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An Abstract of the Thesis of

Hiba Khaled El Owayed for Master of Science
Major:Mathematics

Title: On Enlarged Krylov Subspace Conjugate Gradient Method: MSDO-CG

Solving systems of linear equations of the form Ax = b has always been
a challenge for scientists because the input matrix A is very large and sparse.
These systems are derived mainly from the discretization of Partial Differential
Equations (PDE) which are crucial and essential in most scientific fields, that’s
why they are usually solved using Krylov subspace methods such as : Conjugate
Gradient (CG), Generalized Minimal Residual (GMRES), Bi-Conjugate Gradi-
ent (Bi-CG) and Bi-Conjugate Gradient Stabilized (Bi-CGStab). Even though
these methods are efficient, they are ruled by Blas1 and Blas2 operations that
are communication-bound when parallelized. To reduce communication, a new
approach was to enlarge the Krylov subspace per iteration by a maximum of t
vectors based on the domain decomposition of the graph of A. The enlarged
Krylov subspace being a superset of the Krylov subspace will allow us to search
for the solution of the system Ax = b in it. Several variants of enlarged CG were
introduced along with their s-step versions, and it is shown that an approximation
to x is obtained in less iterations as compared to classical CG. But increasing t
also means increasing the memory requirements and the possibility of some of the
basis vectors becoming linearly dependent. Thus, t has to be relatively small, but
not too small so that the number of iterations is reduced. In this thesis, we are
mainly studying the possibility of flexibly varying the number of vectors added
per iteration to the enlarged Krylov subspace, and its effect on the convergence
of the enlarged CG methods : MSDO-CG and Modified MSDO-CG.
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Chapter 1

Introduction

In mathematics, a lot of problems solving relies on solving a linear system of the
form Ax = b where A is an n× n matrix and b an n× 1 vector. Many methods
were introduced to solve this kind of linear system and they can be categorized
into two categories: Direct methods and Iterative methods.

Direct methods are methods that solves the linear system Ax = b with a fi-
nite number of steps or operations and we end up with the exact solution of the
system in exact precision or R. LU decomposition, Cholesky decomposition and
QR decomposition are famous direct methods for solving such system with A
being dense or sparse . These methods works very well with small matrices and
they are very straight forward. However, for large sparse matrices, they are no
longer adequate because the obtained decomposition matrices will become denser
than the input matrix .

A good alternative for direct methods are the iterative methods that compute
a sequence of approximate solutions of the sytem Ax = b by starting from an
initial guess. These methods are commonly used with sparse large systems which
may arise from discretizing partial differential equations because the direct meth-
ods are prohibitive in terms of memory when it comes to solving these systems.
The Krylov subspace methods are among the most popular and practical itera-
tive methods nowadays. These iterative methods aim to solve systems of linear
equations Ax = b by finding a sequence of vectors x1, x2, . . . , xk from the corre-
sponding spaces:

x0 +Ki(A, r0), i = 1, . . . , k

where

Ki(A, r0) = span{r0, Ar0, A2r0, . . . , A
i−1r0}

x0 is the initial guess and r0 is the initial residual.
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In this thesis, we start by Chapter 2 where we introduce the Krylov subspace
and its properties. Then, we discuss the Krylov subspace methods: Conjugate
Gradient (CG), Generalized Minimum Residual (GMRES) and the Bi-Conjugate
Gradient method (Bi-CG) along with their algorithms.
In Chapter 3, we present a new approach of enlarging the Krylov subspace by a
maximum of t vectors per iteration as introduced in [1] and [2], then we introduce
the A-orthonormalization process which will be used in the discussion of the
enlarged Krylov subspace CG methods: SRE-CG [2], MSDO-CG [2](which is
based on MSD-CG [3]) and its variant Modified MSDO-CG [4].
In Chapter 4, we introduce a flexible version of MSDO-CG and Modified MSDO-
CG to reduce memory storage and hopefully reduce time till convergence. Then,
the flexible versions are tested for different inputs and will be compared to the
original versions.
In Chapter 5, we conclude the promising behavior of the flexible versions in terms
of runtime and number of iterations.
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Chapter 2

Krylov Subspace Methods

The Krylov Subspace Methods are named after the applied mathematician and
naval engineer Aleksey Krylov which was introduced in his paper in 1931. These
methods use a sequence of vectors to minimize the errors and get an approximate
solution of the system Ax = b.

In this chapter, we define the Krylov subspaces and list some of their prop-
erties in section 2.1. In section 2.2, we present the projections methods and
show that they are ruled by two conditions: the Subspace condition and the
Petrov-Galerkin method. Section 2.3, 2.4 and 2.5 are about discussing some the
projection methods, namely: the Conjugate Gradiant method (CG), the general-
ized minimal residual method (GMRES), the Bi-Conjugate method (Bi-CG) and
the Bi-Conjugate stabilized method.

2.1 Krylov subspace and its properties

A Krylov subspace of order i is generated by a n×n matrix A and a n× 1 vector
f and it is spanned by the vectors of the Krylov sequence:

Ki(A, f) = span{f, Af,A2f, . . . , Ai−1f} (2.1)

This subspace satisfies two main properties :

• K1 ⊆ K2 ⊆ · · · ⊆ Kkmax

• AKk ⊆ Kk+1

where Ki is of dimension at most i and kmax is the grade of the Krylov subspace
which we define below.

Definition 2.1.1. The grade of a krylov subspace Ki(A,f) noted µ is a positive
integer which refers to the dimension of the largest subspace generated by A and
f.
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Lemma 2.1.2. Let µ be the grade. Then Kµ is invariant under A and Km = Kµ
for all m > µ.

2.2 Krylov subspaces methods

The Krylov subspace methods are polynomial iterative methods that seek a se-
quence of vectors : x1, x2, . . . , xk from the corresponding spaces :

x0 +Ki(A, r0), i = 1, 2, . . . , k (2.2)

that should approximate the solution of our linear system Ax = b, where:

• x0 is the initial iterate

• r0 = b− Ax0 is the initial residual

• Ki(A,r0) is the Krylov subspace of order i generated by A

Once the residual vector ri = b−Axi is small enough, an approximated solution
is achieved.
Notation: Ki(A, r0) ≡ Ki

2.2.1 Krylov projection methods

The Krylov projection methods compute a sequence of approximate solutions
xk of our liner system Ax = b, from an affine subspace x0 + Kk (k=1,2,. . . ).
This sequence is obtained by imposing the Petrov-Galerkin condition on the kth

residual rk = b− Axk which is:

rk ⊥ Lk

where Lk is a well defined subspace in Rn or Cn. Lk can be the same as the
Krylov subspace Kk or can be different than it, the choice of the subspace Lk
leads to different methods. Thus, the different Krylov projection methods are
ruled by two main conditions :

1. The subspace condition : xk ∈ x0 +Kk

2. The Petrov-Galerkin condition : rk ⊥ Lk

The Conjugate Gradiant method (CG) , the Generalized minimal residual (GM-
RES) method and the Bi-Conjugate method are indeed Krylov projection meth-
ods that we are going to discuss.
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2.3 Conjugate Gradiant Method (CG)

The Conugate Gradiant method introduced by Hestenes and Stiefel [5] in 1952 is
an iterative Krylov projection method based on taking Lk = Kk. This method is
used to deal with symmetric positive definite matrices.

Definition 2.3.1. In linear algebra, a n × n matrix A is said to be symmetric
positive definite if :

• AT = A (Symmetric)

• the scalar ZTAZ is strictly positive for every non-zero column vector Z
(Positive definite)

Starting with an initial iterate x0, the CG computes at the kth iteration a
new approximate solution xk = xk−1 + αkpk over the corresponding space x0 +
Kk(A, r0) where pk ∈ Kk is the kth search direction and αk is the step along
the search direction. The new approximate solution is obtained by minimizing
f(x) = 1

2
xTAx− bTx , because by minimizing f(x) we are solving our symmetric

positive definite linear system.
Since A is symmetric positive definite : ∇f(x) = Ax − b , and the minimum
of f(x) is attained when ∇f(x) = 0. Hence, the minimum of f(x) occurs when
Ax = b.
Due to the Petrov-Galerkin condition that projection methods has to abide by,
the residuals must satisfy:

rTk y = 0,∀y ∈ Kk
Once we obtain xk , either it’s the exact solution of Ax = b or we will need

to determine a new search directory pk+1 6= 0 to compute the new approximation
xk+1 = xk + αk+1pk+1. This procedure will be repeated until convergence.

In the sections that follow, we discuss the properties of the residuals rk, the
search directions pk and the convergence of the CG method.

2.3.1 The residuals

Proposition 2.3.2. The residuals are orthogonal , i.e rTi rj = 0, for i 6= j.

Proof. By definition, the residual rk = b−Axk where xk ∈ Kk , so rk ∈ Kk+1. To
obtain the recursion relation of rk, we just replace xk by its expression and we get:

rk = b− Axk = b− A(xk−1 + αkpk) = rk−1 − αkApk

Moreover, we have the Petrov-Galerkin condition that rk ⊥ Lk. Therefore, rTi rj =
0. Hence, the residuals form an orthogonal set.
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Corollary 2.3.3. Suppose that the residuals are non zero, then {r0, r1, . . . , rk−1}forms
an orthogonal basis for Kk(A, r0).

Proof. In proposition 2.3.2, we proved that the residuals form an orthogonal set
which means the resiuals are linearly independant. And we have that

span{r0, r1, . . . , rk−1} ⊆ Kk (2.3)

because ri ∈ Kk,∀i ≤ k − 1 .
On the other hand we have:

dim(span{r0, r1, . . . , rk−1}) = k ≤ dim(Kk) ≤ k (2.4)

Then, by (2.3) and (2.4) we get that:

span{r0, r1, . . . , rk−1} = Kk

2.3.2 The search directions

The search direction pk ∈ Kk is defined according to the following recursion
relation: {

p1 = r0
pk+1 = rk + βk+1pk

(2.5)

where p1 is defined to be equal r0 since the initial residual is equal to −∇f(x0) .
In this section, we present the main property of the search directions which is
going to help us to compute αk+1 and βk+1. But first, we define the A-conjugate
concept because it’s essential for describing the search directions.

Definition 2.3.4. If A is an n × n positive definite matrix and x, y ∈ Rn then
the inner product < x, y >A= xTAy and if this inner product is equal to 0 then
we say that x and y are A-conjugate.
The corresponding norm to this definition is ||x||A =

√
xTAx is called the A-

norm.

Theorem 2.3.5. The Petrov-Galerkin condition (rTk y = 0) implies the A-orthogonality
of the search directions i.e pTkApi = 0,∀i < k − 1.

