
AMERICAN UNIVERSITY OF BEIRUT

ON THE COMPLEXITY OF THE MAXIMUM
INDEPENDENT SET RECONFIGURATION

PROBLEM

by

EZZAT ABDEL SALAM CHEBARO

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Science
to the Department of Computer Science

of the Faculty of Arts and Sciences

at the American University of Beirut

Beirut, Lebanon
August 2022

AMERICAN UNIVERSITY OF BEIRUT

ON THE COMPLEXITY OF THE MAXIMUM
INDEPENDENT SET RECONFIGURATION

PROBLEM

by

EZZAT ABDEL SALAM CHEBARO

Approved by:

Prof. Amer E. Mouawad, Assistant Professor Advisor

Computer Science

Prof. Izzat El Hajj, Assistant Professor Member of Committee

Computer Science

Prof. Wassim El Hajj, Associate Dean Member of Committee

Computer Science

Date of thesis defense: August 31, 2022

AMERICAN UNIVERSITY OF BEIRUT

THESIS RELEASE FORM

Student Name:
Last First Middle

I authorize the American University of Beirut, to: (a) reproduce hard or electronic copies
of my thesis; (b) include such copies in the archives and digital repositories of the University;
and (c) make freely available such copies to third parties for research or educational purposes

As of the date of submission of my thesis

After 1 year from the date of submission ofmy thesis .

After 2 years from the date of submission ofmy thesis .

After 3 years from the date of submission ofmy thesis .

Signature Date

This form is dated and signed when asked to submit the final document to ScholarWorks.
DELETE THIS NOTE WHEN SIGNED

Chebaro Abdel SalamEzzat

September 2, 2022

x

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to Prof. Amer E. Mouawad for being
a great professor and advisor throughout both my undergraduate and graduate
degrees. He introduced me to theoretical computer science, and it has quickly
become a new passion of mine. I was eventually taught how to research and
attempt to answer open problems, which has been an eye opening experience as
well as an invaluable skill. Aside from being a teacher, in the traditional sense,
he was also extremely understanding when I faced real life adversities, and his
support and advice helped me tremendously.

I would also like to offer thanks to my friends and family for being there for
me throughout. They too stood by me when things got difficult, and although
they were very patient, they always made sure to push me in right direction.
Without all these people around me, I would not have made it this far in my
academic pursuit.

1

ABSTRACT
OF THE THESIS OF

Ezzat Abdel Salam Chebaro for Master of Computer Science
Major: Computer Science

Title: On the Complexity of the Maximum Independent Set Reconfiguration
Problem

We study the complexity of the polynomially equivalent Minimum Vertex
Cover Reconfiguration and Maximum Independent Set Reconfigu-
ration problems on a variety of graph classes, which ask whether there exists
a reconfiguration sequence between two minimum vertex covers/maximum inde-
pendent sets S and T of a graph G. The problems are studied under the token
jumping and token sliding models, which turn out to be equivalent in this con-
text. We show that the problems are in P when restricted to bipartite graphs,
PSPACE-complete when restricted to planar graphs, as well as a list of results
on a variety of other graph classes.

2

Table of Contents

ACKNOWLEDGEMENTS 1

ABSTRACT 2

1 Introduction 4

2 Literature Review 6

3 Preliminaries 9
3.1 Notation . 9

3.1.1 General . 9
3.1.2 Reconfiguration . 9

3.2 Problem Definitions . 11
3.2.1 Minimum Vertex Cover Reconfiguration 11
3.2.2 Maximum Independent Set Reconfiguration 12
3.2.3 Polynomial Equivalence of Min-VCR and Max-ISR 13

4 Known Results 16
4.1 Polynomial Results . 16
4.2 PSPACE-complete Results . 17
4.3 Results Thus Far . 18

5 Bipartite Graphs 20
5.1 Preliminaries . 20
5.2 The Algorithm . 21

6 Planar Graphs 28
6.1 Preliminaries . 28
6.2 The Reduction . 29

7 Conclusion 32
7.1 Final Results . 32
7.2 Open Problems . 33

3

Chapter 1

Introduction

A common problem that tends to naturally pose itself is the question of how some
system can be reconfigured from one state to another, given rules on how the states
can be altered. Some practical examples of such problems would be the Rubik’s Cube
or the 15-puzzle, which saw mathematical interest in 1879 [1]. Clearly, studying such
problems is nothing new, as it was done before the formation of computer science
as a field of study, which is reasonable since it is only natural to study solving such
puzzles and games optimally. The study of such problems was also always of interest
to the computational complexity community. Some early examples are a paper that
showed the video game Sokoban is PSPACE-complete [2], and a later paper that
studied sliding puzzles through the lens of nondeterministic constraint logic [3]. As
these sorts of problems gained more interest, they were eventually formalized under
the reconfiguration framework [4, 5].

These problems, now known as reconfiguration problems, study relationships be-
tween solutions of some computational problem, known as a source problem. A very
commonly studied source problem in this field is the Independent Set problem, or
the polynomially equivalent Vertex Cover problem. An independent set is a set
of vertices in a graph such that no two vertices in said set are adjacent; a maximum
independent set is an independent set of maximum size. A vertex cover of a graph is
a set of vertices such that every edge is incident to at least one vertex in said set; a
minimum vertex cover is a vertex cover of minimum size. Both source problems are
decision problems which ask whether there exists a vertex cover or independent set of
a certain size.

Both Independent Set Reconfiguration (ISR) and Vertex Cover Recon-
figuration (VCR) are relatively well studied, with results known on a variety of
different graph classes (see these results in chapter 2). In the context of this thesis,
the complexity of the Maximum Independent Set Reconfiguration (Max-ISR)
and Minimum Vertex Cover Reconfiguration (Min-VCR), which turn out to
be polynomially equivalent, will be the main focus.

A vertex cover or an independent set can be visualized as a set of tokens that are
placed on the vertices of the graph, such that the set of tokens satisfy the conditions of
being a vertex cover or an independent set. These tokens represent a configuration, also

4

known as a state, and a configuration can be transformed into some other configura-
tion under some reconfiguration model. Three common models are token sliding (TS),
token jumping (TJ), and token addition/removal (TAR). TS, introduced by Hearn and
Demaine [3], allows a token to be removed from some vertex u and placed on some
other vertex v that is adjacent to u. TJ, introduced by Kamiński et al. [6], allows a
token to be removed from vertex u and placed on any other vertex v. Finally, TAR,
introduced by Ito et al. [4], allows any number of tokens to be added or removed
under the constraint that there must be at most/least k tokens on the graph. Note
that under any of these reconfiguration models, once a move is performed, also known
as a reconfiguration step, the resulting configuration must maintain the condition of
the chosen source problem. So, under Min-VCR, each configuration must maintain
that the set of tokens form a minimum vertex cover. A sequence of configurations,
known as a reconfiguration sequence, essentially describes the moves needed to trans-
form the configuration at the start of the sequence to the configuration at the end
of the sequence. Reconfiguration problems concerned with reachability ask whether
there exists a reconfiguration sequence such that it starts and ends with some particu-
lar configurations. Reconfiguration problems concerned with optimization ask whether
there exists a reconfiguration sequence of a certain length. The focus of this paper will
then be to determine the complexity of reachability for Min-VCR and Max-ISR, on
a variety of graph classes.

5

Chapter 2

Literature Review

First consider the below Figure 2.1 which represents the hierarchy of graph classes that
are relevant to this thesis. An arrow from a graph class A to a graph class B represents
that graph class B is a subset of graph class A. Note that if graph class A is easy to
solve, then B is at least as easy to solve, likewise if graph B is hard to solve, then A
is at least as hard to solve. Figure 2.1 should help with visualizing these graph classes
and how they relate to one another.

