both sides

f ′
r1(t) = f ′

b1(ϕ(t)) · ϕ′(t)

We have from Lemma 5.2.3 and (5.2) that at t = 0, f ′
b1(ϕ(0)) = f ′

b1(0) ̸= 0
then by continuity there exists a neighborhood of t = 0 such that fb1(ϕ(t)) ̸= 0
concluding from Remark 5.2.2 that for t in this neighborhood

z′1(t) = ϕ′(t) =
f ′
r1(t)

f ′
b1(z1(t))

=
F̃r1(t, Z(t), Z

′(t))

F̃b1(z1(t), Z(z1(t)), Z ′(z1(t)))
:= h1(t, Z(t), Z(z1(t)), Z

′(t), Z ′(z1(t)))

where

h1(t, v
0, v1, w0, w1) =

F̃r1(t, v
0, w0)

F̃b1(v01, v
1, w1)

(5.15)

Calculating h2. We have z2(t) = ρ(t)− ρ0, then

z′2(t) = ρ′(t) = z3(t) := h2(t, Z(t), Z(z1(t)), Z
′(t), Z ′(z1(t)))

where

h2(t, v
0, v1, w0, w1) = v03 (5.16)

Calculating h3. At σ2, the rays mr(t) and mb(ϕ(t)) refract at the point fr(t)
into the vector e = (0, 1). By Snell’s Law (4.3) at that point

mr(t)−
1

nr

e = λ2,rνσ2(t), and mb(ϕ(t))−
1

nb

e = λ2,bνσ2(t)

We have already shown that since nr, nb > 1 then λ2,r, λ2,b > 0 and so

mr(t)− 1
nr

λ2,r(t)
=

mb(ϕ(t))− 1
nb

λ2,b(ϕ(t))

Taking the first components we get

mr1(t)λ2,b(ϕ(t)) = mb1(ϕ(t))λ2,r(t),

and so using (5.8) and (5.13)

µr(t, Z)Λb(z1, Z(z1)) = µb(z1, Z(z1))Λr(t, Z)

Differentiating with respect to t, and using Remark 5.2.2 we get

µ̃r(t, Z, Z
′)Λb(z1, Z(z1)) + µr(t, Z)Λ̃b(z1, Z(z1), Z

′(z1))z
′
1

= µ̃b(z1, Z(z1), Z
′(z1))Λr(t, Z)z

′
1 + µb(z1, Z(z1))Λ̃r(t, Z, Z

′)
(5.17)
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so

µ̃r(t, Z, Z
′) =

z′
1

[

µ̃b(z1, Z(z1), Z
′(z1))Λr(t, Z)− µr(t, Z)Λ̃b(z1, Z(z1), Z

′(z1))
]

+ µb(z1, Z(z1))Λ̃r(t, Z, Z
′)

Λb(z1, Z(z1))

Plugging the formula for µ̃r (see List 2)

1

nr

[cos t− Ar(Z)(z
′
2 sin t+ (z2 + ρ0) cos t+ z3 sin t− z′3 cos t)− Ãr(Z,Z

′)((z2 + ρ0) sin t− z3 cos t)]

=
z′1[µ̃b(z1, Z(z1), Z

′(z1))Λr(t, Z)− µr(t, Z)Λ̃b(zz, Z(z1), Z
′(z1))] + µb(z1, Z(z1))Λ̃r(t, Z, Z

′)

Λb(z1, Z(z1))

Solving for z′3(t), we get

z′3(t) =
1

cos tAr(Z)

[

− cos t+ Ãr(Z,Z
′)((z2 + ρ0) sin t− z3 cos t))

+ nr

z′1[µ̃b(z1, Z(z1), Z
′(z1))Λr(t, Z)− µr(t, Z)Λ̃b(z1, Z(z1), Z

′(z1))] + µb(z1, Z(z1))Λ̃r(t, Z, Z
′)

Λb(z1, Z(z1))

]

+
z′2 sin t+ (z2 + ρ0) cos t+ z3 sin t

cos t
:= h3(t, Z(t), Z(z1(t)), Z

′(t), Z ′(z1(t)))

where

h3(t, v
0, v1, w0, w1) =

1

cos tAr(v0)

