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ABSTRACT
OF THE THESIS OF

Omar Bassam Hakla for Master of Engineering
Major: Mechanical Engineering

Title: EDDY DETECTION USING REANALYSIS DATASETS

Oceanic eddies are ubiquitous in oceans and play a major role in several pa-
rameters that include ocean energy transfer, nutrients distribution and air-sea
interaction. Typically, eddy detection algorithms are based on single physical
parameter, geometrics or other handcrafted features. To achieve better perfor-
mances, we aim to develop a new approach to fuse multi-variable features for eddy
detection. We will investigate lumping satellite datasets of Sea surface height,
Sea surface temperature, Salinity in addition to full model solution velocity field
through the inclusion of information (correlation) between the datasets.
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CHAPTER 1

INTRODUCTION

1.1 Ocean Vortices

Vortical activities in ocean is seen in plenty of regions in a mesoscale and sub-
mesoscale as shown in figure 1.1 [1, 2]. These activities are known as eddies,
which play key role in global energy and nutrient distribution throughout the
ocean [3, 4, 5]. Eddies have a wide range of sizes that can vary between centime-

Figure 1.1: Ocean Eddy [1]

ters and hundreds of kilometers in diameter lasting for several days and sometimes
more than a month [6, 7]. Moreover, their heights range up to 30 cm up or down
the sea surface level depending on the type of the eddy as discussed further on
[4, 8]. Add to that, due to their strong rotation in the ocean, they have high
kinetic energy compared to ocean mean flow [9, 10]. Eddies have a major impact



on nutrient distribution within the ocean such as dissolved oxygen (DO) and wa-
ter salinity [11, 12]. The two types of eddies to be studied further on are cyclonic
and anticyclonic eddies [8]. These Eddies are detected based on 3 main parame-
ters, which are the sea surface temperature (SST), sea surface height (SSH) and
rotational direction [4]. Nutrients in deep water are transferred in cyclonic eddies
through an upwelling technique, thus they are pumped to shallow areas [13, 14].
On the other hand, the opposite will occur when dealing with anticyclonic eddies
where the nutrients are pushed to deep levels in the sea through the downwelling
technique. The upwelling and downwelling phenomena are a major concern when
studying eddies. This can be used as one of the key factors to determine eddies
whether cyclonic or anticyclonic. Moreover, another important parameter is the
core temperature of the eddy. It is found to be cold in cyclonic eddies because
water from deeper depths is pumped up, however in anticyclonic eddies, due to
the downwelling the opposite occurs where a warm core is observed. It is im-
portant to note that the direction of rotation is anticlockwise and clockwise in
cyclonic and anticyclonic eddies respectively [15, 6]. The following is presented
in the figure 1.2 bellow:

i Anticlockwise Rotation i Clockwise Rotation

Cold Core

Upwelling Downwelling

Figure 1.2: Upwelling and Downwellling phenomena associated with Temperature
distribution and rotation direction

1.2 Reanalysis Data

Reanalysis is a scientific method used in weather and climate forecast predictions.
It mainly relies on two parameters which are the observations and numerical



solutions as shown in figure 1.3. Observations are usually caught using satellites
and are known as altimeter data. Altimeter data covers different properties such
as sea level anomaly (SLA) patterns [16]. Recently, researchers have the access
to higher resolution data [17]. Reanalysis data extends over years and in most
cases for decades. Extensive climate researches demand a lot of information from
the past which is achieved and calculated based on reanalysis data.

