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Abstract

of the Thesis of

Jawad Salah Haidar for Master of Engineering

Major: Mechanical Engineering

Title: Optimal Spatial-Spectral Input For Real-Time Hyperspectral Image Classification

Heavy metal contamination in soil is of great danger for the environment as well

as for the human health. This is owed to their hazardous toxicity alongside with their

ability be easily captured by crops and plants. Detection of soil contamination is a

major step that aids in the soil rehabilitation process. Our goal in this project is to

explore the potential of using hyperspectral imaging and deep Learning techniques

to identify contamination in real time. The large size of the hyperspectral image

and the relatively limited resources in onboard processors make the real-time classi-

fication a challenging task. In this work, we propose a novel approach for real-time

hyperspectral image classification using optimal spatial-spectral input. The optimal

input consisted of the main pixel with two of its spatial neighbors. Two novel deep

learning models based on the optimized three pixel method were developed. The first

is a Deep Neural Network (DNN) model focused on fast online classification and the

second is a Recurrent Neural Network (RNN) model focused on offline classification

with enhanced accuracy. These models were evaluated using four datasets, three

agricultural datasets and the Sydney Bridge dataset. The DNN model achieved a

maximum accuracy of 97% with an inference speed of 83,665 pixels per second while

the RNN model achieved a maximum accuracy of 99% with an inference speed of

25,000 pixel per second. When compared, the DNN model is more suited for quick

real-time applications while the RNN model is more suited for applications where

accuracy is critical. Furthermore, in terms of latency, our approach maximized the
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preprocessing speed compared to other spatial-spectral methods. The attained fast

speed in preprocessing and inference is applicable for Real-time application.
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Chapter 1

Introduction

Heavy metal contamination in soil is of great danger for the environment as well

as for the human health. This is owed to their hazardous toxicity alongside with

their ability be easily captured by crops and plants. Additionally, they might pene-

trate to groundwater and thus polluting the drinking water [1], [2]. In Lebanon, the

waste mismanagement and uncontrolled dumping practices in addition to limited

water and soil resources lead to a drastic increase in heavy metal contamination in

various lands across the country [3], [4].Various studies have been conducted across

Lebanon especially in the bekaa region where they found medium to high heavy

metal contamination levels that necessitates action[5], [6].

The critical contamination issue necessitates an efficient detection and monitoring

method. One conventional technique is lab based; where soil samples are collected

form situ, then chemical analysis is conducted on them at the lab, finally spatial in-

terpolation is applied to estimate the metal contamination in the full spatial region

of the land. The downside of this method is time consumption and high cost of op-

eration. A more efficient method that meet the standards of areas with large scale is

hyperspectral method [7]. Hyperspectral images have a high spectral resolution with

bands ranging from 20 to 500 nm, these types of images have enough information

about the soil health and type. To detect soil contamination from hyperspectral im-

ages, machine learning algorithms should be applied to perform classification. Some

of the most used classification methods are Support Vector Machine (SVM), random

forest and artificial neural networks [8], [9].

These spectral cameras are mounted on Unmanned Aerial Vehicles (UAVs) that can

maneuver and scan the field with eye bird view thus providing a good field of view

in addition to the flexibility of varying the height of capture [10]. During the flight

the hyperspectral images can be saved to memory and then analyzed offline on a
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high-performance computer. The downside for this method is that the user will not

get access to the results of classification until the flight is done. On the other hand,

a real time onboard classification will give the user insights during the flight and

thus providing the potential for instantaneous decisions [11].The complexity in real

time onboard classification arise from the fact that the hyperspectral image has a

huge volume along with the limited computational power for onboard computers as

well as limited transmission speed [12], [13].

Given the importance of performing hyperspectral image classification in real-time,

our goal in this study is to develop an optimized deep learning model that can per-

form onboard hyperspectral classification. The models will be general and able to

be used in any domain including soil contamination.To test the models two case

studies will be conducted. The first will be conducted on a agricultural dataset to

classify agricultural lands. The second case study will be performed on a structural

health monitoring dataset. The latter dataset includes hyperspectral images of the

Sydney bridge and is used for paint condition assessment.
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Chapter 2

Literature

2.1 Hyperspectral Cameras

One way to categorize Hyperspectral cameras is by the way they capture the spectral

data. In this sense, they are divided into four categories: Push broom, whiskbroom,

framing and windowing. Push broom captures the data line by line, with the lines

being perpendicular to the direction of motion. Whiskbroom records the hyperspec-

tral data pixel wise by sweeping perpendicular to the motion of movement by the aid

of rotating mirror. On the other hand, the framing method stacks two dimensional

images, to form the hyperspectral cube, by focusing on one wavelength per capture.

In the case of windowing, no integration is established between the consecutive 2D

images [14]. The four categories of hyperspectral cameras are shown in figure 2.1.

There are several methods to capture a hyperspectral image. The whiskbroom

method scans pixel by pixel and uses a mirror that sweeps, perpendicular to the

motion direction of the UAV, to form a scanned line. On the other hand, the push

broom method scans a line of pixels at one time, this line forms a 2d array with

a spectral dimension and a spatial dimension that is perpendicular to the motion.

As the UAV moves these 2D arrays are stacked to form the 3D spectral image. A

critical point to keep in mind is that the speed of the array capturing should be

synchronized with the speed of the UAV. A third method uses a tunable filter that

forms a 2d array for the whole scene for one band at a time. Lastly, the snapshot

method, capture the entire 3D cube at one shot [16]. Hyperspectral cameras can

be classified also by the spectral range that they cover. Tan et al. [9], used two

hyperspectral cameras one to cover the near infrared range and the other to cover

short wavelength infrared range. Using this camera, they were able to detect several

heavy metal contaminations in soil such as As, Cr, Pb and Zn. On the other hand
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Figure 2.1: Figure 1-Types of hyperspectral cameras. (a) Whiskbroom (b) Push
Broom (c) Spectral scanning (d) Snapshot [15]

12



Table 2.1: Specifications for hyperspectral cameras

Application Weight (Kg)
Spectral

Range (nm)

Spectral

Channels

Spatial

Pixels
Power (W)

VNIR-1800 Airborne/field 5 400-1000 186 1800 30
SWIR-384 Airborne/field 5.7 930-2500 288 384 30
Mjolnir V-1240 UAV <4 400-1000 200 1240 50
Mjolnir S-620 UAV <4 970-2500 300 620 50

Table 2.2: Absorption bands for gases found in air in micrometer
Water Vapor 1.88 , 1.38 , 0.94
Oxygen 0.76
Carbon dioxide 2.08

the authors in [17] , used a violet near infrared spectral camera that was mounted

on a UAV. A detailed classification of different hyperspectral cameras is found in

table 2.1. VNIR-1800 is a hyperspectral camera that covers the visible and near

infrared region. Whereas the SWIP-384 covers the short-wave infrared spectrum.

