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ABSTRACT 
OF THE THESIS OF 

 
Hadi Abdul Ghani  for  Master of Engineering 
      Major:  Software, Networking, Security 
 
 
 
Title: Artificial Intelligence for Security of IoT Devices 
 
 
Physical Layer Security relies on detecting suspected behaviors from the communicated 
device while authenticating it. It makes use of physical layer attributes to secure the 
communication. Examples of these attributes are the Received Signal Strength (RSS), 
and Channel State Information (CSI). This work aims to achieve secure communication 
between Internet of Things (IoT) devices using Artificial Intelligence while relying on 
some attributes of the physical layer. In particular, the model will be based on time-series 
measurements from previous and shared states of RSS, for example. Previous work in 
this domain included the development of a model to predict the location from such 
measurements. In this work, we will consider these measurements, specifically, time 
series measurements, for fingerprint authentication. We will develop a model that 
captures the fingerprint of the transmitter device and authenticate it based on previous 
measurements and using different types of machine learning algorithms, which will be 
trained first to compare fingerprints and the training will continue when receiving 
authenticated fingerprints. Our contribution is mainly in the authentication process where 
we implement a model on the receiver side that authenticates the communication by 
authenticating both legitimate parties using a secret key, while accounting for the 
environmental effects and movements on the communication link. 
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CHAPTER I 

INTRODUCTION AND THESIS OBJECTIVE 
 

 Nowadays, the number of IoT devices is increasing exponentially and it is 

expected, as shown in Fig.1, to reach 25.44 billion devices by 2030. With such 

tremendous increase in interconnected IoT devices, it becomes critical to secure these 

connections from any unauthorized users to steal its critical information. As Machine 

Learning becomes a hot topic in the market and its successful implementation in different 

topics like medical diagnosis, predicting market prices and many other topics, it appears 

that it can be used in the physical layer security to ensure the privacy of users while 

communicating. 

 

Figure 1 IoT active devices connections between 2019 and 2030 

 

 The authentication processes rely on cryptographic techniques using 

digital secret keys [1], which have many weak points especially with the rapid growth of 
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low-cost devices that makes it easier to crack the security key from the intercepted signal 

of standardized and static security protocols. In addition, management of security keys 

requires high computational power to generate, distribute, extract the messages using it, 

and to revoke the keys, which sometimes causes delays while communicating and 

executing other tasks. This delay may cause the failure of different communication lines 

caused by the high probability of disagreement between devices when it increases [2] and 

it causes critical problems with delay-sensitive devices like vehicles, medical tools that 

may affect people’s life. 

 The aim of this thesis is to develop a model and train it to monitor the 

different attributes of physical layer security (PLS) such as the Received Signal Strength 

and the Channel State Information to either authenticate the transmitter or reject the 

connection. Specifically, we aim to compare the time series measurements of the PLS 

attributes with the previous authenticated one and check for minimal changes to 

authenticate a device. Common work in this field involves applications such as predicting 

the longitude and latitude of the access point from the RSS using Convolutional Neural 

Networks (CNN) [3], the proposed idea provides 100% accuracy for building and floor 

prediction with a mean error in coordinates 2.77 m, [4] which achieves good results; it is 

based on different measurements such as RSS, CSI, Angle of Arrival (AoA), Time of 

Flight (ToF) and Return Time of Flight (RToF) [5] where the authors used CSI to improve 

the accuracy of AoA problem caused by the Signal-to-Noise Ratio (SNR), all of whom 

focuses on the RSS to predict the location and in certain papers it adds more measurement 

to improve its accuracy. In the previous works, the goal was to predict the location from 

different attributes by studying data collected offline. Such an approach does not 

authenticate the transmitters. 
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 Furthermore, previous works aimed to predict the location of the 

transmitter using RSS measurements with CNN [3], which targets only the position. In 

[6], it was proposed to use a novel location signature CSI-MIMO (Channel State 

Information – Multiple Input Multiple Output) and to use the magnitude and the phase of 

CSI. The results showed an improvement on the accuracy from using the RSS only. As 

[5] and [6] showed that CSI improves the accuracy of predicting the location, and since 

the mean error is in the range of 2 to 5 meters, we will assume that the predictor will be 

at any point in a circle area of the predicted location of the model with a radius of 5 

meters. 

 

 
Figure 2 Illustration of the target problem 

 
 As Figure 2 shows, our target problem is the authentication of the 

messages sent from the transmitter to the receiver. 

 The outline of the proposal is as follows: section 2 will cover the literature 

review of different physical layer security attributes, the Random Forest machine learning 

algorithm, and the related works. Section 3 will cover the methodology of the proposed 

idea in addition to the approach followed and the challenges. Section 4 will cover the 

implementation and datasets. The results are presented in section 5 with the comparison 
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of different algorithm and usage of different metrics. Finally, the conclusion is covered 

in section 6. 
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CHAPTER II 

LITERATURE REVIEW 
 

A. Physical Layer Security 

 Unlike the cryptographical approaches, physical layer security does not 

require high computational power nor complex algorithms. Instead, it takes advantage of 

its different attributes such as noise, interfering signals or fading to boost the signal 

received at the legitimate receiver and degrade it at the eavesdropper side. Physical layer 

security has many advantages over other security techniques, starting with the simplicity 

of the associated algorithms when compared to the encryption-based methods. In 

addition, PLS does not rely on encrypting/decrypting data, which overcomes the difficult 

task of distributing and managing secret keys. It can fully exploit the characteristics of 

the wireless channels, which offers a flexible configuration to implement different 

security methods. 

