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ABSTRACT
OF THE THESIS OF

Sara Darwich Maad for Master of Science
Major: Mathematics

Title: Identification of Gas Diffusion Coefficients in Polar Firn

The use of data analysis cooperatively with partial differential equations is
a successful technique to estimate the main parameters of diverse phenomena
in many fields (medicine, biology, ecology,...). In the area of ecology, analysis
of historical climate change data that leads to global warming, necessitates an
estimation of various atmospheric gas concentrations, primarily CO2. In the po-
lar regions of Greenland (Denmark) and the southern Antarctic, it is possible
to retrace the histories of several atmospheric gases over the last centuries using
currently obtained data through the examination of the air volumes injected into
the open porosity of the Firn (compacted snow).

This thesis uses powerful modern techniques of computational mathematics
based on studying an appropriate inverse problem. It consists in starting with
the direct problem, where we analyze and numerically simulate a time-dependent
partial differential equation that models the Firn, given its diffusion coefficients.
Once the direct problem is properly solved via a robust MATLAB software, one
then looks at recovering the diffusion coefficient on the basis of current Firn mea-
surements. Inverse techniques reduce to solving a minimization problem on a
constrained set, solved also using efficient MATLAB toolboxes. Successful results
obtained from numerical simulations conducted on the direct and inverse prob-
lems validate the feasibility of this method to estimate Firn diffusion coefficients.
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Chapter 1

Introduction and Literature
Review

1.1 The Firn Problem

Ozone-depleting substances such as the chlorofluorocarbons (CFCs) emitted by
human activities (refrigeration, air-conditioning, packing material...) cause large-
scale damage to the stratospheric ozone layer, and warm the earth’s lower atmo-
sphere, yielding a change in global climate. Consequently, their production has
been phased out by the Montreal protocol in 1987. The first-stage replacements
for CFCs were Fluorinated gases (HFCs or hydrofluorocarbons). Furthermore,
the emissions of F-gases are rapidly increasing. These potent greenhouse gases
have an impact on global warming that is up to 23,000 times larger than that of
carbon dioxide (CO2) [1]. Therefore, it is essential to have reliable monitoring
and modeling techniques of historical gas emission concentrations that can pro-
vide future estimations of climate change and reduction strategies.

The historical background of atmospheres and climates could be explored in
the Polar ice and snow collected from Greenland and Antarctic. It is feasible
to retrace the histories of several atmospheric gases over the last centuries using
obtained data from the examination of the air volumes injected into the open
porosity of the Firns (compacted snow). The interpretation of the obtained data
can be achieved through complicated mathematical modeling on grounds of a
good understanding of the mechanics that control gas trapping in polar ice, con-
sequently the densification and pore closure in Firns, usually over the top hundred
meters of ice.

This thesis goal is to solve the mathematical model that has been derived in
[1], [2], [3], [4] and produce robust and efficient solvers for reconstructing gas
histories.
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1.2 Mathematical Models

Considering the mass conservation equations, the concentration ρoα of a gas α
in open pores satisfies an initial-value, time-dependent advection-diffusion par-
tial differential equation on a one-space dimension segment [0, zF ] with Dirichlet
boundary condition at 0 and a mixed one at zF , for z ∈ (0, zF ), t > 0:

∂

∂t
[ρoαf ] +

∂

∂z
[ρoαf(v + wair)] + ρoα(τ + λ) =

∂

∂z

[
Dα

(
∂ρoα
∂z

− ρoα
Mαg

RTm

)]
,

ρoα(0, t) = ρatmα (t), t > 0,

∂ρoα(zF , t)

∂z
− Mαg

RTm

ρoα(zF , t) = 0, t > 0.

(1.1)
where ρatmα (t) is the concentration of gas in the atmosphere (mol/m3 of void
space), Dα(z) is the effective diffusion coefficient of the gas α in Firn (m2/yr)
which will be considered a decreasing function and is given by:

Dα(z) = rαcfDCO2,air(z) (1.2)

where cf and rα are known constants. The constants of the model are summarized
in the Table 1.1.

zF the depth of the Firn
f the average volume fraction in the open pores
v the average descending speed in the Firn
wair the average speed of the air
τ the mass exchange rate between open and closed pores (/yr)
λ the rate of radioactive decay (/yr)
Mα the molar mass of the gas (kg/mol)
g the gravitational acceleration
R the universal constant of ideal gases (J/mol/K)
Tm the mean temperature of the Firn (K)

Table 1.1: The description of the model’s constants.

1.3 Objectives

The ultimate goal of this thesis is to determine the diffusion coefficient Dα of
a particular gas, using data from measurements ρoα(z, T ), z ∈ (0, zF ) made of

8



several gases at the end time T . To find the corresponding Dα, it is sufficient by
(1.2) to study an inverse problem that finds DCO2,air .
We seek then D(z) ≡ DCO2,air(z) ∈ X, where X is either:

• Xu = C(0, zF ) for unconstrained optimization,

or

• Xc = {v ∈ C(0, zF ) | v > 0} for constrained optimization.

In this thesis, we will use Xc, since the diffusion coefficients need to be positive.

To introduce the inverse problem, we let ρoα(D̃; ., T ) be the unique solution of
the direct problem at the end time T , ∀D̃ ∈ Xc, and ρoα,meas(., T ) be the mea-
sured concentration at the end time T .
And we define the following objective function:

∀D̃ ∈ Xc : V (D̃) =
∑
α∈S

∥∥∥ρoα(D̃; ., T )− ρoα,meas(., T )
∥∥∥2
2

where S is the set of all the gases in the Firn.
So we seek D ∈ Xc such that:

V (D) = min
D̃∈Xc

V (D̃)

1.4 Main Results

This thesis covers 5 chapters including the introduction. In chapter 2, we apply
a variation method to our problem and study the existence and uniqueness of
the solution by summarizing the theoretical results obtained by S. Moufawad, N.
Nassif, and F. Triki in their recent work [5].

In chapter 3, we use the time and space discretizations of the direct problem
introduced in [5]. For time discretization we use the Euler-Implicit scheme and
for space discretization, we use the Finite Element method. On that basis, we
generate the matrices of the discrete system and study the uniqueness of its so-
lution. Then, we present and analyze the results of our numerical simulations
implemented using MATLAB.

In chapter 4, we introduce the objective function and the MATLAB minimiza-
tion function fmincon that will be used to solve the inverse problem. Then, we
present and analyze the results of our MATLAB numerical simulations.

Finally, in chapter 5, we present our conclusion and possible future work.

9



Chapter 2

Theoretical Study of the
Direct Problem

In this chapter, we summarize the theoretical results recently obtained by S.
Moufawad, N. Nassif, and F. Triki in their recent work [5].

2.1 Definitions and Theorems

In this section, we will review some definitions and state useful theorems [6].

Definition 2.1.1 (Inner Product). An inner product on a vector space V is a
map ⟨., .⟩ : V × V −→ R satisfying:

1. symmetry: ⟨u, v⟩ = ⟨v, u⟩ ∀u, v ∈ V

2. linearity:

⟨u1 + u2, v⟩ = ⟨u1, v⟩+ ⟨u2, v⟩
⟨λu, v⟩ = λ⟨u, v⟩

∀u1, u2, u, v ∈ V and λ ∈ R

3. positive definiteness: ⟨v, v⟩ ≥ 0 with equality iff v = 0 ∀v ∈ V .

And the norm induced by the inner product is: ∥v∥ =
√

⟨v, v⟩ ∀v ∈ V

Definition 2.1.2 (Hilbert Space). A Hilbert space is a complete inner product
space with respect to the norm induced by the inner product.

Definition 2.1.3 (Dual Space). We denote by V ∗ the dual space of V , that is,
the space of all bounded linear functionals on V . The norm on V ∗ is defined by:

∥f∥V ∗ = sup
x∈V
∥x∥≤1

|f(x)| = sup
x∈V

|f(x)|
∥x∥

10



Theorem 2.1.1 (Lions Theorem). Let V and H be two Hilbert spaces satisfying:

V ⊂ H ⊂ V ∗ with V ∗ is the dual of V

with the injection from V to H is dense and continuous.
Assuming a bilinear form A(., .) : V × V → R that satisfies:{

|A(v, w)| ≤ M∥v∥V ∥w∥V
|A(v, v)| ≥ c1∥v∥2V − c2∥v∥2H

with M , c1 and c2 positive constants.
Then, for u0 ∈ H and f ∈ L2((0, T );V ∗), the initial value problem{

⟨ut, v⟩+ A(u(t), v) = ⟨f(t), v⟩
u(0) = u0

admits a unique solution u, satisfying:

u ∈ L2((0, T );V ) ∩ C([0, T ];H),
du

dt
∈ L2((0, T );V ∗).

Theorem 2.1.2 (Riesz-Frechet Representation). Given any F ∈ V ∗, there exists
a unique f ∈ V such that

F (φ) = ⟨f, φ⟩V ∀φ ∈ V.

Moreover,
|f | = ∥F∥V ∗

2.2 Semi-Variational Formulation

The goal here is to put (1.1) in the semi-variational form:

ρoα ∈ Uad: ⟨(ρoα)t, ϕ⟩+ A(ρoα, ϕ) = F (ϕ) ∀ϕ ∈ T and t > 0

i.e want to find T , Uad, A(., .) and F (.).
Let ϕ ∈ T with T ={ϕ ∈ H1(0, zf ) | ϕ(0) = 0} and ρ = ρoα, F = v+wair, G = τ+λ
and Mα = Mαg

RTm
, where F , G and Mα are positive constants.

So (1.1) is now given by:

(ρf)t + (ρfF)z + ρG = (Dα(ρz − ρMα))z (2.1)

Multiplying (2.1) by ϕ and integrating with respect to z, we get:∫
fρtϕ+

∫
f(ρF)zϕ+

∫
ρGϕ =

∫
[Dα(ρz − ρMα)]zϕ

f

∫
ρtϕ+ fF

∫
ρzϕ+ G

∫
ρϕ =

∫
[Dα(ρz − ρMα)]zϕ (2.2)

11



with

∫
ρzϕ = ρϕ

∣∣∣zF
0

−
∫

ρϕz = ρ(zF , t)ϕ(zF )−
∫

ρϕz,

and

∫
[Dα(ρz − ρMα)]zϕ = Dα(ρz − ρMα)ϕ

∣∣∣zF
0

−
∫

Dα(ρz − ρMα)ϕz

but using (1.1):

Dα(ρz − ρMα)ϕ
∣∣∣zF
0

= Dα[ρz(zF , t)−Mαρ(zF , t)]ϕ(zF )−Dα[ρz(0, t)−Mαρ(0, t)]ϕ(0)

= Dα(0)ϕ(zF )− 0 = 0

so, (2.2) becomes:

f⟨ρt, ϕ⟩+ fFρ(zF )ϕ(zF , t)− fF⟨ρ, ϕz⟩+ G⟨ρ, ϕ⟩ = −⟨Dα(ρz − ρMα), ϕz⟩

Divide by f :

⟨ρt, ϕ⟩+ Fρ(zF , t)ϕ(zF )−F⟨ρ, ϕz⟩+
G
f
⟨ρ, ϕ⟩ = − 1

f
⟨Dαρz, ϕz⟩+

Mα

f
⟨Dαρ, ϕz⟩

(2.3)
Define the bilinear form:

A(ρ, ϕ) =
G
f
⟨ρ, ϕ⟩+ 1

f
⟨Dαρz, ϕz⟩+ Fρ(zF , t)ϕ(zF )−F⟨ρ, ϕz⟩ −

Mα

f
⟨Dαρ, ϕz⟩

(2.4)
Then, (2.3) becomes:

⟨ρt, ϕ⟩+ A(ρ, ϕ) = 0

Now, the problem is to find
ρ : [0, T ]× [0, zF ] → R such that ∀t > 0 and ρ(., t) ∈ T + {ρatmα } = Uad{

⟨ρt, ϕ⟩+ A(ρ, ϕ) = 0

ρ(z, 0) = ρ̄(z)
(2.5)

where ρ̄(z) is a smooth function and ρ(z,−∞) = 0.

2.3 Existence Theorem

To study the existence and uniqueness of the solution ρoα, we use lions theorem
2.1.1, then apply it to our problem (2.5).
With a start, let’s make a change of variable:

ρ̃(., t) = ρ(., t)− ρatmα (t)

Then (2.5) becomes:{
⟨(ρ̃+ ρatmα (t))t, ϕ⟩+ A((ρ̃+ ρatmα (t)), ϕ) = 0

ρ̃(0) = ρ̄(z)− ρatmα (0)

12



since A(.,.) and ⟨., .⟩ are bilinear we get:{
⟨ρ̃t, ϕ⟩+ A(ρ̃, ϕ) = −⟨(ρatmα (t))t, ϕ⟩ − A(ρatmα (t), ϕ)

ρ̃(0) = ρ̄(z)− ρatmα (0)

with: (using (2.4) )

• A(ρ̃, ϕ) = G
f
⟨ρ̃, ϕ⟩+ 1

f
⟨Dαρ̃z, ϕz⟩+F ρ̃(zF , t)ϕ(zF )−F⟨ρ̃, ϕz⟩− Mα

f
⟨Dαρ̃, ϕz⟩

• A(ρatmα (t), ϕ) = ρatmα (t)
(

G
f
⟨1, ϕ⟩+ Fϕ(zF )−F⟨1, ϕz⟩ − Mα

f
⟨Dα, ϕz⟩

)
Then, to be in line with the theorem 2.1.1, we let:

• u = ρ̃

• F (t, ϕ) = −⟨(ρatmα (t))t, ϕ⟩ − A(ρatmα (t), ϕ)

• u0 = ρ̄(z)− ρatmα (0)

So, we can write the problem (2.5) as follows:{
⟨ut, ϕ⟩+ A(u(t), ϕ) = F (t, ϕ)

u(0) = u0

Now, assuming Dα ∈ C[0, zF ], we define the Hilbert space

H1
α = {v ∈ H1 | ∥v∥H1

α
< ∞}

with the following inner product and norm:

⟨v, w⟩H1
α
= ⟨Dαvz, wz⟩2 + ⟨v, w⟩2

∥v∥2H1
α
=
∥∥D1/2

α vz
∥∥2
2
+ ∥v∥22 (2.6)

We can see that the injection of H1
α to H1 is continuous using (2.6):

∥v∥2H1
α
≤ qα,∞∥v∥2H1 with qα,∞ = max{1, ∥Dα∥∞}

Lemma 2.3.1. Assuming
1

D
1/2
α

∈ L2(0, zF ) with:

qα =

∥∥∥∥ 1

D
1/2
α

∥∥∥∥
2

=

(∫ zF

0

1

Dα(z)
dz

)1/2

< ∞

then, H1
α,d = {v ∈ H1

α | v(0) = 0} is a closed subspace of H1
α, therefore it’s a

Hilbert space.
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Proof. let {vn} ∈ H1
α,d be a converging sequence with v its limit point, and let

{v′n} ∈ L2(0, zF ) be a uniformly converging sequence.
We want to show that v ∈ H1

α,d, i.e, v ∈ L2(0, zF ), v
′ ∈ L2(0, zF ) and v(0) = 0.

Since, {vn} ∈ H1
α,d, then vn ∈ L2(0, zF ), v

′
n ∈ L2(0, zF ) and vn(0) = 0 ∀n.