Proof. For i < k − 1, we have by definition:

pk = rk−1 + βkpk−1

=⇒ pTk = rTk1 + βkp
T
k−1

=⇒ pTkApi = rTk−1Api + βkp
T
k−1Api

by Petrov-Galerkin condition, we have rTk−1Api = 0.
Moreover, rTk−1Api = rTk−2Api − αk−1p

T
k−1Api = 0 with rTk−2Api = 0 because

i ≤ k − 2 . Thus, pTk−1Api = 0. Hence, pTkApi = 0,∀i < k − 1 .
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2.3.3 The time step α and β

Our next goal is getting the expression for αk+1 and βk+1 :

• From the A-orthogonality of search directions, we have:

pTk+1Apk = rTkApk + βk+1p
T
kApk = 0

=⇒ βk+1 = −r
T
kApk
pTkApk

• By the Petrov-Galerkin condition, we have rk ⊥ Kk and we notice that
pk ∈ Kk. Hence we obtain pTk rk = 0 , we will use this information to
compute αk+1 :

pTk+1rk+1 = 0

pTk+1(b− Axk+1) = 0

pTk+1(b− A(xk + αk+1pk+1)) = 0

pTk+1(b− Axk − Aαk+1pk+1)) = 0

pTk+1(rk − αk+1Apk+1) = 0

pTk+1rk − pTk+1αk+1Apk+1) = 0

=⇒ αk+1 =
pTk+1rk

pTk+1Apk+1

Lemma 2.3.6. The step size αk determined above gives the exact minimum of
F (αk+1) = f(xk + αk+1pk+1) along the direction pk, where f(x) = 1

2
xTAx− xT b

Proof. We want to minimize F (αk+1), but first, let’s compute it:

F (αk+1) =
1

2
(xk + αk+1pk+1)

TA(xk + αk+1pk+1)− (xk + αk+1pk+1)
T b

=
1

2
[xtkAxk + αk+1x

T
k pk+1A+ αk+1xkp

T
k+1A+ α2

k+1pk+1Ap
T
k+1]− xTk b− αk+1p

T
k+1b

= f(xk) +
1

2
[αk+1x

T
k pk+1A+ αk+1xkp

T
k+1A+ α2

k+1pk+1Ap
T
k+1]− αk+1p

T
k+1b

= f(xk) +
1

2
[αk+1x

T
k pk+1A+ αk+1xkp

T
k+1A+ α2

k+1pk+1Ap
T
k+1]− αk+1p

T
k+1(rk + Axk)

= f(xk) +
1

2
[αk+1x

T
k pk+1A− αk+1xkp

T
k+1A] +

1

2
α2
k+1pk+1Ap

T
k+1 − αk+1p

T
k+1rk

= f(xk) +
1

2
[α2
k+1pk+1Ap

T
k+1]− αk+1p

T
k+1rk (because A is spd)

Thus, F ′(αk+1) = αk+1pk+1Ap
T
k+1 − pTk+1rk and the minimum of F (αk+1) is given

by F ′(αk+1) = 0.

=⇒ F ′(αk+1) = αk+1pk+1Ap
T
k+1−pTk+1rk = 0. Therefore, αk+1 =

pTk+1rk

pk+1ApTk+1

12



We try to simplify the expressions of αk+1 and βk+1 using what we have of
definitions till now :
Recall that : pk+1 = rk + βk+1pk and that rk ⊥ Kk , so :

αk+1 =
pTk+1rk

pk+1ApTk+1

=
rTk rk + βk+1p

T
k rk

||pk+1||2A
=
||rk||22 + 0

||pk+1||2A
=
||rk||22
||pk+1||2A

Hence,

||pk||2A =
||rk−1||22
αk

(2.6)

Now, let’s move to βk+1 :
We will try to work on −rTkApk by taking the expression of rk and multiplying
it by rTk :

rk = rk−1 − αkApk
rTk rk = rTk rk−1 − αkrTkApk
rTk rk = −αkrTkApk since the residuals are orthogonal

=⇒ −rTkApk =
rTk rk
αk

=
||rk||22
αk

Hence, using (2.6) :

βk+1 = −r
T
kApk
pTkApk

=

||rk||22
αk

||pk||2A
=

||rk||22
αk

||rk−1||22
αk

=
||rk||22
||rk−1||22

We present next the CG algorithm:

Algorithm 1 : CG Algorithm
Input: A, the n× n matrix; b, the n× 1 right-hand side
Input: x0, the initial guess or iterate
Input: ε, the stopping tolerance; kmax, the maximum allowed iterations
Output: xk, the approximate solution of the system Ax = b

1: r0 = b− Ax0, ρ0 = ||r0||22, k = 1
2: while (

√
ρk−1 > ε||b||2 and k < kmax) do

3: if (k = 1) then p = r0
4: else β = ρk−1

ρk−2
and p = r + βp

5: end if
6: ω = Ap
7: α = ρk−1

ptω

8: x = x+ αp
9: r = r − αω
10: ρk = ||r||22
11: k = k + 1
12: end while

13



2.3.4 Convergence of the CG method

In this section, we study the convergence of the CG method.

First, we start by a definition which will be useful later on.

Definition 2.3.7. The Chebychev polynomial of the first kind of degree m is
defined by :

Cm(t) = cos[mcos−1(t)], for − 1 ≤ t ≤ 1 (2.7)

and of its derivations , for |t| ≥ 1 , is :

Cm(t) =
1

2
[(t+

√
t2 − 1)m + (t+

√
t2 − 1)−m] (2.8)

Now, let xm be the approximate solution obtained at the mth step of the
Conjugate Gradient algorithm, and x̃ the exact solution and define :

η =
λmin

λmax − λmin
where λmax and λmin are the maximum and the minimum eigenvalues of A re-
spectively. Then,

||x̃− xm||A ≤
||x̃− x0||A
Cm(1 + 2η)

(2.9)

with Cm is the Chebychev polynomial of degree m of the first kind as defined
previously. Using that definition, we derive a slightly different formulation of
(2.9) :

Cm(t) =
1

2
[(t+

√
t2 − 1)m + (t+

√
t2 − 1)−m] ≥ 1

2
(t+
√
t2 − 1)m

then,

Cm(1 + 2η) ≥ 1

2
(1 + 2η +

√
(1 + 2η)2 − 1)m ≥ 1

2
(1 + 2η + 2

√
η(η + 1))m

Now, let’s look at 1 + 2η + 2
√
η(η + 1) :

1 + 2η + 2
√
η(η + 1) = (

√
η +

√
η + 1)2

=
(
√
λmin +

√
λmax)

2

λmax − λmin

=

√
λmin +

√
λmax√

λmin −
√
λmax

=

√
κ+ 1√
κ− 1

14



where κ is the spectral condition number which is κ = λmax

λmin
.

Hence, (2.9) becomes :

||x̃− xm||A ≤ 2

(√
κ− 1√
κ+ 1

)m
||x̃− x0||A (2.10)

Hence, the convergence is a function of the spectral condition number. So by
the relation (2.10), the CG algorithm converges very rapidly when the condition
number κ is almost one and thus, to speed-up the convergence of the CG solution
to the exact solutiom we can precondition the matrix A by multiplying it by some
matrix M such that the condition number of MA is almost one.
Preconditiong will be discussed in details at the end of this chapter.

2.4 Generalized Minimum Residual (GMRES)

The GMRES method was introduced by Youssed Saad and Martin H.Schultz
in 1986 [6]. It’s the projection method based on taking Lk = AKk, in which

Kk := Kk(A, v1) is the m-th Krylov subspace with v1 =
r0
||r0||2

.

Such a technique minimizes the residual norm ||b − Ax||2 over all vectors in
x0 +Km, i.e :

||rk||2 = ||b− Axk||2 = min{||b− Ax||2,∀x ∈ x0 +Kk} (2.11)

The minimum of the L2 norm is zero which is equivalent to solving the system
Ax− b = 0. This method works for any non-singular matrix and does not require
it to be spd, like the Conjugate Gradiant method.
The residuals in the GMRES method do not form an orthonormal basis, hence
Arnoldi’s method is used to build an orthonormal basis for Km. This method
will be discussed next in section 2.4.1 , then we briefly discuss the minimization
procedure and the convergence of the method.

2.4.1 Arnoldi’s method

Starting by a vector v1, at each step, the Arnoldi’s method multiplies the previous
Arnoldi vector vj by A and then orthonormalizes the resulting vector wj against
all previous vj’s using a standard Gram-Schmidt procedure.
Any vector x ∈ x0 +Km can be written as x = x0 + Vmy, where y is an m-vector
and Vm are the orthonormal basis vectors of the Krylov subspace Km found using
Arnoldi’s method.
Now, let H̄m be the (m + 1) × m Hessenberg matrix whose non-zero entries
hij =< wj, vi > are defined by Arnoldi-modified gram-Schmidt procedure and
Hm the matrix obtained from the Hessenberg matrix by deleting its last row. So
we have the following relations: (please refer to [7])

AVm = VmHm + wme
T
m = Vm+1H̄m (2.12)
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V T
mAVm = Hm (2.13)

2.4.2 Minimizing the residual norm

Denote by J(y) the residual norm ||b− Ax||2. Since x = x0 + Vmy, then:

J(y) = ||b−Ax||2 = ||b−A(x0 + Vmy)||2 = ||b−Ax0 +AVmy||2 = ||r0−AVmy||2

By Arnoldi’s method, we have :

v1 =
r0
||r0||2

and β = ||r0||2

then J(y) becomes:

J(y) = ||βv1 − Vm+1H̄my||2 = ||Vm+1(βe1 − H̄my)||2

and we have ||Vm+1||2 = 1 because the Vm’s are the orthonormal basis vectors of
Km, therefore :

J(y) = ||βe1 − H̄my||2

The GMRES approximation is the unique vector of x0 +Km which minimizes the
residual norm, i.e

xm = x0 + Vmym

where:

ym = min
y
||βe1 − H̄my||2

The minimizer is inexpensive to compute as it requires the solution of (m+1)×m
least square problems where m is typically small compared to the actual matrix
size n.
To be able to solve the least square problems, we transform the Hessenberg matrix
using plane rotations into a n× n upper triangular matrix and we denote it Rm,
then we obtain the following:

||βe1 − H̄my||22 = |γm+1|2 + ||gm −Rmy||22

where gm is a m × 1 vector and |γm+1| is the residual norm. The minimum is
obtained when

||gm −Rmy||22 = 0

Therefore, the least square problem is converted into m ×m matrix solver with
Rm upper triangular which can be easily solved by backward substitution.
The GMRES process must be stopped once the residual norm |γm+1| is small
enough as shown in Algorithm 2.
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Algorithm 2: GMRES
Input: A: an n× n matrix; b: n× 1 right hand side vector.
Input: x0 initial guess; tol the given tolerance.
Output: xk an approximate solution of the system Ax = b.

