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ABSTRACT 

OF THE THESIS OF 
 

Omar Hassan Yamout  for  Master of Engineering 

      Major: Civil Engineering 

 

 

Title: An Application of Neural Networks in Predictive Construction Equipment 

Maintenance 

 

 

Construction project equipment are subject to several types of breakdowns throughout 

the project duration. As a result, contractors and equipment operators are keen to establish 

and adopt effective equipment maintenance strategies. Adopting a maintenance strategy 

that minimizes the downtime of construction equipment and allows for the progression 

of works in a timely manner is essential to satisfy the increasingly stringent constraints 

set by project owners. The availability of several types of equipment data is crucial to 

understand the breakdown patterns of construction equipment. However, in many cases, 

projects operating with tight profit margins, and particularly projects in developing 

countries, access to such data is not always readily available. The aim of this research 

study is to establish a predictive maintenance framework based on machine learning (ML) 

that leverages historical breakdown data with the absence of information relating to the 

condition of the equipment and any output extracted from monitoring devices and 

sensors. The proposed model for accomplishing this task is the multilayer perceptron 

(MLP) neural network, which is applied to a real-life multi-million-dollar infrastructure 

project in the Middle East region. The collected data includes an equipment maintenance 

log database.  

 

The results obtained are promising, with significant improvements shown in accuracy in 

terms of mean absolute error (MAE) compared to the baseline models: Linear Regression 

and Non-linear Regression. An improvement of 185% compared to the Linear Regression 

model, and an improvement of 26% compared to the Non-linear Regression model in the 

case of equipment of type excavator was witnessed. Moreover, an improvement of 173% 

compared to the Linear Regression model, and an improvement of 23% compared to the 

Non-linear Regression model in the case of equipment of type articulated haulers was 

witnessed. This framework could be of significant value to the industry practitioner, as it 

could play a role in enhancing the overall productivity of construction equipment by 

minimizing their breakdown rate and criticality, in turn reducing the associated 

equipment operating costs and expediting the rate at which works are performed. 
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CHAPTER I 

INTRODUCTION 

 

On any construction project, resources are allocated as means of achieving the set 

project goals. Construction project resources typically consist of materials, labor, and 

equipment. According to Karaa and Nasr (1986), equipment and labor resources, in 

particular, must be efficiently employed to control the costs incurred on any project. The 

profit the construction contractor makes on a project is highly dependent on the utilization 

level of resources, particularly mechanical equipment (Edwards, Holt, & Harris, 1998). 

The pieces of equipment deployed on any construction job can either be owned by the 

contractor or, alternatively, rented from an equipment fleet owner or supplier (Siddharth, 

Vyas, & Pitroda, 2015). Renting equipment would provide the contractor with the benefit 

of obtaining the latest available equipment technologies (R. S. Lopes, C. A. Cavalcante, 

& M. H. Alencar, 2015). Nevertheless, in both cases, maintaining any piece of equipment 

would be in the interest of both the contractor and, if applicable, the equipment supplier. 

Contractors are interested and keen on adequately and regularly performing maintenance 

on their pieces of equipment that are deployed on the job being undertaken. This is done 

in an effort to prevent and mitigate any potential breakdowns that may occur in the piece 

of equipment in operation, in turn allowing the timely progression of the construction 

works, activities, and tasks in due time. Equipment owners and suppliers that rent out 

their owned pieces of equipment are likewise interested in keeping their equipment assets 
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in optimal health to maintain their value as much as possible, preserving them for future 

rentals and possibly usage in some cases.  

The evolving nature and the additional complexities that are gradually 

incorporated within construction projects have rendered construction equipment more 

indispensable towards a timely completion of field activities. That being said, contractors 

strive to ensure that their equipment fleet is at all times operational and maintained to 

guarantee a smooth and efficient construction process. Nonetheless, contractors are 

frequently faced with unexpected breakdowns in their fleet (Manikandan, Adhiyaman, & 

Pazhani, 2018). These sudden failures represent one of the major risk sources that are 

inherent in the operation of construction equipment (Rogovenko & Zaitseva, 2017). The 

results of a survey conducted in the United States showed that 46% of major equipment 

repairs are a result of unexpected failures (H. Fan, 2012). Unexpected failures are 

drastically detrimental to the progress of the works that are being performed by the 

equipment, and likewise to the project as a whole when the activity comprising the works 

happens to lie on the critical path. Therefore, it is essential to put forward effective 

maintenance strategies that mitigate the effects and minimize the chance of equipment 

breakdowns. 

Several methods can be adopted as part of the on-site equipment maintenance 

strategy. Corrective maintenance is considered the most primitive form of maintenance 

that is performed to pinpoint and remedy an unexpected failure that has already occurred 

in an attempt to resume the normal operation of the failed system (Horner, El‐Haram, & 

Munns, 1997; Stenström, Norrbin, Parida, & Kumar, 2016; Wang, Deng, Wu, Wang, & 

Xiong, 2014). The major downfall of this maintenance strategy is that it poses an elevated 
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risk of witnessing unexpected breakdowns at critical points in the project, resulting in 

delays. Time is one of the key parameters that measure project success (Ong, Wang, & 

Zainon, 2018), and all project participants are invested in meeting the expected project 

completion date (Petruseva, Zileska-Pancovska, & Car-Pušić, 2019). From a contractor’s 

point of view, exceeding the contractually binding project completion date due to a 

default committed on their part would render them liable for liquidated damages–a sum 

of money deducted from the contractor as compensation to the owner for the incurred 

delays (Assaad & Abdul-Malak, 2020).  

Another common maintenance strategy for construction equipment is preventive 

maintenance. This strategy comprises defining a predetermined interval whereby the 

maintenance works are planned to take place in an attempt to minimize the chances of 

unexpected failures (Horner et al., 1997). The main advantages of preventive 

maintenance can be narrowed down to reduced unexpected breakdowns, decreased 

maintenance costs, and more durable repairs (Huang, 2021; Ibbs & Terveer Kenneth, 

1984). However, Mann, Saxena, and Knapp (1995) argue that this maintenance strategy 

can in many cases demonstrate low accuracy in terms of establishing a time interval, 

which typically leads to over-maintenance, in turn diminishing the chance to recognize 

the full utilization potential of the equipment. Superfluous maintenance implies additional 

repair costs and unnecessary equipment downtime. 

With the advancement and development of robust data analytics and machine 

learning (ML) tools and technologies, a newer and more effective form of maintenance 

has emerged: i.e., predictive maintenance (Zhang, Yang, & Wang, 2019). This 

maintenance approach aims to efficiently schedule maintenance tasks based on distinct 
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categories of historical data and equipment conditions (Cavalieri, 2020; Li, Verhagen, & 

Curran, 2020). As previously mentioned, it is essential to adopt a reliable construction 

equipment maintenance strategy that minimizes unexpected failures and streamlines the 

maintenance cycles. The gap in the literature on data-driven predictive maintenance 

strategies for construction equipment introduces the need for a generic framework that 

targets this issue. To that end, this research work presents a generic framework based on 

advanced ML techniques to assist contractors in preventing or preparing for unexpected 

breakdowns and avoiding unnecessary maintenance. This framework aims to leverage 

historical equipment failure data in the absence of equipment condition and sensor data. 
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CHAPTER II 

LITERATURE REVIEW 

 

A. Construction Equipment Maintenance 

The literature is rich with studies on construction equipment failure and 

maintenance (Ahamed Mohideen & Ramachandran, 2014; Clutts, 2010; Gunawardena, 

1990; Jiang & He, 2020; Lopes et al., 2015; Mongomongo & Mjema, 2016; Parvari & 

Roodbarani, 2018; Petroutsatou & Ladopoulos, 2022; Tsado & Tsado, 2014) 

Mongomongo and Mjema (2016) discussed the factors (e.g., machine manufacturer, 

machine age, operating hours, etc.) that influence the effectiveness of construction 

equipment maintenance. Lopes et al. (2015) proposed a delay-time inspection model with 

dimensioning maintenance. Gunawardena (1990) proposed a methodology for the 

optimization of maintenance and the replacement of construction equipment Ahamed 

Mohideen and Ramachandran (2014) developed a strategic reactive maintenance 

approach for construction equipment using past records of construction equipment 

breakdowns. Clutts (2010); Tsado and Tsado (2014) studied the importance of adequate 

equipment maintenance to enhance the overall profitability of construction projects. 

Petroutsatou and Ladopoulos (2022) proposed an integrated prescriptive productivity-

based maintenance system that can be applied on construction equipment. D. Edwards, 

G. Holt, and F. Harris (1998) analyzed the maintenance management procedures that are 

most commonly adopted construction equipment and construction plant. Jiang and He 

(2020) highlighted the importance of sensor technologies in improving construction 
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equipment maintenance decisions. Parvari and Roodbarani (2018) studied the impact that 

reliability-centered maintenance has on costs that are associated with construction 

equipment maintenance. However, studies focusing on data driven predictive 

maintenance techniques to manage construction equipment are rare. The following 

section discusses these efforts. 

 

B. Equipment Maintenance Using Predictive Maintenance Principles 

Dong, Mingyue, and Guoying (2017) studied the application of the internet of 

things (IoT) on establishing a predictive maintenance system for certain pieces of coal 

equipment. The adequate application and operation of this system relies heavily on the 

availability of information gathered from numerous available sensing devices (e.g., 

vibration, temperature, air pressure, noise, etc.) that are already installed and running on 

the piece of equipment under study. Similarly, Kaparthi and Bumblauskas (2020) utilized 

IoT data to design a predictive maintenance model using decision tree-based machine 

learning (ML) techniques. This predictive maintenance model that can be used in any 

industrial application allows for more efficient and streamlined maintenance decision-

making systems and procedures. 