 

 

Figure 3 The three main operations of PLS [7] 

 PLS can provide different operations to make use of all the channel’s 

properties. In [7], the authors consider three main operations provided particularly by 

PLS: 
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1. Node Authentication: PLS authentication protocols usually consist of 

two stages: The enrollment stage, which occurs offline; unique 

characteristics of a user are measured, and a hashed version of these 

measurements is stored at the verified side along with related helper 

information. In the release state, new measurements are sent to the 

verifier where the latter uses the helper to generate the hashes and 

perform the comparison. 

2. Message Integrity: A major requirement to pass the PLS is the message 

integrity, which is considered more important than Message 

Confidentiality since the message may not be secret, but it should be 

authenticated to make sure that the eavesdropper did not change the 

content of the message. 

3. Message Confidentiality: It relies on two distinct approaches, 1) the 

wiretrap model approach, which relies on the characteristics of the 

receiver’s channel and 2) the secret key generation approach, which 

generates a key from randomness by exploiting an area (characteristics 

of the channel) shared between the legitimate users. 

 The node authentication (NA) uses Physical Unclonable Functions 

(PUFs), which rely on unclonable characteristics of the hardware inherited from 

inevitable variations during the fabrication process. These characteristics are 

unpredictable and considered as a fingerprint of the device. On the hand, the NA may use 

Biometrics since due to the noise measurements, the biometric print is updated as 

discussed above following the 2 stages. 
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 The PLS relies on different attributes while operating as mentioned in [8]; 

the authentication process relied on different attributes such as RSSI, CSI, Carrier 

Frequency Offset (CFO), Round-Trip Time (RTT), in-phase-quadrature phase imbalance 

(IQI), and other attributes: 

1. Received Signal Strength (RSS): It is the strength of the signal measured 

at the receiver’s antenna. It is determined by the transmission power, 

distance between the transmitter and the receiver, and the radio 

environment. 

2. Channel State Information (CSI): It refers to the channel properties of 

the communication link that represents how the signal propagates from 

the transmitter to the receiver at a certain carrier frequency. It is a 3-

dimensional matrix with complex values that consists of the amplitude 

attenuation and phase shift of the multipath Wi-Fi channels. 

3. Round-Trip Time (RTT): It is the time a single packet takes to be reach 

the receiver and come back to the transmitter. It can be affected by 

propagation delay, processing delay, queuing delay, and encoding 

delay. 

 

B. Artificial Intelligence 

1. Random Forest 

 Random Forest is a classifier consisting of different trees that grow in 

randomly selected subspaces of the trained data [9]. They are fast and easy to implement, 

in addition to the high accuracy of predictions, and it can handle many inputs, which fits 

the requirements of the large number of RSS measurements needed to get the location of 
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the transmitter. Random Forest has consistency in the prediction field as shown in [10] 

where it gives information about the full conditional distribution of the variables. Finally, 

in numerical examples it is shown that the random forest algorithm is a competitor in the 

field of power prediction. 

 Compared to the other machine learning algorithms used in this field 

(CNN, deep learning, KNN, etc...), Random Forest has a high computational speed which 

is an important spec for our model. In addition, the high accuracy achieved by Random 

Forest in predicting the indoor localization using the RSS values (approximately 95%). It 

is consistent in the prediction as discussed above and it fits a large number of inputs which 

is a perfect fit for our model. All in all, Random Forest is one of the most efficient 

algorithms to be used for the IoT devices in many aspects discussed above and to 

overcome the different challenges of these devices (power consumption for example). 

 In [11], a random forest approach was implemented to tackle the indoor 

localization issue, using CSI where the model is trained offline, and a series of 

experiments were conducted in an office to extract the results. Compared to K-Nearest-

Neighbor the random forest showed a significantly higher classification accuracy and 

lower mean location error. Thus, the proposed implementation offered high 

performance in accuracy, robustness and workload. 

 

2. Logistic Regression 

 Since indoor localization became a raising demand in daily activities, the 

authors in [12] proposed a logistic regression approach under the deep learning 

framework to tackle the indoor localization issue which was able to achieve an accuracy 

of 97.2 cm in the laboratory environment. As the traditional models can achieve an 
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accuracy of less than 1 meter by using multiple CSI, but the computational overhead is 

high. To purpose of this paper was to address this issue using logistic regression instead 

of the traditional classification technique. 

 In addition, the authors in [13] analyzed a shopper’s behavior using CSI 

of WiFi instead of using video surveillance due to the high cost and privacy. The 

classifier was trained by a user moving in different states as show in figure 4 below. 

 

Figure 4 Shopper’s states transition diagram [13] 

 The authors used 2 machine learning algorithms: decision tree and 

logistic regression. The classification results of 95% for logistic regression to classify 

the different states of the shopper based on the CSI.  