1: r0 = b− Ax0 , β = ||r0||2 and v1 = r0
β

2: for j = 1, 2, . . . ,m do
3: wj = Avj;
4: for i = 1, dots, j do
5: hi,j = (wj, vi);
6: wj = wj − hi,jvi;
7: end for
8: hj+1,j = ||wj||2;
9: if hj+1,j ≤ tol then
10: m = j;
11: break (go to line 16)
12: else
13: vj+1 =

wj

hj+1,j
;

14: end if
15: end for
16: Define the (m+ 1)×m matrix H̄m = {hi,j}1≤i≤m+1,1≤j≤m and Wm = wj,1≤j≤m;
17: Compute ym the minimizer ||βe1 − H̄my||2 and xm = x0 +Wmym;

2.4.3 Convergence of GMRES method

GMRES method is known for its superlinear convergence behavior, i.e the rate
of convergence seems to improve as the iterations proceed. Assuming that ||I −
A||2 ≤ β < 1, the following relation between the initial error and the m-th error
is obtained in [8]:

||xm − x∗||2 ≤ βm||x0 − x∗||2
where x∗ is the exact solution, x0 is the initial guess, and xm is the m-th approx-
imate solutions.

2.5 Bi-Conjugate Gradient method (Bi-CG)

The bi-Conjugate Gradient method (Bi-CG) was first introduced by Lanczos in
1952 [9] and reformulated as a Conjugate Gradient-like method by Fletcher in
1974 [10]. It is a Krylov projection method aiming to solve the linear system
Ax = b by introducing a shadow system Atx̃ = b̃ and solving the augmented
system below: [

A 0
0 At

] [
x
x̃

]
=

[
b

b̃

]
⇐⇒ A′X = B′
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where Lk = K̃k(At, r̃0) = K̃k for the system Ax = b and L̃k = Kk(A, r0) = Kk
for the shadow system Atx̃ = b̃, with b̃ some unknown vector of size n. We let
r̃0 = b̃ − Atx̃0. But since b̃ is unknown, r̃0 is chosen to be equal to r0. Thus,
r̃0 = r0 = b− Ax0 (just like CG)
Just like the CG method, the residuals have to abide by the Petrov-Galerkin
conidition, i.e :

rk ⊥ K̃k(At, r̃0)

&

r̃k ⊥ Kk(A, r0)

The Bi-CG method solves both the system and the shadow system introduced,
so at the kth iteration we obtain two search directions pk and the shadow one
p̃k , and two solutions xk and the shadow one x̃k and two residuals rk and the
shadow one r̃k. They have the following recurrence relations similar to those in
the Conjugate Gradient method:

xk = xk−1 + αkpk ∈ Kk
x̃k = x̃k−1 + αkp̃k ∈ K̃k
rk = rk−1 − αkApk ∈ Kk+1

r̃k = r̃k−1 − αkAtp̃k ∈ K̃k+1

pk = rk−1 + βkpk−1 ∈ Kk
p̃k = r̃k−1 + βkp̃k−1 ∈ K̃k

Proposition 2.5.1. Even though the Bi-CG solves two systems but they have the
same step size αk in xk, x̃k , rk and r̃k and the same βk in pk and p̃k.

Proof. The Bi-CG solves the augmented system A′X = B.

• By the subspace condition at the kth iteration, we have:

Xk = Xk−1 + αkPk ∈ Kk(A′, R0)

which is equivalent to :(
xk
x̃k

)
=

(
xk−1
x̃k−1

)
+ αk

(
pk
p̃k

)
& R0 =

(
r0
r̃0

)
By splitting Xk we obtain the first two recurrence relations.
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• The residual of the augmented system is:

Rk =

(
rk
r̃k

)
= B′ − A′Xk

=

(
b

b̃

)
−
(
A 0
0 At

)(
xk
x̃k

)
=

(
b

b̃

)
−
(
A 0
0 At

)(
xk−1 + αkpk
x̃k−1 + αkp̃k

)
=

(
b

b̃

)
−
(
Axk−1 + αkApk
Atx̃k−1 + αkA

tp̃k

)
=

(
rk−1 + αkApk
r̃k−1 + αkA

tp̃k

)
By splitting Rk we obtain the 3rd and the 4th recurrence relations.

• The search direction Pk ∈ Kk(A′, R0) is chosen to be:

Pk = Rk−1 + βkPk−1

which is equivalent to:(
pk
p̃k

)
=

(
rk−1
r̃k−1

)
+ βk

(
pk−1
p̃k−1

)
By splitting Pk we obtain the last two recurrence relations.
Therefore, the reason that α and β are the same for the shadow and the
main vectors is that α and β are actually for the augmented system.

Theorem 2.5.2. The residual rk and the shadow residual are related by the bi-
orthogonality condition, i.e :

(ri)
tr̃j = 0, for i 6= j (2.14)

Proof. By the Petrov-Galerkin condition we have :

rk ⊥ K̃k(At, r̃0) (2.15)

&

r̃k ⊥ Kk(A, r0) (2.16)

By the first equation we have that (rk)
tr̃j = 0 for j < k. By the second equation

we have that (r̃j)
trk = 0 for j > k.

∴ (r̃j)
trk = 0 for j 6= k.
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Theorem 2.5.3. The direction pk and the shadow direction p̃k are related by the
bi-conjugacy condition, i.e :

(p̃j)
tApk = 0 k 6= j (2.17)

Proof. By the equation (2.15) we have, for j < k :

rk−1 ⊥ K̃j(At, r̃0) & rk ⊥ K̃j(At, r̃0)

Thus,

(ṽj)
trk−1 = 0 & (ṽj)

trk = (ṽj)
trk−1 − αk(ṽj)tApk = 0

where ṽj ∈ K̃j(At, r̃0). So αk(ṽj)
tApk = 0. But, αk 6= 0, so (ṽj)

tApk = 0. Now,
let ṽj = p̃j.
∴ (p̃j)

tApk = 0 for j < k.
Similarly, using (2.16) we get (p̃j)

tApk = 0 for j > k.

Next, we find the expressions of αk and βk:

• At each iteration, the step αk is chosen such that the bi-orthogonality con-
dition (2.14) holds. Given that rk = rk−1 − αkApk . We have :

(r̃k−1)
trk = (r̃k−1)

trk−1 − αk(r̃k−1)tApk = 0

Then,

αk =
(r̃k−1)

trk−1
(r̃k−1)tApk

• For βk, we use the bi-conjugacy condition (2.17) to find its expression.
Given that p̃k = r̃k−1 + βkp̃k−1. We have:

(p̃k)
tApk−1 = (r̃k−1)

tApk−1 + βk(p̃k−1)
tApk−1 = 0

Then,

βk = − (r̃k−1)
tApk−1

(p̃k−1)tApk−1
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Algorithm 3: Bi-CG
Input: A: an n× n matrix; b: n× 1 right hand side vector; x0: initial guess; tol: the
given tolerance.
Output: xk: approximate solution of the system Ax = b.

1: r0 = b− Ax0;
2: Choose r̃0 so that < r0, r̃0 >6= 0;
3: Set p1 := r0 and p̃1 = r̃0;
4: for i = 1, . . . till convergence do

5: αi = <ri−1,r̃i−1>
<Api,p̃i>

;

6: xi = xi−1 + αipi;
7: ri = ri−1 − αiApi , r̃i = r̃i−1 − αiAT p̃i;
8: βi = <ri,r̃i>

<ri−1,r̃i−1>
;

9: pi+1 = ri + βipi;
10: p̃i+1 = r̃i + βip̃i;
11: end for

2.5.1 Convergence of the Bi-CG method

The Bi-CG method is used to solve general systems that are not necessarily
symmetric. But, in case A is spd then the Bi-CG method will be equivalent to
the Conjugate Gradient method and it will arrive at the same solution with one
inconvenience, is that pk and rk will be computed twice.
Otherwise, Bi-CG has the problem of converging irregularly often. It exhibits an
unstable behavior which may slow down the speed of convergence. This is the
main reason why Van Der Vorst introduced the Bi-CG Stabilized method in 1992
which is a variant of the Bi-CG method. Bi-CG Stab attempts to smoothen the
erratic convergence of Bi-CG by multiplying the residual at the k-th iteration by
a polynomial to minimize the norm of the residual. For more information about
Bi-CG Stab please refer to [11].

2.6 Preconditioning

Krylov subspace methods are well founded theoretically, but they are all likely
to suffer from slow convergence upon application because the dimension of the
system we’re working with is very large. That’s where the idea of preconditioner
was introduced.
Preconditioning is the process of transforming the original system Ax = b into a
new system, with the same solution and a much faster rate of convergence of the
iterative method. This will make the preconditioned system easier to solve and
requiring less iterations.
The first step in preconditioning is to find the preconditioning matrix M which
should be cheap to construct and apply, non-singular and resembles A in some
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sense.
After choosing the suitable preconditioning matrix M there’s 3 ways of precon-
ditioning:

• Left preconditioning, i.e applying the preconditioning matrix to the left :

M−1Ax = M−1b

• Right preconditioning, i.e applying the preconditioning matrix to the right
:

AM−1y = b , x ≡M−1y

• Mixed preconditioning, i.e multiplying from both sides, the preconditioning
matrix will be of the form:

M = MLMR

where ML and MR are triangular matrices. In this situation, the precondi-
tioning will be split :

M−1
L AM−1

R y = M−1
L b , x ≡M−1

R y

In the case of symmetric matrices,the mixed preconditioning is often used
to preserve the symmetry of the matrix in the linear system but it is not
the only way to do it.

There are a lot of techniques to produce the preconditioning matrix M , these
techniques belong to 4 essential groups:

• Preconditioning based on the splitting of the matrix A, where A = M −N
like Jacobi and Gauss-Seidel.

• Complete or incomplete factorization of A, like Incomplete LU factorization

• Approximation of A−1,i.e M ≈ A−1

• Reordering of equations or unknowns like the Domain decomposition.

For more info on preconditioning procedure please refer to [12]
In this thesis, we discuss the preconditioned Conjugate Gradient.
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2.6.1 Preconditioned Conjugate Gradient

As previously seen, the matrix A is symmetric positive definite and that’s why
we also start with an spd preconditioning matrix M .
We then compute its Cholesky factorization:

M = LLT

which yields to the equation:

L−1M AL−TM y = L−1M b , x = L−TM y (2.18)

the next step is to solve the system for the new matrix B = L−1M AL−TM which is
also spd but with a “better” condition number, hence our preconditioning pur-
pose is achieved. After finding y, we get x by backward substitution.