Moreover, lim
n→∞

vn = v and v′ =
(
lim
n→∞

vn

)′
= lim

n→∞
v′n. Thus, v ∈ L2(0, zF ) and

v′ ∈ L2(0, zF ).
So, it remains to show that v(0) = 0 using lim

n→∞
∥v − vn∥H1

α
= 0.

v(z)− v(0) =

∫ z

0

v′(s)ds

vn(z)− vn(0) =

∫ z

0

v′n(s)ds

By these two equations, we get:

−v(0) = vn(z)− v(z) +

∫ z

0

(v′(s)− v′n(s))ds

|v(0)| ≤ |vn(z)− v(z)|+
∫ z

0

|v′(s)− v′n(s)|ds

But

∫ z

0

|v′(s)− v′n(s)|ds =
∫ z

0

D
1/2
α

D
1/2
α

|v′(s)− v′n(s)|ds =
〈
D1/2

α |v′(s)− v′n(s)|,
1

D
1/2
α

〉
2

≤ qα
∥∥D1/2

α |v′(s)− v′n(s)|
∥∥ ≤ qα∥v − vn∥H1

α

⇒ |v(0)| ≤ |vn(z)− v(z)|+ qα∥v − vn∥H1
α

(2.7)

Integrating (2.7) with respect to z from 0 to zF :

zF |v(0)| ≤
∫ zF

0

|vn(z)− v(z)|+ zF qα∥v − vn∥H1
α

zF |v(0)| ≤ zF∥vn − v∥2 + zF qα∥v − vn∥H1
α

|v(0)| ≤ ∥vn − v∥2 + qα∥v − vn∥H1
α

≤ ∥vn − v∥H1
α
+ qα∥v − vn∥H1

α

= (1 + qα)∥v − vn∥H1
α
. (2.8)

Taking the limit:

|v(0)| = lim
n→∞

|v(0)| ≤ (1 + qα) lim
n→∞

∥vn − v∥H1
α
= 0

Thus, v(0) = 0

14



Lemma 2.3.2. Under the assumption of lemma 2.3.1 one has

H1
α ⊂ C[0, zF ] with ∥v∥∞ ≤ (1 + 2qα)∥v∥H1

α
, ∀v ∈ H1

α

Proof. Using v(z)− v(0) =
∫ z

0
v′(s)ds for z ∈ [0, zF ], then

|v(z)| ≤ |v(0)|+
∫ z

0

|v′(s)|ds

We can proceed like in (2.7) and (2.8):∫ z

0

|v′(s)|ds ≤ qα
∥∥D1/2

α v′
∥∥
2
≤ qα∥v∥H1

α

|v(0)| ≤ |v(z)|+
∫ z

0

|v′(s)|ds ≤ |v(z)|+ qα∥v∥H1
α∫ zF

0

|v(0)|dz ≤
∫ zF

0

|v(z)|dz +
∫ zF

0

qα∥v∥H1
α
dz

zF |v(0)| ≤ zF∥v∥2 + zF qα∥v∥H1
α

⇒ |v(0)| ≤ ∥v∥2 + qα∥v∥H1
α
≤ ∥v∥H1

α
+ qα∥v∥H1

α
≤ (1 + qα)∥v∥H1

α

Then, |v(z)| ≤ |v(0)|+
∫ z

0

|v′(s)|ds ≤ (1+qα)∥v∥H1
α
+qα∥v∥H1

α
≤ (1+2qα)∥v∥H1

α

Thus, ∥v∥∞ ≤ (1 + 2qα)∥v∥H1
α
.

In order to apply Lions theorem, we let:

H = L2(0, zF ) and V = H1
α,d(0, zF )

We have then,
V ⊂ H ⊂ V ∗

with continuous injection from V to H. We need also:

1. Bi-continuity of A(., .):

∀v, ϕ ∈ H1
α : |A(v, ϕ)| ≤ C∥v∥H1

α
∥ϕ∥H1

α

2. Weak coercivity of A(., .) on H1
α,d:

∀v ∈ H1
α,d : A(v, v) ≥ C0∥v∥2H1

α
− C1∥v∥22

3. Existence of f(t) ∈ V , such that F (t, ϕ) = ⟨f(t), ϕ⟩H1
α
, ∀t,∀ϕ ∈ H1

α
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Where C,C0 and C1 are positive constants independent of v and w.
Let:

Gf =
G
f
, f1 =

1

f
and Mα,f =

Mα

f

Then, A(v, ϕ) = Gf⟨v, ϕ⟩+f1⟨Dαvz, ϕz⟩+Fϕ(zF )v(zF )−F⟨v, ϕz⟩−Mα,f⟨vDα, ϕz⟩

1. Bi-continuity of A(., .):
we have:

(a) ⟨v, ϕ⟩ ≤ ∥v∥2∥ϕ∥2 ≤ ∥v∥H1
α
∥ϕ∥H1

α

(b) ⟨Dαvz, ϕz⟩ ≤
∥∥∥D1/2

α vz

∥∥∥
2

∥∥∥D1/2
α ϕz

∥∥∥
2
≤ ∥v∥H1

α
∥ϕ∥H1

α

(c) ϕ(zF )v(zF ) ≤ ∥ϕ∥∞∥v∥∞ ≤ (1 + 2qα)
2∥v∥H1

α
∥ϕ∥H1

α
(by lemma 2.3.2)

(d) |⟨v, ϕz⟩| ≤ ∥v∥∞
∣∣∣〈 1

D
1/2
α

, D
1/2
α ϕz

〉
2

∣∣∣ ≤ (1 + 2qα)∥v∥H1
α
qα∥ϕ∥H1

α

(by lemma 2.3.2)

(e) |⟨vDα, ϕz⟩| ≤
∥∥∥D1/2

α

∥∥∥
∞
∥v∥2

∥∥∥D1/2
α ϕz

∥∥∥
2
≤
∥∥∥D1/2

α

∥∥∥
∞
∥v∥H1

α
∥ϕ∥H1

α

Then,
|A(v, ϕ)| ≤ C∥v∥H1

α
.∥ϕ∥H1

α

with, C = Gf + f1 + F(1 + 2qα)
2 + F(1 + 2qα)qα +Mα,f

∥∥∥D1/2
α

∥∥∥
∞

Hence, we have continuity of A(., .).

2. Coercivity of A(., .) on H1
α,d: let v ∈ H1

α,d

A(v, v) = Gf⟨v, v⟩+ f1⟨Dαvz, vz⟩+ Fv(zF )
2 −F⟨v, vz⟩ −Mα,f⟨Dαv, vz⟩

We have then,

(a) Gf⟨v, v⟩+ f1⟨Dαvz, vz⟩ = Gf∥v∥22 + f1

∥∥∥D1/2
α vz

∥∥∥2
2
≥ min{Gf , f1}∥v∥2H1

α

(b) Fv(zF )
2 ≥ 0 since F ≥ 0

(c) By Cauchy-Schwartz inequality |⟨vz, v⟩| ≤ ∥vz∥2∥v∥2, we have:

−⟨v, vz⟩ ≥ −∥v∥2∥vz∥2 ≥
−1

∥Dα∥1/2∞

∥∥D1/2
α vz

∥∥
2
∥v∥2

since ∥vz∥2 ≤

∥∥∥D1/2
α vz

∥∥∥
2

∥Dα∥1/2∞

(d) Also, by Cauchy-Schwartz inequality:

|⟨Dαv, vz⟩| ≤
∥∥D1/2

α v
∥∥
2

∥∥D1/2
α vz

∥∥
2
≤ ∥Dα∥1/2∞

∥∥D1/2
α vz

∥∥
2
∥v∥2

⇒ −⟨Dαv, vz⟩ ≥ −∥Dα∥1/2∞
∥∥D1/2

α vz
∥∥
2
∥v∥2
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so for Γ =
F

∥Dα∥1/2∞
+Mα,f∥Dα∥1/2∞ > 0:

A(v, v) ≥ min{Gf , f1}∥v∥2H1
α
− Γ

∥∥D1/2
α vz

∥∥
2
∥v∥2

Using the geometric inequality: ab ≤ ϵ
2
a2 + 1

2ϵ
b2,∀ϵ > 0, then∥∥D1/2

α vz
∥∥
2
∥v∥2 ≤

ϵ

2

∥∥D1/2
α vz

∥∥2
2
+

1

2ϵ
∥v∥22

≤ ϵ

2
∥v∥2H1

α
+

1

2ϵ
∥v∥22

It implies that:

A(v, v) ≥
(
min{Gf , f1} − Γ

ϵ

2

)
∥v∥2H1

α
− Γ

2ϵ
∥v∥22

Choose ϵ > 0 to be such that:

C0,ϵ = min{Gf , f1} − Γ
ϵ

2
= min{Gf , f1} −

ϵ

2

(
F

∥Dα∥1/2∞
+Mα,f∥Dα∥1/2∞

)
> 0

and, C1,ϵ =
Γ

2ϵ
=

F
2ϵ ∥Dα∥1/2∞

+
Mα,f

2ϵ
∥Dα∥1/2∞ > 0

Hence, we have coercivity.

3. Existence of a function f(t) ∈ L2((0, T );V ), such that

F (t, ϕ) = −
〈
(ρatmα (t))t, ϕ

〉
− A(ρatmα (t), ϕ) = ⟨f(t), ϕ⟩H1

α
∀ϕ ∈ H1

α.

Using bi-continuity of A(., ):

|A(ρatmα (t), ϕ)| ≤ C∥ρatmα (t)∥H1
α
∥ϕ∥H1

α
= Cz

1/2
F |ρatmα (t)|∥ϕ∥H1

α

and using Cauchy-Schwartz inequality:

|
〈
(ρatmα (t))t, ϕ

〉
≤ ∥(ρatmα (t))t∥2∥ϕ∥2 ≤ z

1/2
F |(ρatmα (t))t|∥ϕ∥H1

α

Then,

|F (t, ϕ)| ≤ z
1/2
F

(
|(ρatmα (t))t|+ C|ρatmα (t)|

)
∥ϕ∥H1

α
≤ Ĉ∥ϕ∥H1

α
∀t, ∀ϕ ∈ H1

α

(2.9)

Where Ĉ = z
1/2
F max{1, C}∥ρatmα ∥1,∞ > 0 and ∥ρatmα ∥1,∞ = max

t

(
|(ρatmα )t|+ |ρatmα |

)
Lemma 2.3.3. F (t, ϕ) is linear and continuous on H1

α i.e

F (t, .) ∈ (H1
α)

∗ ⊂ V ∗ ∀t
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Proof. F (t, ϕ) is linear in ϕ by the linearity of the L2 inner product and the
bilinearity of A(., .).
As for the continuity of F (t, ϕ) in H1

α, let ϕn ∈ H1
α be a sequence converging

to ϕ, i.e lim
n→∞

ϕn = ϕ

Then, by (2.9):

|F (t, ϕn)− F (t, ϕ)| = |F (t, ϕn − ϕ)| ≤ Ĉ∥ϕn − ϕ∥H1
α

Take now the limit as n → ∞:

lim
n→∞

|F (t, ϕn)− F (t, ϕ)| = 0. Hence, lim
n→∞

F (t, ϕn) = F (t, ϕ)

Now, by the Riesz-Frechet representation and by lemma 2.3.3, there exists
f(t) ∈ V such that ∀t, ∀ϕ ∈ H1

α

F (t, ϕ) = ⟨f(t), ϕ⟩H1
α

and

∥f(t)∥H1
α
= ∥F (t, ϕ)∥V ∗ = sup

ϕ∈V

|F (t, ϕ)|
∥ϕ∥H1

α

≤ Ĉ

and since ∫ T

0

∥f(t)∥2H1
α
dt ≤ TĈ2,

hence, f(t) ∈ L2((0, T );V ).

We conclude now that the problem (1.1) admits a unique solution ρoα.
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Chapter 3

Numerical Implementation of
the Direct Problem

In this chapter, we discretize the direct problem in space and time as discussed
in [5]. Then, we generate the matrices obtained and study the existence and
uniqueness of the discrete system provided that Dα is a decreasing function.
Furthermore, we develop a fast and efficient solver to compute the concentration
ρoα using MATLAB.

3.1 Galerkin Formulation

To reach the Galerkin formulation of the problem, we first use the Finite Differ-
ence Euler-Implicit scheme to discretize the problem in time, then we follow it
by a Finite Element space discretization.

3.1.1 Euler-Implicit Time Discretization

Over the interval [t, t + ∆t] with 0≤ t ≤ T −∆t, we integrate equation (2.5) to
get the following:∫ t+∆t

t

⟨ρt(z, s), ϕ(z)⟩ds+
∫ t+∆t

t

A(ρ(z, s), ϕ(z))ds = 0 (3.1)

with∫ t+∆t

t

⟨ρt(z, s), ϕ(z)⟩ ds =
〈∫ t+∆t

t

ρt(z, s)ds, ϕ(z)

〉
= ⟨ρ(z, t+∆t)− ρ(z, t), ϕ(z)⟩ .

Now (3.1) and (2.5) ⇒{
⟨ρ(z, t+∆t)− ρ(z, t), ϕ(z)⟩ = −

∫ t+∆t

t
A(ρ(z, s), ϕ(z))ds

ρ(z, 0) = ρ̄(z)
(3.2)
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Such formulation is well-suited for semi and full discretization of the original
system.
For the full discretization of the Firn equation,

∫ t+∆t

t
A(ρ(z, s), ϕ(z))ds is first

discretized using an implicit right rectangular rule
(∫ b

a
f(s)ds = (b− a)f(b)

)
:

∫ t+∆t

t

A(ρ(z, s), ϕ(z))ds = ∆tA(ρ(z, t+∆t), ϕ(z))

Then, (3.2) will be{
⟨ρ(z, t+∆t)− ρ(z, t), ϕ(z)⟩ = −∆tA (ρ(z, t+∆t), ϕ(z))

ρ(z, 0) = ρ̄(z)
(3.3)

3.1.2 Finite Element Space Discretization

Let N = { zi | i = 1, . . . , n} be the set of nodes with 0 = z1 < z2 < · · · < zn = zF ,
and E = { Ej = [zj, zj+1] | j = 1, . . . , n− 1} be the set of elements based on N .
Define the P1 finite element spaces:

Xn = {v ∈ C(0, zF )|v ∈ P1on Ej, ∀j = 1, . . . , n− 1} ⊂ H1(0, zF )

and ∀ vn ∈ Xn, vn(z) =
n∑

i=1

φi(z)vn(zi)

with {φi(z)}ni=1 finite element basis for P1 and:

φ1(z) =

{
z2−z
z2−z1

if z1 ≤ z ≤ z2,

0 otherwise
, φn(z) =

{
z−zn−1

zn−zn−1
if zn−1 ≤ z ≤ zn,

0 otherwise
,

φi(z) =


z−zi−1

zi−zi−1
if zi−1 ≤ z ≤ zi,

zi+1−z
zi+1−zi

if zi ≤ z ≤ zi+1,

0 otherwise

for i = 2, . . . , n− 1

The galerkin approximation sequence {ρn(t)} ∈Xn+{ρatmα } to the unique solution
ρ(z, t) that solves (3.3) is defined by:{

⟨ρn(t+∆t)− ρn(t), ϕ⟩ = −∆tA (ρn(t+∆t), ϕ)

ρn(0) = ρ̄
(3.4)
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with

ρn(t) = ρatmα (t)φ1 +
n∑

i=2

ρ(zi, t)φi, (ρn)z(t) = ρatmα (t)φ′
1 +

n∑
i=2

ρ(zi, t)φ
′
i,

φ′
1(z) =

{
−1

z2−z1
if z1 ≤ z ≤ z2,

0 otherwise
, φ′

n(z) =

{
1

zn−zn−1
if zn−1 ≤ z ≤ zn,

0 otherwise
,

φ′
i(z) =


1

zi−zi−1
if zi−1 ≤ z ≤ zi,

−1
zi+1−zi

if zi ≤ z ≤ zi+1,

0 otherwise

for i = 2, . . . , n− 1

Replacing these functions in (3.4) will give:

〈(
ρatmα (t+∆t)− ρatmα (t)

)
φ1, ϕ

〉
+

n∑
i=2

⟨(ρ(zi, t+∆t)− ρ(zi, t))φi, ϕ⟩

= −∆tA
(
ρatmα (t+∆t)φ1, ϕ

)
−∆tA

(
n∑

i=2

ρ(zi, t+∆t)φi, ϕ

)

∆tA

(
n∑

i=2

ρ(zi, t+∆t)φi, ϕ

)
+

n∑
i=2

ρ(zi, t+∆t)⟨φi, ϕ⟩

= −∆tA
(
ρatmα (t+∆t)φ1, ϕ

)
+

n∑
i=2

ρ(zi, t)⟨φi, ϕ⟩

−
(
ρatmα (t+∆t)− ρatmα (t)

)
⟨φ1, ϕ⟩ (3.5)

Let ϕ = φj for j = 2, . . . , n, and the vector Λ(t)=[ρ(z2, t), ρ(z3, t), . . . , ρ(zn, t)]
T

(3.5) follows then:{[
M +∆t

(
G
f
M + 1

f
S −K − Mα

f
A+B

)]
Λ(t+∆t) = MΛ(t)− v1(t)−∆tv3(t)