Markudova et al. (2021) presented an application of several machine learning 

techniques such as linear regression, support vector regressor, random forest regressor, 

etc. on Controller Area Network (CAN) bus technology to predict the next-day level of 

utilization for construction vehicles and the number of days to schedule the next 

preventive maintenance.  
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Marinelli, Lambropoulos, and Petroutsatou (2014) suggested a model based on 

artificial neural networks (ANN) to predict the working and operating condition and 

health of earthmoving trucks. The results of the analysis that was conducted indicated 

that the most statistically significant parameters that can be used to predict the condition 

level of a certain piece of equipment and plan for maintenance accordingly narrowed 

down to the number of kilometers traveled of the piece of equipment and its level of 

maintenance throughout its years of operation.  

Q. Fan and Fan (2015); (Oloke, Edwards, & Thorpe, 2003) utilized an 

autoregressive integrated moving average (ARIMA) time-series model to predict the 

number of failures of a piece of construction equipment during certain time intervals and 

the time between failures. 

 Yip, Fan, and Chiang (2014); Zong (2017) established various machine learning 

models for predicting the costs that are associated with the maintenance of construction 

equipment. 

 Finally, Shehadeh, Alshboul, Al Mamlook, and Hamedat (2021) evaluated several 

machine learning models for predicting the residual value of heavy construction 

equipment. 

Table 1 summarizes the relevant literature found in regard to predictive 

maintenance strategies of construction equipment and heavy machinery. It shows the 

source, the corresponding strategies adopted, and finally the data that is required to make 

use of the proposed strategies. 

A review of relevant literature suggests the presence of a gap with establishing a 

predictive maintenance strategy for construction equipment. Most predictive models 
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found require the presence of sensor and equipment condition data, which are not always 

available at hand. Moreover, an effective ARIMA time-series model that can accurately 

perform predictions requires the availability of more than 100 observations (Box & Tiao, 

1975). This high number of required observations, in the context of the number of 

breakdowns witnessed in a piece of equipment within certain established timesteps, may 

also prove to be relatively difficult to obtain for a piece of equipment. These gaps in the 

literature highlight the need for an equipment maintenance strategy that reduces the 

requirements for sensing and equipment condition data. The main objectives for this 

research work and the aim behind it are presented in the following section. 

Table 1: Predictive Maintenance Strategies of Construction Equipment Found in the 

Literature 

 
Source Strategy Required Data 

(Dong et al., 2017) 

Expert evaluation of 

extracted equipment 

condition parameters 

Information gathered 

from onboard sensing 

devices (IoT) (Kaparthi & 

Bumblauskas, 2020) 

Decision tree-based ML 

models 

(Markudova et al., 

2021) 
Several ML models 

CAN bus technology 

monitoring data 

(Marinelli et al., 2014) ANN 

Kilometers traveled 

and maintenance level 

data 

(Q. Fan & Fan, 2015) ARIMA time-series 

Historical time 

between failure data 

and parameters 

(Yip et al., 2014; Zong, 

2017) 
Several ML models 

Historical 

maintenance costs and 

parameters 
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CHAPTER III 

RESEARCH OBJECTIVES 

 

The primary objective of this research study is to provide contractors working in 

the construction industry with a robust predictive maintenance framework that serves as 

a decision-making tool that is aimed towards minimizing the risk, magnitude, and 

potential ramifications that are witnessed as a result of unexpected construction 

equipment breakdowns. Any piece of equipment, ranging from the smallest hand-held 

tool to the heaviest piece of machinery, is susceptible to having breakdowns at any point 

throughout its operation; it is an inherent trait in any piece of equipment that cannot be 

avoided. When pieces of equipment that are critical to the progress of a certain activity 

that is either in progress or about to start fail suddenly and unexpectedly without showing 

any prior symptoms, signs, or notice, the progress of the activity being or planned to be 

worked on by the piece of equipment is severely affected; both from an activity time 

perspective and activity cost perspective. A comparative example for this issue is the case 

where only one piece of equipment is available for a certain critical activity that requires 

only one piece of equipment, and another where more than one piece of equipment is 

available for the same activity. In the former case, the magnitude associated with having 

an unexpected breakdown is significantly elevated compared to the latter case, as no 

alternate piece of equipment would be readily available to replace the one that has broken 

down. However, in the latter case, a breakdown in one piece of equipment would have a 

lower impact compared to the former case, as the other available pieces of equipment 
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may be used to permanently or temporarily replace the piece of equipment that has broken 

down. A substantial number of construction activities and tasks are dependent on 

construction equipment. These activities and tasks can either not be accomplished at all 

or can in fact be accomplished but at a much slower productivity rate compared to using 

the recommended piece of equipment.  

This framework operates by providing the construction contractor with a 

prediction in the form of a timestamp as to when the next theoretical breakdown is 

expected to occur. This available information could be used in the field to coordinate 

internally and at the equipment supplier level in the case of rented equipment. It also 

allows the contractor to preemptively schedule maintenance and prepare by mobilizing 

the necessary resources, spare equipment parts, and specialized maintenance teams. 

Additionally, proactive decisions can be made by the contractor at the equipment supplier 

procurement level, where they may come up with the decision to opt to procure another 

alternative piece of equipment as a temporary replacement to the one that will be 

undergoing the scheduled maintenance.  

Many contractors do not enjoy the luxury of having advanced sensors and 

monitoring devices installed on their construction equipment fleet. This is particularly 

true for contractors operating in developing countries or generally contractors working 

with tight budgets and profit margins. Furthermore, sufficient sensor data and information 

pertaining to the breakdown history of the fleet are also not always readily available. The 

proposed framework aims to leverage historical breakdown data with the absence of 

information relating to the condition of the equipment and any output extracted from 

monitoring devices and sensors. This framework also aims to remain reliable in the case 
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where little historical failure data is available for the equipment under study, i.e., a small 

number of data points to work with. 
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CHAPTER IV 

METHODOLOGY 

 

C. Generic Framework 

The main milestone that should be achieved as part of the proposed generic 

framework consists of extracting a clean and organized set of all the relevant hour meter 

values that correspond to the natural breakdown occurrences of each equipment over a 

certain period of time. By providing the algorithm at hand with the available hour meter 

values, the model can be generated, and predictions can be made as to the expected 

number of operating hours until the next breakdown occurs.  

Typically, the contractor employed on a construction project is responsible for 

handling and operating a large fleet of heavy equipment and machinery. Each piece of 

equipment must be studied and analyzed independently, as the failure of one piece of 

equipment is impertinent to the operational status of another. Therefore, it is essential that 

the instances of failure of each piece of equipment are separated and sorted 

independently; ideally through a unique equipment code allocated to each piece of 

equipment. 

It is also vital that the hour meter values accurately represent the reality of the 

situation on-site. For example, if an hour meter belonging to a piece of equipment is reset 

at a certain point in time throughout the relevant data collection period, the necessary 

adjustments must be made to the hour meter values. This process is necessary to maintain 
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the continuity of the hour meter values, as an hour meter that is reset after a breakdown 

does not represent the actual time that the piece of equipment has been in operation.  

Different data sets may elicit different data cleaning processes. However, the main aspect 

of the generic framework remains obtaining a list of continuous breakdown hour meter 

values for every piece of equipment that is under study. When the cleaned data for the 

pieces of construction equipment under study are available in this continuous breakdown 

hour meter format, the model can be run for each piece of equipment, and results can be 

obtained as to the time at which the next theoretical breakdown is expected to occur.  

If no historical breakdown data and parameters are available to use at all, a 

reactive maintenance strategy would be the most effective to use. As the work progresses 

while implementing a reactive maintenance strategy, breakdown data would be collected, 

which could later be used to evolve the maintenance strategy. If both historical breakdown 

data and sensor and equipment monitoring data are available on hand, then a fully 

integrated maintenance model should be adopted. If only historical breakdown data and 

parameters are available for a certain piece of equipment, then either a preventive 

maintenance strategy or the proposed predictive maintenance strategy can be adopted.  

Error! Reference source not found. illustrates a flowchart with the series of steps 

needed to apply the proposed framework on any other case study. The process begins by 

making the decision to prepare and put into effect some sort of maintenance strategy for 

a certain piece of equipment. After deciding on the piece of equipment to be studied, 

either a global equipment maintenance log for the piece of equipment can be obtained 

and used, or several project-specific maintenance logs can be aggregated into one and 

then used. After obtaining the available databases, the existing types and quality of data 
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should be studied and organized to identify which maintenance approach is best to be 

adopted for the case on hand. If no historical breakdown data and parameters are 

available, then a reactive maintenance strategy is to be adopted. If historical breakdown 

data and parameters are available along with sensor and equipment monitoring data, then 

fully integrated maintenance models and strategies should be adopted. If only historical 

breakdown data and parameters are available, then either a preventive or the proposed 

predictive maintenance strategy should be adopted. 
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Figure 1: Generic Framework 
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D. Data Preparation 

 

Data Collection 

The database used in this analysis was collected from the general contractor of a 

multi-million-dollar infrastructure project in the Middle East region at an elevation of 

approximately 800 meters above sea level. It includes a corrective maintenance log 

spanning roughly two years for all the equipment that is being used on-site. The types of 

equipment that are available within the data set are presented in Table 2. 

Table 2: Types of Equipment in Dataset 

Equipment Category Brands 

Bulldozers Caterpillar 

Excavators Caterpillar, New Holland, Volvo 

Articulated Haulers Volvo 

Hydraulic Surface Drillers Sandvik, Tamrock 

 

The weather conditions at the project site are variable, spanning the four different 

seasons. The equipment maintenance log encompasses a total of 1,933 failure records for 

67 different pieces of equipment, each falling within one of the following equipment 

categories: bulldozers, excavators, articulated haulers, and hydraulic surface drillers. The 

brands of these pieces of equipment are presented in Table 2. For some of the pieces of 

equipment that are found in the equipment maintenance log, their corresponding 

equipment age is available. 
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Most breakdown records fall under the equipment categories of excavators and 

articulated haulers. Therefore, the analysis will be preliminarily focused on these two 

categories, as there is an exceedingly small number of data points that correspond to the 

bulldozer and hydraulic surface driller equipment categories that contribute to the overall 

database.  

