
AMERICAN UNIVERSITY OF BEIRUT

ALGORITHMS FOR ATOM
RECONFIGURATION IN QUANTUM

SIMULATORS

by

REMY ALAA EL SABEH

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Science
to the Department of Computer Science
of the Faculty of Arts and Sciences
at the American University of Beirut

Beirut, Lebanon
August 2022

AMERICAN UNIVERSITY OF BEIRUT

ALGORITHMS FOR ATOM
RECONFIGURATION IN QUANTUM

SIMULATORS

by

REMY ALAA EL SABEH

Approved by:

Dr. Amer E. Mouawad, Assistant Professor Advisor

Computer Science

Dr. Izzat El Hajj, Assistant Professor Member of Committee

Computer Science

Dr. Wassim El Hajj, Associate Professor Member of Committee

Computer Science

Date of thesis defense: August 8, 2022

AMERICAN UNIVERSITY OF BEIRUT

THESIS RELEASE FORM

Student Name:
Last First Middle

I authorize the American University of Beirut, to: (a) reproduce hard or electronic copies
of my thesis; (b) include such copies in the archives and digital repositories of the University;
and (c) make freely available such copies to third parties for research or educational purposes

___ As of the date of submission of my thesis

___ After 1 year from the date of submission ofmy thesis .

___ After 2 years from the date of submission ofmy thesis .

___ After 3 years from the date of submission ofmy thesis .

Signature Date

This form is dated and signed when asked to submit the final document to ScholarWorks.

19/08/2022

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor Professor Amer E. Mouawad
for giving me the opportunity to work on this research project and for being in-
volved in every step along the way. His resourcefulness, guidance, patience and
support immensely aided not only in the realization of this thesis, but also in my
development as a researcher.

I am also grateful for the involvement of Professor Izzat El Hajj and Pro-
fessor Wassim El Hajj in this process, your input and your feedback have been
invaluable.

Last but not least, I would like to thank my parents for being my pillar of
support through my academic journey. I will be eternally grateful for all the
sacrifices that you made.

1

ABSTRACT
OF THE THESIS OF

Remy Alaa El Sabeh for Master of Science
Major: Computer Science

Title: Algorithms for Atom Reconfiguration in Quantum Simulators

The reconfiguration framework is an emerging framework that concerns finding
a step-by-step transformation between two feasible solutions of a problem such
that the transformation steps preserve a feasible solution. The complexity (pa-
rameterized or otherwise) of the reconfiguration counterpart of several classical
NP-hard problems has been studied in the literature over the last few years. In
this thesis, we study algorithms revolving around atom reconfiguration. Viewed
as a problem on graphs, the atom reconfiguration problem is about finding the
most efficient sequence of moves that allows us to go from one atom arrangement
to another, atoms being marked vertices. In this context, a move is the movement
of an atom through a sequence of edges from some source to some destination
such that the selected atom does not collide with any other atom along the way.
We define the efficiency of a reconfiguration sequence in terms of number of atom
displacements, number of atom extractions/implantations, or a combination of
both. We focus on the latter variant. This variant is hard because it is a general
case of the atom reconfiguration problem restricted to extraction/implantation
minimization, which is known to be NP-complete on general graphs and even
when restricted to grid graphs. No matter the variant we are dealing with, our
objective function is atom loss, which we aim to minimize. Atom loss is a func-
tion of two move operation types applied on atoms, extractions/implantations and
displacements, among other variables. We empirically analyze multiple atom re-
configuration solvers, and we prove theorems that aid in orienting our algorithmic
work and that may be of independent interest.

2

Table of Contents

ACKNOWLEDGEMENTS 1

ABSTRACT 2

1 Introduction 10
1.1 Reconfiguration problems: an overview 10
1.2 Problem definition . 11
1.3 Goals and contributions . 14
1.4 Thesis structure . 18

2 Related Work 19

3 Preliminaries 21

4 Token Moving on Paths on the CPU 24
4.1 The token moving procedure . 25
4.2 The token-vertex matching procedure 30

4.2.1 The Hungarian-based token-vertex matcher 31
4.2.2 The Greedy token-vertex matcher 35
4.2.3 The Linear Exact token-vertex matcher 37
4.2.4 The Bruteforce token-vertex matcher 37

5 Token Moving on Grids on the CPU 39
5.1 REDREC v2.0 . 39
5.2 The Hungarian-based grid solvers 44

5.2.1 The modules . 47
5.2.1.1 All-pairs shortest path (APSP) 47
5.2.1.2 Minimum weight perfect matching with path re-

trieval (MWPM + PR) 47
5.2.1.3 Collision avoidance (COLAV) 47

5.2.1.3.1 Bidirectional COLAV 48
5.2.1.3.2 Bounded COLAV 49
5.2.1.3.3 Derivation-averse COLAV 51

3

5.2.1.4 Ordering . 51
5.2.1.4.1 Path merging 51
5.2.1.4.2 Path unwrapping 52
5.2.1.4.3 Cycle breaking 52

5.2.1.4.3.1 Computing edge frequencies . . . 53
5.2.1.4.3.2 Cycle detection 53
5.2.1.4.3.3 Cycle identification 55
5.2.1.4.3.4 Cycle breaking 56
5.2.1.4.3.5 Preserving the properties of the path

system 58
5.2.1.4.3.6 Cycle breaking: the conclusion . . 58

5.2.1.5 Output generation 59
5.2.1.5.1 Exact extraction/implantation forest solver 59
5.2.1.5.2 Greedy solver 59

5.2.1.6 Greedy token isolation 61
5.2.2 HUNGARIAN-REDIST 62
5.2.3 HUNGARIAN-COLAV 63

6 Token Moving on Paths on the GPU 64
6.1 The token moving procedure . 64
6.2 The token-vertex matching procedure 69

6.2.1 The Hungarian-based token-vertex matcher 69
6.2.2 The Greedy token-vertex matcher 72
6.2.3 The Linear Exact token-vertex matcher 72
6.2.4 The Bruteforce token-vertex matcher 74

7 Token Moving on Grids on the GPU 76
7.1 REDREC v2.0 . 76
7.2 REDREC v2.1 . 77

8 Proofs 78

9 Experimental Setup and Experimental Results 95
9.1 Experiments on path solvers on the CPU 95
9.2 Experiments on path solvers on the GPU 98
9.3 Experiments on grid solvers on the CPU 101
9.4 Experiments on grid solvers on the GPU 106

10 Conclusion 109
10.1 Future work . 109

A Figures 111
A.1 Experiments on path solvers on the CPU 111
A.2 Experiments on path solvers on the GPU 112
A.3 Experiments on grid solvers on the CPU 113

A.3.1 Distribution of extraction/implantation operations
across tokens . 113

A.3.2 Distribution of displacement operations across tokens114

ILLUSTRATIONS

1.1 An atom array (left), a static trap array (middle) and a dynamic
trap array (right) . 11

1.2 A visualization of the modules in the RTFC 13

4.1 Degenerate instance where minimizing displacement incurs a large
extraction/implantation overhead. 25

4.2 Instance where greedy token-vertex matching does not minimize
overall displacement . 35

5.1 Instance where overall displacement operations and overall extrac-
tion/implantation operations cannot be minimized at once. 45

5.2 Relation between overall displacements and overall extractions/implantations
in pareto-optimal solutions . 46

5.3 Example of a path system that induces a cycle that cannot be
broken via computing a MST without increasing total path system
distance . 54

5.4 Leveraging source-target corners to reduce the number of paths
that induce the special cycle . 56

5.5 Nontrivial cycle breaking base case: no source-target corners found 57
5.6 Instance where a greedy solution extracts/implants a token more

than once. 59
5.7 Instance where a greedy solution displaces a different number of

tokens depending on the ordering of the paths. 61

8.1 Instance where a token-vertex matching with the minimum total
distance is not executable. 79

8.2 Instance where a token-vertex matching with no crossings is not
executable. 80

8.3 Cases where the innermost path between s0 and s2 is between ends0
and a vertex of s2 . 89

8.4 Cases where the innermost path between s0 and s2 is between
starts0 and a vertex of s2 . 89

6

9.1 CPU running times for path solvers on centered targets with no
surplus (batched token moving). 96

9.2 CPU running times for path solvers on centered targets with a
surplus ratio of 0.1 (batched token moving). 96

9.3 CPU running times for path solvers on centered targets with no
surplus (block batched token moving). 97

9.4 CPU running times for path solvers on centered targets with a
surplus ratio of 0.1 (block batched token moving). 97

9.5 GPU running times for path solvers on centered targets with no
surplus (batched token moving). 99

9.6 GPU running times for path solvers on centered targets with a
surplus ratio of 0.1 (batched token moving). 99

9.7 GPU running times for path solvers on centered targets with no
surplus (block batched token moving). 100

9.8 GPU running times for path solvers on centered targets with a
surplus ratio of 0.1 (block batched token moving). 100

9.9 Average GPU running time per block batch for path solvers on
centered targets with no surplus (left) and with a surplus ratio of
0.1 (right). 102

9.10 Mean Success Probability of token moving on grids of size 64× 32
and targets of size 32×32 (pload = 0.6) with greedy token isolation
disabled for the different grid solvers, averaged over 500 instances. 103

9.11 Operations executed in token moving on grids of size 64× 32 and
targets of size 32 × 32 (no surplus) with greedy token isolation
disabled for the different grid solvers, averaged over 500 instances. 104

9.12 Distribution of extraction/implantation operations across tokens
on grids of size 64 × 32 and targets of size 32 × 32 (no surplus)
with greedy token isolation disabled for greedy HUNGARIAN-
NOCOLAV (left) and greedy HUNGARIAN-COLAV (right), av-
eraged over 500 instances. 105

9.13 Distribution of extraction/implantation operations across tokens
on grids of size 64 × 32 and targets of size 32 × 32 (no surplus)
with greedy token isolation disabled for HUNGARIAN-NOCOLAV
(left) and HUNGARIAN-COLAV (right), averaged over 500 in-
stances. 105

9.14 Distribution of extraction/implantation operations across tokens
on grids of size 64× 32 and targets of size 32× 32 (no surplus) for
the 3-approximation algorithm for extraction/implantation mini-
mization, averaged over 500 instances. 106

A.1 CPU running times for path solvers on centered targets with no
surplus (unbatched token moving). 111

A.2 CPU running times for path solvers on centered targets with a
surplus ratio of 0.1 (unbatched token moving). 112

A.3 GPU running times for path solvers on centered targets with no
surplus (unbatched token moving). 112

A.4 GPU running times for path solvers on centered targets with a
surplus ratio of 0.1 (unbatched token moving). 113

A.5 Distribution of extraction/implantation operations across tokens
on grids of size 64× 32 and targets of size 32× 32 (no surplus) for
REDREC v1, averaged over 500 instances. 113

A.6 Distribution of extraction/implantation operations across tokens
on grids of size 64× 32 and targets of size 32× 32 (no surplus) for
REDREC v2.0, averaged over 500 instances. 114

A.7 Distribution of extraction/implantation operations across tokens
on grids of size 64× 32 and targets of size 32× 32 (no surplus) for
REDREC v2.1, averaged over 500 instances. 114

A.8 Distribution of displacement operations across tokens on grids of
size 64×32 and targets of size 32×32 (no surplus) with greedy to-
ken isolation disabled for greedy HUNGARIAN-NOCOLAV (left)
and greedy HUNGARIAN-COLAV (right), averaged over 500 in-
stances. 114

A.9 Distribution of displacement operations across tokens on grids of
size 64 × 32 and targets of size 32 × 32 (no surplus) with greedy
token isolation disabled for HUNGARIAN-NOCOLAV (left) and
HUNGARIAN-COLAV (right), averaged over 500 instances. . . . 115

A.10 Distribution of displacement operations across tokens on grids of
size 64 × 32 and targets of size 32 × 32 (no surplus) for the 3-
approximation algorithm for extraction/implantation minimiza-
tion, averaged over 500 instances. 115

A.11 Distribution of displacement operations across tokens on grids of
size 64× 32 and targets of size 32× 32 (no surplus) for REDREC
v1.0, averaged over 500 instances. 115

A.12 Distribution of displacement operations across tokens on grids of
size 64× 32 and targets of size 32× 32 (no surplus) for REDREC
v2.0, averaged over 500 instances. 116

A.13 Distribution of displacement operations across tokens on grids of
size 64× 32 and targets of size 32× 32 (no surplus) for REDREC
v2.1, averaged over 500 instances. 116

TABLES

9.1 REDREC v2.0 execution time on the GPU in milliseconds, aver-
aged over 100 instances . 107

9.2 REDREC v2.0 average execution time per batch on the GPU in
milliseconds, averaged over 100 instances 108

9

Chapter 1

Introduction

1.1 Reconfiguration problems: an overview

Reconfiguration problems are a class of problems where we define feasibility con-
ditions, two feasible solutions, and a set of possible transformations: those trans-
formations define adjacency relations between feasible solutions, which we call
configurations. The question of interest is whether we can apply a sequence of
transformations that get us from the source feasible solution to the target feasible
solution, such that all intermediary configurations are feasible. The concept of
reconfiguration can be found in a plethora of puzzles, such as the 15-puzzle game
(with research dating back to 1879 [1]) and Rubik’s cubes. While a variety of
problems lend themselves to being treated as reconfiguration problems, it was
not until recently that the reconfiguration framework was formally defined [2].
We present standard terminology used in reconfiguration problems. When we are
dealing with a reconfiguration problem, the solution space is defined as the set
of all possible configurations, or feasible solutions that can be reached from the
source feasible solution using the transformations at our disposition. The solution
space can be modeled by what we call a reconfiguration graph that encompasses
the different configurations. A configuration is said to be adjacent to another
configuration if there exists a single step transformation from one to the other:
the vertices representing those configurations are adjacent in the reconfiguration
graph. Given a reconfiguration graph, we have a yes-instance for the reconfigu-
ration problem if and only if the vertex corresponding to the target configuration
is reachable from the vertex corresponding to the source configuration. Since the
reachability problem can be solved in polynomial time in terms of the size of the
input and knowing that adjacency can be checked in polynomial time, it should
be easy to see that the exponential size of the reconfiguration graph is at the root
of the hardness of some reconfiguration problems.

10

Figure 1.1: An atom array (left), a static trap array (middle) and a dynamic trap
array (right)

1.2 Problem definition

Controllable quantum many-body systems are at the heart of quantum infor-
mation processing. Such systems can be leveraged in quantum simulations to
solve problems that are intractable in the classical sense [3], and they can also be
employed in quantum computing in the implementation of quantum algorithms
that provide more efficient solutions to classical problems [4, 5]. The quantum
many-body systems that we are interested in consist of ultracold atoms in arrays
of optical traps [6]. The optical traps are generated using focused light beams and
make it possible to manipulate the atomic particles without coming in contact
with them by exploiting their polarizability, as the beams can be used to generate
electromagnetic fields. The combination of optical beams and particles has made
it possible to deterministically assemble atomic systems without having to rely
on interactions between the particles. The system is made up of three parts: the
atom array, the static trap array and a generator vector, which defines the per-
missible movements of atoms (Figure 1.1). The combination of the three parts
forms the dynamic trap array. Formally, Q is the set of traps, and the generator
vector defines a set R of tuples (qi, qj) (qi ∈ Q, qj ∈ Q) which we call permissible
atom movements: if (qi, qj) ∈ R, then an atom occupying qi can be moved to qj,
or vice versa, provided than qj is vacant. A trap is said to be occupied if it is
endowed with an atom, and a trap is said to be vacant if it is not occupied.

In this thesis, we focus on the design and implementation of atom assembly
algorithms. We start by describing the most general formulation of the assembly
process. In the preparation of the system, K atoms are randomly and uniformly
dispersed over the traps: the occupied traps, S, constitute the initial state. By
abuse of notation, we refer to a state, or a configuration, by its set of occupied
traps. The operator of the system then specifies a subset of the traps, T , con-
sisting of K ′ ≤ K traps, which constitutes the desired state. We say that we
have a surplus of K −K ′ atoms. Starting from the initial state, assembling the
atoms entails generating a sequence of permissible atom movements. We execute
the sequence of permissible atom movement in order on the initial state. An
execution of a permissible atom movement (tri, trj) is its application on a given

11

state Sk, which yields a state Sl such that Sk∆Sl = {tri, trj}; we say that the
permissible atom movement transforms Sk into Sl. Note that the result of the
application of a permissible atom movement (tri, trj) is defined if and only if tri
is occupied and trj is empty in the state Sk it is being applied on. An assembly
is said to be successful if the execution of the generated sequence of permissible
atom movements transforms S into T ′, where T ′ ⊇ T .

In reality, atom assembly involves a process of atom corruption, leading to
loss. The execution of permissible atom movements corrupts atoms. The degree
of corruption of an atom is proportional to the number of permissible atom move-
ments involving it in the atom assembly, among other factors. The generation
of a solution for the atom assembly will therefore also have to account for atom
loss. We do not yet have the tools to describe what atom loss is, so we describe
the pipeline that we make use of in our experiment next.

The atom assembly algorithms that we implement are integrated in a real-
time feedback control system (RTFC) that aims to achieve the desired state
for the atoms using a low-latency feedback loop [7]. We describe the hardware
components of the RTFC.

The feedback control system consists of a frame grabber card (FGC), a graph-
ics processing unit (GPU), and an arbitrary waveform generator (AWG), all of
which are mounted on a central processing unit (CPU). The control protocol
underlying the assembly process consists of five interdependent modules:

1. The image acquisition module gradually receives raw data from the EM-
CCD camera into the buffer of the FGC. As soon as the data transfer to the
FGC buffer terminates, the FGC transfers the data to a memory location
accessible by the second module.

2. The image processing and data analysis module reads in the raw data
from the camera as input and outputs a bit vector representing the state
of the system. That is, this module detects the presence of atoms in traps,
and it does so using a convolution, a commonly used technique in image
processing, with a predefined threshold.

3. The problem solving module takes in the current state of the system
and the desired state of the system as input and outputs a sequence of
control instructions that assemble the atoms into the desired state.

4. Thewaveform synthesis module translates control instructions into con-
trol operations using a prepopulated table mapping control instructions to
elementary waveforms.

5. The waveform streaming module executes the generated control oper-
ations.

12

Figure 1.2: A visualization of the modules in the RTFC

The two modules of interest to us are the problem solving module and the
waveform synthesis module. The problem solving module encapsulates the atom
assemblers we designed, whereas the waveform synthesis module dictates part
of the implementation of the algorithms, as the output of the problem solving
module has to match the format of the expected input of the waveform synthesis
module.

We now elucidate the functioning of the RTFC described above, specifically
with regards to atom loss. A run of the RTFC is the execution of the five modules
above in the order that they appear in. Atom loss is realized when the waveform
streaming module terminates. When an atom is lost, it is removed from the set
of atoms. The waveform streaming module transforms S into T ′, as dictated by
the problem solving module and the waveform synthesis module. Subsequently,
the atoms in a set of traps T ′′ ⊆ T ′ are lost due to corruption. At this point, we
are in one of three possible cases, the first two of which halt the experiment:

• T ′ \ T ′′ ⊇ T : this indicates a successful atom assembly.

• |T ′ \ T ′′| < |T |: in this case, the number of atoms lost exceeds initial atom
surplus: atom assembly fails.

• Otherwise, |T ′ \ T ′′| ≥ |T | and T ′ \ T ′′ 6⊇ T . While atom assembly was not
successful, it is still possible to assemble the atom array starting from this
state.

If we are in the third case, we proceed to another run of the RTFC, and we
specify T ′ \ T ′′ to be the initial state, and T to be the final state. The process
keeps getting repeated until termination (i.e. until one of the first two cases hap-
pens). This process is guaranteed to terminate (Lemma 1).

In preparation for a formal definition of the problem, we describe the opera-
tions on atoms in more detail. So far, we have been using the notion of permissible
atom movements. In practice, the movement of atoms is determined by a combi-
nation of three control operations: displacements, extractions, and implantations.
Moving an atom from the trap tri it occupies to a vacant trap trj requires us to
extract it from the optical trap is it lodged in, displacing it using a sequence of
permissible atom movements (tr1, tr2), (tr2, tr3), . . . , (trj−1, trj), and implanting
it in a vacant optical trap. This is the broadest description of an atom move: an

13

atom move may require multiple extractions/implantations, and whether this is
the case is dependent on the specifics of the hardware. Unless stated otherwise,
we will be using this definition. As far as loss probability is concerned, it is
established that extractions and implantations are equally inducive to loss, and
are more inducive to loss than displacement operations. Loss probability can be
calculated per particle and is a function of the number of operations executed
on the particle, a parameter for displacement operations, a parameter for ex-
traction/implantation operations (those parameters need not be the same for all
atoms), as well as the time elapsed since the start of the experiment.

Given the definition of atom assembly with loss and the definition of loss as
a function of the primitive atom operations, namely displacements, extractions
and implantations, we focus on maximizing atom assembly success probability,
where success is defined in relation to the proposed RTFC. Based on what has
been mentioned so far, increasing success probability can be done in one of two
ways: we can either increase the initial number of atoms in the system while
curbing the repercussions this may have on the system’s stability, or we can look
at smarter ways to assemble the array of optical traps. In this thesis, we do the
latter.

1.3 Goals and contributions

We formulate the problem of generating a sequence of control instructions that
maximizes success probability as a graph theoretic problem (and, more specifi-
cally, a graph reconfiguration problem) as the problem defined in quantum terms
presents all the characteristics of a graph reconfiguration problem. The atom ar-
ray, the static array and the generator vector define tokens (a staple of problems
in the reconfiguration framework), vertices and edges respectively.

Maximum Success Token Moving (MSTM)
Input: A graph G, a set of vertices S and T such that there are tokens on the
vertices in S (|S| ≥ |T |), a per-token loss probability associated with moving a
token, and a per-token loss probability associated with sliding the token across
an edge.
Output: A sequence of token moves that covers a set of vertices T ′ ⊇ T with
the maximum success probability.

Token loss and token moving success are defined analogously to atom loss
and atom assembly success respectively, in that they are artifacts of the RTFC
in which the solvers are integrated. Also, we define operations on tokens analo-
gously to control operations on atoms. That is, a token move consists of a token
extraction, a sequence of token displacements, and a token implantation. Fur-
thermore, the output should optimize for the expected success probability, and

14

a solution for the problem pertains to a single run. We therefore solve the same
problem in every run.

Given the stochastic nature of token loss, and the interaction between move-
ment decisions made during a run and their consequence in terms of token loss at
the end of the run, the only means to assess the efficacy of a given algorithm in
terms of success probability we currently have are simulations. We define more
primitive problems that we have the tools to solve and that will constitute the
building blocks of heuristic algorithms for MSTM. The problems and algorithms
we define provide local guarantees. That is, they ignore the feedback loop they
are integrated in. Therefore, the notion of loss will not figure in the description
and design of the algorithms, and discussions involving loss will be limited to the
experimental section, where we analyze the operational performance of the algo-
rithms in terms of success probability, among other metrics, within the RTFC.
However, we maintain the notion of token surplus (|S| ≥ |T |), and all our algo-
rithms work with surplus.

We restrict ourselves to two graph classes: path graphs and grid graphs.
While there may be some generalizations to be made in some of our work, specif-
ically when it comes to theory, the reason why those graph classes are peculiar is
because they are representative of predominant optical trap geometries, namely
chain optical trap geometries and grid optical trap geometries. On path graphs,
we design exact algorithms that solves the following problem:

Minimum Displacement Token Moving (MDTM)
Input: A graph G, a set of vertices S and T such that there are tokens on the
vertices in S (|S| ≥ |T |).
Output: A sequence of token moves that covers a set of vertices T ′ ⊇ T with
the minimum number of displacements.

We propose three algorithms (henceforth interchangeably called solvers), the
first two of which are exact, that solve the problem:

1. The Hungarian-based path solver, which relies on a modification of an
algorithm that solves the assignment problem, the Hungarian method [8].

2. The Linear Exact path solver, which relies on an algorithm that solves
a variant of the assignment problem, the linear assignment problem, con-
ceived by Karp [9].

3. TheGreedy path solver, which relies on a greedy algorithm for the assign-
ment problem that solves the problem more efficiently than the Hungarian-
based path solver at the cost of exactness.

15

We also design an algorithm, the Bruteforce path solver, that solves a
variant of MDTM on paths where T induces a path.

Keeping in mind that our solvers are part of a low-lantency feedback loop
that may require the problem to be solved on the CPU or on the GPU, pending
experimental results, we design and implement algorithms for the four solvers
above on both the CPU and the GPU. The algorithms on the CPU are imple-
mented in C, whereas the algorithms on the GPU are implemented in CUDA, a
general purpose parallel computing platform [10].

To motivate our grid algorithms, we now go back to the MSTM problem. We
define one correlated problem:

Minimum Extraction/Implantation Token Moving (MEITM)
Input: A graph G, a set of vertices S and T such that there are tokens on the
vertices in S (|S| ≥ |T |).
Output: A sequence of token moves that covers a set of vertices T ′ ⊇ T with
tokens with the minimum number of token extractions/implantations.

MDTM admits a polynomial-time solution on general graphs, while MEITM
(even with no surplus) is NP-hard and even APX-hard on general graphs, and
remains NP-hard when restricted to grid graphs, though it does admit a 3-
approximation algorithm for general graphs, and therefore for grid graphs as
well [11]. The reason why we introduce MEITM and, previously, MDTM, is
because those two problems form the pillars of the heuristics that our algorithm
design relies on.

We now define the problem that we aim to solve on grid graphs:

Minimum Loss Token Moving (MLTM)
Input: A graph G, a set of vertices S and T such that there are tokens on the
vertices in S (|S| ≥ |T |), a loss function, a per-token loss parameter associated
with moving the token, and a per-token loss parameter associated with sliding
the token across an edge.
Output: A sequence of token moves that covers a set of vertices T ′ ⊇ T with
the minimum loss.

The loss function is an operator-defined function that is meant to be a local
measure (i.e. a measure within a RTFC run) of token moving success. As
such, reducing the MSTM problem to the MLTM problem is heuristic in it-
self. The loss function is a function that aggregates per-token loss functions,
which means that it is a function of per-token displacement operations and per-
token extraction-implantation operations. Clearly, MLTM is at least as hard as
MEITM, as MEITM is a special case of MLTM. We resort to heuristics to solve
the problem.