If we don’t want to use the mixed preconditioning technique, an alternative ap-
proach is available which is replacing the usual Euclidean inner product in the
CG algorithm by the M -inner product [12]
Interesting fact is that the obtained iterates in these two techniques are identical.
Below is the Split preconditioner Conjugate Gradient algorithm.

Algorithm 4: Split Preconditioner CG
Input: A: an n× n matrix; b: n× 1 right hand side vector; x0: initial guess; tol: the
given tolerance.
Input: M the preconditioner matrix
Output: xk: approximate solution of the system Ax = b.

1: r0 = b− Ax0;
2: Set r̃0 = L−1r0 and p0 = L−T r̃0;
3: for j = 0, 1, . . . till convergence do

4: αj =
<r̃j ,r̃j>A

<Apj ,pj>A
;

5: xj+1 = xj + αjpj;
6: r̃j+1 = r̃j − αjL−1Apj;
7: βj =

<r̃j+1,r̃j+1>A

<r̃j ,r̃j>A
;

8: pj+1 = L−T r̃j+1 + βjpj;
9: end for
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Chapter 3

Enlarged Krylov Subspace
Methods

In this chapter, we introduce the new enlarged Krylov subspace which is based
on domain decomposition. By enlarging the Krylov subspace by at most t vectors
per iteration, we obtain the enlarged Krylov subspace methods that converges
faster than the classical ones discussed before when solving the system Ax = b.
In section 3.1 and 3.2, we introduce the Enlatged Krylov subspace and talk
about its main properties and methods. Then, in section 3.3, we discuss the
A-orthonormalization process which is based on the A-norm and is a vital com-
ponent in the Enlarged Krylov methods and then compare it with the orthonor-
malization process which is based on the L2 norm. In section 3.4, we present one
of the Enlarged Krylov methods which is the Short Recurrence Enlarged Con-
jugate gradient method (SRE-CG) introduced in [2]. In section 3.5, we present
the second Enlarged Krylov subspace method Multiple Search Direction with
Orthonormzlization Conjugate gradient method (MSDO-CG) introduced in [2]
which is based on the MSD-CG method [3] and dicuss its modified version in-
troduced in [4]. In the last section, section 3.6, we discuss the preconditioning
process which makes the large dimensional system we’re working with originally
easier to solve and requiring less iterations.

3.1 The enlarged Krylov subspace

The enlarged Krylov methods consists of enlarging the original Krylov space by
at most t vectors per iteration. Using a graph partitioning method, the domain
of the n × n matrix A is partitioned into t distinct subdomains. If we consider
the partitioning of the index domain δ = {1, 2, . . . , n} into t subdomains, then
δ =

⋃t
i=1 δi. Then, the residual vector will also split into t vectors. We define

Ti(x) to be the operator that projects the n× 1 vector x into the ith subdomain
δi, so it replaces all the vector elements that are not in the ith subdomain by
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zero. Then, we define T (x) to be an operator that transforms the n× 1 vector x
into t vectors of size n × 1 that correspond to the projection of x onto the sub-
domains δi for i = 1, 2, . . . , t, i.e the output will be (T1(x), T2(x), . . . , Tt(x)). At
each iteration k, the residual vector is multiplied by A. So at a step k, the new
vectors are {Ak−1T1(r0), . . . , Ak−1Tt(r0)}.These vectors make up the new basis
vectors of the enlarged Krylov subspace Kt,k , where t corresponds to the number
of partitions of the matrix A and k the iteration. Such vectors along with the
previous vectors span the enlarged Krylov subspace.

Definition 3.1.1. Let

Kt,k = span{T1(r0), . . . , Tt(r0), AT1(r0), AT2(r0), . . . , ATt(r0), . . . , Ak−1T1(r0), . . . , Ak−1Tt(r0)}
= span{T (r0), AT (r0), A

2T (r0), . . . , A
k−1T (r0)}

be an enlarged Krylov subspace of dimension z, k ≤ z ≤ tk, generated by the
matrix A and the vector r0, and associated to a given partition defined by δi, for
i = 1, 2, . . . , t.

3.1.1 Properties of the enlarged Krylov subspace

Theorem 3.1.2. The Krylov subspace Kk is a subset of the enlarged Krylov
subspace Kt,k, i.e Kk ⊂ Kt,k

Proof. Let y ∈ Kk with Kk = span{r0, Ar0, . . . , Ak−1r0}. Then,

y =
k−1∑
j=0

ajA
jr0 =

k−1∑
j=0

ajA
jR0 ∗ 1t =

k−1∑
j=0

t∑
i=1

ajA
jTi(r0) ∈ Kt,k

because we have r0 = R0 ∗ 1t = [T1(r0), T2(r0), . . . , Tt(r0)] ∗ 1t

Kylov subspace methods seek a solution xk ∈ x0+Kk. A corollary of the previ-
ous theorem state that we can search for an approximate solution xk ∈ x0 +Kt,k.
So our goal is to search for the solution in the enlarged Krylov subspace and
approximate it in less iterations.

Next, we’ll be stating some properties of the enlarged Krylov subspace without
going into their proofs. For detailed proofs, please refer to [4].

• Let kmax be the smallest integer such that Kt,kmax = Kt,kmax+q , for all q > 0.
So, ∀k < kmax, the dimension of the subspaces Kt,k and Kt,k+1 is strictly
increasing by a number ik and ik+1 respectively, with 1 ≤ ik+1 ≤ ik ≤ t.

• By definition of the enlarged Krylov subspace

Kt,k+1 = Kt,k + span{AkT1(r0), AkT2(r0), . . . , AkTt(r0)}
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Remark 3.1.3. The sum above is not direct because the intersection is not
always empty. The following property tackle this issue.

• If AkTv(r0) ∈ Kt,k,∀1 ≤ v ≤ t, then we have Ak+qTi(r0)∀1 ≤ i ≤ t and
∀q > 0.

• Let dmax be such that Kdmax = Kdmax+q and kmax such that Kt,kmax =
Kt,kmax+q, for q > 0. Then kmax ≤ dmax.
The above property explains why we prefer having the solution in the en-
larged Krylov space, because its grade is less that the Krylov subspace so
it is reached faster.

• The solution of our system Ax = b belongs to x0+Kt,kmax , where Kt,kmax+q =
Kt,kmax , for q > 0.

3.2 Enlarged Krylov subspace methods

We define our new enlarged Krylov projection methods based on CG by the
subspace Kt,k, these methods are similar to Krylov subspace methods and follow
two mains conditions:

• Subspace condition:

xk ∈ x0 + Kt,k

• Orthogonality condition:

rk ⊥ Kt,k ⇐⇒ (rk)
ty = 0,∀y ∈ Kt,k

The enlarged Krylov subspace CG methods minimize the function f(x) defined
in section 2.3 over the new subspace x0 + Kt,k. Recall that:

f(x) =
1

2
xtAx− btx

Theorem 3.2.1. If rk ⊥ Kt,k, then f(xk) = min{f(x), ∀x ∈ x0 + Kt,k}

Proof. By the orthogonality condition, we have rk ⊥ Kt,k

=⇒ (rk)
ty = 0, ∀y ∈ Kt,k

(b− Axk)ty = 0,∀y ∈ Kt,k

bty − (xk)
tAy = 0,∀y ∈ Kt,k
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We let y = xk − x0 ∈ Kt,k

=⇒ (xk)
tA(xk − x0)− bt(xk − x0) = 0

=⇒ (xk)
tAxk − btxk = (xk)

tAx0 − btx0

=⇒ f(xk) =
1

2
(xk)

tAxk − btxk = −1

2
(xk)

tAxk + (xk)
tAx0 − btx0

We still have to prove that f(x) ≥ f(xk),∀x ∈ x0 + Kt,k to reach our result.

f(x)− f(xk) =
1

2
xtAx− btx− [−1

2
(xk)

tAxk + (xk)
tAx0 − btx0]

=
1

2
xtAx− btz +

1

2
(xk)

tAxk − (xk)
tAx0, where z = x− x0 ∈ Kt,k

=
1

2
xtAx− (xk)

tAz +
1

2
(xk)

tAxk − (xk)
tAx0, since b

tz = (xk)
tAz

=
1

2
xtAx− (xk)

tAx+
1

2
(xk)

tAxk

=
1

2
(x− xk)tA(x− xk) ≥ 0, because A is positive definite.

Theorem 3.2.2. xk minimizes f over x0 +Kt,k if and only if it minimizes ||x∗−
x||A over x0 + Kt,k, where x∗ is the exact solution of the system Ax = b.

Proof. Let

g(x) = ||x∗ − x||2A
= (x∗)tAx∗ − 2(x∗)tAx+ xtAx

= btx∗ − 2btx∗ + xtAx

= btx∗ + 2f(x)

The minimum is achieved when g′(x) = 0, i.e when f ′(x) = 0.

3.2.1 Convergence

The classical CG methods , converges in L̂ iterations with L̂ ≤ n, if A ∈ Rn,n is
spd [5]. In addition, as we showed in the inequality (2.10), that the k-th error of
CG is a function of the conditional number:

êk = ||x∗ − x̂k||A ≤ 2

(√
κ+ 1√
κ− 1

)m
||ê0||

where x∗ is the exact solution of the system and x̂k is the approximate solution
at the k-th iteration.
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By the Theorems 3.2.1 and 3.2.2, and if the k-th residual abide by the orthogo-
nality condition, we have:

||ek||A = ||x∗ − xk||A = min{||x∗ − x||A,∀x ∈ x0 + Kt,k}
≤ min{||x∗ − x̂||A,∀x̂ ∈ x0 +Kk}, since Kk ⊂ Kt,k

≤ ||êk||A

So, the new enlarged Krylov subspace CG methods will converge in L iterations
such that L ≤ L̂ ≤ n, which makes its converges at least as fast as the classical
CG method.

3.3 A-orthonormalization

Enlarged CG methods rely on the A-orthonormalization procedure, which is sim-
ply an orthonormalization using the A inner product < ., . >A instead of the L2
inner product < ., . >. Thus, we start by defining the orthonormalization process
and the different methods used to perform it. Then, in section 3.3.1 and 3.3.2 we
present and compare between the Classical Gram Schmidt orthononormalization
and A-orthonormalization.

Definition 3.3.1. Orthonormalization is the same as the orthogonalization pro-
cess that finds an orthogonal basis of the span of given vectors with the addition of
normalizing each vector by dividing the vector by its norm and then the resulting
vectors will be unit vectors.

We have different methods to perform orthogonalization:

• Gram-Schmidt process which uses projections

• Householder transformation which uses reflections

• Givens rotation

Orthonormalizing a tall and skinny matrix like the ones we are going to discuss
later can be done using classical Gram Schmidt (CGS), modified Gram Schmidt
(MGS) or a QR factorization like Householder factorization or based on Cholesky
factorization.