The project manager assigned to the project from the contractor’s side is keen on 

understanding the breakdown pattern and behavior of the available construction 

equipment. With the currently adopted reactive maintenance strategy and preventive 

maintenance strategy, the contractor is suffering from unexpected breakdowns in their 

equipment fleet, which are negatively affecting the progression of works in accordance 

with the baseline time schedule in the magnitude of several months, plenty of which 

attributed to the unexpected equipment breakdowns, and leading to additional costs. A 

large volume of construction works is dependent on the availability of the equipment 

required for the job, and numerous delays can be attributed to the unavailability of such 

equipment. As a result, the project manager is hoping to utilize the corrective maintenance 

log that has been established from this project to devise a more robust construction 

equipment maintenance strategy. By doing so, the downtime of the different pieces of 

equipment in the contractor’s fleet can be minimized, which in turn maximizes the 

productivity of the equipment resources available for the contractor. 

A snapshot of the records for one of the pieces of equipment found in the 

corrective maintenance log is shown in Table 3. 
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Table 3: Snapshot of the Records for One of the Pieces of Equipment 

Problem 

Description 

Corrective 

Action 

Affected 

System 

Failure 

Type 

Hour 

meter 

Start 

Date 

Start 

Time 

End 

Date 

End 

Time 

Hydraulic Oil 
Leakage 

Change Hyd. 
Hose 

Hydraulic 
System 

Natural 
Failure 

12904 
07-11-
17 

3:15:00 
AM 

07-11-
17 

4:00:00 
AM 

Broken Piston Change Piston 
Hydraulic 

System 

Natural 

Failure 
12959 

30-11-

17 

8:00:00 

AM 

30-11-

17 

10:45:00 

AM 

Broken Piston 
Remove Piston 
from Boom 

Implement 
Natural 
Failure 

12970 
04-12-
17 

9:15:00 
AM 

08-12-
17 

7:30:00 
AM 

Hydraulic Oil 

Leakage 
Change Hose 

Hydraulic 

System 

Natural 

Failure 
12982 

13-12-

17 

9:00:00 

AM 

13-12-

17 

11:00:00 

AM 

Hammer Not 
Functioning 

Replace Switch 
Electrical 
System 

Natural 
Failure 

13053 
20-12-
17 

7:30:00 
AM 

20-12-
17 

9:00:00 
AM 

Electric Problem 
Change Electric 

Part 

Electrical 

System 

Natural 

Failure 
13662 

06-03-

18 

11:45:00 

AM 

06-03-

18 

12:45:00 

PM 

Broken Piston Repair Piston Implement 
Natural 
Failure 

13696 
09-03-
18 

7:00:00 
AM 

14-03-
18 

10:00:00 
PM 

Broken 

Jackhammer 

Change 

Jackhammer 
Implement 

Natural 

Failure 
13917 

07-04-

18 

10:00:00 

AM 

07-04-

18 

3:00:00 

PM 

Broken 
Jackhammer 

Calibration Implement 
Natural 
Failure 

13951 
10-04-
18 

7:00:00 
AM 

10-04-
18 

8:00:00 
AM 

Broken Axe 
Change Axe for 

Chain 
Implement 

Natural 

Failure 
13999 

16-04-

18 

12:30:00 

PM 

16-04-

18 

2:30:00 

PM 

Hydraulic Oil 

Leakage 

Calibration for 

Pump 

Hydraulic 

System 

Natural 

Failure 
14062 

20-04-

18 

8:00:00 

AM 

20-04-

18 

11:30:00 

AM 

Hydraulic Oil 

Leakage 
Repair Hyd. Pump 

Pneumatic 

System 

Natural 

Failure 
14138 

26-04-

18 

7:00:00 

AM 

04-05-

18 

9:00:00 

AM 

Broken Boom 

Pipe 
Welding Works Implement 

Natural 

Failure 
14206 

11-05-

18 

12:00:00 

PM 

11-05-

18 

7:00:00 

PM 

Broken Chain Welding Works Implement 
Natural 

Failure 
14298 

19-05-

18 

1:00:00 

PM 

19-05-

18 

2:00:00 

PM 

Broken Bucket Welding Works Implement 
Natural 

Failure 
14328 

23-05-

18 

7:00:00 

AM 

23-05-

18 

11:00:00 

AM 

Broken Chain Welding Works Implement 
Natural 

Failure 
14383 

31-05-

18 

11:00:00 

AM 

31-05-

18 

12:30:00 

PM 

Gas Leakage 

from Boom 
Filling Gas 

Wearable 

Material 

Natural 

Failure 
14468 

08-06-

18 

10:30:00 

AM 

08-06-

18 

11:00:00 

AM 

Broken Chain Install New Chain Implement 
Natural 

Failure 
14488 

14-06-

18 

9:00:00 

AM 

14-06-

18 

10:30:00 

AM 

Hydraulic Oil 

Leakage 

Change Hydraulic 

Hose 

Hydraulic 

System 

Natural 

Failure 
14537 

19-06-

18 

5:00:00 

PM 

19-06-

18 

6:00:00 

PM 

Hydraulic Oil 

Leakage 

Change Seal for 

Hose 

Hydraulic 

System 

Natural 

Failure 
14555 

20-06-

18 

2:00:00 

PM 

20-06-

18 

3:00:00 

PM 

Hydraulic Oil 

Leakage 

Change Hydraulic 

Hose 

Hydraulic 

System 

Natural 

Failure 
14573 

21-06-

18 

11:00:00 

AM 

21-06-

18 

1:00:00 

PM 

 

The available data for each corrective maintenance entry consists of the (1) 

equipment code, category, brand, and type, (2) problem description, (3) corrective action 

taken, (4) affected system, (5) failure type, (6) breakdown hour meter, and (7) breakdown 

start and end dates and times. The problem description describes the cause that led to the 

equipment breakdown. The corrective action performed explains the action that was taken 

to remedy the failure. The affected system is the system that failed and caused the 
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breakdown. The failure type describes the nature of the witnessed failure, which can be 

divided into natural failures, operation failures, and accidents. The breakdown hour meter 

variable is the value that is observed on the hour meter at the time of breakdown. The 

hour meter is a device that is installed on the equipment that gauges the time the 

equipment has been running, i.e., having the engine turned on. 

Based on the data found in the database under study, there are 14 systems within 

the different equipment categories that the breakdown may fall under. The 

aforementioned systems are the following: 

•••• BS (Braking System): The braking system is responsible for applying the 

equipment brakes and halting the motion of the piece of equipment. 

•••• CS (Chassis): The chassis is the structure/skeleton of the piece of equipment.  

•••• DF (Differential System): The differential system constitutes of gears that 

enables the rotation of the wheels connected to the same axle at different 

speeds.  

•••• ES (Electric System): The electric system consists of all electrical 

components within the piece of equipment. 

•••• HS (Hydraulic System): The hydraulic system consists of all the components 

within the piece of equipment that are responsible for the proper operation of 

the hydraulic system. 

•••• IM (Implements System): The implements system includes the attachments 

that are installed on the piece of equipment (e.g., jackhammer, bucket, etc.).  

•••• MT (Motor System): The motor system is responsible for the proper 

operation of the engine of the piece of equipment.  
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•••• PS (Pneumatic System): The pneumatic system utilizes air compression to 

supply power to several components of the piece of equipment. 

•••• SI (Safety Items): Safety items include brake lights, glass, operator chair, and 

other miscellaneous components that could pose a hazard to the operator and 

nearby workers, without affecting the actual piece of equipment in and of 

itself.  

•••• SS (Steering System): The steering system is responsible for the proper 

steering and maneuvering of the piece of equipment by the operator.  

•••• SU (Suspension System): The suspension system is responsible for 

connecting the axles and wheels of a piece of equipment to its chassis. 

•••• TR (Transmission System): The transmission system is responsible for 

transferring the power that is generated by the motor of the piece of equipment 

to its wheels.  

•••• TY (Tires): The tires are the wheels 

•••• WM (Wearable Materials): The wearable materials are the items that are 

installed on the piece of equipment that are, as part of normal operation, 

subject to wear and tear, and require regular replacement.  

 

Preliminary Data Analysis 

A preliminary data analysis was performed in an effort to obtain a better 

understanding of the nuances accompanying the available data. This analysis plays a 

significant role in further exploring the data, in addition to producing important 
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observations that are inherent within the data. To that end, the following preliminary data 

analysis in this section is conducted. 

Figure 2 represents the frequency of failures within each affected system. It shows how 

many times a breakdown in the different pieces of equipment has occurred as a result of 

a failure in the particular observed system. The frequency distribution bar graph clearly 

shows that the top three most frequent failure types are those involving the hydraulic 

system, followed by equipment implements, and finally the motor system. The average 

breakdown frequency of all systems is calculated to be 138. In percentage form, as shown 

in Figure 3, failures associated with the hydraulic system account for 41% of total failures, 

while those associated with the equipment implements and motor system account for 

approximately 27% and 14% of total failures, respectively.  

 

Figure 2: Failure Frequency According to Affected System 
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Figure 3: Breakdown Frequency Percentages 

Figure 4 represents the average breakdown duration within each affected system. 

The obtained graph clearly indicates that the three failures that are associated with the 

highest breakdown durations are those involving the steering system, followed by the 

motor system, and with a slightly lesser duration than the latter, the transmission system. 

The average breakdown duration of all systems is calculated to be 94 hrs.  
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Figure 4: Average Breakdown Durations According to Affected System 
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the following major observations can be made graphically: 

• There is a significant gap between the breakdown frequency and average 

breakdown duration of the hydraulic system. Even though this system 

contributes to the highest number of breakdowns, its associated breakdown 

duration is significantly below the average. This observation implies that 

although the hydraulic system is prone to breakdowns more than any of the 
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for all systems. This observation signifies that the motor system may be 

considered among the most critical systems. In other words, failures in the 

motor system are likely to happen more often than other systems, and its 

associated downtime is considerably high relative to the other systems. 