Observations

Initial observations === Numerical Solutions Data

Figure 1.3: Reanalysis data model

1.3 Introduction to Deep Learning

Among the methods used to solve complex scenarios and understand the corre-
lation between available parameters is deep learning [18, 19]. This new pillar is
known for its high predictive modeling in plenty of fields and the fast processing
it offers. Deep learning includes statistical and predictive modeling by training
the model using large datasets to present a final algorithm that is built according
to the required objective. These models can be trained in a supervised or un-
supervised manner. Supervised learning trains the model by using labeled data,
while in unsupervised training the model uses unlabeled data. Better models can
be achieved when more training sets are available since deep learning is simply
training by examples. Recently, deep learning is also used in medical research
where some doctors are using it for cancer detection [20, 21]. Image detection
using deep learning commonly uses Convolutional Neural Networks that include
convolution, pooling and fully connected layers. In this study, deep learning
techniques will be used to detect water vortices known as cyclonic and anticy-
clonic eddies. This helps in understanding the correlation found between them
and between several parameters that will be referred to as the channels during
the training process. In this study, the following framework in the below figure
will be used to prepare a new model for eddy detection. The artificial neural
network used is called the FCN-resnet50 network, which is known for image clas-
sification tasks [22]. Reanalysis data will be generated as images using both the
velocity vectors and SST as shown below, then the eddies in each image will be
labeled manually. Once this is done, this set of labeled images will be used in
FCN-resnet50 to train the model and validate it. Once the model is trained and



validated, it will be able to identify the eddies present on any day by inputting
SSH, SST, velocity and salinity data of the required day as illustrated in figure
1.4. The model will output segmented images of this day that include areas de-
tected as non eddy, cyclonic or anticyclonic eddy as demonstarted in figure 1.5.
For further knowledge about the artificial neural network, the following references
can be used [23, 24, 25].

Figure 1.4: Framework schematic diagram

Figure 1.5: Reanalysis generated image



1.4 Literature Review

Classical methods consisted of calculating criteria to classify whether there are
eddies or not, but they showed plenty of mislabeling. In the last decades, the
most established metric used for eddy detection was the Okubo-Weiss criterion
[26, 27]. This criterion determines the high deformation and vorticity over the
whole domain using the following relations:

W(x,t) = s*(x,t) — (*(x,1),
ou Ov ov  Ou

2 _ (2% Y%\ 27 7Y
) (20O
C(Xat)_(ax ay) )

where x represents xy coordinates, ¢ represents time, s? represents normal strain,
¢? represents shear stain also the u and v are the velocity components. An eddy
is detected when having the value of the Okubo-Weiss criterion W negative, then
using SSH, the eddy is identified as cyclonic or anticyclonic. An alternative way
was applied to the gulf of Alaska in 1994. High-resolution images supplied by a
Synthetic Aperture Radar (SAR) were used to detect eddy presence in the gulf of
Alaska. However, during strong winds and high sea tides, the surface signature of
eddies was unclear, therefore the wave refractions of the eddy were observed and
then implemented in a ray-tracing model [28]. In early 2000, an investigation was
done regarding the eddies detection in the bay of Bengal where waters there are
highly stratified. This study focused on SSH observations from altimeter data
to detect eddies and classify them as cyclonic or anticyclonic. However, due to
the highly stratified waters, the SST gradients were not much detectable [29].
These methods required expert-tuned parameters and led to high rates of eddy
declassification. Having that said, deep learning techniques were implemented in
the field of eddy detection and their results appeared to be more satisfying as
shown further on. Currently enhancements in this field are being applied to have
better results [19, 30].

In 2010, a model was designed to detect eddies based on the geometry of
the velocity components [31]. The results were compared to manually detected
eddies. The comparison was based on two main parameters, success detection
rate (SDR) and excess detection rate (EDR), that were calculated as follows:

N, x 100

SDR = —“——
Nte 7

N, x 100

EDR= —
Nte ’

where N,, was referred to as true number of eddies and N, was the correct number
of eddies detected by the algorithm, while N,, is number of incorrect eddies
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predicted by the algorithm. The results for a sample of 10 days were shown in
table 1.1:

Day 115 352 705 811 820 1476 1626 1787 1833 1870 Total
True eddies 19 20 15 20 16 18 16 24 26 23 197
Ne 18 17 14 19 15 137, 15 24 23 21 183
Noa 0 2 0 2 0 1 0 0 1 0 6
Missed eddies 1 3 1 1 1 1 1 0 3 2 14
SDR (%) 94.7 85.0 933 95.0 93.7 94.4 938 100.0 88.5 91.3 929 = 40
EDR (%) 0.0 10.0 0.0 10.0 0.0 5.6 0.0 0.0 38 0 2942