Figure 2.1: Graph class hierarchy

6

Table 2.1: Results on reachability for ISR/VCR

Class Source TS TAR/TJ
planar (of degree 3) NP-complete PSPACE-complete [6] PSPACE-complete [6]
even-hole-free ? PSAPCE-complete (since chordal) P [6, 7, 8]
perfect P PSPACE-complete [6] PSPACE-complete [6]
cograph P P [6] P [9, 10]
chordal P PSPACE-complete [11] P (since even-hole-free)
split P PSPACE-complete [11] P (since even-hole-free)
interval P P [12] P (since even-hole-free)
claw-free P P [13] P [13]
porper interval P P [14] P (since even-hole-free)
caterpillar P P [14] P (since even-hole-free)
tree P P [15] P (since even-hole-free)
bipartite P PSPACE-complete [16] NP-complete [16]
bipartite permutation P P [17] ?
bipartite distance hereditary P P [17] ?
block P P [18] ?
bounded treewidth P PSPACE-complete [19] PSPACE-complete [19]
bounded pathwidth P PSPACE-complete [19] PSPACE-complete [19]
bounded bandwidth P PSPACE-complete [19] PSPACE-complete [19]
cactus P P [20] P [8]

Table 2.1 is due to Nishimura [5]. It shows the complexity results for reachability of
ISR and VCR on a variety of graph classes. Question marks denote unknown results.
Note that the table has been updated to present recent results for TS-ISR/TS-VCR
on chordal and split graphs. Figures 2.2 and 2.3 visualize the graph hierarchy along
with the complexity boundary given the results in the table for TS-ISR/TS-VCR
and TJ-ISR/TJ-VCR respectively. These results are of interest since the goal of
the thesis will be to determine results for Max-ISR/Min-VCR on the same set of
graph classes. It will be interesting to see which graph classes will be affected by the
minimality/maximality constraints on vertex covers/independent sets such that there
is a change in complexity class. Having both results side by side will paint a picture on
how the complexity boundary changes given said constraint. These questions should
make the motivation of the thesis clear, with implications of such results leading to a
clearer picture of the complexities of ISR/VCR.

7

Figure 2.2: Graph class hierarchy with complexity boundary for TS-ISR/TS-
VCR

Figure 2.3: Graph class hierarchy with complexity boundary for TJ-ISR/TJ-
VCR

8

Chapter 3

Preliminaries

3.1 Notation

3.1.1. General

We let [n] = {1, 2, . . . , n} such that n ∈ N, and we let [i, . . , j] = {i, i+ 1, . . . , j − 1, j}
such that i, j ∈ N, and j > i. It is assumed that every graph G is simple, finite, and
undirected, unless stated otherwise. We let V (G) and E(G) be the vertex and edge
sets of graph G, respectively. Also, we let n = |V (G)| and m = |E(G)|. We denote the
open neighborhood of some vertex v in graph G by NG(v) = {u | uv ∈ E(G)} and we
denote the closed neighborhood of some vertex v in graph G by NG[v] = NG(v)∪ v, the
subscript can be dropped when there is only one graph in question. The degree of some
vertex v is denoted by deg(v) = |NG(v)|. An edge e ∈ E(G) can also be denoted by uv
where u, v ∈ V (G) are its vertex endpoints. Let G \ {v} denote the graph obtained by
deleting vertex v from G (along with incident edges). Similarly let G \ S denote the
graph obtained by deleting the set of vertices S from G (along with incident edges).

Given some problem A and some problem B, we write A ≤p B when there exists
a polynomial-time reduction from problem A to B. We say that two problems A and
B are polynomially equivalent if and only if A ≤p B and B ≤p A. If two problems are
polynomially equivalent, then clearly if some problem is polynomial-time solvable then
so is the other (and vice-versa), so proving some result for one would prove it for the
other. Similarly, if one problem is NP-hard or PSPACE-hard then so is the other (and
vice-versa).

3.1.2. Reconfiguration

Given a reconfiguration problem, a configuration of some graph is a set of vertices that
forms a valid instance of the source problem. The vertices in the configuration are
normally called tokens. In the case of Minimum Vertex Cover Reconfigura-
tion (Min-VCR), all configurations are minimum vertex covers, and in the case of
Maximum Independent Set Reconfiguration (Max-ISR), all configurations are
maximum independent sets. Given two configurations Ci and Cj , let Ci ↔ Cj denote

9

that the configurations are adjacent, i.e., reachable from each other via one move. Let
Ci ↭ Cj denote that the configurations are reachable from each other via one or more
moves. Moving from one configuration to another will depend on the adjacency model
in question. As stated in chapter 1, there are three main models that are commonly
studied:

• Token Sliding (TS): Ci ↔ Cj if |Ci| = |Cj | and vi ∈ NG(vj) where {vi} =
Ci \ Cj and {vj} = Cj \ Ci i.e. two configurations are said to be adjacent if the
move involves moving a single token across an edge. This move is also known as
a slide.

• Token Jumping (TJ): Ci ↔ Cj if |Ci| = |Cj | and |Ci \ Cj | = |Cj \ Ci| = 1 i.e.
two configurations are said to be adjacent if the move involves moving a single
token from one vertex to another. This move is also known as a jump.

• Token Addition/Removal (TAR): Ci ↔ Cj if |Ci| = |Cj | − 1, |Ci \ Cj | = 1,
and |Cj \ Ci| = 0 or if |Ci| = |Cj | + 1, |Ci \ Cj | = 0, and |Cj \ Ci| = 1 i.e. two
configurations are said to be adjacent if the move involves adding or removing a
single token.

A sequence of configurations (C1, . . . Cl) such that Ci ↔ Ci+1 where i ∈ [1 . . l− 1],
is known as a reconfiguration sequence. A reconfiguration problem can then be stated
and there are generally two common forms:

• Reachability: Given a graph G, a start configuration S and a target configu-
ration T , is it true that S ↭ T?

• Optimization: Given a graph G, some integer l, a start configuration S and a
target configuration T , is it true that S ↭ T such that there exists a configura-
tion sequence X = (S, . . . , T) where |X| ≤ l.

Some forms of both these problem variants will also ask to output a valid config-
uration sequence from S to T if the instance is indeed a yes-instance. This thesis is
solely concerned with studying the reachability variant of the problem, so we assume
any future mentions of reconfiguration problems are of the reachability variant, unless
stated otherwise.

10

3.2 Problem Definitions

3.2.1. Minimum Vertex Cover Reconfiguration

A vertex cover of a graph G is a set of vertices X ⊆ V (G) such that for any edge
e ∈ E(G) there exists some v ∈ X where v is an endpoint of e, a minimum vertex
cover is one of minimum size. We denote an instance of Minimum Vertex Cover
Reconfiguration (Min-VCR) by (G,S, T), where G is the input graph, S is the
starting minimum vertex cover and T is the target minimum vertex cover. Now the
problem can be studied under the TS and TJ reconfiguration models, denoted by TJ-
Min-VCR and TS-Min-VCR respectively. Note that TAR is not considered since
when working with any minimum/maximum structures since the addition/removal of
any token breaks minimality, and so no two configurations will ever be reachable. An
interesting outcome of working with minimum vertex covers is that TJ-Min-VCR and
TS-Min-VCR turn out to be polynomially equivalent problems.

Lemma 3.1. TJ-Min-VCR and TS-Min-VCR are polynomially equivalent problems.

Proof. Before going into the reductions, first it needs to be shown that the only possible
move in TJ-Min-VCR are slides. To see this, observe that given some configuration
C, then for any token that is on some vertex u, there must exist at least one edge
adjacent to it that is only covered by u itself, otherwise C would not be a minimum
vertex cover since C \ {u} is still a vertex cover. Clearly, if the token on u were to be
moved it will have to go to some vertex that currently does not have a token on it. So,
if the token on u is moved then there would exist at least one vertex v, such that there
is no token on v and v ∈ N(u). This would force the token on u to be placed on v so
as to keep the edge uv covered. Since these two vertices are neighbors this move will
always be a slide. Now, the reductions goes as follows:

• TJ-Min-VCR ≤p TS-Min-VCR:

Given an instance I = (G,S, T) of TJ-Min-VCR, it can be reduced to instance
I ′ = (G,S, T) of TS-Min-VCR such that I is a yes-instance if and only if I ′ is
a yes-instance. For correctness:

– If I is a yes-instance then there exists a reconfiguration sequence X =
(S, . . . , T). Since the only possible moves in TJ-Min-VCR are slides then
X is also a valid solution for I ′.

– If I ′ is a yes-instance then there exists a reconfiguration sequence X ′ =
(S, . . . , T). Since all slides are jumps, by definition, then X ′ is also a valid
solution for I.

• TS-Min-VCR ≤p TJ-Min-VCR:

Given an instance I = (G,S, T) of TS-Min-VCR, it can be reduced to instance
I ′ = (G,S, T) of TJ-Min-VCR such that I is a yes-instance if and only if I ′ is
a yes-instance. For correctness:

11

– If I is a yes-instance then there exists a reconfiguration sequence X =
(S, . . . , T). Since all slides are jumps, by definition, then X is also a valid
solution for I ′.