 

Figure 5: Frequency and Average Breakdown Durations According to Affected System 

To numerically establish the level of failure criticality for each of the existing 
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Table 4: Number of Breakdowns and Average Breakdown Durations for Different 

Systems 

System Number of Breakdowns Average Breakdown Duration (hr) 

BS 74 69 

CS 57 106 

DF 49 128 

ES 77 180 

HS 790 35 

IM 270 32 

MT 225 207 

PS 52 51 

SI 42 2 

SS 26 242 

SU 5 20 

TR 65 192 

TY 82 4 

WM 119 54 

 

When the issue of failure criticality is addressed, three types of criteria can be 

established in as far as measuring the level of failure criticality, and consequently, 

identifying the equipment systems that are considered the most critical to the operational 

status of the piece of equipment under study. The identified criteria are the following: 
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• Breakdown Frequency: This criterion represents the total number of 

breakdowns that are attributed to a certain system during a specific period. It 

can be directly obtained from the breakdown dataset by counting the number 

of failure instances that occurred in the system under study. For example, if 

there are 17 failures that have the affected system as “Hydraulic system”, the 

breakdown frequency in this case is 17.  

•••• Average Breakdown Duration: This criterion represents the average 

breakdown duration corresponding to the breakdowns attributed to a certain 

system during a specific period. It can be calculated by averaging the 

breakdown duration values for the failures that occurred in the system under 

study. The breakdown duration for each failure can be obtained by subtracting 

the breakdown start data and time from the breakdown end data and time. 

•••• Weighted Breakdown Duration: This criterion can be calculated by 

multiplying the breakdown frequency by the average breakdown duration of 

each system. This criterion, compared to the breakdown frequency and 

average breakdown duration, is the most representative, as it combines both 

the frequency and duration aspects of the breakdowns that have occurred 

throughout the project. 

Since the weighted breakdown duration value takes into account both the failure 

frequency and average breakdown duration, this criterion is selected for the process of 

identifying the most critical systems that constitute the construction equipment. A 

summary of the weighted breakdown duration values representing the different systems 
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can be found in Table 5 below. The average weighted breakdown duration for all systems 

is calculated to be 10,179 hours. 

Table 5: Weighted Breakdown Duration of Different Systems 

System Weighted Breakdown Duration (hr) 

BS 5106 

CS 6042 

DF 6272 

ES 13860 

HS 27650 

IM 8640 

MT 46575 

PS 2652 

SI 84 

SS 6292 

SU 100 

TR 12480 

TY 328 

WM 6426 
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An analysis of the above obtained data is performed. A bar chart illustrating the 

values provided in Table 5 is shown in Figure 6. 

 

Figure 6: Weighted Breakdown Duration According to Affected System 
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• The safety systems, in terms of frequency of failure and associated downtime, 

is the least critical system, having a meager weighted breakdown duration of 

84 hours, preceded by the suspension system and the tires system, which have 

a weighted breakdown duration of 100 hours and 328 hours, respectively. 

 

Data Cleaning 

To make effective use of the data, it must first be cleaned. Cleaning the data is 

essential in the process of developing any model. To obtain a dataset that can be 

effectively worked with and analyzed, the following adjustments to the data were made: 

• The data were sorted according to the equipment code. Every piece of 

equipment is represented by a unique equipment code that is used as an 

equipment identifier. This step allows for a clearer and more organized 

representation of the breakdown cycle of each equipment. 

• All failures of the type “Operation Failure” and “Accident” were removed 

from the dataset. In this dataset, operation failures are failures that are caused 

due to a certain misuse in operation on the part of the personnel operating the 

equipment at the time of failure, while accidents are the instances where the 

equipment are involved in physical accidents. These types of breakdowns 

cannot be integrated as a part of the predictive model, as they are highly 

dependent on the proficiency of the personnel that are operating the piece of 

equipment. Hence, these failures do not represent the actual health and natural 

breakdown pattern of the different pieces of equipment. Consequently, the 

breakdowns that are used are those belonging to the type “Natural Failure”, 
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which are the failures that naturally occur as a result of the normal operation 

of the equipment. 

• The data for each piece of equipment was extracted and placed on a unique 

worksheet. The result is a worksheet for every piece of equipment consisting 

of its failure data.  

• There exist several instances where the hour meter installed on a piece of 

equipment was replaced after conducting the corrective maintenance 

following a breakdown. In these cases, the hour meter values are reset to 0. 

To account for this and to maintain a continuous and logical hour meter 

reading, the hour meter value prior to the reset is added to that after the reset, 

and the following values are adjusted accordingly.  

• The hour meter values for the equipment under study were standardized. This 

was done by subtracting all hour meter readings of specific equipment by the 

first reading. By doing so, all equipment hour meter readings should start from 

a value of 0, making them easier to understand. 

The methodology followed for cleaning the data is summarized in Figure 7. 

 

Figure 7: Summary of Data Cleaning Methodology 
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E. Model Generation 

After the data was successfully cleaned, the model generation process was 

initiated. As previously mentioned, the overall objective of this work is to provide 

contractors working in the construction industry with a robust predictive maintenance 

framework that serves as a decision-making tool that is aimed towards minimizing the 

risk, magnitude, and potential ramifications that are witnessed as a result of unexpected 

construction equipment breakdowns. This framework operates by providing the 

construction contractor with a prediction in the form of a timestamp as to when the next 

theoretical breakdown is expected to occur. 

The problem on hand is a univariate regression problem, where the breakdown 

hour meter is regressed against the indices corresponding to the failure occurrence. A 

univariate regression approach was adopted instead of a time-series one since the 

available models for the latter (e.g., ARIMA) typically require a large number of data 

points for each piece of equipment, which might not always be available. If the timestep 

of the time-series model was decreased to simultaneously increase the total number of 

data points for a certain piece of equipment, then there would be numerous instances 

where there would be no failures throughout a certain timestep, which would negatively 

affect the results and the applicability of the model. Conversely, if the timestep was 

increased to prevent this issue from happening, then there would be very few data points 

for each piece of equipment to work with, which would not be nearly enough to run the 

model. Additionally, the classification approach was disregarded since the nature of the 
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problem (i.e., predicting a continuous hour meter value) does not elicit a classification 

type approach.  

 

Independent Variables 

A studied alternative consisted of including the failed system in the regression 

analysis as a categorical variable, making it a multiple regression problem. However, the 

expected time between breakdowns is not dependent on the previously affected system. 

All systems are independent, so the failure of one system does not preclude that the 

following failure is going to be of the same system.  

Moreover, another studied alternative that was considered was including the 

equipment age and/or the operation age in the model. This effort and the reason these 

parameters were not included is discussed in the upcoming Section 5.1: Equipment Age. 

Therefore, it was decided that the affected system is not to be included as a variable, 

leaving the failure index as the only independent variable. The failure index is the 

incremental number that is assigned to each instance of failure (e.g., for the second failure 

instance, the corresponding failure index is 2). 

 

Dependent Variables 

One alternative was to include the affected system as another dependent variable 

in the prediction model, making it a multivariate regression problem. However, like all 

models, which are inherently prone to a certain degree of error, there always remains the 

chance that the predictions made by the model are inaccurate as to the system that is 

expected to fail after a certain time interval. In that case, performing maintenance only 
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on the predicted system would be redundant and detrimental to the objective of this 

framework. When maintenance is performed only on a system that is expected to fail but 

another does, an excessive amount of time would be spent on two sides: performing the 

predictive maintenance activity and repairing the equipment after it breaks down.  

A sample of the data that was used to generate the models for a single piece of equipment 

is shown in Table 6.  

Table 6: Sample Cleaned Data Used for Model Generation 

Failure Index Failure Hour Meter (hr) 

1 0 

2 121 

3 500 

4 536 

5 557 

6 595 

7 613 

8 641 

9 654 

10 673 

11 714 

12 811 

13 863 

14 902 

15 944 

16 979 

17 1056 

18 1130 

19 1203 

20 1222 

21 1237 

22 1240 

23 1325 

24 1428 

25 1516 

26 1563 

27 1619 

28 1693 
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All the data for the different equipment that is used as input for the models has 

the same format as that shown in Table 6. 

 

F. Model Selection 

Three models were taken into consideration throughout this research study: Linear 

regression, non-linear regression, and the neural network based multilayer perceptron 

(MLP) regression. The first two models (linear regression and non-linear regression) 

serve as the primary baselines that are used to assess the relative performance of the MLP 

model on a comparative basis. The underlying reasons for selecting these two models as 

the baselines can be summed up by the following points: 

• The linear regression model is based on the assumption that the breakdown 

frequency of the construction equipment follows a linear trend and is 

independent of its running time. In other words, the time the equipment has 

been up and running does not affect the breakdown frequency. 

• The non-linear regression model is based on the assumption that the 

breakdown frequency of the construction equipment follows a non-linear 

trend and does depend on its running time. As the piece of construction 

equipment is used continuously, the chance of witnessing a breakdown 

increases correspondingly due to the sustained wear and tear depreciation of 

the equipment.  

As for the MLP regression model that is being proposed, the main reason for 

selecting it is its ability to make accurate predictions through learning the relationships 

between data that are linear and those that are non-linear, in addition to its ability to 
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constantly be fed with new information and data regarding the observed breakdown and 

maintenance patterns. In other words, the MLP regression model combines the 

advantages that are inherent within linear regression on one side, and non-linear 

regression on the other. 
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CHAPTER V 

RESULTS 

 

To prepare the model for running, all the steps previously mentioned in the 

implementation methodology section are followed. After all the needed data are 

successfully obtained, cleaned, and prepared to be used in the model, the model can now 

be fully initialized with all the required input. The results were obtained by running the 

model on seven excavators and seven articulated haulers. Three runs were performed for 

each available piece of equipment, with each run representing the MLP model, Linear 

Regression model, and Non-linear Regression model. A detailed presentation of the 

results obtained is performed for one piece of equipment (E03), and a summary and 

comparison of all the results that correspond to the other pieces of equipment analyzed 

follows. 