Λ(0) = Λ̄

(3.6)
For j = 2, . . . , n, we have the following:

• M is (n− 1)× (n− 1) matrix with Mi−1,j−1 = ⟨φi, φj⟩ for i, j = 2, . . . , n

so
n∑

i=2

ρ(zi, t+∆t)⟨φi, φj⟩ = (MΛ(t+∆t))j−1,1

•
n∑

i=2

ρ(zi, t)⟨φi, φj⟩ = (MΛ(t))j−1,1
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• ⟨φ1, φj⟩=

{
⟨φ1, φ2⟩ for j = 2

0 else

so (ρatmα (t+∆t)−ρatmα (t))⟨φ1, φj⟩ =

{
(ρatmα (t+∆t)− ρatmα (t))⟨φ1, φ2⟩ for j = 2

0 else

Let v1(t) = (ρatmα (t + ∆t) − ρatmα (t))⟨φ1, φ2⟩e1 to be a vector with length
n− 1, where e1 = [1, 0, . . . , 0]T , then it follows that:

(ρatmα (t+∆t)− ρatmα (t))⟨φ1, φj⟩ = (v1(t))j−1,1

• A

(
n∑

i=2

ρ(zi, t+∆t)φi, φj

)
=

G
f

n∑
i=2

ρ(zi, t+∆t)⟨φi, φj⟩+
1

f

n∑
i=2

ρ(zi, t+∆t)⟨Dαφ
′
i, φ

′
j⟩

− F
n∑

i=2

ρ(zi, t+∆t)⟨φi, φ
′
j⟩ −

Mα

f

n∑
i=2

ρ(zi, t+∆t)⟨Dαφi, φ
′
j⟩

+ Fφj(zF )
n∑

i=2

ρ(zi, t+∆t)φi(zF )

but φi(zF ) =

{
1 for i = n, i.e zi = zF

0 else

⇒ Fφj(zF )
n∑

i=2

ρ(zi, t+∆t)φi(zF ) = Fφj(zF )ρ(zF , t+∆t)

=

{
Fρ(zF , t+∆t) if j = n

0 else

= (BΛ(t+∆t))j−1,1

With B is a (n− 1)× (n− 1) zero matrix except for Bn−1,n−1 = F .
Let S,K,A be the (n− 1)× (n− 1) matrices with entries:
Si−1,j−1 = ⟨Dαφ

′
i, φ

′
j⟩, Ki−1,j−1 = F⟨φi, φ

′
j⟩ and Ai−1,j−1 = ⟨Dαφi, φ

′
j⟩, for

i, j = 2, . . . , n.
Then, we get:

A

(
n∑

i=2

ρ(zi, t+∆t)φi, φj

)
=

((
G
f
M +

1

f
S −K − Mα

f
A+B

)
Λ(t+∆t)

)
j−1,1

• A
(
ρatmα (t+∆t)φ1, φj

)
= ρatmα (t+∆t)A(φ1, φj)

= ρatmα (t+∆t)

[
G
f
⟨φ1, φj⟩+

1

f
⟨Dαφ

′
1, φ

′
j⟩ − F⟨φ1, φ

′
j⟩

−Mα

f
⟨Dαφ1, φ

′
j⟩+ Fφ1(zF )φj(zF )

]
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With φ1(zF ) = 0 and the inner products are equal to 0 unless j = 2. Hence:

A
(
ρatmα (t+∆t)φ1, φj

)
=


ρatmα (t+∆t)

[
G
f
⟨φ1, φ2⟩+ 1

f
⟨Dαφ

′
1, φ

′
2⟩

− F⟨φ1, φ
′
2⟩ − Mα

f
⟨Dαφ1, φ

′
2⟩
]

for j = 2

0 else

Let v3(t) := ρatmα (t+∆t)

[
G
f
⟨φ1, φ2⟩+

1

f
⟨Dαφ

′
1, φ

′
2⟩ − F⟨φ1, φ

′
2⟩ −

Mα

f
⟨Dαφ1, φ

′
2⟩
]
e1

to be a vector with length n− 1, then it follows that:

A
(
ρatmα (t+∆t)φ1, φj

)
= (v3(t))j−1,1

3.2 Matrices of the System

For generating the matrices and the vectors described above, we derive expres-
sions for the following inner products in section 3.2.1 :
⟨ φi, φj ⟩, ⟨ φi, φ

′
j ⟩, ⟨Dαφi, φ

′
j ⟩, ⟨Dαφ

′
i, φ

′
j ⟩, for i = 1, . . . , n and for j = 2, . . . , n.

Then, we generate the matrices for non-uniform meshing in section 3.2.2 and for
uniform meshing in section 3.2.3.

3.2.1 Derivation of Inner Products

In this section, we will explicitly find the expressions for the following inner
products: ⟨ φi, φj ⟩, ⟨ φi, φ

′
j ⟩, ⟨ Dαφi, φ

′
j ⟩, ⟨ Dαφ

′
i, φ

′
j ⟩, for i = 1, . . . , n and for

j = 2, . . . , n, taking into consideration four specific cases for each inner product:
j = i− 1 with i ̸= 1, 2; j = i+ 1 with i ̸= n; j = i ̸= n and j = i = n, otherwise
the inner product will be equal to 0.
Also, the following Note 1 will be used for approximating the inner product
⟨ Dαφi, φ

′
j ⟩.

Note 1. Given two continuous functions f(x) and g(x) with g(x) ≤ 0 or g(x) ≥ 0,
we have from the Mean Value Theorem that:∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x)dx , c ∈ (a, b)

and we can approximate f(c) to be f(c) ≃ 1
2
[f(a) + f(b)] .
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1. ⟨ φi, φj ⟩:

• for j = i− 1 and i ̸= 1, 2:

⟨ φi, φj ⟩ = ⟨ φi, φi−1 ⟩ =
∫ zi

zi−1

φiφi−1dz =

∫ zi

zi−1

z − zi−1

zi − zi−1

zi − z

zi − zi−1

dz

=
1

(zi − zi−1)2

∫ zi

zi−1

(zzi − z2 − zizi−1 + zzi−1)dz

=
1

(zi − zi−1)2

(
z2

2
zi −

z3

3
− zzizi−1 +

z2

2
zi−1

) ∣∣∣∣∣
zi

zi−1

=
1

(zi − zi−1)2

(
z3i
2

− z3i
3

− z2i zi−1 +
z2i
2
zi−1 −

z2i−1

2
zi +

z3i−1

3
+ ziz

2
i−1 −

z3i−1

2

)
=

1

(zi − zi−1)2

(
z3i
6

− z2i zi−1

2
+

ziz
2
i−1

2
−

z3i−1

6

)
=

(zi − zi−1)
3

6(zi − zi−1)2
=

zi − zi−1

6

• for j = i+ 1 and i ̸= n:

⟨ φi, φj ⟩ = ⟨ φi, φi+1 ⟩ =
∫ zi+1

zi

φiφi+1dz =

∫ zi+1

zi

zi+1 − z

zi+1 − zi

z − zi
zi+1 − zi

dz

=
1

(zi+1 − zi)2

∫ zi+1

zi

(
zzi+1 − zi+1zi − z2 + zzi

)
dz

=
1

(zi+1 − zi)2

(
z2

2
zi+1 − zzi+1zi −

z3

3
+

z2

2
zi

) ∣∣∣∣∣
zi+1

zi

=
1

(zi+1 − zi)2

(
z3i+1

2
− z2i+1zi −

z3i+1

3
+

z2i+1

2
zi −

z2i
2
zi+1 + z2i+1z

2
i +

z3i
3

− z3i
2

)
=

1

(zi+1 − zi)2

(
z3i+1

6
−

z2i+1zi
2

+
zi+1z

2
i

2
− z3i

6

)
=

(zi+1 − zi)
3

6(zi+1 − zi)2
=

zi+1 − zi
6

• for j = i ̸= n :

⟨φi, φj⟩ = ⟨ φi, φi⟩ =
∫ zi

zi−1

φ2
i dz +

∫ zi+1

zi

φ2
i dz

=

∫ zi

zi−1

(
z − zi−1

zi − zi−1

)2

dz +

∫ zi+1

zi

(
zi+1 − z

zi+1 − zi

)2

dz

=
1

(zi − zi−1)2

(
(z − zi−1)

3

3

) ∣∣∣∣zi
zi−1

− 1

(zi+1 − zi)2

(
(zi+1 − z)3

3

) ∣∣∣∣zizi+1

=
(zi − zi−1)

3

3(zi − zi−1)2
+

(zi+1 − zi)
3

3(zi+1 − zi)2
=

zi − zi−1 + zi+1 − zi
3

=
zi+1 − zi−1

3
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• for j = i = n :

⟨φi, φj⟩ = ⟨φn, φn⟩ =
∫ zn

zn−1

φ2
ndz =

∫ zn

zn−1

(
z − zn−1

zn − zn−1

)2

dz

=
1

(zn − zn−1)2

[
1

3
(z − zn−1)

3

] ∣∣∣∣∣
zn

zn−1

=
zn − zn−1

3

Hence, we have the following result for i, j = 2, . . . , n:

⟨φ1, φ2⟩ =
z2 − z1

6
, ⟨φi, φj⟩ =


zi−zi−1

6
j = i− 1, i ̸= 2

zi+1−zi
6

j = i+ 1, i ̸= n
zi+1−zi−1

3
j = i ̸= n

zn−zn−1

3
j = i = n

(3.7)

2. ⟨ φi, φ
′
j ⟩:

• for j = i− 1 and i ̸= 1, 2:

⟨ φi, φ
′
j ⟩ = ⟨ φi, φ

′
i−1 ⟩ =

∫ zi

zi−1

φiφ
′
i−1dz =

∫ zi

zi−1

z − zi−1

zi − zi−1

−1

zi − zi−1

dz

=
−1

(zi − zi−1)2

[
1

2
(z − zi−1)

2

] ∣∣∣∣∣
zi

zi−1

=
−1

2

• for j = i+ 1 and i ̸= n:

⟨ φi, φ
′
j ⟩ = ⟨ φi, φ

′
i+1 ⟩ =

∫ zi+1

zi

φiφ
′
i+1dz =

∫ zi+1

zi

zi+1 − z

zi+1 − zi

1

zi+1 − zi
dz

=
1

(zi+1 − zi)2

[
−1

2
(zi+1 − z)2

] ∣∣∣∣∣
zi+1

zi

=
1

2

• for j = i ̸= n:

⟨ φi, φ
′
j ⟩ = ⟨ φi, φ

′
i ⟩ =

∫ zi

zi−1

φiφ
′
idz +

∫ zi+1

zi

φiφ
′
idz

=

∫ zi

zi−1

z − zi−1

zi − zi−1

1

zi − zi−1

dz +

∫ zi+1

zi

zi+1 − z

zi+1 − zi

−1

zi+1 − zi
dz

=
1

(zi − zi−1)2

[
1

2
(z − zi−1)

2

] ∣∣∣∣∣
zi

zi−1

− 1

(zi+1 − zi)2

[
−1

2
(zi+1 − z)2

] ∣∣∣∣∣
zi+1

zi

=
1

2
− 1

2
= 0
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• for j = i = n :

⟨ φi, φ
′
j ⟩ = ⟨ φn, φ

′
n ⟩ =

∫ zn

zn−1

φnφ
′
ndz =

∫ zn

zn−1

z − zn−1

zn − zn−1

1

zn − zn−1

dz

=
1

(zn − zn−1)2

[
1

2
(z − zn−1)

2

] ∣∣∣∣∣
zn

zn−1

=
1

2

Hence, we have the following result for i, j = 2, . . . , n:

⟨φ1, φ
′
2⟩ =

1

2
, ⟨φi, φ

′
j⟩ =


−1
2

j = i− 1, i ̸= 2
1
2

j = i+ 1, i ̸= n

0 j = i ̸= n
1
2

j = i = n

(3.8)

3. ⟨ Dαφi, φ
′
j ⟩:

⟨ Dαφi, φ
′
j ⟩ =

∫
Dαφiφ

′
jdz

We can apply Note 1 by taking the continuous functions f(z) = Dα(z) and
g(z) = (φiφ

′
j)(z) ≤ 0 or ≥ 0 depending on i and j. After that, we will use

the results of (3.8) in the following specific cases:

• for j = i− 1 and i ̸= 1, 2:

⟨ Dαφi, φ
′
j ⟩ = ⟨ Dαφi, φ

′
i−1 ⟩ =

∫ zi

zi−1

Dαφiφ
′
i−1dz

≃ 1

2
[Dα(zi−1) +Dα(zi)]⟨ φi, φ

′
i−1 ⟩

= −1

4
[Dα(zi−1) +Dα(zi)]

• for j = i+ 1 and i ̸= n:

⟨ Dαφi, φ
′
j ⟩ = ⟨ Dαφi, φ

′
i+1 ⟩ =

∫ zi+1

zi

Dαφiφ
′
i+1dz

≃ 1

2
[Dα(zi) +Dα(zi+1)]⟨ φi, φ

′
i+1 ⟩

=
1

4
[Dα(zi) +Dα(zi+1)]
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• for j = i ̸= n :

⟨ Dαφi, φ
′
j ⟩ = ⟨ Dαφi, φ

′
i ⟩ =

∫ zi

zi−1

Dαφiφ
′
idz +

∫ zi+1

zi

Dαφiφ
′
idz

≃ 1

2
[Dα(zi−1) +Dα(zi)]

1

(zi − zi−1)2

[
1

2
(z − zi−1)

2

] ∣∣∣∣∣
zi

zi−1

+
1

2
[Dα(zi) +Dα(zi+1)]

−1

(zi+1 − zi)2

[
−1

2
(zi+1 − z)2

] ∣∣∣∣∣
zi+1

zi

=
1

4
[Dα(zi−1) +Dα(zi)]−

1

4
[Dα(zi) +Dα(zi+1)]

=
1

4
[Dα(zi−1)−Dα(zi+1)]

• for j = i = n :

⟨ Dαφi, φ
′
j ⟩ = ⟨ Dαφn, φ

′
n ⟩ =

∫ zn

zn−1

Dαφnφ
′
ndz

≃ 1

2
[Dα(zn−1) +Dα(zn)]⟨ φn, φ

′
n ⟩

=
1

4
[Dα(zn−1) +Dα(zn)]

Hence, we have the following result for i, j = 2, . . . , n:

⟨ Dαφ1, φ
′
2 ⟩ = Dα(z1) +Dα(z2)

4
, (3.9)

⟨ Dαφi, φ
′
j ⟩ =



−Dα(zi−1) +Dα(zi)

4
j = i− 1, i ̸= 2

Dα(zi) +Dα(zi+1)

4
j = i+ 1, i ̸= n

Dα(zi−1)−Dα(zi+1)

4
j = i ̸= n

Dα(zn−1) +Dα(zn)

4
j = i = n

(3.10)

4. ⟨ Dαφ
′
i, φ

′
j ⟩:Since φ′

i and φ′
j are independent of z, we have:

⟨ Dαφ
′
i, φ

′
j ⟩ = φ′

iφ
′
j

∫
Dαdz

which can be solved using the trapezoidal rule
(∫ b

a
f(x)dx ≃ 1

2
(b− a)(f(a) + f(b))

)
.
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• for j = i− 1 and i ̸= 1, 2:

⟨ Dαφ
′
i, φ

′
j ⟩ = ⟨ Dαφ

′
i, φ

′
i−1 ⟩ =

∫ zi

zi−1

Dαφ
′
iφ

′
i−1dz

≃ 1

2
[Dα(zi−1) +Dα(zi)]

−1

(zi − zi−1)2
(zi − zi−1)

= −Dα(zi−1) +Dα(zi)

2(zi − zi−1)

• for j = i+ 1 and i ̸= n:

⟨ Dαφ
′
i, φ

′
j ⟩ = ⟨ Dαφ

′
i, φ

′
i+1 ⟩ =

∫ zi+1

zi

Dαφ
′
iφ

′
i+1dz

≃ 1

2
[Dα(zi) +Dα(zi+1)]

−1

(zi+1 − zi)2
(zi+1 − zi)

= −Dα(zi) +Dα(zi+1)

2(zi+1 − zi)

• for j = i ̸= n :

⟨ Dαφ
′
i, φ

′
j ⟩ = ⟨ Dαφ

′
i, φ

′
i ⟩ =

∫ zi

zi−1

Dαφ
′2
i dz +

∫ zi+1

zi

Dαφ
′2
i dz

≃ 1

2
[Dα(zi−1) +Dα(zi)]

zi − zi−1

(zi − zi−1)2
+

1

2
[Dα(zi) +Dα(zi+1)]

zi+1 − zi
(zi+1 − zi)2

=
Dα(zi−1) +Dα(zi)

2(zi − zi−1)
+

Dα(zi) +Dα(zi+1)

2(zi+1 − zi)

• for j = i = n :

⟨ Dαφ
′
i, φ

′
j ⟩ = ⟨ Dαφ

′
n, φ

′
n ⟩ =

∫ zn

zn−1

Dαφ
′2
n dz

≃ 1

2
[Dα(zn−1) +Dα(zn)]

1

(zn − zn−1)2
(zn − zn−1)

=
Dα(zn−1) +Dα(zn)

2(zn − zn−1)
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Hence, we have the following result for i, j = 2, . . . , n

⟨ Dαφ
′
1, φ

′
2 ⟩ = −Dα(z1) +Dα(z2)

2(z2 − z1)
, (3.11)

⟨ Dαφ
′
i, φ

′
j ⟩ =



−Dα(zi−1) +Dα(zi)

2(zi − zi−1)
j = i− 1, i ̸= 2

−Dα(zi) +Dα(zi+1)

2(zi+1 − zi)
j = i+ 1, i ̸= n

Dα(zi−1) +Dα(zi)

2(zi − zi−1)
+

Dα(zi) +Dα(zi+1)

2(zi+1 − zi)
j = i ̸= n

Dα(zn−1) +Dα(zn)

2(zn − zn−1)
j = i = n

(3.12)

3.2.2 Matrices for non-Uniform Meshing

Now, after finding these values, we are able to generate the vectors v1(t), v3(t)
and the matrices B,K,M,A and S assuming we have a non-uniform meshing.