3.3.1 Classical Gram Schimdt (CGS)

We will only discuss the orthonormalization using CGS process . For the other
methods, please refer to [1].

Given an n × tk matrix Qk with orthonormal column vectors, i.e Qt
kQk = I
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for all j = 1, 2, . . . , tk, then the orthonormalization of the column vectors of the
n× t matrix Pk+1 against the vectors of Qk is done by projecting the j-th column
vector Pk+1(:, j) onto all the Qk(:, i) vectors and substracting it from Pk+1(; , j).
For all j = 1, 2, . . . , t, we let

P̃k+1(; , j) = Pk+1(; , j)−
tk∑
i=1

(Qt
k(; , i)Pk+1(; , j))Qk(; , i)

and we get then:

P̃ t
k+1(; , j)Qk(; , c) = P t

k+1(; , j)Qk(; , c)−
tk∑
i=1

(Qt
k(; , i)Pk+1(; , j))Q

t
k(; , i)Qk(; , c)

= P t
k+1(; , j)Qk(; , c)− (Qt

k(; , c)Pk+1(; , j))Q
t
k(; , c)Qk(; , c)

= 0

for all c = 1, 2, . . . , tk because we have Qt
kQk = I. Then, we normalize the vectors

using the following relation:

P̃k+1(:, j) =
P̃k+1(:, j)

||P̃k+1(:, j)||2

The orthonormalization of the vectors of Pk+1 against each other is done as fol-
lows:

Algorithm 5: Orthonormalization using CGS of a tall and skinny matrix
Input: Pk+1 the matrix to be orthonormalized
Output: Pk+1, the orthonormalized matrix (P t

k+1Pk+1 = I)

1: Let P̃k+1 = Pk+1

2: for i = 1 : t do
3: for j = 1 : (i− 1) do

4: P̃k+1(:, i) = P̃k+1(:, i)− (P t
k+1(:, j)Pk+1(:, i))Pk+1(:, j)

5: end for

6: P̃k+1(:, i) = P̃k+1(:,i)

||P̃k+1(:,i)||2
7: end for

3.3.2 Classical Gram Schmidt A-orthonormalization

The CGS A-orthonormalization has the same concept as the CGS orthonormal-
ization but using the A-norm instead of the L2 norm and hence the projection
expression of the j-th column onto the previous vectors is multiplied by A.
We present the algorithms for the A-orthonormalization of the vectors of Pk+1

against previous vectors and against themselves using CGS.
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The A-orthonormlization of Pk+1 against the vectors of all the previous Pi’s
for i < k + 1 is represented in the following algorthim.

Algorithm 6: A-orthonormalization against previous vectors using CGS
Input: A, the n× n SPD matrix; Qk the tk orthonormal vectors
Input: Pk+1, the t vectors to be A-orthonormalized against Q.

Output: P̃k+1, the search directions A-orthonormalized against Q

1: Let P̃k+1 = Pk+1

2: for j = 1 : t do
3: for i = 1 : tk do

4: P̃k+1(:, j) = P̃k+1(:, j)− (Qt
k(:, i)APk+1(:, j))Qk(:, i)

5: end for

6: P̃k+1(:, j) = P̃k+1(:,j)

||P̃k+1(:,j)||A
= P̃k+1(:,j)√

P̃ t
k+1(:,j)AP̃k+1(:,j)

7: end for

If we let Wk+1 = APk+1 and Qk = [P1, P2, . . . , Pk], we will be moving to a
Block Classical Gram Schmidt (BGCS) version which can be used in addition to
MGS and A-CholeskyBGS to A-orthonormalize Pk+1 against previous vectors.

To A-orthonormalize a skinny n × t matrix Pk+1 or compute its oblique QR
factorization we have two classes. The first one requires the factorization of the
matrix A = BtB using Cholesky or eigenvalue decomposition. The second class
consists of avoiding any factorization of A, like Classical Gram Schmidt(CGS),
CGS2 , Modified Gram Schmidt (MGS)
We present below the algorithm for A-orthonormalizing the vectors of Pk+1

against each other with CGS.

Algorithm 7: A-orthonormalization against each other using CGS
Input: A, the n× n SPD matrix
Input: Pk+1, the search directions to be A-orthonormalized
Output: Pk+1, the A-orthonormalized search directions

1: Let P̃k+1 = Pk+1

2: for i = 1 : t do
3: for j = 1 : (i− 1) do

4: P̃k+1(:, i) = P̃k+1(:, i)− (P t
k+1(:, j)APk+1(:, i))Pk+1(:, j)

5: end for

6: P̃k+1(:, i) = P̃k+1(:,i)

||P̃k+1(:,i)||A
= P̃k+1(:,i)√

P̃ t
k+1(:,i)AP̃k+1(:,i)

7: end for

For more info about orthonormalization and A-orthonormalization, please refer
to [1].
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3.4 Short Recurrence Enlarged Conjugate gradient method
(SRE-CG)

The SRE-CG [2] is a class of enlarged Krylov projection CG methods that aims to
solve the system Ax = b by having its approximate solution at the k-th iteration
defined by: xk = xk−1 +Qkαk ∈ x0 + Kt,k, such that:

f(xk) = min{f(x),∀x ∈ x0 + Kt,k}

where f(x) = 1
2
xtAx− xtb , Qkαk ∈ Kt,k and Qk is an n× tk matrix containing

the basis vectors of Kt,k.
We will present three versions that have the same general derivations, but differ
in the way the basis is constructed. Just like the classical CG method, our goal
is to solve the system Ax = b which is equivalent to minimizing f(x). Since
f(xk) = min{f(x),∀x ∈ x0 + Kt,k}, then:

f(xk) = f(xk−1 +Qkαk) = min{f(xk−1 +Qkα),∀α ∈ Rtk}

At the k-th iteration, the xk obtained either is our exact solution and we’re
done, or t new basis vectors and the new approximation xk+1 are computed. We
repeat this procedure until convergence, so out next step is to find the recurrence
relations of rk and αk.

3.4.1 The residual rk

The residual is defined by rk = b− Axk, with xk ∈ x0 + Kt,k.So rk ∈ Kt,k+1, and
we can obtain the recurrence relation of rk by replacing xk by its expression:

rk = b− Axk
= b− A(xk−1 +Qkαk)

= rk−1 − AQkαk

3.4.2 Recurrence expression of αk

The choice of αk+1 at each iteration should be such that:

f(xk) = min{f(xk−1 +Qkα),∀α ∈ Rt(k+1)}

We let F (α) = f(xk−1 +Qkα), with f(x) = 1
2
xtAx− xtb. So we have:

F (α) =
1

2
(xk−1 +Qkα)tA(xk−1 +Qkα)− (xk−1 +Qkα)tb

= f(xk−1) +
1

2
[(xk−1)

tAQkα + αt(Qk)
tAxk−1 + αt(Qk)

tAQkα]− αt(Qk)
tb

= f(xk−1) +
1

2
[(xk−1)

tAQkα− αt(Qk)
tAxk−1] +

1

2
αt(Qk)

tAQkα− αt(Qk)
trk−1

= f(xk−1) +
1

2
αt(Qk)

tAQkα− αt(Qk)
trk−1 because A is SPD
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The minimum of F (α) is attained when F ′(α) = 0, hence:

F ′(α) = (Qk)
tAQkα− (Qk)

trk−1 = 0

Thus,

αk = ((Qk)
tAQk)

−1((Qk)
trk−1)

Theorem 3.4.1. With the assumption that xk = xk−1 +Qkαk, the orthogonality
condition rk ⊥ Kt,k is equivalent to having xk as the minimum of f(x) in x0+Kt,k

Proof. ⇐= As we showed above, the minimum of F (α) is given by F ′(α) =
(Qk)

tAQkα − (Qk)
trk−1 = 0. And since we are given that xk is the minimum,

then α = αk and hence:

F ′(α) = (Qk)
tAQkαk − (Qk)

trk−1 = 0

= (Qk)
tAQkαk − (Qk)

t(rk + AQkαk) = 0

= (Qk)
tAQkαk − (Qk)

trk − (Qk)
tAQkαk = 0

∴ −(Qk)
trk = 0 =⇒ rk ⊥ Kt,k

=⇒ We are going to use contradiction. Suppose rk ⊥ Kt,k and xk is not the
minimum of f(x) in x0 + Kt,k. Then F ′(αk) 6= 0 and so Qt

krk 6= 0 i.e rk 6⊥ Kt,k.
This contradicts our assumption. Thus, xk is the minimum of f(x).

The basis vectors of Kt,k are {T (r0), AT (r0), . . . , A
k−1T (r0)}. We can either

orthonormalize the basis vectors or A-orthonormalize it. If we orthonormalize the
basis, we reach a Long recurrence enlarged CG version, where we have to solve
at each iteration k, the system αk = ((Qk)

tAQk)
−1((Qk)

trk−1) of size tk × tk
with Qk the matrix containing the set of orthonormal basis vectors of Kt,k which
makes this version expensive. For more details about the LRE-CG, please refer
to [1]
On the other hand, if we A-orthonormalize the basis vectors then we haveQt

kAQk =
I and hence αk will be equal to Qt

krk−1.
By the orthogonality condition, we have :

Qt
k−1rk−1 = 0

So,

αk = Qt
krk−1

= [Qk−1Wk]
trk−1

= [0t(k−1);W
t
krk−1]

= [0t(k−1); α̃k]
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where Wk is the set of t newly computed vectors, and αk is a tk×1 vector. Then,
we obtain:

xk = xk−1 +Qkαk

= xk−1 + [Qk−1Wk][0t(k−1); α̃k]

= xk−1 +Wkα̃k

And hence similarly, rk = rk−1 − AWkα̃k.
The procedure of A-orthonormalizing of Wk against Qk−1 = [W1W2 . . .Wk−1] goes
as follows:

Wk = AWk−1 −Qk−1Q
t
k−1A(AWk−1)

= AWk−1 −
k−1∑
i=1

WiW
t
iA(AWk−1)

= AWk−1 −Wk−1W
t
k−1A(AWk−1)−Wk−2W

t
k−2A(AWk−1)

because (AWi)
t(AWk−1) = 0, ∀i < k − 2 as a result of the A-orthonormality of

the basis vectors of Kt,k. This version is called SRE-CG and it requires to store
only the last 3t vectors, xk−1,rk−1 to define xk and rk.

We might face a loss of A-orthogonality between the last set of computed basis
vectors and the first ones. This gave rise to SRE-CG2 where we A-orthonormalize
Wk against all the basis vectors Qk−1. It also requires to store the last 3t vectors,
xk−1,rk−1 to define xk and rk. But, to be able to A-orthonormalize Wk against
all the basis vectors, we also need to store all the tk basis vectors.