 

3. KNN Classifier 

 In [14], the authors proposed an indoor localization solution based on 

CSI using K-nearest-neighbor where a high accurate positioning were achieved. The 

input features were the amplitudes of the CSI which were processed to reduce the noise. 
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The model presented achieved a Mean Square Error of 2.4 cm which outperformed 3 

different models based on deep learning algorithm. 

 

4. Support Vector Machines 

 In [15], the authors proposed a human flow recognition system based on 

CSI and support vector machine. The feature values used are the amplitude and phase 

extracted from the measured CSI. The proposed implementation achieved high results 

as an accuracy of 100% for the humans passing in the same workflow and 99% for 2 

directions. 

 As a result, CSI measurements are used in most of the indoors 

localization applications that resulted in high accuracy in the field. Thus, CSI is a 

required field that can be used to achieve high accuracy in the related implementation. 

In addition, based on the authors in [16]’s findings, it is confirmed that CSI and RSS 

separately are able to provide high accuracy in the field. However, if we fuse both 

properties (RSS and CSI amplitudes), it will result in even higher accuracy based on 

their results where they used a KNN model and combined RSS and CSI amplitudes as 

features for the model. 

 

C. Public Key Technique 

 Previously, cryptography was based on using symmetric keys to ensure 

the security of data exchanged between the receiver and the transmitter, but symmetric 

key was lacking the exchange of the key between the legitimate parties. Thus, 

researchers invented the public key encryption to overcome this issue [17]. Later, public 

key encryption became the most widely used cryptography type used. 
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 Public key does not require exchanging the key between the sender and 

receiver by having a pair of keys, it enables the exchange of key in unsecured network. 

It is the best solution for the cryptography type that can be used by the sender and 

receiver. Figure 5 will illustrate the process of encryption and decryption using public 

key. 

 

Figure 5 Process of encryption and decryption [18]. 

 

The process is as follow: 

1. The receiver will create the keys (public and private) to use in the 

encryption process. 

2. The private key will be generated based on the public key, and both 

are mathematically related. 

3. The receiver will send the public key to the transmitter to encrypt the 

data. 

4. The transmitter will encrypt the data and send it to the receiver. 

5. The receiver will decrypt the encrypted data using his private key.  

 However, each type has its own vulnerabilities, and for the public key its 

vulnerabilities can be summarized based on [19] and our implementation: 
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1. Randomness in key generation: 

To ensure that the system is safe from the attackers, it is required to have a 

randomness in the prime numbers used in the generation process. The used numbers 

should be sufficient to generate an unpredictable key. However, a random number 

generator may work well in some situations, but it is not useful for the other [20]. 

In our case, the system will be used for a short period of time to gather enough 

data of the surrounded physical environment for the model to be trained and 

implemented. Thus, this vulnerability won’t affect our system as it will drop the keys 

after implementing the system which won’t create any challenge such as creating the 

unpredictable keys or not working due to randomness in some cases. 

2. Man in the Middle Attack: 

The source of the data received at the received side cannot be guaranteed that it 

is from a legitimate source, as if the attacker was able to decrypt the data between the 

sender and receiver then the attacker will act as a receiver for the legitimate sender and 

the legitimate sender for the receiver. The process followed by the attacker to have this 

scenario is by sending his public key to the legitimate sender and receive the public key 

of the receiver. In this scenario, the authentication failed by the first step. To handle it, 

we can use a third legitimate party (server) assumed to know both the legitimate sender 

and receiver.  

3. Time Spent on the Process: 

If the attacker was able inject a malware in the receiver side which calculate 

the time took to decrypt the data, then the attacker will be able to deduce the key. It was 

a successful attack that hit during 1995 [21]. The attack cannot start directly as the 

receiver communicate with the legitimate transmitter as the attacker will need the exact 
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time required to start deducing the key. Thus, it won’t affect our implementation, as till 

the attacker deduce the key and start decrypting data the key will be dropped, which by 

assuming worst case scenario the attacker might cause minor damages which won’t 

affect the system.  

4. Lifetime of the key: 

Using the same key for a long period will give the attacker higher chance of 

decrypting it. Thus, it is required to periodically generating keys which might affect the 

performance of IoT devices because of their limited computational power. Since our 

model requires short period of time to gather than data then drop the key then it won’t 

cause any problem if the attacker was able to decrypt the key later. 

 

D. Related Work 

 In [3], the authors propose a convolutional neural network for indoor 

localization of the transmitter using RSS time-series from wireless local area network 

(WLAN) access points which reduces the noise and the randomness of the values 

presented in the RSS feeds and the last improves the accuracy. It consists of 3 steps: first, 

it starts by predicting the building, then, it predicts the floor number, and finally it predicts 

the longitude and latitude based on the building. 

 Moreover, it is based on 3 approaches, 1) average all the RSS vectors to 

input to a feedforward DNN for prediction, however, some important information will 

be lost due to averaging; 2) concatenate the RSS vectors into one vector to input into 

the feedforward DNN for prediction; and 3) build an RSS feature image and feed to the 

CNN, which is expected to get the most accurate results. The proposed method was 
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evaluated and implemented on buildings where it achieved 100% building and floor 

prediction with an average error of 2.77 meters. 