[

− cos t+ Ãr(v
0, w0)((v02 + ρ0) sin t− v03 cos t)

+ nr

w0
1[µ̃b(v

0
1, v

1, w1)Λr(t, v
0)− µr(t, v

0)Λ̃b(v
0
1, v

1, w1)] + µb(v
0
1, v

1)Λ̃r(t, v
0)

Λb(v01, v
1)

]

+
w0

2 sin t+ (v02 + ρ0) cos t+ v03 sin t

cos t
(5.18)

5.3 Finding a Solution for the Dichromatic Problem From
the Solution of the System

Before proving the existence of solution for the system computed in the previous
section, we show in this section that a solution to the system (if it exists) solves
the stated optic problem.

Theorem 5.3.1. Let ρ0 > 0 and d0 > 0 be given and H = (h1, h2, h3) with hi

given in (5.15), (5.16), and (5.18). Assume the system

P = H(0,0,0,P, P )

has a solution P = (p1, p2, p3) with 0 < |p1| < 1 and that H is smooth in a
neighborhood of P = (0,0,0, P, P ). Assume also that Z(t) = (z1(t), z2(t), z3(t))
is a C1 solution to the system of functional equations, with Z ′(0) = P . Define

ρ(t) = z2(t) + ρ0, ϕ(t) = z1(t).
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Then, there exists δ > 0 such that ϕ : [−δ, δ] 7→ [−δ, δ] and fr(t) = fb(ϕ(t)) where
fr(t) = ρ(t)x(t) + dr(t)mr(t), fb(t) = ρ(t)x(t) + db(t)mb(t) and

dr(t) =
Cr − ρ(t)(1− cos t)

nr − e ·mr(t)
, db(t) =

Cb − ρ(t)(1− cos t)

nb − e ·mb(t)
(5.19)

with Cr = (nr − 1)d0 and Cb = (nb − 1)d0 and x(t) = (sin t, cos t) are the
emitted rays which refract at the curve ρ(t)x(t) into the rays mr(t) and mb(t)
corresponding to the colors r and b respectively. Moreover, for t ∈ [−δ, δ], fr and
fb have normal vectors, and

ρ(t), dr(t), db(t) > 0, mr(t) · e ≥
1

nr

, and mb(t) · e ≥
1

nb

. (5.20)

Proof. The proof will go in steps.
Step 1: Calculating z3(t).
From (5.16) and since Z(t) solves the system we have that

z′2(t) = h2(t, Z(t), Z(z1(t)), Z
′(t), Z ′(z1(t))) = z3(t).

Then,

ρ′(t) = z3(t) (5.21)

Step 2: Showing that ϕ : [−δ, δ] 7→ [−δ, δ] for some δ > 0.
We have ϕ(t) = z1(t), and

z′1(0) = |p1| = lim
t→0

∣

∣

∣

∣

z1(t)− z(0)

t− 0

∣

∣

∣

∣

= lim
t→0

∣

∣

∣

∣

z1(t)

t

∣

∣

∣

∣

< 1,

there exists δ > 0 such that |ϕ(t)| ≤ |t| for |t| < δ.

Step 3: For δ sufficiently small, (5.20) holds.
By continuity, it is enough to look at the values at t = 0. We have

ρ(0) = z2(0) + ρ0 = ρ0 > 0.

Also from (5.21), ρ′(0) = z3(0) = 0. Using Proposition 4.3.1, the normal to
σ = {ρ(t)x(t)} at t = 0 is ν(0) = (0, 1). By Snell’s law, we obtain that

mr(0) = mb(0) = (0, 1). (5.22)

Hence, e ·mr(0) = 1 > 1
nr

and e ·mb(0) = 1 > 1
nb
. Finally, from (5.19)

dr(0) =
Cr

nr − 1
= d0 =

Cb

nb − 1
= db(0) > 0 (5.23)
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Choosing δ > 0 sufficiently small, (5.20) holds.