– If I ′ is a yes-instance then there exists a reconfiguration sequence X ′ =
(S, . . . , T). Since the only possible moves in TJ-Min-VCR are slides then
X ′ is also a valid solution for I.

This completes the proof.

Now since TAR-Min-VCR is not considered, and since TJ-Min-VCR and TS-
Min-VCR are polynomially equivalent problems, because the only possible move for
both problems are slides, then moving forward this thesis will only concern itself with
TS-Min-VCR. Any complexity result determined on TS-Min-VCR will also be shared
by TJ-Min-VCR. Moving forward, TS-Min-VCR will be denoted by Min-VCR for
simplicity.

3.2.2. Maximum Independent Set Reconfiguration

An independent set of some graph G is a set of vertices X ⊆ V (G) such that for any
two vertices u, v ∈ X it is the case that uv ̸∈ E(G), a maximum independent set is one
of maximum size. We denote an instance of Maximum Independent Set Recon-
figuration (Max-ISR) by (G,S, T), where G is the input graph, S is the starting
maximum independent set configuration, and T is the target maximum independent
set configuration. The problem will also be studied under the TS and TJ reconfigura-
tion models, denoted by TJ-Max-ISR and TS-Max-ISR respectively; working under
TAR is not considered since the structure in question is one of maximum size. Simi-
larly to Lemma 3.1, an interesting outcome of working with maximum independent
sets is that TJ-Max-ISR and TS-Max-ISR turn out to be polynomially equivalent
problems.

Lemma 3.2. TJ-Max-ISR and TS-Max-ISR are polynomially equivalent problems.

Proof. Before going into the reductions, first it needs to be shown that the only possible
move in TJ-Max-ISR are slides. To see this, first consider some configuration C and
assume that there exists a move that is a jump but not a slide. So consider a possible
move that involves moving a token on some vertex v to some other vertex u such
that u ̸∈ N(v). Observe that the vertex u can not be in the neighborhood of any of
the vertices in C, otherwise the move would result in a configuration that is not an
independent set. This leads to a contradiction since C is not an independent set of
maximum size, to see this consider the independent set C ∪ {u}. So all moves must be
slides. Now, the reductions goes as follows:

• TJ-Max-ISR ≤p TS-Max-ISR:

Given an instance I = (G,S, T) of TJ-Max-ISR, it can be reduced to instance
I ′ = (G,S, T) of TS-Max-ISR such that I is a yes-instance if and only if I ′ is a
yes-instance. For correctness:

12

– If I is a yes-instance then there exists a reconfiguration sequence X =
(S, . . . , T). Since the only possible moves in TJ-Max-ISR are slides then
X is also a valid solution for I ′.

– If I ′ is a yes-instance then there exists a reconfiguration sequence X ′ =
(S, . . . , T). Since all slides are jumps, by definition, then X ′ is also a valid
solution for I.

• TS-Max-ISR ≤p TJ-Max-ISR:

Given an instance I = (G,S, T) of TS-Max-ISR, it can be reduced to instance
I ′ = (G,S, T) of TJ-Max-ISR such that I is a yes-instance if and only if I ′ is a
yes-instance. For correctness:

– If I is a yes-instance then there exists a reconfiguration sequence X =
(S, . . . , T). Since all slides are jumps, by definition, then X is also a valid
solution for I ′.

– If I ′ is a yes-instance then there exists a reconfiguration sequence X ′ =
(S, . . . , T). Since the only possible moves in TJ-Max-ISR are slides then
X ′ is also a valid solution for I.

This completes the proof.

As before, since TAR-Max-ISR is not considered, and since TJ-Max-ISR and
TS-Max-ISR are polynomially equivalent problems, because the only possible move
for both problems are slides, then moving forward this thesis will only concern itself
with TS-Max-ISR. Any complexity result determined on TS-Max-ISR will also be
shared by TJ-Max-ISR. Moving forward, TS-Max-ISR will be denoted as Max-ISR
for simplicity.

3.2.3. Polynomial Equivalence of Min-VCR and Max-ISR

The Vertex Cover problem asks whether a graph has a vertex cover of size at most
k, while the Independent Set problem, asks whether a graph has an independent set
of size at least k. Similarly, Minimum Vertex Cover and Maximum Independent
Set ask whether a graph has a vertex cover of minimum size and an independent set
of maximum size respectively. It should be clear to see that given some graph G and
a vertex cover S of G, then G − S is an independent set. If S is a vertex cover of
minimum size then G−S is an independent set of maximum size. It is well known that
Vertex Cover and Independent Set are polynomially equivalent to each other, as
is the case for Minimum Vertex Cover and Maximum Independent Set. It turns
out that Min-VCR and Max-ISR are also polynomially equivalent. The reductions
and proof of correctness are fairly straightforward, although slightly redundant.

13

Lemma 3.3. Min-VCR and Max-ISR are polynomially equivalent problems.

Proof. Min-VCR ≤p Max-ISR: Given an instance I = (G,S, T) of Min-VCR, it can
be reduced to an instance I ′ = (G,S′, T ′) of Max-ISR, such that I is a yes-instance
if and only if I ′ is a yes-instance. The reduction goes as follows: Let S′ = V (G′) \ S,
and T ′ = V (G′) \ T . Now, to prove correctness:

• If instance I is a yes-instance then there exists a configuration sequence X =
(C1, . . . , Cl) such that S = C1 and T = Cl. Now consider the following configu-
ration sequence X ′ = (C ′

1, . . . , C
′
l) for instance I ′ such that C ′

i = V (G) \ Ci ∀i ∈
[1 . . l]. Clearly S′ = C ′

1 and T ′ = C ′
l , by construction. It should also be clear

that every configuration in X ′ are maximum independent sets. What remains to
be shown is that this configuration sequence is a valid one.

Since ∀i ∈ [l] Ci ↔ Ci+1 then vi ∈ NG(vi+1) where {vi} = Ci \ Ci+1 and
{vi+1} = Ci+1 \Ci. Let {v′i} = C ′

i \C ′
i+1 = {vi+1} and {v′i+1} = C ′

i+1 \C ′
i = {vi}.

So, since vi and vi+1 are neighbors it should be trivial to see that v′i ∈ NG(v
′
i+1),

making C ′
i ↔ C ′

i+1 ∀i ∈ [1, . . , l]. So I ′ is a yes-instance.

• If instance I ′ is a yes-instance then there exists a configuration sequence X ′ =
(C ′

1, . . . , C
′
l) such that S′ = C ′

1 and T ′ = C ′
l . Now consider the following config-

uration sequence X = (C1, . . . , Cl) for instance I such that Ci = V (G) \ C ′
i ∀i ∈

[1 . . l]. Clearly S = C1 and T = Cl, by construction. It should also be clear that
every configuration in X are minimum vertex covers. What remains to be shown
is that this configuration sequence is a valid one.

Since ∀i ∈ [l] C ′
i ↔ C ′

i+1 then v′i ∈ NG(v
′
i+1) where {v′i} = C ′

i \C ′
i+1 and {v′i+1} =

C ′
i+1\C ′

i. Let {vi} = Ci\Ci+1 = {vi+1} and {vi+1} = Ci+1\Ci = {vi}. So clearly
since v′i and v′i+1 are neighbors it should be trivial to see that vi ∈ NG(vi+1),
making Ci ↔ Ci+1. So I is a yes-instance.

Max-ISR ≤p Min-VCR: Given an instance I = (G,S, T) of Max-ISR, it can be
reduced to an instance I ′ = (G,S′, T ′) of Min-VCR, such that I is a yes-instance if
and only if I ′ is a yes-instance. The reduction goes as follows: Let S′ = V (G′) \S, and
T ′ = V (G′) \ T . Now, to prove correctness:

• If instance I is a yes-instance then there exists a configuration sequence X =
(C1, . . . , Cl) such that S = C1 and T = Cl. Now consider the following configu-
ration sequence X ′ = (C ′

1, . . . , C
′
l) for instance I ′ such that C ′

i = V (G) \ Ci ∀i ∈
[1 . . l]. Clearly S′ = C ′

1 and T ′ = C ′
l , by construction. It should also be clear

that every configuration in X ′ are minimum vertex covers. What remains to be
shown is that this configuration sequence is a valid one.

Since ∀i ∈ [l] Ci ↔ Ci+1 then vi ∈ NG(vi+1) where {vi} = Ci \ Ci+1 and
{vi+1} = Ci+1 \Ci. Let {v′i} = C ′

i \C ′
i+1 = {vi+1} and {v′i+1} = C ′

i+1 \C ′
i = {vi}.