In case there is not enough memory to store all the tk basis vectors, we use a trun-
cated version of the A-orthonormalization against previous vectors. In this trun-
cated version, we A-orthonormalize Wk against a subset of {W1,W2, . . . ,Wk−3}
along with Wk−1 and Wk−2.
We give next the SRE-CG algorithm. The SRE-CG2 algorithm is the same as
the SRE-CG algorithm except for line 7 where we will orthonormalize Wk against
Wi, ∀1 ≤ i ≤ k − 1.
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Algorithm 8: SRE-CG algorithm
Input: A, the n× n SPD matrix
Input: b, the n× 1 right-hand side; x0,the initial guess or iterate
Input: ε, the stopping tolerance, kmax the maximum allowed iterations
Output: xk, the approximate solution of the system Ax = b

1: r0 = b− Ax0, ρ0 = ||r0||22, k = 1
2: while (

√
ρk−1 > ε||b||2 and k < kmax) do

3: if k == 1 then
4: Let W1 = T (r0), and A-orthonormalize its vectors
5: else
6: Let Wk = AWk−1
7: A-orthonormalize the vectors of Wk against the vectors of Wk−1 and Wk−2 if k > 2
8: A-orthonormalize the vectors of Wk

9: end if
10: α̃k = (W t

krk−1)
11: xk = xk−1 +Wkα̃k
12: rk = rk−1 − AWkα̃k
13: ρk = ||rk||22
14: k = k + 1
15: end while

3.5 Multiple Search Direction with Orthogonalization Con-
jugate Gradient Method (MSDO-CG)

The MSD-CG method introduced by Gu et Al [3] is an enlarged Krylov subspace
method that solves Ax = b. First, we have to partition the domain into t sub-
domains and then, define at each iteration k a search direction pki on each of the
subdomains such that pki (δj) = 0, ∀j 6= i.
We define the approximate solution at the k-th iteration to be xk = xk−1 +Pkαk,
with Pk = [pk1 p

k
2 p

k
3 . . . p

k
t ] which is the matrix with all the t search directions at

the kth iteration as its columns and αk a vector of size t. Given an initial guess
x0, the residual is defined as rk = b− Axk.
The approximate solution at the k-th iteration is xk = xk−1 + Pkαk such that:

f(xk) = min{f(x),∀x ∈ Kt,k}

with Pk and αk as defined above in MCD-CG. Our goal is to minimize f(x) which
is equivalent to solving Ax = b.
The residual is defined by rk = b − Axk, with xk = xk−1 + Pkαk ∈ Kt,k, so we
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have rk ∈ Kt,k+1 and :

rk = b− Axk
= b− A(xk−1 + Pkαk)

= b− Axk−1 − APkαk
= rk−1 − APkαk

Remark 3.5.1. If rk ⊥ Kt,k, then (rk)
tri = 0 for all i < k and rk 6= 0. So, the

residuals form an orthogonal set.

At k-th step we have xk, either we stop because it’s our desired solution,
or we compute t new domain search directions Pk+1 and new approximation
xk+1 = xk + Px+1αk+1. We repeat this procedure until convergence, Thus, the
search directions are defined as:

• for k = 1, p1i = Ti(r0)

• for k > 1, pki = Ti(rk−1) + βki p
k−1
i , for i = 1, 2, . . . , t.

Where βki is a scalar and Ti is an operator that projects a vector onto the sub-
domain δi. But, the Pk’s are not A-orthogonal which means the orthogonality
condition is not respected, the converse of this is proved next in theorem (3.5.2).
Therefore, MSD-CG is not a projection method, and this what lead to the intro-
duction of MSDO-CG.

The multiple search directions with orthogonalization CG (MSDO-CG) is an
enlarged Krylov projection method similar to MSD-CG but ensure, at each iter-
ation k, the A-orthogonalization of the search direction Pk against all previous
Pi, i = 1, 2, . . . , k − 1.This step is crucial to respect the Petrov-Galerkin orthog-
onality condition rk ⊥ Kt,k, hence guaranteeing that this method converges at
least as fast as classical CG.

Theorem 3.5.2. If the orthogonality condition is satisfied then the block search
directions are A-orthogonal, i.e:

(rk)
ty = 0, ∀y ∈ Kt,k =⇒ P t

iAPj = 0, ∀i 6= j & i, j ≤ k.

Proof. We have Pi ∈ Kt,i and Kt,i ⊂ Kt,i+1 =⇒ Pi ∈ Kt,i+c for c ≥ 0
By the orthogonality condition, we have now: rtk−1Pi = 0 for i ≤ k − 1 and :

rtkPi = 0

(rtk−1 − αtkP t
kA)Pi = 0

rtk−1Pi − αtkP t
kAPi = 0

since the first term is equal zero and by definition, αk 6= 0, then:

P t
kAPi = 0 for i ≤ k − 1

So our next step is to find the recurrence expressions of Pk, αk and βk.
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3.5.1 The domain search direction Pk

Just like MCD-CG, the domain search direction Pk = [pk1 p
k
2 p

k
3 . . . p

k
t ], with p1i =

Ti(r0) and pki = Ti(rk−1) + βki p
k−1
i ∈ Kt,k, for i = 1, 2, . . . , t.

The recurrence expression of Pk is:

Pk = T (rk−1) + Pk−1diag(βk) (3.1)

where diag(βk) is a t× t matrix with the vector βk on the diagonal.
Pk defined above are not A-orthogonal to each other. That’s why at each iteration
k, the block vector Pk is A-orthonormalized against all previous Pi’s and then the
column vectors of Pk are A-orthonormalized against each other.This procedure is
done directly once the Pk is defined, so this way we ensure that the orthogonal
condition is valid.

3.5.2 Recurrence expression of αk+1 and βk+1

The choice of αk+1 at each iteration should be such that:

f(xk+1) = min{f(xk + Pk+1α),∀α ∈ Rt}

We let F (α) = f(xk + Pk+1α), with f(x) = 1
2
xtAx− xtb. So we have:

F (α) =
1

2
(xk + Pk+1α)tA(xk + Pk+1α)− (xk + Pk+1α)tb

=
1

2
xtkAxk +

1

2
[(xk)

tAPk+1α + αt(Pk+1)
tAxk + αt(Pk+1)

tAPk+1α]− αt(Pk+1)
tb

= f(xk) +
1

2
[(xk)

tAPk+1α− αt(Pk+1)
tAxk] +

1

2
αt(Pk+1)

tAPk+1α− αt(Pk+1)
trk

= f(xk) +
1

2
αt(Pk+1)

tAPk+1α− αt(Pk+1)
trk because A is SPD

The minimum of F (α) is attained when F ′(α) = 0, hence:

F ′(α) = (Pk+1)
tAPk+1α− (Pk+1)

trk = 0

Thus,
αk+1 = ((Pk+1)

tAPk+1)
−1((Pk+1)

trk)

Assuming that the vectors of Pk+1 are A-orthonormal (i.e (Pk+1)
tAPk+1 = I)then

αk+1 reduces to:
αk+1 = (Pk+1)

trk

As for βk+1, we have:

Pk+1 = T (rk) + Pkdiag(βk+1)

=⇒ P t
kAPk+1 = P t

kAT (rk) + P t
kAPkdiag(βk+1)
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Because we have P t
kAPk = I from the A-orthonormality of the matrix Pk, then we

should have diag(βk+1) = −P t
kAT (rk). But, the problem here is that P t

kAT (rk)
is not guaranteed to be a diagonal matrix. Hence, we chose:

βk+1 = −P t
kArk

Algorithm 9: MSDO-CG algorithm
Input: A, the n× n symmetric positive definite matrix
Input:b, the n× 1 right-hand side; x0,the initial guess or iterate
Input: ε, the stopping tolerance, kmax the maximum allowed iterations
Output: xk, the approximate solution of the system Ax = b

1: r0 = b− Ax0, ρ = ||r0||22, k = 1
2: Let P1 = T (r0) and W1 = AP1

3: While (
√
ρ > ε||b||2 and k < kmax) do

4: if k == 1 then
5: A-orthonormalize P1 and update W1

6: else
7: βk = −W t

k−1rk−1
8: Pk = T (rk−1) + Pk−1diag(βk)
9: Wk = AT (rk−1) +Wk−1diag(βk)
10: A-orthonormalize Pk against all Pi’s and update Wk

11: A-orthonormalize Pk and update Wk

12: end if
13: αk = P t

krk−1
14: xk = xk−1 + Pkαk
15: rk = rk−1 −Wkαk
16: ρ = ||rk||22
17: k = k + 1
18: end while

3.5.3 Modified MSDO-CG

To reduce communication, the s-step methods were introduced as a way to re-
structure the Krylov methods algorithms. These methods compute s basis vectors
per iteration and then use them to update the next approximate solution.
In the case of MSDO-CG, at each iteration k, t search directions are built and
A-orthonormalized as mentioned before and then used to update the approximate
solution. But, the construction of the search directions depends on the previously
computed approximate solution which makes the process of merging s iterations
of the MSDO-CG algorithm almost impossible. For that reason the modified
version of MSDO-CG was introduced [4] and it works on building a modified
enlarged Krylov basis instead of computing search directions.
In general, the modified enlarged Krylov subspace for a given s value is defined
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as follows:

K̄t,k,s = span{T (r0), AT (r0), . . . , A
s−1T (r0),

T (r1), AT (r1), . . . , A
s−1T (r1),

T (r2), AT (r2), . . . , A
s−1T (r2),

...

T (rk−1), AT (rk−1), . . . , A
s−1T (rk−1)}

The modified enlarged Krylov subspace K̄t,k,s is of dimension at most kst.
We are going to consider the case where s = 1, and so the modified enlarged
Krylov subspace becomes:

K̄t,k = span{T (r0), T (r1), . . . , T (rk−1)}

Theorem 3.5.3. The Krylov subspace Kk is a subset of the modified enlarged
Krylov subspace K̄t,k,1, i.e Kk ⊂ K̄t,k,1

Proof. The proof of this theorem is very similar to theorem 3.1.2 with suitable
changes.

At the kth iteration, the t vectors of T (rk−1) are computed and stored in
the n× t matrix Vk. Then, these t A-orthonormalized vectors are used to define
α̃k = V t

k rk−1 and update xk = xk−1 + Vkα̃k and rk = rk−1 − AVkα̃k.
We present next the Modified MSDO-CG algorithm.