 In [6], the authors proposed the use of a novel location signature CSI-

MIMO (Channel State Information – Multiple Input Multiple Output) and to use the 

magnitude and the phase of CSI; this approach grants the CSI with the location to improve 

the accuracy. This approach uses both frequency and spatial diversity, and it employs 

both KNN and probabilistic methods while varying the test samples. In the training phase, 

a mobile device collects the received CSI data as a raw CSI of multiple carriers then, they 

generate a unique fingerprint based on the amplitude and phase for each carrier and 

generate the CSI-MIMO fingerprint, and store in the fingerprinting database. In the 

testing phase, the data collected at the unknown location is processed using the same 

method of the training to create its location fingerprint and to compare it with the stored 

fingerprints to estimate the unknown location. It uses both amplitudes and phase of (CSI-

MIMO) and both KNN and maximum likelihood estimation to compare the results. The 

proposed method showed an improvement in the accuracy over the state-of-the-art FIFS 

(Fine-grained Indoor Fingerprinting System) for a KNN algorithm. In addition, accuracy 

of 0.95 m (less than achieved in [3]) was achieved using simple data aggregation over 

MIMO with optimal data. 

 

E. Open Issues 

 Note that implementing machine learning algorithms at the physical layer 

is still a new topic. Also, PLS can leverage many properties of the hardware to enhance 

its performance, however, adding more attributes leads to an increase in the 

computational power and the complexity of the algorithm, which defeats the purpose of 
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minimizing the error while minimizing the computational overhead. Accordingly, it is 

important to select just enough attributes to achieve the required accuracy. 

 Another challenge is the lack of available dataset to account for the large 

number of scenarios associated with 2 communicating devices, especially in an unstable 

environment, which may affect the signals by 10 db, as mentioned in [22], in addition to 

other issues such as Multipath Reception, Line of Sight Interference, Fresnel Zone 

Interference, and RF Interference. 
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CHAPTER III 

PROPOSED METHODOLOGY 
 

 The objective of the thesis is to design security system in the PLS that 

relies on a ML model to authenticate the legitimate transmitter on the receiver side while 

exchanging packets between devices while accounting for the environment that affects 

the communication link. In addition, the system will cover the first handshake between 

both devices using a server and encryption/decryption secret keys for one time. 

 

A. Problem Formulation and Approach 

 The problem can be divided into 3 parts: the first handshake between the 

2 devices, continuous authentication while communicating, and the impact of the 

environment on the communication link. 

 As for the first handshake, the 2 legitimate devices do not know each 

other’s properties, and thus, if the eavesdropper is an active listener and the 2 legitimate 

users tried to communicate for the first time, then the eavesdropper might intercept this 

communication and play the role of a middle point, which will allow her to see/edit all 

the messages between both users, and to compromise the sensitive data being transmitted. 

 Another problem is the interception of an eavesdropper of the transmitted 

data between both legitimate users. For example, given a transmitter, Alice, and the 

receiver, Bob, and an eavesdropper, Eave, when Alice and Bob are communicating, Eave 

is capturing the channel characteristics of Alice, and assuming that Eave has infinite 

computational power, she will be able to clone Alice’s channel characteristics and 
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communicate with Bob pretending to be Alice. This will cause critical problems for both 

legitimate parties if they are transmitting/relying on important data to continue their work. 

 The third problem we are tackling is the effect of the environment on the 

transmitted signals between both parties, as the environment cannot be assumed to be 

neutral, and it affects the signal which we want it to be precise for our authentication 

process. The environment can generate noise that affect the signal strength, which will 

damage some of its measurements in addition to the path losses, which must be accounted 

for in the authentication process. 

 These problems are addressed one at a time and then, the solutions are 

merged together to provide a secure system that can be used to enhance the security and 

performance of communication between legitimate parties. Thus, the approaches are 

divided into first handshake, model authentication and environment effect as described 

next. 

 

1. First Handshake 

 Figure 5 shows the environment for the first handshake process. Alice and 

Bob communicate using a server, and Eave is eavesdropping on the channel. It is assumed 

that the server knows all users, but Alice and Bob do not know each other. Our 

contribution in this scenario is the use of public key technique for encryption/decryption 

systems, in the pre-authentication process to validate the initial identity of the transmitter 

and receiver and gather the PLS attributes data to train the model, by generating a secret 

key between both legitimate parties. ElGamal encryption technique is used due to its 

simplicity, speed, and security in the process. Similar to the direct key generation 

scenarios, the secret key will be sent directly to Alice and Bob to start communication. 
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The major assumption here is that the relay (server) is trusted, and the key will be received 

at least by Alice and Bob. After the transmission of the first few packets between Alice 

and Bob, the secret key will be dropped because we are assuming the worst-case scenario 

of Eave having high computational power. From the first few packets transmission, the 

receiver will be able to get measurements of the different PLS attributes, which will be 

used in the Model Authentication part. 

 

Figure 6 The Environment for the first handshake 
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2. Model Authentication 

 The goal is to implement a model that captures the measurements of 

different PLS attributes to authenticate the sender. The model will be on the receiver side, 

and it is not required to send nor improve any signal to the other device. In Figure 7, we 

will assume that Alice is the sender, Bob is the receiver, and Eave is the Eavesdropper.  