 

G. Equipment Age 

The effects of the equipment age and whether they can be incorporated into the 

model or not were studied. Every piece of equipment exhibits (1) a time age and (2) and 

operation age. The time age is the date that the equipment was manufactured in, while the 

operation age is the time that the piece of equipment has been in operation for. To study 

whether it is necessary to include these parameters in the model, a Pearson correlation 

test was conducted on the statistical computing and graphics software R between time 
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age and average time between failure (TBF), and between operation age and average 

TBF.  

The average TBF was calculated by averaging the difference of the consecutive 

breakdown hour meter values. From this test, Pearson’s r, also known as the Pearson 

product-moment correlation coefficient (PPMCC), is obtained. This value represents 

whether there is a low, moderate, or high correlation between the different parameters 

that are evaluated. Table 7 summarizes the significance of different values of Pearson’s 

correlation coefficient (r). 

Table 7: Pearson's Correlation Coefficient (Selvanathan, Jayabalan, Saini, Supramaniam, 

& Hussain, 2020) 

 

 

Time Age 

For some of the pieces of equipment that were studied, the manufacturing date 

(year if make) was available. This data was available for six excavators and seven 
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articulated haulers. The data that was used to conduct the Pearson correlation test is 

represented in Table 8. 

Table 8: Equipment Time Age vs. Average TBF 

 Year of Make Equipment Age (Year) Average TBF 

E03 2009 11 52 

E07 2008 12 80 

E13 2010 10 51 

E16 2009 11 54 

E21 2010 10 58 

E27 2010 10 74 

E28 NA NA 56 

H03 2000 20 62 

H05 1997 23 91 

H06 1997 23 72 

H07 1997 23 92 

H08 1998 22 121 

H09 1999 21 83 

H10 2000 20 64 

 

The results of the Pearson correlation test that were obtained are as follows: 

• Excavators: r = 0.39 

• Articulated Haulers: r = 0.42 
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According to Table 7, there is a low correlation between the equipment age and 

average TBF for the excavators, and a moderate correlation between the equipment age 

and average TBF for the articulated haulers. However, the obtained Pearson coefficient 

correlation r values for both types of equipment are positive, which indicates a positive 

correlation between equipment time age and average TBF.  

This observation is counter-intuitive, since if there were to be a correlation 

between these two parameters, this correlation should be negative (i.e., if the equipment 

is older, then it is expected to fail more frequently, hence a lower TBF). Therefore, this 

indicates that other factors such as equipment motor temperature, pressure, quality of 

parts, equipment operation, and other factors that cannot be monitored in this case may 

have come into play, affecting the time between failures of each equipment. As a result, 

the equipment time age has not been used as a parameter in the predictive model. 

 

Operation Age 

The operation age for seven excavators and seven articulated haulers was inferred 

from the breakdown hour meter values that are available in the maintenance log database. 

The data that was used to conduct the Pearson correlation test is represented in Table 9. 

 

 

 

 

 

 



 

48 

 

Table 9: Equipment Operation Age vs. Average TBF 

Equipment Operation Age (hr) Average TBF 

E03 12904 52 

E07 14885 80 

E13 11928 51 

E16 3537 54 

E21 12139 58 

E27 11649 74 

E28 9803 56 

H03 24839 62 

H05 28708 91 

H06 24169 72 

H07 26125 92 

H08 26388 121 

H09 22055 83 

H10 2589 64 

 

The results of the Pearson correlation test that were obtained are as follows: 

• Excavators: r = 0.50 

• Articulated Haulers: r = 0.34 

According to Table 7, there is a moderate correlation between the equipment age 

and average TBF for the excavators, and a low correlation between the equipment age 

and average TBF for the articulated haulers. However, similar to the values obtained for 
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the equipment time age correlation test, the obtained Pearson coefficient correlation r 

values for both types of equipment are positive, which indicates a positive correlation 

between equipment operation age and average TBF. This observation is counter-intuitive, 

since if there would be a correlation between these two parameters, this correlation should 

be negative (i.e., if the equipment is older, then it is expected to fail more frequently due 

to equipment depreciation and wear and tear, hence a lower TBF). Therefore, this 

indicates, similar to the observations made from the equipment time age correlation test, 

that other factors that cannot be monitored in this case may have come into play, affecting 

the time between failure of each equipment. As a result, the equipment operation age has 

also not been used as a parameter in the predictive model. 

 

H. MLP Model 

As previously mentioned in the methodology, the problem on hand is a univariate 

regression problem, where the breakdown hour meter is regressed against the indices 

corresponding to the failure occurrence. The detailed preliminary results of the MLP 

model are obtained for one excavator (E03). The same approach for obtaining the model 

results for the different models of this particular piece of equipment is adopted in 

obtaining the model results for the remaining pieces of equipment. The evaluation metric 

that is used for this model is the mean absolute error (MAE). In this case, the MAE 

provides an accurate and discernable indication as to the differences between the 

predicted and actual breakdown hour meters. The obtained MAE values can be directly 

interpreted as the time difference by which the predicted breakdown time is off from the 

actual breakdown time. The root mean squared error (RMSE) can also be used as the 
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performance metric, but it lacks the aforementioned advantages of the MAE performance 

metric. Table 10 represents these results in terms of the difference between the predicted 

breakdown hour meter values and the actual breakdown hour meter values.  

Table 10: MLP Predicted Values vs. Actual Values for Excavator E03 

E03 MLP Model 

Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 12 55 -43 

2 39 66 -27 

14 1433 1424 -9 

16 1543 1564 -21 

18 1618 1633 -15 

21 1725 1751 -26 

24 1831 1880 -49 

25 1867 1893 -26 

26 1900 1913 -13 

27 1917 1914 3 

33 2019 2027 -8 

38 2103 2083 20 

39 2136 2095 41 

45 2434 2501 -67 

51 2741 2876 -135 

53 2843 2915 -72 

54 2894 2925 -31 

57 3048 3026 22 
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The MAE obtained for this model is 35 hours. Considering the fact that no 

equipment data other than the historical breakdown hour meter values are available, the 

results obtained are promising. The largest error is witnessed for the prediction at index 

51, which underestimates the actual breakdown hour meter value by 135 hours (about 5 

and a half days). A boxplot representing the error distribution for the breakdown hour 

meter values can be viewed in Figure 8. This distribution, in practice, represents the 

difference between the actual time that the breakdown has occurred at and when it was 

predicted through the MLP model to occur. 

 

Figure 8: Boxplot Representing Error Distribution for Excavator E03 
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I. Linear Regression Model 

Similarly, for the Linear regression model, the breakdown hour meter is regressed 

against the indices corresponding to the failure occurrence. The results of the Linear 

Regression model for excavator E03 are represented in Table 11. 

Table 11: Linear Regression Predicted Values vs. Actual Values for Excavator E03 

E03 Linear Regression Model 

Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 625 55 570 

2 668 66 602 

14 1186 1424 -238 

16 1272 1564 -292 

18 1359 1633 -274 

21 1488 1751 -263 

24 1618 1880 -262 

25 1661 1893 -232 

26 1704 1913 -209 

27 1747 1914 -167 

33 2006 2027 -21 

38 2222 2083 139 

39 2265 2095 170 

45 2524 2501 23 

51 2783 2876 -93 

53 2869 2915 -46 

54 2912 2925 -13 

57 3042 3026 16 
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The MAE obtained for the Linear Regression model above is 202 hours, which is 

considered remarkably high, especially when compared with that obtained from the MLP 

model. The largest errors occur at indices 1 and 2, where the predicted breakdown hour 

meter values are significantly overestimated compared to the actual breakdown hour 

meter values. 

 

J. Non-linear Regression Model 

Finally, for the Non-linear regression mode, the breakdown hour meter is also 

regressed against the indices corresponding to the failure occurrence. The results of the 

Non-linear Regression model for excavator E03 are represented in Table 12Table 12. 
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Table 12: Non-linear Regression Predicted Values vs. Actual Values for Excavator E03 

E03 Non-linear Regression Model 

Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 43 55 -12 

2 194 66 128 

14 1442 1424 18 

16 1558 1564 -6 

18 1654 1633 21 

21 1765 1751 14 

24 1843 1880 -37 

25 1864 1893 -29 

26 1883 1913 -30 

27 1901 1914 -13 

33 1998 2027 -29 

38 2118 2083 35 

39 2150 2095 55 

45 2422 2501 -79 

51 2795 2876 -81 

53 2913 2915 -2 

54 2963 2925 38 

57 3053 3026 27 

 

The MAE obtained for the Non-linear Regression model above is 36 hours, which 

is approximately equal to that obtained from the MLP model. The largest errors occur at 
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indices 1 and 2, where the predicted breakdown hour meter values are significantly 

overestimated compared to the actual breakdown hour meter values. 

 

K. Model Result Comparison 

The same approach for obtaining the model results for the different models of 

excavator E03 was adopted in obtaining the model results for the remaining pieces of 

equipment. After all simulations have been run on the available breakdown data for the 

different pieces of equipment, the results of the three models per equipment were 

obtained. The obtained results are shown in the Appendix. 

Table 13 below represents the MAE values obtained for the different pieces of 

equipment belonging to the excavator type. 

Table 13: MAE Values of Different Models for Excavators 

Model E03 E07 E13 E16 E21 E27 E28 

MLP 35 80 62 56 66 106 29 

Linear Regression 202 199 106 105 156 145 328 

Non-linear Regression 36 89 76 57 88 96 103 

 

Table 14 below represents the MAE values obtained for the different pieces of equipment 

belonging to the articulated hauler type. 
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Table 14: MAE Values of Different Models for Articulated Haulers 

Model H03 H05 H06 H07 H08 H09 H10 

MLP 73 67 76 59 142 59 37 

Linear Regression 75 156 188 157 151 329 160 

Non-linear Regression 62 81 84 76 136 104 87 

 

From the MAE values obtained and represented in Table 13, it is clear that the 

prediction accuracy of the MLP model in the case of excavators surpasses both those of 

the Linear Regression model and the Non-linear Regression model. The MLP model 

surpasses the performance of the Linear Regression model in all instances. Moreover, it 

performs better than the Non-linear regression model for all but one excavator (E27), 

where the resulting MAE of the MLP model is 106, compared to 96 for the Non-linear 

Regression model. By averaging the MAE results for the different models across the 

available excavators, the obtained average MAE results are as follows:  

• MLP model: 62 hours  

• Linear Regression model: 177 hours 

• Non-linear Regression model: 78 hours 

From the values obtained, the MLP model displays a prediction performance 

improvement of 185% compared to the Linear Regression model, and an improvement 

of 26% compared to the Non-linear Regression model in the case of equipment of type 

excavator. 