16

The heuristics we design serve two purposes. On the one hand, we should be
able to express how displacement-averse or how extraction/implantation-averse
the solver should be (that is, how willing we are to incur extra overall displace-
ments for the sake of reducing overall extraction/implantation operations, or
vice versa). On the other hand, we should be able to indicate whether we prefer
spreading operations across a large set of tokens versus restricting them to a small
set of tokens. Preferences are tied to the loss function, and given that the loss
function is part of the input, we make sure our algorithms are able to express
preferences.

For grid graphs, we propose four algorithms. Two of our algorithms build on
an unpublished grid solver, REDREC (short for redistribution-reconfiguration)
[12] and the two others are parameterized in a way that makes it possible for
them to express the aforementioned considerations in terms of overall operations
and dispersion of operations. All those algorithms were designed with the aim of
ameliorating the current results for MSTM on grid graphs. We briefly describe
those algorithms below:

1. REDREC v2.0: REDREC v2.0 is a modification of the original REDREC
algorithm that is more modular and uses path solvers as subroutines.

2. REDREC v2.1: REDREC v2.1 is a variant of REDREC v2.0 whose pur-
pose is to offer speedups in terms of running time on the GPU, speedups
that are made possible through decreasing the inherent sequentiality of
REDREC v2.0.

3. HUNGARIAN-REDIST: HUNGARIAN-REDIST is a grid solver in-
spired by the procedures in REDREC that uses the Hungarian method as a
subroutine and minimizes overall displacement operations, but has no con-
siderations when it comes to overall extraction/implantation operations.
Given that displacement minimization with surplus admits a polynomial-
time solution, HUNGARIAN-REDIST is meant to serve as a baseline for
atom assembly success probability.

4. HUNGARIAN-COLAV: HUNGARIAN-COLAV is an extraction/im-
plantation aware grid solver. While HUNGARIAN-REDIST outputs a
solution that minimizes overall displacement, HUNGARIAN-COLAV at-
tempts to mitigate overall extractions/implantations, even if this comes at
the cost of extra displacements. The algorithm’s parameters allow us to
specify the extent to which we are willing to deviate from overall displace-
ment minimization for the sake of avoiding extra extraction/implantation
operations.

The REDREC algorithms assume that T is centered in the grid, whereas
the Hungarian-based algorithms do not. T is said to be centered if it induces a

17

grid graph on G and if VG \ T induce two disjoint grid graphs on G. Given that
those algorithms are heuristic, our evaluation will involve software simulations of
the RTFC on those four algorithms, the main metric of interest being mean atom
assembly success probability across multiple instances. The four grid solvers are
implemented serially in C, and the REDREC-based solvers are implemented in
CUDA [10] as well in order to evaluate the feasibility (in terms of running time)
of running such algorithms as part of the RTFC.

1.4 Thesis structure

In the first stage, we will be surveying related research in the literature. Section 2
will go over related works in theoretical computer science and in quantum physics,
so as to give the required context for what follows. After we cover definitions, we
proceed to detail the algorithms we used for the purpose of solving the different
variants of the token moving problem we alluded to in the introduction. Sections
4 and 5 cover implementation details and pseudocode for path solvers and grid
solvers respectively on the CPU, whereas Sections 6 and 7 cover implementation
details and pseudocode of the parallel counterparts of the serial solvers covered
in the previous two sections. In most cases, there are a set of statements that
underlie the correctness of our algorithms: for the sake of readability, we separate
proofs from implementation and algorithm design details; proofs for lemmas and
theorems that we made use of in our algorithms can be found in Section 8.
Eventually, while it may be the case that our work gives rise to related problems
that are purely of theoretical interest, our short-term goal involves running the
atom assembly pipeline on a physical array of optical traps. To that end, we
turn to empirical data. The purpose of this empirical data is twofold: on the one
hand, we would like to assess the feasibility of integrating our solvers into the
pipeline, and on the other hand, we would like to benchmark how well our solvers
perform in terms of mean atom assembly success probability. Section 9 compiles
data concerning the solvers that we have implemented. In the conclusion (Section
10), we highlight possible improvements, algorithmic or otherwise, that will be
tackled in our future work.

18

Chapter 2

Related Work

The problem we handle in this thesis possesses multiple facets. We start by
reviewing related works in theoretical computer science.

The MSTM problem falls under the framework of reconfiguration problems.
The term “reconfiguration” was coined by Ito et al [2]. Ito et al. prove the
PSPACE-completeness for reconfiguration versions of the most common graph
problems, namely Independent Set Reconfiguration, Clique Reconfiguration and
Vertex Cover Reconfiguration. Given that the idea of reconfiguration naturally
occurs within games, it is unsurprising that the idea of reconfiguration found its
way into them, particularly through Demaine’s nondeterministic constraint logic
(NCL) model of computation [13], which predates the reconfiguration framework:
a reduction from NCL was used to prove the PSPACE-completeness of sliding-
block puzzles and Rush Hour. The expressiveness of reconfiguration in such
games contributed to the introduction of reconfiguration in “game-like” problems
as a tool to prove hardness, and that explains why the atom problem we are
interested in is presented as a reconfiguration problem. There are several pub-
lished results concerning token moving that are theoretical in nature. Călinescu
et al. proved that MEITM with no surplus is both NP-complete and APX-hard
on general graphs and is solvable in polynomial time on trees [11], where APX is
the class of optimization problems for which we cannot hope to achieve a (1 + ε)-
approximation in polynomial time for every ε > 0. Cooper et al. extended the
hardness analysis of that same variant to include parameterized complexity [14]:
MEITM admits an FPT algorithm when parameterized by the number of atoms
k, the number of moves l, or the sum of both of those parameters, where FPT
is the complexity class that contains the fixed parameter tractable problems, i.e.
the problems that can be solved in time f(l).|x|(O(1)) (where |x| is the input size)
for some computable function f and some parameter l.

On the quantum end of things, we are interested in a class of quantum simula-
tors that involve cold atoms in arrays of optical tweezers [15, 16]. The possibility
of accelerating particles by radiation pressure from a continuous laser was first
documented by Ashkin, a physicist, in 1970 [17]. Trapping came as a result of

19

further developments by Ashkin et al., and optical trapping was demonstrated
for the first time in 1986 on particles ranging in size between 25 nm and 10 µm,
albeit with limited particle lifetimes [18]. As was predicted in this work, optical
tweezers proved to be usable for trapping atoms and biological particles. In the
same year, atomic optical trapping was demonstrated for the first time by Chu
et al. [19], Chu being one of the collaborators in the previous work. In biol-
ogy, optical tweezers make it possible to manipulate viruses and bacteria without
causing any damage to the particles, and this was demonstrated by Ashkin et al.
[20] via an experiment on tobacco mosaic virus particles suspended in a water
chamber. The usage of optical tweezers for quantum simulation is recent. There
is extensive work that has been done in the literature pertaining to improving the
assembly process, particularly on lattice arrays, or grid-shaped arrays of atoms:
Schymik et al.’s work focuses on minimizing assembly time through minimiz-
ing the number of moves [21], as assembly time is correlated to the number of
moves, where a move ignores the notion of extraction and implantation. Ebadi
et al. demonstrated a programmable quantum simulator based on deterministi-
cally prepared two-dimensional arrays of up to 256 neutral atoms [16], and the
atom rearrangement algorithm proposed in the paper was further improved by
REDREC [12].

In our work, we also use GPUs to accelerate our proposed reconfiguration
algorithms. GPUs have been used to accelerate a wide variety of graph algo-
rithms [22, 23, 24, 25, 26, 27]. To the best of our knowledge, our work is the first
to use GPUs for accelerating graph reconfiguration.

20

Chapter 3

Preliminaries

The general graph notation we use in this thesis is the standard notation found
in graph theory books [28].

A grid graph is a graph whose embedding in R2 forms a regular tiling, where
each tile is a square delimited by 4 vertices and 4 edges. Initially, tokens occupy
a subset S ⊆ V of the vertices the graph, and in token moving, we aim to move
the tokens along edges of the graph, so as to have them occupy a superset of
T ⊆ V : we call T the target region. In reconfiguration terms, a configuration is
identifiable by the occupied vertices of the graph; a vertex is said to be occupied
if it is endowed with a token, and it is said to be vacant otherwise. The adjacency
relation between configurations is dependent on the output mode used. A vertex
in S is a source vertex and a vertex in T is a target vertex.

In both path solvers and grid solvers, we make use of the planarity of the
graphs to simplify notation. Both path graphs and grid graphs can be embedded
in R2. We embed a path Pk along the x-axis of the Cartesian plane, starting at
(0, 0). That is, the path’s vertices are at coordinates (0, 0), (1, 0), . . . (k − 1, 0).
We make use of the coordinates to reference the vertices of the path: vertex vi
(0 ≤ i < k) is the vertex at (i, 0), and we call i the vertex’s index. As for grid
graphs, we embed a grid in the first quadrant of the Cartesian plane along the
x-axis and the y-axis. That is, a grid graph will have a vertex at (0, 0) whose
neighbors are at (0, 1) and (1, 0). The height of a grid graph G, which we call HG,
is 1 plus the largest y-coordinate among its vertices, whereas the width of a grid
graph G, which we call WG, is 1 plus the largest x-coordinate among its vertices.
The subscripts are dropped if the graph the dimensions refer to is clear from the
context. As for indexing, vertex vi,j (0 ≤ i < GW , 0 ≤ j < GH) is at coordinates
(i, j). A displacement (vi, vj) (resp (vi,j, vk,l)) is said to be permissible on a path
(resp. on a grid) if |i − j| = 1 (resp. |i − k| = 1 and j = l, or |j − l| = 1 and
i = k) and if it is applied on a configuration where vi (resp. vi,j) is occupied and
vj (resp. vk,l) is vacant.

In path solvers, we define entities related to token-vertex matching. TK =
{t0, t1, . . . , tk−1} is the set of tokens on the vertices of the path. A token-vertex

21

matching is a one-to-one function M : T 7→ TK. We say that the cardinality
of M is |T |. The tokens that are part of the token-vertex matching are M(T).
M−1(ti) is called the target vertex of token ti (defined if and only if ti ∈M(T)),
and M(vj) is the token matched or assigned to vj. We use the embedding to
introduce the notion of “left” and “right”. vi is to the left (resp. right) of vj if
and only if i < j (resp. i > j), and vi is to the immediate left (resp. immediate
right) of vj if and only if i + 1 = j (resp. i− 1 = j). We define order on tokens
similarly. We also use the embedding to define distances. d(a, b) is the absolute
value of the difference in coordinates between two vertices or tokens a and b (the
coordinate of a token being the coordinate of the vertex it occupies). We also
use the same notation for token-vertex matchings: d(M) is the total distance
of a matching M , and it is equal to

∑
v∈T d(v,M(v)). A token-vertex matching

is executable if output generators are able to get the tokens in the matching
to their designated target vertices using a sequence of control instructions. We
use the notation ti to refer to token i, where token i has i occupied vertices
to its left. For all ti ∈ M(T), we use the notation vti to refer to the vertex
that contains the token ti in a specific configuration. Since ti and vti have no
notion of coordinates, we define the function idx(.) that takes in a token (resp.
a vertex) and returns the index of the vertex it occupies (resp. its index). If
tj ∈ M(T), we say that ti obstructs tj if idx(M−1(tj)) ≤ idx(ti) < idx(tj) or,
symmetrically, if idx(M−1(tj)) ≥ idx(ti) > idx(tj). A token-vertex matching is
said to have a crossing if there exists two tokens ti, tj in the matching such that
idx(ti) < idx(tj) and idx(M−1(ti)) > idx(M−1(tj)). In a given configuration,
a token ti ∈ M(T) is said to be left-moving (resp. right-moving) if idx(ti) >
idx(M−1(ti)) (resp. idx(ti) < idx(M−1(ti))). A token ti that is not in M(T) or
that is in M(T) with idx(ti) = idx(M−1(tj)) is non-moving. We also use the
term “direction” to characterize whether a token is left-moving, right-moving or
non-moving. The direction of a token is bound to a specific configuration. A
token block is a set of tokens ti, ti+1, . . . ti+k that have the same direction such
that idx(vti+j) + 1 = idx(vti+j+1

) for all j between 0 and k − 1. The direction of
a token block is dictated by the direction of the tokens within it. The head of
a right-moving (resp. left-moving) block is the leftmost (resp. rightmost) token
within the block. The tail of a right-moving (resp. left-moving) block is the
rightmost (resp. leftmost) token within the block.

In grid solvers, we use rows and columns to refer to vertices. In a grid,
row i consists of vertices v0,i, v1,i, . . . vW−1,i, and column i consists of vertices
vi,0, vi,1, . . . vi,H−1. The token surplus in a column i is equal to the number of
tokens on vertices in column i minus the number of vertices in column i that are
in T . A horizontal path is a path consisting of vertices in the same row, and
a vertical path is a path consisting of vertices in the same column. Horizontal
paths and vertical paths are rectilinear paths. A path is said to have a derivation
if its sequence of vertices comprises a vertex preceded by a vertex on the same
row (resp. column) and succeeded by a vertex on the same column (resp. row).

22

The number of such vertices is the number of derivations in a path. Paths have
directions that are defined in relation to the edges in the path, which can have one
of four directions. If the pair vi,k, vi,k+1 (resp. vi,k, vi,k−1) is present contiguously
in the vertex sequence of the path (for some i, k), we call this an upward (resp.
downward) edge. If the pair vi,k, vi+1,k (resp. vi,k, vi−1,k) is present contiguously
in the vertex sequence of the path (for some i, k), we call this a rightward (resp.
leftward) edge. A bidirectional path is a path such that its edges have two distinct
directions.

A path system in a graph G is a set P = {P0, P1, . . . Pk−1} of paths, where
every path Pi is a sequence 〈v1, v2, . . . , vl〉 of vertices; v1 is called the source
vertex, vl is called the target vertex, and consecutive vertices are adjacent in
G. Rerouting a path involves changing its vertex sequence while preserving its
source and target vertices. A stationary token is a token on a vertex that is either
the source vertex and the target vertex of the same path, or the source vertex
of a path and the target vertex of another path. An isolated token is a token
whose vertex is the source and target vertex of a path and is not in the vertex
sequence of any other path. A merged path system is a path system such that
no pair of paths within the system intersects more than once. An intersection
between two paths is a nonempty, maximal sequence of vertices that appears in
their vertex sequence representation contiguously either in the same order or in
reverse order. An unwrapped path system is a path system such that no path
within the system contains another path that is not itself within it. A path Pi
is said to contain a path Pj if the intersection between Pi and Pj is Pj. If path
Pi contains path Pj, Pj is said to be a subpath of Pi, and Pi is said to be a
superpath of Pj. It follows that any path is both a subpath and a superpath of
itself. A cycle-free path system is a path system such that the graph induced on
its paths is a forest. In a path system, every path represents a token move. We
say that we execute a path 〈v1, v2, . . . , vl〉 when we displace the token on v1 from
v1 to v2, v2 to v3, . . . vl−1 to vl. A cycle is either represented by a sequence of
vertices 〈v1, v2, . . . vk〉 or a sequence of edges 〈e1, e2, . . . ek〉. Given a set of paths
P = {P0, P1, . . . Pk−1} that induces a cycle characterized by edge set E , we define
edge coloring as the function col : E 7→ {0, 1, . . . |P|− 1}, i.e. color i is associated
with Pi. If col(ei) = j, we say that the edge ei is j-colored. A cycle is contiguously
colored if there does not exist a pair of edges ei and ej in its edge representation
such that col(ei) = col(ej) with the two edges not being contiguous in the cycle.
A cycle that is not contiguously colored is discontiguously colored. A color in a
cycle is discontiguous if there exists two non-contiguous edges ei, ej in the cycle
such that col(ei) = col(ej).

23

Chapter 4

Token Moving on Paths on the
CPU

Working on paths is pertinent not only because grid instances can be partially
solved and reduced to a set of path instances, but also because they allow us
to leverage the capabilities of the current hardware via batching. We first start
by describing the subroutines that make up every path solver. Path solvers are
made up of two parts:

1. The token-vertex matching procedure

2. The token moving procedure

We briefly describe the two procedures. The token-vertex matching proce-
dure involves assigning a token to every target vertex. Formally, the token-vertex
matching procedure outputs a one-to-one mapping M : T 7→ TK such that this
matching is executable. The reason why a token-vertex matching has cardinality
|T | is because no more than |T | tokens will be moved in a solution for MDTM
(see Lemma 2). In the case of theGreedy path solver, the token-vertex match-
ing’s cardinality is equal to |S| for reasons that will be explained in Section 4.2.2.

The token moving procedure takes in the output of the token-vertex match-
ing procedure, that is, an executable token-vertex matching, and outputs the
corresponding control instructions. Before delving into the details of the repre-
sentation of the control instructions, we take a quick detour to contextualize the
relevance of the MDTM problem on paths.

Saying that MDTM is a good enough heuristic for MSTM is flawed, as it
makes no mention of extractions/implantations. In fact, we can construct in-
stances where MDTM does a very poor job if we abide by the definitions that we
have been working with up until this point, because it extracts/implants a large
number of tokens, though it could have been able to avoid that had we been more
relaxed when it comes to displacement. Such instances can occur frequently even
if we assume the random and uniform distribution of tokens initially. In Figure

24

Figure 4.1: Degenerate instance where minimizing displacement incurs a large
extraction/implantation overhead.

4.1, there exists a solution for the instance that uses 3 displacements: move t1 to
v4, move t2 to v5, move t3 to v6. We incur 3 extraction/implantation operations
spread over a total of 3 tokens. However, if we no longer only look at solutions
that minimize displacement, one possible solution would be to move t0 to v4.
This alternative solution incurs 4 displacements and 1 extraction/implantation.
Seeing that one of our prevalent assumptions is that extractions/implantations
are more costly than displacements, it is reasonable to think that there exists
reasonable per-token loss functions such that the alternative solution is superior
in terms of token moving success probability.

The reason why we are strictly dealing with MDTM for paths is because
we are working with underlying assumptions that concern atom assembly. The
quantum simulator we are working with is capable of extracting aligned atoms
in a single operation prior to any displacements taking place. As soon as all
displacements are executed, all aligned atoms are implanted in their respective
traps. Under this assumption, there is no need to take into consideration ex-
tractions/implantations as all atoms are assumed to be extracted once, then
implanted once, irrespective of whether they were displaced or not. We work
with this assumption for anything that concerns path solvers.

4.1 The token moving procedure

We now describe the representation of the control instructions that are outputted
by the token moving procedure. We make use of three distinct output modes,
which are detailed below.

1. Unbatched output mode: This mode describes a solution for the token
moving problem as a sequence of displacements, where each displacement
consists of a source vertex and a target vertex. The displacements are
executed in the order they appear in in the outputted sequence. Naturally,
every displacement has to be permissible vis-à-vis the configuration that
results from applying all the preceding displacements in the order they
occur in on the starting configuration.

2. Batched output mode: As the name suggests, the batched output mode dis-
places tokens in batches. In reconfiguration terms, in the case of batched
output, a batch replaces a displacement as the smallest transformation step.
A batch can be defined as a maximal set of displacements. The displace-
ments need not be in the same direction. As was the case for the unbatched

25

output mode, the set of displacements making up a batch has to be permis-
sible vis-à-vis the configuration that results from applying all the preceding
batches in the order they occur in on the starting configuration.

3. Block batched output mode: The block batched output mode was designed
with the specifics of the hardware of the quantum simulator in mind. In
reality, while it is true that optical trapping-based systems are capable of
displacing multiple atoms at once, the system we are working with can
only do so in a single direction. It follows that the control instructions we
expect to get from the usage of the batched output mode cannot be di-
rectly translated into control operations to be transmitted to the waveform
streamer, because the hardware lacks the capability to execute a multidi-
rectional batch in a single time step. We therefore introduce the notion
of block batching. A block batch is a batch of token blocks. To indicate
the token blocks within a batch, as well as their movement, we include the
token head, the direction of the token head, as well as the size of the block,
which is the number of tokens in the block, as part of the output. Permissi-
bility of a block batch is defined in a way that is similar to that of a regular
batch.

While the first two modes are intuitive and make sense with no added
context, the implementation of block batching stems from a hardware con-
sideration. We briefly explain why we opted for this specific output for-
mat. Our decision is related to waveform synthesis and streaming. An
elementary waveform allows us to move a single token block in one di-
rection or the other. Therefore, for a path of size N , there are a total of
2N(N+1)

2
= N(N + 1) elementary waveforms (

(
N
2

)
elementary waveforms in

every direction). Such waveforms can be executed by the waveform stream-
ing module to displace atoms that make up a single block. The system
allows for more complex control operations to be generated, as we can in
fact execute multiple block operations at once, so long as the operations
move the respective blocks in the same direction. The procedure that makes
this possible consists of retrieving the corresponding elementary waveforms
for the desired block operations, then generating a compound elementary
waveform. A compound waveform is constructed out of a set of elemen-
tary waveforms using a commutative operation.

The three output modes we covered above are common to all four path solvers
and do not make any assumption regarding how the token-vertex matching is
generated. They expect an executable token-vertex matching as input and they
output control instructions in the form that is proper to them. We cover the
implementation details of the serial version of the three output modes before
looking at the details of token-vertex matching generation. The token-vertex
matching is inputted in the form of two lists, matching_src and matching_dst,

26

where matching_src contains the index of the vertices containing the traps in
the matching in the initial configuration, and matching_dst contains the index
of the vertices in T , such thatmatching_src[i] is matched withmatching_dst[i].

Algorithm 1 Unbatched token mover
Input: An executable token-vertex matching, matching_src and

matching_dst
Output: A sequence of displacements, disp_src and disp_dst

1: matching_size← matching_src.length
2: num_displacements← 0
3: for i← matching_size− 1 to 0 do
4: while matching_src[i] < matching_dst[i] do
5: disp_src[num_displacements]← matching_src[i]
6: disp_dst[num_displacements]← matching_src[i] + 1
7: num_displacements← num_displacements+ 1
8: matching_src[i]← matching_src[i] + 1
9: end while
10: end for
11: for i← 0 to matching_size− 1 do
12: while matching_src[i] > matching_dst[i] do
13: disp_src[num_displacements]← matching_src[i]
14: disp_dst[num_displacements]← matching_src[i]− 1
15: num_displacements← num_displacements+ 1
16: matching_src[i]← matching_src[i]− 1
17: end while
18: end for

The unbatched token mover (Algorithm 1) works over two phases, the former
of which we will be describing (the latter is symmetric). The first phase of the
unbatched token mover loops over the right-moving tokens from right to left,
and every right-moving token found in this order is displaced towards the vertex
it was matched to via a sequence of displacements. Since we have established
in Lemma 3 that the total number of displacements required to execute an ex-
ecutable matching is equal to its total distance, we allocate O(N2) memory for
both disp_src and disp_dst, and we use the num_displacements variable to
keep track of the total number of displacements.

27

Algorithm 2 Batched token mover
Input: An executable token-vertex matching, matching_src and

matching_dst
Output: A sequence of displacements, disp_src and disp_dst, batch point-

ers, batchPtr
1: matching_size← matching_src.length
2: distances_to_target← get_distances_to_target(matching_src,

matching_dst,matching_size)
3: num_batches← get_max_distance_to_target(distances_to_target,

matching_size)
4: num_displacements← 0
5: for batch_index← 0 to num_batches− 1 do
6: batchPtr[batch_index]← num_displacements
7: for i← 0 to matching_size− 1 do
8: if matching_src[i] < matching_dst[i] then
9: disp_src[num_displacements]← matching_src[i]
10: disp_dst[num_displacements]← matching_src[i] + 1
11: num_displacements← num_displacements+ 1
12: matching_src[i]← matching_src[i] + 1
13: else
14: disp_src[num_displacements]← matching_src[i]
15: disp_dst[num_displacements]← matching_src[i]− 1
16: num_displacements← num_displacements+ 1
17: matching_src[i]← matching_src[i]− 1
18: end if
19: end for
20: end for

As explained earlier, the batched token mover (Algorithm 2) displaces all
tokens that have not reached their target vertex yet in every batch. For the
sake of brevity, we omit the implementation details of functions that serve a
specific purpose that is easy to describe without pseudocode. We first start
by computing the number of batches. The number of batches is equal to the
maximum distance of a token to its target vertex in the matching, so we start
by computing those distances. In a matching M , the distance of a token ti to its
target vertex M−1(ti) is given by the absolute value of idx(M−1(ti)) − idx(ti).
After obtaining the number of batches, the next step is to generate the batches.
A token keeps getting included in batches until it reaches its target vertex. We
keep track of the number of executed displacements and we write the starting
index of every batch in the displacement arrays to the batchPtr array. We also
make sure to update the locations of the tokens after every batch. The batchPtr
array stores up to N − 1 integers, as that is the maximum number of batches

28

required to solve a MDTM instance.

Algorithm 3 single_direction_block_output
Input: An executable, single-direction token-vertex matching,

matching_src and matching_dst
Output: A sequence of token blocks to displace represented by token block

head displacements, head_src and head_dst, the sizes of the blocks to displace,
size_block, block batch pointers, batchPtr
1: is_head, block_to_head← detect_heads(matching_src,matching_dst)
2: block_to_tail← detect_tails(matching_src,matching_dst)
3: index_to_block ← map_index_to_block(is_head)
4: num_batches← compute_max_distance(matching_src,matching_dst)
5: num_block_displacements← 0
6: for i← 0 to num_batches− 1 do
7: batchPtr[i]← num_block_displacements
8: execute_block_moves(matching_src,matching_dst, block_to_head,

block_to_tail, head_src, head_dst,
size_block, num_block_displacements)

9: update_heads(matching_src,matching_dst, index_to_block,
block_to_head)

10: end for

Algorithm 4 Block batched token mover
Input: An executable token-vertex matching, matching_src and

matching_dst
Output: A sequence of token blocks to displace represented by token block

head displacements, head_src and head_dst, the sizes of the blocks to displace,
size_block, block batch pointers, batchPtr
1: matching_r_src,matching_r_dst,matching_l_src,

matching_l_dst← split_matching(matching_src,matching_dst)
2: single_direction_block_output(matching_r_src,matching_r_dst)
3: single_direction_block_output(matching_l_src,matching_l_dst)

The block batched token mover algorithm (Algorithm 4) is split into two
phases: the first phase displaces right-moving blocks whereas the second phase
displaces left-moving blocks. This arrangement aligns with what has been pre-
viously mentioned regarding block batching handling blocks in each direction
differently. We start by filtering the inputted matching depending on the direc-
tion of the tokens, and we make sure to discard the tokens that do not move
from the matching. The explanation for the two phases is the same, minus the

29

details related to the computation of block heads and block tails, as their defini-
tions vary depending on the direction of the block. Since the inputted matching
is executable, any subset of it will be executable as well, so the split generates
two executable token-vertex matchings, a matching containing left-moving tokens
and a matching containing right-moving tokens, which are sorted by their source
vertex.