The Mjolnir V-1200 and Mjolnir S-620 are usually mounted on UAV. The former

covers the visible near infrared whereas the later covers the short-wave infrared

region.

2.2 Hyperspectral Image Processing

2.2.1 Correction Methods

Atmospheric noise is the contribution of different atmospheric factors to the spectral

signal [18]. The process of transferring the radiance gauged by the camera into the

real reflectance of the land/surface is called atmospheric correction. Table 2.2 shows

the absorption band of different atmospheric gases that affect the spectrum. Some

of these gases are water vapor, oxygen, and carbon dioxide. The algorithms for

hyperspectral image classification should account for these bands by removing or

filtering them from the spectral curve. The atmospheric correction approaches can

be divided into three different approaches. The empirical approach that includes

several methods as Internal Average Reflectance (IAR), empirical line and cloud

shadow. The radiative transfer modeling simulates the scatter and absorption effects

of aerosols and gases using theoretical modelling.
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2.2.2 Dimensionality Reduction

There are three types of dimensionality reduction techniques. Feature selection

works on eliminating bands that do not contribute to giving the pixel a unique

representation, in other words, keeping the bands that identifies the spectral signa-

ture of the pixel. The feature selection method works when the user already knows

where the spectral signature of a certain material in the electromagnetic spectrum

is. The feature selection method is also valid in the case of unsupervised learning

by selecting the bands that maximizes the distance between the different clusters of

the image. Another method is called the feature extraction, in this method the ob-

jective is to transform the input data to a new space that reduces the dimensions of

the input vectors and at the same time keeping the most crucial information. One

main algorithm for feature extraction is called the principal component analysis.

This algorithm projects the spectral bands into a smaller N dimensional space while

preserving the variance in the data. The N dimensions are the number of principle

components, the first principal component captures the maximum data variation.

Additionally, there is the physical indices calculation techniques that creates fea-

tures with physical interpretations like the normalized difference vegetation index,

normalized difference vegetation index and the floating Algae Index [1].

2.2.3 Spectral Unmixing

The solar radiation and ambient environment cause disturbances in the measured

reflectance [19]. The spectral mix is common especially in the case where the image

is captured at a very high altitude since in this case each pixel will cover a huge area

in the land. Additionally, the lack of high spectral resolution causes a geographic

mixing, in other words the spatial dimension of one pixel is large enough to include

several materials per pixel. Endmembers stands for the different sources that formed

the spectra of a pixel. On the other hand, the abundance is the percentage of each

endmember. In geographic mixing different materials are found in one pixel but they

are not mixed. This kind of mixing can be resolved using Linear Mixing Models.

Whereas in the case of intimate granual mixture the materials are mixed, this issue

is usually solved using nonlinear mixing models. The last type of mixture is called

the intimate laminate mixture, where different materials are stacked above each

other. The estimation of the count of endmembers in the whole image is the first

step taken in spectral unmixing. The techniques in this matter are split into three:

the supervised where the number of endmembers is chosen to be the first PCA
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components that span most of the variance. The semi-automatic that subtract the

correlation and covariance matrices, then counts the non-zero elements and sets this

number to be the count of endmembers. The unsupervised that deducts the value

from the correlation between signal and noise [1].

2.3 Hyperspectral Image Classification

Turner et al. [17], used two different airframes to capture hyperspectral images for

a field. The first airframe included a micro-hyperspec, Inertial Measurment Unit

(IMU), Global Positioning System (GPS) and a machine vision camera whereas the

second airframe contained a Nano-hyperspec, IMU and GPS only. The results of

the experiment showed that machine vision cameras and SFM can be used as an

alternative to determine the orientation of the UAV rather than the convention of

using an IMU. The authors in [9], got 60 soil samples and determined the concen-

tration of pb, Cr and Cu) . Two hyperspectral cameras VNIR-1600 and SWIR-384

were used to capture hyperspectral images followed geometric and radiation cor-

rections, and due to special resolution roughness, they used the minimum volume

simplex to perform linear unmixing. The MVS is considered as a fast process to

apply linear unmixing for the hyperspectral data [20]. Finally, they performed sev-

eral classification models and found out that the random forest performed the best.

The authors in [7], stated that one of the most challenging tasks in heavy metal

detection using a hyperspectral camera is to derive a lab mathematical model, using

samples of soil, that can be applied to detect heavy metals in a real world scenario

as capturing the images from a UAV. The challenge arises due to the fact that lab

is a controlled environment and does not account for random noise that might be

encountered by a UAV. For this reason, they developed an innovative method that

derives the ratio between dry and moisture soil spectral reflectance. Consequently,

this has enhanced the potential of using lab models to map lands with very large

areas. Furthermore, using the combination of Boruta model and stepwise regression,

the best spectral variables were chosen. They have tested their method to detect

three different metals: Cd, As, and Hg. The approach to predict the contamination

of heavy metals inside soils follows the following steps. The first step is to collect the

soil samples from the area of study. Then the spectra of the samples are measured

and preprocessed. At this stage, there is three different options to the independent

variables that will act as an input to the prediction model, either to extract the

spectral indices or select the information variables or to take the full spectra as the
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input from the other side, the label for the inputs , is taken from the real concentra-

tions of the samples. Then a regression relation is derived, using machine learning

tools, between the independent variables and the labels to form a regression model.

Finally, new samples can be introduced to the model to predict their concentrations

[21]. The authors in [1], divided their machine learning model into three parts, Input

layer that includes the high-resolution airborne image labeled at 1068 points. The

labeling process was established by gathering 1068 soil samples and measuring their

as concentration in lab, the coordinates for each label was extracted using GPS.