Similarly, in the case of articulated haulers, as shown in Table 14, the MLP model 

also performs better than the Linear Regression Model and the Non-Linear Regression 
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Model, since the MLP model also resulted in the lowest MAE value compared to the 

other models. The obtained average MAE results are as follows: 

• MLP model: 73 hours  

• Linear Regression model: 174 hours 

• Non-linear Regression model: 90 hours 

From the values obtained, the MLP model displays a prediction performance 

improvement of 173% compared to the Linear Regression model, and an improvement 

of 23% compared to the Non-linear Regression model in the case of equipment of type 

articulated haulers. 

 

Significance Test 

To verify whether the MLP model improvement in accuracy compared to Non-

Linear Regression is significant, a one-tailed t-test was conducted between the MLP 

model results and those of the Non-linear regression model for each piece of equipment. 

A significance level of 5% is adopted, and the hypotheses studied are as follows: 

• Null Hypothesis (H0): The MLP model does not perform significantly better 

than the Non-linear Regression model. 

• Alternate Hypothesis (Ha): The MLP model performs significantly better than 

the Non-linear Regression model. 

The results obtained for the different pieces of equipment are as follows: 

1) Significant Improvement (p-value < 0.05): E07, E13, E28, H05, H09, H10 

2) Non-significant Improvement (p-value > 0.05): E03, E16, E21, H05, H06, 

H07 
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3) No improvement (Non-linear Regression lower average MAE): E27, H03, 

H08 

From the results obtained, the MLP model shows significant improvement 

compared to the Non-linear Regression in 43% of the cases, non-significant improvement 

in 38% of the cases, an no improvement in 19% of the cases. 

L. Model Usage 

The results obtained confirm that the performance of the MLP model in terms of 

predicting the breakdown time of a piece of equipment is better than the baseline models 

used. After setting up the model, predictions in the form of the breakdown hour meter 

corresponding to the next failure could be made. To perform a prediction, the failure index 

that corresponds to the next theoretical breakdown that succeeds the most recent 

breakdown that has occurred to the piece of equipment under study is used as input for 

the model. 

After the predicted hour meter value that corresponds to the next breakdown 

expected to occur is calculated by the model, a maintenance timeframe that takes into 

consideration the predicted breakdown hour meter, in turn the working duration until the 

next breakdown, would be established. In other words, the predicted output indicates the 

time at which the piece of equipment is expected to break down in the future. From this 

value obtained, the project manager on the project would be able to schedule and perform 

a maintenance task on the piece of equipment at around the predicted hour mark of 

equipment operation. This maintenance would occur primarily for the top three most 

critical systems that were previously established: motor system, hydraulic system, and 

electrical system. 
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The expected breakdown value that is provided by the model could be of vital 

importance in terms of the decisions that are made by the contractor. The main benefit 

would be implementing a robust proactive approach in the field. This available 

information could be used in the field to coordinate internally and at the equipment 

supplier level in the case of rented equipment. For example, if five excavators are needed 

for a critical activity that will start next week, and only four are being used for the 

predecessor activity, the equipment that will fail the soonest according to the model would 

undergo a maintenance before the critical activity starts to prevent witnessing a 

breakdown throughout the activity. The project manager can also opt to procure a 

temporary substitute for the piece of equipment while the maintenance works are being 

performed. The primary aim of the proposed model is to establish a timestamp 

corresponding to the next theoretical breakdown that is expected to occur. By running the 

model on the different pieces of equipment that will be assigned to the critical activity, 

the piece of equipment that is expected to witness a breakdown the soonest according to 

the model would be sent for maintenance before the activity starts to reduce the risk of it 

failing mid-activity. An example for this prediction is given from excavator E03 from the 

project dataset. After the model is run on this excavator, an hour meter value of 3151 hr 

is obtained. The last witnessed breakdown had a breakdown hour meter value of 3059 hr. 

Therefore, this piece of equipment is expected to break down at 92 hours of operation 

after the last witnessed breakdown. These steps would be applied to the different pieces 

of equipment as previously mentioned, and the equipment that is expected to fail the 

soonest within the next critical activity would have a maintenance scheduled and 

performed.   
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In addition, a proactive approach can also be implemented in terms of procuring 

a maintenance team on-site that is equipped with the necessary maintenance tools at the 

time at which the breakdown is expected to occur. In case the equipment breaks down, 

the presence of a maintenance team would mitigate the severe repercussions that would 

have emanated if said team was not prepared and on the field. 

After the maintenance is successfully performed, the hour meter value that is 

observed at the time of maintenance is used as additional input into the model to perform 

another prediction down the road.  
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CHAPTER VI 

CONCLUSION 

 

In conclusion, there is no doubt that heavy construction equipment is an essential 

resource in every construction project. As the complexity of construction projects all over 

the world is increasing, the reliance on heavy equipment to get project activities and tasks 

done is increasing. However, any piece of equipment, from the smallest tool to the biggest 

piece of machinery, is inherently prone to breakdowns and failures. Therefore, it is vital 

for contractors to ensure that their available pieces of equipment, whether owned or 

rented, are consistently and reliably maintained in an effort to prevent or mitigate these 

unexpected breakdowns. Equipment maintenance strategies such as reactive maintenance 

and preventive maintenance are most commonly adopted among contractors and 

equipment fleet owners. Unfortunately, these strategies are associated with several 

setbacks, including but not limited to (1) an increase in the risks of unexpected 

breakdowns, (2) a lack of preparation for an unexpected breakdown, and (3) in some 

circumstances, over-maintenance. All these setbacks are associated with an increase in 

total project costs and possible delays in the project completion date that is agreed upon 

by the different project entities. Therefore, it is clear that a robust construction equipment 

maintenance strategy should be adopted to decrease maintenance costs and delays, 

consequently maintaining the baseline project cost and duration, especially in the absence 

of sensor and equipment condition data.  
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To that end, this paper proposed a predictive construction equipment maintenance 

framework based on MLP neural networks that aims to achieve these objectives. The 

devised model was tested on several excavators and articulated haulers, and then 

compared to the results of two baseline models: Linear Regression and Non-linear 

Regression. An improvement of 185% compared to the Linear Regression model, and an 

improvement of 26% compared to the Non-linear Regression model in the case of 

equipment of type excavator was witnessed. Moreover, an improvement of 173% 

compared to the Linear Regression model, and an improvement of 23% compared to the 

Non-linear Regression model in the case of equipment of type articulated haulers was 

witnessed. From the results obtained, it is clear that that the MLP model outperforms the 

base models and is more robust in predicting the time between the most recent failure or 

maintenance that was witnessed in a piece of equipment and the next theoretical 

breakdown. This framework could be of significant value to the industry practitioner, as 

it could play a role in enhancing the overall productivity of construction equipment by 

minimizing their breakdown rate and criticality, in turn reducing the associated 

equipment operating costs and expediting the rate at which works are performed. 

As for the limitations that are present within this study, the most prominent issue 

that maybe be addressed in future works is to ensure that the operation status and the 

various conditions that the pieces of equipment were operating in are available. This 

should be done in order to re-check the equipment age issue that was deemed to be 

counter-intuitive in this study, which led to not including the equipment age parameters 

in the model. By doing so, this may allow the incorporation of the equipment time age 

and operation age of the different pieces of equipment that are intended to be studied into 
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the model. This may result in obtaining more accurate results that take into consideration 

the age of the pieces of equipment analyzed. Moreover, an additional idea that can be 

explored in future works is applying this strategy on different types of equipment that are 

not included within this study such as trucks, compactors, and other types of equipment. 
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APPENDIX 

Table 15: MLP predicted values vs. actual values for excavator E07 

E07 MLP Model 

Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 320 121 199 

2 481 500 -19 

14 959 944 15 

16 1068 1056 12 

18 1176 1203 -27 

20 1285 1237 48 

21 1340 1240 100 

22 1394 1325 69 

27 1695 1693 2 

30 1976 1903 73 

38 2724 2953 -229 

41 3005 3096 -91 

44 3285 3339 -54 

48 3660 3572 88 

49 3753 3629 124 

51 3940 4076 -136 

Table 16: Linear regression predicted values vs. actual values for excavator E07 

E07 Linear Regression Model 

Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 93 121 -28 

2 164 500 -336 

14 1014 944 70 

16 1156 1056 100 

18 1297 1203 94 

20 1439 1237 202 

21 1510 1240 270 

22 1580 1325 255 

27 1935 1693 242 

30 2147 1903 244 

38 2714 2953 -239 

41 2926 3096 -170 

44 3139 3339 -200 

48 3422 3572 -150 

49 3493 3629 -136 

51 3635 4076 -441 
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Table 17: Non-linear regression predicted values vs. actual values for excavator E07 

E07 Non-linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 340 121 219 
2 383 500 -117 
14 933 944 -11 
16 1036 1056 -20 
18 1144 1203 -59 
20 1260 1237 23 
21 1320 1240 80 
22 1383 1325 58 
27 1736 1693 43 
30 1981 1903 78 
38 2747 2953 -206 
41 3052 3096 -44 
44 3333 3339 -6 
48 3600 3572 28 
49 3633 3629 4 
51 3638 4076 -438 
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Table 18: MLP predicted values vs. actual values for excavator E13 

E13 MLP Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 71 26 45 
2 146 106 40 
3 222 124 98 
6 690 775 -85 
13 991 947 44 
14 1034 1009 25 
16 1119 1072 47 
17 1162 1129 33 
21 1334 1195 139 
22 1377 1302 75 
24 1463 1476 -13 
25 1506 1524 -18 
26 1549 1608 -59 
27 1592 1656 -64 
30 1720 1778 -58 
32 1806 1811 -5 
37 2021 2078 -57 
39 2107 2193 -86 
52 2665 2617 48 
64 3180 3109 71 
67 3309 3390 -81 
72 3523 3686 -163 
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Table 19: Linear regression predicted values vs. actual values for excavator E13 