• Vector v1(t):
Using the equation (3.7) and z1 = 0, we get:

v1(t) =
(
ρatmα (t+∆t)− ρatmα (t)

)
⟨φ1, φ2⟩e1

=
(
ρatmα (t+∆t)− ρatmα (t)

)
⟨φ1, φ2⟩


1
0
...
0


(n−1)×1

=


(ρatmα (t+∆t)− ρatmα (t))

z2
6

0
...
0


(n−1)×1

• Vector v3(t):
Referring to (3.7), (3.8), (3.9), (3.11) and z1 = 0, we get:

v3(t) = ρatmα (t+∆t)

(
G
f
⟨φ1, φ2⟩+

1

f
⟨ Dαφ

′
1, φ

′
2 −F⟨φ1, φ

′
2⟩ −

Mα

f
⟨ Dαφ1, φ

′
2

)
e1

= ρatmα (t+∆t)

(
G(z2 − z1)

6f
+

−Dα(z1)−Dα(z2)

2f(z2 − z1)
− F

2
− Mα

4f
(Dα(z1) +Dα(z2))

)
e1

= ρatmα (t+∆t)

(
G
6f

z2 −
(

1

2fz2
+

Mα

4f

)
(Dα(0) +Dα(z2))−

F
2

)
1
0
...
0


(n−1)×1
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=


ρatmα (t+∆t)

(
G
6f

z2 − (
1

2fz2
+

Mα

4f
)(Dα(0) +Dα(z2))−

F
2

)
0
...
0


(n−1)×1

• Matrix B:
B is a (n− 1)× (n− 1) zero matrix except for Bn−1,n−1 = F , then:

B =

0 . . . 0
...

. . .
...

0 . . . F


(n−1)×(n−1)

• Matrix K:
K is a (n − 1) × (n − 1) matrix with entries: Ki−1,j−1 = F⟨φi, φ

′
j⟩, for

i, j = 2, . . . , n. Hence, using the result of (3.8), we have:

Ki−1,j−1 = F⟨φi, φ
′
j⟩

= F


−1

2
if j = i− 1, i ̸= 2,

1
2

if j = i+ 1, i ̸= n or j = i = n,

0 else

We get then,

K =


0 F

2
0 . . . 0

−F
2

0 F
2

...

0
. . . . . . . . . 0

... −F
2

0 F
2

0 . . . 0 −F
2

F
2


(n−1)×(n−1)

• Matrix M :
M is a (n − 1) × (n − 1) matrix with entries: Mi−1,j−1 = ⟨φi, φj⟩, for
i, j = 2, . . . , n. Then, taking the results of (3.7) and defining hi to be the
distance between two consecutive points of the space i.e hi = zi − zi−1, we
have:

Mi−1,j−1 = ⟨φi, φj⟩

=



hi

6
if j = i− 1, i ̸= 2,

hi+1

6
if j = i+ 1, i ̸= n,

hi+hi+1

3
if j = i ̸= n,

hn

3
if j = i = n,

0 else

30



Which give us the matrix

M =



h2+h3

6
h3

6
0 . . . 0

h3

6
h3+h4

3
h4

6

...

0
. . . . . . . . . 0

... hn−1

6
hn−1+hn

3
hn

6

0 . . . 0 hn

6
hn

3


(n−1)×(n−1)

• Matrix A:
A is a (n − 1) × (n − 1) matrix with entries: Ai−1,j−1 = ⟨Dαφi, φ

′
j⟩, for

i, j = 2, . . . , n. Hence, using the equation (3.10), we get:

Ai−1,j−1 = ⟨Dαφi, φ
′
j⟩

=



−Dα(zi−1) +Dα(zi)

4
if j = i− 1, i ̸= 2,

Dα(zi) +Dα(zi+1)

4
if j = i+ 1, i ̸= n,

Dα(zi−1)−Dα(zi+1)

4
if j = i ̸= n,

Dα(zn−1) +Dα(zn)

4
if j = i = n,

0 else

We get then,

A =
1

4


Dα(z1) Dα(z2) 0 . . . 0

−Dα(z2) Dα(z2) Dα(z3)
...

0
. . . . . . . . . 0

... −Dα(zn−2) Dα(zn−2) Dα(zn−1)
0 . . . 0 −Dα(zn−1) Dα(zn−1)


(n−1)×(n−1)

+
1

4


−Dα(z3) Dα(z3) 0 . . . 0

−Dα(z3) −Dα(z4) Dα(z4)
...

0
. . . . . . . . . 0

... −Dα(zn−1) −Dα(zn) Dα(zn)
0 . . . 0 −Dα(zn) Dα(zn)


(n−1)×(n−1)

• Matrix S:
S is a (n − 1) × (n − 1) matrix with entries: Si−1,j−1 = ⟨Dαφ

′
i, φ

′
j⟩, for

i, j = 2, . . . , n. Then, taking the results of (3.12) and hi = zi − zi−1, we
have:

Si−1,j−1 = ⟨Dαφ
′
i, φ

′
j⟩
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=



−Dα(zi−1) +Dα(zi)

2hi

if j = i− 1, i ̸= 2,

−Dα(zi) +Dα(zi+1)

2hi+1

if j = i+ 1, i ̸= n,

Dα(zi−1) +Dα(zi)

2hi

+
Dα(zi) +Dα(zi+1)

2hi+1

if j = i ̸= n,

Dα(zn−1) +Dα(zn)

2hn

if j = i = n,

0 else

It follows that:

S =



Dα(z1)
2h2

+ Dα(z2)
2h3

−Dα(z2)
2h3

0 . . . 0
−Dα(z2)

2h3

Dα(z2)
2h3

+ Dα(z3)
2h4

−Dα(z3)
2h4

...

0
. . . . . . . . . 0

... −Dα(zn−2)
2hn−1

Dα(zn−2)
2hn−1

+ Dα(zn−1)
2hn

−Dα(zn−1)
2hn

0 . . . 0 −Dα(zn−1)
2hn

Dα(zn−1)
2hn


(n−1)×(n−1)

+



Dα(z2)
2h2

+ Dα(z3)
2h3

−Dα(z3)
2h3

0 . . . 0
−Dα(z3)

2h3

Dα(z3)
2h3

+ Dα(z4)
2h4

−Dα(z4)
2h4

...

0
. . . . . . . . . 0

... −Dα(zn−1)
2hn−1

Dα(zn−1)
2hn−1

+ Dα(zn)
2hn

−Dα(zn)
2hn

0 . . . 0 −Dα(zn)
2hn

Dα(zn)
2hn


(n−1)×(n−1)

3.2.3 Matrices for Uniform Meshing

In this section we generate the vectors v1(t), v3(t) and the matrices B,K,M,A
and S assuming we have a uniform meshing i.e hi = h =constant.
So the vectors and matrices in section 3.2.2 independent of hi remain the same
and for the others, the hi will be replaced with h. Hence we have the following:

v3(t) =


ρatmα (t+∆t)

(
G
6f

z2 −
(

1

2fz2
+

Mα

4f

)
(Dα(0) +Dα(z2))−

F
2

)
0
...
0


(n−1)×1

v1(t) =


(ρatmα (t+∆t)− ρatmα (t))

z2
6

0
...
0


(n−1)×1

, B =

0 . . . 0
...

. . .
...

0 . . . F


(n−1)×(n−1)
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K =


0 F

2
0 . . . 0

−F
2

0 F
2

...

0
. . . . . . . . . 0

... −F
2

0 F
2

0 . . . 0 −F
2

F
2


(n−1)×(n−1)

,M = h



1
3

1
6

0 . . . 0
1
6

2
3

1
6

...

0
. . . . . . . . . 0

... 1
6

2
3

1
6

0 . . . 0 1
6

1
3


(n−1)×(n−1)

A =
1

4


Dα(z1) Dα(z2) 0 . . . 0

−Dα(z2) Dα(z2) Dα(z3)
...

0
. . . . . . . . . 0

... −Dα(zn−2) Dα(zn−2) Dα(zn−1)
0 . . . 0 −Dα(zn−1) Dα(zn−1)


(n−1)×(n−1)

+
1

4


−Dα(z3) Dα(z3) 0 . . . 0

−Dα(z3) −Dα(z4) Dα(z4)
...

0
. . . . . . . . . 0

... −Dα(zn−1) −Dα(zn) Dα(zn)
0 . . . 0 −Dα(zn) Dα(zn)


(n−1)×(n−1)

S =



Dα(z1)+Dα(z2)
2h

−Dα(z2)
2h

0 . . . 0
−Dα(z2)

2h
Dα(z2)+Dα(z3)

2h
−Dα(z3)

2h

...

0
. . . . . . . . . 0

... −Dα(zn−2)
2h

Dα(zn−2)+Dα(zn−1)
2h

−Dα(zn−1)
2h

0 . . . 0 −Dα(zn−1)
2h

Dα(zn−1)
2h


(n−1)×(n−1)

+



Dα(z2)+Dα(z3)
2h

−Dα(z3)
2h

0 . . . 0
−Dα(z3)

2h
Dα(z3)+Dα(z4)

2h
−Dα(z4)

2h

...

0
. . . . . . . . . 0

... −Dα(zn−1)
2h

Dα(zn−1)+Dα(zn)
2h

−Dα(zn)
2h

0 . . . 0 −Dα(zn)
2h

Dα(zn)
2h


(n−1)×(n−1)
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3.3 Existence and Uniqueness of the Solution of

the Finite Element Euler-Implicit Discrete

System (3.6)

In this section, we show that the matrices of the system and especially for the
non-uniform meshing are either positive definite or symmetric positive definite
(spd). Then, we use this to prove the existence and uniqueness of the solution of
the system (3.6).

Remark. An m × m matrix, N , is positive definite ⇐⇒ ZTNZ > 0, ∀Z ∈
Rm−{0}. Furthermore, N is called spd when it’s positive definite and symmetric
i.e NT = N .

Lemma 3.3.1. The matrix M is spd.

Proof.

MZ =



h2+h3

6
h3

6
0 . . . 0

h3

6
h3+h4

3
h4

6

...

0
. . . . . . . . . 0

... hn−1

6
hn−1+hn

3
hn

6

0 . . . 0 hn

6
hn

3




Z1

Z2
...

Zn−2

Zn−1



=



(
h2 + h3

6

)
Z1 +

h3

6
Z2

h3

6
Z1 +

(
h3 + h4

3

)
Z2 +

h4

6
Z3

...
hn−1

6
Zn−3 +

(
hn−1 + hn

3

)
Zn−2 +

hn

6
Zn−1

hn

6
Zn−2 +

hn

3
Zn−1



Then, ZTMZ =

(
h2 + h3

6

)
Z2

1 +
h3

6
Z1Z2 +

h3

6
Z1Z2 +

(
h3 + h4

3

)
Z2

2 +
h4

6
Z2Z3

+
h4

6
Z2Z3 +

(
h4 + h5

3

)
Z2

3 + . . .+
hn−1

6
Zn−3Zn−2 +

(
hn−1 + hn

3

)
Z2

n−2

+
hn

6
Zn−2Zn−1 +

hn

6
Zn−2Zn−1 +

hn

3
Z2

n−1

=
h2

6
Z2

1 +
h3

6
Z2

1 +
h3

3
Z1Z2 +

h3

3
Z2

2 +
h4

3
Z2

2 +
h4

3
Z2Z3 +

h4

3
Z2

3 +
h5

3
Z2

3

+ . . .+
hn−1

3
Zn−3Zn−2 +

hn−1

3
Z2

n−2 +
hn

3
Z2

n−2 +
hn

3
Zn−2Zn−1 +

hn

3
Z2

n−1

34



=
h2

6
Z2

1 +
h3

3

(
Z2

1

2
+ Z1Z2 +

Z2
2

2
+

Z2
2

2

)
+

n−2∑
i=2

hi+2

3

(
Z2

i + ZiZi+1 + Z2
i+1

)
=

h2

6
Z2

1 +
h3

3

(
(Z1 + Z2)

2 +
Z2

2

2

)
+

n−2∑
i=2

hi+2

3

(
Z2

i

2
+ (Zi + Zi+1)

2 +
Z2

i+1

2

)
Hence, for Z ̸= 0, ZTMZ > 0 since it’s a summation of positive terms. And, it’s
clear that M is symmetric. Therefore, M is spd.

Lemma 3.3.2. The matrix K is positive definite and B is spd.

Proof.

ZtKZ =


Z1

Z2
...

Zn−2

Zn−1


T


0 F
2

0 . . . 0
−F
2

0 F
2

...

0
. . . . . . . . . 0

... −F
2

0 F
2

0 . . . 0 −F
2

F
2




Z1

Z2
...

Zn−2

Zn−1

 =
F
2


Z1

Z2
...

Zn−2

Zn−1


T 

Z2

−Z1 + Z3
...

−Zn−3 + Zn−1

−Zn−2 + Zn−1


=

F
2
(Z1Z2 − Z1Z2 + Z2Z3 − Z2Z3 + . . .− Zn−3Zn−2 + Zn−2Zn−1 − Zn−2Zn−1 + Z2

n−1)

=
F
2
Z2

n−1 (3.13)

ZTBZ =


Z1

Z2
...

Zn−2

Zn−1


T 0 . . . 0

...
. . .

...
0 . . . F




Z1

Z2
...

Zn−2

Zn−1

 =


Z1

Z2
...

Zn−2

Zn−1


T 

0
0
...
0

FZn−1


=0 + . . .+ 0 + FZ2

n−1 = FZ2
n−1 (3.14)

Since F > 0, the equations (3.13) and (3.14) are positives for Z > 0. Therefore,
K and B are positive definite. Also, it’s obvious that B is symmetric. Hence B
is spd.

Lemma 3.3.3. The matrix S is spd.

Proof. As shown in section 3.2.2, the matrix S is a summation of two matrices,
let’s call them S1 and S2. Then, Z

TSZ = ZTS1Z + ZTS2Z.
First, let’s find ZTS1Z.

S1Z =



Dα(z1)
2h2

+ Dα(z2)
2h3

−Dα(z2)
2h3

0 . . . 0
−Dα(z2)

2h3

Dα(z2)
2h3

+ Dα(z3)
2h4

−Dα(z3)
2h4

...