Table 1.1: SDR and EDR sample results [31]

A model was implemented on the Southern Java Indian Ocean to study the
characteristics of eddies on different vertical levels [32]. The model relied on both
velocity fields and SST, which lead to visualization of the vertical structure of
eddies and their presence at 4 different vertical levels which were 5, 109, 155 and
222 meters as demonstrated in figure 1.6 below:

THE"E
Loregilade

.- - . - .......-'“ . ey . S ans . o
d w 10"E IB"E 14E w e e 192 1on°E 14 1908
Lomgilne Longauog

Figure 1.6: Eddy visualisation in September 2014 at four vertical levels [32] a.)
5m, b.) 109 m, c.) 155 m, d.) 222 m

Moreover, the model also included calculating the eddy kinetic energy (EKE)
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distribution over the region to understand how it is spread.
EKE = 0.5(u® + v?).

Later on, through the use of Support Vector Machines (SVMs) classifier with
radial basis function, a model was designed in 2016 to detect eddies. The model
relied on the u and v components of the surface velocities only [33]. The phase
angle between v and u components of velocity was calculated using the following
relation:

v
® =tan" ' —.
U

Then, the value of the phase angle was plotted over the whole domain and eddies
would be detected from the rotation field if present as shown in figure 1.7. Then

Latitude

190 19 200 205
Longitude

Figure 1.7: Phase angle distribution over the domain [33]

using the SST (referred as sea level anomaly), eddies were classified as cyclonic
or anticyclonic ones as shown in figure 1.8.
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Figure 1.8: Cyclonic eddies in blue and anticyclonic eddies in red [33]
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A U-Net like network named EddyNet was used in the year 2018 which is
based on pixel-wise identification and also uses a convolutional encoder-decoder
[34]. This architecture was trained using only SSH data that was provided by
Copernicus Marine and Environment Monitoring Service (CMEMS). It was com-
posed of 15 years where each year is 128 x 128 pixels. The prediction map
consisted of 3 labels that represent non eddy, cyclonic and anticyclonic eddy ar-
eas. Moreover, the results were studied according to the dice coefficient (DC)
metric which is calculated as follows:

DO — 2 x Common area between prediction and true labels

Sum of predicted and true areas

In 2019, another approach to detect eddies using deep learning technique was
held using pyramid scene parsing network (PSPNet) architecture. The model
relied only on SSH data. The results showed better detection when compared
with a traditional vector geometry-based (VG) approach [35] as presented in
figure 1.9. The data was composed of 5 years that were between 2011 and 2015

300 T T T T T T T T T T T
— VG

280 —— PSPNet | -

260

240

220

Eddy Number
N
o
o

180
160
error=25.90
140} re-error=13.83%
120+ corr=0.93 -
100 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12
Month

Figure 1.9: Comparison of monthly results between PSPNet and VG architectures
[35]

13



covering the east of the Luzon Strait to the Hawaii Islands. Only the year 2015
was used for validation further on. The VG approach was based on the velocity
fields vector, which has two components the u and v that were used to determine
areas of rotation. Upon using the PSPNET model more eddies were detected
during 2015 than VG architecture. The average eddy difference was 26 eddies
approximately per day and a relative error of 13.83%, which was the error divided
by VG results. Both architectures showed a correlation of 0.93 which was very
high.

Lately in 2021, in order to study the applicability of deep learning techniques
in eddy detection, three techniques were implemented that rely SSH data. The
data was distributed over 5 years. The results showed how each of the three
techniques had it’s perk. PSPNet resulted in largest number of eddies predicted.
Bilateral Segmentation Network (BISENET) showed higher accuracy in finding
large scale eddies. However, DeepLabV3+ technique didn’t track much eddies as
the previous two techniques [36].

14



CHAPTER 2

SEGMENTATION

In this chapter, deep explanation will be available to understand how the labelling
of the satellite images was done and what types of image segmentation can be
used.