Second part was the feature extraction layer, the features they have chosen can be

divided into three sets: spectral set, distance, and gradient from pixels to rivers and

factories, and the third set is the distance and gradient to waste storage areas. The

third part is the prediction part, at this stage they have performed several machine

learning models (MLP, SVM, Random Forests, Extreme Random Forest) to classify

the test pixels into the three different risk levels (Low, Medium, High). Additionally,

the researchers in this paper found that the spectral related features have the least

influence on prediction. In the context of hyperspectral data two main issues arise,

from one side the small sample size and the high dimensional feature vectors from

the other. Solving the former issue is done using ensemble methods to generalize

the data, and the latter issue is solved by performing the Competitive Adaptive

Reweighted Sampling feature selection method. Tan, Wang, Chen, et al. [9], started

by applying competitive reweighted sampling to select the best representing fea-

tures for the spectral signatures, then the feature selected data were the input for a

stacking method, the stacking method started with the cross validation of the data

with three independent prediction models ( decision forest, KNN, SVM), the three

outputs of the prediction models were the input to the extremely randomized trees.

Yu, Fang, and Zhao [22], used PCA to choose the most effective wavelengths in the

spectrum range of the Hyperspectral camera. The spectral response of several met-

als is not unique, in such cases the detection will rely on correlation of the metals

with organic matters that might be found in soil. Other metals do not absorb the

spectral waves, detecting their presence is attained by their covariation with other

detectable metals. Additionally, metals in soil mostly exist in the compound not

the ion form [2].
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2.4 Drone and Real-time Classification

Three main types of UAVs: fixed wings, VTOL and rotorcraft. Such drones can

be used in various civil infrastructure applications like Ariel inspection, ariel sur-

vey, search and many others [23]. Wyder, Chen, Lasrado, et al. [24] developed

an autonomous UAV that detects and takes down other UAVs in regions with no

GPS signals. They generated 58647 images.10,000 of them were generated in Air-

Sim simulator. The images were changed to gray scale to reduce computational

power and then trained using YOLO detection algorithm. Using the Jetson TX2 as

the onboard hardware they achieved 77% of accuracy at 8 frames per second. The

authors in [25], worked on road inspection using low power drone with real time

classification. They used MobileNet-V2 that is a CNN used for onboard mobile

platforms. The framework has good accuracy while running on low-power plat-

forms. For training, they used 21,890 images divided into 14 classes of road asset

items. They achieved 81% accuracy with 7.4 fps and consuming 1.9 watts for the

onboard jetson Nano. Waleed, Mukhopadhyay, Tariq, et al. [26] worked on outdoor

ceramic insulator condition monitoring using drone with raspberry Pi and Odroid

XU4 as onboard computers. In the training stage 2973 images were used for three

classes: health, broken and dirty. They performed their application using both on-

board and offboard high performing computer. For offboard, SVM combined with

CNN is used to determine the region of interest. On the other hand, the combi-

nation of SVM and CNN are computationally heavy to be applied on onboard, so

they used a light process which is single shot multi-box detector. To improve the

performance, they used mobilenetv2 and consequently achieved a processing time

of image per 2 seconds. One of the main architectures used for onboard computer

vision applications is Mobile Nets. The authors in [27], have developed this archi-

tecture using lightweight model by utilizing depth wise separable convolutions. It

can be used for object detection, geo-localization and other computer vision appli-

cations. MobileNetV2 is version two of the previously mentioned model, it includes

depth wise convolution network with 32 filters. The convolution layers are followed

by 19 residual bottleneck layers. This model outperforms the mobileNetv1 with

accuracy of 74.7 74.7%. But the parameters in this model are 6.9 million whereas

in mobileV1 they are only 4.2 million [28]. Using the Indian pines hyperspectral

image dataset, the jetson TX2 showed a better performance to energy ration over

the Xeon hardware during the training phase [29]. The boards were not tested in

the inference phase to check their performance for real time applications. The au-
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thors in [30],benchmarked the jetson TX1, Jetson Nano against the jetson Xavier by

testing their computational capabilities to perform classification for both hyperspec-

tral image and 3D point clouds. For 3D point cloud computation, the boards were

benchmarked in the inference phase as well as in the training phase whereas for the

HIS classification the boards were tested only in the training phase. They concluded

that Xavier outperforms both jetson TX1 and jetson Nano and that it is suitable for

Realtime edge computing. A real time target detection algorithm for hyperspectral

images using FPGA was developed by the researchers in [36]. The Authors used

the CRD algorithm that shrinks the dimensions of the data as its first step to lower

the computation. they achieved faster processing time compared to 3.40 GHz CPU.

The authors in [8], introduced a hardware accelerator to enhance the classification

computation for hyperspectral images. The authors applied support vector machine

and their proposed processer was implemented on FPGA.A pixel classification of

0.1 ms with high accuracy of 99.7% was achieved.

2.5 Paint Condition Assessment

Before the spread of more advanced techniques, previous paint condition assessment

applications relied on traditional machine learning methods. One such study trained

a multi-class Support Vector Machines classifier with a linear kernel to assess the

paint condition on civil structures based on spectral input data [31]. Despite the

classifier being able to identify certain classes accurately, it achieved a fair overall

classification accuracy of 75% and suffered from confusion between classes [31]. Even

recently, decision tree models were trained with the CatBoost algorithm as degra-

dation models that could predict the retroreflectivity of waterborne paints based on

the significant variables that are believed to affect the performance of these paints

[32]. Their models achieved acceptable levels of accuracy but require further tweak-

ing and tuning of hyperparameters to enhance performance to more desirable levels

[32]. These studies highlight some of the drawbacks of traditional machine learning

techniques which include the many model parameters that need to be tuned to the

specific application to get desirable performance and shortcomings when dealing

with high dimensional data and data that exhibit nonlinear properties. For that

reason, recent paint assessment studies have become increasingly more reliant on

advanced machine learning techniques, mainly deep learning neural networks.Deep

learning models can be trained to represent the high dimensional features in huge

amount of data which traditional models are unable to describe while often being
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coupled with imaging data [33]. Recently, a deep learning-convolutional neural net-

work model was trained on images of fatigue induced damage in structural steel

fuse members for structural steel damage condition assessment which resulted in an

overall 99.87% testing accuracy [33]. The study developed a general procedure for

implementing the deep learning model for structural condition assessment applica-

tions which involves a large dataset size, a quantitative damage index to label the

images, guided backpropagation for training, and saliency maps for the visual evalu-

ation of results [33]. A particular interest for researchers has been the monitoring of

wind turbine conditions and recently, a data-oriented approach has been developed

to utilize digital data for the monitoring and maintenance planning of surface pro-

tective coating systems of large onshore wind turbines [34]. The approach involves

segmentation of reference areas on the turbine surface and then condition assessment

of the segmented reference areas for screening and classification of damage regions

using computer vision and deep learning networks [34].