E13 Linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 411 26 385 
2 455 106 349 
3 500 124 376 
6 632 775 -143 

13 942 947 -5 
14 986 1009 -23 
16 1074 1072 2 
17 1119 1129 -10 
21 1296 1195 101 
22 1340 1302 38 
24 1428 1476 -48 
25 1472 1524 -52 
26 1517 1608 -91 
27 1561 1656 -95 
30 1694 1778 -84 
32 1782 1811 -29 
37 2003 2078 -75 
39 2092 2193 -101 
52 2667 2617 50 
64 3197 3109 88 
67 3330 3390 -60 
72 3551 3686 -135 
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Table 20: Non-linear regression predicted values vs. actual values for excavator E13 

E13 Non-linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 310 26 284 
2 363 106 257 
3 415 124 291 
6 573 775 -202 

13 938 947 -9 
14 989 1009 -20 
16 1091 1072 19 
17 1142 1129 13 
21 1342 1195 147 
22 1392 1302 90 
24 1489 1476 13 
25 1537 1524 13 
26 1585 1608 -23 
27 1632 1656 -24 
30 1770 1778 -8 
32 1860 1811 49 
37 2074 2078 -4 
39 2155 2193 -38 
52 2635 2617 18 
64 3133 3109 24 
67 3313 3390 -77 
72 3725 3686 39 
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Table 21: MLP predicted values vs. actual values for excavator E16 

E16 MLP Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 66 42 24 
2 163 112 51 

14 1150 1238 -88 
16 1231 1241 -10 
18 1311 1262 49 
21 1432 1385 47 
24 1552 1502 50 
25 1593 1547 46 
26 1633 1611 22 
27 1673 1650 23 
33 1915 1817 98 
38 2116 2158 -42 
39 2156 2190 -34 
45 2398 2357 41 
51 2639 2560 79 
53 2720 2701 19 
54 2760 2838 -78 
57 2881 3092 -211 

Table 22: Linear regression predicted values vs. actual values for excavator E16 

E16 Linear Regression Model 

Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 142 42 100 
2 266 112 154 

14 1183 1238 -55 
16 1269 1241 28 
18 1344 1262 82 
21 1447 1385 62 
24 1543 1502 41 
25 1575 1547 28 
26 1608 1611 -3 
27 1641 1650 -9 
33 1855 1817 38 
38 2056 2158 -102 
39 2098 2190 -92 
45 2356 2357 -1 
51 2626 2560 66 
53 2730 2701 29 
54 2788 2838 -50 
57 3000 3092 -92 
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Table 23: Non-linear regression predicted values vs. actual values for excavator E16 

E16 Non-linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 142 42 100 
2 266 112 154 
14 1183 1238 -55 
16 1269 1241 28 
18 1344 1262 82 
21 1447 1385 62 
24 1543 1502 41 
25 1575 1547 28 
26 1608 1611 -3 
27 1641 1650 -9 
33 1855 1817 38 
38 2056 2158 -102 
39 2098 2190 -92 
45 2356 2357 -1 
51 2626 2560 66 
53 2730 2701 29 
54 2788 2838 -50 
57 3000 3092 -92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

71 

 

Table 24: MLP predicted values vs. actual values for excavator E21 

E21 MLP Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 260 114 146 
2 517 235 282 
3 773 682 91 
6 1116 1212 -96 

13 1556 1423 133 
14 1619 1511 108 
16 1744 1710 34 
21 1961 1976 -15 
22 1991 1993 -2 
25 2082 2093 -11 
26 2112 2101 11 
27 2142 2111 31 
30 2232 2163 69 
32 2292 2192 100 
39 2503 2512 -9 
42 2593 2612 -19 
48 2903 2973 -70 
55 3295 3242 53 
57 3408 3510 -102 
61 3632 3589 43 
66 3913 3883 30 
67 3969 3969 0 
71 4193 4322 -129 
75 4418 4419 -1 
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Table 25: Linear regression predicted values vs. actual values for excavator E21 

E21 Linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 849 114 735 
2 895 235 660 
3 941 682 259 
6 1081 1212 -131 

13 1406 1423 -17 
14 1452 1511 -59 
16 1545 1710 -165 
21 1777 1976 -199 
22 1823 1993 -170 
25 1963 2093 -130 
26 2009 2101 -92 
27 2055 2111 -56 
30 2195 2163 32 
32 2287 2192 95 
39 2612 2512 100 
42 2752 2612 140 
48 3030 2973 57 
55 3355 3242 113 
57 3448 3510 -62 
61 3633 3589 44 
66 3866 3883 -17 
67 3912 3969 -57 
71 4098 4322 -224 
75 4283 4419 -136 
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Table 26: Non-linear regression predicted values vs. actual values for excavator E21 

E21 Non-linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 478 114 364 
2 599 235 364 
3 713 682 31 
6 1022 1212 -190 
13 1565 1423 142 
14 1626 1511 115 
16 1737 1710 27 
21 1963 1976 -13 
22 2001 1993 8 
25 2105 2093 12 
26 2137 2101 36 
27 2167 2111 56 
30 2255 2163 92 
32 2312 2192 120 
39 2522 2512 10 
42 2627 2612 15 
48 2877 2973 -96 
55 3250 3242 8 
57 3371 3510 -139 
61 3626 3589 37 
66 3950 3883 67 
67 4011 3969 42 
71 4234 4322 -88 
75 4386 4419 -33 
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Table 27: MLP predicted values vs. actual values for excavator E27 

E27 MLP Model 
 Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 60 59 1 
2 125 180 -55 

16 1572 1536 36 
21 1921 1798 123 
22 1990 1846 144 
24 2130 1935 195 
25 2200 2429 -229 
27 2339 2602 -263 
30 2548 2725 -177 
33 2757 2810 -53 
35 2897 2957 -60 
36 2967 2980 -13 
41 3315 3256 59 
44 3525 3666 -141 
50 3943 3981 -38 
54 4222 4136 86 
56 4361 4192 169 
57 4431 4355 76 
60 4640 4547 93 

Table 28: Linear regression predicted values vs. actual values for excavator E27 

E27 Linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 387 59 328 
2 460 180 280 

16 1483 1536 -53 
21 1848 1798 50 
22 1921 1846 75 
24 2067 1935 132 
25 2140 2429 -289 
27 2286 2602 -316 
30 2505 2725 -220 
33 2725 2810 -85 
35 2871 2957 -86 
36 2944 2980 -36 
41 3309 3256 53 
44 3528 3666 -138 
50 3967 3981 -14 
54 4259 4136 123 
56 4405 4192 213 
57 4478 4355 123 
60 4697 4547 150 
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Table 29: Non-linear regression predicted values vs. actual values for excavator E27 

E27 Non-linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 165 59 106 
2 265 180 85 

16 1542 1536 6 
21 1947 1798 149 
22 2026 1846 180 
24 2180 1935 245 
25 2256 2429 -173 
27 2405 2602 -197 
30 2624 2725 -101 
33 2838 2810 28 
35 2978 2957 21 
36 3047 2980 67 
41 3386 3256 130 
44 3583 3666 -83 
50 3965 3981 -16 
54 4202 4136 66 
56 4313 4192 121 
57 4366 4355 11 
60 4513 4547 -34 

Table 30: MLP predicted values vs. actual values for excavator E28 

E28 MLP Model 
 Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 14 37 -23 
2 38 44 -6 

14 1068 1095 -27 
16 1245 1184 61 
18 1666 1751 -85 
21 2070 2074 -4 
24 2266 2247 19 
25 2302 2287 15 
26 2332 2325 7 
27 2361 2338 23 
33 2520 2516 4 
38 2639 2601 38 
39 2663 2675 -12 
45 2805 2845 -40 
48 2876 2906 -30 
52 2971 2934 37 
55 3064 2979 85 
57 3147 3132 15 
58 3189 3178 11 
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Table 31: Linear regression predicted values vs. actual values for excavator E28 

E28 Linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 397 37 360 
2 453 44 409 

14 1122 1095 27 
16 1234 1184 50 
18 1345 1751 -406 
21 1513 2074 -561 
24 1680 2247 -567 
25 1736 2287 -551 
26 1792 2325 -533 
27 1848 2338 -490 
33 2182 2516 -334 
38 2461 2601 -140 
39 2517 2675 -158 
45 2852 2845 7 
48 3019 2906 113 
52 3242 2934 308 
55 3410 2979 431 
57 3521 3132 389 
58 3577 3178 399 

Table 32: Non-linear regression predicted values vs. actual values for excavator E28 

E28 Non-linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 -126 37 -163 
2 -19 44 -63 
14 1204 1095 109 
16 1389 1184 205 
18 1565 1751 -186 
21 1813 2074 -261 
24 2037 2247 -210 
25 2106 2287 -181 
26 2172 2325 -153 
27 2236 2338 -102 
33 2548 2516 32 
38 2719 2601 118 
39 2743 2675 68 
45 2841 2845 -4 
48 2872 2906 -34 
52 2929 2934 -5 
55 3013 2979 34 
57 3107 3132 -25 
58 3170 3178 -8 

 



 

77 

 

Table 33: MLP predicted values vs. actual values for articulated hauler H03 

H03 MLP Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 344 391 -47 
7 948 756 192 

16 1468 1480 -12 
18 1551 1511 40 
20 1634 1591 43 
25 1841 1691 150 
26 1883 1766 117 
27 1924 1925 -1 
30 2048 2095 -47 
32 2131 2200 -69 
34 2214 2326 -112 
36 2297 2340 -43 

 