 

Figure 7 The continuous authentication scenario 

 

 After the Handshake, Bob will know the PLS characteristics of Alice such 

as RSS, CSI, and will measure the RTT, and our model will store the measurements for 

upcoming authentication. We will assume the worst case where Eave can clone Alice’s 

properties and characteristics from the data transmitted to Bob. Thus, Eave will start 
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communicating with Bob acting as Alice. Here, our model will detect changes in the 

measurements compared to the previous ones and it will terminate the connection. 

 The authentication technique followed here is comparing the 

current measurement with the average of the previous ones to check for the 

difference: if it is a slightly difference with an error of estimating the location 

less than 2-5 meters, as seen in previous work related to the indoor localization 

with error range in predicting the location after computing the location using the 

fingerprint, then the transmitter will be admitted and continue the 

communication with it, however, if the receiver detects large difference between 

the current measurements and the previous ones, it will check the difference 

range and terminate the connection for large difference or blacklist the user and 

take new measurements to verify before terminating the communication.  

 

3. Environment Effect 

 Since each device will be in a different environment, this will affect the 

signal received and the characteristics of the communication link, or the inference of noise 

from different sources which will affect the signal received or the movement of the 

receiver or transmitter. Thus, the approach followed for this problem is to predict the 

change of the signal at first to minimize the range of authentication, and while 

communicating with the legitimate transmitter, the model will train using this data to 

understand the effect of the environment for better authentication accuracy. 

 

4.  Overall System 
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Figure 8 The overall system 

 
 Figure 8 above represents the overall system, where the first step is general 

training, the model then sharing the key in a secured network between Alice and Bob. 

Then the communication starts between Alice and Bob which will let the receiver gather 

the required data to retrain the model to authenticate. While authenticating, the model will 

take into consideration the environment and distance effects before predicting if the 

transmitter is authenticated or not. 

 Since we are targeting IoT devices, it is important to consider the 

movement of these devices while communicating, thus our model will take these changes 

into consideration by modifying the prediction range to authenticate the transmitter based 

on the estimated distance change per second.  

 In addition to considering the environment effect on the signal, 

specifically its effect on the RSS as mentioned above and the persistence of the CSI to 

these effects. Thus, the usage of CSI and RSS will avoid these effects if presented. 
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B.  Challenges 

 When considering the challenges of security at the physical layer, we will 

consider each challenge separately (authentication, secret key distribution and 

environment effect prediction): 

 

1. Challenge 1: Limitation of the IoT devices 

 Our target is to implement the model for IoT devices, which have limited 

computational power. Hence, the model should be simple in order not to affect the 

performance of these devices. In addition, these devices depend on battery life which will 

affect how our model will be deployed to prevent its usage all the time and drain the 

battery. 

This challenge will be addressed by designing a simple algorithm that does not 

require high computational power and that will be used only while communicating with 

the target. 

 

2. Challenge 2: Secret key Management 

 For the first handshake, the server needs to know each device before 

sending keys for the 2 legitimate parties. Thus, the server must have already 

communicated with the desired parties and already knows each device’s ID. However, if 

the eavesdropper Eave intercepted any connection between the server and a legitimate 

device (suppose Alice) and acted as Alice for a long time without the notice of the server, 

the system is already hacked and implementing the model will not be effective. 

 

3. Challenge 3: Environment Effect 
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 The environment effect cannot be predicted because the weather, for 

example, cannot be predicted or the changes in the environment after implementing the 

model cannot be known. In addition to the movement of the transmitter or the receiver 

from an area to another with different noises that affects the communication link. 

 This challenge can be tackled by estimating the signals’ losses by 

accounting for the distance between the 2 legitimate devices, which will let us minimize 

the range of expected received signal for the model be more accurate. In addition, the 

model will be trained offline periodically which will keep it in sync with the different 

environment changes. 
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CHAPTER IV 

DATASET AND IMPLEMENTATION 
 

A. Dataset preparation 

 The following dataset “A dataset for Wi-Fi-based human-to-human 

interaction recognition” [23] contains RSS and CSI data for 40 different pairs of humans 

moving between the transmitter and the receiver. The CSI tool [24] is used to trace the 

Wi-Fi signals transmitted from the Sagemcom 2704 access point. The data were collected 

in an indoor environment, a room of dimensions 5.3 m × 5.3 m, in the presence of 

furniture. Each pair were asked to perform 10 trials of 12 different human interactions at 

the center of the room between the 2 AP. Its goal is to advance the recognition of WIFI-

based human activities in different aspects such as the usage of different algorithms to 

recognize the human-to-human interactions. Each pair will be located between the same 

transmitter and receiver and will perform different movements with each other as seen in 

figure 3 below where we have a receiver and legitimate transmitter, and the pair are acting 

between them. 
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Figure 9 Scene of the dataset collection 

  In our implementation, to make use of this dataset, we used 4 pairs that are 

moving between the transmitter and the receiver (S13, S21 and any 2 others) as shown in 

figure 9, assuming that the transmitter is legitimate when we have S13 and S21 moving 

between the transmitter and the receiver. By making this assumption, our model will be 

trained based on the surrounding physical environment between the 2 legitimate parties, 

as example in the dataset used, our model will be trained based on the room and the pair 

between the parties, as it will be able to sense the changes of the CSI when the pair has 

changed. The scenario in the figure 9 can be created based on our assumptions made 

above. In addition, in the above scenario, the Transmitter is a duplicate of the Legitimate 