The explanation for the single_direction_block_output function will assume
that we are dealing with right-moving blocks. The function first detects block
heads, and computes a mapping from block indices to heads. A token is a block
head if there is no token in the filtered matching occupying the vertex on its left.
Since the tokens are sorted in order of the vertices they occupy, it is sufficient
to check the previous index of matching_src. Clearly, the token on the leftmost
vertex is always a head. The number of blocks is equal to the number of heads,
so in our detection of heads, we also make sure to keep track of every block’s
head. We do a similar process for block tails. A token is a block tail if there is
no token in the filtered matching occupying the vertex on its right. Clearly, the
token on the rightmost vertex is always a tail. For every pair in the matching,
we would like to compute the index of the block the token belongs to. This
is achievable by a prefix sum on the is_head array. Before output generation
begins, we would like to figure out what the number of block batches required to
execute the token-vertex matching is. We do this identically to lines 2 and 3 of
the batched token mover algorithm. We now have all the components that go into
output generation. At every batch, we will be adding a pointer that indicates
the index at which the corresponding block batch starts in the head_src and
head_dst arrays. We then look for block heads: block heads are in charge of
outputting the block displacement. Once a block head is found, it outputs its
source and destination (in this case, the destination will be to the immediate
right of the source), as well as the size of the block that has this token as its
block head. This makes it possible to make use of the format of the output to
retrieve elementary waveforms in the next module. Block heads are dynamic: as
soon as a block head occupies its target, it is no longer a head, and the head of
the block gets updated accordingly to be the leftmost token in the block that has
not reached its target vertex yet.

We cover the proof of correctness of the three algorithms in Lemma 3.

4.2 The token-vertex matching procedure

We now describe the token-vertex matching procedure. As the name suggests,
this procedure matches tokens to vertices. For our purposes, the matching in
question needs to have no crossings and be distance-minimizing, as it will be
used as input for the token moving procedure, and those two conditions are suf-
ficient to guarantee that the matching is executable. In this chapter, we will

30

be covering four algorithms that compute an executable matching, with the dif-
ferences between them to be highlighted in their respective sections. All four
algorithms share the same input: two bit arrays, source and target, of length N
equal to the length of the path. source[i] is equal to 1 if there is a token on vi
initially, and is equal to 0 otherwise. target[i] is equal to 1 if vi ∈ T , and is equal
to 0 otherwise. We also include the number of tokens and the cardinality of T ,
which we call K and K ′ respectively, as part of the input.

4.2.1 The Hungarian-based token-vertex matcher

To motivate the Hungarian-based token-vertex matcher, we describe a related
problem: the assignment problem. In the assignment problem, we are given two
finite sets A and B of equal cardinality and a cost function C : A × B 7→ R,
and we are asked to find a cost-minimizing bijection f : A 7→ B, where we define
cost as

∑
a∈AC(a, f(a)). This problem has a polynomial-time solution. The first

documented solution for it, the Hungarian method, is attributed to Kuhn [8].
The original algorithm has an asymptotic running time of O(n4), where n = |A|,
though it was later shown by Edmonds and Karp that the same algorithm can
be improved to achieve an O(n3) running time [29]. We show how the problem of
computing a distance-minimizing token-vertex matching can be reduced to the
assignment problem.

In the absence of token surplus, we set A = TK, B = T , and for any pair
a ∈ A, b ∈ B, we set C(a, b) to be the distance between token a and target
vertex b. Clearly, the matching we get out of running the Hungarian algorithm
minimizes total distance. In fact, if we have |TK| = |T |, this is unnecessary,
as there is a single distance-minimizing token-vertex matching that also has no
crossings (see Lemma 5), and the matching can be found in time linear in the
length of the path. Since we would like the Hungarian-based path solver to solve
instances with surplus, we make a small modification in the reduction. We define
a set U (|U | = |TK| − |T |), which comprises what we call bogus vertices, and we
set A = TK and B = T ∪ U . As for the cost function, we define it for any tuple
in A×B as follows:

C(a, b) =

{
d(a, b) b ∈ T
W otherwise

W is a large number (we setW to be equal to |T |·N to ensure that it is larger than
the largest |T | distances). Running the Hungarian algorithm on the constructed
instance will yield an assignment such that a subset of A will be assigned to
non-bogus vertices in B; this subset of the matching is a distance-minimizing
matching, and we prove this in Lemma 6.

31

Algorithm 5 Hungarian-based token-vertex matcher
Input: Two bit arrays representing the starting and ending configurations,

source and target, K and K ′, the number of tokens and the cardinality of T
respectively

Output: A distance-minimizing token-vertex matching with no crossings,
matching_src and matching_dst
1: hungarian_to_source_idx[K], hungarian_to_target_idx[K]
2: hungarian_mat[K][K]
3: compress_input(source, target, hungarian_to_source_idx,

hungarian_to_target_idx)
4: construct_hungarian_matrix(source, target, hungarian_mat)
5: hungarian(hungarian_mat,matching_src,matching_dst,

hungarian_to_source_idx, hungarian_to_target_idx,K,K ′)
6: sort(matching_src)

For the Hungarian-based token-vertex matcher (Algorithm 5), we start by
computing mappings. For source, we compute the mapping between token indices
and the indices of the vertices they occupy. For target, we compute the mapping
between the order of the vertices in T and the their index in the path. We call
this process “compression”. The reason why this step is needed is because the
Hungarian cost matrix, which is populated next, contains cost information that
uses token indices and order of vertices in T , with no information about the
indices of the source vertices and the target vertices. The Hungarian algorithm
will therefore return a matching consisting of token indices and target region
indices, which we map back to vertex indices that are written into matching_src
andmatching_dst in the same function. The Hungarian method implementation
we use, which is an optimization of the original implementation of the standard
Hungarian method, is an O(K3) implementation by Maxim Ivanov based on an
algorithm designed by Andrey Lopatin [30]. This implementation writes the
vertices in T in the matching_dst array in order. Since the only guarantee that
the Hungarian gives us is distance minimization, we still need to ensure that
the outputted matching is executable, so we sort matching_src. We prove that
this preserves the total distance while eliminating all crossings in Lemma 4. The
running time of this token-vertex matcher is O(K3).

Part of what we aim to achieve when it comes to the MSTM problem is to
make the algorithms as flexible as possible. Specifically, even if we aim to min-
imize displacement, the Hungarian method may output one of many distance-
minimizing matchings, and we may get very different success probabilities de-
pending on how the displacement operations are distributed across the tokens in
the selected matching. Given that assembly time is of the essence because of the
limited lifetime of the atoms, we introduce a batch-limiting mechanism. If we
want to ensure that among the distance-minimizing matchings, we pick the one

32

that also minimizes the maximum distance from a token to its target (i.e. the
number of batches), a modification has to be made.

Let opt_bounded_distance be an array, and let opt_bounded_distance[i] be
the minimum total distance of a token-vertex matching we can obtain if we bound
the maximum distance between a token and its target vertex in the matching by
i. In practice, bounding distances by i entails changing C(a, b) to W for any
a ∈ S, b ∈ T such that d(a, b) > i. Clearly, if the Hungarian method is executed
with a distance bound of i, and the obtained token-vertex matching has a total
distance that is greater than or equal to (|TK| − |T | + 1) ·W , this means that
there are no valid token-vertex matchings with a maximum distance of i.

Observation 1. opt_bounded_distance is monotone non-increasing in i.

The minimum distance of a token-vertex matching as computed by Algorithm
5, min_total_distance, is equal to opt_bounded_distance[N − 1], as no assign-
ments are restricted by the latter given that d(a, b) ≤ N − 1 for all a ∈ TK,
b ∈ T . Minimizing the maximum distance between a token and its vertex in
the matching or, equivalently, the total number of batches, therefore means find-
ing the smallest i such that opt_bounded_distance[i] = min_total_distance,
and this can be done using a binary search because opt_bounded_distance is
monotone non-increasing.

A valid token-vertex matching is a matching that has a total distance that
is equal to min_total_distance. The correctness of the algorithm follows from
the correctness of binary search combined with Observation 1. With very lit-
tle modification, Algorithm 6 can be used to choose a token-vertex matching
with the desired degree of displacement operation spread across tokens. Rather
than using the matching bounded by a distance of l, where l is the smallest
index such that opt_bounded_distance[l] = min_total_distance, we can use
any matching bounded by distance j (l ≤ j < N), and the larger j is, the less
spread out displacement operations will be, as by increasing the maximum al-
lowed distance per token, we are allowing displacements to concentrate on one or
more tokens. The running time of this amended Hungarian-based token-vertex
matcher is O(K3 logN).

33

Algorithm 6 Hungarian-based token-vertex matcher with batch number mini-
mization

Input: Two bit arrays representing the starting and ending configurations,
source and target, K and K ′, the number of source tokens and the cardinality
of T respectively

Output: A distance-minimizing, batch-minimizing token-vertex matching
with no crossings, matching_src and matching_dst
1: hungarian_to_source_idx[K], hungarian_to_target_idx[K]
2: hungarian_mat[K][K]
3: compress_input(source, target, hungarian_to_source_idx,

hungarian_to_target_idx)
4: construct_hungarian_matrix(source, target, hungarian_mat)
5: hungarian(hungarian_mat,matching_src,matching_dst,

hungarian_to_source_idx, hungarian_to_target_idx,K,K ′)
6: sort(matching_src)
7: min_total_distance← get_matching_distance(matching_src,

matching_dst,K ′)
8: l← 1
9: r ← N − 1
10: while l < r do
11: m← (l + r)//2
12: construct_bounded_hungarian_matrix(source, target, hungarian_mat,m)
13: hungarian(hungarian_mat,matching_src,matching_dst,

hungarian_to_source_idx, hungarian_to_target_idx,K,K ′)
14: sort(matching_src)
15: if is_valid_matching(matching_src,matching_dst,m,

min_total_distance) then
16: r ← m
17: else
18: l← m+ 1
19: end if
20: end while
21: construct_bounded_hungarian_matrix(source, target, hungarian_mat, l)
22: hungarian(hungarian_mat,matching_src,matching_dst,

hungarian_to_source_idx, hungarian_to_target_idx,K,K ′)
23: sort(matching_src)

34

Figure 4.2: Instance where greedy token-vertex matching does not minimize over-
all displacement

4.2.2 The Greedy token-vertex matcher

The Hungarian-based path solver achieves its intended purpose of solving the
MDTM problem, and can also be augmented to control the number of batches.
Its only drawback is that we anticipate its running time to be problematic when
it comes to its integration within the RTFC. We are interested in atom assembly
on chain geometries consisting of up to 1024 traps, and even for such a relatively
small problem size, a running time that is cubic in the number of atoms, which
is proportional to the length of the chain, is poor.

We design a greedy path solver for the assignment problem. We loop through
the target vertices in order, and, for each target vertex, we pick the closest token
that has not been added to the matching and we match it to the selected target
vertex. We forego exactness in terms of displacement minimization (Figure 4.2).
In the referenced figure, matching t0 to v2 and t1 to v4 yields a matching with
a smaller total distance. Using the greedy path solver, the matching we obtain
may have crossings and is not displacement-minimizing, therefore, it is not a valid
input for any of the token moving algorithms, and it cannot be transformed into
an executable matching using any of the information we have so far. We resolve
this issue by expanding the matching to include non-moving tokens, which we add
to the matching as tokens that are mapped to the vertex that they initially occupy.
The expanded matching is useful because it involves all tokens and sorting tokens
and target vertices rids it of crossings: though the expanded matching need
not be distance-minimizing, the absence of crossings and the inclusion of all the
tokens in the matching is sufficient for us to be able to use a simplified version of
the inductive argument in Lemma 3 to prove that the extended matching is an
executable one.

The algorithm (Algorithm 8) is very similar to the algorithm for the Hungarian-
based token-vertex matcher, the only difference being in the matching function
(i.e. greedy_matching). This function loops over the columns (i.e. target ver-
tices) of the cost matrix, and finds an available row (i.e. token) with the minimum
cost. The pair is added to the matching and the row is marked as used, so that
no other column will be able to pick that same row again. Once we are done
iterating over all columns, some tokens may have not been matched, so we match
those tokens to the vertex they are currently occupying, which is what the for

35

Algorithm 7 greedy_matching
Input: hungarian_mat, source,matching_src,matching_dst,

hungarian_to_source_index, hungarian_to_target_index,K,K ′, N
Output: An expanded token-vertex matching, matching_src and

matching_dst
1: row_taken[K]
2: is_in_matching[N]
3: matching_idx← 0
4: for col← 0 to K ′ − 1 do
5: chosen_row ← get_min_cost_available_row(hungarian_mat, row_taken)
6: row_taken[chosen_row]← True
7: src_vertex← hungarian_to_source_index[chosen_row]
8: trg_vertex← hungarian_to_target_index[col]
9: matching_src[matching_idx]← src_vertex
10: matching_dst[matching_idx]← trg_vertex
11: matching_idx← matching_idx+ 1
12: is_in_matching[src_vertex]← True
13: end for
14: for i← 0 to N − 1 do
15: if source[i] == 1 and !is_in_matching[i] then
16: matching_src[matching_idx]← i
17: matching_dst[matching_idx]← i
18: matching_idx← matching_idx+ 1
19: end if
20: end for

Algorithm 8 Greedy token-vertex matcher
Input: Two bit arrays representing the starting and ending configurations,

source and target, K and K ′, the number of source tokens and the cardinality
of T respectively

Output: An executable token-vertex matching, matching_src and
matching_dst
1: hungarian_to_source_idx[K], hungarian_to_target_idx[K]
2: hungarian_mat[K][K]
3: compress_input(source, target, hungarian_to_source_idx,

hungarian_to_target_idx)
4: construct_hungarian_matrix(source, target, hungarian_mat)
5: greedy_matching(hungarian_mat, source,matching_src,matching_dst,

hungarian_to_source_index, hungarian_to_target_index)
6: sort(matching_src)
7: sort(matching_dst)

36

loop at line 14 does. The running time of this token-vertex matcher is O(K2).

4.2.3 The Linear Exact token-vertex matcher

The usage of the Hungarian method to compute a distance-minimizing token-
vertex matching does not make use of all the information that is at our disposition.
More specifically, the cost matrix that is constructed out of the MDTM path
instances has a specific property: the values in every column are bitonic, that
is, they are a circular shift of a monotone sequence, so it should not come as a
surprise that a better solver exists. This same exact problem was solved by Karp
et al. in 1975 [9]. Karp presents a formulation of the solution that allows us to
compute the matching inO(K2) time. This same formulation is then broken down
and then modified to be computable in time linear in K. Our implementation is
a direct translation of the O(K) solution that Karp proposed into C code. Since
the Linear Exact path solver is able to compute a displacement-minimizing token-
vertex matching with a quadratic speedup over the Hungarian-based path solver,
is there any drawback to relying on the Linear Exact path solver in all cases?
The augmented Hungarian-based token-vertex matcher (Algorithm 6) provides us
with the means to indicate the spread of displacement operations across tokens
via changing the cost function. Karp’s linear assignment algorithm cannot be
used as a subroutine in the way the Hungarian method was, therefore we are
unable to specify preferences when it comes to the number of batches, and the
matching that is computed using the Linear Exact token-vertex matcher is any
matching that minimizes total displacement.

4.2.4 The Bruteforce token-vertex matcher

Bruteforce path solving solves a restricted instance of MDTM on paths, as it
assumes that the target vertices induce a path (or, equivalently, it assumes that
the target region is contiguous).

The Bruteforce token-vertex matcher (Algorithm 9) relies on two statements:
the tokens that are in a displacement-minimizing token-vertex matching are con-
tiguous tokens, and the tokens that are in a displacement-minimizing token-vertex
matching have to include all the tokens that are initially within the target region
(Lemmas 7 and 8 respectively); any matching that does not conform to those
two properties will not be displacement-minimizing and therefore does not need
to be considered.

Bruteforce token matching compresses the source array. Afterwards, as the
name of the algorithm suggests, we will be trying all possible token-vertex match-
ings that obey the two aforementioned properties: there are O(K ′) such match-
ings, and those matchings are called splits, owing to the fact that those matchings
are constructed by splitting the deficit across the the left and the right of the tar-
get region, where the deficit is equal to the number of tokens that the target

37

Algorithm 9 Bruteforce token-vertex matcher
Input: Two bit arrays representing the starting and ending configurations,

source and target, K and K ′, the number of source tokens and the cardinality
of T respectively, K1 and K2, the number of vertices to the left and to the right
of the target region

Output: A distance-minimizing token-vertex matching with no crossings,
matching_src and matching_dst
1: distance_of_splits[K ′ + 1]
2: compressed_source[K]
3: compress_source(source, compressed_source)
4: deficit← compute_target_deficit(source, target)
5: compute_distance_of_splits(source, target, distance_of_splits)
6: selected_split← find_min_distance_split(distance_of_splits)
7: cur_target← K1

8: cur_source← selected_split
9: for i← 0 to K ′ − 1 do
10: matching_src[i]← compressed_src[cur_source]
11: matching_dst[i]← cur_target
12: cur_source← cur_source+ 1
13: cur_target← cur_target+ 1
14: end for

region is missing. We compute the total distance of every split, then we select
the index of a split with the minimum total distance, where the index of a split is
the index of the leftmost vertex in source_compressed included in it. The pos-
sible number of splits is O(K ′), and computing the total distance of every split
is O(K ′), so the running time of the Bruteforce token-vertex matcher is O(K ′2).

38

Chapter 5

Token Moving on Grids on the
CPU

We now move to the study of solvers for MLTM on grids. Our coverage of path
solvers will allow us to establish local guarantees when dealing with grids, and we
will be recurrently alluding to path solvers through our work with grid solvers.

In our discussion about path solvers, given that the problem we were tackling
aligned in its nature with the capabilities of the hardware, mentioning possible
output modes as well as their formats made sense. When it comes to grid solvers,
we put less emphasis on output modes, and the reason why that is the case
is that the selected output mode does not affect the metrics we are targeting
(namely success probability). With that being said, it is worth mentioning that
the output of all the algorithms that we implement in this chapter and in the
parallel counterpart of this chapter is batched, except for HUNGARIAN-COLAV,
even when the algorithms themselves are not designed with batching in mind.

We start by describing REDREC v2.0, which is a grid solver that solves
instances of token moving where the target region is centered in the grid. A
variant of REDREC v2.0, REDREC v2.1, is designed specifically for parallel
solving, and will therefore be omitted from this chapter.

5.1 REDREC v2.0

As the name suggests, REDREC v2.0 (Algorithm 10) is an improved version
of REDREC, a grid solver that was designed with loss minimization in mind
[12]. The improvements come in the form of added maneuverability and provable
termination guarantees.

We define terms we use in the description of the algorithm. In a grid graph
with a centered target region T , the reservoir region is the subgraph induced on
T . The top (resp. bottom) reservoir is the grid induced on the vertices that are
above (resp. below) the target region in the embedding of the grid graph.

39

Algorithm 10 REDREC v2.0
Input: A grid graph in the form of a bit matrix, the height of the top and

the bottom reservoir region (denoted R1 and R2 respectively)
Output: A sequence of displacements, disp_src and disp_dst, batch point-

ers, batchPtr
1: if number of tokens is smaller than the size of the target region then
2: return “Cannot be reconfigured”
3: end if
4: Computation of surplus
5: Preemptive partial path solve
6: Solve columns with a surplus of 0
7: while Column with negative surplus exists do
8: Donor-receiver pair selection
9: Redistribute-reconfigure-shuffle between donor column and receiver col-

umn
10: if donor surplus ≥ receiver deficit then
11: Path solve and delete receiver column
12: if donor surplus = receiver deficit then
13: Delete donor column
14: end if
15: else
16: Delete donor column
17: Preemptive partial path solve on receiver
18: end if
19: end while
20: Path solve unsolved columns

40

The steps in REDREC v2.0 are described in detail below:

1. Computation of surplus: We are given the starting configuration as a bit
matrix. For every column, we compute the surplus: the surplus of a column
is the difference between the number of tokens on vertices in the column
and the number of target vertices in the column. Since REDREC v2.0 only
deals with centered targets by design, the number of target vertices is the
same across all columns and is equal to H − R1 − R2. If the surplus is
negative, its absolute value is called the deficit.

2. Preemptive partial path solve: The premise that underlies the RE-
DREC algorithms is a process we call shuffling. Shuffling consists of dis-
placing tokens from a donor column (a column with positive surplus) to a
receiver column (a column with negative surplus). The algorithm restricts
such displacements to happen only in the reservoir region (the top reser-
voir, the bottom reservoir, or a combination of both). As such, we need to
ensure that there is always sufficient room in the reservoir to store incom-
ing tokens. Assume some donor column d would like to shuffle m tokens
to some receiver column r, which has a deficit that is bigger than or equal
to m, and assume that the receiver column has less than m vacant vertices
in its reservoir region: if shuffling is limited to the reservoir region, we will
not be able to shuffle all m tokens at once. We preemptively handle this
case by partially solving such columns (i.e. columns whose deficit is larger
than their number of vacant vertices in their reservoir region). Partially
sorting a column entails displacing the tokens on the vertices towards the
center of the target region, and the intuition behind that is that the to-
kens we will subsequently shuffle to this column are expected to be evenly
distributed across the top and the bottom reservoir regions, therefore mini-
mizing the tokens we would need to move again after preemptively moving
them towards the center.

3. Solving columns with a surplus of 0: REDREC v2.0 aims to gradually
delete columns. Columns that have a positive surplus are potential donor
columns, columns that have a negative surplus will definitively be receiver
columns at some point, and columns that have a surplus of 0 can be in-
dependently solved using a path solver and then deleted. Since solving a
column involves displacing all the tokens in the column towards the center,
any of our exact path solvers can be used here. We elaborate on the process
of deleting a column. A column is deleted if and only if it is solved and
it has a surplus of 0. The purpose of deleting a column makes sense in
the context of defining adjacency relations between columns: two columns
i and j (i < j) are said to be adjacent if and only if columns i + 1, i + 2,
. . . j− 1 are deleted. Before we start the search for donor-receiver pairs, we
solve and delete all columns with a surplus of 0.

41

4. Donor-receiver pair selection: The core mechanism of REDREC v2.0
(as well as its predecessor) is the selection of a pair of columns such that
one of the columns acts as a donor column and the other acts as a receiver
column. The columns that we select need to be adjacent, and the reason
why that is the case is that their adjacency, coupled with restricting the
shuffling to the reservoir region and the assurance that there will always
be a sufficient number of vacant vertices in the reservoir region of the re-
ceiver makes it so that there are no restrictions on the donor’s end, i.e.
the donor is capable of eliminating the receiver’s deficit completely if it
possesses a sufficient surplus itself. The choice of a donor-receiver pair is
critical, as the redistribution-reconfiguration-shuffling procedure is locally
optimal (vis-à-vis displacement). We choose a donor-receiver pair in a way
that either minimizes or maximizes some function, and the function can be
made to favor reducing extraction/implantation operations at the cost of
extra displacement operations or vice versa. The basic function we use is a
function that is related to the number of tokens to shuffle between two ad-
jacent columns i and j, which is equal to min(|surplus[i]|, |surplus[j]|) (if
the surplus of the donor is larger than the deficit of the receiver, shuffle just
enough to cover the receiver’s deficit, otherwise, shuffle all surplus tokens),
i.e. we choose a donor-receiver pair (i, j) that maximizes this value (eligible
donor-receiver pairs we consider are pairs of columns such that one column
has a nonzero surplus, and the other has a nonzero deficit, and there must
exist at least one such pair). This function is used not only to rank pairs
of columns, but also to compute the number of tokens to be shuffled. The
logic behind maximizing the number of tokens to shuffle is that this should
minimize the number of iterations required until all columns have a surplus
of zero, though this is heuristic thinking, and there may very well be other,
more adequate (or more fit-for-purpose) functions that can supplant this
function.

5. Redistribute-reconfigure-shuffle between donor and receiver: Once
a donor-receiver pair is selected, we need to figure out the displacement of
tokens in batches required for us to be able to shuffle the tokens from the
donor to the receiver. We know the number of tokens to shuffle, but we
do not know which tokens will be shuffled from the donor column. To that
end, we solve multiple MDTM instances. The logic here is very similar to
the logic of the Bruteforce token-vertex matching procedure. Assume we
would like to shuffle a total of m tokens from the donor to the receiver.
There must exist at least one pair (n,m − n) (0 ≤ n ≤ m) such that the
receiver has at least n vacant vertices in the top reservoir and m−n vacant
vertices in the bottom reservoir (this is guaranteed due to the preemptive
partial solving procedure): we call such pairs valid reservoir pairs, and each
valid reservoir pair constitutes a reservoir split. We fix the source array

42

(i.e. the initial configuration) to be equal to the donor column’s bits. As
for the receiver, for each valid reservoir pair (n,m − n), the target will
consist of 1s in the target region, and we also set the closest n vacant
vertices to the target region in the top reservoir and the closest m − n
vacant vertices to the target region in the bottom reservoir as target vertices.
We end up with a total of at most m + 1 possible reservoir splits, and
after solving any one of those splits using the Linear Exact path solver,
we guarantee (by construction) that each of the m tokens in the reservoir
region of the donor has an unobstructed path towards a vacant vertex in
the reservoir region of the receiver (otherwise, the donor column and the
receiver column are not adjacent and would not have been selected). The
reason why bruteforcing m + 1 reservoir splits is necessary is because we
would like to pick the reservoir split that minimizes overall displacement
operations: this is a local exactness guarantee that was incorporated as
part of our heuristic work. For a given valid reservoir split, the choice of
which vertices to select as target vertices seems arbitrary, because it may
be the case that farther vacant vertices in the receiver column lead us to
incur fewer overall displacement operations. We stress that the calculation
of incurred displacement operations is not limited to the number outputted
by the path solver; we also anticipate that the tokens that were picked for
shuffling will be displaced further towards the target region of the receiver,
so this distance is also taken into account. This extra distance is calculated
as follows: for every shuffled token, we add its distance to the vacant vertex
in the target region of the same order. In order words, for the ith highest
token among the shuffled tokens, we take into consideration its distance to
the ith highest vacant vertex in the target region. This justifies our choice of
setting the closest vacant vertices to the receiver as target vertices. As soon
as we obtain the reservoir split that minimizes the modified displacement
metric, the tokens are displaced based on the output of the path solver.
Afterwards, the tokens destined for shuffling are shuffled all at once in
batches towards the receiver column, with the number of batches required
to shuffle those tokens being equal to the distance in columns between the
donor column and the receiver column, including deleted columns, if any.