2.6 Spectral and Spatial Features

Spectroscopy, particularly near infrared spectroscopy, has had several practical ap-

plications, mainly in the fields of agriculture, food science and physical chemistry

which have been widely reported in literature [35]. Recently, forensic science has

also benefited from infrared spectroscopy which was evaluated for its ability to dis-

criminate among paint samples such as spray paint and automotive paint in forensic

investigations by identifying necessary spectral features [36]. However, spectroscopy

alone is limited in its application due to its failure to give information on spatial

distribution of the spectra obtained [37]. To form hyperspectral imaging, spec-

troscopy was combined with conventional imaging to give spatial information of the

spectra within a two-dimensional image plane [37]. In an aforementioned study

using spectral data to assess paint condition on civil structures, the data used to

train the model was a set hyperspectral images taken of the Sydney Harbour Bridge

such that a single training instance is the spectrum of a single pixel in an image

[31]. Despite the clear advantages of this method including the visualization and

localization of the paint condition on the structure through paint condition rating

maps, the spatial information of hyperspectral imaging data was not used to train

the classification model which gives pixel-wise predictions [31]. Spatial dependency

is complementary to spectral behavior and is naturally another useful information

source in addition to spectra and so incorporating spatial information offers the pos-
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sibility to boost the pixel-wise analysis [38]. Spectral-spatial feature networks are

deep networks that can make use of both spectral and spatial data in hyperspectral

images by extracting both features simultaneously and using them for predictions

[39]. One such study utilized a three-dimensional deep Convolutional Neural Net-

work with hyperspectral image data for spatial-spectral resolution of hyperspectral

images by learning end-to-end with mapping between low and high spatial resolu-

tion hyperspectral images with high accuracy [40]. A proposed 3-D deep CNN for

hyperspectral image classification showed excellent performance under the condition

of limited training samples and outperformed other models that did not utilize both

spectral and spatial features including a single dimensional and two-dimensional

CNN [41]. However, spectral-spatial feature networks in the form of full 3-D deep

convolutional neural networks are easily prone to overfitting and have the highest

computational costs and processing times [41].

As mentioned previously, several methods were proposed for real-time classifica-

tion using only spectral input. Adding spatial information enhances the performance

of the model but adds a computational burden that might prevent it from the real-

time application. In this work, we propose an optimal input that will include the

spatial information by only adding two of the adjacent pixels. Such input will be

applicable to two different models: DNN and RNN. For this reason, we will pass

this input to the two models and benchmark them against each other and against

previous literature. The objectives of this thesis can be summed up as follows :

• Develop an optimal spectral-spatial input for hyperspectral image classifica-

tion. The input will enhance the model performance with minimal computa-

tional burden.

• Utilize the optimal input to construct a light weight DNN and RNN models

that require minimal computational power and can be embedded on onboard

processors .

• Prove that the models are not biased by evaluating them using different

datasets. Two case studies will be conducted, the first on agricultural dataset

and the second on a paint condition dataset.
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Chapter 3

Preliminaries

There exist three main implementations for RNN models. The standard RNN, RNN

with GRU units and RNN with LSTM units. In this section, a detailed explanation

of each type with its mathematical formulation will be explained. By the end, the

type with the most advantages will be used.

3.1 Recurrent Neural Network

An RNN is a type of Artificial Neural Networks. It differs from the standard ANN

in its relation to the past input.The output is not only related to the current input

as in the case of the ANN but also to the previous inputs[42], [43].

There are several types of RNN. One to one, with a single input and single output,

that acts as a standard RNN. One to Many which takes a single input and generates

several outputs and this is used mainly in music generation and image captioning.

Many to Many that takes several inputs and generate several outputs which is very

useful for language translation tasks.Finally, there is the many to one type that we

will use in our paper since its major use case is in classification tasks. The ability

to benefit from past inputs lies in the concept of the hidden state. The activation

units in the current state are a function of the current input and the hidden state

that transforms information from the previous time step.Let x = [x1, x2, ..., xk]T be

a sequence sample of length k.As seen in figure, the hidden state and the current

input will be feed to equation 3.1 to get the next hidden state.

h(ht−1, xt) = σ(Whx
t + Uhh

t−1 + bh) (3.1)
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Figure 3.1: Block diagram of the RNN cell with tanh activation function.

Additionally the output ht is feed to equation 3.2 to get the output yt.

y(ht) = Wyh
t + by (3.2)

where Wh and bh stands for the weights and bais of the input to hidden transforma-

tion.Similarly, Wy and by stands for the weights and bais of the hidden to output

transformation.Uh is the weight matrix for th hidden to hidden transform and σ is

the activation function.

Although RNN is able to connect information from the past using hidden states

but when it comes to long sequences RNN face the problem of vanishing gradi-

ents[44].In other words, during backproppagation there is a high probability for the

gradients to zero out due to long sequence.

3.2 Long Short Term Memory

The solution to the vanishing gradients is in LSTM that was first introduced by

[45].Rather than relying on the hidden state, it also create a memory cell ct that

helps in preserving long term memory.At each time step a candidate memory cell
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C̃t.

C̃t = tanh(Wcixt +Wchht−1 + bc) (3.3)

This candidate memory updates the memory cell in accordance with the input and

forget gate.

ct = it ⊙ C̃t + ft ⊙ ct−1 (3.4)

The forget gate ft specifies the degree to which the past memory should be forgotten.