2.1 Image Segmentation

There are 3 main types of image segmentation: Semantic, instance and panoptic
segmentation. The aim is to understand what objects are available in each image
and each technique serves a certain result of classification [37, 38]. In outline,
the first type to be understood is the semantic segmentation; all image pixels
will be classified of a certain class. For example, if there is a picture of a normal
straight road all cars will be treated as one class and the people as another calss
as shown in figure 2.1. As it can be seen, this is a pixel-by-pixel identification

Figure 2.1: Semantic Segmentation
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where each type of object belonging to the same class was identified by a certain
color. Another type of image segmentation was introduced further on which deals
with available objects as distinct individuals and this is called the instance seg-
mentation technique [38]. In this technique, even if the objects were of the same
primary class, however they will be dealt with as separate objects. Each object
has its id and properties to be studied such as presented in figure 2.2 below:

Figure 2.2: Instance Segmentation

Although the image includes several detections that include humans, each indi-
vidual was treated differently than the other. This technique differentiates each
one of them. Therefore, there were several objects labeled and identified as hu-
mans but each has its specific id and properties although they belong to the same
primary class. Further on, a new concept was introduced which combines both
instance and semantic segmentation. This new concept was known as panoptic
segmentation. It assigns for each pixel two values. One of them will be the same
as the semantic case and the other same as the instance segmentation case pre-
sented in figure 2.3 [38].

16



Semantic Segmentation Instance Segmentation

Punoptic Segmentation

Figure 2.3: Panoptic Segmentation

2.2 Eddy Detection using Semantic Segmenta-
tion

The aim of this project is to classify where there are eddies and of what type
are they. The interest is not studying eddy development over days and years.
Neither the aim is to calculate the kinetic energy of eddies. All pixels should be
categorized under three categories: background, cyclonic and anticyclonic eddy.
Therefore, the best segmentation technique that matches this project’s aim is
semantic segmentation.

2.3 Training Data

The data is based on the Copernicus Marine Environment Monitoring Service
(CMEMS) global ocean eddy-resolving reanalysis product with a horizontal reso-
lution of 1/12° (approximately 8 km). The reanalysis system is based on version
3.1 of the NEMO (Nucleus for European Models of the Ocean) ocean model,
driven at the surface by ECMWF ERA-Interim reanalysis. Observations are
assimilated with a reduced-order Kalman filter, including along-track altimeter
data, satellite Sea Surface Temperature (SST), and in situ T/S vertical profiles.
Daily mean temperature, salinity, current, and sea level fields are analyzed. The
velocities are full model solutions, not from the geostrophic relationship.

17



2.4 Methods Used

This study relies on two main tasks to be achieved. The first one will be prepar-
ing a well labelled training set which can be done using an image annotation tool
such as a Labelme where each satellite image available will be labelled and then
the data will be extracted. There was no interest in examining land areas. There-
fore, they were marked white throughout the whole studied domain. Cyclonic
and anticyclonic eddies were labeled using two main parameters: eddy velocity
fields and the SST. SST contours were plotted accompanied by the velocity field
to help identify eddy presence and type as shown in figure 2.4. Labeling the
training set involves the representation of each eddy by a polygon created using
the image annotation tool Labelme.
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Figure 2.4: Satellite Image Sample

The largest contour which shows both high vorticity and temperature relevance
was identified as an eddy. After the labelling of an image, it will then be turned
into an annotation image. The stored xy coordinates of the polygons were se-
mantically segmented using labelme as shown in figure 2.5. Through this, the
solution for the training set was prepared. After image annotations are available,
usually they are distributed into two parts. The first part includes 80% of the
prepared annotations, which will be the bulk of training. The remaining 20%
will be used to validate the operation of the neural network. However, in this
investigation since the available images were distributed over 11 years, it was
decided to use 10 years as training data sets and the last year for validation.
This was done to ensure validation over a whole year accompanied with max-
imum training datasets. Moreover, the more accurate the images were labeled
and revised carefully, the better the results will appear. So, it is very important
to have well-labeled images because this is reflected in the predicted results. The
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Figure 2.5: Annotation image prepation

aim of the project is to classify the pixels of an image whether it’s an eddy and
of what type or not an eddy. Hence, the semantic segmented data was extracted
for all days as provided below in figure 2.6. Once there is a well prepared training
dataset, the neural network can be actuated and the model can be trained. In
this study, PyTorch framework was used to create the neural network. PyTorch
is an open source framework used in variety of research fields that include deep
learning, object detection and plenty of other projects can be done using this
framework.
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Figure 2.6: Semantic Segmented Image
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CHAPTER 3

TRAINING THE NETWORK

In this chapter, there will be explanation about how the training was done and
results analysis will be shown.