Transmitter (assuming worst case scenario where the unauthorized transmitter can 

duplicate all the properties of the authorized transmitter) as it is the same transmitter but 

with different pair between it and the receiver. 
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 The features used from the dataset are RSS and CSI. The RSS consists of 

1 value which is an integer. For CSI, it consists of a list of complex numbers that that 

depends on the antennas of the receiver and the transmitter [25], we extract the amplitude 

for each complex number and use it as a feature as it is used in different works [7] where 

the authors extracted the amplitude to create a fingerprint database to perform matching 

positioning at the real time. In addition, the authors in [8] relies on the amplitudes of the 

CSI to detect the different human activities which resulted in high accuracy in detecting 

different activities such as fall, and the number of people in the room. Thus, extracting 

the amplitudes for CSI is the most efficient way to make use of it.  

 

The logic for preparing the data can be as follow: 

1. Extracting the RSS which is straight forward as it is an integer 

2. Getting the list of CSI amplitudes from the complex numbers: 

def get_csi_amplitudes(csi_value): 

    csi_amplitudes = [] 

    for complex_number in csi_value: 

        amplitude = np.absolute(complex_number) 

        csi_amplitudes.append(amplitude) 

    return csi_amplitudes 

  

The function above will extract all the amplitudes for each CSI of the 

corresponding received signal. 

3. Generating the feature to predict “Authenticated”: 

if 'S13' in pair and 'S21' in pair: 

    Authenticated = True 
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 As mentioned above, the transmitter is only legitimate when we have S13 

and S21 acting between it and the receiver. 

 To adapt to the environment’s changes and in order to cover the edge cases 

when our model unauthorize a specific legitimate transmitter and be able to manually fix 

it, the model will be retrained which will affect its performance by increasing the accuracy 

as the data used of the specific environment will be larger. 

B. Overall solution 

 

Figure 10 Overall solution 

 
 Figure 10 above shows the overall solution of the targeted problem. The 

first step is the offline training of the linear regression model at the receiver’s end. After 

the offline training is done, the transmitter will start communicating with the receiver by 
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encrypting the messages using ElGamal encryption technique and the receiver will 

decrypt these messages, save the data and retrain the model after having enough data. 

After retraining the model, the transmitter will start sending the messages directly to the 

receiver which will extract the required features for the linear regression model which 

will authenticate the transmitter based on it while accounting for the environment and 

movement effect. 

 

C. Public key technique 

 ElGamal Encryption is asymmetric key encryption for public key 

technique, depends only on both the private and the secret keys generated to encrypt the 

data. It is based in Diffie–Hellman key exchange, and consisted of 3 components: keys 

generator, encryption algorithm and decryption algorithm. 

 

The process of encryption is as follow: 

1. Choose a random prime number p. 

2. Choose the value of the private number a. 

3. Choose the value of the generator g. 

4. Get the value of the public key: y = ga mod p 

5. Share all the values except the private key a. 

 

 ElGamal encryption is simple, fast algorithm [26] which meeting the 

requirements of IoT devices, as it is faster than RSA in decryption of the cipher but slower 

in encryption. In our implementation, the main requirement is to have a fast decryption 

time and simple algorithm at the receiver side as it is the side where the computation and 
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data process will take place. In addition, both algorithms are fast as the speed was 

compared relatively between them. 

 

D. Model Structure 

 

 
Figure 11 Model structure 

 
 Figure 11 shows the linear regression model structure where we have the 

features (received signal strength and channel state information) as input, then it will 

account for the environment and mobility effect and finally it will return the 

authentication decision based on these features. 
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E. Model authentication process 

 

Figure 12 Authentication Process 

 In figure 12 above, is a process followed by our model while operating at 

the receiver's end, where the features are the received signal properties consisted of 

Received Signal Strength (RSS) and Channel State Information (CSI) ‘s amplitudes. 

Using these features the model will predict if the transmitter is legitimate or not. If the 

result is authenticated, then it will directly authenticate the transmitter and continue the 

communication. However, if Authenticator did not approve the transmitter, it will 

blacklist the last for a second chance of authentication process, if the last failed the second 

attempt it will terminate the connection directly. 
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CHAPTER V 
RESULTS 

 
A. Default classifiers results 

 After training our model without optimization based on the above 

scenario, the results obtained are as below: 

 

Model Accuracy Confusion 
Matrix 

Precisio
n 

F1-Score Training 
Time 

Predictio
n Time 
(whole 
test data) 

Random 
Forest 
Classifier 

0.9663 [50432, 
980 
2524, 
50104] 

0.9667 0.9663 1m 33.7s 0.9s 

KNN 
Classifier 

0.961 [50471, 
941 
3116, 
49512] 

0.9618 0.961 0.4s 5m 5.6s 

Logistic 
Regressi
on 

0.971 [50315, 
1097 
1874, 
50754] 

0.9716 0.97144 3.4s 0.1s 

Support 
Vector 
Machine
s 

0.971 [50318, 
1094 
1921, 
50707] 

0.9711 0.971 15m 4.4s 4m 11.1s 

 

 In the table above, all models were trained and tested using the same 

device, same training, and testing data for fair results comparison. The models above are 

all classifiers and not calibrated as they used the default tuning parameters. In addition, 

the movement effect was not taken into consideration. 
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B. Metrics Used  

1. Accuracy 

 It is the most common indicator to judge a model, it is evaluated using 

the below formula. 