Whereas the input gate it specifies to what extent the candidate memory should be

represented in the current memory.

it = σ(Wiixt +Wihht−1 + bi) (3.5)

ft = σ(Wfixt +Wfhht−1 + bf ) (3.6)

The last gate is the output gate ot and is formulated as follows :

ot = σ(Woixt +Wohht−1 + bo) (3.7)

Finally, the activation ht is calculated using the ot and ct as follows:

ht = ottanh(ct) (3.8)

3.3 Gated Recurrent Units

The GRU is a variant of LSTM that was first introduced in 2014 [46].Compared

to LSTM this variant has this is a simplified version with less parameters and this

feature makes it easier to train plus needs less input data to be able to generalize.

In terms of HSI classification, it is proven that is more suitable to use GRU over

LSTM [47].There are two main differences between the GRU and LSTM.The first

one is that the former has ony two gates,update gate and reset gate, instead of three

gates. Additionally, GRU doesn’t have a cell state. The equations are as follows :

zt = σ(Wzixt +Wzhht−1 + bz) (3.9)

rt = σ(Wrixt +Wrhht−1 + br) (3.10)

h̃t = tanh(Whixt +Wrh(rt ∗ ht−1) + bh) (3.11)

ht = (1− zt)ht−1 + zth̃t (3.12)
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Figure 3.2: Block diagram of the Long short term memory cell.

All the Ws stand for the weight matrices.The role of the update gate shown in

equation 3.9 is to decide how much should be preserved from the previous memory.

Whereas the reset gate shown in equation 3.10 decides the information that should

be removed.

The fact that the standard RNN might encounter the zero gradient issue, in

addition, to the fact that the GRU can generalize with less data compared to LSTM,

the GRU will be used to perform the classification task.
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Figure 3.3: Block diagram of the Gated Recurrent Unit that includes sigmoid and
tanh activation functions.
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Chapter 4

Methodology

4.1 Preprocessing

The data will pass through two preprocessing stages. The first consists of reducing

the dimensionality of the input spectrum.The data reduction will be performed

using principle component analysis. This reduction will decrease the computational

burden while preserving the important features that are found in the spectrum. The

second will transform the input intensities into reflectance. This is a crucial step

since reflectance is a material property and is robust to brightness changes.

4.1.1 Data Reduction Experiment

Several techniques are used to reduce the data size of hyperspectral images like Prin-

ciple Component Analysis , Kernel PCA, Non-Negative Matric Factorization [48].

In this paper, PCA is adopted. PCA is based on projecting the data feature vectors

into N-dimensional space that covers the most variability in the data. Reducing the

N value enhances the speed of the algorithm during classification with a less compu-

tational load on the memory. However, reducing N might affect the accuracy of the

model since we might lose some important features in our feature vector. Therefore,

a thorough check should be completed to understand the relationship between N and

the resulting accuracy. Although the reduced data can result in reduced memory

consumption as well as speeding up the inference speed of the deep neural model, it

delays the preprocessing time. Our target is to maximize the inference speed while

minimizing the preprocessing latency. For that, the following implementation for

PCA in a real-time data acquisition scenario will be implemented. The PCA can

be divided into two major steps, the principal component extraction, and the data

projection. The PC extraction is the most time-consuming step, for that we learn
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the principal components offline from the training images. Then with each incoming

frame, the data is directly projected into the principal component space.

4.1.2 Reflectance Transform

The intensity values captured by the camera are dependent on the scene radiance.

Thus, capturing the same object but at a different location with different scene

radiance will result in a different intensity value. In case we used such intensity values

for classification, our deep learning model will fail. To compensate for this issue, we

will transform the spectrum from the intensity space into the reflectance space. The

reflectance is a material identity that is independent from the scene radiance [49]

and thus it will be a great feature for classification. This transformation will be done

using the gray-World method that approximates the scene radiance by the spatial

mean for each layer of the hyperspectral image [50]. Following this approximation,

each layer will be divided by its scene radiance to get the reflectance spectrum as

shown in equation 4.2. The scene radiance is estimated as

L(λ) = mean(I(u, λ)) (4.1)

Where lambda is the wavelength, u is the spatial location, and I is the intensity

value. The transformation is illustrated in the following equation:

S(u, λ) =
I(u, λ)

L(λ)
(4.2)

Figure 4.1: Pixel transformation from irradiance into reflectance

4.2 DNN

A spatial-spectral model will be built by adding the optimal number of spatial

pixels. The model is a deep neural network model that consists of several hidden
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dense layers. The activation function that is used in each hidden layer is the Relu

function. Thus, the input for each node in the hidden layers is a weighted linear

combination of all the previous node values in addition to a bias term. Then the

Relu function will output zero if the combination is negative otherwise it outputs

the value as it is.

The input for this model is the main pixel that needs to be classified with two

of its neighboring pixels, specifically the left and the right one.This input looks as

follows:

x⃗ = [left pixel middle pixel right pixel] (4.3)

As an example of the spatial information, imagine that the right and left pixels

belong to class one, then there is a high probability for the middle pixel to belong to

class one as well. Since each pixel will have N spectral dimension, the total number

of neurons in the input layer will be 3xN. The output layer will consist of number of

neurons equal to the number of output classes that it is dependent on the dataset

used. In all datasets the output layer will include a softmax activation function that

calculates the probability for each output class. These probability outputs are then

fed with the ground truth probabilities to the cross entropy activation function that

is shown in equation 4.5. To optimize this model, the stochastic gradient descent

algorithm was utilized.

ypredicted = softmax(
N∑
i=1

aiwi + b0) (4.4)

Loss =
classes∑
i=1

yi.log(ypredicted) (4.5)

To ensure that the model did not overfit to the noise, dropout and regularization

were utilized. The dropout was performed after the last hidden layer by dropping 20

percent of the neurons during the training phase. Additionally, ridge regularization

was performed on three of the hidden layers. The lambda value was set to 0.01

in the three regularized layers. The developed method requires three consecutive

pixels to do the prediction. An additional experiment that will be conducted is

to vary the number of pixels needed under the constraint of belonging to the same

horizontal line. Each of these inputs will be tested based on the accuracy and speed.

Adding more pixels to the model will decrease the inference speed and increase the

pre-processing delay, however, it might affect the accuracy of the model. In case

there was a noticeable enhancement in the accuracy with minor decrease in speed,
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the new number of pixels will be adopted as the recommended input.