So, since vi and vi+1 are neighbors it should be trivial to see that v′i ∈ NG(v
′
i+1),

making C ′
i ↔ C ′

i+1 ∀i ∈ [1, . . , l]. So I ′ is a yes-instance.

14

• If instance I ′ is a yes-instance then there exists a configuration sequence X ′ =
{C ′

1, . . . , C
′
l} such that S′ = C ′

1 and T ′ = C ′
l . Now consider the following config-

uration sequence X = (C1, . . . , Cl) for instance I such that Ci = V (G) \ C ′
i ∀i ∈

[1 . . l]. Clearly S = C1 and T = Cl, by construction. It should also be clear that
every configuration in X are maximum independent sets. What remains to be
shown is that this configuration sequence is a valid one.

Since ∀i ∈ [l] C ′
i ↔ C ′

i+1 then v′i ∈ NG(v
′
i+1) where {v′i} = C ′

i \C ′
i+1 and {v′i+1} =

C ′
i+1\C ′

i. Let {vi} = Ci\Ci+1 = {vi+1} and {vi+1} = Ci+1\Ci = {vi}. So clearly
since v′i and v′i+1 are neighbors it should be trivial to see that vi ∈ NG(vi+1),
making Ci ↔ Ci+1. So I is a yes-instance.

This completes the proof.

Since the problems are indeed polynomially equivalent, any complexity result deter-
mined on one will be shared by the other. Moving forward, the choice of which problem
is used will simply depend on convenience, but the end result will be the same.

15

Chapter 4

Known Results

4.1 Polynomial Results

Some results for Max-ISR/Min-VCR follow trivially from previously known results.
First observe the following:

• All instances of TS-Max-ISR are instances of TS-ISR, so if TS-ISR is easy on a
certain graph class then so wouldTS-Max-ISR. Consequently, given Lemma 3.3,
TS-Min-VCR is also easy on that same graph class.

• All instances of TJ-Max-ISR are instances of TJ-ISR, so if TJ-ISR is easy on a
certain graph class then so wouldTJ-Max-ISR. Consequently, given Lemma 3.2
and Lemma 3.3, TS-Max-ISR and TS-Min-VCR are also easy on that same
graph class.

Given the above, the below statements then hold true:

• Since TS-ISR is in P on cographs, interval graphs, claw-free graphs, proper
interval graphs, caterpillar graphs, trees, bipartite permutation graphs, bipar-
tite distance hereditary graphs, block graphs, and cactus graphs (results seen in
Table 2.1), then Max-ISR and Min-VCR are also in P on those same graph
classes.

• Since TJ-ISR is in P on even-hole-free graphs, chordal graphs, and split graphs
(results seen in Table 2.1), then Max-ISR and Min-VCR are also P on those
same graph classes.

16

4.2 PSPACE-complete Results

A relevant result in Proposition 5 of Wrochna’s paper [19] states that Max-ISR is
PSPACE-complete on graphs of bounded bandwidth. For the sake of completeness
the proof will be restated here. Some definitions will be needed to understand the
context. First, the H-Word Reconfiguration problem will need to be defined.
Given a tuple H = (Σ, R), where Σ is an alphabet and R ⊆ Σ2, an H-word is a word,
or a sequence of symbols, over Σ such that every two consecutive symbols are in R. H
can be visualized as a directed graph where the symbols are represented by the vertices
and R is represented by the directed edges. In this context a word is an H-word if
and only if it is a walk in H. A walk is defined as a sequence of adjacent vertices in a
graph. The H-Word Reconfiguration problem then asks whether two H-words are
reachable from one another. A move in this problem is defined by changing a single
symbol in an H-word such that the resultant word is also an H-word. In Wrochna’s
paper H-Word Reconfiguration is proved to be PSPACE-complete.

Now, to define bandwidth. First consider some graph G and some function f(·) that
assigns distinct integers for all v ∈ V (G). The bandwidth of graphG is an integer that is
achieved by some labeling f(·) such that max{|f(v)−f(u)| ∀uv ∈ E(G)} is minimized.
Another way to visualize bandwidth is to consider all possible placements of the vertices
of G on distinct integer points on the number line. Now, consider the placement that
yields the shortest longest edge. The length of that edge is the bandwidth of G. Graphs
of bounded bandwidth are simply graphs that have a bandwidth that is bounded by
some integer b.

Theorem 4.1. Max-ISR on graphs of bounded bandwidth is PSPACE-complete.

Proof. To show that Max-ISR is PSPACE-complete on graphs of bounded band-
width, Wrochna constructs a reduction from the H-Word Reconfiguration prob-
lem to the Max-ISR problem on graphs of bounded bandwidth. The reduction goes
as follows. Given an instance I = (H,S, T) of H-Word Reconfiguration, where
H = (Σ, R), S is the starting H-word, and T is the target H-word, construct an in-
stance I ′ = (G′, S′, T ′) of Max-ISR where G′ is a graph, S′ is the starting maximum
independent set, and T ′ is the target maximum independent set. Let n = |S| = |T | and
let p = 2|Σ|. I ′ is constructed as follows. V (G′) = {vai for all i ∈ [n] and for all a ∈ Σ}.
Let Vi = {vai for all a ∈ Σ} for all i ∈ [n]. E(G′) is comprised of edges between every
two vertices of Vi for all i ∈ [n] and edges between vertices vai v

b
i+1 for all (a, b) ̸∈ R

and for all i ∈ [n − 1]. Given S = (a1, . . . , an), construct S
′ = {V a1

1 , . . . , V an
n }. Given

T = (a1, . . . , an), construct T
′ = {V a1

1 , . . . , V an
n }.

The constructed graph G′ has a bandwidth of at most p = 2|Σ|. This construc-
tion also defines a bijection between maximum independent sets and H-words. Notice
that given some H-word (a1, . . . , an), a maximum independent set can be constructed
{V a1

1 , . . . , V an
n }, and vice versa. A maximum independent set in G′ is of size n and

contains one vertex for each clique Vi. A move in the H-Word Reconfiguration
problem is represented by moving a token inside of one of the cliques Vi. S

′ and T ′ are
indeed maximum independent sets since they are constructed from H-words, given the
previously mentioned bijection.

17

Instances I ′ and I are then equivalent and so this is a valid reduction from H-
Word Reconfiguration to Max-ISR on a graph of bounded bandwidth, making
Max-ISR on a graph of bounded bandwidth PSPACE-complete.

Corollary 4.1. Max-ISR on graphs of bounded pathwidth is PSPACE-complete

Proof. Since graphs of bounded bandwidth are also graphs of bounded pathwidth and
since Max-ISR is PSPACE-complete on graphs of bounded bandwidth, then Max-
ISR on graphs of bounded pathwidth is indeed PSPACE-complete.

Corollary 4.2. Max-ISR on graphs of bounded treewidth is PSPACE-complete

Proof. Since graphs of bounded bandwidth are also graphs of bounded treewidth and
since Max-ISR is PSPACE-complete on graphs of bounded bandwidth, then Max-
ISR on graphs of bounded treewidth is indeed PSPACE-complete.

4.3 Results Thus Far

What remains are unknown results for Max-ISR on planar graphs, perfect graphs,
and bipartite graphs. Table 4.1 compiles these results, with question marks denoting
unknown results, while Figure 4.1 visualizes the graph class hierarchy along with the
complexity boundary for the Max-ISR/Min-VCR problems. The goal of this thesis
moving forward will be to determine some of these unknown results.

Table 4.1: Results on reachability for Max-ISR/Min-VCR

Class Source TS/TJ
planar (of degree 3) NP-hard [21] ?
even-hole-free ? P (since TJ-ISR)
perfect P [22] ?
cograph P P (since TS-ISR)
chordal P P (since TJ-ISR)
split P P (since TJ-ISR)
interval P P (since TS-ISR)
claw-free P [23] P (since TS-ISR)
proper interval P P (since TS-ISR)
caterpillar P P (since TS-ISR)
tree P P (since TS-ISR)
bipartite P ?
bipartite permutation P P (since TS-ISR)
bipartite distance hereditary P P (since TS-ISR)
block P P (since TS-ISR)
bounded treewidth P [24] PSAPCE-complete (since bounded bandwidth)
bounded pathwidth P PSAPCE-complete (since bounded bandwidth)
bounded bandwidth P PSAPCE-complete [19]
cactus P P (since TS-ISR)

18

Figure 4.1: Graph class hierarchy with complexity boundary for Max-ISR/Min-
VCR

19

Chapter 5

Bipartite Graphs

5.1 Preliminaries

If a graph G is a bipartite graph, then its vertex set can be partitioned into 2 parts
which will be denoted by L and R, such that no two vertices in the same part share an
edge. In this chapter we prove the below theorem:

Theorem 5.1. Min-VCR on bipartite graphs is in P.