 

 

 

However, it is proven weak when having imbalanced classes. 

In our dataset, the classes are balanced. Based on this indicator, we can notice 

from the table above that the most accurate models are Logistic Regression and SVM. 

 

2. Confusion Matrix 

 

 Its output is with the same format with below table where it represents 

these parameters. 

 

 

 

 

 

 

 From the table above, since our focus is on preventing the unauthenticated 

party to communicate with the legitimate user, False Positive is the important parameter 

for this indicator as it indicates how many times the model authenticated the unauthorized 

Figure 13 Confusion Matrix Table 
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party, without losing the importance of False Negative as terminating the connection with 

a legitimate transmitter will affect the efficiency of the model. As we can notice from the 

table of the models that KNN Classifier performed well compared to the other models. 

 

3. Precision 

 It can be summarized by the following: “How much the model is right 

when it says I am right”. It is evaluated using the below formula. 

 

 

 

 

 From the models table, we can notice that Logistic Model and SVM 

performed better than the other models as seen by this indicator. 

 

4. F1-Score 

 It is the harmonic mean of 2 indicators: precision and recall. It is 

evaluated using the below formula. 

 As we can notice when one of these indicators is low, we will obtain a low 

F1-Score since the nominator is the multiplication of both indicators. In addition, both 

indicators are important. From the models table, we can notice that Logistic Regression 

and SVM performed better than the rest models. 
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5. Time 

 Since we are targeting IoT devices, our model’s speed is important to take 

into consideration, since we want a fast model to authenticate the transmitter using limited 

computational devices. 

 Starting by the training time, Random Forest Classifier and SVM took 

significantly more time than the other model to train which is an important factor to take 

into consideration while choosing the most efficient model for our case. 

 The prediction time is more important in our case since our model will be 

predicting continuously and must stay in sync with the transmitter, from the models table 

we can notice KNN Classifier and SVM took a significant time to predict. 

 

C. Model Calibration 

 Model calibration is the process of adjusting the model’s parameters to 

achieve better results. These parameters are the internal configuration of the model 

generated based on the data.  Model calibration is important as it allows each model to 

focus its particular probabilities for better prediction. In our implementation, we will 

evaluate 2 calibrated models: Logistic Regression and Random Forest. 

 

1. Logistic regression 

 The model was calibrated using GridSearchCV to find the most efficient 

tune, the accuracy percentage varied from 97.2% and 96% where the accuracy percentage 

of the default model was 97.1%. However, the training time was high, few minutes 
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(depends on the search range), compared to the default model’s training time which took 

few seconds. 

 

2. Random Forest  

 The model was calibrated using RandomizedSearchCV which generated 

different values for max features, max depth, minimum sample split, minimum samples 

leaf and bootstrap. The model achieves 97.7% for accuracy while the default model 

achieved 96.6%. However, the training timed for the tuned model ranged to few hours 

compared to the default model’s training which was 2 minutes and 8 seconds.  

 Finally, the model calibration depends on the dataset and in our case the 

dataset is changing periodically. Thus, for each update of the dataset, the model will be 

retrained, and the training time is extremely high adding the fact of using IoT devices that 

has low computational power and the model’s parameters varies with the dataset. 

 

D. Movement 

1. RSS  

 The relation between the distance between the transmitter and the receiver 

with the received signal strength can be expressed with logarithmic relationship. It can be 

expressed with Friis formula [27]. The mathematical expression of the relation is as 

follow: 
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Where RSSI is received signal strength indicator, A is the signal at 1 m from the 

source, n is constant that ranges between 2 and 4, d is the distance between the transmitter 

and the receiver, d0 is the unit distance (1m) and X0 is the error correction term. 

 Thus, this equation can be used to measure the RSSI difference 

at different distances (d1 and d2): 

𝑅𝑆𝑆𝐼1	– 	𝑅𝑆𝑆𝐼2	 = 	10 ∗ 𝑛 ∗ 𝑙𝑜𝑔(𝑑!)	– 	10 ∗ 𝑛 ∗ 𝑙𝑜𝑔(𝑑") 

And since the human cannot move more than 4 meters per second, we can get 

the difference of RSSI value for 1 second range as d2 varies between d1 + 4 and d1 - 4: 

𝑑1	– 	4	 ≤ 	𝑑2	 ≤ 	𝑑1	 + 	4 

10𝑛𝑙𝑜𝑔	(𝑑" − 	4)	– 	10𝑛𝑙𝑜𝑔(𝑑") 	≤ 	𝑅𝑆𝑆𝐼	𝑑𝑖𝑓𝑓	 ≤ 	10𝑛𝑙𝑜𝑔	(𝑑" + 	4)	– 	10𝑛𝑙𝑜𝑔(𝑑")	 

10𝑛𝑙𝑔	 81	 −
4
𝑑"
9 ≤ 	𝑅𝑆𝑆𝐼	𝑑𝑖𝑓𝑓	 ≤ 	10𝑛𝑙𝑔	 81	 +

4
𝑑"
9 

Where d1 is the distance between the transmitter and receiver and d2 is the 

distance after movement. 