To summarize: redistribution-reconfiguration-shuffling consists of two steps:
redistributing the tokens on the donor column’s end, which inherently leads
to its reconfiguration (i.e. its target region being covered with tokens), and
shuffling, which displaces tokens from the donor to the receiver. Note that
we do not execute any displacements within the receiver column at this
point, we just ensure that the tokens we intended to shuffle are now on
vertices in the receiver column.

Column deletion: After redistribution-reconfiguration-shuffling, we have
one of three cases, and the case we are looking at is determined by whether

43

the initial surplus of the selected donor column exceeds the initial deficit of
the selected receiver column. If that is the case, after shuffling, the receiver
has a surplus of 0, which means that we can use the standard path solver on
it and delete it (as explained in step 3). If the surplus of the donor column
is equal to the deficit of the receiver column, the same process is executed,
and we also delete the donor column; the donor column would have already
been solved in the redistribution-reconfiguration-shuffling phase, so we do
not need to handle its solving separately. If the surplus of the donor column
is less than the deficit of the receiver column, the receiver still has a nega-
tive surplus, even after reshuffling, so we are not able to solve the receiver
and delete it. The donor, however, has been solved in the redistribution-
reconfiguration-shuffling phase, and is deleted. It may be the case that
shuffling violated the invariant related to step 2: if it did, the receiver is
partially solved.

Path solving unsolved columns: Once we ensure that no column has
any deficit, we know that all columns have a surplus that is bigger than
or equal to 0. Some of those columns are already reconfigured and marked
as deleted, some of those columns are already reconfigured but are not
marked as deleted (this applies to any column that had redistribution-
reconfiguration applied to it at least once while still having a positive sur-
plus), and some columns have not been reconfigured yet, despite having
sufficient tokens. This final step loops through all columns that have not
been deleted yet and solves them. At the end of this step, we ensure that
all columns have been individually reconfigured, meaning that the instance
has been reconfigured as well.

The proof of termination and correctness of REDREC v2.0 can be found in
Lemma 9.

5.2 The Hungarian-based grid solvers

We now introduce two algorithms that heuristically solve the MLTM problem
on grids.

We start by describing the motivation behind the inception of our two algo-
rithms. In the literature, overall displacement minimization and overall extrac-
tion/implantation minimization have been treated as two separate problems. For
overall displacement minimization, we have positive results: given any graph,
a set S of vertices and a set T of vertices (|S| = |T |), such that the vertices
in S are occupied, MDTM has a polynomial-time solution. The algorithm is
described in the work of Călinescu et al., and unsurprisingly involves comput-
ing a distance-minimizing token-vertex matching, which can be done using the

44

Figure 5.1: Instance where overall displacement operations and overall extrac-
tion/implantation operations cannot be minimized at once.

Hungarian method [11]. The described algorithm can be extended to work with
surplus using the construction of Subsection 4.2.1.

In the same paper, some results concerning MEITM on general graphs and
grid graphs are also covered. In particular, we know that MEITM does not admit
a polynomial time solution on general graphs, and this remains the case even when
we restrict the problem to grid graphs. We resort to approximation algorithms.
MEITM is APX-hard on general graphs. Fortunately, we have positive results;
the problem admits a 3-approximation on general graphs, and therefore, on grid
graphs as well. The 3-approximation uses an exact extractions/implantations
solver for tree instances which can be found in the same paper as a subroutine.

The 3-approximation algorithm for MEITM is displacement-unaware, and
the displacement-minimizing algorithm is extraction/implantation-unaware. In
other words, we do not have verifiable bounds on the other metric in each of
the two algorithms. In an ideal world, we would want to minimize both overall
displacement operations and overall extraction/implantations. Unfortunately,
this is not possible for all grid instances. In Figure 5.1, a displacement-minimizing
solution consists of two displacements and two extractions/implantations: one
such solution (and in fact, the only one for this instance) consists of displacing the
middle token to the right, followed by displacing the left token to the right. When
it comes to extraction/implantation minimization, an extraction/implantation
minimizing solution consists of extracting the leftmost token, displacing it once
upward, twice to the right, then once downward, and then implanting it, for a
total of 1 extraction/implantation and 4 displacements. Clearly, we cannot come
up with a solution involving a single extraction/implantation (i.e. that displaces
a single token) and that has two displacements.

The pattern seems to be that the interaction between overall displacement op-
erations and overall extraction/implantation operations is such that a decrease
in one is possible when the other is increased, and vice versa. However, this
is only true for a finite set of solutions; if we consider a solution that consists
of an unnecessary sequence of extractions/implantations or displacements, those
can be reduced without the implication of an increase in the other metric of
interest. Let a pareto-optimal solution be a solution such that we cannot de-

45

Figure 5.2: Relation between overall displacements and overall extrac-
tions/implantations in pareto-optimal solutions

crease overall displacement (resp. overall extractions/implantations) without
increasing overall extractions/implantations (resp. overall displacement). Fig-
ure 5.2 models the shape that the pareto-optimal solutions for a fixed instance
take on in a plot that compares overall displacement operations to overall ex-
traction/implantation operations. The leftmost point represents pareto-optimal
solutions among the displacement-minimizing solutions, whereas the rightmost
point represents pareto-optimal solutions among the extraction/implantation-
minimizing solutions. The remaining pareto-optimal solutions can be found along
the curve between those two points. The dotted red line corresponds to solutions
for the MDTM problem, whereas the dotted blue line corresponds to solutions
for the MEITM problem. We have already seen that none of the solutions along
the blue line can be computed in polynomial time unless P = NP. It follows that
computing pareto-optimal solutions is hard, because a solver that can compute
the solutions along the curve in polynomial time would also solve the MEITM
problem in polynomial time, and we know that this is not possible.

Given a MLTM instance, and knowing that we have a number of solutions
that is exponential in the size of the input, which solution do we go for? It should
not be too surprising that we favor pareto-optimal solutions over the solutions
that fall on the right of the curve. Among all the possible pareto-optimal solutions
in Figure 5.2, what is the best solution to go for? The answer to this question
will entirely depend on the per-token loss functions, as well as the aggregate
loss function. Penalizing extractions/implantations more than displacements will
make options on the curve towards the left more attractive, whereas penalizing
displacements more than extractions/implantations makes solutions that fall on
the curve towards the right better choices. However, we have established that
there does not exist an algorithm that can generate solutions along the curve, so
we focus on attention on heuristics: our aim is to design algorithms that output
solutions that fall to the right of the referenced figure and that take on its shape,

46

and this is exactly what our algorithms do.
The two algorithms in question present a lot of similarities when it comes to

the procedures they rely on. As such, we start with a general presentation of the
modules that go into them.

5.2.1 The modules

5.2.1.1 All-pairs shortest path (APSP)

Computing a distance-minimizing token-vertex matching involves knowing the
shortest path between any token and any target vertex. On paths, this is trivial,
as the path between a token and a target vertex is unique. In fact, even on grids,
this remains easy assuming that the edges of the grids are unweighted: the length
of the shortest path between two vertices vc1,r1 and vc2,r2 is abs(r1−r2)+abs(c1−c2)
(i.e. the Manhattan distance between the two vertices in the embedding of the
grid graph) and we arbitrarily select the shortest path to be the rectilinear path
from vc1,r1 to vc2,r1 followed by the rectilinear path from vc2,r1 to vc2,r2 . In some
cases, the input of this module is an edge-weighted grid graph: in this scenario,
we make use of the Floyd-Warshall algorithm to compute all-pairs shortest path
[31]. We augment the Floyd-Warshall algorithm to make it store a shortest path
between any source vertex and any target vertex. If surplus exists, we add bogus
target vertices which are assigned a distance of +∞ to all source vertices.

5.2.1.2 Minimum weight perfect matching with path retrieval (MWPM
+ PR)

The minimum weight perfect matching problem is equivalent to the assignment
problem covered in Section 4.2.1. This module takes in a matrix containing the
length of the shortest path between every source vertex-target vertex pair (includ-
ing bogus target vertices) and outputs a distance-minimizing source vertex-target
vertex matching. The source vertices that were matched to bogus target vertices
are added to the matching as vertices mapped to themselves. We therefore end
up with a source vertex-target vertex matching of size equal to the number of
tokens. After the matching is generated, the matching is turned into a path sys-
tem: for every pair in the matching, the corresponding shortest path is retrieved
from the output of APSP, and we end up with a set of paths which form our path
system. The sum of the edge lengths of the paths in the obtained path system P
is equal to the distance of the source vertex-target vertex matching.

5.2.1.3 Collision avoidance (COLAV)

The path system that was outputted by MWPM + PR is distance-minimizing.
Therefore, if we were to compute a solution that has an equal number of displace-
ment operations, the solution will fall on the dotted red line, i.e will involve a lot

47

of extractions/implantations. We look into means of mitigating overall extrac-
tion/implantation operations, even if that comes at the cost of extra displacement
operations. To that end, we introduce three versions of collision avoidance, or
COLAV.

5.2.1.3.1 Bidirectional COLAV

Bidirectional collision avoidance is the only version of COLAV that does not
increase overall path system distance. The purpose of bidirectional COLAV is
to maximize token isolation, as isolated tokens are not displaced. It does so by
looping over every path, and, for every path, fixing the rest of the path system,
and rerouting the current path in a way that maximizes token isolation while
preserving the length of the path. If the original path is rectilinear, there is
nothing to do, as the path cannot be rerouted without increasing its length.
Otherwise, suppose that the source vertex of the path is vc1,r1 and the target
vertex of the path is vc2,r2 . Let dpW = abs(c1 − c2), dpH = abs(r1 − r2); between
vertex vc1,r1 and vc2,r2 , there are a total of (dpW+dpH)!

dpH !dpW !
distance-minimizing paths.

Using a bruteforce approach for every path is therefore not feasible, as the number
of rerouted paths to consider for every path is exponential in the Manhattan
distance between the source vertex and the target vertex of the path.

For the rest of this section, we assume that we are working with a path system
P and a path Pcur with a source vertex vc1,r1 and a target vertex vc2,r2 such that
r1 < r2 and c1 < c2. The other three cases entail changing some signs. We also
define dpW and dpH as we did above.

The problem we are trying to solve presents a substructure that we can make
use of to design a polynomial time dynamic programming solution. Before we
describe the details of the dynamic programming solution, for each path Pcur
considered, we populate a dpW × dpH matrix, is_isolated_token, as follows:
is_isolated_token[i][j] is set to 1 if vc1+i,r1+j contains an isolated token in P \
{Pcur} and is set to 0 otherwise.

For the path Pcur, we introduce a dpW × dpH matrix, dp, such that dp[i][j] is
the smallest number of isolated tokens on any bidirectional path between vc1,r1
and vc1+i,r1+j in P \ {Pcur}. dp[i][j] is computed as follows:

dp[i][j] =


0 i = 0, j = 0

is_isolated_token[i][j] + dp[i− 1][j] j = 0

is_isolated_token[i][j] + dp[i][j − 1] i = 0

is_isolated_token[i][j] +min(dp[i− 1][j], dp[i][j − 1]) otherwise

The value we are interested in is dp[dpW −1][dpH−1], which can be computed
in O(dpHdpW) for one path. The proof of correctness of this algorithm can be
found in Lemma 10.

48

Once we obtain dp[dpW −1][dpH−1], if its value is smaller than the number of
isolated tokens in P \ {Pcur} the original path Pcur was going through, then Pcur
has to be rerouted, otherwise, Pcur is unchanged. Since path reconstruction is
required, we need to store the decisions that were made by the dynamic program-
ming procedure, and the easiest way to do that is by introducing a dpW × dpH
matrix, prev, such that prev[i][j] indicates whether dp[i][j]’s value was obtained
by reaching vertex vc1+i,r1+j from the bottom (prev[i][j] = 0) or from the left
(prev[i][j] = 1). Using the prev matrix, we can therefore reconstruct the rerouted
path and substitute the initial path with it.

We now describe how bidirectional COLAV is run. Bidirectional COLAV
loops over all paths in the path system inputted to it, and attempts to reroute each
path. If at least one path was rerouted, once all paths have been iterated over,
the process is repeated. The process keeps getting repeated until the algorithm
goes through all paths without modifying any path. The algorithm terminates
in polynomial time, and its running time is O((HW)3) (Lemma 11).

5.2.1.3.2 Bounded COLAV

Bidirectional COLAV is a best-effort approach that increases token isolation
at no extra displacement cost. In other words, bidirectonal COLAV gets us closer
to the rightmost point on the curve in Figure 5.2. Bidirectional COLAV will not
allow us to achieve a movement along the direction of the curve, as we are not
foregoing displacement minimization. Therefore, we would like to introduce a
mechanism that allows us to increase token isolation, even if that comes at the
cost of extra displacement operations. We also want to make it possible to control
how much leeway is given to this algorithm when it comes to deviating from the
minimization of overall displacement operations.

We introduce the concept of margin. In bidirectional COLAV, we were dealing
with bidirectional paths. In bounded COLAV, we define a parameter m for
margin, which will define the range of the paths we consider. For a margin m,
a source vertex vc1,r1 and a target vertex vc2,r2 (WLOG, r1 < r2 and c1 < c2),
the rerouted path can include any of the vertices that are within the subgrid
bounded by the vertices (max(c1 − m, 0),max(r1 − m, 0)) (bottom left corner)
and (min(c2 + m,GW − 1),min(r2 + m,GH − 1)) (top right corner) and those
paths can involve edges in any of the four directions.

As was the case for the analysis of bidirectional COLAV, for the rest of this
section, we assume that we are working with a path system P and a path Pcur
with a source vertex vc1,r1 and a target vertex vc2,r2 such that r1 < r2 and c1 < c2.
The other three cases entail changing some signs. dpW and dpH are defined in
the same way they were in bidirectional COLAV.

Evidently, there is no point in attempting to bruteforce the paths here either,
as their number is exponential in dpH + dpW + m. In fact, even for m = 0,

49

the possible reroutings are a superset of the possible reroutings in bidirectional
COLAV, as we removed the restriction on bidirectionality.

We start by describing the rerouting selected by bounded COLAV. Bounded
COLAV selects the rerouting of Pcur that maximizes the number of isolated to-
kens. If there are multiple such reroutings, bounded COLAV selects the rerouting
that has the shortest path length. If there are multiple such reroutings, bounded
COLAV selects the rerouting that has the smallest number of derivations. If
there are multiple such reroutings, we arbitrarily select one of them.

Again, we make use of dynamic programming to solve the problem. Bounded
COLAV, just like bidirectional COLAV, will make use of the is_isolated_token
matrix; however, in the case of bounded COLAV, we have to cover all vertices
that are part of the subgrid defined above, so the is_isolated_token matrix is
of size (dpW + 2m)× (dpH + 2m). We introduce a ([dpH + 2m)× (dpW + 2m)]×
(dpW +2m)× (dpH +2m)) matrix, dp, such that dp[i][j][k] is the smallest number
of isolated tokens on any path of length i between vc1,r1 and vc1+j−m,r1+k−m in
P \ {Pcur}. dp[i][j][k] is computed as follows:

dp[i][j][k] =



0 i = 0, j = m, k = m

−1 i = 0, j 6= m or k 6= m

−1 dp[i− 1] = −1 for
all neighbors

is_isolated_token[r1 + j −m][c1 + k −m]

+min(dp[i− 1][j − 1][k], dp[i− 1][j + 1][k],

dp[i− 1][j][k − 1], dp[i− 1][j][k + 1]) otherwise

By “neighbors” of a pair (j, k) we are referring to the subset of the set {(c1 +
j−m−1, r1 +k−m), (c1 +j−m, r1 +k−m−1), (c1 +j−m+1, r1 +k−m), (c1 +
j−m, r1+k−m+1)} that corresponds to row and column coordinates of vertices
that are within the grid. Also, we have previously defined the dimensions of dp;
by convention, the value of dp[i][j][k] where at least one of i, j or k is out of
bounds is equal to +∞.

The value we are interested in is min(dp[dpH +dpW][m+dpW − 1][m+dpH −
1], dp[dpH + dpW + 1][m + dpW − 1][m + dpH − 1], . . . , dp[(dpH + 2m) × (dpW +
2m)−1][m+dpW −1][m+dpH −1]). That is, we consider the maximum number
of isolated tokens for every path length and we pick the maximum across all path
lengths. The proof of correctness of this algorithm can be found in Lemma 12.

Just like bidirectional COLAV, bounded COLAV requires keeping track of
paths, their lengths, as well as their number of derivations; dp can be easily
augmented to accommodate for that. Bounded COLAV is run in a similar fashion

50

to bidirectional COLAV, that is, we loop over all paths while there are some paths
that were rerouted in the last pass.

Bounded COLAV has one notable advantage over bidirectional COLAV: the
same definition of dp holds on general graphs, provided we omit derivations from
our analysis and we modify the definition of neighboring vertices accordingly.
The proof of termination of the algorithm can be found in Lemma 13.

5.2.1.3.3 Derivation-averse COLAV

In some cases, the hardware is not capable of executing a multidirectional path
with a single extraction/implantation operation. Though this is not the case of
the quantum simulator that we are working with, derivation-averse COLAV was
designed with the knowledge of the existence of such quantum simulators in mind.
For a selected path, derivation-averse COLAV reroutes it in a way that minimizes
the sum of the derivations and the number of isolated tokens along the path in
the path system that excludes it. The intuition is that we are counting every
derivation as an extra extraction/implantation of the token.

The implementation details of this COLAV technique will be omitted, as its
relevance is limited. With that being said, it presents a lot of similarities to
bounded COLAV, and it is also applicable to general graphs.

5.2.1.4 Ordering

This module is the core module of both algorithms. The purpose of ordering
is to ensure that no token has to be extracted/implanted more than once while
guaranteeing that we do not increase the total distance of the path system. The
ordering module takes in an arbitrary path system and turns it into a cycle-free
path system without increasing total distance. We now describe the different
parts that go into ordering.

5.2.1.4.1 Path merging The path merging module takes in an arbitrary
path system and turns it into a merged path system without increasing the overall
distance of the path system or the number of distinct edges used in the path
system. For a path Pi that intersects path Pj, let vi,s and vi,e be the first and
the last vertex in Pi that are in Pj: the subsequence vi,s . . . vi,e induces a subpath
denoted by Pi,si→ei in Pi, and a subpath denoted by Pj,si→ei in Pj. An edge in a
pair of intersecting paths Pi, Pj is said to be unique if it belongs to one of Pi,si→ei ,
Pj,sj→ej but not the other.

With the above in mind, we describe the merging process. While there exists
an edge in the path system that is unique in some pair of intersecting paths,
we look for the edge that is unique in the smallest number of intersecting path
pairs. If such an edge does not exist, this implies that the path system is merged.
Once we have selected an edge, we pick an arbitrary pair of intersecting paths

51

where the edge is unique, and we proceed to merge this pair. Let the selected
pairs be Pi and Pj, and we attempt to reroute Pi,si→ei through Pj,si→ei , or Pj,sj→ej
through Pj,si→ei : if one of the reroutings shortens the length of the rerouted path,
the rerouting is preserved. Otherwise, we make both paths go through whichever
of Pj,si→ei and Pi,sj→ej maximizes token isolation. If those subpaths isolate the
same number of tokens, we make both paths go through the subpath that does
not contain the edge we selected initially.

By definition of a merged path system, termination implies correctness. There-
fore, it remains to show that the algorithm terminates. We prove this in Lemma 14.

5.2.1.4.2 Path unwrapping The path unwrapping module takes in a merged
path system and turns it into a merged and unwrapped path system without in-
creasing the overall distance of the path system or the number of distinct edges
used in the path system. We go through the paths in arbitrary order, and for
every path, we unwrap all the paths that it wraps. To do so, we go through the
path system and we detect all paths whose source vertices and target vertices
are contained within the selected path. We then sort the source vertices and the
target vertices by their order of appearance within the selected path. The final
step assigns source i to target i in the ordering; the path with source i as source
vertex is then rerouted to target vertex i via the selected path.

For a given selected path, this process destroys all wrappings within it. As-
sume it does not, that is, the assignment of sources to targets in order of ap-
pearance in the initial selected path made a wrapping persist. The concerned
vertices indexed by their order, si, sj, ti, tj, have had to appear in one of four
orders. Without loss of generality, we will assume that the path with si as its
source vertex wraps the other path. Two of those four orders will be covered,
as the analysis for the other two is symmetrical. If the sequence of vertices in
the initial selected path takes on the form . . . si, . . . sj, . . . tj, . . . ti, . . ., we have a
contradiction, as this implies that i < j and j < i. The same is true if we have
the form . . . si, . . . tj, . . . sj, . . . ti, The last two forms which are identical to
those with the order of si and ti flipped yields the same contradiction.

We still have to show that path unwrapping does not “unmerge” a path system,
and that there are no wrappings left when the algorithm terminates. We do that
in Lemmas 15 and 16 respectively.

5.2.1.4.3 Cycle breaking The cycle breaking module takes in a merged,
unwrapped path system and outputs a merged, unwrapped, cycle-free path sys-
tem without increasing the overall distance of the path system or the number of
distinct edges used in the path system.

Removing cycles in a graph can be done in polynomial time by computing a
minimum spanning tree (MST). In our case, after the minimum spanning tree is
computed, we would want to recompute a source vertex-target vertex matching,

52

Algorithm 11 Cycle breaking
Input: A merged, unwrapped path system with total distance d
Output: A merged, unwrapped, cycle-free path system with total distance

d′ ≤ d

1: Populate edge frequencies
2: while a cycle exists do
3: Identify cycle
4: Break cycle
5: Merge path system
6: Unwrap path system
7: Populate edge frequencies
8: end while

as well as a path system out of the matching. The example in Figure 5.3 shows
that using minimum spanning trees to break cycles may increase the total distance
of the path system, no matter the recomputed matching; the graph the figure
deals with is a weighted graph, but the argument can be modified to work with
unweighted graphs by replacing weighted edges with paths of the same length.

Cycle breaking consists of a sequence of functions that are executed as long
as cycles in the path system exist. Those functions will be detailed separately
below:

5.2.1.4.3.1 Computing edge frequencies This is a fairly straightfor-
ward function: given a path system, the frequency of an edge is the number
of paths containing it. The running time of this function is linear in the total
distance of the path system.

5.2.1.4.3.2 Cycle detection Cycle detection consists of finding whether
there is a cycle in the graph induced on the paths in the path system, which we
will call the path system graph. This can be achieved using any graph traversal
algorithm; either a breath-first search (BFS) or a depth-first search (DFS) is
sufficient. However, this function is more elaborate: if a cycle is found, we want
it to return the least frequent edge among all edges in cycles, where edge frequency
is defined with respect to the entire path system as highlighted in the previous
step. We therefore sort the edges with nonzero frequencies in non-decreasing
order of frequency, and then, in this ordering, we look for the earliest edge that
is part of a cycle. Observation 2 explains how we can check whether an edge is
part of some cycle using either BFS or DFS.

Observation 2. Let u and v be the endpoint of some edge e. e is part of a cycle
in an undirected graph G if and only if v is reachable from u in G \ {e}.

53

Figure 5.3: Example of a path system that induces a cycle that cannot be broken
via computing a MST without increasing total path system distance. The initial
path system has a total distance equal to 46. The MST of the graph the path
system induces includes all the edges except the edge of weight 10. Computing
all-pairs shortest path on the MST followed by the computation of a distance-
minimizing source vertex-target vertex matching forms a path system whose total
distance is equal to 52 (irrespective of the matching, as the edges of weight 5 will
each be in two paths and the edge of weight 6 will be in 4 paths regardless of the
outputted matching, which can be any of 4! = 24 possible matchings).

54

5.2.1.4.3.3 Cycle identification Given the edge outputted by the pre-
vious step, which we call the cycle edge, we now look for a cycle that contains
it. More specifically, we are interested in retrieving paths that induce a cycle
containing the cycle edge. Before we describe the procedure that allows us to
retrieve the desired set of paths, we cover a few definitions. We define two types
of paths: cycle edge-containing paths which are paths that contain the cycle
edge, and non-cycle edge-containing paths which are paths that do not contain
the cycle edge. If there is a cycle in the path system graph, there must exist a
set of paths that contains at most two cycle edge-containing paths, such that the
graph induced on the paths in the set contains a single cycle which includes the
cycle edge. Moreover, the cycle is contiguously colorable. The resulting cycle is
called a special cycle. This is a result of Lemmas 17, 18 and 19; we apply the
algorithms from each lemma sequentially, and we end up with a special cycle, as
well as the set of paths that induce it.

Let r be the number of cycle edge-containing paths in the path system. For
each cycle edge-containing path, we construct 2(r − 1) + 1 different graphs we
call path intersection graphs, for a total of r(2(r − 1) + 1) path intersection
graphs. Every path intersection graph is built out of a selection of one cycle
edge-containing path as a base path, and at most one other cycle edge-containing
path as a support path. In every path intersection graph, we add a vertex for every
non-cycle edge-containing path, and we add an edge between two such vertices
if the corresponding paths intersect. Moreover, in every path intersection graph
with Pi as its base path, we add two vertices lPi and rPi . The vertex lPi (resp.
rPi) is associated with all the vertices in the base path that occur before (resp.
after) the cycle edge in the vertex sequence of the path (including one of the
endpoints of the cycle edge in both cases). If some non cycle edge-containing
path intersects Pi, we add an edge from its vertex to either lPi or rPi depending
on whether it intersects Pi in the subpath associated with lPi or rPi (clearly, a non
cycle edge-containing path cannot intersect both subpaths without going through
the cycle edge because the path system is merged). We still have to explain what
a support path is. A support path is a cycle edge-containing path that is needed
as part of the cycle we are looking for. Such paths may either be treated as
left-intersecting or right-intersecting paths, and that explains why we construct
2(r − 1) + 1 different path intersection graphs for every base path.

We claim that the problem of obtaining a set of paths that induces a special
cycle reduces to running (lPi , rPi) reachability queries on the constructed r(2(r−
1) + 1) path intersection graphs (Lemma 20). More specifically, we use BFS
to check whether rPi is reachable from lPi , and if we find any yes-instance, we
reconstruct the set of paths by using the BFS tree: this set of paths induces a
special cycle.