Algorithm 10: Modified MSDO-CG
Input: A, n× n SPD matrix; kmax, maximum allowed iterations
Input: b, n× 1 right-hand side; x0, initial guess; ε, stopping tolerance.
Output: xk, approximate solution of the system Ax = b

1: r0 = b− Ax0, ρ0 = ||r0||2, ρ = ρ0, k = 1;
2: while (ρ > ερ0 and k < kmax) do
3: if (k == 1) then
4: A-orthonormalize V1 = T (r0), let Q = V1
5: else
6: A-orthonormalize Vk = T (rk−1) against Q
7: A-orthonormalize Vk, let Q = [Q Vk]
8: end if
9: α̃k = V t

k rk−1
10: xk = xk−1 + Vkα̃k
11: rk = rk−1 − AVkα̃k
12: ρ = ||rk||2
13: k = k + 1
14: end while
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Even though the s-step MSDO-CG algorithm for s = 1 is different than the
MSDO-CG one , but they converge in the same number of iterations because
they are theoretically equivalent

3.6 Preconditioning

In general, a system Ax = b can be right, left or split preconditioned as we saw
in section 2.6. However, in the case of conjugate gradient methods, the matrix A
is SPD so the preconditioned matrix should also be SPD.
It is hard to be able to find a matrix M such that M−1A or AM−1 is SPD.
That’s why we go for split preconditioning assuming that M = LLt, and then
the obtained split preconditioned matrix L−1AL−t is SPD.
We substitute the matrix A by the new preconditioned matrix Â = L−1AL−t and
then the preconditioned enlarged Krylov subspace corresponding to the system
Âx̂ = b̂ with x̂ = y = Ltx and b̂ = L−1b becomes:

Kt,k = span{T (r0), ÂT (r0), . . . , Â
k−1T (r0)}

with r0 = L−1(b−AL−ty0), b the n×1 vector, y0 = Ltx0 and x0 the initial guess.
So the subspace condition for the preconditioned enlarged CG methods becomes:
yk ∈ y0+Kt,k(Â, r0), and the Petrov-Galerkin condition becomes rk ⊥ Kt,k(Â, r0)

and everything discussed before follows for the new system Ây = L−1b.
In the case of MSDO-CG, the split preconditioned MSDO-CG with CGS2+Â-
CholQR Â-orthonormalization converges very well.
In case of the modified MSDO-CG, we’ll use the split preconditioning i.e the
system Âx̂ = b̂ as defined above. Recall these relations from before that are
adjusted for the new system:

α̂k = V̂ t
k r̂k−1

x̂k = x̂k−1 + V̂kα̂k

r̂k = r̂k−1 − ÂV̂kα̂k

In this method, V̂k is set to [T (r̂k−1)] and then Â-orthonormalized against all
previous vectors. In addition, we have V̂ t

k ÂV̂
t
i = 0 for i ≤ k.

Note that we have r̂k = b̂−Âx̂k = L−1b−L−1AL−tLtxk = L−1(b−Axk) = L−1rk.
We now derive the corresponding equations for xk and rk:

• α̂k = V̂ t
k r̂k−1 = V̂ t

kL
−1rk = (L−tV̂k)

trk

• x̂k = Ltxk = x̂k−1 + V̂kα̂k = Ltxk−1 + V̂kα̂k =⇒ xk = xk−1 + (L−tV̂k)α̂k

• r̂k = L−1rk = r̂k−1 − ÂV̂kα̂k = L−1rk−1 − L−1AL−tV̂kα̂k
=⇒ rk = rk−1 − A(L−tV̂k)α̂k
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Let Vk = L−tV̂k, then:

α̂k = V t
k rk

xk = xk−1 + Vkα̂k

rk = rk−1 − AVkα̂k

For the Â-orthonormalization, we require that V̂ t
k ÂV̂

t
i = 0 for some values of

i 6= k. But, we have:

V̂ t
k ÂV̂

t
i = V̂ t

kL
−1AL−tV̂ t

i = (L−tV̂k)
tA(L−tV̂i) = V t

kAVi

So, it is enough to A-orthonormalize Vk = L−tV̂k instead of Â-orthonormalizing
V̂k. In our modified MSDO-CG method, we have:

Vk = L−t[T (r̂k−1)] = L−t[T (L−1rk)]

This summarizes the preconditioning steps. More details are presented in [4] and
[1] .
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Chapter 4

Flexible MSDO-CG and
Flexible Modified MSDO-CG

In this chapter, we are going to introduce a flexible version of MSDO-CG and
modified MSDO-CG and test them.

4.1 MSDO-CG variants

As discussed before in section 3.5, MSDO-CG method solves the system Ax = b
by having its approximate solution at the kth step:

xk = xk−1 + Pkαk

At each iteration, the approximate solution xk minimizes the function f(x) de-
fined in section 2.3 over x0 + Kt,k(A, r0).
We have two methods that we’re going to talk about next and they differ by the
number of previous search directions to which the current t search directions are
A-orthonormalized against.

• MSDO-CG that A-orthonormalize the t search directions at the kth iter-
ation against all the previous search directions and this will require to store
all the tk search direction

• MSDO-CG(trunc) that A-orthonormalize the t search directions at the
kth iteration against the search directions computed in the last ’trunc’
iterations and this will require to store at most (trunc + 1) × t search
directions

The full MSDO-CG converges faster than the truncated version i.e it requires
less iterations to find the solution. Yet the full MSDO-CG remains very costly
memory-wise.
So our goal is to look into other variants of MSDO-CG which reduce memory
requirement without affecting the number of iterations and if possible to reduce
runtime.
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4.2 Modified MSDO-CG variants

As discussed in section 3.5, the Modified MSDO-CG solves the system Ax = b
without relying on the search directions to update the approximate solution and
the residual at each iteration. Instead, it works on building a modified enlarged
Krylov basis:

K̄t,k = span{T (r0), T (r1), . . . , T (rk−1)}

We have two methods that we’re going to talk about next and they differ by
the number of previous basis vectors to which the current t basis vectors are
A-orthonormalized against.

• Modified MSDO-CG that A-orthonormalize the t basis vectors at the
kth iteration against all the previous basis vectors and this will require to
store all the tk search direction

• Modified MSDO-CG(trunc) that A-orthonormalize the t basis vectors
at the kth iteration against the basis vectors computed in the last ’trunc’
iterations and this will require to store at most (trunc+ 1)× t basis vectors

The original Modified MSDO-CG converges faster than the truncated version i.e
it requires less iterations to find the solution. Yet the classical Modified MSDO-
CG remains very costly memory-wise.
So our goal is to look into other variants of MSDO-CG which reduce memory
requirement without affecting the number of iterations and if possible to reduce
runtime.

4.3 Flexible variants

The idea of the variants we’re going to discuss for both methods is based on the
observation that the norm of the residuals stagnates for partitions t = 32, 64 and
128. As a result, we can reduce the number of search directions or basis vectors
produced into half. So, instead of producing number of partitions search direc-
tions or basis vectors per iteration, after some tolerance is reached, we compute
half of this number.
The switch is done when the relative residual norm defined as |||rk+1||2−||rk||2|

||r0||2 be-
comes smaller than a chosen tolerance noted as switch tolerances.
Before presenting the algorithms, we are going to introduce some notations that
will be used in them.

• T t which is the operator that projects the vector over t subdomains δi where
δ =

⋃t
i=1 δi
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• T
t
2 which is the operator that projects the vector over t

2
subdomains δ̃i

where δ =
⋃ t

2
i=1 δ̃i and δ̃i = δ2i−1

⋃
δ2i for i = 1, 2, . . . , t

2
.

T t(v) =



∗ 0 0 0
...

...
...

...
∗ 0 0 0

0 ∗ ...
...

...
...

...
...

0 ∗ 0 0
... 0 ∗ 0
...

...
...

...
0 0 ∗ 0
0 0 0 ∗
...

...
...

...
0 0 0 ∗


n×t

T
t
2 (v) =



∗ 0
...

...
∗ 0
∗ 0
...

...
∗ 0
0 ∗
...

...
0 ∗
0 ∗
...

...
0 ∗


n× t

2

This change in the algorithm will cause reduction of the number of partitions and
thus reduction of the vectors produced and stored per iteration after the switch.
So if the switch is happening at the i-th iteration, the flexible MSDO-CG seeks
the approximate solution at the k-th iteration with k > i in

x0 + Kt,i(A, r0) + K t
2
,k−i(A, ri)

where :

K t
2
,k−i(A, ri) = span{T

t
2 (ri), AT

t
2 (ri), . . . , A

k−i−1T
t
2 (ri)}

Kt,i(A, r0) = span{T t(r0), AT t(r0) . . . , Ai−1T t(r0)}

And the Modified MSDO-CG seeks the approximate solution at the k-th iteration
with k > i in

x0 + K̄t,i(A, r0) + K̄ t
2
,k−i(A, ri)

where:

K̄ t
2
,k−i(A, ri) = span{T

t
2 (ri), . . . , T

t
2 (rk−1)}

K̄t,i(A, r0) = span{T t(r0), . . . , T t(ri−1)}
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Algorithm 11: Flexible MSDO-CG algorithm
Input: A, the n× n symmetric positive definite matrix
Input:b, the n× 1 right-hand side; x0,the initial guess or iterate
Input: ε, the stopping tolerance, kmax the maximum allowed iterations, switchTol
Output: xk, the approximate solution of the system Ax = b

1: counter = 0; tol1 = 1;
2: r0 = b− Ax0, ρ0 = ||r0||22, k = 1
3: Let P1 = T t(r0) and W1 = AP1

4: While (
√
ρ > ε||b||2 and k < kmax) do

5: if k == 1 then
6: A-orthonormalize P1 and update W1

7: else
8: if (tol1 < switchTol) and (counter== 0) then

9: Pk = T
t
2 (rk−1);

10: Wk = APk;
11: counter= counter +1;
12: else if (counter==0)
13: βk = −W t

k−1rk−1
14: Pk = T t(rk−1) + Pk−1diag(βk)
15: Wk = AT t(rk−1) +Wk−1diag(βk)
16: else
17: βk = −W t

k−1rk−1
18: Pk = T

t
2 (rk−1) + Pk−1diag(βk)

19: Wk = AT
t
2 (rk−1) +Wk−1diag(βk)

20: end if
21: A-orthonormalize Pk against all Pi’s and update Wk

22: A-orthonormalize Pk and update Wk

23: end if
24: αk = P t

krk−1
25: xk = xk−1 + Pkαk
26: rk = rk−1 −Wkαk
27: ρk = ||rk||22
28: k = k + 1

29: tol1 =
|√ρk+1 −

√
ρk|√

ρ0
30: end while
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Algorithm 12: Flexible Modified MSDO-CG
Input: A, n× n SPD matrix; kmax, maximum allowed iterations
Input: b, n× 1 right-hand side; x0, initial guess; ε, stopping tolerance, switchTol
Output: xk, approximate solution of the system Ax = b

1: counter= 0, tol1 = 1; r0 = b− Ax0, ρ0 = ||r0||2, ρ = ρ0, k = 1;
2: while (ρ > ερ0 and k < kmax) do
3: if (k == 1) then
4: A-orthonormalize V1 = T t(r0), let Q = V1
5: else
6: if (tol1 < switchTol) and (counter== 0) then

7: Vk = T
t
2 (rk−1);

8: counter=counter +1;
9: else if (counter==0)
10: Vk = T t(rk−1)
11: else

12: Vk = T
t
2 (rk−1)

13: end if
14: A-orthonormalize Vk against Q
15: A-orthonormalize Vk, let Q = [Q ‘Vk]
16: end if
17: α̃k = V t

k rk−1
18: xk = xk−1 + Vkα̃k
19: rk = rk−1 − AVkα̃k
20: ρ = ||rk||2
21: k = k + 1

22: tol1 =
|√ρk+1 −

√
ρk|√

ρ0
23: end while

4.4 Testing

To further investigate the consequences, we have tested this modification on large
sparse matrices that were partitioned according to k-way partitioning [13], where
the testing was performed sequentially and not in parallel.
The matrices referred to as NH2D and Sky3D, arise from boundary value prob-
lems of the convection diffusion equations (for a detailed description refer to [2] ).
The Algorithm was implemented and tested in MATLAB R2021a on a PC with
the following specifications: The operating system is Windows 10 Pro, Version
21H2 , Installed RAM is 8.00 GB and processor Intel(R) Core(TM) i7-8550U
CPU @ 1.80GHz 1.99 GHz.