Step 4: For t ∈ [−δ, δ], fr(t) = (Fr1(t, Z(t)), Fr2(t, Z(t))) and fb(t) = (Fb1(t, Z(t)), Fb2(t, Z(t))).
First, we show that

mr(t) = (µr(t, Z(t)), τr(t, Z(t))) (5.24)

mr is the refracted ray of x(t) by ρ(t)x(t), then from (5.7) and Proposition 4.3.1
we have

mr(t) =
1

nr

[

(sin t, cos t)

− (1− n2
r)

ρ(t) +
√

ρ2(t) + (n2
r − 1)(ρ2(t) + ρ′2(t))

((ρ(t) sin t− ρ′(t) cos t, ρ′(t) sin t+ ρ(t) cos t))
]

Using that Step 1, List 1, and ρ(t) = z2(t) + ρ0 we get

mr1(t) =
1

nr

[sin t− Ar(Z(t))((z2(t) + ρ0) sin t− z3(t) cos t)] = µr(t, Z(t)),

mr2(t) =
1

nr

[cos t− Ar(Z(t))(z3(t) sin t+ (z2(t) + ρ0) cos t)] = τr(t, Z(t)).

Therefore, replacing ρ(t) = z2(t)+ρ0 in (5.19), it follows that dr(t) = Dr(t, Z(t)).
Now,

fr(t) = ρ(t)x(t) + dr(t, Z(t))mr(t)

= ρ(t)(sin t, cos t) +Dr(t, Z(t))(µr(t, Z(t)), τr(t, Z(t)))

= (Fr1(t, Z(t)), Fr2(t, Z(t))).

Similarly, we get fb(t) = (Fb1(t, Z(t)), Fb2(t, Z(t))

Step 5: For t ∈ [−δ, δ], Fr1(t, Z(t)) = Fb1(z1(t), Z(z1(t))).
From (5.15), we have that

F̃r1(t, Z(t), Z
′(t)) = z′1(t)F̃b1(z1(t), Z(z1(t)), Z

′(z1(t)))

Integrating with respect to t and using Remark 5.2.1 we get

Fr1(t, Z(t)) = Fb1(z1(t), Z(z1(t))) + c

At t = 0, we have from List 3 that Fr1(0,0) = Fb1(0,0) = 0, so c = 0, and the
result follows.

Step 6: For δ small enough, f ′
r1(t) ̸= 0 and f ′

b1(t) ̸= 0 for t ∈ [−δ, δ].
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This means that fr and fb have normal vectors in this interval. By continuity of
these functions, it is enough to show that the result holds for t = 0. From (5.15),
F̃1b(0,0, P ) ̸= 0. Using Remark 5.2.1 and Step 4, we get

f ′
b1(0) = F̃b1(0,0, Z

′(0)) = F̃b1(0,0, P ) ̸= 0.

Having p1 ̸= 0 and using step 5 at t = 0, we get

f ′
r1(0) = z′1(0)f

′
b1(0) = p1f

′
b1(0) ̸= 0.

Step 7: The two vectors mr(t) − 1
nr
e and mb(z1(t)) − 1

nb
e are colinear for t ∈

[−δ, δ].
Since z′3(t) = h3(t, Z(t), Z(z1(t)), Z

′(t), Z ′(z1(t))), and from the calculation of h3,
we have

µ̃r(t, Z, Z
′)Λb(z1, Z(z1)) + µr(t, Z)Λ̃b(z1, Z(z1), Z

′(z1))z
′
1

= µ̃b(z1, Z(z1), Z
′(z1))Λr(t, Z)z

′
1 + µb(z1, Z(z1))Λ̃r(t, Z, Z

′)

Integrating, and using Remark 5.2.1,

µr(t, Z)Λb(z1, Z(z1)) = µb(z1, Z(z1))Λr(t, Z) + c (5.25)

From List 3, µr(0,0) = µb(0,0) = 0, c = 0. Squaring the resulting equality

µr(t, Z)
2Λb(z1, Z(z1))

2 = µb(z1, Z(z1))
2Λr(t, Z)

2 (5.26)