Before getting into the proofs, there are a few notations that need to be defined.
Given a bipartite graph G, we denote the two parts as L and R. Given an instance
(G,S, T) of Min-VCR on bipartite graphs, we define the following: SL = S ∩ L,
SR = S ∩ R, TL = T ∩ L, TR = T ∩ R, H = S ∩ T , HL = SL ∩ TL, HR = SR ∩ TR,
C = G \ (S ∪ T), CL = L \ (SL ∪ TL), and CR = R \ (SR ∪ TR). Figure 5.1a visualizes
the described sets.

(a) Sets (b) Sets along with the illegal edges

Figure 5.1: Visualization of the partitioned bipartite graph

20

Looking at the relationships between these sets will also be useful. Clearly SL,
HL, TL, and CL do not have any edges between each other, as is the case with SR,
HR, TR, and CR, since this is a bipartite graph. Edges cannot exist between TL \HL

and TR \ HR, since if such edges did exist then S would not be a valid vertex cover
as it would not cover them. Symmetrically, edges cannot exist between SL \ HL and
SR \ HR since T would not be a valid vertex cover. Edges can not exist between CL

and TR \HR, since these edges would not be covered by S, as is the case with CL and
SR \ HR, since these edges would not be covered by T . Edges can not exist between
neither CR and SL \HL, nor CR and TL \HL, via a symmetrical argument. Figure 5.1b
visualizes the described sets along with the illegal edges that were just described.

5.2 The Algorithm

Lemma 5.1. |SL \HL| = |TR \HR| and |TL \HL| = |SR \HR|

Proof. To show that |SL \HL| = |TR \HR| assume otherwise:

• If |SL \ HL| < |TR \ HR|, then SL ∪ TL ∪ HR is a vertex cover whose size is
smaller than the minimum vertex cover T , which is a contradiction. Visualize
this construction by considering the vertex cover T and replacing TR \HR with
SL \HL.

• If |SL \ HL| > |TR \ HR|, then SR ∪ TR ∪ HL is a vertex cover whose size is
smaller than the minimum vertex cover S, which is a contradiction. Visualize
this construction by considering the vertex cover S and replacing SL \HL with
TR \HR.

To show that |TL \HL| = |SR \HR| use a symmetrical argument, so assume other-
wise:

• If |TL \ HL| < |SR \ HR|, then SL ∪ TL ∪ HR is a vertex cover whose size is
smaller than the minimum vertex cover S, which is a contradiction. Visualize
this construction by considering the vertex cover S and replacing SR \HR with
TL \HL.

• If |TL \ HL| > |SR \ HR|, then SR ∪ TR ∪ HL is a vertex cover whose size is
smaller than the minimum vertex cover T , which is a contradiction. Visualize
this construction by considering the vertex cover T and replacing TL \HL with
SR \HR.

This completes the proof.

21

Lemma 5.2. If an instance (G,S, T) of Min-VCR on bipartite graphs is a yes-
instance then there does not exist a reconfiguration sequence X = (S, . . . , T) such that
tokens slide between HL and TR ∪ SR or between HR and SL ∪ TL.

Proof. First it will be shown slides between HL and TR ∪ SR are impossible. To show
this, consider the first occurrence of a slide that changes the number of tokens contained
in HL ∪ CR. Denote A as the configuration before the slide, B as the configuration
after the slide, and Z as the set of tokens contained in HL ∪ CR in configuration B.
There are two cases to handle now:

• If |Z| = |HL|−1 then first consider the vertex cover Y = TR∪SR∪HL. Visualize
constructing Y through modifying S by replacing (SL\HL) with (TR\HR). Since
|SL\HL| = |TR\HR|, given Lemma 5.1, then |Y | = |S|. Since the edges between
HL and CR can be covered by Z, and since the edges between HL and TR ∪ SR

can be covered by TR ∪ SR, then (Y \ HL) ∪ Z is a valid vertex cover of size
|Y | − 1 = |S| − 1. This contradicts that S is a minimum vertex cover.

• If |Z| = |HL|+1 then the configuration B has |HL|+1 contained inside TR∪SR,
but it is enough to use |HL| tokens, being HL itself, to cover the edges between
HL and CR, as well as the edges between HL and TR ∪ SR. So, consider the
vertex cover (B \Z)∪HL, which is a vertex cover of size |B| − 1 = |S| − 1. This
contradicts that S is a minimum vertex cover.

Since the only way to change the number of tokens contained in HL ∪ CR are
slides between HL and TR ∪ SR, then such slides are impossible because they lead to a
contradiction.

Now it will be shown slides between HR and SL ∪ TL are impossible. To show this,
consider the first occurrence of a slide that changes the number of tokens contained in
HR ∪ CL. Denote A as the configuration before the slide, B as the configuration after
the slide, and Z as the set of tokens contained in HR ∪ CL in configuration B. There
are two cases to handle now:

• If |Z| = |HR|−1 then first consider the vertex cover Y = SL∪TL∪HR. Visualize
constructing Y through modifying S by replacing (SR\HR) with (TL\HL). Since
|SR\HR| = |TL\HL|, given Lemma 5.1, then |Y | = |S|. Since the edges between
HR and CL can be covered by Z, and since the edges between HR and SL ∪ TL

can be covered by SL ∪ TL, then (Y \ HR) ∪ Z is a valid vertex cover of size
|Y | − 1 = |S| − 1. This contradicts that S is a minimum vertex cover.

• If |Z| = |HR|+1 then the configuration B has |HR|+1 contained inside SL∪TL,
but it is enough to use |HR| tokens, being HR itself, to cover the edges between
HR and CL, as well as the edges between HR and SL ∪ TL. So, consider the
vertex cover (B \Z)∪HR, which is a vertex cover of size |B| − 1 = |S| − 1. This
contradicts that S is a minimum vertex cover.

Since the only way to change the number of tokens contained in HR ∪ CL are
slides between HR and SL ∪ TL, then such slides are impossible because they lead to a
contradiction.

This completes the proof.

22

To recap, it has just been established that given a yes-instance (G,S, T) of Min-
VCR on bipartite graphs there does not exist a reconfiguration sequenceX = (S, . . . , T)
such that tokens slide between HL and TR∪SR or between HR and SL∪TL. So tokens
within HL ∪ CR and HR ∪ CL will always be contained within their respective sets.

Lemma 5.3. If an instance (G,S, T) of Min-VCR on bipartite graphs is a yes-
instance then there exists exists a reconfiguration sequence X = (S, . . . , T) such that
no token ever leaves HL nor HR.

Proof. Given an instance (G,S, T) of Min-VCR on bipartite graphs, that is a yes-
instance, consider some reconfiguration sequence X = (C1, . . . , Cl), such that C1 = S,
Cl = T and l > 1. Construct a new reconfiguration sequence X ′ = (C ′

1, . . . , C
′
l) such

that C ′
i = (Ci \ (H ∪ C)) ∪ (H) for all i ∈ [l]. This construction may have consecutive

configurations in the sequence that are equivalent. To deal with this simply modify X ′

by exhaustively searching for two consecutive configurations C ′
i and C ′

i+1, such that
C ′
i = C ′

i+1, and remove one of them from the sequence. Notice that this construction is
a modified version of the original configuration sequence such that it ensures the tokens
contained in HL ∪ CR are always on HL, and that the tokens contained in Hr ∪ CL

are always on HR, all other moves are conserved. This construction is safe since, given
Lemma 5.2, tokens within HL ∪ CR and HR ∪ CL will always be contained within
their respective sets, and tokens outside these sets can never move in, so modifying
their moves within these sets has no bearing on the rest of the graph. Every edge
in the graph, other than the edges adjacent to HL and HR, are guaranteed to be
covered, given that they are covered in X. Every configuration in X ′ also has the edges
adjacent to HL and HR covered since they all have tokens placed on all of HL and
HR, by construction. So every configuration in X ′ remains to be a vertex cover. Also
notice that since both S = C1 and T = Cl have their tokens that are contained in
HL ∪ CR and HR ∪ CL placed on HL and HR respectively, then S = C ′

1 and T = C ′
l ,

by construction. So X ′ is a reconfiguration sequence such that no token ever leaves HL

nor HR, proving the lemma.