We tested the methods MSDO-CG and flexible MSDO-CG. For the modified
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version, we tested Modified MSDO-CG and Flexible Modified MSDO-CG. The
matrices were partitioned into t=2,4,8,16,32,64 and 128 partitions with a stop-
ping tolerance 10−8. The initial guess x0 is chosen to be 0, the exact solution x
is set as random vector using Matlab’s rand function and b = A ∗ x.

CG MSDO-CG Modified MSDO-CG
t k k time k time

NH2D 2

256

256 2.8668 256 2.8348
4 206 3.8747 206 3.8553
8 169 5.6934 169 5.9825
16 139 10.5404 139 10.2358
32 107 18.9626 107 18.8869
64 77 31.0054 77 31.8225
128 54 56.8148 54 54.5988

SKY3D 2

900

647 14.0199 647 13.8869
4 426 12.4039 426 12.0988
8 232 8.3176 233 7.7433
16 133 7.1996 133 8.1222
32 79 8.6446 79 9.2962
64 50 12.5128 50 13.0755
128 34 20.4538 34 18.527

Table 4.1: Comparison of the number of iteration k and time needed till conver-
gence in the MSDO-CG and Modified MSDO-CG for matrices NH2D and Sky3D
with number of partitions t =2,4,8,16, 32, 64 and 128

As expected from the previous discussion, MSDO-CG method and the Modi-
fied MSDO-CG method require less iterations to converge than the classical CG
method.

46



MSDO-CG
Flexible MSDO-CG

10−3 10−5 10−7

t k time k sw time k sw time k sw time
NH2D 2 256 2.866 267 14 1.210 257 58 1.247 257 143 1.970

4 206 3.874 254 14 3.137 229 58 3.419 208 163 3.885
8 169 5.693 204 14 4.176 183 69 4.812 170 145 5.607
16 139 10.540 165 14 7.119 152 56 8.008 139 123 9.820
32 107 18.962 135 14 11.654 117 57 14.391 107 99 17.742
64 77 31.005 100 16 22.037 93 27 22.412 77 74 31.385
128 54 56.814 72 13 38.956 54 47 49.750 54 53 55.541

SKY3D 2 647 14.019 751 18 6.243 744 35 6.239 656 505 12.149
4 426 12.403 643 23 14.814 627 59 15.477 435 389 12.814
8 232 8.317 412 17 13.008 383 50 12.863 338 98 11.860
16 133 7.199 219 16 8.677 215 23 8.893 133 131 7.420
32 79 8.644 120 14 7.883 79 69 8.149 79 77 8.966
64 50 12.512 68 11 9.073 50 42 10.283 50 48 13.627
128 34 20.453 41 11 12.802 37 18 15.042 34 33 18.994

Table 4.2: Comparison of the number of iteration k and time needed till con-
vergence in the original MSDO-CG and flexible MSDO-CG version for matrices
NH2D and Sky3D with number of partitions t =2,4,8,16, 32, 64 and 128 and
three switchTol 10−3, 10−5 and 10−7 .The switch iteration (sw) is reported for
flexible MSDO-CG

Remark 4.4.1. In table 4.2, the switch iteration (sw) is the iteration when the
relative residual becomes less than the switchTol.

We can see that when switching early on for switchTol = 10−3 the number of
iterations increased for both matrices NH2D and Sky3D compared to the orig-
inal MSDO-CG, flexible MSDO-CG (switchTol= 10−5) and flexible MSDO-CG
(switchTol= 10−7). As for convergence time, in both matrices and all partitions,
the runtime of flexible MSDO-CG (switchTol= 10−3) was significantly less than
MSDO-CG except for Sky3D(4,8,16) .

When switching for switchTol = 10−5, the number of iterations for the matrix
NH2D increased in partitions 2,4,8,16, 32 and 64 but stayed the same for t=128.
In Sky3D, the number of iterations remained almost the same for partitions 32,64
and 128 and increased for t=2,4,8 and 16. The time of convergence in both matri-
ces and all partitions was less than the time of convergence of MSDO-CG except
for Sky3D(4,8,16)

As for switchTol= 10−7, in NH2D ,the number of iterations were almost the
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same as MSDO-CG.In SKY3D it was almost the same as MSDO-CG in parti-
tions t=2 and 4,increased at t=8 and was exactly the same at t=16,32,64 and
128. This is because we were so close to the stopping tolerance 10−8 and so the
needed enlarged Krylov subspace was built already. As for the time of conver-
gence, it was very close to the time taken by MSDO-CG.

The increase in the number of iterations in flexible MSDO-CG for the switchTols
10−3 and 10−5 was expected as the dimension of the enlarged Krylov subspace is
smaller compared to the original Krylov subspace, this is due to building half the
number of basis vectors after the switch. Thus, finding the solution will require
more iterations.The decrease in time isn’t a surprise either and it is due to the
reduction of the number of the basis vectors built.

Based on the results presented in table 4.2, the best switchTol would be 10−5. Al-
though it needed more iterations as compared to flexible MSDO-CG with switch-
Tol = 10−7, but taking into consideration the three variables: iterations till
convergence, runtime and memory storage, it is better than switchTol= 10−3 and
10−7.

Modified Flexible Modified MSDO-CG
MSDO-CG 10−3 10−5 10−7

t k time k sw time k sw time k sw time
NH2D 2 256 2.883 267 14 1.028 257 58 1.272 257 143 1.941

4 206 4.005 254 14 3.092 229 58 3.466 208 163 3.931
8 169 5.730 204 14 4.310 183 69 4.805 170 145 5.803
16 139 9.488 165 14 6.436 152 56 8.073 139 123 9.667
32 107 17.531 135 14 11.607 117 57 14.179 107 99 16.944
64 77 29.547 100 16 19.363 93 27 21.168 77 74 28.108
128 54 49.509 72 13 34.106 54 47 43.396 54 53 48.653

SKY3D 2 647 13.903 751 18 6.212 744 35 6.161 670 460 11.589
4 426 11.261 645 23 15.051 622 59 15.483 428 411 12.801
8 233 9.254 414 17 12.832 383 50 12.856 233 230 8.997
16 133 7.959 219 16 8.994 215 23 8.992 133 131 7.503
32 79 8.408 120 14 8.037 79 69 7.967 79 77 9.256
64 50 12.091 68 11 7.988 50 42 9.709 50 48 11.293
128 34 18.527 41 11 11.537 37 18 13.696 34 33 18.154

Table 4.3: Comparison of the number of iteration k and time needed till con-
vergence in the original Modified MSDO-CG and flexible Modified MSDO-CG
version for matrices NH2D and Sky3D with number of partitions t =2,4,8,16, 32,
64 and 128 and three switchTol 10−3, 10−5 and 10−7 .The switch iteration (sw) is
reported for flexible Modified MSDO-CG
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Remark 4.4.2. In table 4.3, the switch iteration (sw) is the iteration when the
relative residual becomes less than the switchTol.

We can see that when switching early on for switchTol = 10−3 the number of
iterations increased for both matrices NH2D and Sky3D compared to the original
Modified MSDO-CG, flexible Modified MSDO-CG (switchTol= 10−5) and flex-
ible Modified MSDO-CG (switchTol= 10−7). As for convergence time, in both
matrices and all partitions, the runtime of flexible MSDO-CG (switchTol= 10−3)
was significantly less than MSDO-CG except for the matrix Sky3D at the parti-
tions t=4,8 and 16 .

When switching for switchTol = 10−5, the number of iterations for the matrix
NH2D increased in partitions 2,4,8,16, 32 and 64 but stayed the same for t=128.
In Sky3D, the number of iterations remained almost the same for partitions
32,64 and 128 and increased for t=2,4,8 and 16. The time of convergence in both
matrices and all partitions was less than the time of convergence of Modified
MSDO-CG except for Sky3D(4,8,16)

As for switchTol= 10−7, in NH2D ,the number of iterations were almost the
same as Modified MSDO-CG.In SKY3D it was almost the same as Modified
MSDO-CG in partitions t=2 and 4 and was exactly the same at t=8,16,32,64
and 128. This is because we were so close to the stopping tolerance 10−8 and
so the needed enlarged Krylov subspace was built already. As for the time of
convergence, it was very close to the time taken by Modified MSDO-CG .

The increase in the number of iterations in flexible Modified MSDO-CG for the
switchTols 10−3 and 10−5 was expected as the dimension of the enlarged Krylov
subspace is smaller compared to the original Krylov subspace, this is due to build-
ing half the number of basis vectors after the switch. Thus, finding the solution
will require more iterations.The decrease in time isn’t a surprise either and it is
due to the reduction of the number of the basis vectors built.

Based on the results presented in table 4.3, the best switchTol would be 10−5. Al-
though it needed more iterations as compared to flexible MSDO-CG with switch-
Tol = 10−7, but taking into consideration the three variables: iterations till
convergence, runtime and memory storage, it is better than switchTol= 10−3 and
10−7.
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Chapter 5

Conclusion

In this thesis, a Flexible version of MSDO-CG and of Modified MSDO-CG were
introduced. The flexible MSDO-CG and the Flexible Modified MSDO-CG showed
their effectiveness in reducing time till convergence and even though the number
of iterations was a bit higher than MSDO-CG and Modified MSDO-CG respec-
tively, they remain acceptable and the results in general seems promising.
Future work would be to introduce new variant to MSDO-CG and Modified
MSDO-CG and test its effectiveness.
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