Table 34: MLP predicted values vs. actual values for articulated hauler H05 

H05 MLP Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 29 4 25 

3 81 154 -73 

16 1078 1018 60 

18 1228 1181 47 

20 1433 1434 -1 

26 2124 2124 0 

29 2469 2443 26 

30 2585 2480 105 

33 2930 2652 278 

34 3045 3120 -75 

35 3160 3145 15 

38 3501 3599 -98 

41 3804 3732 72 
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Table 35: MLP predicted values vs. actual values for articulated hauler H06 

H06 MLP Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 70 48 22 

2 81 68 13 

14 698 668 30 

16 787 792 -5 

18 875 815 60 

21 1045 1086 -41 

22 1108 1231 -123 

24 1234 1359 -125 

25 1297 1421 -124 

26 1360 1494 -134 

27 1423 1539 -116 

32 1738 1809 -71 

33 1801 1810 -9 

38 2365 2446 -81 

44 3089 2808 281 

50 3639 3679 -40 

55 4004 3951 53 

56 4077 4122 -45 

 

Table 36: MLP predicted values vs. actual values for articulated hauler H07 

H07 MLP Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 51 6 45 

3 134 205 -71 

14 1014 1208 -194 

16 1218 1249 -31 

18 1422 1392 30 

20 1626 1587 39 

21 1728 1671 57 

30 3112 3043 69 

34 3419 3419 0 

36 3572 3721 -149 

37 3648 3725 -77 

38 3725 3741 -16 

41 3928 3909 19 

42 3991 4030 -39 
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Table 37: MLP predicted values vs. actual values for articulated hauler H08 

H08 MLP Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 70 105 -35 

7 1000 1219 -219 

16 2083 1881 202 

20 2565 2323 242 

24 3046 2953 93 

25 3167 3035 132 

26 3287 3402 -115 

27 3408 3696 -288 

29 3648 3881 -233 

33 4130 4127 3 

35 4371 4402 -31 

38 4732 4612 120 

 

Table 38: MLP predicted values vs. actual values for articulated hauler H09 

H09 MLP Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 18 33 -15 

3 133 74 59 

14 397 400 -3 

16 466 456 10 

18 534 594 -60 

20 603 655 -52 

21 638 685 -47 

30 1014 941 73 

34 1738 1859 -121 

36 2124 2201 -77 

37 2317 2435 -118 

38 2510 2518 -8 

41 3088 3120 -32 

42 3281 3121 160 
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Table 39: MLP predicted values vs. actual values for articulated hauler H10 

H10 MLP Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 70 60 10 

2 122 103 19 

15 989 980 9 

16 1039 1091 -52 

18 1140 1133 7 

21 1241 1269 -28 

22 1266 1279 -13 

25 1342 1310 32 

26 1367 1369 -2 

32 1722 1664 58 

35 2034 1941 93 

36 2138 2054 84 

37 2241 2180 61 

41 2657 2639 18 

42 2761 2674 87 

48 3384 3481 -97 

51 3609 3636 -27 

55 3744 3708 36 

58 3846 3833 13 

61 3947 3936 11 

 

Table 40: Linear regression predicted values vs. actual values for articulated hauler H03 

H03 Linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 587 391 196 

7 895 756 139 

16 1357 1480 -123 

18 1460 1511 -51 

20 1563 1591 -28 

25 1820 1691 129 

26 1871 1766 105 

27 1923 1925 -2 

30 2077 2095 -18 

32 2180 2200 -20 

34 2282 2326 -44 

36 2385 2340 45 
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Table 41: Linear regression predicted values vs. actual values for articulated hauler H05 

H05 Linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 -214 4 -218 

3 -21 154 -175 

16 1228 1018 210 

18 1420 1181 239 

20 1612 1434 178 

26 2189 2124 65 

29 2477 2443 34 

30 2573 2480 93 

33 2861 2652 209 

34 2957 3120 -163 

35 3053 3145 -92 

38 3342 3599 -257 

41 3630 3732 -102 

 

Table 42: Linear regression predicted values vs. actual values for articulated hauler H06 

H06 Linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 -231 48 -279 

2 -156 68 -224 

14 747 668 79 

16 897 792 105 

18 1048 815 233 

21 1273 1086 187 

22 1348 1231 117 

24 1499 1359 140 

25 1574 1421 153 

26 1649 1494 155 

27 1725 1539 186 

32 2101 1809 292 

33 2176 1810 366 

38 2552 2446 106 

44 3003 2808 195 

50 3455 3679 -224 

55 3831 3951 -120 

56 3906 4122 -216 
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Table 43: Linear regression predicted values vs. actual values for articulated hauler H07 

H07 Linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 -221 6 -227 

3 -11 205 -216 

14 1149 1208 -59 

16 1360 1249 111 

18 1571 1392 179 

20 1782 1587 195 

21 1887 1671 216 

30 2836 3043 -207 

34 3257 3419 -162 

36 3468 3721 -253 

37 3574 3725 -151 

38 3679 3741 -62 

41 3995 3909 86 

42 4101 4030 71 

 

Table 44: Linear regression predicted values vs. actual values for articulated hauler H08 

H08 Linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 169 105 64 

7 919 1219 -300 

16 2043 1881 162 

20 2543 2323 220 

24 3043 2953 90 

25 3168 3035 133 

26 3293 3402 -109 

27 3418 3696 -278 

29 3668 3881 -213 

33 4168 4127 41 

35 4418 4402 16 

38 4793 4612 181 
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Table 45: Linear regression predicted values vs. actual values for articulated hauler H09 

H09 Linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 -466 33 -499 

3 -320 74 -394 

14 487 400 87 

16 634 456 178 

18 781 594 187 

20 927 655 272 

21 1001 685 316 

30 1661 941 720 

34 1954 1859 95 

36 2101 2201 -100 

37 2174 2435 -261 

38 2248 2518 -270 

41 2468 3120 -652 

42 2541 3121 -580 

 

Table 46: Linear regression predicted values vs. actual values for articulated hauler H10 

H10 Linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 -30 60 -90 

2 37 103 -66 

15 914 980 -66 

16 982 1091 -109 

18 1116 1133 -17 

21 1319 1269 50 

22 1386 1279 107 

25 1588 1310 278 

26 1656 1369 287 

32 2061 1664 397 

35 2263 1941 322 

36 2330 2054 276 

37 2398 2180 218 

41 2668 2639 29 

42 2735 2674 61 

48 3140 3481 -341 

51 3342 3636 -294 

55 3612 3708 -96 

58 3814 3833 -19 

61 4016 3936 80 
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Table 47: Non-linear regression predicted values vs. actual values for articulated hauler 

H03 

H03 Non-linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 238 391 -153 

7 986 756 230 

16 1476 1480 -4 

18 1532 1511 21 

20 1584 1591 -7 

25 1756 1691 65 

26 1804 1766 38 

27 1856 1925 -69 

30 2041 2095 -54 

32 2178 2200 -22 

34 2307 2326 -19 

36 2397 2340 57 

 

Table 48: Non-linear regression predicted values vs. actual values for articulated hauler 

H05 

H05 Non-linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 32 4 28 

3 151 154 -3 

16 1116 1018 98 

18 1294 1181 113 

20 1479 1434 45 

26 2080 2124 -44 

29 2407 2443 -36 

30 2520 2480 40 

33 2870 2652 218 

34 2990 3120 -130 

35 3113 3145 -32 

38 3492 3599 -107 

41 3888 3732 156 
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Table 49: Non-linear regression predicted values vs. actual values for articulated hauler 

H06 

H06 Non-linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 105 48 57 

2 148 68 80 

14 672 668 4 

16 767 792 -25 

18 867 815 52 

21 1030 1086 -56 

22 1088 1231 -143 

24 1211 1359 -148 

25 1276 1421 -145 

26 1344 1494 -150 

27 1414 1539 -125 

32 1810 1809 1 

33 1898 1810 88 

38 2383 2446 -63 

44 3040 2808 232 

50 3682 3679 3 

55 4050 3951 99 

56 4086 4122 -36 

 

Table 50: Non-linear regression predicted values vs. actual values for articulated hauler 

H07 

H07 Non-linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 21 6 15 

3 110 205 -95 

14 981 1208 -227 

16 1202 1249 -47 

18 1439 1392 47 

20 1689 1587 102 

21 1818 1671 147 

30 3005 3043 -38 

34 3471 3419 52 

36 3668 3721 -53 

37 3755 3725 30 

38 3833 3741 92 

41 4009 3909 100 

42 4046 4030 16 
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Table 51: Non-linear regression predicted values vs. actual values for articulated hauler 

H08 

H08 Non-linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 21 6 15 

3 110 205 -95 

14 981 1208 -227 

16 1202 1249 -47 

18 1439 1392 47 

20 1689 1587 102 

21 1818 1671 147 

30 3005 3043 -38 

34 3471 3419 52 

36 3668 3721 -53 

37 3755 3725 30 

38 3833 3741 92 

41 4009 3909 100 

42 4046 4030 16 

 

Table 52: Non-linear regression predicted values vs. actual values for articulated hauler 

H09 

H09 Non-linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 54 33 21 

3 118 74 44 

14 391 400 -9 

16 430 456 -26 

18 473 594 -121 

20 523 655 -132 

21 554 685 -131 

30 1145 941 204 

34 1698 1859 -161 

36 2053 2201 -148 

37 2247 2435 -188 

38 2450 2518 -68 

41 3082 3120 -38 

42 3286 3121 165 
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Table 53: Non-linear regression predicted values vs. actual values for articulated hauler 

H10 

H10 Non-linear Regression Model 
Index Predicted Breakdown Hour Meter Actual Breakdown Hour Meter Error 

1 95 60 35 

2 176 103 73 

15 896 980 -84 

16 939 1091 -152 

18 1025 1133 -108 

21 1160 1269 -109 

22 1207 1279 -72 

25 1362 1310 52 

26 1418 1369 49 

32 1817 1664 153 

35 2057 1941 116 

36 2143 2054 89 

37 2232 2180 52 

41 2608 2639 -31 

42 2706 2674 32 

48 3291 3481 -190 

51 3554 3636 -82 

55 3829 3708 121 

58 3948 3833 115 

61 3965 3936 29 
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