3.1 Code architecture

The data is composed of 4015 labelled image distributed into two folders, one for
training and one for validation datasets. The training file included the data from
2001 till 2010 and the validation file included the data of the final year 2011.
Moreover, the training file included requirements to launch the code on KAUST
IBEX. It was executed using the sbatch command that initiates the code and
inputs all training data in the FCN architecture. Once training is completed,
the results are stored in the form of tensorboard files. They were viewed further
on using google colab to select the best model. During the training phase, the
training dataset, which was composed of 3650 day was divided into batches.
A batch size of 5 was used in all experiments. This means that after working
and training the model through 5 images, in the training phase, the model gets
updated. The total number of batches was calculated as follows:

Total data files 3650

= 730.
Batch size 5

Total number of batches =

Moreover, the epoch number chosen was 25, which means that the model will
go over the training datasets for 25 times. Therefore, the weights of the model
will be updated at the end of each batch as shown in figure 3.1. Each epoch
will update the model 730 times because the total number of the batches is 730.
Consequently, the weights of the model will be updated 18,250 times as shown
below:

Model weights updates = Epoch number x Total batches = 25 x 730 = 18, 250.

21
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Figure 3.1: Model Training

3.2 Learning rate

Initially, the weights of the neural network between the layers will hold arbitrary
values. Further on, these weights will updated after each iteration using the
optimization function. The ideal scenario is to reach a zero loss, which represents
the error in the neural network. The faster the loss is reached and the lower it
becomes, the more optimized is the model. Learning rate is a hyper-parameter
that controls the speed of model and how it adapts to new changes after each
iteration. As such, the learning rate is chosen to maximize accuracy and minimize
the error. After conducting several tests, the graph of the loss function can be
drawn and the optimal value of this hyper-parameter can be captured as shown
in figure 3.2. The same idea pops up when dealing with neural networks and
talking about the learning rate. Upon conducting several tests the results will be
captured and analyzed to choose which model shows lower losses and higher level
of accuracy. It is highly recommended to know that not only the learning rate will
have a reflect on the speed of training but also on the results appearing. Upon
using low learning rates, a lot of time steps will be required to reach the optimal
value of this hyper-parameter. On the other hand, large values of leaning rates
will lead to a divergence. Therefore, the conducted experiments in this research
included different values of learning rate. Based on results of each experiment, the
best model was chosen. The whole training was carried out for 19 different values
of learning rate. Their results were stored and included the loss and accuracy
over the three studied classes that are:

e Background: class 0 that represents areas with no eddies

22
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Figure 3.2: Learning rate effect

e Anticyclonic eddies: class 1 that represents areas with anticyclonic eddies
e Cyclonic eddies: class 2 that represents areas with cyclonic eddies

The results of these conducted experiments were observed using tensorboard and
were presented based on six metrics. The metrics are: training accuracy, training
intersection over union (IOU), validation accuracy, validation IOU, training loss
and validation loss.

Training accuracy helps understand how well the model is accurate in the
training phase. Validation accuracy gives a prediction how well the model will
operate when new data is to be used. Both accuracies represent the percentage
of correct labeled pixels. If the model shows high training accuracy but low
validation accuracy this is an indication that the model is losing the ability to
provide better predictions when using new data.

The IOU is a metric used to evaluate the detection accuracy of the model.
Once the model is used for a certain day, there will be areas detected as eddies
similar to the provided solutions and other areas that weren’t part of the solution.
Therefore, dividing the area that overlaps the prediction results with segmented
images by the union of them results in the IOU metric. The ideal case is to have
it equal to 1 and the worst case is to be equal to 0 as shown in figure 3.3.