Since ∥mr(t)∥ = ∥mb(t)∥ = 1, we have from (5.24)

µr(t, Z(t))
2 + τr(t, Z(t))

2 = 1 = µb(z1, Z(z1))
2 + τb(z1, Z(z1))

2

and then using the formula of Λr in List 1

Λr(t, Z)
2 = 1+

1

n2
r

− 2

nr

τr(t, Z) = 1−τr(t, Z)
2+

(

1

nr

− τr(t, Z)

)2

= µr(t, Z)
2+

(

1

nr

− τr(t, Z)

)2

Similarly, since from step 1 |z1(t)| ≤ |t|

Λb(z1, Z(z1))
2 = µb(z1, Z(z1))

2 +

(

1

nb

− τb(z1, Z(z1)

)2

So (5.26) becomes

µr(t, Z)
2

[

µb(z1, Z(z1))
2 +

(

1

nb

− τb(z1, Z(z1))

)2
]

= µb(z1, Z(z1))
2

[

µr(t, Z)
2 +

(

1

nr

− τr(t, Z)

)2
]
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Then

µr(t, Z)
2

(

1

nb

− τb(z1, Z(z1))

)2

= µb(z1, Z(z1))
2

(

1

nr

− τr(t, Z)

)2

(5.27)

From (5.20) proved in Step 3, and (5.24)

τr(t, Z) = mr(t) · e ≥
1

nr

, τb(z1, Z(z1)) = mb(z1(t)) · e ≥
1

nb

Also, by (5.25), since Λr and Λb are both positive, µr(t, Z) and µb(z1, Z(z1)) have
the same sign. Hence, (5.26) becomes

µr(t, Z)

(

τb(z1, Z(z1))−
1

nb

)

= µb(z1, Z(z1))

(

τr(t, Z)−
1

nr

)

This means that the two vectors (µr(t, Z), τr(t, Z)− 1
nr
) and (µb(z1, Z(z1)), τb(z1, Z(z1))−

1
nb
) are collinear. By (5.24), the result follows.

Step 8: We have for t ∈ [−δ, δ], fr2(t) = fb2(z1(t)).
We know that fr and fb have normal vector in this interval (step 6). By Snell’s
law at fr(t) and fb(t) we have mr(t)− 1

nr
e and mb(z1(t))− 1

nb
e are orthogonal to

the tangent vectors f ′
r(t) and f ′

b(z1(t)) respectively. Hence, by the previous step,
f ′
r(t) and f ′

b(z1(t)) are parallel. By steps 4 and 5 and Remark 5.2.1, we have

f ′
r1(t) = z′1(t)f

′
b1(z1(t))

By step 6, for t ∈ [−δ, δ] and since |z1(t)| ≤ |t|, we have that f ′
r(t) ̸= 0 and

f ′
b1(z1(t)) ̸= 0, then

f ′
r2(t) = z′1(t)f

′
b2(z1(t))

Integrating the last identity we obtain fr2(t) = fb2(z1(t)) + c. By (5.22) and
(5.23),

fr2(0) = ρ(0) + dr(0)mr2(0) = ρ0 + d0 = fb2(0) = fb2(z1(0))

Hence, c = 0 and the result follows.

5.4 Existence and uniqueness of solution to the dichromatic
lens problem

We are now ready to prove the existence of a lens solving the dichromatic problem.
Given ρ0, d0 > 0 and H = (h1, h2, h3) given in (5.15), (5.16), and (5.18), from
Section 5.3, it is enough to prove that the system P = H(0, 0, 0, P, P ) has a
solution P = (p1, p2, p3) with 0 < |p1| < 1, and to show that the system (5.6) has
a solution. The first part will be studied in Section 5.4.1 and the second part will
be analyzed in Section 5.4.2. We will highly rely on Theorem 3.4.1 and prove the
following theorem
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Theorem 5.4.1. Given ρ0, d0 > 0, let k0 =
ρ0
d0

.

If k0 <
(∆r −∆b)

2

4∆r∆b

, then a lens (σ1, σ2) refracting colors r and b into e exists

in the sense of (5.1). Moreover this lens is the unique one such that the lower
face passes through the point (0, ρ0), and the upper face passes through the point
(0, ρ0 + d0).