Corollary 5.1. An instance (G,S, T) of Min-VCR on bipartite graphs is a yes-
instance if and only if instance (G′, S′, T ′) is a yes-instance where G′ = G \ (H ∪ C),
S′ = S \H, and T ′ = T \H.

Proof. If (G,S, T) is a yes-instance then, given Lemma 5.3, there exists a reconfig-
uration sequence X = (C1, . . . , Cl), where C1 = S, Cl = T , and l > 1, such that no
token ever leaves HL nor HR. This would mean that in the reconfiguration sequence,
there are no slides that involve moving into or out of H and C. So, the reconfiguration
sequence X ′ = {C ′

1, . . . , C
′
l} where C ′

i = Ci \ H for all i ∈ [l] can be used to decide
instance (G′, S′, T ′). Notice that S′ = C ′

1 and T ′ = C ′
l .

If (G′, S′, T ′) is a yes-instance then there exists a reconfiguration sequence X ′ =
(C ′

1, . . . , C
′
l), where C ′

1 = S′, C ′
l = T ′ and l > 1. Now, construct reconfiguration

sequence X = (C1, . . . , Cl) to decide instance (G,S, T) such that Ci = C ′
i ∪H for all

i ∈ [l]. Notice that S = C1 and T = Cl. This is safe since the tokens in H will never
be moved and so they are always covering all edges adjacent to H, while the sequence
indeed does reconfigure the rest of graph, since X ′ safely reconfigures (G′, S′, T ′).

23

Lemma 5.4. An instance (G,S, T) of Min-VCR on bipartite graphs, such that H =
C = ∅ and such that there exists v ∈ S where deg(v) = 1, is a yes-instance if and
only if instance (G′, S′, T ′) is a yes-instance, where G′ = G \N [v], S′ = S \ {v}, and
T ′ = T \N(v).

Proof. Given an instance (G,S, T) of Min-VCR on bipartite graphs such that, H =
C = ∅ and such that there exists v ∈ S where deg(v) = 1, consider such a vertex along
with its only neighbor u. Let k = |S|. Now, consider the instance (G′, S′, T ′) where
G′ = G\{u, v}, S′ = S \{v}, and T ′ = T \{u}. Clearly |S′| = |T ′| = |S|−1 = |T |−1 =
k − 1, and N(v) = {u}. It needs to be shown that (G,S, T) is a yes-instance if and
only if (G′, S′, T ′) is a yes-instance:

• If (G,S, T) is a yes-instance then there exists a reconfiguration sequence X =
(C1, . . . , Cl) where S = C1, T = Cl, and l > 1. Notice that since deg(v) = 1,
there does not exist a configuration in X that has tokens on both v and u,
otherwise it would not be a minimum vertex cover - to see this exclude v from
such configuration, the resultant configuration is still a vertex cover. Also notice
that since deg(v) = 1 then every configuration must have a token on exclusively
v or u, so that the edge uv is covered. This would mean that u ∈ T , otherwise
both v and u would be in S, but that is impossible.

Now consider the reconfiguration sequence X ′ = (C1 \ {v, u}, . . . , Cl \ {v, u}) for
the (G′, S′, T ′) instance. So, X ′ is constructed from X such that either v or u
is removed from each configuration making them each size k − 1 = |S′|. Clearly
S′ = C1 \ {v, u} and T ′ = Cl \ {v, u}, by construction. What is left to be shown
is that X ′ decides instance (G′, S′, T ′). For every configuration C ′

i in X ′, all
edges in G′ are covered since those edges are covered in the configuration Ci

in X. Moves between two consecutive configurations C ′
i and C ′

i+1 in X ′, where
i ∈ [l − 1], fall in one of two cases:

– If the move between Ci and Ci+1 does not involve sliding a token from v to
u or u to v, then the move between C ′

i and C ′
i+1 is the same so its valid.

– If the move between Ci and Ci+1 does involve sliding a token from v to
u or u to v, then configurations C ′

i and C ′
i+1 are equivalent, so no move

is done. In this case modify X ′ by removing either C ′
i and C ′

i+1 from the
configuration.

So, X ′ is a reconfiguration sequence that decides (G′, S′, T ′).

• If (G′, S′, T ′) is a yes-instance then there exists a reconfiguration sequence X ′ =
(C ′

1, . . . , C
′
l) where S

′ = C ′
1, T

′ = C ′
l , and l > 1. Now consider the reconfiguration

sequence X = (S,C ′
1 ∪ {u}, . . . , C ′

l ∪ {u}) for the (G,S, T) instance. Clearly
T = C ′

l ∪ {u}, by construction, and all the configurations are of size |S| = k.
What is left to be shown is that X decides instance (G,S, T). Notice that it
is indeed the case that S ↔ C ′

1 ∪ {u} since the slide that took place between
these two configurations is a token moving from v to u, since u is vertex v’s
only neighbor all edges remain covered after the move. For the remainder of
the reconfiguration sequence, there is always a token on u, and so all edges

24

adjacent to u and v remain covered, and so they can be ignored. The rest of the
reconfiguration sequence is then valid becauseX ′ itself was a valid reconfiguration
sequence. So, X is a reconfiguration sequence that decides (G,S, T).

This completes the proof.

Lemma 5.5. There exists a polynomial time algorithm that decides Min-VCR on
bipartite graphs.

Proof. Consider the following algorithm, which decides Min-VCR on bipartite graphs
where H = C = ∅:

Algorithm 1 An algorithm that decides Min-VCR on bipartite graphs where
H = C = ∅

Input: An instance (G,S, T) of Min-VCR where H = C = ∅
Output: “yes-instance” or “no-instance”

1: procedure Min-VCR-Bipartite(G,S, T)
2: if S is empty then
3: return “yes-instance”
4: else
5: if there does not exist a vertex v ∈ S such that deg(v) = 1 then
6: return “no-instance”
7: else
8: let v be some vertex in S such that deg(v) = 1
9: G′ ← G \N [v]
10: S ′ = S \ {v} ▷ |S ′| = |S| − 1
11: T ′ ← T \N(v) ▷ |T ′| = |T | − 1
12: return Min-VCR-Bipartite(G′, S ′, T ′) ▷ |S ′| = |T ′|
13: end if
14: end if
15: end procedure

Let n = |V (G)| and m = |E(G)|. The algorithm performs O(m + n) amount of
steps to find a vertex of degree 1 in S, before recursing, in which it recurses at most
|S| times. The algorithm returns when S is empty, otherwise on every recursion either
S is reduced by 1 or the function returns. Since |S| ≤ n where n = |V (G)| then
this algorithm recurses O(n) times, with O(m + n) work done on each level. So the
algorithm runs in O(n(m+ n)), which is indeed polynomial time. Correctness will be
shown via induction on the size of S and T , let k = |S| = |T |.

• Base Case: Given an instance (G,S, T) where H = C = ∅, if k = 0 then the
algorithm correctly decides Min-VCR on bipartite graphs. In this case the
algorithm will always output that this is a “yes-instance”. This is the case
since if S = T = ∅ then it is vacuously true that S ↭ T , since two identical

25

configurations are always reachable - they’re the same configuration. This case
is handled by lines 2-3 in the algorithm.

• Induction Hypothesis: Given an instance (G,S, T) where H = C = ∅, if |S| =
|T | = k, where k > 0, then the algorithm correctly decidesMin-VCR on bipartite
graphs.

• Inductive Step: Given an instance (G,S, T) whereH = C = ∅, if |S| = |T | = k+1
then there are two cases to handle:

– If there does not exist a vertex v ∈ S such that deg(v) = 1 then the instance
is a “no-instance” since no configuration that has a token on a vertex in T is
reachable from S. To see this, consider any vertex v ∈ S, clearly deg(v) ≥ 2.
Since slides are the only possible moves, then the only possible set of moves
for the token on v is to occupy any vertex u ∈ N(v), but such a slide would
always lead to at least one uncovered edge vw where w ∈ N(v)\{u}. So all
possible slides from v lead to configurations that are not vertex covers. So
clearly, no token in S can move to T , since they can not move anywhere.
So, no configuration that has a token on a vertex in T is reachable from S,
making it impossible to reach T from S. This case is handled by lines 5-6
in the algorithm, where it outputs “no-instance” if there does not exist a
vertex v ∈ S such that deg(v) = 1.