The loss metric refers to the use of cross entropy loss function that is calculated
based on following formula:

N
Log = — Y tilog(ps),

i=1

where ti is true value and pi is the probability value appearing at the end. Based
on the final probability values a pixel can be identified of what class as show in
figure 3.4 that includes a pixel identification example. The highest probability
class was chosen to represent the pixel, which was in the example cyclonic class.

23



The metric results were plotted and demonstrated in figures (3.5, 3.6, 3.7) and
tables (3.1, 3.2, 3.3).

Area of Overlap

loU =
Area of Union

Figure 3.3: IOU calculation

Output layer

probability distribution Troe Value
Background 0
Cyclonic Eddy 1
Anticyclonic Eddy 0

Figure 3.4: Loss function example

N
Lep ==Y tilog(p:) = (0log(0.02) + 110g(0.97) + 0log(0.01)) = 0.0132

=1
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Figure 3.5: Class 0 metrics
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Table 3.1: Class 0 results

Learning Rate Train ACC Train IOU valid ACC valid IOU

0.0001 0.8792 0.8712 0.889 0.8807
0.0075 0.9556 0.9526 0.9483 0.945
0.001 0.929 0.924 0.9286 0.9236
0.005 0.9389 0.9347 0.9336 0.9322
0.009 0.9491 0.9454 0.9415 0.9412
0.01 0.9507 0.9473 0.9474 0.9439
0.02 0.9585 0.9557 0.9511 0.948
0.03 0.9515 0.9482 0.9477 0.9433
0.04 0.9585 0.9555 0.9494 0.9481
0.05 0.9523 0.949 0.9493 0.946
0.06 0.9562 0.9532 0.9497 0.9465
0.07 0.9458 0.9421 0.9418 0.9379
0.08 0.9537 0.9506 0.9486 0.9454
0.09 0.9535 0.9503 0.9487 0.9454
0.1 0.9491 0.9455 0.9438 0.9413
0.11 0.9506 0.9472 0.9456 0.942
0.15 0.9491 0.9456 0.946 0.9424
0.2 0.938 0.9337 0.9401 0.9359
0.3 0.9337 0.9291 0.9337 0.9291
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Table 3.2: Class 1 results

Learning Rate Train ACC Train IOU valid ACC valid IOU

0.0001 0.939 0.3702 0.9417 0.4119
0.0075 0.9773 0.6191 0.9726 0.5659
0.001 0.9638 0.5011 0.9626 0.5092
0.005 0.9691 0.541 0.9662 0.5289
0.009 0.9741 0.5867 0.9695 0.5575
0.01 0.9749 0.5945 0.9716 0.5639
0.02 0.9789 0.6362 0.9741 0.5793
0.03 0.9752 0.5977 0.9718 0.5651
0.04 0.9788 0.6357 0.9741 0.5837
0.05 0.9758 0.6036 0.9733 0.5714
0.06 0.9777 0.6237 0.9732 0.57
0.07 0.9727 0.5738 0.9691 0.5462
0.08 0.9764 0.6095 0.9723 0.5593
0.09 0.9763 0.6095 0.972 0.5657
0.1 0.9742 0.5874 0.9711 0.5726
0.11 0.9749 0.595 0.9709 0.5532
0.15 0.9738 0.5844 0.9703 0.5583
0.2 0.968 0.5339 0.9678 0.5439
0.3 0.9654 0.5137 0.9641 0.5193