On the other hand, if k0 >
(∆r −∆b)

2

4∆r∆b

, then no such lens exists. For the case

where k0 =
(∆r −∆b)

2

4∆r∆b

, the result is inconclusive.

5.4.1 Solving the system P = H(0,0,0, P, P )

Proposition 5.4.2. The system P = H(0,0,0, P, P ) has a solution if and only

if k0 ≤ (∆r−∆b)
2

4∆r∆b
.

Proof. We have from (5.15), (5.16), (5.18), and List 3

p1 = z′1(0) = h1(0,0,0, P, P ) =
F̃r1(0,0,0, P, P )

F̃b1(0,0,0, P, P )
=

ρ0 + d0(1− 1
∆r

p3
ρ0
)

ρ0 + d0(1− 1
∆b

p3
ρ0
)

(5.28)

and
p2 = z′2(0) = h2(0,0,0, P, P ) = 0,

Also, since Ãr(0,0, P ) = 0

p3 = z′3(0) = h3(0,0,0, P, P ) =
ρ0

1− nr






−1 + 0 + nr

p1

[

1− 1
∆b

p3
ρ0

] 1

∆r

1

∆b






+ρ0 = p1(p3−ρ0∆b)+ρ0∆r

Solving for p1 we get

p1 =

p3
ρ0

−∆r

p3
ρ0

−∆b

(5.29)

(5.28) and (5.29) yields

(

ρ0 + d0

(

1− 1

∆b

p3
ρ0

))(

p3
ρ0

−∆b

)

=

(

p3
ρ0

−∆r

)(

ρ0 + d0

(

1− 1

∆r

p3
ρ0

))

Expanding

d0

(

1

∆b

− 1

∆r

)(

p3
ρ0

)2

+ d0

(

∆b

∆r

− ∆r

∆b

)

p3
ρ0

+ (ρ0 + d0)(∆r −∆b) = 0

51



Simplifying, we get the following quadratic equation in
p3
ρ0

(

p3
ρ0

)2

− (∆r +∆b)
p3
ρ0

+ (k0 + 1)∆b∆r = 0 (5.30)

The discriminant δ of (5.30) is

δ = (∆r +∆b)
2 − 4(k0 + 1)∆r∆b = (∆r −∆b)

2 − 4k0∆r∆b (5.31)

The quadratic equation (5.30) has real solutions if and only if δ ≥ 0 which is
equivalent to

k0 ≤
(∆r −∆b)

2

4∆r∆b

(5.32)

Remark 5.4.3. The condition (5.32) is a necessary condition for the solvability
of the dichromatic problem. If the dichromatic problem has a local solution, then
the map

Z(t) = (ϕ(t), ρ(t)− ρ0, ρ
′(t))

solves the system (5.6) for t in a neighborhood of zero. This means that, it should
satisfy it at t = 0, i.e.

Z ′(0) = H(0.0,0, Z ′(0), Z ′(0)).

Hence, Z ′(0) solves the system P = H(0,0,0, P, P ) which by Theorem 5.4.2
implies (5.32).

Proposition 5.4.4. If k0 <
(∆r −∆b)

2

4∆r∆b

then the system P = H(0,0,0, P, P )

admits one solution P = (p1, p2, p3) satisfying 0 < |p1| < 1. In fact, we get

P =

(

∆b −∆r +
√
δ

∆r −∆b +
√
δ
, 0,

∆b +∆r +
√
δ

2
ρ0

)