4.3 RNN

The concept of the optimized input of three consecutive pixels was also applied using

RNN as well. It is appealing to use RNN sequential model given that the input is

sequential in term of time. Additionally, the middle pixel class is dependent on the

class of the adjacent pixels, this concept can be easily learned by an RNN given that

it includes hidden states that act as memory.

x⃗ =
[
x1 · · · xk

]
(4.6)

z⃗ = sigmoid(Wz.[ht−1, xt]) (4.7)

rt = sigmoid(Wr.[ht−1, xt]) (4.8)

h̃t = tanh(W.[rt ∗ ht−1, xt]) (4.9)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (4.10)

The designed network is formed by three GRU units where the input for each

GRU is the reflectance spectrum of one of the three pixels. Two layers of these

triplet GRUs will be stacked on top of each other as seen in figure 4.2. The output

of the bottom GRUs will be connected to the inputs of their respective top GRUs.

Adding the layer will help the model learn more complex features. Concerning the

order of the three pixels we will have two different implementations. The first one

is connecting the three pixels in the same order as the GRUs are connected whereas

the second implementation is connecting the last pixel to the second GRU and the

last GRU to the next pixel. The intuition behind the latter implementation is to

put the main pixel to be predicted, in our case the middle pixel, at the last GRU to

be directly connected to the output. Otherwise, it will be transferred to the output

through the hidden layer. Thus, by doing so as if we are giving a higher weight the

pixel to be predicted. The downside of this implementation is that we no longer

can predict the pixel as it comes, in other words, as the first pixel is received by

the sensor it is forwarded through the first GRU but after that the algorithm waits

until the two pixels are received and then forwards them. The implementation with

the best accuracy to speed ratio will be chosen. The hidden states for all the GRU

units are initialized as zero vectors. As shown in equation 4.6 , the pixel spectrum
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Figure 4.2: Recurrent Neural Network with GRU units.
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is denoted by x vector where k refers to the number of bands. The reset gate in

equation 4.8 and the update gate in equation 4.7 are denoted by r and z respectively,

Wz, Wr and W stands for the weight’s matrices. In terms of output, the activation

of the last GRU is fed to a fully connected layer that consists of one hidden layer

consisting of 100 units and output layer with number of units equivalent to the

number of classes. The output layer is feed into a SoftMax activation function that

calculates the probability of each class. A cross entropy loss function takes these

probabilities to calculate the loss. The reason for choosing GRU units over the

traditional RNN unit is to solve the vanishing gradient issue that might occur while

using traditional RNN [51].
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Chapter 5

Results and Discussion

5.1 Agriculture Case Study

5.1.1 Dataset

Three agricultural datasets are used. The first Dataset is the well-known Pavia

University that was collected using the AVIRS sensor [52]. It includes a 610x610

sized hyperspectral image with 102 spectral bands. The spectral bands’ wavelength

ranges from 430 nm to 860 nm. There are 9 outputs for this dataset that covers

various urban land classes. The second Dataset is called Indian Pines that consists

of 224 spectral bands and 16 different classes of vegetation.The third is the Salinas

dataset that includes 512x217 sized hyperspectral images with 224 spectral bands

covering 16 different classes. The data in each dataset is split into training (80%)

and testing samples (20%). The time taken by the sensor to acquire this image is 6.5

seconds. This acquisition time is important to determine whether the classification

is real-time and thus our goal is to achieve preprocessing and classification for the

whole image without exceeding the time-span of the acquisition .

5.1.2 Model Accuracy

For the Pavia dataset including the spatial information by adding the left and right

pixel as an input has achieved a model accuracy of 92%. What is worth mentioning

is that the model consisted of only 5705 parameters, thus we were able to incor-

porate the spatial information while keeping our model lightweight.This is a major

advantage of our method compared to previous literature where incorporating the

spatial information led to relatively large models, for instance, the hybrid 3D-2D

CNN [52], included the spatial information by extracting patches of 25x25 pixels,
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Figure 5.1: Pavia dataset classification results

Figure 5.2: Indiana dataset classification results

and this led to a model consisting of 5 million parameters. Additionally, the stacked

spectral-spatial vector input method [48], consisted of 28629 parameters. For the

sake of enhancing our model’s ability to extract general spectral-spatial features,

we trained the spectral-spatial model on the duplicated dataset. This enhanced

our model accuracy by reaching a value of 96%. The results are shown in figure

5.1. Furthermore, our model achieved high accuracy in the other two datasets. As

the model achieved an accuracy of 96% and 97% with the indian pines and salinas

datasets respectively.the prediction results can be seen in figure 5.2 and 5.3 .

5.1.3 Preprocessing and Inference Speed

For Real-time application, the sum of the preprocessing time and the inference time

should be less than the time taken to acquire a hyperspectral frame. The prepro-

cessing in spatial-spectral models consists of PCA and spatial-spectral input array
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Figure 5.3: Salinas dataset classification results

formation. In our case, we were able to minimize the combined latency to 2.6 sec-

onds. Accordingly, we achieved real-time classification for Hyperspectral images. In

the following subsections, our method was benchmarked with other spatial-spectral

models in terms of latency and throughtput. For fair benchmark, all the experi-

ments are conducted on the K80 Tesla GPU provided by google colab. The time

taken to apply the standard PCA approach, on the Pavia University frame, was

tested to be 2.6 seconds. This time was split into 2.5 seconds for extracting the

principal components and 0.1 seconds for projecting the pixels to the reduced di-

mension. The Realtime approach learns the principal components offline and only

applies the projection as new frames are acquired. Thus, the PCA latency decreased

from 2.6 seconds to only 0.1 seconds per frame. In the spectral-spatial model, there

is a major step in preprocessing that consumes time. The step of filling the rows of

the input array by the three neighboring pixels. Since our method consists of taking

an optimized spatial input, this step is faster than other methods in the literature.

In our case each row in the input matrix is filled with three pixels only, compared

to at least 9 pixels in the case of stacked vector and 25x25 patch based layers in

Hybrid 3D-2D. As a result of this reduced input, our method took only 2.5 seconds,

whereas the vector method took about 4.1 seconds, and the patch method took

at least 5.9 seconds. The throughput was tested using a batch size of 1000. Our

lightweight architecture led to a fast inference rate. We have achieved a throughput

of 1,200,000 pixels per second. This fast throughput outperformed both stacked

vector and patch-based input having the corresponding throughput of 239,128 and

1500 pixels per second respectively. A detailed benchmark is found in table .