– Without loss of generality, if there exists a vertex v ∈ S such that deg(v) = 1
then consider such a vertex along with its only neighbor u. Now, consider
the instance (G′, S′, T ′) where G′ = G \ {u, v}, S′ = S \ {v}, and T ′ =
T \ {u}. Clearly |S′| = |T ′| = |S| − 1 = |T | − 1 = k. Given the inductive
hypothesis, the algorithm correctly decides the instance (G′, S′, T ′). Now,
given Lemma 5.4, (G,S, T) is a yes-instance if and only if (G′, S′, T ′) is
a yes-instance. This case is handled by lines 7-12 in the algorithm, where
it outputs “yes-instance” if instance (G′, S′, T ′) is indeed a yes-instance or
outputs “no-instance” if instance (G′, S′, T ′) is indeed a no-instance.

• Conclusion: By mathematical induction, since the base case and the inductive
hypothesis being true imply that the inductive step is true, then the algorithm
correctly decides an instance (G,S, T) where H = C = ∅ for |S| = |T | of any
size.

Notice that this algorithm correctly decides Min-VCR on bipartite graphs in poly-
nomial time only when H = C = ∅. Via a preprocessing step, any Min-VCR instance
on bipartite graphs can be decided in polynomial time. First, consider Corollary 5.1,
which states that an instance (G,S, T) of Min-VCR on bipartite graphs is a yes-
instance if and only if instance (G′, S′, T ′) is a yes-instance where G′ = G \ (H ∪ C),
S′ = S \H, and T ′ = T \H. With this in mind any instance (G,S, T) can be converted
to an instance (G′, S′, T ′) where G′ = G\ (H ∪C), S′ = S \H, and T ′ = T \H, in poly-
nomial time. (G′, S′, T ′) can then be passed to the above described algorithm. Since
(G,S, T) is a yes-instance if and only if (G′, S′, T ′) is a yes-instance, so Theorem 5.1
is trivially true. Min-VCR on bipartite graphs is in P.

26

Corollary 5.2. Maximum Independent Set Reconfiguration on bipartite graphs is in
P.

Proof. SinceMax-ISR andMin-VCR are polynomially equivalent, given Lemma 3.1,
and since Min-VCR on bipartite graphs is in P, given Theorem 5.1, it then follows
that Max-ISR on bipartite graphs is also in P.

27

Chapter 6

Planar Graphs

6.1 Preliminaries

This chapter’s result follows from a proof from Hearn and Demain where they showed
that TS-ISR is PSPACE-complete via a reduction from non-deterministic constraint
logic (NCL) configuration-to-edge on AND/OR graphs, which they also show to be
PSPACE-complete [3]. So, some definitions and background will be needed before
moving forward.

NCL is a model of computation, in which a set of decision problems can be defined.
NCL is defined by a constraint graph, which is an undirected graph with non-negative
integers assigned to both the edges and vertices. The integers assigned to the edges are
known as weights, while the integers assigned to the vertices are known as minimum in-
flow constraints. A valid configuration of such a graph would be an assigned orientation,
or direction, for each edge such that sum of all the incoming edges at every vertex is
at least its minimum in-flow constraint. A move is then defined as the flipping of the
orientation of some edge such that the resultant graph still satisfies the constraints
of every vertex. The reconfiguration problem of interest can now we be defined. The
NCL Configuration-to-Edge (NCL CTE) is a decision problem that asks whether
given some configuration A there exists a reconfiguration sequence that configures A
to some configuration that has some edge EB in a desired orientation.

A constraint graph of interest is known as the AND/OR constraint graph, the
constraint graph is only made up of AND and OR vertices. An AND vertex is a vertex
with a minimum in-flow of 2, with 3 edges weights of 1, 1, and 2. An OR vertex is a
vertex with a minimum in-flow of 2, with 3 edges all having a weight of 2. The AND
vertex can only have its edge with weight 2 oriented outwards if and only if the other
two edges are oriented inwards. The OR vertex can only have one of its edges oriented
outwards if and only if one of the other two edges is oriented inwards. The vertices
have been named this way since they act similarly to the traditional logical AND and
OR gates. Figure 6.1 illustrates these vertices.

28

Figure 6.1: AND/OR vertices

Hearn and Demain do show that NCL CTE on AND/OR graphs is PSPACE-
complete, but notice that AND/OR graphs need not be planar. So, they go on to prove
that given any AND/OR graph, an equivalent planar 3-connected AND/OR graph can
be constructed in polynomial time. This proof defines a reduction from NCL CTE on
AND/OR graphs to NCL CTE on planar AND/OR 3-connected graphs, which proves
that NCL CTE on planar AND/OR graphs is also PSPACE-complete.

6.2 The Reduction

Theorem 6.1. Max-ISR on planar graphs is PSPACE-complete

Proof. This proof will be a slightly modified version of Hearn and Demaine’s proof
that showed TS-ISR is PSPACE-complete via a reduction from NCL CTE on
AND/OR graphs. With some minor tweaks and observations the desired result can be
determined.

First consider an instance I = (G,A,EB) of NCL CTE on planar AND/OR graphs,
which is PSPACE-complete, such that G is the AND/OR constraint graph, A is the
starting configuration, and EB is an edge with its desired orientation. Now, consider
an instance I ′ = (G′, S′, T ′) of Max-TS-ISR, such that G′ is some graph, S′ is the
starting configuration and T ′ is the target configuration. To define how to construct G′,
Hearn and Demaine define gadgets that replace the AND and OR vertices. Figure 6.2
illustrates these gadgets.

29

Figure 6.2: AND/OR vertex gadgets

The edges that go past the dotted lines are called port edges. The vertices inside
the dotted line that are adjacent to a port edge are known as inner port edge vertices,
while the vertices outside the dotted line that are adjacent to a port edge are known as
outer port edge vertices. The entire structure inside the dotted line represents a single
vertex in the NCL AND/OR graph, with a minimum in flow constraint of 2. The
port edges represent the edges represent the edges adjacent to the vertices in the NCL
AND/OR graph. Notice that in the AND vertex gadget, the top port edge represents
the edge with the weight of 1, while all other port edges in both the AND and OR
vertex gadgets represent the edges with a weight of 2. A token on an outer port edge
vertex represents an inward oriented edge while a token on an inner port edge vertex
represents an outward oriented edge. To construct a graph G′, given an NCL graph G,
replace each AND and OR vertices with their corresponding gadget and connect them
via adding edges between two outer port vertices, with the port edges correspond to
the right edges in G. When orienting edges in G, place tokens on G′ as denoted earlier.
Since G is planar G′ remains to be planar. Also notice that a token adjacent to a port
edge can never leave its port edge.

• AND gadget: This gadget acts like the AND vertex. To see this notice that that
token on the upper port vertex can only slide to the lower port vertex when the
other two tokens slide to their respective upper port vertices, and vice versa.
Also notice the maximum independent set on this gadget is of size 3.

• OR gadget: This gadget acts like the OR vertex. To see this notice that that
token on the upper port vertex can only slide to the lower port vertex when
either one of the two tokens slide to their respective upper port vertices so that
the inner token can slide, and vice versa. Also notice the maximum independent
set on this gadget is of size 4.

30

Now, to see that instance I ′ works with maximum independent sets notice that the
tokens on the AND/OR gadgets are indeed independent sets of maximum sizes. When
constructing G′ these gadgets are connected to each other by edges. Adding edges to a
graph either keeps the maximum independent set of the same size or makes it smaller.
In this case, it maintains its size. So TS-Max-ISR on planar graphs is PSPACE-
complete, since NCL CTE on planar AND/OR graphs is PSPACE-complete.

Corollary 6.1. Max-ISR on planar graphs of degree 3 is PSPACE-complete

Proof. The proof of Theorem 6.1 proves a stronger result since the construction of
G′ ensures that every vertex has a maximum degree of 3 and so Max-ISR on planar
graphs of degree 3 is PSPACE-complete.

31

Chapter 7

Conclusion

7.1 Final Results

Given the previously known results along with results proved in this paper, the below
Table 7.1 compiles said results. As before, question marks denote unknown results.
Figure 7.1, below, illustrates the complexity boundary known so far.