. (5.33)

with δ given in (5.31),

Proof. From the assumption on k0, we have δ > 0. Then solutions to (5.30) are

p3
ρ0

=
(∆b +∆r)±

√
δ

2
(5.34)

which implies from (5.29)

p1 =
(∆b+∆r)+

√
δ

2
−∆r

(∆b+∆r)+
√
δ

2
−∆b

=
∆b −∆r +

√
δ

∆r −∆b +
√
δ
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and

p′1 =
(∆b+∆r)−

√
δ

2
−∆r

(∆b+∆r)−
√
δ

2
−∆b

=
∆b −∆r −

√
δ

∆r −∆b −
√
δ

Since δ > 0 in (5.31), (∆r −∆b)
2 > δ and so from (5.14) ∆r −∆b >

√
δ, hence

0 < |p1| =
∣

∣

∣

∣

∣

∆b −∆r +
√
δ

∆r −∆b +
√
δ

∣

∣

∣

∣

∣

=
∆r −∆b −

√
δ

∆r −∆b +
√
δ
< 1

|p′1| =
∣

∣

∣

∣

∣

∆b −∆r −
√
δ

∆r −∆b −
√
δ

∣

∣

∣

∣

∣

=
∆r −∆b +

√
δ

∆r −∆b −
√
δ
> 1

Notice that if k0 =
(∆r−∆b)

2

4∆r∆b
, then we have δ = 0 and then |p1| = |p′1| = 1.

5.4.2 Verifying the condition of Theorem 3.4.1

We complete in this section the Proof of Theorem 5.4.1. Let P = (0,0,0, P, P )
with P given in (5.33). We need 0 < |p1| < 1 and hence from the proof of

Proposition 5.4.4 we will assume that k0 <
(∆r −∆b)

2

4∆r∆b

.

Calculating ∇w0h1(P) and ∇w1h1(P). From (5.15),

h1(t, v
0, v1, w0, w1) =

F̃r1(t, v
0, w0)

F̃b1(v01, v
1, w1)

.

Notice that the denominator is independent of w0, so

∇w0h1(P) =
∇w0F̃r1(0,0, P )

F̃b1(0,0, P )
.

Using List 3, and that p2 = 0 we have the following

F̃b1(0,0, P ) = ρ0 + d0

(

1− 1

∆b

p3
ρ0

)

, ∇w0F̃r1(0,0, P ) = d0∇w0µ̃r(0,0, P )

Again by List 3, we have

∇w0µ̃r(0,0, P ) =

(

0, 0,
−1

ρ0∆r

)

.

Therefore,

∇w0h1(P) =

(

0, 0,
−1

k0∆r

ρ0 + d0(1− 1
∆b

p3
ρ0
)

)

.
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On the other hand, the numerator of h1 is independent of w1 then

∇w1h1(P) = F̃r1(0,0, P )
−∇w1F̃b1(0, 0, P )

F̃b1(0, 0, P )2
=

−h1(P)

F̃b1(0,0, P )
∇w1F̃b1(0,0, P ).

Since h1(P) = z1(0) = p1, proceeding as above we get

∇w1h1(P) =
−p1

ρ0 + d0(1− 1
∆b

p3
ρ0
)
d0

(

0, 0,
−1

ρ0∆r

)

=

(

0, 0,

p1
k0∆b

ρ0 + d0(1− 1
∆b

p3
ρ0
)

)

Calculating ∇w0h2(P) and ∇w1h2(P). From (5.16),

h2(t, v
0, v1, w0, w1) = v03

which is independent of w0 and of w1. Therefore,

∇w0h2(P) = ∇w1h2(P) = (0, 0, 0).

Calculating ∇w0h3(P) and ∇w1h3(P). From (5.18),

h3(t, v
0, v1, w0, w1) =

1

cos tAr(v0)

[

− cos t+ Ãr(v
0, w0)((v02 + ρ0) sin t− v03 cos t)

+ nr

w0
1[µ̃b(v

0
1, v

1, w1)Λr(t, v
0)− µr(t, v

0)Λ̃b(v
0
1, v

1, w1)] + µb(v
0
1, v

1)Λ̃r(t, v
0, w0)

Λb(v01, v
1)

]

+
w0

2 sin t+ (v02 + ρ0) cos t+ v03 sin t

cos t

Using List 3 and the fact that p2 = 0 we have

∂h3

∂wj
0

=
1

Ar(0)

[

nr

Λb(0,0)
δj1(µ̃b(0,0, P )Λr(0,0))

]

= −ρ0∆b

(

1− 1

∆b

p3
ρ0

)

δj1

and so

∇w0h3(P) =

(

−ρ0∆b

(

1− 1

∆b

p3
ρ0

)

, 0, 0

)

.