55

Figure 5.4: Leveraging source-target corners to reduce the number of paths that
induce the special cycle

5.2.1.4.3.4 Cycle breaking This procedure takes in a sequence of paths
(the selected paths) that induce a special cycle and works on breaking said cycle
by modifying the path system. As a consequence of the cycle being special, the
only intersections that exist within the sequence of paths is between two contigu-
ous paths (the first and the last path in the sequence of paths are contiguous as
well).

This procedure aims to reduce the number of paths that induce the cycle in
question by looking for what we call a source-target corner. For every pair of
contiguous paths, we swap target vertices, and we look at the graph induced on
the updated selected paths: if one of the two updated paths can be eliminated
from the selected paths without destroying the cycle, we say that we found a
source-target corner, and we end up with a smaller set of paths that induces the
same cycle. In Figure 5.4, 3 paths induce the special cycle. A source-target corner
exists between path 2 and path 0, because swapping targets and removing one of
the two paths preserves the cycle, so targets are swapped and path 0 is removed
from the selected paths. This process does not increase the total distance of the
path system.

Observation 3. If the number of remaining selected paths is odd, there must
exist a source-target corner.

Eventually, we end up with a cycle with no source-target corners; if the cycle
is made up of two paths, we use a logic that is similar to the logic we presented
for path merging: we attempt to reduce total path length, if this fails, we attempt
to isolate tokens, if this also fails, we reroute the path containing the cycle edge
through the other path. If we end up with a cycle formed out of four or more
paths (Figure 5.5), we refer to the remaining paths as a reduced set of paths.
Let m be the cardinality of the reduced set of paths. We can generate two path
systems induced on the reduced set of paths, which we call reduced path systems,
such that they break the cycle. Assume we use the pair (si, ti) to refer to the
source and the target of path Pi:

56

Figure 5.5: Nontrivial cycle breaking base case: no source-target corners found

57

1. Even reduced path system: match si with ti if i is even, si with t(i+2)%m if
i is odd (without using the edges unique to Pi, which are forbidden edges),
0 ≤ i ≤ m− 1.

2. Odd reduced path system: match si with ti if i is odd, si with t(i+2)%m if i
is even (without using the edges unique to Pi, which are forbidden edges),
0 ≤ i ≤ m− 1.

The fact that both reduced path systems break the cycle follows from the fact
that the initial set of paths induces a single cycle, and from the existence of a
unique edge in the cycle for every path: a subset of those unique edges are no
longer part of any path in the reduced path systems. Also, when creating the
new matching, we are also interested in the corresponding paths: those paths
that avoid the forbidden edges are unique.

We would now like to update the selected paths using one of the two reduced
path systems we constructed.

Observation 4. The total distance of one of the two generated reduced path
systems is less than or equal to that of the path system involving the selected
paths.

Observation 4 follows from the fact that the sum of the total distances of the
reduced path systems is equal to twice the total distance of the original set of
paths. If the total distance of the two reduced path systems are different, we
pick the reduced path system with the smallest total distance and we update the
paths accordingly. Otherwise, we pick the reduced path system that does not
include the cycle edge. In the case of the example in Figure 5.5, the reduced path
system on the right gets picked.

5.2.1.4.3.5 Preserving the properties of the path system It may be
the case that the cycle breaking procedure gives rise to pairs of paths that are
not merged, or paths that are wrapped: those are two possible consequences of
the elimination of source-target corners. Therefore, every time a cycle is broken,
we run the path merging and the path unwrapping procedures to reinstate the
invariant, followed by repopulating the edge frequencies of the new path system.
The path system being merged and unwrapped is what ensures the correctness
of the theoretical work.

5.2.1.4.3.6 Cycle breaking: the conclusion We have yet to show that
the procedure terminates: the proof can be found in Lemma 21. Once cycle
breaking terminates, the path system graph is a forest.

58

Figure 5.6: Instance where a greedy solution extracts/implants a token more than
once.

5.2.1.5 Output generation

5.2.1.5.1 Exact extraction/implantation forest solver The exact extraction-
implantation forest solver takes in a path system whose paths induce a forest and
outputs a sequence of displacements that solve the token moving instance. It
goes without saying that this solver can only be used if the ordering module is
activated, as the ordering module is what ensures that the path system conforms
to the expected input format of the exact extraction-implantation forest solver.

Before the solver is run, we attempt to reduce the total distance of the inputted
path system by running APSP + MWPM + PR on the graph it induces. This is
used as a safety net, and eliminates all pairs of paths that cross an edge in opposite
directions (Lemma 22) without increasing (and while possibly decreasing) the
total distance of the path system. Also, this does not increase the number of
tokens we intended to displace, as this number is equal to the total number of
tokens minus the isolated tokens, and the isolated tokens remain isolated, though
we may isolate extra tokens by recomputing the matching. The path system
graph, which is still a forest, is then passed, one tree at a time, to Călinescu’s
exact tree solver. The exact tree solver displaces all the tokens that were intended
to be displaced once, and the total number of displacements it outputs is equal
to the total distance of the path system that was inputted to it (Lemma 23).

5.2.1.5.2 Greedy solver The greedy solver takes in an arbitrary path system
(it need not be unwrapped, merged, or cycle-free) and outputs a sequence of
displacements that solve the token moving instance. This greedy solver is what
we have been describing as the solver for MDTM covered in the Călinescu paper.

59

The algorithm looks at the graph induced on the provided path system and
computes the shortest path between any source vertex and any target vertex;
it also populates a matching, which initially consists of the source vertex-target
vertex mapping in the provided path system. It then goes over paths in an
arbitrary order and, for every path, it attempts to execute it. If the path can
be executed, that is, if the token is not obstructed, then it is moved. Otherwise,
there is some obstructing token: we retrieve the target of the first obstructing
token, we modify the matching by setting the target of the current token to be
that and the target of the obstructing token to be the old target of the current
token, and we recurse on the obstructing token. The performance of greedy
solving largely depends on the ordering of the paths to move, which is arbitrary.
The ordering affects the number of tokens that end up being displaced, as well
as the overall number of extraction/implantation operations. An example of the
latter can be seen in Figure 5.6. The indices of the source vertices and the target
vertices indicate the index of the path they are associated with, and since the
graph is a tree, the corresponding paths can be inferred from the figure. There is
a solution to this instance that extracts/implants every token once, for a total of 3
extraction/implantation operations: move token on s1 to t1, move token on s2 to
t2, move token on s0 to t0. Another ordering of the moves would lead to redundant
extraction/implantation operations: move token on s2 to t2, move token on s0 to
t0, attempt to move token on s1: the first obstructing token is on t2, and its target
vertex is t2: now, the target vertex of the token on s1 becomes t2, and the target
vertex of the token on t2, which we attempt to move next, becomes t1. When
this recursive process is over, we end up moving the token on t0 to t1, the token
on t2 to t0, and the token on s1 to t2, for a total of 5 extraction/implantation
operations. Those arbitrary choices made here are avoided when ordering then
using the forest solver.

We also cover an example where the ordering of the paths affects the number
of tokens the greedy solver displaces. In Figure 5.7, if the execution sequence
of the paths picked by the greedy solver is P0, P2, P1, the solution displaces all
3 tokens. Otherwise, if the path execution sequence is P2, P1, P0, greedy solver
displaces two tokens: P2 is not obstructed, so it is executed. As for P1, its target
vertex is obstructed by the token at s0: after target swapping, the target of the
token at s1 becomes t0, and that of the token at s0 becomes t1. We then attempt
to move the token on s0: it already occupies its target, so no displacements are
executed. We now attempt to move the token on s1 to t0. Assume that the
shortest path between s1 and t0 goes through the green path in the figure. This
move is obstructed by the token at t2: the rest of the execution of the greedy
solver will move the token on t2 to t0 and the token on s1 to t2, in that order. In
this scenario, the greedy solver moved 2 out of the 3 tokens.

60

Figure 5.7: Instance where a greedy solution displaces a different number of
tokens depending on the ordering of the paths.

5.2.1.6 Greedy token isolation

We want our algorithms to provide absolute advantages over the usage of solutions
involving the greedy solver. Isolating the maximum number of tokens without
increasing the total distance of the path system is a hard problem, because the
path system may induce a grid, and we have already seen that MEITM does not
have a polynomial time solution on grids. The token isolation that we integrate
into the procedures described above (namely collision avoidance, path merging
and cycle breaking) merely do locally optimal token isolation choices. Since
greedy solving attempts to move tokens in an arbitrary order, in some cases,
it may end up displacing fewer tokens than a solution generated by the exact
extraction/implantation forest solver. We aim to eliminate this possibility, and
we do that by greedily isolating tokens.

Greedy token isolation takes in a path system and greedily attempts to turn
stationary tokens into isolated atoms. The removal attempt consists of removing
the vertex from the induced graph, then attempting to compute a matching. If
a matching that does not increase the total distance of the path system can be
found, the token is isolated and eliminated from the path system, otherwise, we
move on to the next token.

When greedy atom isolation is done, we guarantee that, in the resulting path
system, all non-isolated tokens have to move. Therefore, this puts the greedy
solver and the exact extraction/implantation forest solver on equal footing, with
the latter having the extra advantage of being able to isolate even more tokens
as the path system changes as a result of the ordering procedure.

Greedy atom isolation is run every time the path system is updated. It

61

will therefore not be added to the pseudocode of the algorithms for the sake
of readability.

5.2.2 HUNGARIAN-REDIST

Algorithm 12 HUNGARIAN-REDIST
Input: A 2D matrix representing a source configuration and a 2D matrix

representing a target configuration
Output: A sequence of batches that solves the token moving instance

1: Unweighted APSP
2: MWPM + PR
3: Remove independent vertical paths
4: if Moves are to be ordered then
5: Merge path system
6: Unwrap path system
7: Break cycles in the path system
8: Use exact extraction/implantation forest solver
9: else
10: Greedy solve
11: end if
12: Solve unsolved columns, if any

HUNGARIAN-REDIST was designed with the intent of being a generalized
version of REDREC v2.0. That is, HUNGARIAN-REDIST follows the same logic
of ensuring that all columns can be solved independently of each other by moving
tokens in a way that gives all columns a positive surplus, before proceeding to
use exact path solvers to solve columns independently.

In its pseudocode, everything has previously been covered as part of the mod-
ules, with the exception of the removal of independent vertical paths. An inde-
pendent vertical path is a vertical path that does not share its source vertex or
its target vertex with any other path in the path system. Since the point of the
algorithm is to modify surpluses before independently solving columns, executing
an independent path does not affect values of surpluses, therefore, such paths are
ignored, and moving the concerned tokens to their target in the same column is
handled in the last step of the algorithm.

We indicate that the output is in the form of batches because of the usage
of path solvers as a subroutine, which are able to batch the output. All batches
outputted before path solving, which takes place at the end of the algorithm,
consist of a single token.

62

Algorithm 13 HUNGARIAN-COLAV
Input: A 2D matrix representing a source configuration and a 2D matrix

representing a target configuration
Output: A sequence of displacements that solves the token moving instance

1: if Use weights is set to true then
2: Weighted APSP
3: else
4: Unweighted APSP
5: end if
6: MWPM + PR
7: if Use weights is not set to true then
8: Apply any of the three COLAV techniques
9: end if
10: if Moves are to be ordered then
11: Merge path system
12: Unwrap path system
13: Break cycles in the path system
14: Use exact extraction/implantation forest solver
15: else
16: Greedy solve
17: end if

5.2.3 HUNGARIAN-COLAV

Unlike HUNGARIAN-REDIST, HUNGARIAN-COLAV was not inspired by the
REDREC algorithms, but rather, by the overall displacement operations versus
overall extraction/implantation operations tradeoff that we have recurrently al-
luded to in this thesis. The instance will be directly solved as a result of using
either the greedy solver or the exact extraction/implantation forest solver.

In the pseudocode of HUNGARIAN-COLAV, everything has been covered
except the usage of a weighted grid graph. The intuition behind making the
grid graph weighted is to simulate what the COLAV techniques are doing. In
the original configuration, edges with no tokens on their endpoints, edges with
a single token on their endpoints and edges with two tokens on their endpoints
are given three different weights, with the weight of an edge increasing with the
number of tokens on its endpoints. This makes it so that, in the computation
of the all-pairs shortest paths, the shortest paths are inclined to bypass tokens,
which should in theory reduce the number of tokens to displace at the cost of
extra displacement operations.

In HUNGARIAN-COLAV, batching is not brought up because every token is
moved separately by design, so the output is a sequence of displacements.

63

Chapter 6

Token Moving on Paths on the
GPU

The structure of this chapter is akin to that of Chapter 4. The first section will
cover parallelization techniques for the token moving algorithms, whereas the
second section will cover parallelization techniques for the token-vertex matching
algorithms.

We include information that is relevant to all sections that cover parallel code.
We use syntax that is identical to the syntax that is used in CUDA programming.
In particular, angular brackets (“<<< >>>”) is a decorator used in the function
call of a kernel to indicate its execution parameters, namely the number of thread
blocks and the number of threads per block, in that order. Function calls that do
not use angular brackets are device function calls. We omit declaring intermediate
variables for the sake of readability: variables that are first mentioned within a
kernel are assumed to be allocated in shared memory (unless stated otherwise),
and all other undeclared variables are assumed to be allocated in device memory.
Finally, variables that are computable from the input, notably K and K ′, are
precomputed and are used directly in the pseudocode despite not explicitly being
part of the input to reduce clutter.

6.1 The token moving procedure

We parallelize the three token moving modes: unbatched token moving, batched
token moving, and block batched token moving. Given the relatively small size
of the instances we are dealing with, the parallel implementations of the token
moving modes make use of a single thread block, as the extra parallelism we
can leverage by using multiple blocks does not compensate for the added cost of
synchronization across blocks. Therefore, in pseudocode, the kernel that will be
shown is a single-block kernel.

In the kernel for parallel unbatched token moving presented in Algorithm 14,

64

Algorithm 14 Parallel unbatched token mover
Input: An executable token-vertex matching, matching_src and

matching_dst
Output: A sequence of displacements, disp_src and disp_dst

1: compute_left_moving_distances(matching_src,matching_dst,
left_distances)

2: compute_right_moving_distances(matching_src,matching_dst,
right_distances)

3: synchronize threads
4: exclusive_sum(left_distances, excl_sum_left_distances)
5: exclusive_sum(right_distances, excl_sum_right_distances)
6: if threadIdx.x == 0 then
7: num_displacements_left← excl_sum_left_distances[K ′ − 1]

+left_distances[K ′ − 1]
8: num_displacements_right← excl_sum_right_distances[K ′ − 1]

+right_distances[K ′ − 1]
9: end if
10: synchronize threads
11: generate_unbatched_output(matching_src,matching_dst, left_distance,

excl_sum_left_distances, offset = 0)
12: generate_unbatched_output(matching_src,matching_dst, right_distance,

excl_sum_right_distances, offset = num_displacements_left)

65

we assign one thread per token-vertex pair in the matching, and every thread
will be in charge of outputting the displacements of its token-vertex pair. Ev-
ery thread computes the distance between its token and its target vertex, and
the output is written either to left_distances or right_distances, depending
on whether the token the thread is assigned to is left-moving or right-moving.
We make this distinction based on direction because left-moving tokens need to
be displaced separately from right-moving tokens. After we are done comput-
ing distances, we run an exclusive sum on left_distances and right_distances
separately. The purpose of the exclusive sum is for every thread to figure out
the memory location it should write to in the output. Given that the exclusive
sum is computed for every direction separately, this allows every thread to know
its output offset within the portion of the output that moves tokens in the same
direction. For the implementation of exclusive sum, we use the Kogge-Stone scan
algorithm [32]. Now that we have the output offsets for both directions, we are
ready to generate the output: every thread generates the displacements of its
own token-vertex pair at the memory location designated by the exclusive sum
we obtained. Since left displacements take place before right displacements, pre-
computing the total number of left displacements, which is the offset to be added
to right displacements, makes it possible for us to omit synchronizing threads be-
tween output generation for left-moving tokens and that for right-moving tokens.
In output generation, every thread iterates dist times, where dist is the distance
between the token and the target vertex in the pair assigned to the thread, and
outputs a single displacement at every iteration.

In the kernel for parallel batched token moving presented in Algorithm 15,
we assign one thread per token-vertex pair, as was the case for unbatched token
moving. Since batches need not involve displacements in a unique direction, we
can compute distances for all token-vertex pairs without having to worry about
directions. Once the distances have been computed, we are interested in comput-
ing the number of batches, which is the maximum distance between a token and
its target vertex in the matching. We do that using a standard reduction [32].
Using that same reduction, we can also compute the total displacement, which is
equal to the sum of the aforementioned distances. The final step is generating the
output: given that we do not care about order of displacements within a batch,
every thread iterates dist times (up to a maximum of num_batches times) and,
at every iteration, it atomically increments a variable that indicates the index
where the output should be written, with all the threads being synchronized at
the end of every batch/iteration. At the beginning of every iteration, the number
of outputted displacements so far is written to the batchPtr array by the thread
at index 0.

66

Algorithm 15 Parallel batched token mover
Input: An executable token-vertex matching, matching_src and

matching_dst
Output: A sequence of displacements, disp_src and disp_dst, batch point-

ers, batchPtr
1: compute_distances(matching_src,matching_dst, distances)
2: synchronize threads
3: reduce(distances, num_batches, num_displacements)
4: synchronize threads
5: generate_batched_output(matching_src,matching_dst, distances,

num_batches)

As is the case for the previous kernels, the kernel presented in Algorithm 16
assigns one thread per token-vertex pair. We start by computing the direction of
every token-vertex pair, as well as representatives for each direction. directions[i]
may take on 3 values: 1 if the token in the ith token-vertex pair is right-moving, 0
if the token in the ith token-vertex pair is non-moving, and −1 if the token in the
ith token-vertex pair is left-moving. We also compute direction representatives: a
direction representative is the thread index of the thread used to access the earliest
token-vertex pair corresponding to that direction. We may therefore have up to
two direction representatives. We then detect heads, using the same logic as the
one we used in the serial version of this algorithm. By convention, we explicitly
specify that the leftmost token is not a block head in order to make the next step
of the algorithm work. Once all heads are detected and threads synchronized, we
run a pair of prefix sums; for the right-moving blocks where the heads are the
leftmost tokens of blocks, we run an inclusive prefix sum (the previous statement
makes this work). For the left-moving blocks where the heads are the rightmost
tokens, we run an exclusive prefix sum, and we end up with the block index of
every token. With this information, we can compute the head and the tail of every
block in a way that is very similar to the computation of the values in is_head.
Before output generation, we want to make it possible for us to compute the
output for left-moving token blocks and right-moving token blocks at the same
time, so we compute the number of right-moving token block head displacements
and the corresponding number of batches, which we use as offset for left-moving
blocks in the head_src/head_dst and the batchPtr arrays respectively. We also
compute the number of batches for left-moving token blocks, as this is something
we need for output generation. The number of right-moving token block head
displacements is equal to the sum of the distances between a right-moving tail
and its target vertex, whereas corresponding number of batches is equal to the
maximum distance between a right-moving tail and its target vertex. The total
number of batches for left-moving blocks is defined similarly.

67

Algorithm 16 Parallel block batched token mover
Input: An executable token-vertex matching, matching_src and

matching_dst
Output: A sequence of token blocks to displace represented by token block

head displacements, head_src and head_dst, the sizes of the blocks to displace,
size_block, block batch pointers, batchPtr
1: populate_directions_and_representatives(matching_src,matching_dst,

directions, representatives)
2: synchronize threads
3: detect_heads(matching_src,matching_dst, is_head_left, is_head_right)
4: synchronize threads
5: inclusive_sum(is_head_right, index_to_block_right)
6: exclusive_sum(is_head_left, index_to_block_left)
7: synchronize threads
8: map_block_index_to_head_and_tail(direction, index_to_block_right,

index_to_block_left, block_index_to_head_right,
block_index_to_head_left, block_index_to_tail_right,
block_index_to_tail_left, is_tail_right)

9: synchronize threads
10: compute_offsets(index_to_block_right, is_tail_right, direction,

matching_src,matching_dst, num_displacements_right,
num_batches_right, num_batches_left)

11: synchronize threads
12: generate_block_output(matching_src,matching_dst, direction,

index_to_block_right, block_index_to_head_right,
block_index_to_tail_right, index_to_block_left,
block_index_to_head_left, block_index_to_tail_left,
num_displacements_right, num_batches_right)

In the output generation function, every thread loops a total ofmax(num_ba−
tches_left, num_batches_right) times. In every iteration, the threads acting
as direction representatives write the batch pointers (i.e. the number of out-
putted block head displacements in their direction so far) for their respective
directions in the batchPtr array (the left direction representative is offset by
num_batches_right). Subsequently, every thread gets the direction and the
block index of the token-vertex pair it is in charge of and checks whether the
token in question is a head. If it is, it writes the token block displacement to the
output, along with the size of the block (which we know because we know both
the head and the tail of the block). All threads then update the positions of the
tokens in their token-vertex pair. The final step in the iteration entails updating
the heads of every block.

68

6.2 The token-vertex matching procedure

We now look at the parallel counterparts of the serial token-vertex matching
algorithms from Chapter 4.

6.2.1 The Hungarian-based token-vertex matcher

The code for the parallel Hungarian-based path solver (Algorithm 17) consists of 3
distinct kernel functions. The Hungarian kernel we are using has been developed
by Lopes et al. [33] and is loosely based on Munkres’ cubic-time serial algorithm
for assignment [34]. It requires the input array to be of size a power of two; to that
end, we introduce hungarian_N and we set it to be equal to the smallest power
of 2 that is larger than or equal to K. The function construct_hungarian_matrix
computes the cost matrix to be used as input for the Hungarian, and it starts
by compressing. After compression, every thread is assigned a target vertex and
is in charge of computing the distances between all tokens and the target vertex
is it assigned to: every threads loops over the values in the compressed source.
Some of the threads will be assigned to bogus vertices; those threads populate
the matrix with a cost of N , and some threads are in charge of the expanded
columns, where the expanded columns are columns that had to be added to the
Hungarian cost matrix to make it conform to the expected input of the Hungarian
solver kernel; such columns are filled with infinities except at the diagonal, which
are filled with 0s. Once the cost matrix is populated, the next step consists
of running the parallel Hungarian solver. The Hungarian solver makes use of
dynamic parallelism, which explains why it is configured to use one thread block
with a single thread. As was the case in the serial implementation, the matching
returned by the Hungarian solver has sorted targets, so to ensure the matching
is executable, we sort matching_src to get rid of crossings, and we make use of
the standard parallel implementation of radix sort to do that [35].

69

Algorithm 17 Parallel Hungarian-based token-vertex matcher
Input: Two bit arrays representing the starting and ending configurations,

source and target, K and K ′, the number of source tokens and the cardinality
of T respectively

Output: A distance-minimizing token-vertex matching with no crossings,
matching_src and matching_dst
1: construct_hungarian_matrix<<< 1, hungarian_N >>> (source, target,

hungarian_to_source_idx, hungarian_to_target_idx,
hungarian_mat)

2: synchronize device
3: hungarian<<< 1, 1 >>> (hungarian_mat,matching_src,matching_dst,

hungarian_to_source_idx, hungarian_to_target_idx,K,K ′)
4: synchronize device
5: radix_sort<<< 1,matching_src.size >>> (matching_src)

Now, we would like to introduce the mechanism we used binary search for in
Algorithm 6: controlling the number of batches. Since binary search is inherently
serial and would require a total of log2(N) calls to the Hungarian solver in the
worst case, we would need to look for an alternative that would allow us to
make use of parallelism, especially knowing that the streaming multiprocessors
are severely underutilized even if we account for the dynamic parallelism that is
occurring within the Hungarian solver. We make use of a variant of binary search
that is better suited for parallel computing: k−ary search. k−ary search reduces
the number of serial calls to the Hungarian solver from log2(N) in the worst case
to logk(N) in the worst case.

k−ary search allows us to hone in on the minimum number of batches we can
use by launching k Hungarian solver kernels at once, where every solver takes in
a cost matrix with a different bound on the maximum distance. The values of the
bounds on distance we check are initially separated by the length of the search
space (initially equal to N) divided by k: we call this value the gap. At every
iteration, we look for the largest value of i such that opt_bounded_distance[i]
is larger than min_total_distance: our search space is now bounded between i
and i+m where m is the size of the old search space divided by k. As the search
space gets reduced by a factor of k, so does the gap. In code, we use the term
granularity to refer to the value of k.

We now clarify what the code in Algorithm 18 is doing line by line. We start
by running the standard parallel Hungarian-based token-vertex matcher, which
allows us to compute min_total_distance as well as how hungarian_mat looks
like (we omit the latter from the arguments of the function for conciseness). We
then compute the k values of i to be used as bounds on the maximum distance.
Once we have those values, we duplicate the original Hungarian cost matrix k
times into the hungarian_mats array and we update the cost values within each

70

Algorithm 18 Parallel Hungarian-based token-vertex matcher with batch num-
ber minimization

Input: Two bit arrays representing the starting and ending configurations,
source and target, K and K ′, the number of source tokens and the cardinality
of T respectively

Output: A distance-minimizing, batch-minimizing token-vertex matching
with no crossings, matching_src and matching_dst.
1: l← 1
2: r ← N
3: sol_space_size← N
4: offset← 0
5: min_total_distance←

parallel_hungarian_based_t-v_matcher(source, target,K,K ′)
6: while sol_space_size > 0 do
7: values_of_i_to_check<<< 1, granularity >>> (i_to_check,

offset, sol_space_size)
8: synchronize device
9: duplicate_hungarian_matrix<<< granularity,

hungarian_N >>> (hungarian_mat, hungarian_mats)
10: synchronize device
11: bound_hungarian_mats<<< granularity,

hungarian_N >>> (hungarian_mats, i_to_check)
12: synchronize device
13: hungarian<<< granularity,

1 >>> (hungarian_mats,matchings_src,matchings_dst,
hungarian_to_source_idx, hungarian_to_target_idx,K,K ′)

14: synchronize device
15: check_valid_matchings_and_update_offset<<< granularity,K ′ >>>

(hungarian_mats,matchings_src,matchings_dst,
min_total_distance, i_to_check, offset)

16: synchronize device
17: sol_space_size← sol_space_size/granularity
18: end while
19: increment_offset<<< 1, 1 >>> (offset)
20: synchronize device
21: generate_matching<<< 1, K ′ >>> (matchings_src,matchings_dst, offset,

matching_src,matching_dst)
22: synchronize device
23: radix_sort<<< 1,matching_src.size >>> (matching_src)
24: synchronize device

71

one of those k copies to account for the presence of a distance bound. Every
copy and update is handled by one thread block, and copying/updating works
the same way as constructing a Hungarian cost matrix from scratch, i.e. every
thread takes care of computing costs for a single target vertex. The next step is
launching k kernels, each of which computes a matching for one of the k generated
cost matrices. The final step is figuring out the largest value of i that does not
yield a valid matching, and setting offset to be equal to that value. Once we are
out of the for loop, we increment offset by 1, which makes it equal to the smallest
value of i such that opt_bounded_distance[i] is equal to min_total_distance,
and we write the corresponding token-vertex matching to the output, and we
remove the crossings from it by sorting the source vertices.