0
. . . . . . . . . 0

... −Dα(zn−2)
2hn−1

Dα(zn−2)
2hn−1

+ Dα(zn−1)
2hn

−Dα(zn−1)
2hn

0 . . . 0 −Dα(zn−1)
2hn

Dα(zn−1)
2hn




Z1

Z2
...

Zn−2

Zn−1


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=



(
Dα(z1)

2h2

+
Dα(z2)

2h3

)
Z1 −

Dα(z2)

2h3

Z2

−Dα(z2)

2h3

Z1 +

(
Dα(z2)

2h3

+
Dα(z3)

2h4

)
Z2 −

Dα(z3)

2h4

Z3

...

−Dα(zn−2)

2hn−1

Zn−3 +

(
Dα(zn−2)

2hn−1

+
Dα(zn−1)

2hn

)
Zn−2 −

Dα(zn−1)

2hn

Zn−1

−Dα(zn−1)

2hn

Zn−2 +
Dα(zn−1)

2hn

Zn−1



So, ZTS1Z =

(
Dα(z1)

2h2

+
Dα(z2)

2h3

)
Z2

1 −
Dα(z2)

2h3

Z1Z2 −
Dα(z2)

2h3

Z1Z2

+

(
Dα(z2)

2h3

+
Dα(z3)

2h4

)
Z2

2 −
Dα(z3)

2h4

Z2Z3 −
Dα(z3)

2h4

Z2Z3

+

(
Dα(z3)

2h4

+
Dα(z4)

2h5

)
Z2

3 + . . .− Dα(zn−2)

2hn−1

Zn−3Zn−2

+

(
Dα(zn−2)

2hn−1

+
Dα(zn−1)

2hn

)
Z2

n−2 −
Dα(zn−1)

2hn

Zn−2Zn−1

− Dα(zn−1)

2hn

Zn−2Zn−1 +
Dα(zn−1)

2hn

Z2
n−1

=
Dα(z1)

2h2

Z2
1 +

Dα(z2)

2h3

Z2
1 −

Dα(z2)

h3

Z1Z2 +
Dα(z2)

2h3

Z2
2 +

Dα(z3)

2h4

Z2
2

− Dα(z3)

h4

Z2Z3 +
Dα(z3)

2h4

Z2
3 + . . .− Dα(zn−2)

hn−1

Zn−3Zn−2 +
Dα(zn−2)

2hn−1

Z2
n−2

+
Dα(zn−1)

2hn

Z2
n−2 −

Dα(zn−1)

hn

Zn−2Zn−1 +
Dα(zn−1)

2hn

Z2
n−1

=
Dα(z1)

2h2

Z2
1 +

n−2∑
i=1

Dα(zi+1)

hi+2

(
Z2

i

2
− ZiZi+1 +

Z2
i+1

2

)

=
Dα(z1)

2h2

Z2
1 +

n−2∑
i=1

Dα(zi+1)

hi+2

(Zi − Zi+1)
2 (3.15)

Now, we find ZTS2Z in a similar way.

S2Z =



Dα(z2)
2h2

+ Dα(z3)
2h3

−Dα(z3)
2h3

0 . . . 0
−Dα(z3)

2h3

Dα(z3)
2h3

+ Dα(z4)
2h4

−Dα(z4)
2h4

...

0
. . . . . . . . . 0

... −Dα(zn−1)
2hn−1

Dα(zn−1)
2hn−1

+ Dα(zn)
2hn

−Dα(zn)
2hn

0 . . . 0 −Dα(zn)
2hn

Dα(zn)
2hn




Z1

Z2
...

Zn−2

Zn−1


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=



(
Dα(z2)

2h2

+
Dα(z3)

2h3

)
Z1 −

Dα(z3)

2h3

Z2

−Dα(z3)

2h3

Z1 +

(
Dα(z3)

2h3

+
Dα(z4)

2h4

)
Z2 −

Dα(z4)

2h4

Z3

...

−Dα(zn−1)

2hn−1

Zn−3 +

(
Dα(zn−1)

2hn−1

+
Dα(zn)

2hn

)
Zn−2 −

Dα(zn)

2hn

Zn−1

−Dα(zn)

2hn

Zn−2 +
Dα(zn)

2hn

Zn−1



Then, ZTS2Z =

(
Dα(z2)

2h2

+
Dα(z3)

2h3

)
Z2

1 −
Dα(z3)

2h3

Z1Z2 −
Dα(z3)

2h3

Z1Z2

+

(
Dα(z3)

2h3

+
Dα(z4)

2h4

)
Z2

2 −
Dα(z4)

2h4

Z2Z3 −
Dα(z4)

2h4

Z2Z3

+

(
Dα(z4)

2h4

+
Dα(z5)

2h5

)
Z2

3 + . . .− Dα(zn−1)

2hn−1

Zn−3Zn−2

+

(
Dα(zn−1)

2hn−1

+
Dα(zn)

2hn

)
Z2

n−2 −
Dα(zn)

2hn

Zn−2Zn−1

− Dα(zn)

2hn

Zn−2Zn−1 +
Dα(zn)

2hn

Z2
n−1

=
Dα(z2)

2h2

Z2
1 +

Dα(z3)

2h3

Z2
1 −

Dα(z3)

h3

Z1Z2 +
Dα(z3)

2h3

Z2
2 +

Dα(z4)

2h4

Z2
2

− Dα(z4)

h4

Z2Z3 +
Dα(z4)

2h4

Z2
3 + . . .− Dα(zn−1)

hn−1

Zn−3Zn−2 +
Dα(zn−1)

2hn−1

Z2
n−2

+
Dα(zn)

2hn

Z2
n−2 −

Dα(zn)

hn

Zn−2Zn−1 +
Dα(zn)

2hn

Z2
n−1

=
Dα(z2)

2h2

Z2
1 +

n−2∑
i=1

Dα(zi+2)

hi+2

(
Z2

i

2
− ZiZi+1 +

Z2
i+1

2

)

=
Dα(z2)

2h2

Z2
1 +

n−2∑
i=1

Dα(zi+2)

hi+2

(Zi − Zi+1)
2 (3.16)

Since Dα is a positive function, we get ZTS1Z > 0 by (3.15), and ZTS2Z > 0
by (3.16) for Z > 0. Thus, ZTSZ > 0 for Z > 0. Plus, we have ST

1 = S1 and
ST
2 = S2, so ST = S and S is symmetric. Therefore, S is spd.

Lemma 3.3.4. The matrix A is positive definite assuming thatDα is a decreasing
function.

Proof. Like in section 3.2.2, we can split A into a summation of two matrices A1

and A2, so ZTAZ = ZTA1Z + ZTA2Z.
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Let’s start by A1.

A1Z =
1

4


Dα(z1) Dα(z2) 0 . . . 0

−Dα(z2) Dα(z2) Dα(z3)
...

0
. . . . . . . . . 0

... −Dα(zn−2) Dα(zn−2) Dα(zn−1)
0 . . . 0 −Dα(zn−1) Dα(zn−1)




Z1

Z2
...

Zn−2

Zn−1



=
1

4


Dα(z1)Z1 +Dα(z2)Z2

−Dα(z2)Z1 +Dα(z2)Z2 +Dα(z3)Z3
...

−Dα(zn−2)Zn−3 +Dα(zn−2)Zn−2 +Dα(zn−1)Zn−1

−Dα(zn−1)Zn−2 +Dα(zn−1)Zn−1



And, ZTA1Z =
1

4
[Dα(z1)Z

2
1 +Dα(z2)Z1Z2 −Dα(z2)Z1Z2 +Dα(z2)Z

2
2 +Dα(z3)Z2Z3

+ . . .−Dα(zn−2)Zn−3Zn−2 +Dα(zn−2)Z
2
n−2 +Dα(zn−1)Zn−2Zn−1

−Dα(zn−1)Zn−2Zn−1 +Dα(zn−1)Z
2
n−1]

=
1

4

(
Dα(z1)Z

2
1 +Dα(z2)Z

2
2 + . . .+Dα(zn−2)Z

2
n−2 +Dα(zn−1)Z

2
n−1

)
=
1

4

n−1∑
i=1

Dα(zi)Z
2
i (3.17)

Now, we find ZTA2Z.

A2Z =
1

4


−Dα(z3) Dα(z3) 0 . . . 0

−Dα(z3) −Dα(z4) Dα(z4)
...

0
. . . . . . . . . 0

... −Dα(zn−1) −Dα(zn) Dα(zn)
0 . . . 0 −Dα(zn) Dα(zn)




Z1

Z2
...

Zn−2

Zn−1



=
1

4


−Dα(z3)Z1 +Dα(z3)Z2

−Dα(z3)Z1 −Dα(z4)Z2 +Dα(z4)Z3
...

−Dα(zn−1)Zn−3 −Dα(zn)Zn−2 +Dα(zn)Zn−1

−Dα(zn)Zn−2 +Dα(zn)Zn−1



Then, ZTA2Z =
1

4
(−Dα(z3)Z

2
1 +Dα(z3)Z1Z2 −Dα(z3)Z1Z2 −Dα(z4)Z

2
2 +Dα(z4)Z2Z3
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+ . . .−Dα(zn−1)Zn−3Zn−2 −Dα(zn)Z
2
n−2 +Dα(zn)Zn−2Zn−1

−Dα(zn)Zn−2Zn−1 +Dα(zn)Z
2
n−1)

=
1

4

(
−Dα(z3)Z

2
1 −Dα(z4)Z

2
2 − . . .−Dα(zn)Z

2
n−2 +Dα(zn)Z

2
n−1

)
=
1

4

(
Dα(zn)Z

2
n−1 −

n−2∑
i=1

Dα(zi+2)Z
2
i

)
(3.18)

by (3.17) and (3.18), we have:

ZTAZ =ZTA1Z + ZTA2Z

=
1

4

n−1∑
i=1

Dα(zi)Z
2
i +

1

4

(
Dα(zn)Z

2
n−1 −

n−2∑
i=1

Dα(zi+2)Z
2
i

)

=
1

4

(
(Dα(zn−1) +Dα(zn))Z

2
n−1 +

n−2∑
i=1

(Dα(zi)−Dα(zi+2))Z
2
i

)

Since Dα is a positive function then Dα(zn−1) + Dα(zn) > 0 and if it’s also
decreasing, then Dα(zi)−Dα(zi+2) > 0 for i = 1, . . . , n−2. Therefore, ZTAZ > 0
for Z > 0. Hence, the matrix A is positive definite.

Theorem 3.3.5. The Finite Element Euler-Implicit Discrete System (3.6) admits
a unique solution assuming that Dα is a decreasing function.

Proof. Let’s take the matrix A∆t := M +∆t
(

G
f
M + 1

f
S −K − Mα

f
A+B

)
and

so (3.6) is equivalent to:{
A∆tΛ(t+∆t) = MΛ(t)− v1(t)−∆tv3(t)

Λ(0) = Λ̄
(3.19)

Uniqueness of this system is obtained when A∆t is invertible. And invertibility
of A∆t is obtained if A∆t is positive definite. Which is done by showing that
ZTA∆tZ > 0, ∀Z ∈ Rn−1 − {0}.
A∆t is a summation of the matrices M,S,K,A and B multiplied by positive
constants. Every matrix of this summation is proved to be positive definite by
the lemmas 3.3.1, 3.3.2, 3.3.3, and 3.3.4. Therefore, A∆t is positive definite and
the system (3.6) admits a unique solution.

3.4 Testing

In this section, we present the results of our numerical simulations implemented
using MATLAB. We test the direct problem for different meshing and while fixing

39



the smallest mesh size, we compare the errors using these norms: L∞ norm, rel-
ative L∞ norm, L2 norm, and relative L2 norm. First, we test it by taking ∆t to
be of order h2 i.e ∆t = O(h2). Second, we test it using ∆t = O(h). Finally, we
analyze the results obtained in both cases.

In the following testings, since we do not have the exact data, we will take
ρ̄(z) = 0, Dα(z) = −99.998z + 100 a decreasing function, ρatmα (t) = 2t1/4 and the
following values for the constants mentioned in table 1.1:
zF = 1, f = 0.2, v = 200, wair = 485, τ = 10, λ = 0.03,Mα = 0.04, g = 9.8,
R = 8.314, Tm = 260

3.4.1 Case 1: ∆t = O(h2)

In this test, we will consider ∆t to be of order h2 and take four different meshing:
h1 = 1

8
, h2 = 1

16
, h3 = 1

32
and h4 = 1

64
and three end time: T1 = 1 T2 = 32 and

T3 = 128. By running the direct problem, Algorithm A.4, for each hi, we get the
value of the concentration ρoα,hi

. And we test convergence on the space common
points (zc) at each end time Tj for j = 1, 2, 3 by finding the error between each
ρoα,hi

and ρoα,h4
for i < 4.

In the tables 3.1, 3.3 and 3.5, we are presenting the errors using the L∞ norm
and the relative L∞ norm. As for the tables 3.2, 3.4 and 3.6, we are presenting
the errors using the L2 norm and the relative L2 norm.

hi ∆ti = O(h2
i )

∥∥ρoα,hi
(zc, T1)− ρoα,h4

(zc, T1)
∥∥
∞

∥∥ρoα,hi
(zc, T1)− ρoα,h4

(zc, T1)
∥∥
∞∥∥ρoα,h4

(zc, T1)
∥∥
∞

1

8

(
1

8

)2

0.1545 0.0772

1

16

(
1

16

)2

0.0625 0.0313

1

32

(
1

32

)2

0.0203 0.0101

Table 3.1: The L∞ and relative L∞ error at (zc, T1) with ∆t = O(h2).
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hi ∆ti = O(h2
i )

∥∥ρoα,hi
(zc, T1)− ρoα,h4

(zc, T1)
∥∥
2

∥∥ρoα,hi
(zc, T1)− ρoα,h4

(zc, T1)
∥∥
2∥∥ρoα,h4

(zc, T1)
∥∥
2

1

8

(
1

8

)2

0.2978 0.0755

1

16

(
1

16

)2

0.1215 0.0308

1

32

(
1

32

)2

0.0399 0.0101

Table 3.2: The L2 and relative L2 error at (zc, T1) with ∆t = O(h2).

hi ∆ti = O(h2
i )

∥∥ρoα,hi
(zc, T2)− ρoα,h4

(zc, T2)
∥∥
∞

∥∥ρoα,hi
(zc, T2)− ρoα,h4

(zc, T2)
∥∥
∞∥∥ρoα,h4

(zc, T2)
∥∥
∞

1

8

(
1

8

)2

0.3674 0.0772

1

16

(
1

16

)2

0.1487 0.0313

1

32

(
1

32

)2

0.0482 0.0101

Table 3.3: The L∞ and relative L∞ error at (zc, T2) with ∆t = O(h2).

hi ∆ti = O(h2
i )

∥∥ρoα,hi
(zc, T2)− ρoα,h4

(zc, T2)
∥∥
2

∥∥ρoα,hi
(zc, T2)− ρoα,h4

(zc, T2)
∥∥
2∥∥ρoα,h4

(zc, T2)
∥∥
2

1

8

(
1

8

)2

0.7082 0.0755

1

16

(
1

16

)2

0.2891 0.0308

1

32

(
1

32

)2

0.0949 0.0101

Table 3.4: The L2 and relative L2 error at (zc, T2) with ∆t = O(h2).
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hi ∆ti = O(h2
i )

∥∥ρoα,hi
(zc, T3)− ρoα,h4

(zc, T3)
∥∥
∞

∥∥ρoα,hi
(zc, T3)− ρoα,h4

(zc, T3)
∥∥
∞∥∥ρoα,h4

(zc, T3)
∥∥
∞

1

8

(
1

8

)2

0.5196 0.0772

1

16

(
1

16

)2

0.2102 0.0313

1

32

(
1

32

)2

0.0682 0.0101

Table 3.5: The L∞ and relative L∞ error at (zc, T3) with ∆t = O(h2).

hi ∆ti = O(h2
i )

∥∥ρoα,hi
(zc, T3)− ρoα,h4

(zc, T3)
∥∥
2

∥∥ρoα,hi
(zc, T3)− ρoα,h4

(zc, T3)
∥∥
2∥∥ρoα,h4

(zc, T3)
∥∥
2

1

8

(
1

8

)2

1.0016 0.0755

1

16

(
1

16

)2

0.4088 0.0308

1

32

(
1

32

)2

0.1342 0.0101

Table 3.6: The L2 and relative L2 error at (zc, T3) with ∆t = O(h2).