On the other hand and again using List 3, we have

∇w1h3(P) =
1

Ar(0)

[

nrw
0
1

Λb(0,0)
Λr(0,0)∇w1µ̃b(0,0, P )

]

= −ρ0∆b

(

0, 0,
−p1
ρ0∆b

)

= (0, 0, p1)

As a result we get the matrices

∇w0H(P) =









0 0
−1

k0∆r

ρ0+d0(1− 1
∆b

p3
ρ0

)

0 0 0
−ρ0∆b(1− 1

∆b

p3
ρ0
) 0 0









, ∇w1H(P) =







0 0
p1

k0∆b

ρ0+d0(1− 1
∆b

p3
ρ0

)

0 0 0
0 0 p1







(5.35)
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We shall next prove that Id−∇w0H(P) is invertible. We have

det (Id−∇w0H(P)) =

∣

∣

∣

∣

∣

∣

∣

∣









1 0
1

k0∆r

ρ0+d0(1− 1
∆b

p3
ρ0

)

0 1 0
ρ0∆b(1− 1

∆b

p3
ρ0
) 0 1









∣

∣

∣

∣

∣

∣

∣

∣

= 1− αβ

where α =
1

k0∆r

ρ0+d0(1− 1
∆b

p3
ρ0

)
and β = ρ0∆b(1− 1

∆b

p3
ρ0
). Observe the following

αβ =
1

k0∆r

ρ0 + d0(1− 1
∆b

p3
ρ0
)
ρ0∆b

(

1− 1

∆b

p3
ρ0

)

=
1
∆r

k0 + (1− 1
∆b

p3
ρ0
)

(

∆b −
p3
ρ0

)

=
∆b(∆b − p3

ρ0
)

∆r∆bk0 +∆r(∆b − p3
ρ0
)

Expanding the quadratic equation (5.30) gives

0 =

(

p3
ρ0

)2

−∆r

p3
ρ0

−∆b

p3
ρ0

+k0∆b∆r+∆b∆r = k0∆r∆b+∆r

(

∆b −
p3
ρ0

)

+

(

p3
ρ0

)2

−∆b

p3
ρ0

Concluding that

αβ =
∆b(∆b − p3

ρ0
)

∆b
p3
ρ0

− (p3
ρ0
)2

=
∆b
p3
ρ0

. (5.36)

From (5.33) and inequality (5.14), we have p3
ρ0

> ∆b and hence we have

0 < αβ < 1

Therefore, the determinant 1−αβ ̸= 0, and the matrix Id−∇w0H(P) is invertible.
It remains to prove that the spectral radius of the matrix [Id−∇w0H(P)]−1∇w1H(P)

is strictly less than 1. First

[Id−∇w0H(P)]−1 =
1

αβ − 1





−1 0 α
0 αβ − 1 0
β 0 −1





Notice from (5.35) ∇w1H(P) = p1





0 0 α∆r

∆b

0 0 0
0 0 1



 and so

[Id−∇w0H(P)]−1∇w1H(P) =
p1

αβ − 1





0 0 α(1− ∆r

∆b
)

0 0 0
0 0 αβ∆r

∆b
− 1
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Since the above matrix is upper triangulat, its eigenvalues are its diagonal entries

0, 0,

(

αβ
∆r

∆b

− 1

)

p1
αβ − 1

.

Notice from(5.36), and (5.29)that

(

αβ
∆r

∆b

− 1

)

p1
αβ − 1

=

(

∆b
p3
ρ0

∆r

∆b

− 1

)





p1
∆b
p3
ρ0

− 1



 = p1
∆r − p3

ρ0

∆b − p3
ρ0

= p21.

Hence,

R[Id−∇
w0H(P)]−1∇

w1H(P) =

∣

∣

∣

∣

(

αβ
∆r

∆b

− 1

)

p1
αβ − 1

∣

∣

∣

∣

= |p21| < 1,

concluding the proof of Theorem 5.4.1.
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