The correctness of this algorithm follows from that of k−ary search.

6.2.2 The Greedy token-vertex matcher

The parallel version of greedy token-vertex matching is relatively simple. In the
serial version of that same algorithm (Algorithm 8), the input is compressed, the
cost matrix is constructed, the matching is greedily generated, and the outputs
of the greedy matching function are sorted. The parallel version of the algorithm
preserves this structure and turns every one of those functions into a kernel call on
a single block. We have already covered compression, cost matrix construction,
and radix sorting in parallel, so we still have to describe the implementation
of parallel_greedy_matching, the parallel implementation of greedy_matching.
The implementation is similar to Algorithm 7, so a description of the changes
should be sufficient for the reconstruction of the algorithm. We assign one thread
per target vertex, and every thread chooses its row iteratively. Once all threads
are done choosing their row, we synchronize the threads. Naturally, it may be the
case that two columns chose the same row, since the choices are being made in
parallel, so we use a lock for every row; whichever thread atomically increments
the value of the lock first gets matched to the row and gets to add the pair to the
matching, whereas the other columns that were competing for the same row will
have to try to find a match again in the next iteration. Eventually, all columns
get matched, though some rows may remain unmatched (since |TK| ≥ |T |); the
unmatched tokens are matched to the vertex they occupy.

6.2.3 The Linear Exact token-vertex matcher

In the serial version of the Linear Exact path solver, we implemented the linear-
time algorithm that is described in the Karp paper. However, this algorithm
is not amenable to parallelization, as it is inherently sequential; it requires the
computation of more than 10 arrays that have sequential dependencies. There-
fore, for the parallel version, we implement the quadratic version of the algorithm

72

present in the same paper, which makes it possible for us to leverage well-known
parallelism paradigms.

Algorithm 19 Parallel Linear Exact token-vertex matcher
Input: Two bit arrays representing the starting and ending configurations,

source and target, K and K ′, the number of source tokens and the cardinality
of T respectively

Output: A distance-minimizing token-vertex matching with no crossings,
matching_src and matching_dst.
1: compress_input(source, source_compressed)
2: compress_input(target, target_compressed)
3: synchronize threads
4: inclusive_sum(source, num_sources_inclusive)
5: inclusive_sum(target, num_targets_inclusive)
6: synchronize threads
7: compute_heights(num_sources_inclusive, num_targets_inclusive,H)
8: synchronize threads
9: compute_profits(source_compressed,H, e, P)
10: synchronize threads
11: compute_max_profits_per_level(source_compressed,H, P, e, pi)
12: synchronize threads
13: compute_to_be_removed(source_compressed,H, P, e, pi,

to_be_removed_at_level, to_be_removed)
14: synchronize threads
15: compute_matching(source_compressed, target_compressed,

to_be_removed,matching_src,matching_dst)
16: synchronize threads
17: radix_sort(matching_src)
18: synchronize threads

In the case of Parallel Linear Exact token-vertex matching, the matching can
be computed within a single kernel, so the code presented in Algorithm 19 is
kernel code. The terms used in the pseudocode are mentioned as is in the Karp
paper, so the corresponding formulas can be found there, and our focus will be
on thread assignment and a high-level description of the work of every thread at
every device function call.

For this kernel, we use a total of N threads. We start by doing a standard
compression of the input. Next, we compute heights at j (0 ≤ j < N) which is
equal to the number of sources up to and including j minus the number of targets
up to and excluding j, so H[j] is computed by thread index j which does a linear
amount of work. The next step consists of computing profits; profits are computed
for source vertices only, so we assign 1 thread per source vertex (which means that
N −K of the threads are idle at this point). The profit of source i is a function

73

of its height and the heights H[j] (j > i), so each thread loops at most N times
to compute the profit of its associated source vertex. The Karp quadratic linear
assignment algorithm determines which source vertices are to be omitted from
the eventual matching, and the way it does so is by computing the highest profit
per positive level, and then, for every level, finding the leftmost source vertex
with a profit equal to the highest profit in the corresponding level, where a level
consists of all the source vertices with a given height. Given the way the height
is computed, there must exist a source vertex having height i for every value of
i between 1 and K −K ′ (both inclusive). We therefore compute the maximum
profits per level for all positive levels, and we do that by assigning one thread per
source vertex to retrieve height. The maximum profit at the corresponding level
is then updated atomically. The last step is selecting a single source vertex from
every level to eliminate, and this is done in a similar fashion to the earlier step:
every thread retrieves the height of its source vertex and compares its profit to
the maximum profit at the corresponding level, if it is equal to it, we atomically
minimize the index of the source vertex to be eliminated at that level. Once the
work of all threads is done, we copy the results over to the to_be_removed array,
which is a boolean array (to_be_removed[i] being 1 means that vertex i should
be excluded from the token-vertex matching). The final two device functions are
straightforward.

6.2.4 The Bruteforce token-vertex matcher

Our parallelization technique for the Bruteforce token-vertex matcher (Algorithm
20) entails computing the total distance of every split in parallel (i.e. every block
takes care of computing the total distance of one split). As such, the code had to
be split into multiple kernels. Clearly, the first two kernels and the last two kernels
can be combined, though the pseudocode decouples them into multiple kernels
for the sake of readability. The algorithm starts with a regular compression,
followed by the computation of the number of splits. Calculating the deficit
(which can be done using K ′ threads, if every thread gets assigned a single target
vertex) is not sufficient to figure out the number of splits, as the number of
splits will also depend on the distribution of the tokens outside the target region,
and that explains why we are using N threads. Once we have the number of
splits, we launch that many blocks to compute total distances. The index of the
block will make it possible to determine the tokens involved in the split using
the source_compressed array, and every thread will take care of computing the
distance of a single token-vertex pair in the split. The total distance of a given
split is computed using atomic adds. Once the total distances of all possible
splits are computed, the next step is figuring out what split to go for, which we
do using a standard argmin reduction. The final step is computing the matching,
which can easily be done since we already have the selected split, i.e. the index
of the leftmost source vertex in the source_compressed array.

74

Algorithm 20 Parallel Bruteforce token-vertex matcher
Input: Two bit arrays representing the starting and ending configurations,

source and target, K and K ′, the number of source tokens and the cardinality of
T respectively, K1 and K2, the number of vacant vertices to the left and to the
right of the target region

Output: A distance-minimizing token-vertex matching with no crossings,
matching_src and matching_dst
1: distance_of_splits[K ′ + 1]
2: compressed_source[K]
3: compress_input<<< 1, N >>> (source, source_compressed)
4: synchronize device
5: compute_target_deficit_and_num_splits<<< 1,

N >>> (source, target, deficit, num_splits)
6: synchronize device
7: compute_distances<<< num_splits,

K ′ >>> (source_compressed, distance_of_splits)
8: synchronize device
9: find_min_distance_split<<< 1,

num_splits >>> (distances_of_splits, selected_split)
10: synchronize device
11: compute_matching<<< 1, K ′ >>> (source_compressed,matching_src,

matching_dst, selected_split)

75

Chapter 7

Token Moving on Grids on the
GPU

In this chapter, we discuss naive parallelization techniques for REDREC v2.0,
and we introduce a variation of REDREC v2.0 that is more amenable to paral-
lelization: REDREC v2.1.

7.1 REDREC v2.0

REDREC v2.0 as described in Section 5.1 is heavily serial by design. The naive
parallelization approach for REDREC v2.0 involves parallelizing the presented
functions separately, and synchronizing the device between them. For most func-
tions, the kernel launch overhead makes parallelization a bad choice as parallel
computation is negligible, and execution ends up slowing down. However, paral-
lelization is a good idea when it comes to solving multiple token moving instances
on paths at once. This is the case for partial path solving, solving columns with a
surplus of 0 at the beginning of the algorithm, and calculating the total distance
of every reservoir split: each of these three scenarios involve solving multiple
token moving instances on paths: we assign a thread block for every instance.
Since the grid instances are relatively small in size, the number of blocks and the
number of threads per block is limited, which means that SM occupancy is not
something we should worry about yet.

Practically, parallelizing the computation of the solution of multiple token
moving instances on paths yields local improvements, though such improvements
are negligible and are unable to compensate for the slowdown caused by the
synchronization overhead, which is considerable, considering the amount of se-
rialization that still exists, specifically between the iterations of the main loop:
even with parallelization, the number of iterations to be executed is linear in the
width of the grid in the worst case.

76

7.2 REDREC v2.1

REDREC v2.1 tackles the issue of excessive serialization that REDREC v2.0
suffers from. Without any major changes in the logic of the algorithm, we are
looking to reduce the number of iterations of the main loop. The most obvious
modification involves running the redistribution-reconfiguration-shuffling proce-
dure for multiple donor-receiver pairs at once (up to k, where k is a parameter).
This reduces the number of iterations of the main loop by a factor of k, and, if k
is chosen carefully, a speedup with a comparable factor should be achieved. More
specifically, given the function we aim to optimize for in the donor-receiver pair
selection procedure, we compute its value for all pairs of adjacent donor-receiver
columns, and we sort those pairs of columns accordingly. We then proceed to
pick the top k mutually exclusive pairs of columns with regards to the metric
of interest. If there are less than k mutually exclusive adjacent donor-receiver
columns, we select all of them. We then proceed with the rest of the iteration
and we do the work for all pairs at once.

Naturally, minor modifications beyond what was explained above need to be
implemented. Every pair needs to know where to write its output to; this is
handled with a scan every time displacements need to be written to the output.

The downside of REDREC v2.1 is that we do not have the means to anticipate
the effect it will have on loss minimization (and subsequently, success maximiza-
tion) in comparison to REDREC v2.0. This will be covered in more detail in the
experimental section.

77

Chapter 8

Proofs

This chapter covers the proofs of all the claims that were made in the previous
sections and that went into the design of our algorithms.

Lemma 1. The atom assembly experiment that relies on the RTFC eventually
terminates.

Proof. Assume that the experiment does not terminate. That is, assume that we
run into case 3 an infinite number of times. Given this assumption, loss had to
stop at some point, otherwise, case 2 would have been triggered. Consider the
last run i with loss, and consider the first run i + 1 after that: run i + 1 does
not have any loss, meaning that T ′′i+1 = ∅, and since we know that, before loss,
T ′i+1 ⊇ Ti+1 by design of the problem solving module, T ′i+1 \ T ′′i+1 ⊇ Ti+1 too,
which corresponds to case 1. The experiment should have therefore terminated
at the end of run i+ 1, contradicting our original assumption.

Lemma 2. A solution for the MDTM problem on a path moves at most |T |
tokens, where T is the target region.

Proof. Consider a solution for MDTM on a path where more than |T | tokens
are moved. There must exist a token ti that is moved and that does not end
up on a trap in T . We have two cases: if the token does not obstruct any
other token, then we can keep it in place and the solution is unaffected, there-
fore contradicting the fact that the solution minimizes displacement. Other-
wise, ti is moved to make the move of token ti+1 possible. Consider the se-
quence of sequentially dependent tokens ti, ti+1, . . . , ti+k where ti+1 is said to
be dependent on ti if ti obstructs it. Those tokens have to be moving in the
same direction. Without loss of generality, assume that those tokens are left-
moving; a symmetrical argument can be made for when the tokens are right-
moving. This sequence is clearly finite. In the original mapping M , those
tokens are mapped to vertices M−1(ti),M

−1(ti+1), . . . ,M
−1(ti+k). We can re-

construct an alternative mapping M ′ as follows: ti is mapped to M−1(ti+1),

78

Figure 8.1: Instance where a token-vertex matching with the minimum total
distance is not executable.

ti+1 is mapped to M−1(ti+2), . . . ti+k−1 is mapped to M−1(ti+1); the mapping
of all the other tokens in M that were not mentioned are preserved. ti+k is
dropped out of the mapping. We now prove that this does not increase the
distance of the mapping, and that it is still executable. No token changes di-
rection, because if that were the case, this would contradict the fact that the
tokens were sequentially dependent. Also, since the initial mapping was part
of an executable matching, we have: idx(ti) < idx(ti+1) < . . . < idx(ti+k) and
idx(M−1(ti)) < idx(M−1t(i+1)) < . . . < idx(M−1t(i+k)) (otherwise, the matching
would have a crossing). Given there are no changes in direction, we also have:
idx(M−1(ti)) < idx(M−1(ti+1)) ≤ idx(ti), idx(M−1(ti+1)) < idx(M−1(ti+2) ≤
idx(ti+1), . . . idx(M−1(ti+k−1)) < idx(M−1(ti+k) ≤ idx(ti+k−1). From that, we
get: d(ti,M

−1(ti+1)) < d(ti,M
−1(ti)), d(ti+1,M

−1(ti+2)) < d(ti+1,M
−1(ti+1)), . . .

d(ti+k−1,M
−1(ti+k)) < d(ti+k−1,M

−1(ti+k−1)). Every vertex in T maps to some
token in TK, no crossings were added, and we decreased the distance of at leats
once token, and therefore, for the matching itself. We have a contradiction. This
concludes the proof.

Lemma 3. If a token-vertex matching in a path has the minimum total distance
across all possible token-vertex matchings and has no crossings, it is executable
by all three output modes and the total displacement required for its execution is
equal to the total distance of the matching.

Proof. We show that minimizing total distance is not sufficient.
The token-vertex matching depicted in Figure 8.1 minimizes total distance.

However, t0 will not be able to occupy v3, which is the vertex it is matched to,
since idx(t0) < idx(t1) in any given configuration. Given that idx(t1) is at most
4, and that we are aiming for idx(t1) = 4, it follows that the matching is not
executable.

Similarly, ensuring that the token-vertex matching has no crossings is not
sufficient either.

The token-vertex matching depicted in Figure 8.2 does not have any crossings.
However, idx(t0) < idx(t1) in any given configuration, and since t1 is not part of
the token-vertex matching, we do not intend to displace it. Given that idx(t1) is

79

Figure 8.2: Instance where a token-vertex matching with no crossings is not
executable.

equal to 1 and is constant and that we are aiming for idx(t0) = 2, it follows that
the matching is not executable.

We proceed to show that distance minimization and the absence of crossings
combined make it possible to execute the matching, and that the total displace-
ment operations needed to execute the matching will be equal to its total dis-
tance. The argument we use is very similar for all three output modes: we will
proceed by induction on the total distance of the matching. Clearly, if the total
distance of the matching is equal to 0, then the statement is true, as the match-
ing is executable (in fact, the instance is already solved), and there are are no
displacements to be done, irrespective of the output mode we are looking at.

• For the unbatched output mode, it is sufficient to find a single executable
displacement. Consider the rightmost right-moving atom, and displace it to
the right. Clearly, this displacement is permissible, as the only case where
it is not is if the matching has crossings. If there are no right-moving atoms,
consider the leftmost left-moving atoms and displace it to the left. Without
loss of generality, assume that a right-moving atom ti was found, and that
it was displaced to the right. The total distance of that same matching was
decreased by 1, it is still distance-minimizing on the resulting configuration,
and no crossings were created, so we can apply the inductive hypothesis.

• For the batched output mode, it is sufficient to find a single executable
batch. Consider all moving tokens, we need to prove that a batch comprising
all those atoms is executable. Assume it is not, that is, assume that the
execution of such a batch would lead to the displacement of a token ti
into an occupied trap. Without loss of generality, assume that ti is right-
moving. The token ti+1 in the occupied trap is either part of the token-
vertex matching, or it is not. If it is not, the matching we are working with
is not distance-minimizing: we can match ti+1 with M−1(ti) and remove ti
from the matching. The resulting matching has no crossings and has a total
distance that is smaller than that of the original matching. If ti+1 is part
of the matching, given the way the batch greedily selects tokens to move,
the only reason why ti+1 is not moving is because it is matched to the trap

80

it is occupying. However, if that were the case, this contradicts what was
assumed about the matching having no crossings. We have therefore proved
that a batch is always executable, the result we are looking for follows from
applying the inductive hypothesis on the configuration that results from
the execution of the batch, as the considered matching in this configuration
has no crossings and is distance-minimizing.

• For the block batched output mode, a similar argument as the one that
was used for proving a batch is executable if we assume that we start with
a matching that is distance minimizing and that has no crossings can be
made.

Lemma 4. Any distance-minimizing token-vertex matching M in a path can be
turned into a distance-minimizing token-vertex matching M ′ with no crossings.

Proof. IfM has no crossings to begin with, we are done. Otherwise, the crossings
in M take on a very specific form. If ti and tj (i < j) are involved in a crossing
in M , idx(M−1(tj))− idx(tj) and idx(M−1(ti))− idx(ti) both have the same sign
(i.e. the tokens cannot be moving in opposite directions, 0 is both positive and
negative), because if they do not, ti’s and tj’s targets in the matching can be
switched, and the resulting matching will have a smaller total distance. Such
target switches also do not create any new crossings. After a finite number of
target switches, each of which reduces the total number of crossings by 1, we get
a distance-minimizing token-vertex matching M ′ with no crossings.

Lemma 5. In a path with token set TK and target region T , if |TK| = |T | = K,
there is a unique distance-minimizing token-vertex matching with no crossings.

Proof. We map the leftmost target vertex to t0, the second leftmost target vertex
to t1, . . . the ith leftmost target vertex to ti−1, . . . the Kth leftmost target vertex
to tK−1. Clearly, this matching has no crossings and is the only matching that
has no crossings, as any other permutation in the mapping will yield at least
one pair of tokens ti and tj (i < j) such that idx(M−1(ti)) > idx(M−1(tj)). It
remains to show that the proposed matching is distance-minimizing: this follows
from Lemma 4.

Lemma 6. In a path, M is a distance-minimizing token-vertex matching if and
only if M is a subset of the matching M ′ outputted by the Hungarian procedure.

Proof. (→) Let d(M) be the total distance of matching M . We expect the total
cost of M ′ be d(M) + (|TK| − |T |)K. Assume that this was not the case, i.e.
assume that d(M ′) < d(M) + (|TK| − |T |)K, this would mean that a subset of
M ′ of size |T | has a total cost that is smaller than d(M). Given the construction

81

of the Hungarian instance, this implies that M is not distance-minimizing.

(←) Let d(M ′) = m+ (|TK|− |T |)K be the total cost of matching M ′ outputted
by the Hungarian procedure. Clearly, this implies the existence of a token-vertex
matching with a total distance of m. It remains to show that this token-vertex
matching is distance-minimizing. Assume that it is not, and that there exists
a distance-minimizing token-vertex matching that has a total distance equal to
m′ < m. Given the construction of the Hungarian instance, this implies that
d(M ′) ≤ m′ + (|TK| − |T |)K, and we have a contradiction.

Lemma 7. In paths, a distance-minimizing token-vertex matching involves con-
tiguous tokens when the target vertices are contiguous.

Proof. Assume that we have a distance-minimizing token-vertex matching M
that does not involve contiguous tokens. Consider the leftmost token ti that
is not in the matching such that ti−1 is. Let tj be the leftmost token to the
right of ti that is in the matching. Clearly, idx(M−1(ti−1)) + 1 = idx(M−1(tj))
(i.e. there is no vertex vj such that idx(M−1(ti−1)) < idx(vj) < idx(M−1(tj)).
We also have: idx(ti−1) < idx(ti) < idx(tj). It follows that ti obstructs one of
ti−1 and tj. Without loss of generality, assume it obstructs ti−1, which means
that idx(ti−1) < idx(ti) ≤ idx(M−1(ti−1)). If we set the target vertex of ti
to be M−1(ti−1) and if we remove ti−1 from the matching, we end up with a
matching M ′ such that d(M ′) < d(M), which contradicts the assumption that
M is distance-minimizing. This concludes the proof.

Lemma 8. In paths, a distance-minimizing token-vertex matching involves all
the tokens that are initially in the target region when the target vertices are con-
tiguous.

Proof. From Lemma 7, we know that the tokens in a distance-minimizing token-
vertex matching M are contiguous. Therefore, if there are tokens in the target
region that are not part of the matching, they will either be to the left of the
matched tokens or to their right. Without loss of generality, assume that the
tokens in the target region that are not in the matching are to the left of the
matched tokens. Let ti be the leftmost matched token. We look at ti−1, the
immediate unmatched token to its left. Clearly, idx(M−1(ti)) ≤ idx(ti−1) <
idx(ti), therefore we can modify the matchingM by mapping ti−1 toM−1(ti) and
by removing ti from the matching to obtain a matching M ′ such that d(M ′) <
d(M), which contradicts what we assumed about matching M being distance-
minimizing.

Lemma 9. The algorithm for REDREC v2.0 executed on a grid graph with height
H, width W and target height HT terminates in time O(W (HTH + HW)) and
is correct.

82

Proof. The termination criterion we can use is either the sum of the surpluses
across the columns with negative surpluses or the number of columns that have
not been deleted yet. We will work with the latter. As a reminder, a column is
deleted if and only if it has a surplus of 0 and it has been reconfigured.

At iteration k, we know that there exists a column that has not been deleted
yet, otherwise there would be no columns with a negative surplus. We also know
that there exists a column with a negative surplus that is adjacent to a column
with a positive surplus, otherwise, if the surpluses of all non-deleted columns are
negative, we would be dealing with an instance we cannot reconfigure (which is
a case that gets detected at the beginning of the algorithm). The donor-receiver
pair selection picks one such pair. There are three possible scenarios:

• The donor’s surplus is bigger than the receiver’s deficit, in which case the
receiver is deleted.

• The donor’s surplus is smaller than the receiver’s deficit, in which case the
donor is deleted.

• The donor’s surplus is equal to the receiver’s deficit, in which case both the
donor and the receiver are deleted.

In all cases, at every iteration, one column gets deleted. Since the input is
finite, the number of columns is finite. It follows that we have a finite number
of iterations. Once we break out of the while loop, we know that the non-
deleted columns have a positive surplus, and that the deleted columns have been
reconfigured; the correctness of the algorithm follows from the correctness of the
path solvers which are run on the non-deleted columns.

In the worst case, O(W) iterations are needed to eliminate deficits from all
columns. In a redistribution-reconfiguration-shuffling call, we run O(HT) linear
exact solvers, each of which runs in O(H). Once the displacement-minimizing
linear exact solution is selected, we shuffle O(H) tokens as far as W − 1 columns.
The running time of O(W (HTH +HW)) follows from this analysis.

Lemma 10. In bidirectional COLAV applied on grid graphs, for a given path
with source vertex vc1,r1 and target vertex vc2,r2 (r1 < r2, c1 < c2), dp[i][j] is the
smallest number of isolated tokens in the path system excluding the current path
on any bidirectional path between the source vertex and vertex vc1+i,r1+j.

Proof. The statement and the proof assume that r1 < r2, c1 < c2. However, even
if that were not the case, the proof can be altered to work for the other three
possible cases.

We prove this using a double induction on the two indices i and j. For the
path going from the source vertex vc1,r1 to itself, there are no tokens on the

83

paths since the current path is excluded from the path system, so dp[0][0] = 0
is correct. Similarly, for the vertices on the same column and the same row as
vr1,c1 , there is a single path to them, so is_isolated_token[i][j] + dp[i − 1][j]
and is_isolated_token[i][j] + dp[i][j − 1] respectively compute the number of
isolated tokens on the path to those vertices correctly. Now, assume that dp[i][j]
takes on the correct value for 0 ≤ i ≤ k, 0 ≤ j ≤ k′ (excluding the pair (k, k′)).
That is, dp[i][j] is the smallest number of isolated tokens on any bidirectional
path between the source vertex and vertex vc1+i,r1+j in the specified intervals
(excluding the pair (k, k′)). We would like to prove that dp[k][k′] takes on the
correct value.

In any path from vc1,r1 to vc1+k,r1+k′ , vertex vc1+k,r1+k′ can be reached from
either vertex vc1+k−1,r1+k′ or vertex vc1+k,r1+k′−1; by the inductive hypothesis, we
already know the smallest number of isolated tokens from vc1,r1 to either of those
two vertices; the smallest number of isolated tokens from vc1,r1 to vc1+k,r1+k′ will
therefore be the minimum of those two values, to which we add 1 in case there is
an isolated token on vertex vc1+k,r1+k′ .

This concludes the proof.

Lemma 11. The bidirectional COLAV procedure applied on grid graphs termi-
nates in time O((HW)3).

Proof. In bidirectional COLAV, a path is modified if and only if we were able to
find a rerouting that is able to isolate at least one more token compared to the
original path. Since the number of tokens is linear in HW , so is the number of
paths that will be rerouted. Also, the algorithm terminates when it loops over
all paths without rerouting any path, which is bound to happen. The proof of
termination is complete.

The running time of a single path rerouting is O(HW). There can be at
most O(HW) reroutings, because the number of tokens is O(HW), and every
token rerouting may require looping over O(HW) paths. The running time of
bidirectional COLAV is therefore O((HW)3).

Lemma 12. In bounded COLAV applied on grid graphs, for a given path with
source vertex vc1,r1 and target vertex vc2,r2 (r1 < r2, c1 < c2), min(dp[dpH +
dpW][m + dpW − 1][m + dpH − 1], dp[dpH + dpW + 1][m + dpW − 1][m + dpH −
1], . . . , dp[(dpH +2m)×(dpW +2m)−1][m+dpW −1][m+dpH−1]) is the smallest
number of isolated tokens in the path system excluding the current path on any
path between the source vertex and the target vertex.

Proof. As was the case for the proof of correctness of bidirectional COLAV, the
statement and the proof assume that r1 < r2, c1 < c2. However, even if that were
not the case, the proof can be altered to work for the other three possible cases.

We start by proving the correctness of the dynamic programming approach,
as the correctness of the statement we are trying to prove follows directly from

84

that. That is, we start by proving that dp[i][j][k] is the smallest number of
isolated tokens on any path of length i between vc1,r1 and vc1+j−m,r1+k−m in the
path system that excludes the current path.