In all the tables , it’s clear that when h gets smaller for any end time, both
relative and absolute errors, for L2 and L∞ norms, are getting smaller. Adding
that for both norms, the relative error is even smaller than the absolute error and
it’s value didn’t change while T increases. Based on these errors, we can see that
we have convergence for ∆t = O(h2) in all different meshes knowing that we are
not computing with the exact data.

3.4.2 Case 2: ∆t = O(h)

In this test, we will consider ∆t to be of order h and take four different meshing:
h1 = 1

8
, h2 = 1

16
, h3 = 1

32
and h4 = 1

64
and three end time: T1 = 1 T2 = 32 and

T3 = 128. By running the direct problem, Algorithm A.4, for each hi, we get the
value of the concentration ρoα,hi

. And we test convergence on the space common
points (zc) at each end time Tj for j = 1, 2, 3 by finding the error between each
ρoα,hi

and ρoα,h4
for i < 4.

In the tables 3.7, 3.9 and 3.11, we are presenting the errors using the L∞ norm
and the relative L∞ norm. As for the tables 3.8, 3.10 and 3.12, we are presenting
the errors using the L2 norm and the relative L2 norm.
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hi ∆ti = O(hi)
∥∥ρoα,hi

(zc, T1)− ρoα,h4
(zc, T1)

∥∥
∞

∥∥ρoα,hi
(zc, T1)− ρoα,h4

(zc, T1)
∥∥
∞∥∥ρoα,h4

(zc, T1)
∥∥
∞

1

8

1

8
0.1545 0.0772

1

16

1

16
0.0625 0.0313

1

32

1

32
0.0203 0.0101

Table 3.7: The L∞ and relative L∞ error at (zc, T1) with ∆t = O(h).

hi ∆ti = O(hi)
∥∥ρoα,hi

(zc, T1)− ρoα,h4
(zc, T1)

∥∥
2

∥∥ρoα,hi
(zc, T1)− ρoα,h4

(zc, T1)
∥∥
2∥∥ρoα,h4

(zc, T1)
∥∥
2

1

8

1

8
0.2977 0.0755

1

16

1

16
0.1215 0.0308

1

32

1

32
0.0399 0.0101

Table 3.8: The L2 and relative L2 error at (zc, T1) with ∆t = O(h).

hi ∆ti = O(hi)
∥∥ρoα,hi

(zc, T2)− ρoα,h4
(zc, T2)

∥∥
∞

∥∥ρoα,hi
(zc, T2)− ρoα,h4

(zc, T2)
∥∥
∞∥∥ρoα,h4

(zc, T2)
∥∥
∞

1

8

1

8
0.3674 0.0772

1

16

1

16
0.1487 0.0313

1

32

1

32
0.0482 0.0101

Table 3.9: The L∞ and relative L∞ error at (zc, T2) with ∆t = O(h).

hi ∆ti = O(hi)
∥∥ρoα,hi

(zc, T2)− ρoα,h4
(zc, T2)

∥∥
2

∥∥ρoα,hi
(zc, T2)− ρoα,h4

(zc, T2)
∥∥
2∥∥ρoα,h4

(zc, T2)
∥∥
2

1

8

1

8
0.7082 0.0755

1

16

1

16
0.2891 0.0308

1

32

1

32
0.0949 0.0101

Table 3.10: The L2 and relative L2 error at (zc, T2) with ∆t = O(h).
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hi ∆ti = O(hi)
∥∥ρoα,hi

(zc, T3)− ρoα,h4
(zc, T3)

∥∥
∞

∥∥ρoα,hi
(zc, T3)− ρoα,h4

(zc, T3)
∥∥
∞∥∥ρoα,h4

(zc, T3)
∥∥
∞

1

8

1

8
0.5196 0.0772

1

16

1

16
0.2102 0.0313

1

32

1

32
0.0682 0.0101

Table 3.11: The L∞ and relative L∞ error at (zc, T3) with ∆t = O(h).

hi ∆ti = O(hi)
∥∥ρoα,hi

(zc, T3)− ρoα,h4
(zc, T3)

∥∥
2

∥∥ρoα,hi
(zc, T3)− ρoα,h4

(zc, T3)
∥∥
2∥∥ρoα,h4

(zc, T3)
∥∥
2

1

8

1

8
1.0016 0.0755

1

16

1

16
0.4088 0.0308

1

32

1

32
0.1342 0.0101

Table 3.12: The L2 and relative L2 error at (zc, T3) with ∆t = O(h).

In all the tables , it’s clear that when h gets smaller for any end time, both
relative and absolute errors, for L2 and L∞ norms, are getting smaller. Adding
that for both norms, the relative error is even smaller than the absolute error
and it’s value didn’t change while T increases. Based on these errors, we can see
that we have convergence for ∆t = O(h) in all different meshes knowing that we
are not comparing with the exact data.

3.4.3 Analysis of the Results

By looking at all the tables above, and the fact that these are not the exact data,
we can see that the errors are too small and we have convergence in all cases.
Also, by comparing respectively the tables 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6 to the
tables 3.7, 3.8, 3.9, 3.10, 3.11 and 3.12, it’s clear that the errors are exactly the
same. Hence, we conclude that there is no difference between taking ∆t to be
of order h or of order h2 for any end time. So, for efficiency, we will consider
∆t = O(h) in the rest of the thesis.
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Chapter 4

Formulation and
Implementation of the Inverse

Problem

In this chapter, we attempt to find the inverse problem and handle it numerically
by minimizing the objective function using a MATLAB function called fmincon.

4.1 The Objective Function

The ultimate goal of this thesis is to determine the diffusion coefficient Dα of
a particular gas, using data from measurements ρoα(z, T ), z ∈ (0, zF ) made of
several gases at the end time T .
We stated in the introduction, section 1.2, that the the diffusion coefficients Dα

is given by:
Dα(z) = rαcfDCO2,air(z) (4.1)

where cf and rα are known constants.
Thus, when DCO2,air is found, all other Dα’s can be then obtained. We seek then
D(z) ≡ DCO2,air(z) ∈ Xc := {v ∈ C(0, zF ) | v > 0}.

Let ρoα(D̃; ., T ) be the unique solution of the direct problem at the end time
T , ∀D̃ ∈ Xc, and ρoα,meas(., T ) be the measured concentration at the end time T .
As mentioned in the introduction, the inverse problem is equivalent to an opti-
mization problem with the following objective function:

∀D̃ ∈ Xc : V (D̃) =
∑
α∈S

∥∥∥ρoα(D̃; ., T )− ρoα,meas(., T )
∥∥∥2
2

45



where S is the set of all the gases in the Firn.
So we seek D ∈ Xc such that:

V (D) = min
D̃∈Xc

V (D̃)

For computational purpose, we introduce h,∆t and then define ρoα,h,∆t(., T ) as
the solution of the direct problem for a given Dg since we don’t have the exact
data.
Take this ρoα,h,∆t ≡ ρoα,g the approximated and generated solution of the direct
problem with the generated diffusion coefficient Dg. The objective function then
becomes:

∀D̃ ∈ Xc,h : Vh,∆t(D̃) =
∑
α∈S

∥∥∥ρoα,h,∆t(D̃; ., T )− ρoα,g(., T )
∥∥∥2
2

with Xc,h ⊂ Xc the set of all piecewize continuous positive functions.
So we seek D ∈ Xc,h such that:

Vh,∆t(D) = min
D̃∈Xc,h

Vh,∆t(D̃) (4.2)

4.2 Implementation: Use of MATLAB fmincon

Before solving an optimization problem, one must choose the appropriate MATLAB
function. Based on [7], there are five functions to solve a nonlinear optimization
problem:

1. fminbnd: Find minimum of single-variable function on fixed interval.

2. fmincon: Find minimum of constrained nonlinear multivariable function.

3. fminsearch: Find minimum of unconstrained multivariable function using
derivative-free method.

4. fminunc: Find minimum of unconstrained multivariable function.

5. fseminf: Find minimum of semi-infinitely constrained multivariable non-
linear function.

In this problem (4.2), we will use the MATLAB function fmincon since we have a
constrained nonlinear multivariable function.
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4.2.1 Description of fmincon

In general, the function fmincon starts at x0 and attempts to find a minimizer x
of the problem specified by

min
x

f(x) such that



c(x) ≤ 0

ceq(x) = 0

A.x ≤ b

Aeq.x = beq

lb ≤ x ≤ ub

with b and beq are vectors, A and Aeq are matrices, lb and ub can be passed as
vectors or matrices, x0 can be a scalar, vector, or matrix, c(x) and ceq(x) are
functions that return vectors, and f(x) is a function that returns a scalar. f(x),
c(x), and ceq(x) can be nonlinear functions.

In our problem, x is D and f(x) is V (D) and we only need D to be positive. So,
lb = 0 and no need for the other inputs (c(x), ceq(x), A,Aeq, b, beq and ub).

fmincon have five algorithm options: interior-point, sqp, sqp-legacy, active-set
and trust-region-reflective. We will use in this thesis just these two algo-
rithms:

1. interior-point: Interior point methods or barrier methods are a cer-
tain class of algorithms to solve linear and nonlinear convex optimization
problems. Violation of inequality constraints are prevented by augmenting
the objective function with a barrier term that causes the optimal uncon-
strained value to be in the feasible space.

2. sqp: sqp methods solve a sequence of optimization subproblems, each of
which optimizes a quadratic model of the objective subject to a linearization
of the constraints. If the problem is unconstrained, then the method reduces
to Newton’s method for finding a point where the gradient of the objective
vanishes. If the problem has only equality constraints, then the method
is equivalent to applying Newton’s method to the first-order optimality
conditions, or Karush–Kuhn–Tucker conditions, of the problem.

4.2.2 Tolerance and Stopping Criteria

The number of iterations in an optimization depends on a solver’s stopping crite-
ria. These criteria include several tolerances one can set. Generally, a tolerance
is a threshold which, if crossed, stops the iterations of a solver.
The stopping criteria of the algorithms interior-point and sqp is the same and
depends on the StepTolerance and OptimalityTolerance.

47



The StepTolerance is a lower bound on the size of a step, meaning the rela-
tive norm of (xi−xi+1). If the solver attempts to take a step that is smaller than
StepTolerance, the iterations end. The default value for all algorithms except
interior-point is 10−6, for the interior-point algorithm, the default is 10−10.

The OptimalityTolerance is a tolerance for the first-order optimality measure.
If the optimality measure is less than OptimalityTolerance, the iterations end.
The default value is 10−6. For more details on first-order optimality measure,
refer to [7] on pages 3-11.

4.3 Testing

In this section, we present the results of our numerical simulations implemented
using MATLAB. We test the inverse problem, Algorithm A.5, using the MATLAB func-
tion fmincon for different meshing, algorithms, and initial vector guess. Then,
we compare the errors using the relative and absolute L2 norm.

In this thesis, since we do not have the exact data, we will consider 3 α gases,
rα = [1, 2, 3]T , cf = 0.5 and generate the decreasing diffusion coefficient
Dg(z) = −99.998z + 100. By applying (4.1), we get the generated decreasing
function Dα,g(z) = rαcfDg(z), and the other needed values are taken the same
as in section 3.4. Following that, we run the direct problem, Algorithm A.4, that
outputs ρoα,g(z, T ), the generated concentration of each gas α at the end time T .

Our aim here is to compare the error between the Dα,g’s generated and the Dα’s
computed. Since both of these diffusion coefficients are obtained using (4.1), then
this error will be the same as the error between Dg generated and D computed.

4.3.1 Case 1: Initial Vector Guess D0 = 0 and T = 1

In this test, we found our goal D by minimizing the objective function starting
by the initial vector guess D0 = 0 using the MATLAB function fmincon with an
OptimalityTolerance = 10−8 and by taking the end time T = 1.

In the table 4.1, we are presenting, for 4 different meshes, the following results:
the number of iterations, the time needed to achieve the minimum using tic-toc
functions, the relative L2 error between D and Dg, and V (D) the value of the
objective function at D once using the sqp algorithm and once again using the
interior-point algorithm.
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h

sqp algorithm interior-point algorithm

iter time (/s)
∥D −Dg∥2

∥Dg∥2
V (D) iter time (/s)

∥D −Dg∥2
∥Dg∥2

V (D)

1

4
75 0.145518 0.000034 6.2375e-15 75 0.230846 0.1635 1.3278e-13

1

8
132 0.490532 0.000036 1.6449e-13 148 0.788748 0.1036 4.3088e-13

1

16
303 3.368427 0.000154 3.9819e-12 291 3.434006 0.0528 2.2870e-11

1

32
1216 54.397609 0.080742 3.7647e-07 570 25.226179 0.0074 8.0227e-09

Table 4.1: Number of iterations (iter), time taken to find the minimum , rela-
tive error, and value of V (D) for each mesh using the two algorithms sqp and
interior-point with D0 = 0 and T = 1.

The results in this table indicate:

• In sqp, the number of iterations increases for smaller h, while it remains
moderate in interior-point. For h = 1

4
, the number of iterations is the

same for both algorithms. In sqp, the number of iterations is smaller than
that in interior-point for h = 1

8
, and it’s the other way around for h = 1

16
.

In the case h = 1
32
, the number of iterations is 2 times greater in sqp than

in interior-point.

• In sqp and interior-point, the time needed to attend the minimum is
increasing while h decreases. We can see that sqp is the fastest method by
looking for example at the case h = 1

4
: interior-point and sqp have the

same number of iterations, but sqp takes less time.

• On the other hand, the relative error is decreasing in interior-point and
increasing in sqp. And for h = 1

4
, 1
8
, 1
16
, the relative error is smaller in sqp

method than that in interior-point, while it’s the other way around for
h = 1

32
.

• In both algorithms, the value of the objective function at D is very small
and increases for h smaller.

Based on the above observations and taking into consideration all of the following
factors: time, relative error, and number of iteration, we can conclude that the
interior-point method performs better for a small mesh size (h = 1

32
) while

the sqp method works better for a larger mesh size h.

In figures 4.1, 4.2, 4.3 and 4.4, we plot Dg and D obtained using sqp algorithm
(4.1a, 4.2a, 4.3a, 4.4a) versus interior-point algorithm (4.1b, 4.2b, 4.3b, 4.4b)
for decreasing mesh sizes. Furthermore in the figure 4.5, we present the absolute
error ∥D −Dg∥2 for every h.
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(a) sqp algorithm (b) interior-point algorithm

Figure 4.1: D and Dg for h = 1
4
with D0 = 0 and T = 1.

(a) sqp algorithm (b) interior-point algorithm

Figure 4.2: D and Dg for h = 1
8
with D0 = 0 and T = 1.

(a) sqp algorithm (b) interior-point algorithm

Figure 4.3: D and Dg for h = 1
16

with D0 = 0 and T = 1.
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(a) sqp algorithm (b) interior-point algorithm

Figure 4.4: D and Dg for h = 1
32

with D0 = 0 and T = 1.

(a) sqp algorithm for the 4 meshes
(b) interior-point algorithm for the 4
meshes

(c) sqp algorithm for first 3 meshes (d) interior-point algorithm for first 3
meshes

Figure 4.5: The absolute L2 error: ∥D −Dg∥2 with D0 = 0 and T = 1.

Based on all the figures of this case, it’s clear that in the interior-pointmethod,
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when h gets smaller, Dg and D coincide and the absolute error ∥D −Dg∥2 gets
smaller. While in sqp, Dg and D coincide for the first 3 meshes and by looking
to the figures 4.5a and 4.5c, the absolute error strongly decreases from h = 1

32

to h = 1
16

and continue decreasing moderately to h = 1
4
. Also, by respectively

comparing figures 4.5a and 4.5c to 4.5b and 4.5d, we can observe that in the first
3 meshes the absolute error is 343 to 4800 times smaller when applying sqp than
that when applying interior-point, while it’s 11 times smaller when applying
interior-point than that when applying sqp in the last mesh. Noticing also
that D and Dg are both decreasing functions in all figures.

4.3.2 Case 2: Initial Vector Guess D0= Random and T = 1

In this test, we found our goal D by minimizing the objective function for end
time T = 1 using the MATLAB function fmincon with an Optimality Tolerance =
10−8 and a starting vector guess D0 which is a random vector of length 1

h
+ 1

with entries between 0 and 100 i.e D0 =100*rand( 1
h
+ 1,1).