28



1.7

0.8

0.6

0.4

0.2

0.0001

0.001

0.005

0.0075
0.009
0.01
0.02
0.03
0.04
0,05
0.08
0.07
0.08
0.09
0.1
3 i
0.15
0.2
0.3

== Training Accuracy =--#=Training IOU

=—#="/alidation Accuracy=—#=\alidation IOU

Figure 3.7: Class 2 metrics

29



Table 3.3: Class 2 results

Learning Rate Train ACC Train IOU valid ACC valid IOU

0.0001 0.9391 0.3219 0.9462 0.3423
0.0075 0.9781 0.5774 0.9755 0.4906
0.001 0.9648 0.4561 0.96533 0.425
0.005 0.9695 0.4936 0.97 0.4616
0.009 0.9747 0.5396 0.9737 0.4918
0.01 0.9755 0.549 0.9754 0.5007
0.02 0.9795 0.5926 0.9767 0.4982
0.03 0.976 0.5509 0.9756 0.5018
0.04 0.9794 0.591 0.9767 0.512
0.05 0.9762 0.5567 0.9756 0.5023
0.06 0.9783 0.5785 0.9767 0.4982
0.07 0.9727 0.5206 0.9758 0.483
0.08 0.9771 0.5657 0.9761 0.5049
0.09 0.9768 0.5619 0.9764 0.5096
0.1 0.9745 0.5376 0.9744 0.507
0.11 0.9754 0.5467 0.9743 0.4877
0.15 0.9749 0.5422 0.9753 0.5047
0.2 0.9695 0.4925 0.9719 0.4833
0.3 0.9678 0.4785 0.969 0.4599
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The following results showed that the best models were the ones working
under 0.02, 0.04 and 0.06 learning rates. They achieved the highest training and
validation accuracy in addition to the highest IOU. The loss data of the 0.02
learning rate model was plotted below in figure 3.8. After Epoch number 22,
there was approximately no change in the loss results that appeared in epoch
number 23 so we stopped before the last two iterations. Although Validation loss
is 0.7, the objective of detecting eddies was completed and this was verified when
using the model and through the accuracy results. Moreover, the model is tested
in the second section and the aim of detecting eddy location was achieved.
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Figure 3.8: Class 2 metrics

3.3 Testing the model

Upon using any of the available models that were trained, what will be predicted
at the end for each pixel is three probability values for each class. The difference
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between each trained model will be in the weight of the connections between
the layers that was affected by the learning rate. A sigmoid function is used
in the last layer of the neural network as an activation function. The sigmoid
function was used to represent results at the end as probabilities due to its shape
represented in figure 3.9. Therefore, the class with highest probability is chosen
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Figure 3.9: Sigmoid function

to represent the pixel and at the end new images were generated accordingly as
shown in figure 3.10.

All detected eddies show a circular and elliptic shape and there is a big range
in the sizes. The island and land areas show no eddy detection as desired. This
was due to having no labelled area there during the manual labelling phase and
results appeared to be convenient with what intended.
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CHAPTER 4

CONCLUSION

Earlier eddy detection algorithms were only based on one or two parameters.
Upon understanding the effects that an eddy shows in water, manual segmen-
tation using labelme was done. It covered 4015 images that include SSH, SST,
velocity field and Salinity datasets available. The new model receives these se-
mantically segmented images as solutions and 5 input parameters. The training
data included images from the year 2001 till 2010 (3650 days) under different
learning rates. Then the model was validated using the last year’s (2011) images.
The data was divided in this order to make sure that training and validation were
done during all times of the year. It was proven that the most accurate model
was the one operating with a learning rate of 0.02. On the other hand, accuracy
increased by nearly 10% on average for all classes. Add to that, the model can be
used at any sea surface level, which gives it a privilege over other models. Further
on, what will be added as a sort of filtering mechanism that removes undesirable
detection that appears to be not an eddy. More tests will also be conducted to
understand the correlations and relations between the input parameters. More-
over, different types of neural networks will be used and experimented with the
addition of instance segmented images used as solutions.
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SSH
SST

AC

C

SAR
SDR
EDR
EKE
SVM
NEMO
CMEMS
DC
PSPNet
VG
BISENET
FCN

APPENDIX A

TITLE OF APPENDIX

Sea Surface Height

Sea Surface Temperature

Anticyclonic

Cyclonic

Synthetic Aperture Radar

success detection rate

excess detection rate

eddy kinetic energy

Support Vector Machines

Nucleus for European Models of the Ocean
Copernicus Marine and Environment Monitoring Service
dice cocfficient

pyramid scene parsing network

vector geometry based

Bilateral Segmentation Network

Fully Convolutional Network
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