When computing dp[i][j][k], we use the value −1 to signify that vc1+j−m,r1+k−m
cannot be reached from vc1,r1 within i displacements.

We will induce on the first dimension only (i.e. the displacement dimension).
With no displacements, starting from vc1,r1 , we can only reach vc1,r1 . Since

the current path is excluded from the path system, there are no tokens from
vc1,r1 to itself, therefore dp[0][m][m] = 0. No other vertex is reachable for i = 0,
so it should be the case that dp[0][i][j] is equal to −1 (0 ≤ i < dpW + 2m,
0 ≤ j < dpH + 2m, except i = j = m), which is true.

Now, assume that dp[l][j][k] takes on the correct values (0 ≤ j < dpW + 2m,
0 ≤ k < dpH + 2m). We would like to prove that dp[l + 1][j][k] takes on the
correct values (0 ≤ j < dpH + 2m, 0 ≤ k < dpW + 2m).

There are two cases to consider here: for a fixed value of the pair (j, k). If none
of vc1+j−m−1,r1+k−m, vc1+j−m+1,r1+k−m, vc1+j−m,r1+k−m−1 and vc1+j−m,r1+k−m+1 is
reachable within l displacements, then vc1+j−m,r1+k−m should not be reachable
within l + 1 displacements. By the IH, we would have dp[l][j − 1][k] = dp[l][j +
1][k] = dp[l][j][k− 1] = dp[l][j][k+ 1] = −1, which gets the value of dp[l+ 1][j][k]
set to −1 as well, which is correct.

The second case is when at least one of the neighbors of vc1+j−m,r1+k−m has
been reached in l steps. By the inductive hypothesis, we have the smallest number
of isolated tokens from vc1,r1 to the reached neighbors of vc1+j−m,r1+k−m in l steps.
vc1+j−m,r1+k−m can only be reached from any of its neighbors that were reached
in l steps, so the smallest number of isolated tokens on any path of length l + 1
from vc1,r1 to vc1+j−m,r1+k−m is equal to the minimum of the values obtained for
the neighbors reached in l steps, to which we add 1 in case there is an isolated
token on vertex vc1+j−m,r1+k−m.

The proof is complete.

Lemma 13. The bounded COLAV procedure applied on general graphs termi-
nates.

Proof. In bounded COLAV on grid graphs, a path change has one of three con-
sequences:

1. The isolation of one or more tokens, with an indeterminate effect on the
overall distance of the path system and the overall number of derivations
in the path system.

2. The decrease of the overall distance of the path system, with an indetermi-
nate effect on the overall number of derivations in the path system.

3. The decrease of the overall number of derivations in the path system.

85

The three affected measures are all polynomial in the size of the grid. The first
scenario can occur polynomially many times, and lead to a polynomial increase
in the other two metrics. Similarly, the second scenario can occur polynomially
many times, and lead to a polynomial increase in the third metric, which means
that the third scenario can occur polynomially many times as well.

Hence, the procedure applied on grid graphs terminates after rerouting poly-
nomially many paths. As for general graphs, we drop the mention of derivations,
and the same termination argument still holds with small modifications.

Lemma 14. The path merging procedure applied on general graphs terminates.

Proof. In path merging, merging two paths has one of three consequences:

1. The decrease of the overall distance of the path system, with an indeter-
minate effect on the number of isolated tokens in the path system and the
frequency of unique edges in unmerged path pairs.

2. The increase of the overall number of isolated tokens in the path system,
with an indeterminate effect on the frequency of unique edges in unmerged
path pairs.

3. The decrease of the frequency of the edge that is unique in the smallest
number of unmerged path pairs, with an indeterminate effect on the fre-
quency of unique edges in other unmerged path pairs.

The first two consequences are evident. Clearly, the first two consequences
occur polynomially many times. Subsequently, we keep selecting the same edge,
until it no longer occurs uniquely in any unmerged path pair. We still have to
show that, once an edge is no longer unique in any unmerged path pair, that its
frequency as a unique edge in an unmerge pair of paths can no longer increase.

If some merge increased the frequency of the edge in question, since merging
involves reusing edges that are already part of the path system, this implies that
the edge already occurred uniquely in some unmerged path pair involving the
path that the merging rerouted through, which contradicts what we said about
the edge no longer being unique in any unmerged path pair.

Lemma 15. Applying path unwrapping on a merged path system defined over a
general graph does not undo merging.

Proof. It is sufficient to show that unwrapping paths within an arbitrary path in
a merged path system does not give rise to a pair of paths that have more than
1 intersection. When unwrapping paths within a path, some paths are shortened
and some paths are extended. Shortening a path does not create an additional
intersection between it and some other path, so we only have to worry about the
paths that get extended as a result of the unwrapping. If the extension of some

86

path makes it intersect some other path more than once, the selected arbitrary
path which initially wrapped the now extended path intersects said path more
than once, because the extended path is a subpath of the selected arbitrary path,
which contradicts the assumption that we started with a merged path system.

Lemma 16. No unwrapped path remain after path unwrapping applied on general
graphs terminates.

Proof. Assume that path Pi remains wrapped in path Pj after termination. We
know that the algorithm should have looped over Pj and its superpaths in its
execution. In Section 5.2.1.4, in the part that covers path unwrapping, we prove
that unwrapping paths within any superpath of Pj would eliminate the wrapping
of Pi within Pj. Since the wrapping persisted, it has to be the case that the
unwrapping of paths within another path that is not a superpath of Pj caused it.
This is not possible, as the only paths that modify Pi and Pj are the superpaths
of Pj.

Lemma 17. In cycle breaking applied on general graphs, if there is a cycle, then
there is a contiguously colored cycle.

Proof. Consider any cycle: if the cycle is contiguously colored, there is nothing to
prove. Otherwise, we describe how this cycle can be transformed into a contigu-
ously colored cycle. We work with the assumption that the edges that separate
edges of the same color on the cycle cannot all be colored in that same color,
otherwise we can eliminate a color discontiguity.

Let i be the color of the cycle edge (u,w). We handle making all other colors
contiguous first.

Consider the vertex representation v1, v2, . . . vk of the cycle (where v1 = u
and vk = w are the endpoints of the cycle edge). Consider a discontinuous color
j: let vl and vm be the earliest and the latest vertex respectively in the vertex
representation of the cycle belonging to path Pj (vl and vm may be v1 and vk
respectively). We know that there is a contiguously colored path from vl to vm:
this path (the edges of which are j-colored) can replace the vl . . . vm subpath in
the vertex representation of the cycle. The new vertex sequence represents a cy-
cle that contains the edge (v1, vk). The original, cycle-edge containing cycle was
therefore transformed into a new cycle edge-containing cycle, and the transfor-
mation reduced the number of discontiguous colors by 1: we say that we merged
color j.

The above only works if the subpath from vl to vm in path Pj does not go
through the cycle edge. If it does, we split the subpath from vl to vm in path
Pj in two. Without loss of generality, assume that, within path Pj, the vertices
are in the following order: vm, u, w, vl (the other four permutations, vm, w, u, vl,
vl, u, w, vm and vl, w, u, vm are handled similarly). The first subpath is from vm to
u and the second subpath is from w to vl. We first make the cycle edge j-colored.

87

Those two subpaths then replace the vm . . . u subpath and the u . . . vl subpath
respectively in the vertex representation of the cycle. Note that color j need not
be contiguous after this step, and that changing the color of the cycle edge may
have caused a discontiguity in color i if none already existed; if it did, that is not
an issue because the i-colored discontiguous edges are eliminated from the cycle.

We exhaustively apply the procedure above, and we end up with a cycle where
the only discontinuous color, if any, is the color of the cycle edge, which we call
i. We now describe how color i can be made contiguous.

In the vertex representation of said cycle, we are interested in segments that
are i-colored, where an i-colored segment is a maximal contiguous sequence of
i-colored edges in the edge representation of the cycle. If there is only one i-
colored segment, the cycle is contiguously colored and we are done. Otherwise,
we have two or more i-colored segments. We sort those segments by their order of
appearance within path Pi, starting from path Pi’s source vertex. After sorting,
we end up with a (possibly empty) set of segments (Sbefore) occurring before the
segment that contains the cycle edge, followed by the segment that contains the
cycle edge, followed by a (possibly empty) set of segments (Safter) occurring after
the segment that contains the cycle edge. The nonempty sets of segments can
be separately and sequentially turned into a single segment by using the same
method as the one we previously described for the other colors; empty sets of
segments are ignored. It may be the case that some of the segments in Safter
are no longer part of the cycle after we merge segments in Sbefore: after Sbefore’s
segments are merged, Safter is updated to include only segments that are still in
the cycle, and the same process is repeated for Safter.

Afterwards, we end up with at most three i-colored segments, such that all
vertices of Pi on the cycle are part of some segment. We now show how to
transform a cycle containing three i-colored segments into one containing two
i-colored segments, which we then transform into a cycle containing a single i-
colored segment.

Let the cycle edge-containing segment be s0, and let the latest and the earliest
segment in the vertex representation of the cycle be s1 and s2 respectively. We
call starts1 and ends1 the earliest and the latest vertex respectively in s1 in the
vertex representation of the cycle, and we use a similar notation for s2 and s0.
Now, we sort those segments by their order of appearance within path Pi, as we
did in the previous step. No matter how the order looks like, there must exist a
path from s0 to one of the two other segments that does not go through the third
segment. Without loss of generality, assume that there is a path from s0 to s2.
There are four possible cases involving the four vertices starts0 , ends0 , starts2 and
ends2 : there is a path from starts0 to ends2 along Pi not going through the other
two vertices, there is a path from starts0 to starts2 along Pi not going through
the other two vertices, there is a path from ends0 to ends2 along Pi not going
through the other two vertices, there is a path from ends0 to starts2 along Pi not
going through the other two vertices.

88

Figure 8.3: Cases where the innermost path between s0 and s2 is between ends0
and a vertex of s2

Figure 8.4: Cases where the innermost path between s0 and s2 is between starts0
and a vertex of s2

89

In the first two cases (depicted in Figure 8.3), a cycle can be formed by replac-
ing the starts2 . . . ends0 subpath in the first case (or starts2 . . . ends0 subpath in
the second case) in the vertex representation of the original cycle by the subpath
of Pi bounded by those two vertices. In all cases, we end up with a cycle where
color i is contiguous (depicted in green), and we are done.

In the second two cases (depicted in Figure 8.4), the subpath of path i bounded
by starts0 and starts2 in the first case (or by starts0 and ends2 in the second case)
can be used to merge segments s0 and s2. After the merge, we end up with a
cycle with two i-colored segments. The same process is then repeated again to
merge those two segments.

Lemma 18. In cycle breaking applied on general graphs, if there is a cycle, then
there exists a cycle going through the cycle edge that is induced by two or fewer
cycle edge-containing paths.

Proof. We can assume that we are starting with a cycle where the edges of the
same color are contiguous along the cycle, thanks to Lemma 17. We show how
to transform this cycle into a cycle that uses two or fewer cycle edge-containing
paths.

If the cycle already has this property, there is nothing to prove.
Otherwise, the cycle uses three or more cycle edge-containing paths. we de-

scribe how this cycle can be transformed.
Assume we are dealing with a total of k different cycle edge-containing paths

in the cycle, with color 1 being the color of the cycle edge.

Observation 5. Changing the color of the cycle edge can give rise to at most 2
color discontiguities.

We now describe a process that yields a cycle with the desired properties.
We cycle through the k possible colors for the cycle edge in order, and, for every
color, we merge the cycle edge with the other segment of the same color. The
first color change may cause two discontiguities: one discontiguity in color 1 if
the cycle edge is not at the extremity of segment 1, and one discontiguity in
color 2. We fix the discontiguity in color 2 using the method from the previous
lemma that deals with merging the color of the cycle edge. Note that this may
eliminate some colors; if a color is eliminated, it is skipped in the color cycling of
the cycle edge. Next, we color the cycle edge using color 3: note that this does
not cause a discontiguity in color 2 because the cycle edge is at the extremity of
color 2’s segment; we merge color 3, and we proceed. Any coloring + merging can
eliminate a color, but can never cause a discontiguity in any of the other colors.
We then cycle back to color 1. At this point, there are no discontiguities in the
cycle, and no color change applied on the cycle edge can cause discontiguities,
based on what was mentioned before. We claim that the cycle resulting from this
process conforms to the property we are looking for. That is, it uses two or fewer
cycle edge-containing paths.

90

Assume it does not, that is, assume that it uses three or more cycle edge-
containing paths. If any of those cycle edge-containing paths is not incident to
the cycle edge, the color of the cycle edge can be changed to cause a discontigu-
ity. Otherwise, the only case where we have three or more contiguous segments
incident to the cycle edge is when (vk−1, vk), (vk, v1) and (v1, v2) have three dif-
ferent colors. However, in that case, (vk, v1) can be colored using one of the other
two colors and the path corresponding to the original color of (vk, v1) can be
discarded.

This concludes the proof.

Lemma 19. In cycle breaking applied on general graphs, If an inclusion-minimal
set of paths P = {P0, P1, . . . Pk−1} induces a cycle then it induces a single cycle.

Proof. We claim that any minimal set of paths that induces cycles induces exactly
a single cycle. Assume the set of paths P0, P1, . . . Pk−1 induces multiple cycles
and is inclusion-minimal. We can also assume that the colors in the cycle edge-
containing cycle they induce are contiguous.

Consider the ordering of the segments in the cycles. Two segment orderings
are different if they are not a cyclical permutation (possibly reversed) of each
other. If there exists two cycles that have different segment orderings, there
exists a segment si that is adjacent to at least three different segments sj, sl, sm
(meaning that the corresponding paths intersect) across the two cycles. Pick any
cycle: the segment si cannot be adjacent to sj, sl and sm within the segment
ordering of the cycle at once. Without loss of generality, assume that, in the
selected cycle, si is not adjacent to sj: starting from the segment ordering of the
selected cycle, we can construct a sequence of segments that omits the segments
between si and sj because paths Pi and Pj intersect. The constructed sequence of
segments corresponds to a set of paths with cardinality < k that induces a cycle,
thus contradicting the fact that the set of paths P0, P1, . . . Pk−1 was assumed to
be inclusion-minimal.

We now handle the case where all the cycles induced by the set of paths have
the same ordering of segments. It is sufficient to prove that two cycles that have
the same segment ordering are the same cycle. Consider two cycles Ci and Cj that
have the same segment ordering. For each of the two cycles considered separately,
every path contains at least one edge that it does not share with any other path,
which we call a path-unique edge, otherwise, a path can be omitted from the set
of paths and the remaining paths would still induce a cycle. Let s0, s1, . . . sk−1
be the segment ordering that Ci and Cj share. Consider the two paths P0 and
P1 whose segments are consecutive in the segment ordering: every cycle has to
go through at least one path-unique edge in P0 and one path-unique edge in P1,
and since the segments are contiguous, the cycle goes through the path-unique
edges in question via the intersection of the two paths. Since the pair of paths
whose segments are consecutive in the segment ordering were picked arbitrarily,
it follows that both Ci and Cj contain the edges in all the path intersections. A

91

similar argument can be used to show that the inclusion of the edges in the path
intersections in both cycles implies the inclusion of the edges in the subpaths
between the path intersections in both Ci and Cj. It follows that the two cycles
are identical, since they both include the edges in the path intersections and the
edges between the path intersections.

Lemma 20. In cycle identification applied on general graphs, paths P0, P1, . . . Pk−1
induce a special cycle if and only if rP0 is reachable from lP0 through vertices
vP1 , vP2 , . . . vPk−1

in one of the generated (lP0 , rP0) reachability instances.

Proof. (→) If we have a special cycle, we know that it is contiguously colored,
that the paths that induce it induce no other cycles and that it uses at most
two cycle edge-containing paths. We are able to extract a cyclical sequence of
paths P0, P1, . . . Pk−1 such that every path intersects the one before and after
it with wraparound for P0 and Pk−1 (and those are the only path intersections,
otherwise we end up with more than one induced cycle). Also, at least one of the
paths has to be cycle edge-containing. Without loss of generality, let P0 be cycle
edge-containing. There are two cases we need to handle. If P0 is the only cycle
edge-containing path in the special cycle, there is a path from vP1 to vPk−1

in all
of the path intersection graphs that have P0 as the base path. We are interested
in the path intersection graph with no support paths. P1 and Pk−1 each intersect
a different side of P1, because if that were not the case, the resulting cycle, which
is the only cycle that the set of path induces, would not contain the cycle edge.
Therefore, we either have an edge from vP1 to lP0 and from vPk−1

to rP0 , or edges
from vP1 to lP0 and from vPk−1

to rP0 . In either of the two cases, rP0 is reachable
from lP0 . A similar argument can be made in the case where the special cycle has
two cycle edge-containing paths.

(←) Assume rP0 is reachable from lP0 , and let lP0 , vP1 , vP2 , . . . vPk−1
, rP0 be the

corresponding path that we obtained from the BFS tree. We can easily verify
that the existence of such a path implies the existence of a set of paths that
induces cycles, this set of paths being P0, P1, . . . Pk−1. We still have to show that
they induce a special cycle.

The easiest criterion to verify is that no more than two cycle edge-containing
paths are involved, as this follows by construction of the path intersection graphs,
since all of them involve either one base path or one base path and one support
path.

We now show that the path from lP0 to rP0 implies the corresponding set of
paths induce a single cycle. Assume that a proper subset of the paths induces a
cycle, and pick the smallest such subset. Let Pi be the path in said subset such
that vPi is the earliest occurring vertex in the path from lP0 to rP0 . There exists
two paths it intersects within the subset such that they occur later in the path
from lP0 to rP0 ; let those paths be Pj and Pk. Since vPi is the earliest occurring
vertex, BFS visited it earlier than vPj and vPk . Therefore, in the BFS tree, vPj

92

and vPk are children of vPi : the path from a leaf (rP0 specifically) to the root of
the BFS tree cannot therefore include both vPj and vPk . It follows that the set
of paths P0, P1 . . . Pk−1 induces a single cycle.

The color contiguity criterion does not require proving, as we have already
proven that any cycle can be turned into a contiguously colored cycle without
adding new paths. With that being said, we will prove something even stronger:
all possible colorings of the cycle that the set of path P0, P1 . . . Pk−1 induces are
contiguous.

Assume some coloring of the cycle creates a discontiguity. Pick the discon-
tiguous color that corresponds to the path whose vertex is the earliest in the path
from lP0 to rP0 . If the color is adjacent to three or more different colors then we
can use the same argument that we used to prove the paths induce a single cycle
to show that the color cannot be adjacent to 3 other colors. Otherwise, if we
have a discontiguous color that is adjacent to two or fewer different colors, then
we have an unmerged pair of paths. This is not possible, because the input of
the cycle breaking procedure is a merged path system.

Lemma 21. The cycle breaking procedure applied on general graphs terminates
in time polynomial in the input size.

Proof. The cycle breaking procedure was designed in a way that ensures it ter-
minates in polynomial time. If we limited it to arbitrarily detecting and breaking
cycles, it would have been harder to prove that the procedure terminates, and
even harder to prove that it terminates in time polynomial in the input size.
Breaking a single cycle has one of three consequences:

1. The decrease of the overall distance of the path system, with an indetermi-
nate effect on the number of isolated tokens in the path system and edge
frequency.

2. The increase of the overall number of isolated tokens in the path system,
with an indeterminate effect on edge frequency.

3. The decrease of the frequency of the least frequent edge that is part of a
cycle, with an indeterminate effect on the frequency of the other edges.

The consequences and their hierarchy are given by construction of the algo-
rithm. The first consequence can occur polynomially many times and decreases
the sum of the edge frequencies; it may also increase the number of isolated to-
kens (but not decrease them, as cycle breaking reroutes paths through edges that
are already in paths in the path system). Irrespective of the first consequence,
the second consequence can occur polynomially many times, because there are
polynomially many tokens, and the third consequence can occur polynomially
many times, since edges that are taken out of cycles are not brought back into
cycles because of how cycle breaking is designed.

93

Given all the above, as well as the fact that cycle breaking is done in poly-
nomial time, it follows that the cycle breaking procedure terminates in time
polynomial in the size of the input.

Lemma 22. In a path system on general graphs, two paths that cross some edge
in opposite directions cannot be part of a distance-minimizing path system.

Proof. Let Pi = {v0, v1, . . . , vi−1, vi, vi+1, vi+2, . . . , vk−1} and Pj = {u0, u1, . . . , uj−1
, uj, uj+1, uj+2, . . . ul−1} be two paths that cross at least one edge in opposite
directions (uj = vi+1 and uj+1 = vi). The paths can be updated to P ′i =
{v0, v1, . . . , vi−1, uj+1, uj+2, . . . ul−1} and P ′j = {u0, u1, . . . , uj−1, vj+1, vj+2, . . . vk−1}
respectively. Clearly, the updated path system is still valid, as we still have the
same source vertices and target vertices, and we have reduced the total distance
of the path system by 2. Note that the absence of paths crossing the same edge
in opposite is a necessary but not a sufficient condition for a distance-minimizing
path system on a grid.

Lemma 23. The number of displacements outputted by the exact extraction/
implantation forest solver is equal to the total distance of the corresponding path
system.

Proof. It is sufficient to prove the statement for trees. The path system that the
exact extraction/implantation forest solver works with is distance-minimizing.
By Lemma 22, for any tree, we know that none of its paths will be crossing edges
in opposite directions. Moreover, the frequency of every edge has a distinctive
significance. In any tree T , consider an edge e = (u, v), and let T1 and T2 be
the two trees obtained after removing edge e. The source vertices of all paths
that have vertices in both T1 and T2 are either all in T1 or all in T2. Without
loss of generality, assume that those paths go from T1 to T2, this means that
the edge frequency indicates the token deficit of T1, or the number of target
vertices in T1 minus the number of source vertices in T1. Let the frequency of
edge e be k. Clearly, if less than k tokens traversed the edge from T1 to T2, we
would not be able to clear the token deficit of T1. We now show that the exact
extraction/implantation forest solver cannot move k+m tokens from T1 to T2 and
m tokens from T2 to T1, which still clears the token deficit of T1 (m > 0). This
follows from the proof of correctness of Călinescu’s exact extraction/implantation
tree solver, which arbitrarily roots the tree and solves it in a bottom-up fashion,
with each subtree being considered either a donor subtree (if its number of tokens
exceeds its number of target vertices), a receiver subtree, (if its number of target
vertices exceeds its number of tokens), or a solved subtree (if its number of tokens
is equal to its number of target vertices). A donor subtree cannot turn into a
receiver subtree (or vice versa), so the edge connecting the root of every subtree
to the rest of the tree is only used in one direction, and this applies to every
subtree, and therefore every edge.

94

Chapter 9

Experimental Setup and
Experimental Results

In this section, we cover myriad experimental results related to the path solvers
and the grid solvers. The integrality of the experiments was run on a machine
with a AMD EPYC 7551 CPU with 8 cores and with a total of 32GB of memory.
The experiments that were run on the GPU were run on a Tesla V100 GPU with
32GB of device memory.

Since the number of experiments that we can run is considerably large, we
limit the plots included in this chapter to representative results, along with their
interpretation. The plots for the rest of the experiments can be found in Appendix
A.

9.1 Experiments on path solvers on the CPU

When it comes to path solvers, our main focus is running time. The algorithms
were designed to work with token surplus, so we include multiple experiments
with different surplus ratios, where a surplus ratio of x means K = (1 + x)K ′

(the value of K is rounded up to the nearest integer). The surplus ratios we look
at are x1 = 0 and x2 = 0.1. A surplus ratio of 0.1 with the number of target
vertices being equal to half the number of traps is the standard scenario for both
path instances and grid instances. In this section, we include scatter plots for the
running times of our path solver algorithms using the batched token mover and
the block batched token mover. The plotted data is averaged over 100 randomly
generated token moving instances with randomly generated token locations and
centered target regions to make comparisons between the bruteforce path solver
and the rest of the solvers possible.

The figures included in this section each consist of two plots. The left plot
contains all data points, whereas the right plot has a cutoff at 0.02 s on the y-axis
which makes it possible to see the relationship between datapoints that would

95

have otherwise overlapped.

Figure 9.1: CPU running times for path solvers on centered targets with no
surplus (batched token moving).

Figure 9.2: CPU running times for path solvers on centered targets with a surplus
ratio of 0.1 (batched token moving).

96

Figure 9.3: CPU running times for path solvers on centered targets with no
surplus (block batched token moving).

Figure 9.4: CPU running times for path solvers on centered targets with a surplus
ratio of 0.1 (block batched token moving).

The results we obtain within every plot are unremarkable: the Hungarian-
based path solver has the slowest running time out of all the path solvers we
discussed, and this can be traced back to the running time of the Hungarian
solver that is cubic in the number of tokens. The Hungarian-based path solver
augmented with binary search is slower than the regular Hungarian-based path

97

solver by a factor that is logarithmic in the length of the path, as expected.
There are three key takeaways from the plots: an increase in K

K′
slows down all

path solvers on the CPU except the linear exact path solver, and that can be
attributed to its running time being linear in N rather than in K. Moreover,
on the CPU, the greedy path solver is outperformed by both the bruteforce path
solver and the linear exact path solver in terms of running time. It follows that the
greedy path solver has no practical use on the CPU, since the linear exact path
solver minimizes displacement operations and has a better running time. The
final note to be made about those results is that comparing the same algorithm
across multiple token movers allows us to make inferences regarding the effect of
the selected token mover on the running time. The running time does not vary
when different token movers are used, which means that the running times are
dominated by the token-vertex matching procedure.

9.2 Experiments on path solvers on the GPU

On the GPU, the experiments we run on path solvers are very similar to those
on the CPU. However, the setup on the GPU also needs to take into account
the interaction between the last three modules in the RTFC (Figure 1.2). In
the parallel version of the RTFC, the problem solving module writes batches or
block batches into a buffer, and the waveform synthesis module reads from the
buffer as it is being written into, synthesizes the waveforms, then writes them to
the buffer of the waveform streaming module. We rely on simplifying working
assumptions to be able to approximately assess whether our solvers are of any
use in practice. We assume that the waveform streaming module is capable of
streaming waveforms at a rate of 1 waveform every 10 µs. We are therefore tar-
geting generating batches at a faster rate, otherwise, the problem solving module
becomes the bottleneck of the RTFC.

98

Figure 9.5: GPU running times for path solvers on centered targets with no
surplus (batched token moving).