In the table 4.2, we present, for 4 different meshes, the number of iterations and
time needed to achieve the minimum, the relative L2 error between D and Dg,
and V (D) the value of the objective function at D once using the sqp algorithm
and once again using the interior-point algorithm.

h

sqp algorithm interior-point algorithm

iter time (/s)
∥D −Dg∥2

∥Dg∥2
V (D) iter time (/s)

∥D −Dg∥2
∥Dg∥2

V (D)

1

4
72 0.083194 0.0016 1.8527e-15 79 0.107577 0.1410 4.2164e-14

1

8
146 0.251943 0.0095 2.9692e-12 154 0.308407 0.1063 6.2101e-13

1

16
291 1.533312 0.0025 3.6316e-09 282 1.663420 0.0446 1.8178e-11

1

32
640 13.639654 0.0293 1.1850e-07 636 14.151535 0.0209 5.9908e-08

Table 4.2: Number of iterations (iter), time taken to find the minimum, rela-
tive error, and value of V (D) for each mesh using the two algorithms sqp and
interior-point with D0= random and T = 1.

The results in this table indicate:

• The number of iterations increases for smaller h in both algorithms. Notic-
ing that for every h, the difference in the number of iterations between sqp

and interior-point does not exceed 10.

• In sqp and interior-point, the time needed to attend the minimum is
increasing while h decreases. We can see that sqp is the fastest method by
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looking for example at the cases h = 1
16

and 1
32
: the number of iterations

in sqp is bigger than the number of iterations in interior-point, but sqp
takes less time.

• As for the relative error, while h decreases, it increases in sqp (except for
h = 1

8
) and decreases in interior-point. And for h = 1

4
, 1
8
, 1
16
, the relative

error is 11 to 88 times smaller in sqp method than that in interior-point

method, while the relative error for h = 1
32

is smaller in interior-point

than that in sqp with a slight difference in the values. For that, convergence
in relative norm appears to be slightly better in the last mesh when applying
the interior-point algorithm, while it’s much better in the larger meshes
when applying the algorithm sqp.

• In both algorithms, the value of the objective function at D is very small
and increases for h smaller.

Based on the above observations and taking into consideration all of the following
factors: time, relative error, and number of iteration, we can conclude that the
interior-point method performs slightly better for a small mesh size (h = 1

32
)

while the sqp method performs much better for a larger mesh size.

In figures 4.6, 4.7, 4.8 and 4.9, we plot Dg and D obtained using sqp algo-
rithm (4.6a, 4.7a, 4.8a, 4.9a) versus interior-point algorithm (4.6b, 4.7b, 4.8b,
4.9b) for decreasing mesh sizes. Furthermore in the figure 4.10, we present the
absolute error ∥D −Dg∥2 for every h.

(a) sqp algorithm (b) interior-point algorithm

Figure 4.6: D and Dg for h = 1
4
with D0 =random vector and T = 1.
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(a) sqp algorithm (b) interior-point algorithm

Figure 4.7: D and Dg for h = 1
8
with D0 =random vector and T = 1.

(a) sqp algorithm (b) interior-point algorithm

Figure 4.8: D and Dg for h = 1
16

with D0 =random vector and T = 1.

(a) sqp algorithm (b) interior-point algorithm

Figure 4.9: D and Dg for h = 1
32

with D0 =random vector and T = 1.
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(a) sqp algorithm (b) interior-point algorithm

Figure 4.10: The absolute L2 error: ∥D − Dg∥2 for all meshes for D0 =random
vector and T = 1.

Based on all the figures of this case, it’s clear that when h is smaller, Dg and D
coincide and the absolute error ∥D−Dg∥2 is smaller in interior-point. While
in sqp, Dg and D coincide in the first 3 meshes and the absolute error decreases
in general when h increases (there is a shift for h = 1

8
). Also, By comparing

the figures 4.10a and 4.10b, we can observe that in the 3 meshes (h = 1
4
, 1
8
, 1
16
)

the absolute error is the smallest when applying sqp while it’s the smallest when
applying interior-point in the remaining mesh (h = 1

32
). Noticing also that D

and Dg are both decreasing functions in all figures.

4.3.3 Case 3: Initial Vector Guess D0 = 0 and T = 128

In this test, we found our goal D by minimizing the objective function starting
by the initial vector guess D0 = 0 using the MATLAB function fmincon with an
OptimalityTolerance = 10−8 and by taking the end time T = 128.

In the table 4.3, we are presenting, for 3 different meshes, the following results:
the number of iterations, the time needed to achieve the minimum using tic-toc
functions, the relative L2 error between D and Dg, and V (D) the value of the
objective function at D once using the sqp algorithm and once again using the
interior-point algorithm.
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h

sqp algorithm interior-point algorithm

iter time (/s)
∥D −Dg∥2

∥Dg∥2
V (D) iter time (/s)

∥D −Dg∥2
∥Dg∥2

V (D)

1

4
54 3.822339 0.000033 5.9323e-16 73 5.478392 0.2106 8.3478e-13

1

8
135 33.137444 0.000034 3.1353e-14 109 26.318065 0.1059 1.2162e-13

1

16
556 517.441185 0.085723 7.0749e-12 234 215.194905 0.0506 1.2001e-13

Table 4.3: Number of iterations (iter), time taken to find the minimum , rela-
tive error, and value of V (D) for each mesh using the two algorithms sqp and
interior-point with D0 = 0 and T = 128.

The results in this table indicate:

• In sqp, the number of iterations increases for smaller h, while it remains
moderate in interior-point. For h = 1

4
, the number of iterations is 1.3

times smaller in sqp than that in interior-point, and it’s the other way
around for h = 1

8
. In the case h = 1

16
, the number of iterations is 2 times

greater in sqp than that in interior-point.

• In sqp and interior-point, the time needed to attend the minimum is
increasing while h decreases.

• On the other hand, the relative error is decreasing in interior-point and
increasing in sqp. And it’s 6382 to 3115 times smaller for h = 1

4
, 1
8
, and 1.7

times greater for h = 1
16

in sqp than that in interior-point.

• In both algorithms, the value of the objective function at D is very small
and increases for h smaller.

Based on the above observations and taking into consideration all of the following
factors: time, relative error, and number of iteration, we can conclude that the
interior-point method performs better for a moderately fine mesh (h = 1

16
)

while the sqp method works much better for a coarse mesh (h = 1
4
, 1
8
).

In figures 4.11, 4.12 and 4.13, we plot Dg and D obtained using sqp algorithm
(4.11a, 4.12a, 4.13a) versus interior-point algorithm (4.11b, 4.12b, 4.13b) for
decreasing mesh sizes. Furthermore in the figure 4.14, we present the absolute
error ∥D −Dg∥2 for every h.
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(a) sqp algorithm (b) interior-point algorithm

Figure 4.11: D and Dg for h = 1
4
with D0 = 0 and T = 128.

(a) sqp algorithm (b) interior-point algorithm

Figure 4.12: D and Dg for h = 1
8
with D0 = 0 and T = 128.

(a) sqp algorithm (b) interior-point algorithm

Figure 4.13: D and Dg for h = 1
16

with D0 = 0 and T = 128.
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(a) sqp algorithm for the 4 meshes
(b) interior-point algorithm for the 4
meshes

(c) sqp algorithm for first 3 meshes
(d) interior-point algorithm for first 3
meshes

Figure 4.14: The absolute L2 error: ∥D −Dg∥2 with D0 = 0 and T = 128.

Based on all the figures of this case, it’s clear that in the interior-pointmethod,
when h gets smaller, Dg and D are getting close to each other and the absolute
error ∥D − Dg∥2 gets smaller. While in sqp, Dg and D coincide for the first 2
meshes and by looking to the figures 4.14a and 4.14c, the absolute error strongly
decreases from h = 1

16
to h = 1

8
and continue decreasing moderately to h = 1

4
.

Also, by respectively comparing figures 4.14a and 4.14c to 4.14b and 4.14d, we
can observe that in the first 2 meshes the absolute error is 3100 to 6408 times
smaller when applying sqp than that when applying interior-point, while it’s
1.7 times smaller when applying interior-point than that when applying sqp

in the last mesh. Noticing also that D and Dg are both decreasing functions in
all figures.
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4.3.4 Case 4: Initial Vector Guess D0= Random and T =
128

In this test, we found our goal D by minimizing the objective function for end
time T = 128 using the MATLAB function fmincon with an Optimality Tolerance
= 10−8 and a starting vector guess D0 which is a random vector of length 1

h
+ 1

with entries between 0 and 100 i.e D0 =100*rand( 1
h
+ 1,1).

In the table 4.4, we present, for 3 different meshes, the number of iterations and
time needed to achieve the minimum, the relative L2 error between D and Dg,
and V (D) the value of the objective function at D once using the sqp algorithm
and once again using the interior-point algorithm.

h

sqp algorithm interior-point algorithm

iter time (/s)
∥D −Dg∥2

∥Dg∥2
V (D) iter time (/s)

∥D −Dg∥2
∥Dg∥2

V (D)

1

4
66 5.209564 0.000033 4.4347e-14 77 6.656901 0.2043 8.8150e-14

1

8
130 29.404124 0.007089 3.2351e-15 138 32.605684 0.0885 7.5593e-14

1

16
244 220.356993 0.084686 2.0513e-13 279 258.64994 0.0535 5.3287e-12

Table 4.4: Number of iterations (iter), time taken to find the minimum, rela-
tive error, and value of V (D) for each mesh using the two algorithms sqp and
interior-point with D0= random and T = 128.

The results in this table indicate:

• The number of iterations increases for smaller h in both algorithms. Notic-
ing that for every h, the difference in the number of iterations between sqp

and interior-point does not exceed 35.

• In sqp and interior-point, the time needed to attend the minimum is
increasing while h decreases.

• As for the relative error, while h decreases, it increases in sqp and decreases
in interior-point. And it’s 13 to 6191 times smaller for h = 1

4
, 1
8
in sqp

method than that in interior-point method, while the relative error for
h = 1

16
is 1.7 times smaller in interior-point than that in sqp.

• In both algorithms, the value of the objective function at D is very small
and increases for h smaller.

Based on the above observations and taking into consideration all of the following
factors: time, relative error, and number of iteration, we can conclude that the
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interior-point method performs better for a moderately fine mesh while the
sqp method performs much better for a coarse mesh.

In figures 4.15, 4.16 and 4.17, we plot Dg and D obtained using sqp algorithm
(4.15a, 4.16a, 4.17a) versus interior-point algorithm (4.15b, 4.16b, 4.17b) for
decreasing mesh sizes. Furthermore in the figure 4.18, we present the absolute
error ∥D −Dg∥2 for every h.

(a) sqp algorithm (b) interior-point algorithm

Figure 4.15: D and Dg for h = 1
4
with D0 =random vector and T = 128.

(a) sqp algorithm (b) interior-point algorithm

Figure 4.16: D and Dg for h = 1
8
with D0 =random vector and T = 128.
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(a) sqp algorithm (b) interior-point algorithm

Figure 4.17: D and Dg for h = 1
16

with D0 =random vector and T = 128.

(a) sqp algorithm (b) interior-point algorithm

Figure 4.18: The absolute L2 error: ∥D − Dg∥2 for all meshes for D0 =random
vector and T = 128.

Based on all the figures of this case, it’s clear that when h is smaller, Dg and
D are getting close to each other and the absolute error ∥D − Dg∥2 is smaller
in interior-point. While in sqp, Dg and D coincide in the first 2 meshes and
the absolute error decreases in general when h increases. Also, By comparing
the figures 4.18a and 4.18b, we can observe that in the 2 meshes (h = 1

4
, 1
8
) the

absolute error is the smallest when applying sqp while it’s the smallest when
applying interior-point in the remaining mesh (h = 1

32
). Noticing also that D

and Dg are both decreasing functions in all figures.

4.3.5 Analysis of the Results

According to the observation of all the figures and tables, either starting by 0
or a random vector in the first 3 meshes for T = 1 and the first 2 meshes for

61



T = 128, we conclude that by an acceptable number of iterations, the sqpmethod
achieves the best convergence in both relative and absolute norms comparing to
the interior-point method.
Now by taking the last mesh in the cases 1, 3 and 4, the interior-point method
gives a much better convergence in both norms than that in the sqp method and
also uses an acceptable number of iterations. While by taking the last mesh in
case 2, and by an acceptable number of iterations, the interior-point method
gives a slightly better convergence in both norms than that in the sqp method.
Furthermore, we conclude that the fastest algorithm in terms of time needed to
find the minimum is sqp .

Hence, in both cases, one should apply for h = 1
32

with T = 1 and for h = 1
16

with T = 128, the interior-point algorithm to fmincon while apply the sqp

algorithm to fmincon for a bigger h in the two end times.
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Chapter 5

Conclusion

In this thesis, we studied the direct and the inverse problem of a time-dependent
partial differential equation on one-space dimension [0, zF ] with Dirichlet and
mixed boundary condition.

First, we handled the theoretical and numerical study of the direct problem.
In the theoretical part, we have reformulated the problem using a semi-variation
method and shown the existence and uniqueness of its solution. As for the nu-
merical part, we have discretized the problem in time and space and proved the
existence and uniqueness of the obtained discrete system. Following that, we de-
veloped an efficient and fast solver using MATLAB for the direct problem and test
it with generated data. This solver has given us convergence and while analyz-
ing the results, we have concluded that taking ∆t = O(h) is the same as taking
∆t = O(h2), noting that ∆t = O(h) will be the efficient choice.

Second, we have studied the numerical part of the inverse problem. For that,
we have introduced fmincon, the MATLAB function, and two of its algorithms.
Hence, we have used this function for the implementation that has recovered the
diffusion coefficient DCO2,air and hence recovered all the Dα’s. After the analysis
of the obtained results, we have concluded:
For the 3 meshes h = 1

4
, 1
8
, 1
16

with T = 1 and for the 2 meshes h = 1
4
, 1
8
with

T = 128, applying the algorithm sqp to fmincon gives the best performance in
terms of time, relative and absolute norms, and number of iterations.
On the other hand and in terms of the same factors, for h = 1

32
with T = 1,

applying the interior-point method to fmincon yields slightly better perfor-
mance than that in the other method when D0 = random vector and a much
better one when D0 = 0.
And for h = 1

16
with T = 128, the best performance is obtained while applying

the interior-point method to fmincon for both initial vector guess.
And in all the cases, we have seen that the obtained DCO2,air is a decreasing
function and so are all the Dα’s.
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Future work may be another method of discretization in time for the direct
problem like the Crank-Nicolson scheme. Also, it may be the theoretical study
of the inverse problem and the existence and uniqueness of its solution.
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Appendix A

MATLAB Codes

A.1 Function NODES

1 % this function generates the vectors z, iB, t and the number m which takes
2 % as input:
3 % H: the uniform partition size
4 % a: first position in space
5 % b: last position in space
6 % dt: the partition for time
7 % T: the end time
8 % outputs:
9 % z: vector of the space points

10 % iB: is a boundary condition identifier, if index i correspond to Dirichlet
11 % boundary then iB(i)=1, otherwise iB(i)=0 needed to identify the knowns and
12 % unknows of the system
13 % m: number of meshing point for time
14 % t: vector of time points
15 function [z,iB,m,t]=NODES(H,a,b,dt,T)
16 t=0:dt:T;
17 m=length(t);
18 z=a:H:b;
19 iB=zeros(length(z),1);
20 iB(1)=1;
21 end
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A.2 Function COEFFc

1 % this function generates the matrices M and K of the system which takes as
2 % input:
3 % h: vector of length n−1 with entries the distance between consecutifs zi's
4 % (h(i−1)=z(i)−z(i−1))
5 % n: number of meshing points and n−1 intervals
6 % F: constant needed in the generation of matrix K
7 % outputs:
8 % M and K: n*n sparse matrices (without taking into consideration that
9 % z1 is given)