 

2. CSI 

 WLAN protocols such as 802.11n uses Multiple Input Multiple Output 

(MIMO) and Orthogonal Frequency Division Multiplexing (OFDM) which enables the 

diversity transmission and reception of signals. Based on [28] that proposed an indoor 

localization based on CSI data, the CSI can be weighted as: 
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Where CSIeff is the effective CSI for estimating the distance, K is the number 

of subcarriers, fk and fc are the frequencies and Ak is the amplitude of the CSI at the kth 

subcarrier. 

Thus, the distance between the transmitter and the receiver can be expressed as 

follow: 

 

 Where d is the distance between the transmitter and the receiver, c is the 

radio  velocity, f0 is the frequency, n is the path loss attenuation and σ is an 

 environment factor. 

Using the above 2 equations, and calculating the relation between the distance 

difference and the amplitudes we concluded that the relation between the distance and the 

CSI amplitudes is as follow: 𝑑!
"#
= $!!

$"!
 and since the human moves 4 meters per 

seconds at most we can conclude: 

𝑑1
𝑑1	 + 	4 ≤

𝐴##

𝐴!#
≤

𝑑1
𝑑1	 − 	4 

 

 After generating few data from the above equation to estimate the changes 

of RSS and CSI, the predictions of our classifier model are False (not authenticated) 

which is expected as the distance between the transmitter and receiver has changed. One 

way to solve this issue is by using a regressor instead of classifier. The results of the new 

data when the distance changes vary between 0.4 and 0.6 where 0 is not authenticated and 
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1 for authenticated. Thus, these ranges can be used to detect the changes of the distance 

and authenticate the transmitter. 

 

E. Regression model results: 

Model Accurac
y 

Confusion 
Matrix 

Precisi
on 

F1-
Score 

Trainin
g Time 

Prediction 
Time (whole 

test data) 
Random 
Forest 

Regressor 

0.96 [50205 
1207 
2775 

49853] 

0.962 0.9617 2m 10s 0.718 

KNN 
Regressor 

0.97 [50390 
1022 
2568 

50060] 

0.965 0.965 0.175 294.88 

Linear 
Regressio

n 

0.95  0.956 0.954 0.32 0.05 

 

Random Forest and Linear Regression returned similar results as of classifiers. 

However, the KNN Regressor predicted 0 and 1 similar to the classifiers, which won’t 

detect the distance changes. 

 

F. Model Retraining 

 The model will be trained on a specific dataset to operate at first with the 

ElGamal decryption technique. After gathering enough data on the transmitter, the 

receiver will retrain the model to tune its parameters and use it only to authenticate the 

transmitter.  

 To keep our model updated with the environment changes, it will be 

retrained frequently to keep updates of these changes and effects. As the two legitimate 
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parties interact with each other, the receiver will keep the required data (CSI and RSS) to 

retrain the model offline. The graph below shows the relation between the accuracy and 

the number of samples used to retrain the model. 

 

Figure 14 Graph representing the accuracy in function of the number of samples 

 As the number of samples data used increases, the model’s accuracy 

increases. The graph below shows the relation between the retraining time and the 

number of samples used to retrain the model. As the number of samples increases the 

retraining time increases. 

 

Figure 15 Graph showing the retraining time in function of the number of samples 
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G. Transmitter Load 

 The only process running at the transmitter’s side is the ElGamal 

Encryption. It is required to encrypt the messages before sending to the receiver until 

the model at the receiver’s side is up and running. Based on experiments done to 

estimate the encryption speed, it depends on mainly on the device’s cores where the 

encryption time is ranged between 10-4 and 10-3 seconds. 

 

H. Receiver Load 

 At the receiver’s side, the initial training is done offline. However, the 

running processes are: 

1. ElGamal Decryption: when the model does not have enough data to 

operate, the receiver will rely on the ElGamal Decryption until the 

model is ready to predict with high accuracy. 

2. Data extraction: when the transmitter communicates with the receiver, 

the last will extract the required data to save/predict depending on the 

model’s status. The following operation takes around 10-5 seconds. 

3. Model Authentication: when the model is running, the receiver will rely 

on it to authenticate the receiver where the model will take 10-5 

seconds. 

 Finally, for the receiver’s load, the model is retrained offline to support 

new devices, adapting to new environment changes, etc… 
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CHAPTER VI 

CONCLUSION 
 

 In conclusion, this thesis developed an authentication system that targets 

IoT devices. It relies on ML model and physical layer security attributes mainly Received 

Signal Strength (RSS) and Channel State information (CSI) where it relies on public key 

technique to secure a link to train the model (Random Forest Regressor or Linear 

Regressor) which considers different factors (Movement, Environment effects) while 

predicting. Since it targets IoT devices, the implementation is simple with fast prediction 

at runtime. The results verify the effectiveness of the model in the field which lays a solid 

foundation in the field of authentication for IoT devices. 
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