Figure 9.6: GPU running times for path solvers on centered targets with a surplus
ratio of 0.1 (batched token moving).

99

Figure 9.7: GPU running times for path solvers on centered targets with no
surplus (block batched token moving).

Figure 9.8: GPU running times for path solvers on centered targets with a surplus
ratio of 0.1 (block batched token moving).

The analysis will mainly revolve around the experiments with batched token
moving, though similar inferences can be made from the experiments with block
batched token moving. The kernel launch overhead makes the parallel algorithms
run slower than their serial counterparts; the average running time across non-
Hungarian solvers on the CPU for N = 8 is 3 µs compared to 75 µs on the

100

GPU. With that being said, the GPU implementations outperform all the CPU
implementations as of some N ≤ 1024 that is different for every algorithm, except
in the case of the greedy solver, which suffers from contention due to atomic
operations: with no surplus and for N = 1024, the linear exact path solver on
the GPU runs in 100 µs on average, as compared to 200 µs on the CPU, whereas
the bruteforce path solver on the GPU runs in 200 µs on average, as compared
to 750 µs on the CPU. The results we have obtained for the Hungarian-based
path solver are aligned with the empirical results from the paper we reference
[33] and a speedup is only perceived for values of N ' 750. What is unusual is
the speedup we recorded in the running time of the Hungarian-based solver after
surplus was introduced: the serial logic within the parallel implementation of
the parallel Hungarian solver is tightly bound to the values and the shape of the
input matrix, and any perturbation in that regard may lead to vastly different
running times, which explains the results we obtained.

We exclude experiments dealing with Hungarian-based path solving with
k−ary search because Hungarian-based path solvers, even with speedup, are very
slow and will therefore not be included in the GPU implementation of the RTFC.

We now take a look at how the three path solvers of interest perform in terms
of average running time per batch. It is worth noting that the average running
time per batch is not an accurate measurement of how well the algorithms will
integrate into the RTFC because we are omitting a core concern, which is how
the generation of batches is distributed over the running time of the algorithm.
Ideally, we would want the batches to be outputted at even intervals. However,
in practice, this is not the case, as token-vertex matching has to take place first
and matching makes up the majority of the running time of the solvers.

Adding tokens to the source configuration has two consequences. On the one
hand, it is expected to reduce the number of block batches required to solve the
instance, and on the other hand, it is expected to increase the running time. In
Figure 9.9, the relevant path solvers, namely bruteforce path solver and linear
exact path solver, beat the targeted 10 µs per batch starting N = 32, and the
inclusion of surplus is inconsequential.

9.3 Experiments on grid solvers on the CPU

This section is dedicated to comparing our grid solvers to grid solvers in the
literature. In this section, we cover mean success probability (MSP), our main
metric of interest, across multiple algorithms. We also highlight the performance
of the algorithms in terms of total operations, as well as the distribution of the
operations across tokens.

The simulations in this section were devised in a way that makes them as
representative of the execution of the experiments on the RTFC, so we introduce
the notion of loading efficiency. The hardware specifies a probability pload of

101

Figure 9.9: Average GPU running time per block batch for path solvers on cen-
tered targets with no surplus (left) and with a surplus ratio of 0.1 (right).

a trap being loaded with an atom, and that is how the initial atom array is
assembled. This probability is shared across all traps, and the loading of the
traps are independent events. If the number of atoms loaded initially is smaller
than the size of the target region, the instance is discarded in the simulation.

When the concept of success probability and token loss was introduced, we
oversimplified the token loss function (and, consequently, the aggregate loss func-
tion). In reality, the per-token loss function depends on a parameter for displace-
ments (pν), a parameter for extractions/implantations (pα), the per-token number
of displacements (Nν), the per-token number of extractions/implantations (Nα),
the elapsed token moving time (t), and the lifetime of the token (Tν), which is
given as a constant and takes on the same value across all tokens. The per-token
loss function we use in our experiments is:

pi(Nαi , Nνi , t) = 1− pNαiα p
Nνi
ν e−

t
Tν

We now introduce the naming conventions for the algorithms we refer to in our
experiments. In Chapter 5, we introduced the HUNGARIAN-COLAV algorithm,
which does both rerouting using COLAV, and ordering of moves using cycle
breaking and the exact extraction/implantation forest solver. There is nothing
that prohibits us from using one without the other: if ordering is not used, we
default to the usage of the greedy solver. We therefore have a total of four
different algorithms: greedy HUNGARIAN-NOCOLAV (which is our baseline),
greedy HUNGARIAN-COLAV, HUNGARIAN-NOCOLAV and HUNGARIAN-
COLAV. When COLAV is active, bidirectional COLAV is the version that is

102

used.
Figure 9.10 highlights the MSP of token moving on a grid of size 64 × 32

with a centered target of size 32 × 32, with no greedy token isolation and with
pload = 0.6. For REDRED v2.1, we set k to 2. The REDREC algorithms are
similar in terms of running time: token moving takes around 0.1 s per instance
on the CPU for all 3 of them. The running times of greedy HUNGARIAN-
NOCOLAV and HUNGARIAN-COLAV are drastically worse and take 0.7 s to
run on average. The slowdown is however made up for in terms of improvement
in operational performance: for the problem size of interest, the performance of
greedy HUNGARIAN-NOCOLAV is comparable to that of REDREC v1, while
the improved REDREC algorithms more than double the MSP: REDREC v2.0
has a MSP of 0.281 over the 500 tested instances, compared to a MSP of 0.286
for REDREC v2.1. The full HUNGARIAN-COLAV algorithm outperforms the
REDREC-based algorithms, despite the slowdown in running time, and comes
with the extra benefit of being able to solve instances where the target region is
not centered.

Figure 9.10: Mean Success Probability of token moving on grids of size 64 × 32
and targets of size 32 × 32 (pload = 0.6) with greedy token isolation disabled for
the different grid solvers, averaged over 500 instances.

We now look at the number of operations in solutions of individual instances
in 8 different algorithms (Figure 9.11). On the one hand, the 3-approximation
algorithm for extraction/implantation minimization outperforms the rest of the
algorithms when it comes to extractions/implantations, though it suffers from
the absence of a mechanism that can control displacements. On the other hand,
the greedy HUNGARIAN-NOCOLAV algorithm minimizes total displacement
operations but does poorly in terms of extractions/implantations. This data
motivated the design of the original REDREC algorithm. REDREC v1 outper-
forms the greedy grid solvers in terms of extractions/implantations, though this

103

comes at the cost of extra displacements, with REDREC v1 incurring 10% more
displacement operations on average. The improved REDREC algorithms fare
slightly worse than the Hungarian-based grid solvers with ordering, though the
differences are very small. With that being said, the Hungarian-based algorithms
with ordering outperform the upgraded REDREC algorithms by a non-negligible
margin when it comes to success probability, as can be seen in Figure 9.10, so the
inferences that can be made by looking at overall operations are limited. What
our algorithms did is that they bridged the gap between greedy HUNGARIAN-
NOCOLAV with no greedy token isolation, our baseline, and the pareto-optimal
solutions that have the minimum displacement possible.

Figure 9.11: Operations executed in token moving on grids of size 64 × 32 and
targets of size 32 × 32 (no surplus) with greedy token isolation disabled for the
different grid solvers, averaged over 500 instances.

The last discussion point for grid solvers on the CPU pertains to our heuristics
and theoretical work. The data supports our claims regarding extraction/implantation
operations: our greedy grid solvers may extract/implant the same token multiple
times (Figure 9.12), but that is not the case for grid solvers with ordering (Figure
9.13). The experiments show that grid solvers with ordering perform very poorly
compared to the 3-approximation algorithm for extraction/implantation mini-
mization when it comes to extractions/implantations (Figure 9.14), and that is
an artifact of the experiments being run using bidirectional COLAV, which min-
imizes overall displacement operations

104

Figure 9.12: Distribution of extraction/implantation operations across tokens
on grids of size 64 × 32 and targets of size 32 × 32 (no surplus) with greedy
token isolation disabled for greedy HUNGARIAN-NOCOLAV (left) and greedy
HUNGARIAN-COLAV (right), averaged over 500 instances.

Figure 9.13: Distribution of extraction/implantation operations across tokens
on grids of size 64 × 32 and targets of size 32 × 32 (no surplus) with greedy
token isolation disabled for HUNGARIAN-NOCOLAV (left) and HUNGARIAN-
COLAV (right), averaged over 500 instances.

105

Figure 9.14: Distribution of extraction/implantation operations across tokens on
grids of size 64×32 and targets of size 32×32 (no surplus) for the 3-approximation
algorithm for extraction/implantation minimization, averaged over 500 instances.

Refined plots for the data presented in this section, in addition to extra plots
that do not present information that is pertinent enough to include in this section,
can be found in Appendix A.

9.4 Experiments on grid solvers on the GPU

Given that the previous section covered a detailed comparison of the grid solvers,
we dedicate this section to assessing the running time of REDREC v2.0 on the
GPU, and we focus on the average running time per batch, which we compare
to the waveform streaming interval mentioned in Section 9.2. We run our ex-
periments on grids of variable dimensions in increments of 4, from grids of size
4×4 up to grids of size 64×64. In all the instances, the target region is centered
and has a height that is equal to half that of the grid. Experiments showed that
the surplus ratio does not change the results by much, so the presented table is
for instances with a surplus ratio of 0.1. The experiments are limited to grid
instances where GH ≥ GW .

106

Table 9.1: REDREC v2.0 execution time on the GPU in milliseconds, averaged
over 100 instances

H
W 8 12 16 20 24 28 32

8 1.84
12 2.13 2.72
16 1.72 2.47 3.12
20 1.97 2.18 3.065 3.4
24 1.91 2.41 2.88 3.668 3.68
28 1.71 2.61 2.97 3.39 3.9 4.58
32 1.88 2.12 2.84 3.15 4.00 4.31 4.64
36 1.76 2.17 2.92 3.61 3.95 4.21 4.88
40 1.76 2.56 2.86 3.24 4.40 3.95 5.06
44 1.99 2.56 2.54 3.39 3.89 4.57 3.99
48 1.84 2.23 2.78 3.51 3.33 3.72 4.10
52 1.96 2.35 2.49 3.59 3.39 4.17 4.19
56 1.78 2.26 2.70 3.18 3.26 3.85 3.99
60 1.77 2.49 2.67 3.32 3.79 4.06 3.86
64 1.73 2.27 2.65 3.11 3.91 3.42 4.26

GH

GW 36 40 44 48 52 56 60 64

36 5.21
40 5.43 5.89
44 4.65 5.38 5.54
48 4.82 5.64 5.34 5.47
52 4.87 5.01 5.6 6.07 6.06
56 4.5 5.26 5.34 5.44 5.82 6.52
60 4.42 5.67 5.80 5.48 5.87 6.61 7.23
64 4.71 5.20 5.52 5.78 5.93 6.66 6.31 7.22

107

Table 9.2: REDREC v2.0 average execution time per batch on the GPU in mil-
liseconds, averaged over 100 instances

H
W 8 12 16 20 24 28 32

8 0.129
12 0.101 0.084
16 0.067 0.063 0.054
20 0.057 0.044 0.046 0.042
24 0.050 0.041 0.037 0.035 0.032
28 0.037 0.037 0.033 0.029 0.028 0.029
32 0.037 0.027 0.027 0.025 0.025 0.024 0.022
36 0.031 0.025 0.025 0.025 0.022 0.021 0.021
40 0.029 0.027 0.022 0.020 0.022 0.018 0.019
44 0.028 0.024 0.018 0.019 0.018 0.018 0.015
48 0.023 0.018 0.018 0.018 0.015 0.014 0.013
52 0.024 0.019 0.015 0.017 0.014 0.014 0.014
56 0.021 0.017 0.015 0.015 0.013 0.012 0.011
60 0.019 0.018 0.014 0.013 0.013 0.012 0.01
64 0.017 0.014 0.013 0.012 0.013 0.01 0.01

H
W 36 40 44 48 52 56 60 64

36 0.020
40 0.019 0.018
44 0.015 0.015 0.015
48 0.013 0.014 0.014 0.012
52 0.012 0.012 0.012 0.012 0.011
56 0.011 0.012 0.011 0.01 0.01 0.011
60 0.011 0.012 0.011 0.01 0.01 0.01 0.01
64 0.01 0.01 0.01 0.009 0.009 0.009 0.008 0.009

In terms of running time, parallel REDREC v2.0 is 10 times slower on average
on the GPU than it is on the CPU (values not shown) across all grid dimension.
This is to be expected, because we were not able to extract a lot of parallelism
from the algorithm due to its serial logic. With that being said, the average
running time per block batch matches the target interval of 10 µs for large grid
dimensions (GW ≥ 52, GH ≥ 52). The usage of the current REDREC v2.0
parallel implementation is therefore only problematic for small grid sizes.

108

Chapter 10

Conclusion

In this thesis, we formally defined atom assembly with atom loss as a graph
reconfiguration problem, which we call the Maximum Success Token Mov-
ing problem. We worked on aggregating what we know about related problems
into concrete, polynomial-time algorithms on paths and grids. On paths, we re-
lied on displacement minimization as a heuristic for MSTM, and we introduced
techniques that can be used to express the distribution of displacements across
tokens. On grids, our focus was on the design of algorithms that are able to
express the tradeoff between overall displacement operations and overall extrac-
tion/implantation operations, in an attempt to generalize the relevance of the
algorithms for as large a class of quantum simulators as possible, given that
loss functions are artifacts of the experimental setup. Our work is novel in that
it is the first that encompasses the notion of the aforementioned tradeoff. We
supplement our theoretical results with serial implementations and parallel im-
plementations, as well as empirical data that backs the expected results behind
our algorithm design.

10.1 Future work

In our theoretical work, we established that there cannot be a polynomial time so-
lution for MLTM, as that would imply a polynomial time solution for MEITM.
However, whether there exists a polynomial time algorithm that can generate
a pareto-optimal solution that minimizes displacements remains an open prob-
lem. The possibility of generating any other pareto-optimal solution (except
pareto-optimal solutions that minimize extractions/implantations) in isolation
also remains an open problem, though we postulate that those two problems are
hard.

Since implementation is an integral part of the work that went into this
thesis, we propose improvements that can be made on this end. The current
HUNGARIAN-COLAV and HUNGARIAN-REDIST algorithms are not useful

109

in practice, as they are not able to compete with the REDREC algorithms in
terms of running time. The slowdown can be attributed to the frequent calls to
the Floyd-Warshall algorithm. As such, looking into ways to specialize those two
algorithms for centered target regions would be valuable, and may allow us to
achieve an acceptable running time. If this fails, heuristics for APSP could be
put to use as well.

Furthermore, the theory that underlies our Hungarian-based grid implemen-
tations works for general graphs. As such, the implementation of HUNGARIAN-
COLAV can be modified to work with any graph, and not just grid graphs, as is
the case now. This may be a venture that is worth looking into pending further
experimental results.

In terms of gathering insights about the performance of our solvers, we were
not able to include the results of the HUNGARIAN-COLAV variant that uses
bounded COLAV due to time constraints. This variant is supposed to trace
a curve in Figure 9.11 that takes on the shape of the curve of pareto-optimal
solutions, as seen in Figure 5.2.

Finally, the work on parallelizing grid solvers is primitive: REDREC v2.1
was hastily designed to remedy REDREC v2.0’s serialization; we postulate that
REDREC v2.0’s parallel implementation could be modified to precompute de-
pendencies between column pairs, which would consequently make it possible for
us to extract some parallelism by solving mutually exclusive column pairs in par-
allel, meaning that serialization would be reserved for column pairs that share a
donor or a receiver. Furthermore, the experimental results show negligible differ-
ences in terms of success probability between REDREC v2.0 and REDREC v2.1:
implementing REDREC v2.1 is therefore worthwhile.

110

Appendix A

Figures

A.1 Experiments on path solvers on the CPU

Figure A.1: CPU running times for path solvers on centered targets with no
surplus (unbatched token moving).

111

Figure A.2: CPU running times for path solvers on centered targets with a surplus
ratio of 0.1 (unbatched token moving).

A.2 Experiments on path solvers on the GPU

Figure A.3: GPU running times for path solvers on centered targets with no
surplus (unbatched token moving).

112

Figure A.4: GPU running times for path solvers on centered targets with a surplus
ratio of 0.1 (unbatched token moving).

A.3 Experiments on grid solvers on the CPU

A.3.1 Distribution of extraction/implantation operations across
tokens

Figure A.5: Distribution of extraction/implantation operations across tokens on
grids of size 64 × 32 and targets of size 32 × 32 (no surplus) for REDREC v1,
averaged over 500 instances.

113

Figure A.6: Distribution of extraction/implantation operations across tokens on
grids of size 64× 32 and targets of size 32× 32 (no surplus) for REDREC v2.0,
averaged over 500 instances.

Figure A.7: Distribution of extraction/implantation operations across tokens on
grids of size 64× 32 and targets of size 32× 32 (no surplus) for REDREC v2.1,
averaged over 500 instances.

A.3.2 Distribution of displacement operations across tokens

Figure A.8: Distribution of displacement operations across tokens on grids of size
64×32 and targets of size 32×32 (no surplus) with greedy token isolation disabled
for greedy HUNGARIAN-NOCOLAV (left) and greedy HUNGARIAN-COLAV
(right), averaged over 500 instances.

114

Figure A.9: Distribution of displacement operations across tokens on grids of
size 64× 32 and targets of size 32× 32 (no surplus) with greedy token isolation
disabled for HUNGARIAN-NOCOLAV (left) and HUNGARIAN-COLAV (right),
averaged over 500 instances.

Figure A.10: Distribution of displacement operations across tokens on grids of size
64×32 and targets of size 32×32 (no surplus) for the 3-approximation algorithm
for extraction/implantation minimization, averaged over 500 instances.

Figure A.11: Distribution of displacement operations across tokens on grids of
size 64× 32 and targets of size 32× 32 (no surplus) for REDREC v1.0, averaged
over 500 instances.

115

Figure A.12: Distribution of displacement operations across tokens on grids of
size 64× 32 and targets of size 32× 32 (no surplus) for REDREC v2.0, averaged
over 500 instances.

Figure A.13: Distribution of displacement operations across tokens on grids of
size 64× 32 and targets of size 32× 32 (no surplus) for REDREC v2.1, averaged
over 500 instances.

116

Bibliography

[1] W. Woolsey Johnson and W. Story, “Notes on the “15” puzzle,” Amer. J.
Math., vol. 2, pp. 393–404, 1879.

[2] T. Ito, E. D. Demaine, N. J. Harvey, C. H. Papadimitriou, M. Sideri, R. Ue-
hara, and Y. Uno, “On the complexity of reconfiguration problems,” Theo-
retical Computer Science, vol. 412, no. 12-14, pp. 1054–1065, 2011.

[3] I. Bloch, J. Dalibard, and S. Nascimbene, “Quantum simulations with ultra-
cold quantum gases,” Nature Physics, vol. 8, no. 4, pp. 267–276, 2012.

[4] L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys, G.-O. Reymond,
and C. Jurczak, “Quantum computing with neutral atoms,” Quantum, vol. 4,
p. 327, 2020.

[5] M. Khazali and K. Mølmer, “Fast multiqubit gates by adiabatic evolution
in interacting excited-state manifolds of rydberg atoms and superconducting
circuits,” Physical Review X, vol. 10, no. 2, p. 021054, 2020.

[6] C. Gross and I. Bloch, “Quantum simulations with ultracold atoms in optical
lattices,” Science, vol. 357, no. 6355, pp. 995–1001, 2017.

[7] A. Cooper. private communication, 2022.

[8] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[9] R. M. Karp and S.-Y. R. Li, “Two special cases of the assignment problem,”
Discrete Mathematics, vol. 13, no. 2, pp. 129–142, 1975.

[10] NVIDIA, P. Vingelmann, and F. H. Fitzek, “CUDA, release: 10.2.89,” 2020.

[11] G. Călinescu, A. Dumitrescu, and J. Pach, “Reconfigurations in graphs and
grids,” SIAM Journal on Discrete Mathematics, vol. 22, no. 1, pp. 124–138,
2008.

[12] B. Cimring and A. Cooper. private communication, 2022.

117

[13] R. A. Hearn and E. D. Demaine, “Pspace-completeness of sliding-block puz-
zles and other problems through the nondeterministic constraint logic model
of computation,” Theoretical Computer Science, vol. 343, no. 1-2, pp. 72–96,
2005.

[14] A. Cooper, S. Maaz, A. E. Mouawad, and N. Nishimura, “Parameterized
complexity of reconfiguration of atoms,” in International Conference and
Workshops on Algorithms and Computation, pp. 263–274, Springer, 2022.

[15] A. Cooper, J. P. Covey, I. S. Madjarov, S. G. Porsev, M. S. Safronova, and
M. Endres, “Alkaline-earth atoms in optical tweezers,” Physical Review X,
vol. 8, no. 4, p. 041055, 2018.

[16] S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini, A. Omran,
D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho, et al., “Quantum phases of
matter on a 256-atom programmable quantum simulator,” Nature, vol. 595,
no. 7866, pp. 227–232, 2021.

[17] A. Ashkin, “Acceleration and trapping of particles by radiation pressure,”
Physical review letters, vol. 24, no. 4, p. 156, 1970.

[18] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a
single-beam gradient force optical trap for dielectric particles,” Optics letters,
vol. 11, no. 5, pp. 288–290, 1986.

[19] S. Chu, J. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation
of optically trapped atoms,” Physical review letters, vol. 57, no. 3, p. 314,
1986.

[20] A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses
and bacteria,” Science, vol. 235, no. 4795, pp. 1517–1520, 1987.

[21] K.-N. Schymik, V. Lienhard, D. Barredo, P. Scholl, H. Williams,
A. Browaeys, and T. Lahaye, “Enhanced atom-by-atom assembly of arbi-
trary tweezer arrays,” Physical Review A, vol. 102, no. 6, p. 063107, 2020.

[22] P. Harish and P. J. Narayanan, “Accelerating large graph algorithms on the
gpu using cuda,” in International conference on high-performance computing,
pp. 197–208, Springer, 2007.

[23] D. Merrill, M. Garland, and A. Grimshaw, “High-performance and scalable
gpu graph traversal,” ACM Transactions on Parallel Computing (TOPC),
vol. 1, no. 2, pp. 1–30, 2015.

[24] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens, “Gunrock:
A high-performance graph processing library on the gpu,” in Proceedings of

118

the 21st ACM SIGPLAN symposium on principles and practice of parallel
programming, pp. 1–12, 2016.

[25] S. Diab, M. G. Olabi, and I. El Hajj, “Ktrussexplorer: exploring the design
space of k-truss decomposition optimizations on gpus,” in 2020 IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1–8, IEEE, 2020.

[26] M. Almasri, I. E. Hajj, R. Nagi, J. Xiong, and W.-m. Hwu, “Parallel k-clique
counting on gpus,” in Proceedings of the 36th ACM International Conference
on Supercomputing, pp. 1–14, 2022.

[27] P. Yamout, K. Barada, A. Jaljuli, A. E. Mouawad, and I. El Hajj, “Parallel
vertex cover algorithms on gpus,” in 2022 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 201–211, IEEE, 2022.

[28] R. Diestel, Graph Theory. Springer Publishing Company, Incorporated,
5th ed., 2017.

[29] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic ef-
ficiency for network flow problems,” Journal of the ACM (JACM), vol. 19,
no. 2, pp. 248–264, 1972.

[30] M. Ivanov, “АВенгерский алгоритм решения задачи о назначениях.”
http://e-maxx.ru/algo/assignment_hungary, Aug 2012.

[31] R. W. Floyd, “Algorithm 97: shortest path,” Communications of the ACM,
vol. 5, no. 6, p. 345, 1962.

[32] W.-m. W. Hwu, D. B. Kirk, and I. El Hajj, Programming Massively Parallel
Processors: A Hands-on Approach. Morgan Kaufmann, 2022.

[33] P. A. Lopes, S. S. Yadav, A. Ilic, and S. K. Patra, “Fast block distributed
cuda implementation of the hungarian algorithm,” Journal of Parallel and
Distributed Computing, vol. 130, pp. 50–62, 2019.

[34] J. Munkres, “Algorithms for the assignment and transportation problems,”
Journal of the society for industrial and applied mathematics, vol. 5, no. 1,
pp. 32–38, 1957.

[35] D. Merrill, “CUB.” https://dx.doi.org/10.5281/zenodo.6868125, 2022.

119

https://dx.doi.org/10.5281/zenodo.6868125

	ACKNOWLEDGEMENTS
	ABSTRACT
	Introduction
	Reconfiguration problems: an overview
	Problem definition
	Goals and contributions
	Thesis structure

	Related Work
	Preliminaries
	Token Moving on Paths on the CPU
	The token moving procedure
	The token-vertex matching procedure
	The Hungarian-based token-vertex matcher
	The Greedy token-vertex matcher
	The Linear Exact token-vertex matcher
	The Bruteforce token-vertex matcher

	Token Moving on Grids on the CPU
	REDREC v2.0
	The Hungarian-based grid solvers
	The modules
	All-pairs shortest path (APSP)
	Minimum weight perfect matching with path retrieval (MWPM + PR)
	Collision avoidance (COLAV)
	Bidirectional COLAV
	Bounded COLAV
	Derivation-averse COLAV

	Ordering
	Path merging
	Path unwrapping
	Cycle breaking
	Computing edge frequencies
	Cycle detection
	Cycle identification
	Cycle breaking
	Preserving the properties of the path system
	Cycle breaking: the conclusion

	Output generation
	Exact extraction/implantation forest solver
	Greedy solver

	Greedy token isolation

	HUNGARIAN-REDIST
	HUNGARIAN-COLAV

	Token Moving on Paths on the GPU
	The token moving procedure
	The token-vertex matching procedure
	The Hungarian-based token-vertex matcher
	The Greedy token-vertex matcher
	The Linear Exact token-vertex matcher
	The Bruteforce token-vertex matcher

	Token Moving on Grids on the GPU
	REDREC v2.0
	REDREC v2.1

	Proofs
	Experimental Setup and Experimental Results
	Experiments on path solvers on the CPU
	Experiments on path solvers on the GPU
	Experiments on grid solvers on the CPU
	Experiments on grid solvers on the GPU

	Conclusion
	Future work

	Figures
	Experiments on path solvers on the CPU
	Experiments on path solvers on the GPU
	Experiments on grid solvers on the CPU
	Distribution of extraction/implantation operations across tokens
	Distribution of displacement operations across tokens