In a nutshell, our approach achieved comparable accuracy with other spectral-
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Table 5.1: Benchmark for spatial-spectral methods

Our
Method

Stacked
Vector

Patch

Input
(Pixels)

3
At least
9

25x25

Accuracy (%) 96 98.7 99.97
Preprocessing Latency
(sec)

2.7 4.2 >6

Inference (Pixel/sec) 1,200,000 239128 1500
Parameters 5705 28629 5,122,176

spatial models while decreasing the preprocessing latency by one fold and increasing

the inference speed by 5 folds. In addition to the real time speed achieved by our

model, the small number of parameters makes it a perfect fit for onboard processers.

5.2 Paint condition Case Study

5.2.1 Datasets

The Dataset consists of 768 by 1024 images for the Sydney bridge. The distance

from the camera to the surface differs from image to another. Accordingly, the

images are either considered as short-range images taken from a distance less than 5

meters, or long-range images with a distance ranging between 10 and 40 meters. The

wavelength ranges from 450 to 650 nm with a resolution of 10 nm. Consequently,

the number of bands will be 21 distributed along the previously mentioned spectral

range. The labels of the short-range images include paint condition levels 1, 3 and

4 in addition to the background label. Whereas the long-range images include the

four levels of paint condition in addition to a shadow and a sky label. For both the

long range and short-range datasets, the labeled data was split into training and

testing with a split rations of 80 % and 20 % respectively.

5.2.2 Classification Results

For short-range images, four images are used to test the performance of the models.

With each pixel in the images as a single data sample, the test portion of these images

consisted of 11016 samples of level one, 1619 samples of level 3, 46049 samples of

35



Table 5.2: DNN model performance on short range images
Precision Recall f1-score support

Level 1 1 1 1 11016
Level 3 0.90 0.99 0.94 1619
Level 4 1 1 1 46048
Background 1 1 1 1235
Accuracy 0.97 59918
Weighted Average 0.97 1 1 59918

Table 5.3: RNN model performance on short range images
Precision Recall f1-score support

Level 1 1 1 1 11016
Level 3 0.96 0.95 0.96 1619
Level 4 1 1 1 46048
Background 1 1 1 1235
Accuracy 0.99 59918
Weighted Average 1 1 1 59918

level 4 and 1235 samples of the background class. For the DNN model, the lowest

accuracy is for the prediction of level 3 at 90% whereas all the other classes are

predicted with a 100 percent accuracy. For this model, the average accuracy over all

the classes was 97 percent. On the other hand, the RNN with GRU units significantly

outperform the DNN in Level 3 with an accuracy of 96% for this level and the same

performance as the DNN for the other levels. These results are depicted in tables 5.2

and 5.3. In general, the RNN model outperforms the DNN model with an average

accuracy of 99%. The predictions of the images for the two models are shown in

figure 5.5 and the confusion matrices for the predictions of the two models are shown

in figure 5.4. Compared to literature that used the same dataset, our models achieve

an unprecedented accuracy over the work of [31] who used Support Vector Machines

to reach an overall accuracy of 75.16% on short range images.

As for Long-range images, four images are used for testing the performance of

the models. The test portion of these images consisted of 12032 samples of level

one, 3564 samples of level 2, 5559 samples of level 3, 2275 samples of level 4, 1024

samples of the background class and 1101 samples of the sky class. The DNN

model outperforms the RNN model in level four, the RNN model outperforms the

DNN model in levels one and three, and both models have the same performance in

predicting level 2, sky and the shadow. The confusion matrices for the predictions

of the two models can be shown in figure 5.6. In general, the RNN model, with an

average accuracy of 97%, outperforms the DNN model with and average accuracy
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(a) DNN (b) RNN

Figure 5.4: confusion matrices for short range models

Table 5.4: DNN model performance on Long range images
Precision Recall f1-score support

Level 1 0.95 0.98 0.97 12032
Level 2 0.93 0.93 0.93 3564
Level 3 0.94 0.90 0.92 5559
Level 4 0.98 0.99 0.98 2275
Background 1 1 1 1024
Sky 1 1 1 1101
Accuracy 0.96 25555
Weighted Av-
erage

0.96 0.96 0.96 25555

of 96%. Compared to previous work, both model accuracies outperform the SVM

method in [31] that achieved an accuracy of 85.54 % for the long range images.

The speed is one of the most important attributes to our model as our goal is to

perform paint analysis in real time. In that sense, the DNN model, with a speed of

83665 pixels per second, outperformes the RNN model with a speed of only 25,000

pixels per second which is approximately 3.4 times faster. Given that the accuracy

of the RNN model outperformes that of the DNN model whereas the RNN model

proves to be faster in terms of inference speed, the RNN model is recommended for

for offline applications where the accuracy is the most critical metric whereas the

DNN model is recommended for online scenarios.

5.2.3 Input Experiments

As mentioned in section ??, several experiments are conducted to test the possibility

of enhancing the optimal input. An ideal enhancement is where the accuracy of the
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Figure 5.5: Short Range classification results
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Table 5.5: RNN model performance on Long range images
Precision Recall f1-score support

Level 1 0.98 0.98 0.97 12032
Level 2 0.93 0.95 0.93 3564
Level 3 0.97 0.90 0.93 5559
Level 4 0.97 0.99 0.98 2275
Background 1 1 1 1024
Sky 1 1 1 1101
Accuracy 0.97 25555
Weighted Av-
erage

0.97 0.97 0.97 25555

(a) DNN (b) RNN

Figure 5.6: confusion matrices for Long range models

model and the inference speed are both increased while the situation where one of

the two metrics increases and the other decreases to a lesser extent is considered an

enhancement nonetheless.