Table 7.1: Results on reachability for Max-ISR/Min-VCR

Class Source TS/TJ
planar (of degree 3) NP-hard [21] P
even-hole-free ? P
perfect P [22] ?
cograph P P
chordal P P
split P P
interval P P
claw-free P [23] P
porper interval P P
caterpillar P P
tree P P
bipartite P P
bipartite permutation P P
bipartite distance hereditary P P
block P P
bounded treewidth P [24] PSPACE-complete
bounded pathwidth P PSPACE-complete
bounded bandwidth P PSPACE-complete
cactus P P

32

Figure 7.1: Graph class hierarchy with complexity boundary for Max-ISR/Min-
VCR

7.2 Open Problems

The most obvious open question left unanswered in this paper is the complexity of
Max-ISR/Min-VCR on perfect graphs, this result would complete what the paper
sought out to do. The graph classes in this paper were chosen purely based on what
has been studied and of relevance for ISR/VCR, but it is always interesting to look
for results on other graph classes.

Leaving the realm of Max-ISR/Min-VCR, an interesting endeavor moving forward
would be to extend the same activity conducted in this paper on other reconfiguration
problems, which is to take a well studied reconfiguration problem and see how the
complexity results differ when some constraint is added. Natural targets for problems of
interest are any covering/packing problem pairs with a minimum/maximum constraint,
seen in the Table 7.2, below.

Table 7.2: Covering/packing problem pairs for reconfiguration

Covering Problem Packing Problem Minimum Covering Problem Maximum Packing Problem
Vertex Cover Independent Set Minimum Vertex Cover Maximum Independent Set
Edge Cover Matching Minimum Edge Cover Maximum Matching
Set Cover Set Packing Minimum Set Cover Maximum Set Packing

33

Bibliography

[1] W. W. Johnson, W. E. Story, et al., “Notes on the “15” puzzle,” American Journal
of Mathematics, vol. 2, no. 4, pp. 397–404, 1879.

[2] J. C. Culberson, “Sokoban is pspace-complete,” Department of Computing Sci-
ence, The University of Alberta, 1997.

[3] R. A. Hearn and E. D. Demaine, “Pspace-completeness of sliding-block puzzles
and other problems through the nondeterministic constraint logic model of com-
putation,” Theor. Comput. Sci., vol. 343, no. 1-2, pp. 72–96, 2005.

[4] T. Ito, E. D. Demaine, N. J. A. Harvey, C. H. Papadimitriou, M. Sideri, R. Uehara,
and Y. Uno, “On the complexity of reconfiguration problems,” Theor. Comput.
Sci., vol. 412, no. 12-14, pp. 1054–1065, 2011.

[5] N. Nishimura, “Introduction to reconfiguration,” Algorithms, vol. 11, no. 4, p. 52,
2018.

[6] M. Kaminski, P. Medvedev, and M. Milanic, “Complexity of independent set re-
configurability problems,” Theor. Comput. Sci., vol. 439, pp. 9–15, 2012.

[7] A. E. Mouawad, N. Nishimura, V. Raman, and S. Siebertz, “Vertex cover recon-
figuration and beyond,” Algorithms, vol. 11, no. 2, p. 20, 2018.

[8] T. Ito, H. Nooka, and X. Zhou, “Reconfiguration of vertex covers in a graph,”
IEICE Trans. Inf. Syst., vol. 99-D, no. 3, pp. 598–606, 2016.

[9] P. S. Bonsma, “Independent set reconfiguration in cographs and their generaliza-
tions,” J. Graph Theory, vol. 83, no. 2, pp. 164–195, 2016.

[10] M. Bonamy and N. Bousquet, “Reconfiguring independent sets in cographs,”
CoRR, vol. abs/1406.1433, 2014.

[11] R. Belmonte, E. J. Kim, M. Lampis, V. Mitsou, Y. Otachi, and F. Sikora, “Token
sliding on split graphs,” Theory Comput. Syst., vol. 65, no. 4, pp. 662–686, 2021.

[12] M. Bonamy and N. Bousquet, “Token sliding on chordal graphs,” in Graph-
Theoretic Concepts in Computer Science - 43rd International Workshop, WG
2017, Eindhoven, The Netherlands, June 21-23, 2017, Revised Selected Papers
(H. L. Bodlaender and G. J. Woeginger, eds.), vol. 10520 of Lecture Notes in
Computer Science, pp. 127–139, Springer, 2017.

34

[13] P. S. Bonsma, M. Kaminski, and M. Wrochna, “Reconfiguring independent sets in
claw-free graphs,” in Algorithm Theory - SWAT 2014 - 14th Scandinavian Sympo-
sium and Workshops, Copenhagen, Denmark, July 2-4, 2014. Proceedings (R. Ravi
and I. L. Gørtz, eds.), vol. 8503 of Lecture Notes in Computer Science, pp. 86–97,
Springer, 2014.

[14] T. Yamada and R. Uehara, “Shortest reconfiguration of sliding tokens on a
caterpillar,” in WALCOM: Algorithms and Computation - 10th International
Workshop, WALCOM 2016, Kathmandu, Nepal, March 29-31, 2016, Proceedings
(M. Kaykobad and R. Petreschi, eds.), vol. 9627 of Lecture Notes in Computer
Science, pp. 236–248, Springer, 2016.

[15] E. D. Demaine, M. L. Demaine, E. Fox-Epstein, D. A. Hoang, T. Ito, H. Ono,
Y. Otachi, R. Uehara, and T. Yamada, “Linear-time algorithm for sliding tokens
on trees,” Theor. Comput. Sci., vol. 600, pp. 132–142, 2015.

[16] D. Lokshtanov and A. E. Mouawad, “The complexity of independent set reconfig-
uration on bipartite graphs,” ACM Trans. Algorithms, vol. 15, no. 1, pp. 7:1–7:19,
2019.

[17] E. Fox-Epstein, D. A. Hoang, Y. Otachi, and R. Uehara, “Sliding token on bipar-
tite permutation graphs,” in Algorithms and Computation - 26th International
Symposium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings
(K. M. Elbassioni and K. Makino, eds.), vol. 9472 of Lecture Notes in Computer
Science, pp. 237–247, Springer, 2015.

[18] D. A. Hoang, E. Fox-Epstein, and R. Uehara, “Sliding tokens on block graphs,”
in WALCOM: Algorithms and Computation, 11th International Conference and
Workshops, WALCOM 2017, Hsinchu, Taiwan, March 29-31, 2017, Proceedings
(S. Poon, M. S. Rahman, and H. Yen, eds.), vol. 10167 of Lecture Notes in Com-
puter Science, pp. 460–471, Springer, 2017.

[19] M. Wrochna, “Reconfiguration in bounded bandwidth and tree-depth,” J. Com-
put. Syst. Sci., vol. 93, pp. 1–10, 2018.

[20] D. A. Hoang and R. Uehara, “Sliding tokens on a cactus,” in 27th Interna-
tional Symposium on Algorithms and Computation, ISAAC 2016, December 12-14,
2016, Sydney, Australia (S. Hong, ed.), vol. 64 of LIPIcs, pp. 37:1–37:26, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[21] M. R. Garey and D. S. Johnson, “The rectilinear steiner tree problem in NP
complete,” SIAM Journal of Applied Mathematics, vol. 32, pp. 826–834, 1977.

[22] M. Grötschel, L. Lovász, and A. Schrijver, “Polynomial algorithms for perfect
graphs,” in Topics on Perfect Graphs (C. Berge and V. Chvátal, eds.), vol. 88 of
North-Holland Mathematics Studies, pp. 325–356, North-Holland, 1984.

[23] G. J. Minty, “On maximal independent sets of vertices in claw-free graphs,” J.
Comb. Theory, Ser. B, vol. 28, no. 3, pp. 284–304, 1980.

35

[24] B. K. Bhattacharya, M. De, S. C. Nandy, and S. Roy, “Maximum independent set
for interval graphs and trees in space efficient models,” in Proceedings of the 26th
Canadian Conference on Computational Geometry, CCCG 2014, Halifax, Nova
Scotia, Canada, 2014, Carleton University, Ottawa, Canada, 2014.

36

	ACKNOWLEDGEMENTS
	ABSTRACT
	Introduction
	Literature Review
	Preliminaries
	Notation
	General
	Reconfiguration

	Problem Definitions
	Minimum Vertex Cover Reconfiguration
	Maximum Independent Set Reconfiguration
	Polynomial Equivalence of Min-VCR and Max-ISR

	Known Results
	Polynomial Results
	PSPACE-complete Results
	Results Thus Far

	Bipartite Graphs
	Preliminaries
	The Algorithm

	Planar Graphs
	Preliminaries
	The Reduction

	Conclusion
	Final Results
	Open Problems