10 function [M,K]=COEFFc(h,n,F)
11 I=zeros(3*n−4,1);
12 J=zeros(3*n−4,1);
13 MIJ=zeros(3*n−4,1);
14 KIJ=zeros(3*n−4,1);
15 pt=0;
16 for i=2:n−1
17 pt=pt+1;
18 I(pt)=i; J(pt)=i−1;
19 MIJ(pt)=h(i−1)/6; KIJ(pt)=−F/2;
20 pt=pt+1;
21 I(pt)=i; J(pt)=i;
22 MIJ(pt)=(h(i−1)+h(i))/3;
23 pt=pt+1;
24 I(pt)=i; J(pt)=i+1;
25 MIJ(pt)=h(i)/6; KIJ(pt)=F/2;
26 end
27 pt=pt+1;
28 I(pt)=n; J(pt)=n−1;
29 MIJ(pt)=h(n−1)/6; KIJ(pt)=−F/2;
30 pt=pt+1;
31 I(pt)=n; J(pt)=n;
32 MIJ(pt)=h(n−1)/3; KIJ(pt)=F/2;
33 M=sparse(I,J,MIJ);
34 K=sparse(I,J,KIJ);
35 end
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A.3 Function COEFFv

1 % this function generates the matrices A and S of the system which takes as
2 % input:
3 % h: vector of length n−1 with entries the distance between consecutifs zi’s
4 % (h(i−1)=z(i)−z(i−1))
5 % n: nomber of meshing points
6 % Da: vector of length n with entries diffusion coefficient Da(i) at
7 % position z(i)
8 % outputs:
9 % A and S: n*n sparse matrices (without taking into consideration that

10 % z1 is given)
11 function [A,S]=COEFFv(h,n,Da)
12 I=zeros(3*n−4,1);
13 J=zeros(3*n−4,1);
14 SIJ=zeros(3*n−4,1);
15 AIJ=zeros(3*n−4,1);
16 pt=0;
17 for i=2:n−1
18 pt=pt+1;
19 I(pt)=i; J(pt)=i−1;
20 AIJ(pt)=(−Da(i)−Da(i−1))/4;
21 SIJ(pt)=(−Da(i)−Da(i−1))/(2*h(i−1));
22 pt=pt+1;
23 I(pt)=i; J(pt)=i;
24 AIJ(pt)=(Da(i−1)−Da(i+1))/4;
25 SIJ(pt)= (Da(i−1)+Da(i))/(2*h(i−1))+(Da(i+1)+Da(i))/(2*h(i));
26 pt=pt+1;
27 I(pt)=i; J(pt)=i+1;
28 AIJ(pt)=(Da(i)+Da(i+1))/4;
29 SIJ(pt)=(−Da(i)−Da(i+1))/(2*h(i));
30 end
31 pt=pt+1;
32 I(pt)=n; J(pt)=n−1;
33 AIJ(pt)=(−Da(n−1)−Da(n))/4;SIJ(pt)=(−Da(n)−Da(n−1))/(2*h(n−1));
34 pt=pt+1;
35 I(pt)=n; J(pt)=n;
36 AIJ(pt)=(Da(n−1)+Da(n))/4;SIJ(pt)=(Da(n)+Da(n−1))/(2*h(n−1));
37 A=sparse(I,J,AIJ);
38 S=sparse(I,J,SIJ);
39 end
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A.4 Function DirectPb

1 % this function generates the matrix V which takes as
2 % input:
3 % Da: vector of length n with entries diffusion coefficient Da(i)
4 % at position z(i)
5 % v0: vector of length m with entries is ρatmα (j)
6 % i.e value of ρ(1, j)
7 % M and K: n*n spareses matrices
8 % H: the uniform partition size
9 % a: first position in space

10 % b: last position in space
11 % dt: the partition for time
12 % T: the end time
13 % Gf, f1, Maf and F: constants
14 % outputs:
15 % V: n*m matrix with entries the concentration ρoα at all
16 % positions of z(i) and t(j)
17 function[V]=DirectPb(Da,v0,M,K,H,a,b,dt,T,Gf,f1,Maf,F)
18 n=(b−a)/H+1;
19 [z,iB,m]=NODES(H,a,b,dt,T);
20 h=zeros(n−1,1);
21 h(1:n−1)=z(2:n)−z(1:n−1);
22 v3=1/6*Gf*z(2)−(Da(1)+Da(2))*(1/(2*z(2))*f1+1/4*Maf)−F/2;
23 v1=z(2)/6;
24 B=zeros(n,n); B(n,n)=F;
25 [A,S]=COEFFv(h,n,Da);
26 S=f1*S;
27 A=Maf*A;
28 VNK=find(iB==0);
29 V=zeros(n,m);
30 V(1,:)=v0;
31 V1=zeros(n−1,1);
32 V3=zeros(n−1,1);
33 AG=M+dt*(Gf*M+S−K−A+B);
34 AA=AG(VNK,VNK);
35 [L,U]=lu(AA);
36 M=M(VNK,VNK);
37 for j=1:m−1
38 V1(1,1)=(v0(j+1)−v0(j))*v1;
39 V3(1,1)=(v0(j+1))*v3;
40 RHS=M*V(VNK,j)−V1−dt*V3;
41 V(VNK,j+1)=U\(L\RHS);
42 end
43 end
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A.5 Function InversePb

1 % this function generates the scalar V which takes as input
2 % D: vector of length n with entries D(i) diffusion coefficient of gas
3 % CO2,air at position z(i)
4 % n: number of meshing points for space, m number of meshing point for time
5 % alpha: a vector of length l that denotes to a specific gases
6 % Ug: n*(l*m) matrix with entries the concentration ρoα for the
7 % l gases given the diffusion coefficient Dag
8 % v0: vector of length m with entries is ρatmα (j) i.e
9 % value of ρ(1, j)

10 % M and K: n*n spareses matrices
11 % H: the uniform partition size
12 % a: first position in space
13 % b: last position in space
14 % dt: the partition for time
15 % T: the end time
16 % Gf, f1, Maf, F and cf: constants
17 % outputs:
18 % V: the scalar which is the value of the objective function consedering
19 % the the concentration of the l gases at end time
20 function V = InversePb(D,n,m,alpha,Ug,v0,M,K,H,a,b,dt,T,Gf,f1,Maf,F,cf)
21 l=length(alpha);
22 Dac=zeros(n,l); % Dac: n*l matrix with entries diffusion coefficient computed
23 % using DCO2,air and Dac(:,j) represents entries of diffusion coefficient
24 % for alpha(j)
25 for j=1:l
26 for i=1:n
27 Dac(i,j)=alpha(j)*cf*D(i);
28 end
29 end
30 Uc=zeros(n,l*m);% Uc: n*(l*m) matrix with entries the concentration ρoα
31 % for the l gases given the computed diffusion coefficient Dac
32 for j=1:l
33 Uc(:,((j−1)*m+1):(j*m))=DirectPb(Dac(:,j),v0,M,K,H,a,b,dt,T,Gf,f1,Maf,F);
34 end
35 E=zeros(n,l); % E: n*l matrix with entries the error of the initial and computed
36 % concentration for the l gases at the end time T
37 for j=1:l
38 E(:,j)=Ug(:,j*m)−Uc(:,j*m);
39 end
40 N=zeros(1,l); % N: vector of length l with entries the square of the L2 norm
41 % of the error E of each gas
42 for j=1:l
43 N(1,j)=norm(E(:,j)).ˆ2;
44 end
45 V=sum(N); % summation of all entries of N over all the gases
46 end
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A.6 Code for Section 3.4

1 %the constants:
2 f=0.2;f1=1/f;
3 Maf=f1*(0.04*9.8)/(8.314*260);
4 G=10+0.03;Gf=f1*G;
5 F=200+485;
6 % the domain space [a,b]:
7 a=0;b=1;
8 L=b−a;
9 T=1; % end time T1

10 %T=32; % end time T2

11 %T=128; % end time T3

12 r=[1/8,1/16,1/32,1/64];
13 zc=(0:r(1):b)'; % common points between the 4 meshes
14 lc=length(zc);
15 e=length(r);
16 C=zeros(lc,1);
17 E1=zeros(lc,e);
18 E2=zeros(lc,e);
19 % for dt= order h2: (section 3.4.1)
20 for o=1:e
21 H=r(o); % H: is the uniform partition size
22 dt=H.ˆ2; % dt: is the partition for time
23 n=L/H+1; % n: number of meshing points
24 [z,iB,m,t]=NODES(H,a,b,dt,T);
25 h=zeros(n−1,1);% h: vector of length n−1 with entries the distance between
26 % consecutifs zi's needed in generating the four matrices A,S,M,K
27 h(1:n−1)=z(2:n)−z(1:n−1);
28 [M,K]=COEFFc(h,n,F); % generating matrices M and K
29 v0=zeros(1,m); % v0: vector of length m with entries is ρatmα (j)
30 % i.e value of ρ(1, j)
31 for j=2:m
32 v0(j)=2*(t(j)).ˆ(1/4);
33 end
34 Da=zeros(n,1);% Da: vector of length n with entries diffusion coefficient
35 % Da(i) at position z(i)
36 f=@(z)((0.02−200)/b*z+200);
37 for i=1:n
38 Da(i)=f(z(i));
39 end
40 [U]=DirectPb(Da,v0,M,K,H,a,b,dt,T,Gf,f1,Maf,F); % generating the n*m matrix
41 % U i.e the concentration ρoα at all positions of z(i) and t(j)
42 for i=1:lc
43 C(i)=find(z==zc(i));
44 end
45 E1(:,o)=U(C,m);
46 end
47 % for dt= order h: (section 3.4.2)

70



48 for o=1:e
49 H=r(o); % H: is the uniform partition size
50 dt=H; % dt: is the partition for time
51 n=L/H+1; % n: number of meshing points
52 [z,iB,m,t]=NODES(H,a,b,dt,T);
53 h=zeros(n−1,1);% h: vector of length n−1 with entries the distance between
54 % consecutifs zi's needed in generating the four matrices A,S,M,K
55 h(1:n−1)=z(2:n)−z(1:n−1);
56 [M,K]=COEFFc(h,n,F); % generating matrices M and K
57 v0=zeros(1,m); % v0: vector of length m with entries is ρatmα (j)
58 % i.e value of ρ(1, j)
59 for j=2:m
60 v0(j)=2*(t(j)).ˆ(1/4);
61 end
62 Da=zeros(n,1);% Da: vector of length n with entries diffusion coefficient
63 % Da(i) at position z(i)
64 f=@(z)((0.02−200)/b*z+200);
65 for i=1:n
66 Da(i)=f(z(i));
67 end
68 [U]=DirectPb(Da,v0,M,K,H,a,b,dt,T,Gf,f1,Maf,F); % generating the n*m matrix
69 % U i.e the concentratio ρoα at all positions of z(i) and t(j)
70 for i=1:lc
71 C(i)=find(z==zc(i));
72 end
73 E2(:,o)=U(C,m);
74 end
75 % the errors:
76 err1=zeros(4,e−1);
77 err2=zeros(4,e−1);
78 for j=1:e−1
79 err1(1,j)=max(abs(E1(:,j)−E1(:,e)));
80 err1(2,j)=max(abs(E1(:,j)−E1(:,e)))/max(abs(E1(:,e)));
81 err1(3,j)=norm(E1(:,j)−E1(:,e));
82 err1(4,j)=norm(E1(:,j)−E1(:,e))/norm(E1(:,e));
83 err2(1,j)=max(abs(E2(:,j)−E2(:,e)));
84 err2(2,j)=max(abs(E2(:,j)−E2(:,e)))/max(abs(E2(:,e)));
85 err2(3,j)=norm(E2(:,j)−E2(:,e));
86 err2(4,j)=norm(E2(:,j)−E2(:,e))/norm(E2(:,e));
87 end
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A.7 Code for Section 4.3

1 %the constants:
2 f=0.2;f1=1/f;
3 Maf=f1*(0.04*9.8)/(8.314*260);
4 G=10+0.03;Gf=f1*G;
5 F=200+485;
6 % the domain space [a,b]:
7 a=0;b=1;
8 L=b−a;
9 T=1; % end time for sections 4.3.1 and 4.3.2

10 %T=128 % end time for sections 4.3.3 and 4.3.4
11 r=[1/4,1/8,1/16,1/32]; % meshes for sections 4.3.1 and 4.3.2
12 %r=[1/4,1/8,1/16]; % meshes for sections 4.3.3 and 4.3.4
13 e=length(r);
14 p=L/r(e)+1;
15 x0=100*rand(p,1);
16 options1 = optimoptions('fmincon', ...
17 'Algorithm','sqp',...
18 'TolFun',1e−08,...
19 'MaxIter',10000,...
20 'MaxFunEvals',300000); % input for fmincon
21 options2 = optimoptions('fmincon', ...
22 'TolFun',1e−08,...
23 'MaxIter',10000,...
24 'MaxFunEvals',300000); % input for fmincon
25 err=zeros(1,2); % relative L2 error between obtained D and the given Da
26 Err=zeros(2,e); % absolute L2 error between obtained D and the given Da
27 for o=1:e
28 H=r(o); % H: uniform partition size
29 n=L/H+1; % n: number of meshing points
30 dt=H; % dt: partition for time
31 [z,iB,m,t]=NODES(H,a,b,dt,T);
32 h=zeros(n−1,1);% h: vector of length n−1 with entries the distance between
33 % consecutifs zi's needed in generating the four matrices A,S,M,K
34 h(1:n−1)=z(2:n)−z(1:n−1);
35 [M,K]=COEFFc(h,n,F); % generating matrices M and K
36 v0=zeros(1,m); % v0: vector of length m with entries is ρatmα (j)
37 % i.e value of ρ(1, j)
38 for j=2:m
39 v0(j)=2*(t(j)).ˆ(1/4);
40 end
41 Da=zeros(n,1);% Da: vector of length n with entries diffusion coefficient
42 % Da(i) at position z(i)
43 f=@(z)((0.002−100)/b*z+100);
44 for i=1:n
45 Da(i)=f(z(i));
46 end
47 cf=0.5; %constant
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48 alpha=[1,2,3]; %the alpha gases
49 l=length(alpha);
50 Dag=zeros(n,l); % Dag: n*l matrix with entries given diffusion coefficient
51 % Dag(i) at position z(i)
52 for j=1:l
53 for i=1:n
54 Dag(i,j)=alpha(j)*cf*Da(i);
55 end
56 end
57 Ug=zeros(n,l*m); % Ug: n*(l*m) matrix with entries the concentration
58 % ρoα for the l gases given the diffusion coefficient Dag
59 for j=1:l
60 Ug(:,((j−1)*m+1):(j*m))=DirectPb(Dag(:,j),v0,M,K,H,a,b,dt,T,Gf,f1,Maf,F);
61 end
62 % D0: initial DCO2,air which is a vector of length n
63 D0=zeros(n,1); %for sections 4.3.1 and 4.3.3
64 % D0=x0(1:(p−1)*h/L:p); %for sections 4.3.2 and 4.3.4
65 AA=[]; bb=[]; Aeq=[]; beq=[];ub=[];nonlcon=[];% inputs for fmincon
66 lb=zeros(n,1); % input for fmincon: lower bound for D(i) (D(i) ≥ 0)
67 % finding DCO2,air by minimizing the objective function created "InversePb":
68 tic
69 [D1,fval1,exitflag1,output1]=fmincon(@(D)InversePb(D,n,m,alpha,Ug,v0,M,K,H, ...
70 a,b,dt,T,Gf,f1,Maf,F,cf),D0,AA,bb,Aeq,beq,lb,ub,nonlcon,options1);
71 toc
72 tic
73 [D2,fval2,exitflag2,output2]=fmincon(@(D)InversePb(D,n,m,alpha,Ug,v0,M,K,H, ...
74 a,b,dt,T,Gf,f1,Maf,F,cf),D0,AA,bb,Aeq,beq,lb,ub,nonlcon,options2);
75 toc
76 D=zeros(n,2);
77 D(:,1)=D1;D(:,2)=D2;
78 for i=1:2
79 Err(i,o)=norm(D(:,i)−Da);
80 err(i)=norm(D(:,i)−Da)/norm(Da);
81 figure();
82 plot(z,Da,'b',z,D(:,i),'r')
83 legend('D g','D')
84 end
85 end
86 figure();
87 plot(r,Err(1,:),'r')
88 figure();
89 plot(r(1:e−1),Err(1,1:e−1),'r')
90 figure();
91 plot(r,Err(2,:),'r')
92 figure();
93 plot(r(1:e−1),Err(2,1:e−1),'r')
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