The experiment of flipping the last two pixels is conducted on the short-range

dataset only. Two models are trained such that the first model has the middle

pixel connected to the middle GRU and the right pixel to the right GRU, whereas

the second model has the middle pixel connected to the right GRU and the right

pixel to the middle GRU, thus having the last two input pixels interchanged in the

network. The results indicates that the two models perform the same in terms of

accuracy with 99 %.The reason for the same model accuracy can be explained by

the fact that most training instances of three neighboring pixels in the data belong
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Figure 5.7: Long Range classification results

40



Table 5.6: score for the three pixel input versus the five pixel input
Accuracy Preprocessing

Time (sec)
Inference
Speed
(Pixel/sec)

Inference
Time (sec)

Score

Three Pixels 98 1.37 83665 0.01 -
Five Pixels x x x x x

to the same class and thus the switching of the middle and right pixels results in no

change between how both model schemes interpret the input data. Therefore, the

two models are subjected to mostly the same input data during training which leads

to the models performing the same in terms of accuracy. However, it is important to

mention that the non-flipped or consecutive input model has an advantage over the

flipped one in terms of speed as it can do the prediction at the same time when the

input is received from the sensor without any delay which is the reason we choose

the consecutive input scheme as the favored and best performing model.

For the sake of enhancing the accuracy of our model, various pixel inputs are

passed under the constraint that the pixels are consecutive in a horizontal manner

with each input pixel number receiving a score to compare. The score is a function of

accuracy, preprocessing speed, and inference speed. Due to more interest in onboard

applications, a relatively higher weight is given for speed over the accuracy. The

score metric is as follows:

score = accuracy +
w

tp + ti
(5.1)

Where tp and ti stands for the preprocessing time and inference time respectively.

The w stands for the weight and will be set to 2. The inputs tested are three and

five consecutive pixels.

The three pixel input works properly with the hardware of the system and gives

a fast inference speed of 83665 pixel/sec with a short delay of 1.37 seconds during

prepossessing. As for the five pixel method, the system it was run on was unable to

process it despite a sufficient 12 GB of RAM which indicates a major disadvantage

of this method in terms of computational load which makes it not applicable for

online applications. These results can be seen in table 5.6. Thus the results of the

two previously mentioned experiments indicate that the optimal input is indeed that

consisting of three consecutive pixels.

There are three main types of hyperspectral cameras: the single-shot sensor, the

whiskbroom sensor, and the push broom sensor. The models based on the horizontal
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three pixel scheme can be proven to be one of the fastest spatial-spectral models in

all the three sensor scenarios. Single-shot cameras save the 3D hyperspectral cube

in one-shot so to achieve real time classification, parallel prediction is a must. The

prediction was executed using a batch size of 1000 pixels in (cite previous work)

and proved that the three pixel method is faster than other spatial-spectral ap-

proaches while using a one-shot sensor. Whisk-broom sensor scans the pixels line

by line which has a great consequence on the predication rate of the spatial-spectral

methods. Since the spsp that are found in the literature uses a patch of nxn [48],

[52], so they need to be in idle state until the sensor scans at least n lines before

every prediction.One the other hand, the three pixel method can predict line by line

by applying a batch prediction that covers the whole line. The third type is the

push-broom sensor that scans the scene pixel by pixel. Like the case of whiskbroom

sensor, the spsp method must wait for at least n lines before doing each prediction.

On the other hand, the thee pixel method must wait for only 3 pixels before each

prediction.

The feature that made the optimal input superior in different sensor scenarios is

taking the adjacent pixels in horizontal manner. Any other configuration, like ver-

tical or diagonal would have caused a significant delay during prediction since the

model should then wait for at least three lines before performing its predictions.
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Chapter 6

Conclusion

Achieving real-time hyperspectral image classification is of great benefit given that

numerous applications require immediate action such as surgical, structural moni-

toring and agricultural applications [53]. The complexity in real-time onboard clas-

sification arises because hyperspectral images have a large volume alongside the

limited computational power for onboard computers [12].

Several approaches for real time hyperspectral classification have been done based

on the spectral information as an input. Adding the spatial information enhances the

model performance but at the same time adds a computational burden. In our work,

we found the optimal spatial-spectral input that enhances the model performance

with minimal additional computational cost. The optimal input consisted of three

consecutive pixels. The role of the right and left pixel is to add spatial information

that enhances the accuracy of the classification models.

Using this optimal input we proposed two novel deep learning models for the

classification of hyperspectral images. A DNN architecture consisting of few hidden

layers and an output layer with number of neurons equal to the classes to be classi-

fied. The second model is an RNN that consisted of two layers of GRUs. The choice

of GRU was to solve the issue of vanishing gradients that is found in standard RNN

architectures. The ouput of the two GRU layes was connected to a fully connected

network to perform the required classification.

Several experiments were conducted to prove that this three pixel input is in-

deed the optimal one. One of the experiments was to try five consecutive pixels

instead of three and pass them to the models. Such input drastically increased the

computational power and lead to overflow of the Random Access Memory (RAM).

Additionally, choosing the input pixels in horizontal manner made it efficient in all

types of hyperspectral cameras. Since the horizontal input can be classified directly
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as the pixel is received from the sensor in contrary to other methods in the literature

that waits several lines before performing the classification.

Our RNN and DNN models outperformed previous approaches in terms of accu-

racy and speed. In the Pavia case study,this novel approach achieved an accuracy

of 96% with real time preprocessing and classification speed. Furthermore, In the

Sydney Bridge case study, the RNN architecture having an accuracy of 99 % out-

performed the DNN that got an accuracy of 97 %. On the other hand the inference

speed of the DNN was about four times faster than the RNN. For this reason, we

recommend the DNN architecture in cases where the real time inference is required.

On the other hand, we recommend our RNN in scenarios where the accuracy of

the prediction is very critical. The fact that the optimal input gave high accuracy

in both case studies proves that it is not biased and can easly generalize to new

datasets.

In the near future, we will receive a Hyperspectral Camera. This camera will be

used to capture soil samples from across Lebanon. The aim will be to implement

our model on an onboard computer such as jetson boards and perform a real-time

onboard prediction for soil contamination. Shifting from the current models into

models that can classify soil contamination is an easy task. To do this shift all what

is needed is to train our models on a new soil contamination dataset.

And in case the models will be used for regression, for instance predicting the

contamination concentration in a soil sample, minor changes should be made to the

current models. The changes will be conducted in the last layer by substituting the

softmax activation function by a relu function. Additionally, the cost function will

be changed from the cross entropy into the Mean Squared Error. The majority of

the work will be on collecting the data and performing accurate labeling.
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